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Abstract

Churn prediction in telco remains a very active research topic. Due to the uptake of

social network analytics and the results of previous benchmarking studies showing

a rather flat maximum performance effect of predictive modeling techniques, the fo-

cus has mainly shifted to expanding and exploring the relevant feature space. While

previous studies generally agree that adding features typically increases predictive

performance, they rarely discuss the accompanying issues such as data availability

and computational cost. In this work, we bridge the gap between predictive per-

formance and operational efficiency by devising a new feature type classification

and a novel reusable method to determine optimal feature type combinations based

on Pareto multi-criteria optimization. Our results provide several insights that can

serve as a guideline for industry practitioners.

Keywords: Feature Engineering, Feature Type Classification, Optimal Feature

Type Combinations, Operational Efficiency, Churn Prediction, Pareto

Multi-Objective Optimization

∗Corresponding author
Email address: sandra.mitrovic@kuleuven.be (Sandra Mitrović)

Preprint submitted to European Journal of Operational Research August 22, 2017



1. Introduction

Churn prediction (CP), i.e. predicting which customers will stop using a com-

pany’s services, is probably themost frequently tackled predictive task in the telecom-

munication industry, since retaining a customer is several timesmore beneficial than

acquiring a new one (Kim et al., 2014). Consequently, many different approaches

have been suggested in the literature, exploiting different modeling techniques and a

variety of explanatory features. Lately, the latter focus is becoming more prevalent

due to the fact that several benchmarking studies demonstrated that simple classi-

fication techniques perform well (Verbeke et al., 2010) and the fact that the avail-

ability of social network information enables expansion of the feature space.

Many previous works have analyzed the impact of including an additional vari-

ety of data on predictive performance (PP), e.g. network data (Backiel et al., 2014,

2016; Dasgupta et al., 2008; Richter et al., 2010; Zhang et al., 2012), operational

circuit/packet switch data (Huang et al., 2015), price sensitivity data (Zhang et al.,

2012), and volume (historical) (Huang et al., 2015; Zhang et al., 2012). However,

the current CP literature suffers from at least three problems. First, apart from the

local vs. network feature type classification, there is no standardized and more fine-

grained feature type classification available. Second, existing studies do not unani-

mously agree on the predictive power of local and network feature types (e.g. Kim

et al. (2014); Backiel et al. (2014) claim network features are better while Kusuma

et al. (2013) show the opposite). Hence, a more thorough analysis, considering a

more comprehensive feature type hierarchy, is required. Finally, the most important

driver for this study is that none of the existing studies discusses the resource ef-

forts related to data availability, data collection, feature engineering (e.g. time and

effort needed for extracting features from huge networks, retrieving historical data),

and model evaluation. Despite the fact that PP is often prioritized by researchers,
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feature set design should also be driven by factors influencing the operational effi-

ciency (OE) in real business settings as practitioners need to be capable of making

informed decisions given their own circumstances and priorities. More specifically,

they would benefit from proper guidelines indicating whether or not additional in-

vestments in e.g. computational time or data collection can generate a relevant in-

crease in PP. Although it can be speculated that in today’s big data era, distributed

computing has drastically reduced the importance of computational time, it is still

valuable to know whether a set of features provides a return of investment. Ad-

ditionally, given the low switching costs between telco providers, online real-time

CP is becoming more and more important (Diaz-Aviles et al., 2015). Hence, not

just accurately, but also timely detection of dissatisfied customers is crucial (Flores-

Méndez et al., 2016), which makes that considering appropriate features becomes

fundamental.

As such, we shift the focus from a single point of view where only PP is consid-

ered, to one in which the OE/PP trade-off becomes imperative. To scrutinize this

trade-off, we propose a detailed classification of feature types based on data recency

(recent vs. historical), data locality (individual customer-related or local vs. inter

customer-related or network), and data rendering (absolute vs. trend). Next, we

resort to Pareto multi-criteria optimization of AUC (Area Under the ROC-Curve)

and CT (computational time) so as to determine the optimal order in which different

feature types are conjoined and to identify the final set of Pareto optimal solutions

(transforming OE/PP trade-off into CT/AUC trade-off). As for the given problem

this is the first trial to consider, and also to avoid model-related dependencies, CT

is chosen to measure the feature engineering efforts. Our results are based on one

prepaid and one postpaid dataset of a European telecommunication provider.

The key contributions are threefold: 1) a new feature type classification; 2)

a novel reusable methodology for determining optimal feature type combinations
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based on Pareto multi-objective optimization, and 3) an experimental investigation

and discussion of the trade-off. Our experimental results show that considering the

trade-off between conflicting objectives provides better insights into the limitations

of expanding the feature space. As such, our methodology and results can serve as a

guideline for CP modeling in practice. For example, in contrast to our expectations,

using more complex features (e.g. Page Rank Page et al. (1999), trends), does not

improve PP while decreasing OE.

The paper is organized as follows: in Section 2, we provide an overview of

related work. Section 3 introduces the methodology with Section 4 detailing the

experimental setup. In Section 5, we present results, which are discussed in Section

6, before the paper is concluded in Section 7.

2. Related Work

In this section we provide a concise overview of related work.

2.1. Feature Engineering for Churn Prediction

Feature classification oftentimes entails a distinction between for instance so-

ciodemographic, subscription-, payment-, and complaint-related features. How-

ever, with the uptake of social network analytics, the most adopted feature type

classification became the one distinguishing between local (also known as tradi-

tional, individual) and network features (Dasgupta et al., 2008). Remarkably, no

other feature type classifications have been proposed in the literature (see the first

column in Table 1). As such, our proposal is considered a first step towards estab-

lishing a more fine-granular feature type classification for CP.

Regardless the absence of a ‘standardized’ classification, the existence of a wide

variety of features types for CP is evidenced by the literature. This variety can be

categorized along several dimensions, as shown in Table 1 (columns 3-6). However,
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notice that the distinction between these dimensions is sometimes blurred. For

example, usage-related information in (Kusuma et al., 2013) as well as call drop rate

and page response success in (Huang et al., 2015) are considered as local features,

although the underlying information essentially comes from Call Detail Records

(CDRs), typically used to derive network features. Furthermore, these examples

illustrate that features referred to as local might require a comparable or sometimes

higher computational effort than network ones.

