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Abstract

This paper develops an innovative robust iterative learning control
law using the repetitive process setting. The new design is experimentally
validated through a comprehensive set of experiments highlighting the ca-
pabilities for position tracking control of a permanent magnet synchronous
motor subject to load disturbances in the presence of uncertainties in se-
lected parameters.

1 INTRODUCTION

Iterative learning control (ILC) was especially developed for systems or processes
that repeat the same finite duration operation over and over again, such as
gantry robots in mass production facilities. Each repetition is termed a trial
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and its duration the trial length. Once a trial is completed, all information
generated are available for updating the control input so that the output follows
the specified reference trajectory, including the cases where there is uncertainty
in the plant model and/or load disturbances are present. The notation used in
this paper is of the form hk(p), 0 ≤ p ≤ α − 1, where h is a scalar or vector-
valued function under consideration, the nonnegative integer k denotes the trial
number and α < ∞ the number of samples along the trial in the discrete case
(α times the constant sampling period gives the trial length).

Let yref(p) denote the supplied reference trajectory. Then, the error on
trial k is ek(p) = yref(p) − yk(p) where yk(p) is the output on trial k and the
objective is the design of a controller to ensure that {ek}k converges to zero in
k and the control input signals to a learned control. The first work on ILC is
widely credited to [1] and since then it has been an expanding area of research
in control systems with an ever widening range of applications. Starting points
for the literature are the survey papers [2, 3].

In the case of discrete linear dynamics, there are many settings for ILC
design. In this paper, the repetitive process setting is used, which has already
seen many designs reported, e.g., [4] with experimental validation. However,
repetitive process based designs come at a price in terms of data storage required
that may be problematic in some applications. This paper develops a new design
where storage of the previous trial state vector over the complete trial length is
not required and also introduces compensation for other unwanted effects.

The new contributions in this paper are: i) integral action to compensate
for unknown constant or slowly varying disturbances on the trial, where the
control action is applied on the trial in which they first appear, rather than on
subsequent trials in other designs, ii) feedforward control action to reduce initial
tracking errors in the early learning phase and iii) allows for plants with relative
degree greater than unity unlike the alternative design in [5].

Model uncertainty described by the convex polytope is include in the de-
sign. Moreover, the merits of the new design are illustrated by applying the
control strategy to a Permanent Magnet Synchronous Motor (PMSM). Finally,
a comparison in application terms with competing repetitive process based ILC
designs is given.

Throughout this paper, the zero and identity matrices with compatible di-
mensions are denoted by 0 and I, respectively. A real symmetric positive (nega-
tive) definite matrix is written as Z � 0 (≺ 0) and X � Y denotes the case when
X −Y is a symmetric negative semi-definite matrix. The symbol (?) denotes
block entries in a symmetric matrix.
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2 Control Configuration

The new ILC design in this paper is based on a discrete-time linear parameter-
dependent state-space plant model written in the ILC setting as

xk+1(p+ 1) = A(λ)xk+1(p)

+ B(λ)
(
uk+1(p)− dk+1(p)

)
,

yk+1(p) = Cxk+1(p),

(1)

where the matrices A(λ) and B(λ) are assumed to belong to a convex polytope
described by [

A(λ) B(λ)
]

=
∑M
j=1 λj

[
Aj Bj

]
,

λ =

 λ1...
λM

 , λj ≥ 0,
∑M
j=1 λj = 1.

(2)

Considering trial k + 1, xk+1(p) ∈ Rn denotes the state vector, uk+1(p) ∈ R
the control input, dk+1(p) ∈ R the load disturbance input and yk+1(p) ∈ R the
output. The output vector C is assumed to be fixed and known exactly and the
relative degree r ≥ 1. This paper considers single-input single-output (SISO)
systems but the results easily generalize to multi-input multi-output (MIMO)
systems.

