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This thesis develops theoretical tools for the stylised facts of multivariate volatility pro-

cesses and stock returns in financial markets. The first essay of this thesis contributes

to the literature of fractionally cointegrated processes. Threshold adjustment is allowed

in the error correction of bivariate fractionally cointegrated systems. Hypothesis testing

for the presence of threshold and simulation evidence are provided to support the need of

threshold specification in the adjustment dynamics of fractionally cointegrated processes.

Empirical application considers the cointegrating relation and adjustment dynamics of

S&P500 option implied volatility index spot and futures. Empirical finding shows that

investors tend to hedge against volatility by using volatility-tracking products during

market turbulence. The next two essays investigate some econometric issues that arise

from the use of asynchronous data on modelling the joint dynamics of stock returns.

The return correlation is inaccurate if asynchronicity is not taken into consideration.

As a result, portfolio risk management can be highly distorted. Aiming to develop an

accurate estimation on the return correlation dynamics, several econometric techniques

are introduced to tackle this asynchronicity problem that allow financial practitioners to

adequately adjust the asynchronous stock return series. This research also attempts to

analyse asynchronicity problem as a measurement error problem, parameter estimates

from the conventional vector autoregressive models are inconsistent if the vector of mul-

tivariate stock returns contains asynchronous returns. A good proxy of measurement

error can effectively correct the asynchronous return vector and hence yield consistent

parameter estimates.

mailto:C.Cheang@soton.ac.uk




Contents

Abstract iii

Declaration of Authorship xi

Acknowledgements xiii

1 Introduction 1

2 Threshold fractionally cointegrated vector autoregressive model and
application to volatility index 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Fractional cointegration . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Threshold in the error correction mechanism . . . . . . . . . . . . 11

2.2.3 Nonstationarity and nonlinearity . . . . . . . . . . . . . . . . . . . 13

2.3 Econometric models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 The fractionally cointegrated VAR models . . . . . . . . . . . . . . 15

2.3.2 FCVAR model with threshold adjustment . . . . . . . . . . . . . . 18

2.3.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.4 Other nonlinear extensions . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Testing for a threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Test statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Bootstrap statistic and p-value . . . . . . . . . . . . . . . . . . . . 25

2.5 Simulation evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Finite-sample size and power . . . . . . . . . . . . . . . . . . . . . 27

2.5.2 Misspecification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Application: volatility spot-futures relation . . . . . . . . . . . . . . . . . 30

2.6.1 Volatility index and futures . . . . . . . . . . . . . . . . . . . . . . 31

2.6.2 Stylised facts about VIX futures market . . . . . . . . . . . . . . . 32

2.6.3 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.4 Model specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.5 Empirical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.6 Momentum strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Deriving synchronised daily correlations from asynchronous stock re-
turns 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

v



vi CONTENTS

3.2 The existing synchronisation model . . . . . . . . . . . . . . . . . . . . . . 54

3.3 The synchronising methodology . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Asynchronous and synchronised returns . . . . . . . . . . . . . . . 58

3.3.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.3 The estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Empirical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.2 Estimating the synchronised model . . . . . . . . . . . . . . . . . . 66

3.4.3 Synchronised correlations . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.4 Diagnostic tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 An application to Value-at-Risk measurement under asynchronicity . . . . 68

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Vector autoregressive models with measurement errors for asynchronous
data and a spatially synchronised correlation 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 The conventional VAR model . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 VAR with measurement error . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 The spatio-temporal VAR model . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.1 The estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Empirical application: a spatio-temporal VAR . . . . . . . . . . . . . . . . 87

4.5.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5.2 The spatial weighted matrix . . . . . . . . . . . . . . . . . . . . . . 88

4.5.3 Estimating the spatio-temporal VAR . . . . . . . . . . . . . . . . . 89

4.5.4 Spatially adjusted correlations . . . . . . . . . . . . . . . . . . . . 91

4.5.5 Specification test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A Appendix of Chapter 2 97

A.1 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.2 Matlab codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B Appendix of Chapter 3 105

B.1 Auxiliary regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B.2 Parameters identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C Appendix of Chapter 4 109

C.1 Proof of inconsistency of MLE from asynchronous VAR . . . . . . . . . . 109

C.2 An alternative proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Bibliography 117



List of Figures

2.1 Xt generated by a 2-regime threshold FCVAR model. . . . . . . . . . . . 42

2.2 Scatter plot of VIX index spot and one-month futures for the observation
from 26 March 2004 to 30 December 2016. . . . . . . . . . . . . . . . . . . 42

2.3 Time series plot of VIX index spot, one-month futures and the difference
(st − ft) from 26 March 2004 to 30 December 2016. . . . . . . . . . . . . . 43

2.4 Maximum log-likelihood over the two-dimensional grid search [β, γ]. . . . 44

2.5 Time series plot of threshold error correction dynamic in Regime 2 (et−1 >
γ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 The World of Asynchronous Trading . . . . . . . . . . . . . . . . . . . . . 71

3.2 Correlations between FTSE 100 and S&P 500 using synchronous vs. asyn-
chronous data evolve from 1-day to 20-day return intervals (sample period:
2 Jun - 21 Dec 2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 The closing prices of Japanese, the UK and the US stock markets corre-
sponds to synchronised time t. . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4 The 1% one-day VaR forecast using asynchronous returns and synchro-
nised returns for the period 1 January - 30 September 2015. . . . . . . . . 73

vii





List of Tables

2.1 Size of supLM Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Power of supLM Test at 5% size. . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Coefficient estimates of the threshold FCVAR DGP from three different
cointegration models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Estimates of d for VIX spot, futures, and the difference between spot and
futures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 supLM test for the presence of a threshold in the FCVAR model. . . . . . 48

2.6 Estimation results from four different cointegration models. . . . . . . . . 49

2.7 Profit performance using different sequences of enter-and-exit signal for
buying VIX futures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Opening and closing times, overlapping and closing time differneces cor-
responds to the US markets for seven international stock indices. . . . . . 74

3.2 Daily contemporaneous correlations (Panel A) and lagged correlations
(Panel B) of asynchronous close-to-close stock returns for seven markets
for the period 1 January 2005 - 31 December 2014. . . . . . . . . . . . . 74

3.3 The estimation results of synchronised VAR(1)-DCC(1,1) from the 2-step
maximum likelihood proceduce. . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Daily contemporaneous correlations of estimated synchronised stock re-
turns for seven markets for the period 3 January 2005 - 31 December
2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Closing times, overlapping and closing time differneces corresponds to the
US markets for seven international stock indices. . . . . . . . . . . . . . . 94

4.2 The estimation results of spatio-temporal VAR(1)-DCC(1,1) by the max-
imum likelihood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 The asynchronous daily correlations (Panel A) and the spatially adjusted
correlations (Panel B) for seven markets for the period 3 January 2005 -
31 December 2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

ix





Declaration of Authorship

I, Chi Wan Cheang , declare that the thesis entitled Three Essays in Financial Econo-

metrics: Fractional Cointegration, Nonlinearities and Asynchronicities and the work

presented in the thesis are both my own, and have been generated by me as the result

of my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:.......................................................................................................................

Date:..........................................................................................................................

xi

mailto:C.Cheang@soton.ac.uk




Acknowledgements

I would like to express my deepest gratitude to my supervisor, Jose Olmo, for his un-

wavering support, patience, and careful supervision during these years. I thank Maria

Kyriacou and Jean-Yves Pitarakis for their helpful support and guidance throughout

the thesis and during my stressful job market period. I also thank the remaining faculty

who taught and inspired me during my time in University of Southampton.

My special thanks to my best friend Andrea Giovannetti for his intellectual inspiration

and for the precious time shared during our PhD experience. I also thank my friends

and fellow students in the department especially Liu Liu and Panos Giannarakis for

their valuable discussions and encouragement.

This research would not materialise without the financial support from the Economic

and Social Science Research Council.

Finally my deepest love to my parents and sisters for their endless encouragement,

understanding and support.

xiii





Chapter 1

Introduction

Fractional cointegration is a generalised class of cointegrated systems which provides

feasibility to estimate the fractional and cofractional memory orders of the time series,

rather than fixing the memory parameters to be integer values. Empirical studies found

that many macroeconomic and financial variables possess long memory in the long-

run; however, not much focus has been given to the short-run adjustment dynamics of

the fractional cointegrating relation. The feature of nonlinear adjustments in long-run

equilibrium relation of cointegrating variables is separately documented in the strand of

I(1)/I(0) cointegration literature.

Nonstationarity and nonlinearity are key features in time series analysis, yet only a

few literature attempted to describe long memory and nonlinearity within a time se-

ries model. Chapter 2 extends the fractional cointegrated vector autoregressive model

(FCVAR) by allowing two regimes in the speed of adjustment parameter in the error-

correction term, treating long memory features and cointegrating relation invariant

across regimes. Since the threshold parameter is not identified under the null hypothesis

of no threshold, supLM test for the presence of a threshold is proposed for the FCVAR

model. Bootstrapping test statistic and p-value are derived. Monte Carlo simulation

demonstrates the test under finite-sample maintains satisfactory size and power. A DGP

from threshold FCVAR model provides simulation evidence about the effects of misspec-

ification in long memory parameter and threshold adjustment from other cointegration

models. The threshold FCVAR model is applied to the volatility index spot (VIX) and

its related futures. VIX-tracking products are more attractive during market turbulence

since investors treat VIX products as a security for hedging market downside risk. It

is argued that the adjustment towards the relation of VIX spot and futures could be

regime specific. Empirical result shows that in the two-regime case, the co-movement

among the VIX spot and futures is insignificant in the contango regime, while the fu-

tures contributes significant error correction in the backwardation regime. This result

provides a theoretical ground to explain the momentum strategy based on contango and

backwardation commonly adopted by volatility traders.

1



2 CHAPTER 1. INTRODUCTION

Another focus is given to asynchronicity of stock returns and its related econometric

problems. Accurately modelling the joint dynamics of stock returns across different

markets is a fundamental prerequisite for understanding how crises propagate, how

strongly markets co-move and for quantifying the risk characteristics of international

portfolios containing assets from geographically different segments. Multivariate time

series modellings have long been used to identify the return correlation and volatility

dynamics across financial markets. Vector autoregressive moving average processes with

multivariate generalised autoregressive conditional heteroscedastic variances are found

to be appropriate to analyse the joint dynamics of return correlation and volatility, in

a multivariate return series framework. Nonetheless, when attempting to track return

correlations across time and markets, an important concern arises from the fact that

assets trade at their local trading time hence causing raw return series based on closing

prices to be effectively asynchronous. The multivariate time series models may lead to

highly distorted correlation estimates if the presence of asynchronicity in the financial

data is not taken into consideration. A biased correlation dynamic does not reflect the

true underlying degree of co-movement among the financial assets, portfolio management

and risk analyses can be mislead.