While several studies compare different feature types, these approaches signif-

icantly differ from the one presented in this paper, for several reasons. First, there

exist differences in feature classification and churn definition between our and pre-

vious studies (and among themselves as well). Second, the comparison scope is

typically very limited to either a strict comparison between different feature types

(Dasgupta et al., 2008; Kim et al., 2014), or in the best case their combination as

well (e.g. local vs. network vs. local+network in (Zhang et al., 2012; Kusuma

et al., 2013) denoted as L:N:L+N in Table 1). However, none of the previous stud-

ies devises a customized way of combining many different feature types in the way

our study does (see Table 1). Third, even though some works compare different

modeling techniques and feature categories together (Dasgupta et al., 2008; Zhang

et al., 2012; Backiel et al., 2014, 2016), comparisons of different modeling tech-

niques are out of the scope of this study. Fourth and most importantly, other studies

only consider a PP perspective, except partially for (Kim et al., 2014), while our

study takes into account the OE/PP trade-off.

Finally, even though different studies undoubtedly agree that adding more fea-

tures improves PP, they disagree on different feature types’ importance: Kusuma

et al. (2013) claim that network features alone do not express enough predictive

power, while Kim et al. (2014); Backiel et al. (2014) claim the opposite. This pro-

vides an excellent motivation for analyzing the impact of feature types on PP at a
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more fine-grained level.

Table 1: Overview of related work. The meaning of columns 3-6 is as follows: column 3 is an indi-
cator whether recent (R) and/or historical (H) features were used. The number between parenthesis
denotes the number of months used to calculate historical features, with symbol ‘:’ denoting that a
comparison between feature types is performed. Column 4 reflects the use of local (L) vs. network
(N) features, while Column 5 denotes the use of absolute (A) vs. trend (T) features, with symbol
‘*’ meaning that aggregation functions have been applied. Finally, column 6 indicates the use of the
egonet (E) vs. higher-order neighborhood (H) for deriving network features. The last 4 columns po-
sition this work in terms of whether a customized OE/PP trade-off is made, whether MOO is applied,
whether flexible prioritization of the multiple objectives is possible, and finally which general types
of evaluation metrics were used.
Authors New FT

classifi-
cation

Recent
vs. His-
torical

Local
vs.
network

Absolute
vs.
trend

Egonet
vs. Higher-
ord. neigh.

Custom.
FT
comb.

OE/PP
trade-
off

MOO Flexible
priorit.

Evaluation
measure

Buckinx & Van den
Poel (2005)

/ R,H(4) L A* / / / / / PP

Dasgupta et al. (2008) Yes R,H(2) N A* E,H / (OE) / / PP
Coussement &
Van den Poel (2009)

/ R,H(30) L A* / / / / / PP

Richter et al. (2010) / R N A* E / OE / / PP,OE
Wang et al. (2010) / R,H(11) L A* / / Yes Yes No PP,OE
Lee et al. (2011) / R,H(1) L,N A / / OE / / PP,OE
Benoit & Van den Poel
(2012)

/ R,H L:N A* E,H / / / / PP

Huang et al. (2015) / R,H(3) L:N A,T E / (OE) / / PP
Zhang et al. (2012) / R,H(3) L:N:L+N A* E,H / / / / PP
Coussement &
De Bock (2013)

/ R,H(16) L A* / / (OE) / / PP

Kusuma et al. (2013) / R,H(2) L:N:L+N A* E,H / (OE) / / PP
Modani et al. (2013) / R,H(1) L,N A E,H / / / / PP
Podgorelec &
Karakatic (2013)

/ R L,N A E / / Yes / PP

Kim et al. (2014) / R,H(1) L:N A H / Partly / / PP
Backiel et al. (2014) / R,H(5) L:N A E / / / / PP
Huang et al. (2012) / R,H(6) L,N A E,H / Partly / / PP
Backiel et al. (2016) / R,H(3) L:N A,T E / / / / PP
This study Yes R:H(1) L:N A:T E:H Yes Yes Yes Yes PP,OE

2.2. Operational Efficiency and its Trade-Off with Predictive Performance

The necessity of measuring OE of classification models is recognized in sev-

eral works (Dasgupta et al., 2008; Kusuma et al., 2013; Coussement & De Bock,

2013). Moreover, Richter et al. (2010) report the computational time required for

experiments. However, a majority of CP-related studies, including these ones, do

not consider the OE/PP trade-off (see column OE/PP trade-off in Table 1). Among

those which at least mention the OE/PP trade-off are (Kusuma et al., 2013), ob-

serving that the small gain in PP of a hybrid (local+network) approach is not worth
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the computational effort, and (Huang et al., 2012), discussing the computational

complexity (and cost) of the applied models. Additionally, Lee et al. (2011) com-

pare predictive accuracy, computational time and interpretability of artificial neural

networks (ANN) and decision trees (DT) finding that ANN take more time while

performing better than DT but without considering different feature types.

Kim et al. (2014) perform a more detailed discussion on the OE/PP trade-off,

however, similar to the previous study, only considering variations of the modeling

technique. Furthermore, Huang et al. (2015) is one of the rare studies to discuss

the OE/PP trade-off taking into account resources needed for feature engineering

(even though they only explicitly measure PP and not OE). Wang et al. (2010) con-

duct the most thorough study on the OE/PP trade-off is, looking into several PP

measures such as accuracy, AUC, precision, recall, mean absolute error as well as

OE measures such as train and test time. However, in contrast to our study, they do

not perform any evaluation with respect to features. As such, our standpoint is that

OE should be perceived from a broader perspective, primarily focusing on the data

availability and feature engineering aspect, since the companies need insights into

the return on investment of different feature types when starting their CP projects.

2.3. Multi-Objective Optimization (MOO)

Real-life problems in a variety of domains typically depend on optimization

of several conflicting objectives. In these circumstances, a single optimal solution

does not exist and thus a trade-off must be made. A Pareto multi-criteria optimiza-

tion approach (Deb et al., 2016), based on concepts of Pareto dominance and Pareto

optimality, has been widely used to solve such tasks. To efficiently retrieve Pareto

optimal solutions in case of a high number of objectives, studies mainly resort to

exploiting stochastic search algorithms like genetic algorithms (GA), either in their

classical settings or proposing different customizations (e.g. Multi-Objective GA,
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Non-dominated Sorting GA (NSGA), Multi-Objective Particle Swarm Optimiza-

tion etc. (Coello et al., 2007)). A number of alternatives to Pareto optimization

have been proposed as well. These include the so-called lexicographic method,

where each of the objective functions is optimized separately (one at a time), fol-

lowed by converting each obtained optimal solution to constraints and continuing

the procedure for other objectives (Miettinen, 2012), and the scalarizationmethod,

where the task is reduced to single-objective optimization. A relevant example for

our work, is the efficiency method ES(f ) =
∑

i wim+
i (f )

∑

j wjm−
j (f )

, which enables evaluation

of learning algorithms with respect to different measures of either positive (m+) or

negative (m−) influence (wi and wj are the respective weights) Japkowicz & Shah

(2011). However, we deem the aforementioned strategies inconvenient for han-

dling the CT/AUC trade-off since they not only require an a priori assumption of

objective preference and a convex search space, but also provide a single solution

which cannot properly balance different objectives. Similarly, Wang et al. (2010)

propose two different methods, TOPSIS+ and PROMETHEE II, used for MOO

but in both cases a priori prioritization of objectives is required. Furthermore, even

though their optimization objectives include training and testing time, they only

consider MOO with respect to different classification techniques (variants of de-

cision trees, logistic regression, sequential minimal optimization clustering-based

classifiers, decision table, NaïveBayes and rule-based classifier) and not features.