In the repetitive process setting, the ILC law is of the form

uk+1(p) = uk(p) + Kstab

(
xk+1(p)− xk(p)

)
+KILCek(p+ 1),

(3)

where the second term provides stabilizing control action and the third term
is the ILC feedforward using sample p + 1 of the error information from the
previous trial to improve tracking accuracy during the current trial. The design
of this control law is based on linear repetitive process stability theory, and the
associated control law gain matrices are computed using linear matrix inequal-
ities (LMIs). The new ILC scheme developed in this paper is shown in Fig. 1
and adds the following features relative to previous designs.

1. The tracking error for a system subject to a load disturbance is reduced
by existing ILC laws but starting from the next trial. In the new design
the impact of such a disturbance is compensated for on the trial where it
appears first and hence a possibly significant tracking error is avoided.

2. Large tracking errors occurring in the early trials or directly after a change
in the reference trajectory are reduced.

3. Design for plants with relative degree r ≥ 1 is allowed.

4. ILC algorithm implementation does not require additional memory to
store Kstabxk(p) in (3).
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Figure 1: Block diagram of the ILC structure based on a state feedback con-
troller with integral action and a dynamic feedforward controller.

The term dk+1 in Fig. 1 represents a load disturbance entering on trial k+1,
resulting in a steady-state tracking error in the along the trial dynamics (the
response along a trial are described in terms of the discrete-time variable p).
This error can be reduced by the ILC law (3) but this compensation will only
take effect on the next trial after the disturbances have occurred. One suitable
countermeasure was given in [5], where the tracking error caused by disturbances
is reduced by a disturbance observer. The stability of such an observer-based
ILC can be proven after the design is complete, see [5]. This is not the case
with the new design in this paper.

Another way of immediately reducing the tracking error caused by unknown
constant or slowly varying disturbances, within the trial where they first appear,
is to include integral action of the current tracking error. The implementation
of this action is achieved by the output of the K2 block in Fig. 1. Moreover,
a disturbance observer also cannot remove this error completely due to limited
dynamics but instead it is reduced to zero by ILC action on subsequent trials.
To increase the convergence speed, the ILC signal vk+1(p) acts on the closed-
loop (state feedback) system by both the static feedforward gain N and the
integral action.

In an ILC implementation, large tracking errors can arise during early trials
or directly after a change in the reference trajectory, see [5]. One cause of
errors in the initial trials is the assumption that the initial control signal is zero
(u0(p) = 0). Errors after a change in the reference trajectory may arise, among
other reasons, from the fact that stored information on the previous control
input (uk(p)) is no longer valid after this change and may even prevent accurate
tracking. The control design developed in this paper aims at compensating
this effect by including dynamic feedforward control. It takes advantage of the
reference trajectory yref(p) and is implemented within the FF block in Fig. 1 and
the ILC update is given by K3ek(p+r), building on previous analysis in, e.g., [4].
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3 Robust state feedback with integral action and
feedforward control design

The ILC scheme of Fig. 1 is based on a state feedback controller with integral
action and both static and dynamic feedforward controllers. The design of these
controllers is detailed in this section.

The integral action in the state feedback controller is introduced through

ψk+1(p) =

p∑
q=0

εk+1(q), (4)

where εk+1(p) = yref(p) + vk+1(p) − yk+1(p). For design purposes, the signals
vk+1(p), yref(p) and dk+1(p) are set to zero as they do not influence stability.
Applying the control law

uk+1(p) = K1xk+1(p) +K2ψk+1(p− 1) (5)

to the plant model (1) leads to an augmented system representation that can
be written as

χk+1(p+ 1) =
(
As(λ) + Bs(λ)Ks

)
χk+1(p),

yk+1(p) = Cclχk+1(p),
(6)

where

χk+1(p) =

[
xk+1(p)

ψk+1(p− 1)

]
,

As(λ) =

[
A(λ) 0
−C 1

]
, Bs(λ) =

[
B(λ)

0

]
,

Cs =
[
C 0

]
, Ks =

[
K1 K2

]
.

(7)

The design of the state feedback law with the integral action requires Ks

to be chosen such that (6) is stable for all possible [A(λ) B(λ)]. One way of
completing this design is to find uk+1(p) = Ksχk+1(p) that minimizes the cost
function

Jcl =

∞∑
p=0

(
χT
k+1(p)Qχk+1(p) +Ru2k+1(p)

)
, (8)

where Q � 0 and R > 0 are an appropriately chosen weighting matrix and
scalar factors. Many ways of solving this problem are known and in this paper
the guaranteed cost method [6] is used.