Chapter 3 and 4 develop formal econometric techniques that tackle this problem of re-

turn asynchronicity and offer a rigorous set of approaches that allow practitioner to

construct suitably adjusted series for the purpose of portfolio risk management, dy-

namics correlation analysis, and many other financial applications on the multivariate

financial assets. In particular, Chapter 3 proposes a synchronisation technique which is

generalised from the benchmark synchronisation method by Burns et al. (1998). The

synchronised correlation estimates by the proposed model are less restrictive than the

benchmark method since the assumption of random walk stock prices is relaxed when for-

mulating the synchronised returns. Empirical application considers a seven-market data

series including stock price indices located from eastern to western countries. Empirical

findings show that the correlation dynamics are larger for the estimated synchronised

returns. In a one-day Value-at-Risk (VaR) back-testing exercise, the synchronised re-

turns and synchronised correlations produce more reliable risk measures and superior

forecasting performance than the VaR from asynchronous data. The portfolio value

calculated from asynchronous data is more volatile since the portfolio recognises profit

and loss from the stale market value overnight.

Chapter 4 analytically reviews the use of asynchronous data on the conventional vector

autoregressive (VAR) models results in measurement error problem. The measurement

error is defined as the difference between synchronous and asynchronous returns. It

follows that the coefficient estimates are no longer consistent. Next, the maximum like-

lihood estimators from the conventional VAR model are proved to be asymptotically

consistent if an adequate proxy is used for the measurement error. Several transformed
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VAR models are provided as the solutions to this measurement error problem. Assum-

ing the measurement error in asynchronous returns has a linear relation to the true

synchronous returns, the unobserved measurement error can be explained in terms of

observed asynchronous returns. A transformed VAR model given this assumption is de-

rived from the asynchronous VAR model, in which the maximum likelihood estimators

are asymptotically consistent. An additional spatial proxy is also discussed in which

the spatial weighted matrix captures the time zone differences correspond to the later

markets closing. Using the spatial proxy as a measurement error correction results in a

spatio-temporal vector autoregressive model.





Chapter 2

Threshold fractionally

cointegrated vector autoregressive

model and application to

volatility index

2.1 Introduction

Fractional cointegration is a generalisation of a standard I(1)/I(0) cointegration which

allows the time series variables and their error correction dynamics following fraction-

ally integrated processes. This research aims to make two contributions to the fractional

cointegration literature. The first is an econometric contribution to propose a two-regime

threshold adjustment in the equilibrium error in the class of fractionally cointegrated

vector autoregressive models (FCVAR) by Johansen (2008). The second is an empirical

contribution to analyse the fractionally cointegrated relation of the S&P500 options im-

plied volatility (VIX) and the one-month volatility futures using the proposed threshold

model.

The proposed threshold FCVAR model is a bivariate fractionally cointegrated vector

autoregressive process on a pair of long memory time series Xt = (x1t, x2t), with one

cointegrating relation β′Xt and a discontinuous two-regime switching in the adjustment

coefficient α. The fractional and cofractional orders and the cointegrating relation are

presumed to determine the intrinsic long memory characteristic of the time series pro-

cesses in the long-run. In this sense, the long memory parameters d and b, the cointe-

grating vector β and the level parameter (if any) µ are unchanged; while the adjustment

coefficient α and the short-run dynamic Γ (if any) are allowed to switch across regimes.

5



6 2.1 Introduction

A two-step conditional Gaussian maximum likelihood is implemented for the estimation.

In the first step, the parameters (d, b, µ) are estimated from the linear model. Given the

parameter estimates (d̂, b̂, µ̂), the second step conducts a two-dimensional grid search

over the cointegrating vector β ∈ [βL, βU ] and the threshold parameter γ ∈ [γL, γU ]. To

provide statistical evidence of the nonlinear specification in favour of the linear one, a

supLM test for the presence of threshold is derived based on the threshold cointegration

literature by Hansen and Seo (2002). The difficulty of a threshold test is that the

asymptotic distribution is nonstandard due to the presence of nuisance parameters under

null hypothesis. As a result, simulation-based bootstrap sampling null distribution and

p-value are derived. According to a Monte-Carlo simulation, the size and power of the

test are working well in small sample. Concerning the misspecification issues of a class of

(both fractional and non-fractional) cointegration systems with (or without) threshold

adjustment, this study also provides simulation evidence for a comparison of coefficient

estimates from four different cointegration models. Similar to the theoretical results

from  Lasak (2010), misspecifying the long memory parameters results in inconsistent

estimates of the adjustment coefficient. The adjustment dynamics are distorted in the

linear cases.

In recent literature, empirical evidence usually showed that realised volatility possesses a

long memory parameter d of 0.4 to 0.5 and implied volatility possesses a parameter d of

0.5 to 0.8, which correspond to long memory stationary and nonstationary, respectively.

Semiparametric estimators of fractionally cointegrated systems see e.g. the narrow-band

least squares and the exact local Whittle estimation, are found to be useful in modelling

bivariate volatility processes. Yet they are developed for assessing long-run features

through cointegrating vector and memory parameters.

Thanks to the attractive features of Johansen (2008)’s fractionally cointegrated VAR

model, estimation of multiple cointegration relationship is allowed through the reduced-

rank approach. The number of cointegrating ranks can be determined via statistical

tests, hence the fractional and cofractional orders, cointegrating relations, adjustment

coefficients, and the short-run dynamics can be jointly estimated. Each of these fea-

tures is relevant to the empirical analysis of multiple volatility processes. While the

memory parameters and cointegrating vector express the long-run characteristics of the

volatility processes, the adjustment process and lead-lag dynamic provide the short-run

information dependency which are particularly useful for empirical practice. Consider-

ing the cointegrated relation between implied volatility spot and futures, investors are

interested in assessing the size of disequilibrium between the spot and futures and the

forecast of disequilibrium correction in the next period. Hence, one can design short

term investment decisions correspond to the estimate of adjustments.

Due to the empirical importance of the adjustment dynamics, this research investi-

gates the presence of threshold adjustment in the equilibrium relation between the VIX

spot and futures through the fractionally cointegrated VAR model. A large number of
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empirical studies in economic theory demonstrated the presence of stochastic nonlin-

ear dependence in long-run equilibrium relations. For instance, the equilibrium model

of prices parity exhibits disequilibrium adjustment only if the arbitrage is larger than

transaction costs. However, lack of attention has been given to the nonlinear mean rever-

sion of volatility processes. The intuition of nonlinear adjustment among the volatility

spot and futures can be observed from the investment need of VIX futures. The S&P500

implied volatility index is a mathematical measure for how sharply the market moves.

Since the VIX prices tend to skyrocket when the stock prices plunge, investors may use

the volatility related derivatives as a mean to insure the possible market downturn. In

practice, constantly longing a futures is not a sophisticated strategy for portfolio man-

agement. The generally negative correlation between the stock prices and VIX says that

the cost of buying volatility “insurance” eats up profit from the investment portfolio.

Technically speaking, futures contracts on VIX are normally in “contango”, that is, the

longer-dated futures prices are higher than the near-dated one and the spot. Thus, con-

stantly rolling futures contracts means buying high and selling low which guaranteed

loss to the portfolio in long-term. A legitimate use of volatility futures or other related

derivatives is to buy volatility securities when market has high uncertainty. Hedging

against volatility is more attractive when market is facing a bad time than a good time.

This implies investors behave differently in volatility investment given different market

conditions. In fact, some volatility traders who adopt momentum investing strategy use

the temporary “contango” and “backwardation” conditions of VIX as the enter-and-exit

signal. For example, buy when you need - one can long the VIX-tracking ETFs when

futures is in backwardation, and short when futures is back to contango.

Several findings are reported in empirical application. First, there is a significant thresh-

old effect in the equilibrium relation β′Xt where Xt = (st, ft) denotes implied volatility

spot and futures. Assuming a constant cointegrating vector β in the long-run, the adjust-

ment coefficients are regime-dependent. Second, the cointegrating relationship vanished

when the disequilibrium does not exceed the threshold. On the other hand, only the

futures exhibits significant adjustment when the disequilibrium exceeds the threshold.

This result provides empirical regularity to the nonlinear responses towards the disequi-

librium of implied volatility spot and futures which is concealed in the linear FCVAR

model. Spot has no adjustment effect on the equilibrium relation since the VIX spot

is a non-tradable measure. In addition, futures seems not to be attractive until it is

significantly below the spot prices.

The remainder of the chapter is organised as follows. Section 2.2 provides an extensive

literature review on fractional cointegration, threshold cointegration, and their inter-

section. Section 2.3 introduces the formulation of threshold FCVAR model, derives

the estimation procedure and briefly discusses other forms of nonlinearity. Section 2.4

proposes a supLM test for the presence of threshold in fractional cointegration. The

bootstrapping test statistic and p-value are also discussed. Section 2.5 reports Monte
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Carlo simulation evidence for the size and power of the test and the misspecification

issues by ignoring fractional parameters and threshold nonlinearity. Section 2.6 ap-

plies the threshold FCVAR model to the fractional cointegration of the S&P500 implied

volatility index and its one-month futures.

2.2 Literature review

Fractional cointegrated systems laid the ground for the long-run relationship of mul-

tiple volatility processes. Threshold specification provides feasibility to take nonlinear

relations into account in the short-run adjustment dynamics among the variables. This

chapter provides a review of the major econometric work and empirical findings on

fractional cointegration and threshold models.

2.2.1 Fractional cointegration

Cointegration of nonstationary time series had been studied intensively over the last

three decades since the seminal contributions of Granger (1981) and Engle and Granger

(1987). The early studies of cointegration focused on the standard I(1)/I(0) type of coin-

tegration in which the linear combinations of the I(1) nonstationary processes are I(0)

stationary. Fully parametric inference of cointegration in the error correction mechanism

was developed by Johansen (1988, 1991, 1995). In Johansen’s framework, cointegration

is modelled by the vector autoregressive model for nonstationary variables. The cointe-

grating vector, the speed of adjustment towards the long run cointegrated relation and

the short run dynamics are allowed to be estimated after selecting a cointegrating rank.

Empirical applications adopted Johansen’s cointegration in the studies of prices pari-

ties1 by rational expectations theory in which the model based expectation restrictions

provide testable information on cointegrating relations and short-run adjustments.

However, the premises of the standard I(1)/I(0) cointegration that the time series vari-

ables are integrated of order one and co-moved of order zero are somehow restrictive.

Substantial evidence in the literature demonstrated that many economic and financial

time series possess long range dependence in the autocorrelation function, but not ex-

actly exhibit a unit root process, so called the long memory process. For instance, the

volatility of asset prices, forward premium, exchange rates, interest rate term structure,

and see Baillie (1996) for a comprehensive review of long memory processes in econo-

metrics. Granger and Joyeux (1980) and Hosking (1981) defined a time series Xt be a

fractionally integrated process of order d for non-integer d ∈ (0, 1), denote Xt ∈ I(d),

if it has a I(0) stationary, invertible autoregressive moving average representation after

1For instance, the parity relations include interest rate parity, purchasing power parity, commodity
spot and futures (see Hansen et al., 1981).
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fractional differencing, i.e. ∆dXt ∈ I(0). The precise definition is:

∆dXt =

∞∑
n=0

πn(−d)Xt−n (2.1)

where the parameter d determines the memory of the process, and the fractional coef-

ficients, πn(−d), are defined by the binomial expansion2

(1− Z)−d =

∞∑
n=0

(−1)n

(
−d
n

)
Zn

=

∞∑
n=0

d(d+ 1)...(d+ n− 1)

n!
Zn =

Γ(d+ n)

Γ(d)Γ(n+ 1)
, |Z| < 1, d ∈ R

in which the fractional coefficients are O(nd−1). This shows that, for a valid d < 1/2,∑∞
n=0

(
−d
n

)2
< ∞. Hence the fractional process Xt is stationary process with finite

variance and can be written as

∆−dεt = (1− L)−dεt =
∞∑
n=0

(−1)n

(
−d
n

)
εt−n

with εt the iid variables with zero mean and finite variance. For d ≥ 1/2, the infinite

sum does not exist; yet a nonstationary I(d) process is defined by partial sums by the

operator ∆−d+ as

∆−d+ εt = (1− L)−d+ εt =

t−1∑
n=0

(−1)n

(
−d
n

)
εt−n, t = 1, ..., T.