Podgorelec & Karakatic (2013) use the MPGA method to induce an optimal de-

cision tree. In contrast, our methodology is based only on Pareto optimality and

therefore, does not depend on the choice of the predictive model. Additionally,

they consider only PP measures (true positives and true negatives) as objectives.

Finally, observe that in (Huang et al., 2010), MOO using NSGA-II has been ap-

plied for feature selection in CP, but again focusing solely on performance metrics.
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Figure 1: Hierarchy of feature types.

3. Methodology

This section introduces the proposed fine-grained feature type classification as

well as our Pareto-based method for finding optimal feature type combinations.

3.1. A Fine-Grained Feature Type Classification for Churn Prediction

One of the data aspects that we focus on in this work is to expand the predictive

potential of our data, which we achieve by carefully engineering additional features.

Based on the considerable amount of literature discussing experiments with differ-

ent types of features for CP, we devise a fine-grained classification consisting of nine

feature types, hierarchically represented in Figure 1 and described in more detail in

Table 2. A first distinction is made between features using the most recent data

(referred to as observational) and features using older data (referred to as historical,

in our case, the previous month). Next, locality of the data is exploited, distin-

guishing between local and network features. However, unlike current CP-related

literature, we further categorize network features into direct (simple) and indirect

(complex), an idea from the fraud detection domain (Baesens et al., 2015). As for

direct network features we consider those which can be derived from the 1st-order

neighborhood (also known as egonet), while those whose computation requires ex-

ploring higher orders of the neighborhood (and sometimes even the whole network,

hence the name complex) are considered as indirect features. Since both node de-

gree information and RFM (Recency-Frequency-Monetary) features (Huges, 1994)
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are typically used in the literature to capture customer behaviour, we consider these

as our direct network features. To adjust for our particular domain, the node degree

information is represented by the number of different MSISDNs1, that is, the num-

ber of unique mobile phone numbers that a customer interacts with. With RFM,

we account for recency of calls, number of calls and monetary value of calls per

customer within a certain period of time. In order to capture more detailed infor-

mation, in the final list of features each of the RFM (and degree-related) features

is assessed in several different flavors, along following dimensions for the observa-

tional version: outgoing calls towards home operator, outgoing calls towards other

operators and incoming calls, and additionally along incoming w.r.t. churners and

outgoing w.r.t. churners for historical version. E.g. for call recency, we calculate

five features: recency of incoming calls, recency of outgoing calls towards home

operator/other operators, recency of incoming calls from/outgoing calls towards

churners (see Table 2).

For indirect network features, we propose taking into account 2nd-order degree

of a node, the number of triangles and quadrangles that a node belongs to and Page

Rank score of a node.

Finally, as the same features are calculated for two consecutive months, a non-

trend vs. trend classification arises as a logical consequence2. Next to each fea-

ture type, we add a ‘non-engineered’(‘NE’)/‘engineered’(‘E’) label, to ease the dis-

tinction between features not-requiring/requiring any further preprocessing (model-

dependent pre-processing is not considered)3.

1acronym for Mobile Station International Subscriber Directory Number
2Relative trend is calculated

(

x= xM−xM−1
xM−1

)

, not the absolute one
(

x=xM−xM−1
)

.
3Initially, we considered also dividing local features further in NE/E, but eventually decided to

abandon this idea due to the fact that in case of local features, this characteristic heavily depends
on the dataset at hand. For example, the same feature, age, if provided in the dataset should be
considered as ‘NE’, while, if calculated from date of birth, should be considered as ‘E’. In case local
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Table 2: The explanation of devised feature types. The definition column explains the nature and
origin of different feature types and as such can be applied to any type of dataset (even beyond the
telco domain).
Abbrev. Feature Type

Name
Definition Example

L Local Features that characterize indi-
vidual customer (also known as
traditional)

gender; number of
reloads; handset
characteristics (e.g.
POLYPHONIC);

ND-E Network
Direct Engi-
neered

Features calculated from the
customer ego-network (1st-level
neighbourhood) across different
dimensions/granularities

number of incom-
ing/outgoing toward
home operator calls in
monthM

NI-E Network
Indirect Engi-
neered

Network features which can-
not be calculated from customer
ego-network only

Page Rank score; 2nd
degree of a node in
monthM

HLNT-NE Historical
Local Non-
Trend Non-
Engineered

The same type of features as lo-
cal (L), except that they refer
to the one month before the ob-
served month (monthM−1)

handset characteris-
tics; number of reloads
in month M−1

HLT-E Historical Lo-
cal Trend En-
gineered

The same type of features as lo-
cal (L), except that they refer
to the one month before the ob-
served month (monthM − 1)

trend in number of
reloads; recharge trend

HNNTD-E Historical
Network Non-
trend Direct
Engineered

The same type of features as ND-
E, except that they refer to the
one month before the observed
month (monthM−1)

number of incom-
ing/outgoing toward
home operator calls in
monthM−1

HNNTI-E Historical Net-
work Indirect
Engineered

Historical (one month ahead i.e.
monthM−1) versions of the NI-
E variables

Page Rank score; 2nd
degree of a node in
monthM−1

NHTD-E Historical
Network
Trend Direct
Engineered

Trend features calculated based
on direct network features cor-
responding to month M (ND-
E), and direct network features
corresponding to month M − 1
(HNNTD-E)

trend in number of
incoming calls; trend
in number of outgoing
calls

NHTI-E Historical
Network
Trend Indirect
Engineered

Trend features calculated based
on indirect network current (NI-
E) and indirect network histori-
cal (HNNTI-E) features

trend in 2nd degree of
a node; trend in Page
Rank of a node
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3.2. Finding Optimal Feature Type Combinations

The main goal of this work is to develop a method that can identify feature

types (or combinations) which provide the best CT/AUC trade-off. Hereto, a novel

forward-backward approach based on Pareto multi-objective optimization is de-

vised, whose schematic illustration can be seen in Figure 2.