For given χk+1(0) = γ, suppose that there exist compatibly dimensioned
matrices Y � 0, W and a positive scalar β such that for j = 1, . . . ,M, the
LMIs 

Y (?) (?) (?)
AsjY + BsjW Y (?) (?)

Y 0 Q−1 (?)
W 0 0 1

R

 � 0, (9)
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[
β γT

γ Y

]
� 0 (10)

are feasible, where

Asj =

[
Aj 0
−C 1

]
, Bsj =

[
Bj

0

]
. (11)

Then (for the proof see [6]) the following optimization procedure can be applied

min(β), subject to: Y � 0, (9), (10) (12)

for j = 1, . . . ,M . If a solution exists to this problem, the stabilizing gain vector
is given by

Ks = WY−1, (13)

where K1 and K2 are obtained from the partitioning of Ks according to (7).
The next step is to design the dynamic and static feedforward control terms

in Fig. 1. Using the dynamic feedforward controller (FF), accurate tracking can
be obtained only if both plant model and the disturbances are exactly known. In
the case of an uncertain system model and unknown, but repetitive, disturbances
the dynamic feedforward controller only calculates an approximation to the
control signal, which is enhanced by the ILC signal vk+1(p) computed using the
K3 block in Fig. 1. This design can be completed as detailed in Sec. 6.

In application, the static feedforward controller represented by the block N
in Fig. 1 is added to avoid instability arising due to excessive integration. Under
the assumption that K2 = 0, f(p) = 0 and dk+1(p) = 0, the resulting closed-
loop transfer function with the state feedback control law applied has one input,
the signal wk+1(p) = Nvk+1(p) in Fig. 1. To make the DC gain of the series
connection of the block N and the closed-loop transfer function equal to one,
the static feedforward gain N has to be chosen as the inverse of the DC gain of
the feedback loop.

4 Repetitive process formulation of the ILC de-
sign

The ILC signal vk+1(p) acts on the closed-loop state feedback control system as
shown in Fig. 1. Setting yref(p) = 0 and dk+1(p) = 0, the contribution of the
vk+1(p) signal to the plant output is described by the state-space model

χk+1(p+ 1) = Acl(λ)χk+1(p) + BILC(λ)vk+1(p),

yk+1(p) = Cclχk+1(p),
(14)

where
Acl(λ) = As(λ) + Bs(λ)Ks,

BILC(λ) =

[
B(λ)N

1

]
.

(15)
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An ILC law computes the signal to be applied on the next trial and often is the
sum of the signal used on the previous trial and a correction term, i.e.,

vk+1(p) = vk(p) + ∆vk+1(p), (16)

where
∆vk+1(p) = K3ek(p+ r), (17)

in contrast to other repetitive process based designs, e.g. [5].
Introduce, for analysis purposes only, the vector

ηk+1(p) = χk+1(p)− χk(p). (18)

Then, the application of (16) to (14) gives the following state-space model de-
scription of the controlled ILC dynamics

ηk+1(p+ 1) = Acl(λ)ηk+1(p)

+ BILC(λ)K3ek(p+ r),

ek+1(p) =−Cclηk+1(p) + ek(p).

(19)

By applying the z-transform, the following description of the ILC dynamics
(19) can be obtained (see, e.g., the relevant references in [3] for the justification
of why applying the z-transform to the finite trial length does not affect the
final result)

ek+1(z)

ek(z)
= −Cclz

r
(
zI−Acl(λ)

)−1
BILC(λ)K3 + 1. (20)

Moreover, see [4]. this leads to the state-space model

ηk+1(p+ 1) = Acl(λ)ηk+1(p)

+ BILC(λ)K3ek(p),

ek+1(p) =− Γ(λ)ηk+1(p)

+
(
1− Υ (λ)K3

)
ek(p),

(21)

with
Γ(λ) = Ccl

(
Acl(λ)

)r
,

Υ (λ) = Ccl

(
Acl(λ)

)r−1
BILC(λ).