The semiparametric estimators of the long memory parameter d have been developed

in the literature include the log-periodogram estimator, see Geweke and Porter-Hudak

(1983), Robinson (1995a) and some modified versions by Andrews and Guggenberger

(2003) and Sun and Phillips (2003), and the Gaussian semiparametric local Whittle

estimator by Künsch (1987), Robinson (1995b), Andrews and Sun (2004) and Shimotsu

and Phillips (2005), among others. The standard unit root and stationarity hypothesis

tests may result in contradicting evidence if a time series possesses long memory. The

semiparametric estimators of the fractional integrated order are helpful for supporting

the long memory fashion in the time series process. Noteworthy the fully parametric

long memory estimator, e.g. the ARFIMA model, is more efficient, but it is inconsistent

if the parametric form such as the number of lags is misspecified.

One of the most important motivations distinguishing the long memory from I(0) and

I(1) processes is that long memory processes imply different predictions of long run dy-

namics and effects of shocks to the macroeconomic variables. The arbitrary restriction

2Further definition and intermediate results of the fractional difference operator can be seen in Jo-
hansen (2008) and Johansen and Nielsen (2012).
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of integrated orders d to integer values in the I(1)/I(0) cointegration framework will re-

sult in misspecified likelihood function and incorrect statistical inference. The empirical

discussions regarding the fractional cointegrated economic variables can be dated back

to 1990s by Baillie and Bollerslev (1994), Cheung and Lai (1993), Dueker and Startz

(1998) and Mohanty et al. (1998), among others, which argued that the macroeconomic

variables possess long memory may be well described as fractional integrated process,

and fitting the fractional integrated variables into the standard case may result in false

rejection of the economic hypotheses.

Granger (1986) and Engle and Granger (1987) provided representation theorem for a

general case of cointegration that the variables are fractionally integrated of non-integer

order d and cofractional of a smaller order (d− b), for 0 ≤ d− b < 1/2. The parameter

b determines the degree of cointegration among the variables. In the early studies of

long memory data, the autoregressive fractionally integrated moving average (ARFIMA)

model is a feasible parametric method for the fractional cointegration which extended the

ARMA model to account for hyperbolic rate of decaying autocorrelations. As discussed

by Robinson (1991, 1994) and Robinson and Hidalgo (1997), the complication is that,

when the cointegrating errors have long memory, they are correlated at long horizons and

thus rendering the ordinary least squares estimators inconsistent. The recent study by

Haldrup et al. (2017) showed that the standard ARFIMA models fail to fit the dynam-

ics of the fractional processes properly when the long memory is caused by aggregation.

Having made these points, several semiparametric approaches had been developed for

the fractionally cointegrated processes. Robinson (1994) derived a semi-parametric con-

sistent narrow-band frequency domain least squares estimator (henceforth NBLS) that

performs OLS on a degenerating band of frequencies around the origin. The NBLS in

the multivariate long memory systems had been developed by Lobato (1997), Marinucci

and Robinson (2001). Hence, Robinson and Marinucci (2003) established limiting distri-

bution of the NBLS of the cointegrating relation for the long memory nonstationary case

d > 1/2, d− b ≥ 0. Christensen and Nielsen (2006) provided complementary asymptotic

distribution theory for the NBLS estimator in the stationary case d > 0, d − b ≥ 0,

2d − b ≤ 1/2. The consistency and asymptotic nomality of the local Whittle estima-

tor in a bivariate stationary cointegrated system were derived by Robinson (2008). A

two-step estimation of the exact local Whittle estimator of a bivariate fractionally coin-

tegrated system was proposed by Shimotsu (2012) which accommodates both stationary

(d ≤ 1/2) and nonstationary (d > 1/2) integrated and/or cointegrated order.

Much attention has been given to the long run cointegrating relation of the fractionally

cointegrated systems through the semiparametric approaches, Johansen (2008) gener-

alised the well-known I(1)/I(0) cointegrated vector autoregressive model of Johansen

(1995) by allowing for modelling the long memory time series with non-integer order of

integration. The fractionally cointegrated vector autoregressive (FCVAR) model permits

one to determine the number of equilibrium relations via cointegrating rank test, and to
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jointly estimate the memory parameters, the long-run cointegrating relations with the

adjustment parameters, and the short-run lagged dynamics. The FCVAR model allows

for flexibility to estimate the long memory parameters of the cointegrated systems; it

reduces to the standard cointegration case when the fractional and cofractional orders

equal to unity. Asymptotic theory for likelihood estimation and inference in the frac-

tionally cointegrated VAR model was developed by Johansen and Nielsen (2010, 2012).

The role of observed and unobserved initial values in conditional maximum likelihood

estimators of the nonstationary fractional systems was analysed by Johansen and Nielsen

(2016). The inclusion of a level parameter in the FCVAR formulation is found to have

the advantage of reducing the bias of pre-sample observations. Dolatabadi et al. (2016)

provided an additional formulation of deterministic term which allows for deterministic

linear time trends or drift in the variables.

Empirical relevance of the fractionally cointegrated VAR system has been recognised in

the areas of financial markets and political economics. Dolatabadi et al. (2015, 2016) ap-

plied the FCVAR model for the analysis of price discovery in commodity spot and futures

for five non-ferrous metals (aluminium, copper, lead, nickel and zinc). The discussions

of long-run contango or backwardation characteristic and disequilibrium errors are al-

lowed through equilibrium relation. By using the same data from Figuerola-Ferretti and

Gonzalo (2010) who instead applied the standard cointegrated VAR model, Dolatabadi

et al. (2015, 2016) found more support of price discovery in the spot compared to the

result from the non-fractional case. Other applications in empirical finance include a

no-arbitrage relation between spot and futures (Rossi and Santucci de Magistris, 2013),

and the stock prices predictability from a relation of high and low prices (Caporin et al.,

2013). Regarding the studies in social science, Jones et al. (2014) examined the fraction-

ally cointegrated relationship between Canadian political support and macroeconomic

conditions.

2.2.2 Threshold in the error correction mechanism

One potential limitation of the cointegration model in relation to empirical application is

that, due to the linear combinations of time series variables linked through the long-run

cointegrating relationships, the adjustment processes tend to correct any small deviation

from the long-run equilibrium. A large number of economic studies3 showed that key

macroeconomic data such as output growth, interest rate term structure, commodity

prices with transaction costs, and the stock return volatility exhibit nonlinear adjustment

over the business cycle.

Threshold autoregressive (TAR) model was first developed by Tong and Lim (1980).

The model allows the autoregression to depend on the state of the transition variable of

interest in which the process is piecewise linear in the threshold space. A useful extension

3See Hansen (2011) for a comprehensive literature of threshold autoregressive models.
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of the univariate threshold autoregresion to a multivariate cointegrated system was made

by Balke and Fomby (1997). Their threshold cointegration model allows the equilibrium

errors in the cointegrating relation to follow a self-exacting threshold autoregressive

process, such that the error correction parameter exhibits regime-switching dynamics.

For the AR(1) process as an example, the adjustment zt takes autoregression depending

on the state of the previous value:

zt =


ρlzt−1 + ut if zt−1 ≤ θl
ρmzt−1 + ut if θl ≤ zt−1 ≤ θm
ρhzt−1 + ut if θh ≤ zt−1

(2.2)

The coefficients ρl, ρh < 1 are the sufficient condition for stationarity4. The inner regime

is allowed to have a unit root. This type of discrete adjustment dynamics is appropriate

to describe many economic phenomena. In macroeconomics, the exchange rate might

be maintained around a certain bound, in such case policy intervention only takes place

when the exchange rate is deviated alove or below the range. In asset pricing, sometimes

arbitrage can be too small to be profitable with the presence of transaction costs.

There are several other model specifications of the threshold cointegration in literature.

Enders and Siklos (2001) generalised the Engle-Granger cointegration test to accommo-

date the threshold autoregressive and momentum-threshold autoregressive in multivari-

ate content. Hansen and Seo (2002) adopted Johansen (1995)’s reduced rank approach,

developed maximum likelihood estimation for a bivariate threshold cointegrated VECM

model. A supLM test for testing the presence of a threshold in the adjustment pro-

cess was also derived. Gonzalo and Pitarakis (2006a) proposed an alternative threshold

framework to allow the long-run cointegrating relationship itself to be regime-specific

whereas the adjustment coefficient is linear. Gonzalo and Pitarakis (2006b) used an ex-

ternal variable rather than the equilibrium deviation as a transition variable of interest.

It is easier to perform model estimation, yet the current threshold tests restrict the ex-

ternal variable to be a stationary. Also, one would need to convince why an influencing

variable is included in the threshold switching dynamics but not in the main equation.

Despite the empirical importance of threshold models, there are complications in devel-

oping asymptotic theory and statistical inference of threshold estimation. Chan (1993)

showed that in the univariate self-exciting model with a single threshold (SETAR), the

least squares estimator of the threshold parameter θ̂ is n-consistent (or said to be super-

consistent) whereas the estimator of autoregressive slope parameter ρ̂ is
√
n-consistent.

The limiting distribution of the threshold parameter is a compound Poisson process.

The super consistence of the threshold estimator allows the estimated value to take as

given asymptotically when conducting inference on ρ̂. The inference on threshold pa-

rameters was provided by Hansen (1996, 1997, 1999, 2000). The statistical tests for

4See Balke and Fomby (1997) for a set of sufficient conditions in a more general TAR model.
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nonlinearity has nonstandard distribution since the threshold parameter under null hy-

pothesis remains unidentified. The tabulation of asymptotic distribution of the test is

not feasible. The sup-test statistics (Davies, 1987) 5 are employed and the asymptotic

null distribution is obtained through bootstrap methods.

The econometric theory of threshold cointegration is more difficult than the univari-

ate case. Allowing for joint estimation of the cointegrating relation β and adjustment

dynamic α complicates the asymptotic distributions of the quasi-maximum likelihood es-

timators and the test statistics. It is because the limiting distributions of the estimators

of cointegrating vector and adjustment parameter are asymptotically dependent (Kris-

tensen and Rahbek, 2013). Thus, when testing for linearity in the adjustment dynamics

through sup-test inference, the estimation of long-run parameter should not be ignored if

it is unknown. The existing literature addressed this issue by assuming the cointegrating

vector β is known (see, e.g. Gonzalo and Pitarakis, 2006b; Seo, 2006) or the estimation

error of β will not affect the asymptotic behaviour of the test statistic (Hansen and

Seo, 2002). When the parameter β is known, all regressors can be treated as stationary,

hence the sup-testing is reduced to the testing framework in Hansen (1996). In order

to deal with the tests of nonlinearity and nonstationarity simultaneously, Kristensen

and Rahbek (2013) provided full asymptotic theory to the case with the estimation of

β in the multivariate nonlinear VECMs. The limiting distribution of sup test statistic

consists of two components, one is a stationary component from the short-run adjust-

ment dynamics, another is a nonstationary component from the long-run cointegrating

parameter. The results are closely related to the previous studies by Caner and Hansen

(2001) and Shi and Phillips (2012) in univariate threshold case with unit root under

weak identification. Some other studies proposed a Taylor approximation of the non-

linear component for the test of linearity in cointegrating systems, see for instance, the

approximation frameworks of Saikkonen and Choi (2004) and Kapetanios et al. (2006).