Figure 2: A schematic illustration of our approach.

3.2.1. Pareto Multi-Criteria Optimization

Pareto multi-objective optimization takes into account the trade-off between

conflicting objectives and proposes several optimal results, known as Pareto optimal

features require significant computational effort, e.g. Huang et al. (2015) as explained in Subsection
2.1, this division can be reconsidered.
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solutions (Deb et al., 2016). More formally, given objective functions fi, i∈I ; |I| ≥

2, the task min
i
(fi(x)), x∈X is called the multi-objective optimization task.4 Let

Z={zt} be the set of all feasible solutions. We say that a solution z1 is a dominating

solution over z2 if ∀j∈I ∶ fj(z1)≤fj(z2) and ∃k∈I such that: fk(z1)<fk(z2). In

other words, one solution is dominating another if it is better than it in at least one

objective and not worse in all other objectives. Solution z∗ is optimal if ∄z∗∗∈Z

s.t. z∗∗ dominates z∗ (no other solution dominates it). The set of all Pareto optimal

solutions is called the Pareto set, while the set of corresponding objective values is

called the Pareto frontier.

3.2.2. Customized Forward-Backward Feature Selection

Our approach is an iterative two-step approachwhereby, in the first step, the pro-

cess of combining feature types is performed in a forward manner (in increments

of one feature type) based on Pareto optimal solutions, while in the second step,

the feature selection for each combination of feature types follows a backwards ap-

proach. The reason for proposing such a design is threefold. First, by incrementally

adding feature types, our methodology allows for maximal flexibility in terms of

exploiting different feature type combinations. Second, backward feature selection

ensures that only informative features within a particular feature type combinations

are retained, which is relevant as not all features of the same feature type contribute

equally in PP. Third, by guiding the whole process using Pareto multi-criteria opti-

mization, we ensure that the most optimal path in selecting features is performed,

allowing for reaching optimal solutions from the trade-off perspective.

The forward part represents the skeleton of our approach, driven by Pareto

multi-criteria optimization, which has as an outcome a Pareto optimal set of fea-

4This scenario was adapted for simplicity and ease of explanation, but similarly, the task
max

i
(fi(x)) or any combination of maximizing/minimizing goals could be defined as well.
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ture types, as shown in Algorithm 1.

Algorithm 1 Finding Pareto optimal sets among different feature types
Input: ={FTS}k, a collection of different feature type sets FTS, k∈{1, .., 9}
1: Calculate an initial set ND1 of non-dominated solutions in  (w.r.t. AUC &

CT)
2: prev := 1;
3: repeat
4: NDprev+1 := {};
5: for ∀NDS ∈ NDprev do:
6: andidate_ := {}; /* Collection of Candidate_NDS */
7: for ∀FTS ∈  do:
8: if FTS ∉ NDS then:
9: Candidate_NDS =NDS ∪ FTS;
10: Calc_AUC_CT(Candidate_NDS);
11: andidate_ += Candidate_NDS;
12: end if;
13: end for;
14: Add all non-dominated solutions from andidate_ toNDprev+1;
15: end for;
16: prev += 1;
17: until stopping criteria; /* all FTS exhausted or a certain performance reached*/
18: ND =

⋃

i
NDi;

Output: the non-dominated solutionsND;

At first, the set of all feasible solutions is the collection of all the possible sub-

sets (except the empty set) of a collection of different feature type sets  . To de-

termine the optimal ones, we perform several iterations, each of which (except the

first), starts from the non-dominated solutions that are found in previous iterations.

Within the new iteration, each of these non-dominated solutions is extended with

every single remaining feature type (without repetition of already explored feature

types) and, based on the achieved AUC and CT, the new set of non-dominated

solutions for that iteration is identified. Therefore, the cardinality Ci of each com-

bination of feature types per iteration i is exactly one feature type higher than the
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cardinality Ci−1 of the previous iteration (forward step). The process terminates

when either no additional feature types can be added or when the obtained per-

formances of at least one non-dominated solution dominates the solution obtained

using all feature types (stopping criteria, line 17). As already mentioned, every fea-

ture type combination is evaluated in terms of CT and AUC. In Algorithm 1 this

part is embedded into the Calc_AUC_CT function, but the details are provided in

Algorithm 2. Logistic regression (LR) without regularization and Random Forests

(RF) are used for model construction. Both LR and RF are well established meth-

ods and have been successfully applied in previous studies on CP, e.g., LR was

used in (Buckinx & Van den Poel, 2005; Coussement & Van den Poel, 2009; Wang

et al., 2010; Zhang et al., 2012; Kusuma et al., 2013; Lee et al., 2011), while RF

was employed in (Benoit & Van den Poel, 2012; Buckinx & Van den Poel, 2005;

Coussement & Van den Poel, 2009; Coussement & De Bock, 2013).

For the backward part of our approach, a slightly modified version of the clas-

sical backward feature selection approach has been devised. Similarly, we start

with all features and eliminate exactly one feature in every step, namely the one

without which we are obtaining the highest AUC performance as compared to all

other features. However, differently from the classical approach, we do not define

a stopping criterion beforehand. Instead, we first complete the whole feature elim-

ination process (until no further features are left). Then, the optimal feature set is

selected as the iteration having retained the lowest number of features among all

those iterations where the AUC score is still higher than the maximum AUC score

minus one standard deviation (see line 18 in Algorithm 2). There are several rea-

sons for this approach. First, given that AUC is one of our objectives, we opt for an

AUC-driven approach, in contrast to other approaches based on AIC/BIC criteria

and/or p-values. Second, it was not feasible to apply the classical stepwise approach

since, due to very subtle and, even more importantly, non-monotonic AUC fluctu-
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Algorithm 2 Calculating AUC & CT for each feature type set combination
Input: FC∶=