(22)

The set with vertices
[
Aclj BILCj Γj Υj

]
, where

Aclj = Asj + BsjKs, BILCj =

[
BjN

1

]
,

Γj = CclA
r
clj , Υj = CclA

r−1
clj BILCj

(23)

is, in general, non-convex due to the presence of powers of the matrix Acl(λ).
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There are many tools available to form a convex set given the vertices. Here,
MATLAB compatible geometric bounding software is used and gives[

Âcl(λ) B̂ILC(λ) Γ̂(λ) Υ̂ (λ)
]

= X̃,

X̃ =
∑M
j=1 λj

[
Âclj B̂ILCj Γ̂j Υ̂j

]
.

(24)

As a result, (21) becomes

ηk+1(p+ 1) = Â(λ)ηk+1(p) + B̂0(λ)ek(p),

ek+1(p) = Ĉ(λ)ηk+1(p) + D̂0(λ)ek(p),
(25)

with the vertices

Â(λ) = Âcl(λ), B̂0(λ) = B̂ILC(λ)K3,

Ĉ(λ) = −Γ̂(λ), D̂0(λ) = 1− Υ̂ (λ)K3

(26)

and the set of vertices having the required convexity property. The state-space
model (25) is that of a discrete linear repetitive process [7] and the next section
uses the stability theory of these processes to undertake robust ILC design.

5 Robust ILC Design

A stability theory for linear constant pass length processes has been developed
in a Banach space setting [7]. This stability theory requires that a bounded
initial pass profile produces a bounded sequence of pass profiles (in k) either
over the finite and fixed pass length or, in stronger form, independent of the
pass length. The extension to control law design has been the subject of much
research leading to computationally feasible design algorithms. In this paper it
is stability along the pass property that is used and to conform with the vast
majority of the ILC literature, the word pass is replaced by trial from this point
onwards. A standing result is that if stability along the trial holds for a linear
repetitive process then ILC dynamics represented in this form have monotonic
trial-to-trial error convergence [7].

Introduce the notation

Φ(λ) =

[
Â(λ) B̂0(λ)

Ĉ(λ) D̂0(λ)

]
, (27)

and P(λ) = diag
(
P1(λ), P2(λ)

)
. Then by linear repetitive process stability the-

ory (25) is stable along the trial [7] if

ΦT(λ)P(λ)Φ(λ)−P(λ) ≺ 0. (28)

8



5.1 Guaranteed cost function based control design

The design problem considered in this section is to determine the gain K3 that
guarantees ‘fast’ trial-to-trial error convergence. If the LMIs resulting from (28)
are feasible, there exist infinitely many solutions but no criteria for selecting
them to reflect the expected performance. One way of avoiding this obstacle is
to use the guaranteed cost method introduced for standard linear systems in [6]
and for repetitive processes in [7]. Since the dynamics along the trial of the ILC
system (25) are dependent on (12), the following cost function is used

JILC =

k∗∑
k=0

α−1∑
p=0

e2k+1(p)

=

k∗∑
k=0

α−1∑
p=0

ξT(k, p)UT(λ)U(λ)ξ(k, p),

(29)

with U(λ) =
[
Ĉ(λ) D̂0(λ)

]
and the number k∗ of trials to be completed.

Hence the requirement for stability along the trial becomes

ΦT(λ)P(λ)Φ(λ)−P(λ) + UT(λ)U(λ) � 0. (30)

The following is the main result of this paper.

Theorem 1 Consider uncertain discrete ILC dynamics described by (25). Then
the robust stable along the trial property holds and the associated cost function
JILC (29) satisfies the upper bound in Theorem 2 of [5] if, for given boundary
conditions,

ηk+1(0) = f , e0(p) = g (31)

the LMIs 
G1 + GT

1 − Y1j (?) (?) (?) (?)
0 2G2 − Y2j (?) (?) (?)

ÂcljG1 B̂ILCjW Y1j (?) (?)

−Γ̂jG1 G2 − Υ̂jW 0 Y2j (?)