2.2.3 Nonstationarity and nonlinearity

Nonstationarity and nonlinearity are two of the key features in time series analysis.

Interestingly, only few of them attempted to describe long memory and nonlinearity

simultaneously within a time series model. Van Dijk et al. (2002) was the first empir-

ical study considered the coexistence of nonlinear and long memory properties in the

US unemployment rate. They introduced a fractionally integrated smooth transition

(FI-STAR) model to capture the asymmetric behaviour over the business cycle (during

expansion and recession), and found that the FI-STAR model outperforms the regular

STAR model regarding the measure of fit. Haldrup and Nielsen (2006) developed a

regime dependent vector autoregressive model allows the degree of long memory to be

different in different regime states. Their model was applied to the electricity prices in

5See also Tsay (1998), Lee et al. (2011), and among others for sup-type threshold tests.
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Nordic countries, and resulted that the price behaviour is subject to occasional conges-

tion periods in which the dynamic of two long memory electricity prices is bilateral in

the congestion state but it exhibits fractional cointegration in the non-congestion state.

The combination of nonstationarity and nonlinearity gives rise to some challenges. The

features of these two processes can easily be mistaken for each other. A long memory

process has autocorrelation function with hyperbolic decay at long lags; nevertheless,

a short memory process with regime switching or a smooth trend has similar auto-

correlation feature. The classic work of unit root by Perron (1989) emphasised the

standard tests of unit root can misinterpret a stationary series with one-time break as

an I(1) process with drift. In the recent long memory literature, Granger and Teräsvirta

(1999), Diebold and Inoue (2001) and Granger and Hyung (2004) demonstrated that the

stochastic regime switching can be fitted into long memory models and result in spurious

conclusion of long memory. Qu (2011) based on the derivative of profile local Whittle

likelihood function, proposed a test for the null hypothesis that a stationary time series

has long memory against the alternative that it has regime switching. Although some

studies argued the possibility of confusing long memory and nonlinearity, some other

addressed statistical tests for the coexistence of long memory dynamics and nonlinearity

in short memory dynamics, see for instance, Baillie and Kapetanios (2007) and Choi

and Saikkonen (2010). This research contributes to this area by jointly estimating the

long-run fractionally cointegrated relationship and the short-run threshold adjustment

on volatility data, and specifying a fractionally cointegrated models against nonlinear

alternatives.

On the other hand, a theoretical work by Dittmann and Granger (2002) derived the

properties of various nonlinear transformations of discrete time6 fractionally intergrated

processes. They showed that memory parameter d of the nonlinear transformed fraction-

ally integrated series may or may not reduce depending on whether the initial process

is stationary or not. Any nonlinear transformation of an anti-persistent I(d) process

with d < 0 is I(0). Nonlinear transformation of a stationary long memory process with

d ∈ (0, 1/2) results in either the same value of d or a smaller d depending on the Hermite

rank of the transformation. The polynomial transformations of nonstationary process

with d ∈ (1/2, 1] still have very persistence nonstationary long memory dynamics and

the long memory parameter d is just slightly smaller than the initial one. Their sim-

ulation results provide conjecture in support of the adequacy of nonlinear extension in

the error correction dynamics in this study. Referring to equation (2.3), the long-run

equilibrium relation in the FCVAR model, β′Xt possesses memory of order d−b ∈ [0, 1].

Therefore, introducing nonlinearity in the adjustment process implies a nonlinear trans-

formation to the equilibrium relation which may affect the degree of long memory in

the initial process. Dittmann and Granger (2002) showed that the memory parameter

6Two similar studies, Taqqu (1979) and Giraitis and Surgailis (1985), prior to Dittmann and Granger
(2002) worked out continuous time long-memory properties of nonlinear transformations of fractional
Brownian motions.
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of the polynomial transformed break process decreases only slightly. More interestingly,

a logistic transformation of stationary long memory process retains exactly the same

memory parameter as in the initial process. For nonstationary process, logistic transfor-

mation reduces the memory order but it is still larger than a half. Those indicate that

nonlinear transformations do not seriously distort the memory dynamics of data in the

long-run.

2.3 Econometric models

The representation theorem of the fractionally cointegrated vector autoregressive (FC-

VAR) model (Johansen, 2008) is generalised from the I(1)/I(0) cointegrated vector

autoregressive (CVAR) mechanism (Johansen, 1995) to allow for fractional processes of

order d that cointegrate to order d− b. The recent development of FCVAR framework

only accommodates linear and symmetric adjustment in the error correction term. In

this chapter, the fractional cointegrated VAR process permits threshold adjustment to-

wards the long-run equilibrium relation. The proposed threshold FCVAR model provides

feasibility to assess long memory and nonlinerity which are two important empirical fea-

tures of time series. With certain restrictions on the parameters, the threshold FCVAR

model effectively reduces to other cointegration models include:

• the linear FCVAR model when the regime-specific parameter sets Φ1 and Φ2 in

regime 1 and 2 respectively are not statistically different from each other;

• the I(1)/I(0) threshold cointegration model (Hansen and Seo, 2002) when d = b =

1; and

• the I(1)/I(0) CVAR model when both d = b = 1 and Φ1 = Φ2.

2.3.1 The fractionally cointegrated VAR models

To derive the FCVAR model, it is straightforward to begin with the well-known CVAR

model with nonfractional integrated order. The CVAR model for a p-dimensional non-

stationary time series Zt is

∆Zt = αβ′Zt−1 +

k∑
i=1

Γi∆Zt−i + εt

= αβ′LZt +

k∑
i=1

Γi∆L
iZt + εt, t = 1, ..., T (2.3)

where ∆Zt−i = Zt−i − Zt−i−1 and Zt−i can be written as LiZt by the use of lag

operator L. In the standard cointegration framework, the time series Zt is I(1) and

their cofractional β′Zt is I(0).
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The FCVAR model allows Zt to be fractional integrated of order d and β′Zt to be

fractional of order d− b ≥ 0 which can be built from (2.3) in two steps. First, the usual

lag operator L = 1 − ∆ and the difference operator ∆ are replaced by their fractional

counterparts, Lb = 1 − ∆b and ∆b = (1 − L)b, where ∆b is defined by the binomial

expansion ∆bZt =
∑∞

n=0(−1)n
(
b
n

)
Zt−n. It results:

∆bZt = αβ′LbZt +

k∑
i=1

Γi∆
bLibZt + εt (2.4)

Next, applying model (2.4) to Zt = ∆d−bXt. This defines the fractional cointegrated

VAR as

∆dXt = αβ′Lb∆
d−bXt +

k∑
i=1

Γi∆
dLibXt−i + εt, t = 1, ..., T (2.5)

where εt is p-dimensional i.i.d.(0,Ω) and Ω is a positive definite. The fractional param-

eter d determines the fractional integration order of the variables Xt, while the cofrac-

tional paramter b determines the degree of cointegration, i.e. the amount of reduction in

fractional integration. It appears that both ∆dXt and ∆d−bβ′Xt are I(0). The long-run

parameter β and the adjustment parameter α are the p× r matrices where r denote the

number of cointegrating ranks and 0 ≤ r ≤ p. The parameters Γi = (Γ1, ...,Γk) govern

the short-run dynamics from lag terms. Denote the product of α and β as Π = αβ′ a

p × p matrix. When cointegrating relations exist, the elements of β′Xt are the linear

combinations of the variables in the system. The adjustment coefficients α determine

the speed of adjustment towards the long-run equilibrium.

In some special cases, when r = p, the matrix Π is unrestricted; when r = 0, the

cointegrating relation is not present; and when r = k = 0, the model reduces to ∆dXt =

εt. It might be helpful to note that the cointegrating relation β′Xt enters into the right-

hand-side of (2.5) with time period t but one is only required to provide observations

up to time t− 1 to calculate the fractional difference of β′Xt. To see this, the fractional

process Xt is govern by the fractional lag operator Lb such that LbXt = (1 −∆b)Xt is

an infinite series starts from Xt−1 to negative infinity.

Deterministic terms can be assumed in the FCVAR model in several ways. Johansen

and Nielsen (2012) considered the inclusion of restricted constant ρ in the long-run

cointegrating relation. Dolatabadi et al. (2016) suggested an unrestricted constant ξ as

the linear trend of the fractionally integrated processes. The general formulation of the

FCVAR with deterministic terms can be written as

∆dXt = ξ + αLb∆
d−b(β′Xt + ρ′) +

k∑
i=1

Γi∆
dLibXt−i + εt. (2.6)

The restricted constant is interpreted as the mean level of equilibrium relation; on the

other hand, the unrestricted constant is the level of the fractionally differenced variables.

According to (2.6), if d = b = 1, the restricted constant becomes αρ′ and will be reduced
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to unrestricted constant. Otherwise, the FCVAR model allows both unrestricted and

restricted constants exist in the model at the same time.

There is an important issue about sampling fractional processes. Fractional difference

(see equation (2.1)) is defined in terms of an infinite series; however, sample data only

has finite number of observations. Consequently, the fractional difference calculated

from the observed sample is not the same as defined. To reduce sampling bias, one

can assume the fractional series Xt has initial value of zero X0 = 0 in sample; albeit

economic data seldom initiates from zero. Another solution is to assume a sample length

of N + T on Xt where N is the number of initial values for conditioning and T is the

number of observations for modelling. Johansen and Nielsen (2016) proposed a simpler

model to get rid of the impact of pre-sample observations. The fractionally integrated

variables are assumed to have non-zero level parameter µ. The level parameter in model

(2.5) shifts the fractional series by a constant:

∆d(Xt − µ) = ξ + αβ′Lb∆
d−b(Xt − µ) +

k∑
i=1

Γi∆
dLib(Xt−i − µ) + εt, (2.7)

which is equivalent to the inclusion of restricted constant by having β′µ = ρ′. Johansen

and Nielsen (2016) showed that the formulation (2.7) has advantage of reducing sampling

bias even when conditioning on no initial values.

The FCVAR models (2.5 and 2.6) are estimated by conditional maximum likelihood

with respect to the parameter set λ = (d, b, α, β, ξ, ρ,Γi), conditional on N initial val-

ues. For model (2.7), the number of initial values can be zero. Johansen and Nielsen

(2012) showed that, for a fixed pair of memory parameters (d, b), the estimation of FC-

VAR model is reduced to reduced rank regression as in Johansen (1995) of ∆dXt on

∆d−bLbXt corrected for {∆dLibXt}ki=1. In this way, the parameters (α, β, ξ, ρ,Γi) can be

concentrated out from the likelihood function of model (2.5 or 2.6) and estimation of

(d, b) can be done by maximising the profile likelihood function over the memory pa-

rameters d and b only. With the presence of level parameter µ in (2.7), the optimisation

is conducted over (d, b, µ).