⋃

i,j
{f j

i }, f
j
i ∈FTSi, FTSi∈ a particular feature type set combination

1: Res ∶= {}; /* result set */
2: s ∶= 1; /* step id */
3: Remaining_F := FC; /* set of remaining features */
4: while card(Remaining_F )>0 do:
5: Ress := {}; /* set of obtained results at step s */
6: for ∀ feature f ∈ Remaining_F do:
7: Create LR/RF modelMf using features Remaining_F ⧵ {f};
8: Calculate AUCf , CTf for Mf ;
9: Add (s,Mf , AUCf , CTf ) to the result set Ress;
10: end for;
11: fs = argmaxf (AUCf ) , AUCf∈Ress;
12: Remaining_F = Remaining_F⧵{fs};
13: Add (s,Mfs , AUCfs , CTfs) to the result set Res;
14: s := s+1;
15: end while;
16: m = maxf (AUCf ) , AUCf∈Res;
17: sd = stdf (AUCf ) , AUCf∈Res;
18: ind_step = maxi (si) s.t. AUCsi > m − sd , si∈Res;
Output: AUCind_step, CTind_step,Mind_step;

ations, determining appropriate thresholds for feature elimination/addition was un-

expectedly hard. Despite a lot of different stepwise alternatives known in literature

(Wagner & Shimshak, 2007), there are no concrete guidelines for determining these

thresholds and our attempts to empirically evaluate them fell short, leading to either

retention or elimination of almost all the features, thus conflicting the whole pur-

pose of CT/AUC trade-off analysis. Moreover, for certain feature sets, additional

constraints had to be imposed to avoid the repetition of the same feature combina-

tions over time during the stepwise selection process. Third, opting for the stopping

point with the minimal number of features, while still keeping AUC in the range of

one standard deviation from the maximum AUC, complies with our targeted com-

promise between AUC and CT. Hence, the introduced modification allowed us to
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make the feature selection process in line with both of the considered objectives,

less biased by predefined choices and more data driven instead.

4. Experimental Setup

4.1. Data and Tools

Experiments were performed using two data sets (one for prepaid, one for post-

paid). Both consist of CDRs and monthly snapshots of local features. CDRs con-

tain information about customer calls (no SMS or other usage types), in the form

of: caller, callee, date/time, call duration. Local features are mostly related to cus-

tomer handset characteristics, the date of the first usage and tariff plan information.

Additionally, for prepaid customers we have information about the last recharge and

the amount spent on voice and SMS during the observed month, while for postpaid,

we have information about whether the customer has a fixed-time contract and if

so, the number of days left till its expiration. Regarding demographic data, we are

only provided with the zip code plus the date of birth for postpaid customers. In

addition, for postpaid, the monthly snapshot for ported-out customers (with ported-

out dates) is provided as well. A customer has ported out if (s)he has officially

requested to switch to services of another provider while keeping his/her current

telephone number.

4.2. Network Construction and Direct/Indirect Network Feature Generation

Initially, we construct a single unweighted graph from CDRs in a standard way.

In some of the previous works, during the process of generating call graphs, calls

are neglected if their duration is less than 10 seconds (Nanavati et al., 2006), or if the

appropriate weights are not among the top 10% (Richter et al., 2010). Unlike these,

we retain every single call5 (note that the number of zero-length calls is less than

5Short calls can reveal a customer "dependency" on the other customer, which becomes even more
relevant in case the latter churns. Additionally, short calls do not have to be less profitable. E.g. if
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0.05% on a monthly level). Furthermore, we take into account the direction of the

call, hence the obtained network is directed (and asymmetric) with approximately

5 million edges and 2.8 million of nodes.

The obtained network is used to calculate direct network features. Due to lack

of the exact amount charged, monetary features (in RFM) are determined based on

call duration.

For generating indirect network features, we first transform the initially obtained

network into (two different) weighted networks, to quantify the strength of interac-

tion between customers, as that supposedly increases CP performance (Dasgupta

et al., 2008). Edge weights are assigned based on the total number of calls between

two nodes, for the first, and total duration (that is, total number of seconds) of the

calls between two nodes, for the second network (with both we account for direc-

tion). We are using these weighted networks to calculate two versions of node Page

Rank scores and for this, we perform certain alterations. Namely, in the contrast to

the approaches where each caller/callee is represented by a node or where all the

callers/callees of other providers are represented with a single node in a network

(Backiel et al., 2014) or even where each provider is also represented by a node

(Zhuang et al., 2015), we completely leave out other providers’ customers and in-

teractions with them. This is motivated by the fact that we do not have the outgoing

traffic of these customers and this, in both of the mentioned representations, could

potentially lead to having multiple (in the first case) or single (in the second case)

sink nodes when applying the Page Rank algorithm. When calculating the num-

ber of triangles and quadrangles that a node belongs to, we impose an additional

simplification of weighted networks and consider them undirected, to reduce the

they both have a tariff plan charging every 60 seconds, customer A making a call of 5 seconds and
customer B making a call of 55 seconds will be charged equally.
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computational effort. We also calculated (two versions of) personalized Page Rank

scores based on exponential time decays (to favor more recent churn dates from the

less recent ones).

4.3. Definitions and Setting

One of the challenges of CP is to determine when the customer has actually

churned. In our data sets, we are constrained by having neither ported-out informa-

tion of prepaid customers nor the churn date for postpaid customers (except ported-

out dates for only a dozen). Given these restrictions and also the limited number

of explanatory features (see Section 6), we defined churners (for both prepaid and

postpaid) as those customers having traffic in one month, but not having traffic in

the consecutive month.

As mentioned earlier, not only accurately, but also timely predicting churn is

crucial. Therefore, we introduce a one-month gap between observation and pre-

diction period: for the customer base of month M, we are trying to predict who

will churn in month M+2 (see Figure 3). Under these premises, the obtained churn

Figure 3: An illustration of our one-month gap approach.

rates are 7.15% and 1.54% for the prepaid and postpaid dataset respectively. The

influence that one-month gap has on PP will be discussed later in Section 6.

The exact number of features per feature type per dataset can be seen in Table

3. Please note that the set of HLT-E features is omitted for the postpaid dataset as
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none of the postpaid local features is continuous.

To avoid multi-collinearity, Chi-square and Spearman correlation tests with a

confidence level of 95% were applied to all pairs of categorical and continuous

features respectively. As a result, several features (mostly related to handset char-

acteristics, but also personalized Page Rank scores) were eliminated.

Table 3: Number of features per feature type and the total number of features per dataset.
Dataset L ND-E NI-E HLNT-NE HLT-E HNNTD-E HNNTI-E NHTD-E NHTI-E Total
Prepaid 21 12 5 21 4 20 5 12 3 103
Postpaid 13 12 5 13 N/A 20 5 12 3 83

5. Results

Algorithm 1 can be driven by various stopping criteria. In our case, we decided

to stop after having explored combinations of three different feature types, since

for both prepaid and postpaid, the obtained AUC is comparable to the one obtained

with all features. In the two following subsections, we will first focus on the trade-

off before briefly analyzing the retained features.