−Γ̂jG1 G2 − Υ̂jW 0 0 1

 � 0 (32)

are feasible and there exist positive scalars β1 and β2 such that for j = 1, . . . ,M
the LMIs [

β1 fT

f Y1j

]
� 0,

[
β2 g
g Y2j

]
� 0 (33)

hold. Then the gain K3 of the correction term (17) is given by

K3 =
W

G2
. (34)

The proof follows the arguments of [7, 5], where a parameter independent
Lyapunov function was used.
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The following minimization procedure can be applied to this last result:

min(β1 + β2), subject to:
diag(Y1j , Y2j) � 0, (32) and (33)

(35)

for j = 1, . . . ,M. If a solution exists, K3 in (17) is given by (34).

6 Experimental validation

6.1 Equipment details and control design

The robust ILC design developed in the previous section has been applied ex-
perimentally to position tracking of a PMSM (drive A) mechanically connected
to a second PMSM (drive B), which is used to generate an external disturbance
in the form of a load torque. Between these two motors, an additional rotary
mass can be inserted to evaluate the robustness of the design to changes in the
mass moment of inertia. The angular position of the motor shaft is measured
by a resolver and the resolver to digital converters, used in both drives, which
have a resolution of 2π/214 rad and an accuracy of ±0.007 rad. The angular
velocity is calculated numerically as a sixteen-point moving average of the posi-
tion difference with sampling time of the current control loop. The underlying
control loops of both PMSMs are based on a field-oriented control approach.
This corresponds to decoupling of the orthogonal current components and non-
linear feedback linearization. A detailed description of the experimental setup
is given in [5].

The dynamic model for the control of the angular position is

TA
e (t) = irefAq (t)kAt

= JM
d2θAm(t)

dt2
+BM

dθAm(t)

dt
+ TB

l (t),
(36)

where TA
e denotes the electromagnetic torque generated by drive A, irefAq the

reference motor current of drive A, kAt the corresponding torque constant, JM
the overall mass moment of inertia, BM the resulting friction coefficient, θAm the
motor shaft angle, and TB

l the load torque generated by drive B. The resulting
continuous-time state-space model for TB

l = 0 is

ẋ(t) =

 0 1

0 −BM

JM

x(t) +

 0

kAt
JM

u(t),

y(t) =
[

1 0
]
x(t),

(37)

where

u(t) = irefAq (t), x(t) =

 θAm(t)

ωA
m(t)

 (38)
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Figure 2: Vertices of the continuous-time plant model (37) marked on the plane
formed by the element 2, 2 of the state matrix Ac and the element 2, 1 of the
input vector Bc.

In this representation, the angular velocity of the motor shaft is ωA
m(t) =

dθAm(t)
dt .

In the remainder of this paper, the model uncertainty is:

• The mass moment of inertia varies between a minimum value JM,min =
5.9 · 10−4 kg·m2 and a maximum JM,max = 10.6 · 10−4 kg·m2.

• The friction coefficient varies between a minimum value BM,min = 1.3 ·
10−3 kg·m2/s and a maximum BM,max = 1.5 · 10−3 kg·m2/s.

• The torque constant varies between a minimum value kAt,min = 0.35 N·
m/A and a maximum kAt,max = 0.39 N· m/A.

Given these bounds on the parameters in (37), a set of 8 vertices marked by dots
in Fig. 2 can be constructed. A minimal convex set containing these vertices
consists of the 6 vertices marked by x. Alternatively, MATLAB compatible
geometric bounding software can be used to find the 6 vertices of a minimum
convex set.