Asymptotic theory of the quasi-maximum likelihood estimators is provided by Johansen

and Nielsen (2012). Note that the parameter value b0 = 1/2 is a singular point thus

inference is different for b0 < 1/2 or b0 > 1/2. For 0 < b0 < 1/2 with b0 denotes

the true value of b, the limit distributions are standard Gaussian for (d̂, b̂, α̂, β̂, Γ̂i), or

mixed Gaussian for (β̂, ρ̂) with the presence of restricted constant ρ, and chi-squared for

likelihood ratio statistic of Π = αβ′. For b0 > 1/2, the limit distributions of estimators

for (d̂, b̂, α̂, Γ̂i) are Gaussian, while the distribution of T b0(β̂ − β0) is mixed Gaussian.

The asymptotic distributions for other deterministic terms ξ̂ and µ̂ remain unknown in

the literature.
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2.3.2 FCVAR model with threshold adjustment

The main extension to the fractionally cointegrated vector autoregressive models (2.5-

2.7) is to allow the speed of adjustment parameter α to differs across two regimes de-

pending on a threshold parameter. Threshold cointegration has been widely adopted

in macroeconomics and finance to analyse nonlinear dynamics in I(1) nonstationary

systems. This research takes a further step to provide flexibility in the degree of long

memory of the nonstationary processes.

A bivariate two-regime threshold FCVAR model for a pair of fractionally cointegrated

processes Xt = (x1t, x2t) is formulated as

∆d(Xt − µ) =
(

∆d−bLbα1β
′(Xt − µ) +

k∑
i=1

Γi,1∆dLib(Xt−i − µ)
)
D1t(β, γ)

+
(

∆d−bLbα2β
′(Xt − µ) +

k∑
i=1

Γi,2∆dLib(Xt−i − µ)
)
D2t(β, γ) + εt (2.8)

where D1t(β, γ) = 1(et−1 ≤ γ), D2t(β, γ) = 1(et−1 > γ) in which 1(·) denotes the

indicator function and et−1 equals to the disequilibrium error β′(Xt−µ) in the previous

period.

Threshold FCVAR model (2.8) exhibits regime switching depending on the value of

the error-correction term et in the previous period. The equilibrium deviation is not

the only specification for the threshold variables. Other choices of threshold variables

can be an external factor (see Gonzalo and Pitarakis, 2006b) or the lagged difference

of the dependent variable (see Caner and Hansen, 2001) which are expected to drive

the regime-specific adjustment dynamics. In general, it is only necessary to ensure the

threshold variable is stationary and ergodic with a continuous distribution function.

Threshold effect has content only if the error correction term et−1 satisfies 0 < P (et−1 ≤
γ) < 1, otherwise the model reduces to linear FCVAR model. A constraint, π0 ≤
P (et−1 ≤ γ) ≤ 1 − π0, is imposed to guarantee each regime has no less than π0% of

observations of the total sample. The pre-determine trimming parameter, π0, is chosen

by concerning two aspects. One is that the critical values of supLM statistic will increase

as π0 decreases and the distribution of the test statistic diverges to positive infinity as

π0 → 0. The power of the test will be reduced if the choice of π0 is too close to the

endpoint. On the other hand, it is desirable to choose a value of π0 so that the trimming

parameter given the true value of threshold lies in the interval [π0, 1 − π0]. To balance

the trade-off among these considerations, Andrews (1993) suggested π0 may take a value

between 0.05 and 0.15 according to his simulation result.

For model (2.8), the long memory parameters d, b and the cointegrating relation β′(Xt−
µ) are presumed to determine the intrinsic long memory characteristic of the variables
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Xt in the long-run, thus they are assumed to be unchanged across regimes. The short-

run dynamics of the time series, include adjustment coefficient α and lagged terms

coefficients Γi, are assumed to be different across regimes.

The above model specification is somehow similar to Van Dijk et al. (2002) who mod-

elled the nonlinear and long memory dynamics of the US unemployment by a fractionally

integrated smooth transition autoregressive (FI-STAR) model. Their model aimed to

capture the nonlinear responses of US unemployment to economic shocks during reces-

sion and expansion. The long-run properties of the time series are considered as the

characteristics of the time series itself, are restricted to be constant; however, the short-

run dynamics react to economic shock differently, are allowed to vary depending on the

indicator function. The proposed model of this study incorporates the idea of Van Dijk

et al. (2002) into a multivariate content, in which the nonlinearity is coming from the

disequilibrium among the time series and affecting the short-run dynamics but not devi-

ating the long-run properties. Although it is not the focus of this study, the fractionally

cointegrated VAR models can also be extended to have regime-specific long memory

parameters; for instance, if the time series of interest are believed to have different long

memory characteristics under different states of switching variable.

It is relevant to note that, in model (2.8), the level parameter µ and its implicit form of

restricted constant ρ′ = β′µ measure the mean level of cointegrating relation, thus it is

considered to be constant at different regimes. If one is interested in regime dependent

deterministic term, the alternative form with regime dependent unrestricted constant ξ

can be taken as

∆dXt =
(
ξ1 + ∆d−bLbα1β

′Xt +

k∑
i=1

Γi,1∆dLibXt−i

)
D1t(β, γ)

+
(
ξ2 + ∆d−bLbα2β

′Xt +

k∑
i=1

Γi,2∆dLibXt−i

)
D2t(β, γ) + εt. (2.9)

The Matlab programme for threshold FCVAR models (2.8 and 2.9) provided in appendix

B is written based on Nielsen and Popiel (2016) and Hansen and Seo (2002). There are

options to opt-in level parameter and/or unrestricted constant which are compatible to

Nielsen and Popiel (2016)’s Matlab programme for linear FCVAR model.

2.3.3 Estimation

The estimation of a bivariate two-regime threshold FCVAR model can be done by maxi-

mum likelihood estimation (MLE) in two steps. Under the assumption that the residuals

εt are i.i.d.(0,Ω), the Gaussian likelihood function from model (2.8) with N = 0 initial



20 2.3 Econometric models

values is given as

−2T−1logLT (λ) = log
(
det(Ω)

)
+ tr

(
Ω−1T−1

T∑
t=1

εt(λ)εt(λ)′
)
, (2.10)

where the MLE parameter set λ = (d, b, µ,Ω, β, α1, α2,Γi,1,Γi,2, γ) involves two sets

of regime-specific parameters which are denoted Φ1 = (α1,Γi,1)′ and Φ2 = (α2,Γi,2)′

henceforth, and the residuals

εt(λ) =∆d(Xt − µ)−
(

∆d−bLbα1β
′(Xt − µ) +

k∑
i=1

Γi,1∆dLib(Xt−i − µ)
)
D1t(β, γ)

−
(

∆d−bLbα2β
′(Xt − µ) +

k∑
i=1

Γi,2∆dLib(Xt−i − µ)
)
D2t(β, γ).

Given a pair of fixed long memory parameters (d, b), the threshold FCVAR model is

reduced to the I(1)/I(0) threshold cointegration by Hansen and Seo (2002). In addition,

threshold FCVAR model assumes the long-run fractionally cointegrated relationship

remains unchanged across regimes, turns out that in the first step of estimation, the

maximum likelihood parameters of (d, b, µ) can be estimated by maximising function

(2.10) regardless any nonlinearity in the short-run dynamics.

In the second step of estimation, since the MLE estimates (d̂, b̂, µ̂) is given from the

previous step, the concentrated likelihood can be computed for the regime-specific pa-

rameters (Φ1,Φ2,Ω) by holding (β, γ) fixed. The MLE Φ̂1 and Φ̂2 are piecewise linear in

the threshold space for the sub-samples for which et−1 ≤ γ and et−1 > γ, respectively.

More specifically, this yields the concentrated likelihood function

logLT (β, γ) = logLT
(
Φ̂1(β, γ), Φ̂2(β, γ), Ω̂(β, γ)

)
= −T

2
log det

(
Ω̂(β, γ)

)
− Tp

2
. (2.11)

The MLE (β̂, γ̂) maximise the likelihood function (2.11) subject to the constraint π0 ≤
T−1

∑T
t=1 1(et−1 ≤ γ) ≤ 1−π0. Since, the likelihood function in (2.11) is not smooth, so

the gradient hill climbing optimisation techniques cannot guarantee a global maximum.

Therefore, similar to Hansen and Seo (2002), a grid search over the two-dimensional

space (β, γ) is adopted for the estimation of β and γ.

The two-dimensional grid [β, γ] is constituted by Nβ ×Nγ number of grid points, with

Nβ and Nγ denote the evenly spaced grids on [βL, βU ] and [γL, γU ], respectively. It

computationally convenient to calibrate the grid region [βL, βU ] over the slope parameter

β2 from β′ = (β1, β2) with a fixed value of β̃1 = 1. Hence, the grid of β2 can be

obtained by the confidence interval of consistent estimate β̃2 in the equilibrium relation

of the linear FCVAR model. Set ẽt−1 = et−1(β̃2), the grid region [γL, γU ] is given

by the empirical support of the sorted distribution of ẽt−1 with a trimming constraint

π0 ≤ T−1
∑T

t=1 1(ẽt−1 ≤ γ) ≤ 1−π0. For each value of (β2, γ) on the grid, the likelihood

parameter estimates (Φ̂1, Φ̂2, Ω̂) are recalculated. A pair of optimal MLE (β̂, γ̂) yields
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the largest value of the likelihood value in (2.11). Finally the MLE (Φ̂1, Φ̂2, Ω̂) are set

given the optimal (β̂, γ̂), as
(
Φ̂1(β̂, γ̂), Φ̂2(β̂, γ̂), Ω̂(β̂, γ̂)

)
.

At this stage, the optimisation is only described to implement maximum likelihood

estimations. Since the regime-specific parameters are discontinuous and piecewise linear

in the threshold space, deriving asymptotic theory for the estimators is challenging. The

proof of consistency of the MLE could be a focus for further research. According to the

likelihood inference in linear FCVAR model Johansen and Nielsen (2012), the MLE β̂

converges to normal distribution at rate T 1/2 for cofractional parameter b0 < 1/2, and

to mixed normal at rate T b0 for b0 > 1/2. In threshold stationary models, γ̂ converges

to γ at rate T . It might be reasonable to guess in the threshold FCVAR model, the

MLE (β̂, γ̂) may converge to (β, γ) at rate between T b0 and T . With known values of β

and γ, the limit distributions of the remaining parameters (d, b,Φ1,Φ2) are conjectured

to be Gaussian, as they are showed to be Gaussian in the linear FCVAR model.

2.3.4 Other nonlinear extensions

This study examines one of various forms of nonlinearity in the cointegrated time series.

The two-regime threshold cointegration has been widely adopted to provide empirical

regularity in many macroeconomic problems, for instance, in the business cycles and the

equilibrium parities of exchange rates or commodity prices. Nevertheless, other nonlinear

specifications are also worth exploring to select an appropriate nonlinear model.