5.1. The Trade-Off between Operational Efficiency and Predictive Performance

The results of the Pareto search for the prepaid dataset is depicted in Figure 4

for LR/RF (top/bottom), with CT represented relatively to the CT obtained using all

features. All ‘shortlisted’ candidate solutions are shown, that is, all non-dominated

solutions from the previous iterations (corresponding to line 18 of the Algorithm

1). Among these, the final set of non-dominated solutions is identified (filled cir-

cles/squares in red for LR/RF, respectively). Given our stopping criterion, no other

solutions exist which could dominate any of the found non-dominated solutions.

Consequently, these non-dominated solutions are Pareto optimal solutions forming

the Pareto optimal frontier (dotted/dashed red line for LR/RF). Dominated solutions

are marked with blue empty circles/squares for LR/RF. Taking a closer look into
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the set of optimal solutions (seven for LR and four for RF), it can be seen that they

consist of only five different feature types: L, ND-E, HLNT-NE, HNNTD-E and

HLT-E in case of LR, and only four (the same as for LR, except for HLT-E) in case

of RF. Not surprisingly, RF and LR provide different results in terms of AUC per

combination. However, optimal solutions for LR and RF share the following three

different combinations, very relevant from the perspective of the CT/AUC trade-

off: 1) L&HLNT-NE (denoted by 1), due to the minimal CT required; 2) L&ND-

E&HLNT-NE (denoted by 4), due to its maximal AUC performance (according to

RF); 3) ND-E&HLNT-NE (denoted by 2), which can be perceived as a compromise

between the two previous solutions. It is important noticing that all of these contain

the historical local feature type. However, there are no linear dependencies between

performances of different solutions (see Appendix A for exact figures). Addition-

ally, the non-parametric pairwise DeLong, DeLong, Clarke-Pearson statistical test

(DeLong et al., 1988) shows significant difference in AUC scores for these combi-

nations at the 95% confidence level (see Table C.8 and Table C.9 in Appendix C).

Therefore, additional expert information is needed to support the decision on which

feature types to include.

The ‘shortlisted’ solution candidate set (line 18 of the Algorithm 1) for the post-

paid dataset is depicted at the top (for LR) and bottom (for RF) of Figure 5. Here,

out of an initial set of 10 non-dominated solutions (both in case of LR and RF), only

four (for LR) and five (for RF) are Pareto-optimal (marked as before). As expected,

RF and LR provide different AUC scores per combination, but again, optimal so-

lutions obtained by both LR and RF have three different combinations in common

(denoted by 1, 3 and 4). It is worth noticing that all of these contain local (obser-

vational) features. In this case, the pairwise DeLong, DeLong, Clarke-Pearson test

does not show any significant difference between AUC scores of solutions 3 and 4.

However, AUC scores for best scoring solutions (9 and 7) are significantly different
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Figure 4: The shortlisted solutions for the prepaid dataset and their performance in CT (relatively
to the CT obtained using all features; x-axis) and AUC (y-axis) obtained applying LR (top) and
RF (bottom). The optimal solutions are marked with red filled circles/squares while the dominated
solutions are blue empty circles/squares for LR/RF, respectively.

from the AUC scores of other optimal solutions at the 95% confidence level (see

Table C.10 and Table C.11 in Appendix C). Similar as with prepaid, a mixture of

local and observational direct network features (denoted by 4) scores better in terms

of AUC, but it also requires more computational time (around 8%). Different com-

binations of observational local and historical network features (denoted by 6,7 and

9), although computationally more demanding (but still remain within a 10-20%

margin), score by far the best in terms of AUC (both 9 and 7 outperform the “full”

model for LR and RF, respectively). As in the case of prepaid, expert information

would be needed to finally decide on which feature types to use. However, it is

crucial to notice that local features are present in every optimal set.

Quite surprisingly, using trend and indirect network features does not improve

AUC performance in spite of increased computational complexity. In general, the
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Figure 5: The shortlisted solutions for the postpaid dataset and their performance in CT (relatively
to the CT obtained using all features; x-axis) and AUC (y-axis) obtained applying LR (top) and
RF (bottom). The optimal solutions are marked with red filled circles/squares while the dominated
solutions are blue empty circles/squares for LR/RF, respectively.

highest AUC scores for both prepaid and postpaid datasets are obtained using the

combination of local and historical direct network features. While we ground our

approach on AUC due to its robustness, we do include all evaluations in terms

of AUC, top-decile lift and EMP (Expected Maximum Profit by Verbraken et al.

(2013)) for all shortlisted solutions for both datasets and models (Logistic Regres-

sion and Random Forests) in the Appendix A.

5.2. Feature engineering

Next, we examine feature types and features retained in the model for each of

the optimal solutions. The results are presented in Figure 6 for prepaid RF and

Figure 7 for postpaid RF (due to better AUC scores we explain RF results in more

detail, but equivalent figures are provided in Appendix B for LR). Each feature is

uniquely represented by a symbol, determined by its color and shape. The color
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corresponds to a particular feature type (e.g. blue for ND-E and red for HNNTD-

E). The presence of the same shape in a different color indicates that the same

feature is retained both in its observational and historical version, e.g. for prepaid,

the amount spent on calls (denoted by ♠) is retained both in the observational and

historical version.

It can be observed that for both prepaid and postpaid (and both for RF and LR),

only features of four feature types remain in the finally retained feature sets: L,

HLNT-NE, ND-E, HNNTD-E. However, local and direct network features seem to

be of different importance for prepaid and postpaid datasets.

Figure 6: Retained features (in the RF model) for Pareto optimal feature type combinations for the
prepaid dataset. The feature type combinations are sorted by increasing order of AUC performance
(from left to right). HO stands for ‘home operator’, while OO stands for ‘other operator’

For prepaid RF, several different repetitive arrangements of retained features

can be observed. First, only ten different features are retained for all four Pareto

optimal sets, with four of them being local observational, four local historical and

two observational network direct (hence, no trend features are retained, although

HLT-E appears in one of Pareto optimal sets). Second, the amount spent seems

to be of crucial importance since both observational and historical version of the

amount spent on calls (♠) and observational version of amount spent on SMS (♣)

remain retained in all feature sets. Third, for Pareto optimal sets containing the
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(observational) network direct feature set, the combination of number of outgoing

calls towards home operator (⊣) and incoming calls duration (⊏) is retained. Lastly,

lifetime in days, service class that the customer belongs to and customer geolocation

also reoccur in the retained feature sets, either in their observational or historical

versions.