The new design in this paper requires a discrete-time system representation,
which is obtained using the Euler discretization method, which preserves the
convexity of the uncertain continuous-time state-space model. For the 6 vertices
defining the minimum convex set of the continuous-time model (Fig. 2), where
the output of each of the models is defined by C =

[
1 0

]
. Each of these discrete

models has relative degree r = 2.
The MATLAB toolboxes CVX and SDPT3 have been used to solve the

minimization problem (12). Here, the quadratic cost function is defined by the
following choices for the weighting matrices Q = diag(1.8 · 104, 0.1, 4), R = 0.9

11



and γ =
[
0.01 0 0

]T
. Since the inequality Y � 0 cannot be implemented in

CVX, it has been replaced by Y � 10−10 · I. The numerical solution of the
control problem leads to

Ks =
[
−99.4484 −0.9270 1.3916

]
(39)

and hence, using (7), K1 and K2.
The design of both the static and dynamic feedforward controllers is based

on the parameters of closed-loop system. As detailed in Sec. 3, this is done for
K1 arising from (39) and K2 = 0. Moreover, the average values of the system
parameters are used, i.e, JM = 8.25·10−4 kg·m2, BM = 1.4·10−3 kg·m2/s, kAt =
0.37 N ·m/A). Application of Euler’s discretization method (TA

sm = 2.5 · 10−3

s) gives the discretized state-space matrices

Aav =

[
1 0.0025
0 0.9958

]
, Bav =

[
0

1.1212

]
and Cav =

[
1 0

]
. The state-space model of the closed-loop feedback system

used to design both feedforward controllers has the form (see Fig. 1)

xk+1(p+ 1) =
(
Aav + BavK1

)
xk+1(p)

+ Bavwk+1(p),

yk+1(p) =Cavxk+1(p).

(40)

The DC gain of this system is 0.01005547 and hence N = 99.4484.
The closed-loop system (40) has no zeros and therefore the dynamic feed-

forward controller is designed using the perfect tracking algorithm [8], which
provides the signal f(p) (see Fig. 1) as

f(p) =
1− 0.9564z−1 + 0.2352z−2

0.0028
yref(p+ r), (41)

Since the relative degree of the plant models is r = 2, the ILC law (16) in
this case is

vk+1(p) = vk(p) +K3ek(p+ 2). (42)

Direct application of (42) to the closed-loop state feedback control system (14)
gives the state-space model (19) governing the ILC dynamics. The robust ILC
design developed in this paper requires this state-space model to be written as
a discrete linear repetitive process described by (25). This transformation is
non-linear and therefore the set with vertices (26) can be non-convex due to
the presence of powers of the matrix Acl(λ). MATLAB compatible geometric
bounding software has therefore been used to find the 6 vertices of a minimum
convex set (see (24)) for this example. The MATLAB toolboxes CVX and
SDPT3 were also employed to solve the minimization problem (35), where f =[
0.01 0 0

]T
, g = 0.1. The strict inequalities diag(Y1j , Y2j) � 0 of (35)

also cannot be implemented in CVX. Therefore, they have been replaced by
diag(Y1j , Y2j) � 10−10 · I for all j = 1, . . . , 6. Completing the ILC design gives
K3 = 0.6942.
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Table 1: Variation of the reference signal, the load torque signal and the mass
moment of inertia during the robust ILC application.

Trials yref(p) TB
l (p) JM [kg·m2]

1− 30 yref1 (p) 0 5.9 · 10−4

31− 60 yref1 (p) 3kAt 1(p− 100) 5.9 · 10−4

61− 90 yref1 (p) 3kAt 1(p− 100) 10.6 · 10−4

91− 500 yref2 (p) 2kAt 1(p− 250) 8.6 · 10−4

6.2 Experimental results and discussion

To counteract high frequency noise and quantization errors in the implementa-
tion, an off-line low-pass filtering of the tracking error has been implemented at
the end of each trial. For this purpose, a zero-phase digital filter, available in
MATLAB through the function filtfilt, was used. This filter is parameter-
ized as a 2nd-order low-pass digital Butterworth filter with a cutoff frequency
of 30 Hz and sampling period TA

sm.
In the remainder of this section, the experimental results obtained for four

control strategies are given to demonstrate the capabilities of the new ILC de-
sign. The following alternatives are investigated and compared to each other:

1. the new ILC structure shown in Fig. 1,

2. a simplified ILC structure where an ILC signal acts only on the plant input
– this structure is detailed at the relevant point below,

3. an ILC structure without integral action,

4. a non-ILC structure consisting of a state feedback controller with integral
action and a dynamic feedforward controller.