The nonlinear adjustment in the FCVAR model can be extended to other forms of

nonlinearity. For instance, the three-regime threshold cointegration has been examined

(see Gonzalo and Pitarakis, 2002; Seo, 2003; etc.) in nonfractional case. The 3-regime

threshold specification of the fractional case can be formulated as

∆dXt =
(

∆d−bLbα1β
′Xt +

k∑
i=1

Γi,1∆dLibXt−i

)
1(et−1 ≤ γ1)

+
(

∆d−bLbα1β
′Xt +

k∑
i=1

Γi,1∆dLibXt−i

)
1(γ1 < et−1 ≤ γ2)

+
(

∆d−bLbα1β
′Xt +

k∑
i=1

Γi,1∆dLibXt−i

)
1(et−1 > γ2) + εt (2.12)

The three-regime case is a straightforward extension from the two-regime one. Error

correction depending on three states is also commonly observed in many macroeconomic

time series such as the interest rates term structure exhibits different mean-reversion

dynamics at good/normal/bad economic conditions. However, the grid search techniques

for MLE will be computationally intensive with two thresholds and one slope parameter.

Another nonlinear specification can make use of smooth transition in the adjustment

dynamic. Unlike threshold models which are characterised by discrete regime shifts, the

smooth transition models allow for continuous and smooth transitions across regimes.
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The recent literature e.g. Saikkonen (2008), Seo (2011) and Kristensen and Rahbek

(2013) investigate the nonfractional smooth tsransition vector error correction models.

The two-regime smooth transition extension in FCVAR model is defined as

∆dXt =
(

∆d−bLbα1β
′Xt +

k∑
i=1

Γi,1∆dLibXt−i

)
G(β′Xt−1)

+
(

∆d−bLbα2β
′Xt +

k∑
i=1

Γi,2∆dLibXt−i

)
{1− G(β′Xt−1)}+ εt (2.13)

where the transition function G(·) is commonly the logistic or the exponential.

The logistic smooth transition function is: G(β′Xt) = (1+exp{−δ(β′Xt−c)})−1, and the

exponential function is: G(β′Xt) = 1+exp{−δ(β′Xt−c)2}, where δ > 0 is the smoothness

(velocity) of the transition and c is the location parameter. Smooth transition model is

continuous in the smooth transition parameter δ. The model reduces to linear model

when δ = 0 and approaches to a discrete two-regime threshold model when δ → 0.

Asymptotic theory of regime-switching and/or discontinuous cases is difficult to establish

due to the lack of uniformity in the convergence over the cointegrating vector space.

Given the smooth transition case is a continuous generalisation of threshold models,

it may provide convenient properties to derive asymptotic inference in the nonlinear

fractionally cointegration. Hopefully this question can be neatly answered in my future

research.

2.4 Testing for a threshold

Strictly speaking, there are two testing objectives on the two-regime threshold fraction-

ally cointegrated VAR model. One is testing for the presence of long-run fractional

cointegration, and the other is testing for the threshold nonlinearity in short-run ad-

justment dynamics. This study adopts a two-step approach in which the absence of

linear fractional cointegration against the linear fractional cointegration alternative is

examined in the first step, while the null of linear fractional cointegration against the

threshold nonlinear comes in the second step. The first step of hypothesis testing applies

the cointegration rank test of fractionally cointegrated VAR systems by Johansen and

Nielsen (2012). This section derives a hypothesis testing for the presence of threshold

adjustment in a FCVAR model.

2.4.1 Test statistic

This research focuses on model-based statistical tests for direct model comparisons. The

crucial issue in nonlinear testing of this type is the null hypothesis contains a nuisance

parameter, i.e. the threshold parameter is not identified, leading to a nonstandard
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testing problem. Thus, the test follows Hansen and Seo (2002) and employs the sup-type

Lagrange Multiplier statistic (henceforth supLM), as it does not require a distribution

theory for the parameter estimates in unrestricted model.

Let H0 denote the class of linear FCVAR models (2.7) and H1 denote the class of

two-regime threshold FCVAR models (2.8). The restricted and unrestricted models in

compact form can be written as

H0 : ∆d(Xt − µ) = Φ′zt(β) + εt (2.14)

H1 : ∆d(Xt − µ) = Φ′1zt(β)D1t(β, γ) + Φ′2zt(β)D2t(β, γ) + εt (2.15)

where zt(β) =


∆d−bLbβ

′(Xt − µ)

∆dL1
b(Xt − µ)

...

∆dLkb (Xt − µ)

 .

The q × 1 regressor zt(β) corresponds to the q × p where q = pk + 1 parameter matrix

Φ = (α,Γi)
′ in H0 and its regime-specific parameter sets Φj = (αj ,Γi,j)

′ for j = 1, 2

denotes the state j of regimes in H1. The linear model is nested in the threshold

alternative which satisfies Φ1 − Φ2 = 0.

For fixed memory parameters (d, b) and known values of parameters (β, γ), the alterna-

tive of threshold FCVAR model is effectively reduced to piecewise linear reduced rank

regressions. Specifically, ∆d(Xt − µ) on zt(β)D1t(β, γ) in regime 1 and ∆d(Xt − µ) on

zt(β)D2t(β, γ) in regime 2.

The LM statistic has standard expression as

LM(λ0, γ) = S(λ0, γ)′H−1(λ0, γ)S(λ0, γ) (2.16)

where λ0 = (d, b, µ,Ω, β,Φ) are the parameters of interest under the null, S(λ0, γ) and

H(λ0, γ) are the score and Hessian of the log-likelihood (3.8) evaluated at the param-

eter set under the null, respectively. As in Hansen and Seo (2002), the asymptotically

equivalent version of LM statistic could be given as

LM(β, γ) = vec
(
Φ̂1(β, γ)− Φ̂2(β, γ)

)′(
V̂1 + V̂2

)−1
vec
(
Φ̂1(β, γ)− Φ̂2(β, γ)

)
(2.17)

where vec(·) is the vectorization operator, V̂1 and V̂2 are the covariance estimators for

vec
(
Φ̂1(β, γ)

)
and vec

(
Φ̂2(β, γ)

)
, respectively. They are defined as

V̂1 = V̂1(β, γ) = M1(β, γ)−1Ξ1(β, γ)M1(β, γ)−1, (2.18)

V̂2 = V̂2(β, γ) = M2(β, γ)−1Ξ2(β, γ)M2(β, γ)−1 (2.19)
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with the product matrices

M1(β, γ) = Ip ⊗ z1(β, γ)′z1(β, γ) and M2(β, γ) = Ip ⊗ z2(β, γ)′z2(β, γ),

Ξ1(β, γ) = Ip ⊗ ζ1(β, γ)′ζ1(β, γ) and Ξ2(β, γ) = Ip ⊗ ζ2(β, γ)′ζ2(β, γ)

Let z1(β, γ) and z2(β, γ) be the matrices of the staked rows zt(β)D1t(β, γ) and zt(β)D2t(β, γ),

respectively, in (2.15). Denote ζ1(β, γ) and ζ2(β, γ) as the matrices of the stacked rows

ε̃t ⊗ z1(β, γ) and ε̃t ⊗ z2(β, γ), respectively, with ε̃t the estimate of residuals in (2.14).

For those who are interested in assuming time-varying conditional variances, the expres-

sion in (2.17) can allow for heteroskedasticity-robust covariance estimators in V̂1 and

V̂2.

If the threshold parameter γ is identified, LM statistic in (2.16) or (2.17) would be the

test statistic. However, if γ is unidentified under the null of H0, information matrix

is singular and the asymptotic distribution of LM statistic is nonstandard due to the

presence of nuisance parameters under H0. A solution to the unidentified parameter in

H0 has been raised by Davies (1987) who proposed to obtain the optimal LM test statistic

from a set of LM statistics at each value of the unidentified parameter. Each one of those

test statistics would be chi-squared with one degree of freedom, but the maximum of

a set of dependent chi-squared distributions is not a chi-squared. The nonstandard

limiting distribution of the test can be identified through bootstrap techniques.

The supremum of LM test statistic is defined as

supLM = sup
γ∈Γ∗

LMT (β̃, γ) (2.20)

where β̃ denotes the null estimate of β, and the threshold parameter γ is given in the

search region Γ∗ = [γL, γU ] with γL is the πγ percentile of error correction term et−1 and

γU is the 1− πγ percentile7.

For the development of asymptotic properties, the following assumptions are formulated.

Assumption 2.1.

(1) The errors {εt} are i.i.d.(0,Ω) with Ω > 0 and E|εt|8 <∞.

(2) The initial values X−n for n ≥ 0, are uniformly bounded.

(3) Define the parameter set N = {d, b : 0 < b ≤ d ≤ d1} for some d1 > 0 which

can be arbitrarily large. The true parameter values (d0, b0) ∈ N , 0 ≤ d0−b0 < 1/2,

b0 6= 1/2.

(4) If rank r < p, then det(Ψ(y)) = 0 has (p − r) unit roots and the remaining

roots are outside Cmax(b0,1).

7Note that for empirical application, the trimming parameter π0 corresponds to the constraint in the
grid search of MLE γ̂, while the trimming parameter πγ corresponds the constraint in the search region
of LM test statistic.
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(5) Under H0, LM δ(δ, γ) = LM(β + δ/T, γ) has the same asymptotic finite di-

mensional distribtuions as LM(β0, γ).

(6) The estimates of d and b under H0 do not affect piecewise linear reduced rank

regressions under H1.

Conditions (1)-(4) are assumptions imposed in the fractionally cointegrated VAR data

generating process, see section 2.4 of Johansen and Nielsen (2012) for more detail. As-

sumption 2.1(1) does not impose Gaussian to the errors but only assumes the i.i.d. and

finite eight moments. Assumption 2.1(2) is needed for nonstationary processes to ensure

the fractionally differencing series ∆dXt is defined for any d ≥ 0. In Assumption 2.1(3),

the condition 0 ≤ d0 − b0 < 1/2 ensures β′0Xt is asymptotically stationary. Assump-

tion 2.1(4) guarantee the cofractionality when r > 0 in which Xt is fractional of order

d0 and β′0Xt is fractional of order d0 − b0, such that both ∆d0Xt and ∆d0−b0β′0Xt are

I(0) stationary. Assumption 2.1(5) is suggested by the Theorem 2 of Hansen and Seo

(2002) which implies the use of the estimate β̃ from linear model, rather than the true

β0, does not affect the asymptotic distribution of the LM test statistic. Similar to 1(5),

Assumption 2.1(6) ensures the estimate d̃ and b̃ from linear model does not affect the

asymptotic distribution of the test statistic.

Definition 2.1. Let F(·) be the marginal distribution of the error correction et−1. Define

ωt−1 = F(et−1), M(r) = Ip⊗E[ztz
′
t1(ωt−1 ≤ r)] and Ξ(r) = E[1(ωt−1 ≤ r)(εtε′t⊗ ztz′t)].

Theorem 2.1. Under H0, Assumption 2.1 and Definition 2.1,

supLM ⇒ B = sup
r∈Λ

B(r)

where

Λ = [π, 1− π] and π = P (ωt−1 ≤ r),

B(r) = S∗(r)′Ξ∗(r)S∗(r), in which

S∗(r) = S(r)−M(r)M(1)−1S(1),

Ξ∗(r) = Ξ(r)−M(r)M(1)−1Ξ(r)− Ξ(r)M(1)−1M(r) +M(r)M(1)−1Ξ(1)M(1)−1M(r).

Theorem 2.1 is reproduced from Theorem 2.1 of Hansen and Seo (2002) for the case of

fractionally cointegrated series. Sketch proof is provided in Appendix A.