Figure 7: Retained features (in the RF model) for Pareto optimal feature type combinations for the
postpaid dataset. The feature type combinations are sorted by increasing order of AUC performance
(from left to right). HO stands for ‘home operator’, while OO stands for ‘other operator’.

For postpaid RF, in total 18 different features are retained, of which: six local

(observational), three local historical, six direct network (observational) and three

historical direct network. Similar to prepaid, several patterns can be observed. First,

loyalty seems to play a vital role as the feature lifetime in days (∞) appears in all

five Pareto optimal feature type combinations. Second, contract information is an-

other important aspect since in four Pareto optimal solutions, either tariff plan (≺)

or number of days left till contract expiration (◼) followed by tariff plan group (≻)

feature are retained. Third, regarding network features, not surprisingly, the num-
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ber of different outgoing MSISDNs towards other operators (⬣) and the number of

outgoing calls towards other operators (⟂) remain in three out of five final feature

sets, either in observational or historical flavor. Although less frequently, the num-

ber of incoming MSISDNs (⬟) also reoccurs in the final feature set. Likewise, the

age (⊙) is retained twice in the final feature set.

6. Discussion

Our experiments showcase several important findings. First, in contrast to pre-

vious studies, the choice of modelling technique influences results, although the sets

of optimal solutions overlap. Second, the results obtained for Pareto optimal solu-

tions are discontinuous, hence there is no ‘middle’ solution which could be chosen

as a real CT/AUC trade-off. This allows for more flexible decisions although sub-

jective preference still remains a necessary element for decision making (e.g. if CT

is more critical factor, local features alone could be used). Third, as it was shown,

best results with respect to CT are obtained using local features (both observational

and historical), while the highest AUC is obtained by a mixture of local and direct

network features. This confirms the result of (Kusuma et al., 2013) (and contrasts

the findings in (Kim et al., 2014; Backiel et al., 2014)) that local features should

definitely not be neglected. Moreover, the demonstrated importance of local and

direct network features gives an incentive to companies to invest into their quality.

We are aware of several limitations which led to lower AUC scores than usually

reported in the CP studies. A first limitation refers to data availability given that

many previous studies could benefit from additional data as indicated in Section 1

and Section 2.1. As for network features, we based our approach on RFM (already

successfully applied in the CP domain (Benoit & Van den Poel, 2012; Coussement

& De Bock, 2013; Modani et al., 2013)), Page Rank scores (also used in (Huang

et al., 2015)) and other measures inspired by Baesens et al. (2015). However, we are
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aware that exploiting other structural characteristics of the network (e.g. between-

ness or eigenvector centrality like in (Kim et al., 2014)) might lead to better perfor-

mances, as claimed by Dasgupta et al. (2008). Another reason for achieving lower

AUC scores is our one-month gap approach. We confirmed the latter by applying

our method to the scenario without the one month gap (predicting immediately for

the next month), and we indeed obtained higher AUC scores. However, due to the

importance of timely detecting churners, we decided to stick to the current setting.

Lastly, we opt for experimenting with combinations of up to three feature types

which provided on average 0.78% better AUC score and only 16.85% of the re-

quired CT, as compared to the full model (measured for four cases: prepaid/postpaid

LR/RF). However, the number of feature types can be easily adapted as required.

7. Conclusion

Experimenting with different features and feature types in order to improve PP

has been the most recent and most popular research direction for telco CP. While

performance is unquestionably an important factor, given the different levels of

maturity regarding data availability, computational power and predictive analytics

of different operators in different countries, with this work we raise a justified, yet

still within current literature not addressed, question of examining the OE/PP trade-

off.

The key contributions of this work are threefold. First, we devise a new feature

type classification. Second, we propose a novel, reusable method for determining

optimal solutions, based on Pareto multi-objective optimization. The method re-

quires no a priori preference between conflicting objectives, while it still allows for

making an informed decision based on the Pareto-optimal solutions. Third, we per-

form an experimental investigation of the trade-off. The obtained results demon-

strate that the choice of modelling technique matters. Nevertheless, prediction-
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wise, local and direct network features convey valuable information, which gives

an incentive to telco operators to invest in their quality and availability. Further-

more, we observe that investing in certain more complex feature types like trends

and indirect network features does not pay off in terms of PP. Therefore, even though

in the end, the operational decision will probably have to account for some kind of

subjective preference, we can claim that the right approach for choosing feature

types for CP would be to start small, using (good quality) local features and the

least complex network features (e.g. RFM based).

We performed our analysis on one prepaid and one postpaid dataset from the

same mobile operator, which is an exceptional situation and raises justified concern

of external validity. Therefore, to secure the validity of findings, for our future work

we would like to experiment with a larger number of datasets and verify whether

our findings are operator (and country) dependent.
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Appendix A.

Here we present detailed results obtained per each of the ‘shortlisted’ feature

type combinations: final AUC score on validation set, top-decile lift (TDL), EMP

(Expected Maximum Profit), number of initial (and retained) features, time (in sec-

onds) needed for feature selection (FS), model training and validation (MTV), fea-

ture extraction (FE) and information if that combination is dominated. Best results

per measure are marked in bold. Results are sorted in increasing order of AUC

score.

Table A.4: Results for ‘shortlisted’ feature type combinations obtained with LR for prepaid dataset
(Figure 3 top).
Feature type combination AUC TDL EMP Init.(Ret.) num. feat. FS time MTV time FE time domin.
L&HLNT-NE&HLT-E 0.63719 1.51840 0.01431 46(7) 17875.36 44.38 1527.00 Y
L&HLNT-NE 0.64614 1.58483 0.01709 37(8) 32808.35 47.41 739.38 N
L&NI-E&HLNT-NE 0.64683 1.57397 0.02017 47(7) 16932.60 42.35 2125.99 Y
L&ND-E 0.66189 1.76284 0.04930 33(5) 11635.39 26.78 1900.11 N
ND-E&HLNT-NE 0.66641 1.78893 0.04868 33(5) 9287.22 24.13 2066.66 N
L&ND-E&HLNT-NE 0.66864 1.76086 0.04682 54(7) 22541.92 31.53 2353.08 N
ND-E&HNNTD-E 0.67388 1.40302 0.08684 32(5) 5150.83 16.86 3751.11 Y
L&HNNTD-E 0.67453 1.79429 0.04861 41(7) 19049.44 32.99 2423.83 N
L&HLNT-NE&HNNTD-E 0.67469 1.79133 0.05340 62(8) 19770.38 25.06 2876.80 Y
L&HNNTD-E&HLT-E 0.67617 1.77582 0.04691 45(8) 17244.09 37.72 3211.45 N
ND-E&HLNT-NE&HNNTD-E 0.68781 1.88019 0.10662 53(9) 19505.60 33.85 4204.08 Y
L&ND-E&HNNTD-E 0.68880 1.87399 0.10543 53(9) 17410.67 33.47 4037.53 N