These experiments include the impact of a-priori unknown disturbances and
also model uncertainty. The disturbances are applied as variations in the load
torque, whereas model uncertainty is addressed by exchanging the mass moment
of inertia after a particular number of trials have been executed. Moreover, the
effects of changes in the reference trajectory are also investigated. Table 1 and
Fig. 3 give the parameters and signals used. In all experiments, the torque
constant and the friction coefficient are kept constant.

In the computation of the ILC laws at any sampling instant on the current
trial, the tracking error contribution from the previous trial is shifted by r = 2
samples, see (42). Hence the last two samples of the ILC signal, i.e., vk+1(999)
and vk+1(1000) cannot be implemented and instead the following assignments
were made ek+1(1001) = ek+1(1000), ek+1(1002) = ek+1(1000). Hence, the first
two samples of the tracking error from the previous trial are not used and in
each case replaced by a zero.
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Figure 3: Reference trajectory (a) and the load torque generated by drive B (b)
during the robust ILC.

Figure 4: RMS values of the tracking error for the first 150 trials.

Assuming zero boundary conditions, the new ILC scheme shown in Fig. 1
according to the scenario in Table 1 has been experimentally tested. The root-
mean-square (RMS) tracking error for experimental data is shown in Fig. 4,
where the corresponding plot is denoted by ”ILC Fig. 1”.

These results show that the new ILC needs 4 trials to result in very small
tracking errors that are close to the RDC resolution – despite all the investi-
gated changes in load torque, the mass moment of inertia and the reference
trajectory. Moreover, the integral action of the state feedback controller re-
duced the steady-state tracking error caused by the disturbance torque starting
immediately during the trial in which the disturbance appeared.
Evaluation of a simplified ILC structure. A simplification of Fig. 1 occurs
when where the ILC signal vk+1(p) is connected only to the system input. An
identical set of experiments were performed for this alternative scheme. For
the first 150 executed trials, the resulting RMS tracking error is denoted by
”ILC Fig. 9” in Fig. 4. For this simplified ILC structure, slower trial-to-trial
error convergence occur after adding or changing load disturbances, where 14
trials, as opposed to only 4, are required to obtain tracking errors close to the
RDC resolution. This effect is related to changes in the integral action output
signal ψk+1(p) until perfect tracking is obtained again.
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Evaluation of the ILC structure without integral action. The ILC
schemes considered above are equivalent for K2 = 0, i.e., when the integral
action is disabled. A set of experiments was also performed for this case. The
resulting RMS tracking error is denoted by ”ILC for K2 = 0 and shown in
Fig. 4”. This set of experiments is of particular interest in assessing the track-
ing error after adding a load torque, on trial k = 31. In this case, a steady-state
tracking error occurs that can only be reduced/counteracted by the ILC after
the next trial has begun. The RMS tracking error is significantly larger at trial
k = 31 than in both previous sets of experiments, justifying the inclusion of the
integral action.

7 Conclusions

In this paper, an innovative ILC law, augmented by a state feedback controller
with integral action, has been developed and applied to the angular position
tracking of a PMSM. The integral action included in the state feedback controller
reduces the steady-state error caused by a load disturbance torque during the
trial in which it appears. The new robust ILC design does not require the
storage of the additional signal which is the product of the gain vector and the
state vector along the trials. It can be used for plants with relative degree r ≥ 1
and also in the case of uncertainty in the plant model parameters. The results
confirm that the new ILC is capable of achieving small tracking errors after a
small number of trials (4 trials for the considered PMSM), including the case
when model uncertainty, unmeasured disturbances and measurement noise are
present.

Given the results and the positive experimental validation reported in this
paper, there are a number of areas for future research. These include imple-
mentation on more sophisticated drive train topologies, e.g., those involving
elasticity. Also ILC design in the presence of noise should be investigated. The
analysis and experimental results in this paper are for SISO systems, Exten-
sion of the theory to case of square multi-input multi-output systems should be
considered. In the PMSM application the state vector entries can be directly
measured. If in other applications this is not the case then an observer is re-
quired and this is another area for further research, including dispensing with
state feedback.
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