2.4.2 Bootstrap statistic and p-value

The LM statistic has nonstandard distribution and hence tabulation is not feasible.

As in Hansen and Seo (2002), fixed regressor and residual-based bootstrap inferences
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are proposed to approximate the distribution of supLM. Refinement of finite sample

performance is investigated through simulation experiment in section 2.5.1.

Fixed regressor bootstrap constructs the bootstrap distribution of supLM test us-

ing the residuals from the reduced rank regression in H0 and the parameter estimates

Φ̂1(γ) and Φ̂2(γ) under the unrestricted model. The fixed regressor bootstrap procedure

proceeds as follows.

First, it is noted that Assumption 2.1(5) suggests the estimate of cointegrating vector

β̃ in linear model does not affect the asymptotic distribution of the supLM test. Hence,

the estimate of β does not need to be considered in the inference of threshold estimate

and can be held fixed along the bootstrap procedure. Let the dependent variable z̃0,t =

∆d̃(Xt − µ̃), the regressor z̃t = zt(β̃) in which zt(β) is given in (2.14) and the error

correction term ẽt−1 = et−1(β̃). The residuals ε̃t, the estimates of fractional memory

parameters d̃, b̃ and the level parameter estimate µ̃ from the linear model in H0 are held

fixed at their sample values.

Next, let vb,t be an i.i.d.N(0, I2) and set ub,t = ε̃t ◦ vb,t. Regressing ub,t on z̃t yields

bootstrap residuals ε̃b,t in linear model. Regressing ut on z̃tD1t(β̃, γ) and z̃tD2t(β̃, γ)

yields bootstrap estimates Φ̂1,b(γ), Φ̂2,b(γ) and residuals ε̂b,t(γ) in unrestricted model.

Hence, define the bootstrap covariance matrices V̂1,b(γ) and V̂2,b(γ) as in (2.18) and

(2.19) by replacing β = β̃ and ε̃t = ε̃b,t(γ).

Then, the bootstrap supLM test statistic can be set as

supLM b = sup
γ∈Γ∗

vec
(
Φ̂1,b(γ)− Φ̂2,b(γ)

)′(
V̂1,b(γ) + V̂2,b(γ)

)−1
vec
(
Φ̂1,b(γ)− Φ̂2,b(γ)

)
. (2.21)

The bootstrap description above generates one draw from the distribution. With a

repeated large number of draws (e.g. 1000 times), the simulated distribution of supLMb

is created. The bootstrap p-value can be obtained by counting the percentage of simu-

lated supLM exceeds the sample supLM statistic. If the bootstrap p-value is less than

the nominal size chosen, the null hypothesis is rejected in favour of the alternative of

nonlinear FCVAR model.

Residual bootstrap constructs the bootstrap sampling distribution of the test using a

complete specification of the model in H0. The disturbance term εt in (2.14) is assumed

to be i.i.d. normal. The resampled residuals ε̃b,t are randomly drawn from the sample

estimated residuals ε̃t. Then the bootstrap sample z̃b0,t can be constructed using the

parameter estimates in H0 and the resampled residuals. The bootstrap supLMb statistic

can be calculated for each resampled data. By repeating sufficient large number of

resamples, the bootstrap p-value can be obtained by counting the percentage of simulated

supLM exceeds the sample supLM statistic.
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2.5 Simulation evidence

This chapter performs a set of simulations to evaluate 1) the size and power of supLM

test, and 2) the model misspecification of a threshold fractionally cointegrated VAR

model. Simulation evidence is provided in support of the supLM test maintains good

empirical size and power in small sample. With regard the incomplete asymptotic the-

ory of Gaussian maximum likelihood estimators in the threshold FCVAR model, a data

generating process from the threshold FCVAR is simulated and fitted into the misspec-

ified forms of cointegration models. By doing this, the misspecification of long memory

parameters (d, b) and threshold adjustment from other forms of cointegration might be

evident.

2.5.1 Finite-sample size and power

The empirical size and power of the supLM test under finite-samples are studied based

on linear fractionally cointegrated VAR model in null hypothesis H0 and the alternative

choices H0 of the two-regime threshold adjustment in the FCVAR model. A bivariate

fractionally cointegrated process Xt = (x1,t, x2,t) is the variables for data generating

processes.

Empirical size is assessed under H0 which is the fractionally cointegrated VAR model

with linear adjustment coefficients. Data is generated based on:

∆d(Xt − µ) = ∆d−bLb

(
α1

α2

)
β′(Xt − µ) +

k∑
i=1

Γi∆
dLib(Xt−i − µ) + εt (2.22)

where disturbance term εt ∼ i.i.d.N(0, I2). Assume the number of lags k equals 0 and 1.

Parameters are fixed at d = 0.8, b = 0.6, µ = (1, 1)′, β = (1,−1)′ and α1 = −0.05. The

parameter α2 varies among {0, 0.25, 0.5}. The lagged term coefficient Γ varies among

Γ0 =
[

0 0

0 0

]
and Γ1 =

[
0.1 0.3

0 0.5

]
The supLM test is calculated setting the trimming

parameter π0 = 0.15 and number of grid points Nγ = 50 on [γL, γU ]. The number of

simulations is 1000 and bootstrap frequency is 200 for each replication. The samples

of sizes 200 and 500 with number of initial values N0 = 10 are considered. Note that

the DGP of fractional difference series adopts Jensen and Nielsen (2014)’s fast fractional

differencing algorithm and the initial value is necessary to generating fractional difference

series.

For each simulated sample, supLM statistic and p-value from fixed regressor bootstrap

and residual bootstrap are calculated. Table 2.1 summarises the rejection frequencies 8

from the conventional 5% and 10% tests for supLM statistics. It is shown that the rejec-

tion sizes are close to the conventional sizes with the variates of α2 among {0, 0.25, 0.5}.
8The rejection frequencies of each scenario is the percentage of simulated p−values are smaller than

the level of significance.
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The empirical sizes improve slightly when sample size increased from 200 to 500. The

lagged term coefficient Γi varies among Γ0 and Γ1 does not distort the sizes of the test.

Similarly to Hansen and Seo (2002)’s threshold test for nonfractional cointegration, the

fixed regressor bootstrap tend to over reject the null hypothesis, while the residual boot-

strap gives much better size than the fixed regressor bootstrap. The overall size of the

supLM test using fixed-regressor bootstrap range from 0.065 to 0.088 for 5% rate and

from 0.119 to 0.132 for 10% rate. The size using residual bootstrap range from 0.051 to

0.067 for 5% rate and from 0.098 to 0.116 for 10% rate. The proposed supLM test using

residual bootstrap is found to maintain satisfactory empirical size under small sample.

Table 2.1 about here (see P.46).

Empirical power of the test is assessed against H1 of the two-regime adjustment coef-

ficients in fractionally cointegrated VAR model. To keep the computation manageable,

the short-run lagged dynamics is ignored, i.e. assume k = 0. A simple 2-regime threshold

FCVAR model in H1 is as

∆d(Xt − µ) =∆d−bLb

(
α1

1

α1
2

)
β′(Xt − µ)1(et−1 ≤ γ)

+ ∆d−bLb

(
α2

1

α2
2

)
β′(Xt − µ)1(et−1 > γ) + εt (2.23)

with disturbance term εt ∼ i.i.d.N(0, I2). Parameters are fixed at d = 0.8, b = 0.6,

µ = (1, 1)′, β = (1,−1)′, α1 = (0, 0.05)′ and the parameter α2 = (−0.01, α2
2)′ with α2

2

varies among {0.2, 0.5, 0.8}. The threshold parameter γ is set to have P (et−1 ≤ γ) equals

to 0.2 and 0.5. Again, sample sizes of 200 and 500 with number of initial values 10 from

the fractional difference series are considered. Table 2.2 presents the rejection frequencies

of the test at 5% level of significance with different values of adjustment coefficient α2
2

and different sub-sample sizes π0 in the first regime. The fixed regressor bootstrap seems

to have higher empirical power than residual bootstrap; yet it is likely caused by the

artifact of the empirical size distortions. The power performance increases when the

values of adjustment coefficient increase, since the threshold adjustment is more obvious

with larger α2
2. When sample size increased from 200 to 500, the power improved a lot

at each scenario. Comparing the powers with different values of π0, the threshold effect

is more likely to be identified with larger portion of the sub-sample, thus power is higher

with larger value of π0.

Table 2.2 about here (see P.46).

2.5.2 Misspecification

The goal of this simulation experiment is to show the need of accurate specifications on

the long run parameters (d, b) and the regime-specific threshold adjustment α in a class
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of cointegrated systems. If the true data generating process (DGP) is from a two-regime

threshold FCVAR model but it is fitted to different econometric models, the model is

misspecified and the coefficient estimates might be inconsistent.

Suppose that a true DGP for Xt = (x1,t, x2,t)
′ is generated from a bivariate two-regime

threshold FCVAR model as

∆d

(
x1,t − µ1

x2,t − µ2

)
= ∆d−bLb

(
α1

1

α1
2

)
et1(et−1 ≤ γ) + ∆d−bLb

(
α2

1

α2
2

)
et1(et−1 > γ) + εt (2.24)

with equilibrium relation et = β′(Xt − µ) and innovations εt ∼ i.i.d.N(0, I2).

The DGP is generated given the autoregressive order k = 0 and remaining parameters:

d = 0.8, b = 0.6, µ = (10, 10)′, α1 = (0, 0)′, α2 = (−0.005, 0.25)′, β = (1,−1)′ and

γ = 1. This DGP mimics the characteristics of volatility spot-futures relation which

will be discussed in empirical application of this study, in which the memory parameters

(d, b) are larger than 0.5, with non-zero level parameter µ, and adjustment dynamic α1

vanished in the first regime. To avoid the possible small sample bias, sample size of one

simulated Xt process is T = 3000 with number of initial values N0 = 10. Figure 2.1

shows an example of simulated Xt from a bivariate 2-regime threshold FCVAR process.

Figure 2.1 about here (see P.42).

The above DGP is fitted to three different specifications of cointegrated VAR models,

they are: (1) linear cointegrated VAR; (2) threshold cointegrated VAR; and (3) linear

fractionally cointegrated VAR. For each fitted model, data generating process and model

fitting are conducted repeatedly for 1000 times. Table 2.3 summarises the mean and

standard error of the sampling distributions of coefficient estimates9 from three different

cointegrated models. There are three simulation evidence that seem relevant to the

misspecification of long memory parameters and threshold adjustments.

Table 2.3 about here (see P.47).

First, fitting DGP to an I(1)/I(0) 2-regime threshold CVAR (model 2) forced the long

memory parameters d = b = 1. Although the cointegrating slope parameter
ˆ̂
β2 = 1.02 is

preserved, the threshold parameter estimate ˆ̂γ = 0.518 is distorted. Hence the nonlinear

adjustment dynamics from x2,t in regime 2 is diluted by 40%; while the adjustment from

x1,t in regime 1 become significant. This result provides partial evidence in support of

 Lasak (2010)’s Theorem 2, which suggests in linear fractional case that, for any fixed d,

d 6= d0 and d > 0.5, the MLE
ˆ̂
β remains consistent with a rate

ˆ̂
β − β = Op(T

1/2−d0)

but ˆ̂α is not consistent any more. The simulation evidence here further suggests that in

9To avoid confusion with the the maximum likelihood estimates in empirical chapter, the MLE from
the misspecified cointegration models is denoted with symbol “double hat”.
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threshold case, misspecifying long memory parameters may also induce misspecification

of threshold parameter γ. It is suspected that the unabsorbed long range dependence in

(d, b) is captured by the short-run nonlinear adjustment dynamics and thus misspecified
ˆ̂γ and ˆ̂α.