Table A.5: Results for ‘shortlisted’ feature type combinations obtained with RF for prepaid dataset
(Figure 3 bottom).
Feature type combination AUC TDL EMP Init.(Ret.) num. feat. FS time MTV time FE time domin.
L&HLNT-NE 0.69537 1.93379 0.10112 42(5) 11793.65 148.85 739.38 N
NI-E&HLNT-NE 0.69759 1.94225 0.11724 26(4) 4021.77 447.22 1839.58 Y
L&NI-E 0.69836 1.96595 0.12330 26(5) 4389.02 129.22 1673.03 Y
L&HLNT-NE&HLT-E 0.69942 1.96398 0.11346 46(5) 9913.41 465.65 1527.00 N
L&HNNTD-E 0.70963 2.00855 0.13469 41(6) 10342.66 130.58 2423.83 Y
L&NI-E&HLNT-NE 0.71157 2.06257 0.15589 47(5) 10446.55 130.74 2125.99 Y
ND-E&HLNT-NE 0.71237 2.00164 0.14281 33(5) 5938.85 439.63 2066.66 N
L&HLNT-NE&HNNTD-E 0.71316 2.03295 0.15729 62(6) 19271.81 131.35 2876.80 Y
L&NI-E&HNNTD-E 0.71479 2.05693 0.16507 46(6) 9470.14 121.14 3810.45 Y
NI-E&HLNT-NE&HNNTD-E 0.71499 2.02872 0.15580 46(6) 9941.46 97.41 3976.99 Y
L&ND-E&HNNTD-E 0.71747 2.10192 0.18355 53(7) 13687.74 369.98 4037.53 Y
L&ND-E&HLNT-NE 0.72043 2.09797 0.17431 54(6) 12097.76 145.04 2353.08 N

The code for this work was implemented using the Python Scikit library, with

the exception of the Page Rank algorithm which was implemented in C++. The
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Table A.6: Results for ‘shortlisted’ feature type combinations obtained with LR for postpaid dataset
(Figure 4 top).
Feature type combination AUC TDL EMP Init.(Ret.) num. feat. FS time MTV time FE time domin.
L&HLNT-NE 0.64149 1.71266 8.8E-06 26 (6) 3820.61 37.98 371.47 N
ND-E&HLNT-NE 0.64911 1.81520 0.00013 25 (6) 4177.09 43.77 3488.22 Y
L&ND-E 0.65263 1.82960 2.2E-06 25 (6) 4512.52 40.29 3468.20 N
L&ND-E&HLNT-NE 0.66985 1.91716 0.00013 38 (6) 9603.22 37.41 3663.94 Y
HLNT-NE&HNNTD-E 0.68514 2.03122 0.00002 33 (7) 7918.67 32.01 4277.68 Y
L&HLNT-NE&HNNTD-E 0.69284 2.05311 0.00003 46 (9) 17207.30 46.44 4453.41 Y
L&ND-E&HNNTD-E 0.69723 2.08307 7.4E-07 45 (7) 12527.38 41.30 7550.13 Y
ND-E&HLNT-NE&HNNTD-E 0.70216 2.11360 9.6E-07 45 (8) 12375.70 48.52 7570.16 Y
L&HNNTD-E&NHTD-E 0.70349 2.08825 0.00013 45 (8) 15601.11 38.83 11684.99 Y
L&HNNTD-E 0.70482 2.10496 0.00003 33 (7) 8119.42 40.79 4257.66 N

Table A.7: Results for ‘shortlisted’ feature type combinations obtained with RF for postpaid dataset
(Figure 4 bottom).
Feature type combination AUC TDL EMP Init.(Ret.) num. feat. FS time MTV time FE time domin.
L&HLNT-NE 0.70193 2.08941 0.00246 26 (7) 3682.58 293.08 371.47 N
ND-E&HLNT-NE 0.71434 2.21787 0.00383 25 (6) 3255.33 355.14 3488.22 Y
HLNT-NE&HNNTD-E 0.72037 2.24264 0.00506 33 (6) 5403.37 435.01 4277.68 Y
L&ND-E 0.72152 2.24840 0.00416 25 (6) 3378.90 359.02 3468.20 N
L&HNNTD-E 0.72401 2.25935 0.00537 33 (5) 5342.20 325.68 4257.66 Y
ND-E&HLNT-NE&HNNTD-E 0.72422 2.28239 0.00386 45 (6) 7213.99 344.55 7570.16 Y
L&ND-E&HLNT-NE 0.72766 2.31004 0.00391 38 (6) 5052.95 324.87 3663.94 N
L&HLNT-NE&HNNTD-E 0.73109 2.29564 0.00392 46 (6) 7990.31 350.62 4453.41 N
L&NI-E&HNNTD-E 0.73548 2.35613 0.00482 38 (6) 4922.77 362.36 11430.28 Y
L&ND-E&HNNTD-E 0.73605 2.34691 0.00405 45 (6) 11678.60 360.26 7550.13 N

machine used for computation has two 64-bit Intel Xeon processors working at

2,3GHz with 36 cores and 256GB of RAM.
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Appendix B.

In this section, we provide graphical representations of retained features using

LR model for both datasets.

Figure B.8: Retained features (in the LR model) for Pareto optimal feature type combinations for the
prepaid dataset. The feature type combinations are sorted by increasing order of AUC performance
(from left to right). HO stands for ‘home operator’, while OO stands for ‘other operator’.

Figure B.9: Retained features (in the LR model) for Pareto optimal feature type combinations for the
postpaid dataset. The feature type combinations are sorted by increasing order of AUC performance
(from left to right). HO stands for ‘home operator’, while OO stands for ‘other operator’.
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Appendix C.

In this section, we provide the results of non-parametric pairwise DeLong, De-

Long, Clarke-Pearson statistical test to examine the potential statistical differences

between AUC scores in four different cases: prepaid with LR, prepaid with RF,

postpaid with LR and postpaid with RF.
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