Second, by comparing DGP to the estimation of linear FCVAR (model 3), it can be

seen that the long memory parameters d and b are close to the true values in DGP,

but the slope parameter of cointegrating relation
ˆ̂
β2 = 1.08 is slightly bigger than unity.

Interestingly, the linear adjustment dynamics have very close magnitudes as in the regime

2 of DGP. This simulation scenario suggests that misspecifying short-run adjustment

dynamics may not affect the estimates of memory parameters; however, the possible

nonlinear adjustment is concealed.

Lastly, one can see that forcing integer memory parameters and linear adjustment dy-

namics in linear CVAR (model 1) may affect the estimate of cointegrating slope param-

eter, i.e.
ˆ̂
β0 = 1.13, and the adjustment dynamics ˆ̂α become very weak.

To sum up the simulation evidence from the threshold FCVAR DGP,

• the non-fractional 2-regime threshold cointegration fails to capture the long mem-

ory feature of DGP, and hence the unabsorbed long memory may distort the

estimates of threshold parameter and adjustment coefficients;

• the linear FCVAR model preserved similar values in long memory parameters;

• cointegrating slope parameter does not have dramatic changes in all the misspec-

ified models.

The simulation experiment demonstrates the importance of accurate specifications in

fractional memory parameters and threshold adjustment dynamics. More importantly,

it also shows that long memory feature is not distorted in both linear and nonlinear

FCVAR systems; thus assuming fixed values of long memory parameters across regimes

is reasonable at least in sufficiently large sample.

2.6 Application: volatility spot-futures relation

The appropriate modelling of S&P500 option implied volatility index (VIX) and its

related futures prices is of interest for several reasons. First, with regard the empirical

literature, the relation between realised and implied volatility of an underlying asset is of

interest to identify either option market efficiency or short-run unbiasedness of implied

volatility as a forecast of realised volatility, see e.g. Christensen and Prabhala (1998).
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Multivariate volatility process is found to be fractionally cointegrated by semi-parametric

approaches10.

Second, because the futures is a tradable asset, the relation between VIX spot and futures

is similar to the cointegrated price processes in futures markets and commodity markets.

Thus, different to the typical analysis of implied-realised volatility relation, modelling the

cointegrated relation among VIX spot and futures provides separate interest to identify

the futures price dynamics for hedging and risk management.

Furthermore, volatility traders tend to use VIX related derivatives as volatility security

and behave differently in different states of market. When the market has high uncer-

tainty, people are willing to hedge against volatility risk. However, when the market is

certain, buying security is not necessary. The logic can be thought of one does not need

travel insurance if no travel is planned.

Having make all these points above, this research models the fractionally cointegrated

relation between VIX spot and futures by a parametric fractionally cointegrated VAR

framework. Especially, it is of interest to investigate the possible regime-specific dynam-

ics of the VIX spot-futures relation and to provide theoretical ground for the nonlinear

trading behaviour in volatility derivatives market.

2.6.1 Volatility index and futures

The Chicago Board Options Exchange (CBOE) introduced the S&P500 implied volatility

index (VIX)11 in 2003. The VIX measures a risk neutral 30-day implied volatility derived

from a basket of out-of-money S&P500 options which has an average maturity of 30 days.

Essentially, the VIX is a current expectation on market volatility over the next 30 days

given by investors’ attitude on S&P500 options. The higher VIX indicates that investors

expect a more volatile market; therefore, it is termed the “fear gauge” (Whaley, 2000).

Volatility index itself is not tradable. To allow for trading opportunities, investors rely

on the derivatives products such as futures, options or exchange traded funds (ETF)

on VIX. Due to the negative relation between VIX and S&P500 equity index, volatility

tracking products are mainly used for hedging the downside risk of S&P500. Since the

second moment of volatility measure is extremely high, VIX products provide a huge

leverage of hedge on S&P500 which means one could secure for a crash in the S&P500

by giving up just a small amount of gain in the portfolio.

10Bandi and Perron (2006) used the narrow-band least squares estimators and Nielsen (2007) used the
local Whittle estimator to to analyse the long-run implied-realised volatility relation.

11The S&P500 implied volatility index is denoted as “spot” in order to distinguish from the VIX
futures, but it is not a direct underlying of the futures.
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2.6.2 Stylised facts about VIX futures market

The VIX futures can be seen as a current bet on some future values of VIX. It is

noteworthy that the settlement price of futures is not calculated by the “cost of carry

relationship” as in other futures markets. In fact, the fair price of VIX futures expiring

at day j is calculated by the current value of a basket of S&P500 options expiring at

day j + 30. For example, a short-term VIX futures with j = 5 days of expiration

is projecting a current bet on the S&P500 option implied volatility in 35 days. This

implies an imperfect correlation between VIX spot and futures because futures is not

tracking spot directly.

In addition, VIX futures has normal contango state, or noted as “long-run” contango in

econometric literature (see Figuerola-Ferretti and Gonzalo, 2010). Contango is a state

of which the futures price is higher than the spot price, in turn investors are paying

at a premium for the asset at some point in the future. The opposite market state to

contango is known as backwardation. The long-run contango of VIX futures means that

rolling futures contracts forces to buy the long-date contract at high price and to sell the

short-date contract at low price continuously. In long term, volatility hedge effectively

eats up potential gain in the portfolio. Instead, it makes more practical sense to buy

volatility securities only when market is facing downside pressure. Brexit referendum

is a good example to show the volatility derivatives as a protective bet against market

uncertainty. At the day of referendum result announcement, the S&P500 index spot

reported a plunge of 3.6% while the one-month VIX futures had a spike of 35%.

With regard the short-term futures price dynamics, contango and backwardation of VIX

futures tend to depend on the market conditions. The scatter plot in figure 2.2 shows

that, when the VIX spot is relatively low 12 which indicates market is calm, on average,

the futures price is at contango state. It is because market expects the future volatility

to rise with respect to the current VIX level. On the other hand, when the level of

VIX is high which implies market has high uncertainty, the futures price tends to be at

backwardation. It means that market expects the future volatility may drop below the

current spot level.

Figure 2.2 about here (see P.42).

To illustrate the nonlinear response by investors upon the states of contango and back-

wardation in volatility futures market, a preliminary evidence is shown by an OLS

regression for the period 2009-2016.

12In practice, the level of VIX spot is considered to be low when it is below 20. Note that the sample
average of VIX spot from 2003 to 2016 is 19. The VIX level was above 35 during most of the time
of 07-08 financial crisis and of the European debt crisis in 2011, and it is above 25 during the Brexit
referendum.
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The percentage change in trading volume of VIX futures, ∆log(vol)t, is regressed on

its lag term and the logarithmic difference of spot and futures in the previous period,

vdt−1 = log(st−1)− log(ft−1), with the regime switch depends on contango (s− f ≤ 0)

and backwardation (s− f > 0).

∆log(vol)t = 0.031
(0.010)

−0.323
(0.024)

∆log(vol)t−1 − 0.412
(0.159)

vdt−1 1(s− f ≤ 0)

+ 1.229
(0.368)

vdt−1 1(s− f > 0) (2.25)

where 1(·) denotes the indicator function and standard errors are in parentheses.

The regression result in (2.25) shows that, on average, when it is at contango state, a

100% increase in volatility difference increases the volume change by 41.2%; however,

when it is at backwardation, a 100% increase in volatility difference increases the volume

change by 122.9%, which is three times of the change at contango. As can be seen, market

is more nervous during the volatile period and is urging to hedge the downside risk by

trading volatility futures, while there is less incentive to trade volatility futures during

the calm period. Moreover, the difference between spot and futures is more sensitive to

volume change at backwardation than at contango.

Having seen investors’ willingness to hedge against volatility may depend on market

condition, a question is posed to ask whether the possible regime dependent relation

between VIX spot and futures can be an “enter-and-exit” indicator for volatility invest-

ment. Using the states of contango and backwardation to derive investment strategies

is related to a method called “momentum strategies” adopted by many financial practi-

tioners. This study aims to provide a theoretical ground for the empirical regularity of

momentum strategies.

2.6.3 Data description

This research uses a balanced dataset of the Chicago Board Options Exchange S&P500

option implied volatility index and the corresponding one-month futures contract from

24 March 200413 to 30 December 2016. There are 3215 observations in the sample. Along

the study, the VIX index and VIX futures are simply denoted as spot (st) and futures

(ft). The one-month futures prices are the weighted prices of the first and the second

month futures contract which give futures prices with an average 30 days of expiration.

Using one-month futures price has the advantage that the price difference between spot

and futures implies the change of market expectation on market volatility over a constant

time window between day 30 and day 60, that is, similar to the idea of term structure.

Instead of taking natural logarithm as in many macroeconomic and asset prices data, the

original values of VIX spot and futures are used in this study due to several reasons. First

of all, this application aims to verify the “momentum strategy” which uses contango and

13The first day of the sample is the date of introduction of VIX futures.
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backwardation as enter-and-exit signal. The financial practitioners always look at the

original values of spot and futures rather than the logarithmic values. Secondly, since

fractionally cointegrated processes are sensitive to initial values (Johansen and Nielsen,

2016), transforming the data series may initiate the risk of inconsistency in parameter

estimates.

The time series plot of VIX spot, futures and their price difference, spot minus futures,

is shown in figure 2.3. From a preliminary inspection on spot and futures, they seem

to co-move with each other across the sample period. They have a level around 15 to

20 over time. Noticeably, there are several spikes match the periods of market crashes,

including the global financial crisis in 2008, the European sovereign debt crises around

2010 and 2011 and the China market flash crash in 2015. The strong persistence of

volatility around the crash periods may indicate the presence of long memory feature.

Next, considering the difference series of spot minus futures, st − ft, it has a slightly

negative level over the sample which matches the property of long-run contango (st < ft)

in volatility futures market. Although the difference price series seems to be more

stationary than the original volatility processes, the spikes around market downturn

periods are still very obvious. Moreover, the significant positive spikes indicate strong

backwardation (st > ft) state. Those imply that the long-run relation of volatility spot

and futures may have informative switch from contango to backwardation when market

has risk to turn from normal to downside.

Figure 2.3 about here (see P.43).

To show the presence of long memory in volatility processes and their volatility difference,

table 2.4 reports the estimators of long memory parameter d using three semi-parametric

estimators. Given different Fourier frequencies for various estimators, the long memory

parameter estimates, d̂, of VIX spot range from 0.75 to 0.92, while the d̂ of futures

price is slightly higher than but very close to those of spot, range from 0.84 to 0.97.

With d̂ > 1/2, the volatility spot and futures are long memory nonstationary processes.

Regarding the difference of spot and futures, the estimates of d range from 0.31 to

0.62. It indicates that the difference series possesses long memory, yet the stationarity

is inconclusive.

Table 2.4 about here. (see P.48)

2.6.4 Model specification

The relation of volatility spot (st) and futures (ft) is modelled by a bivariate 2-regime

threshold FCVAR model as the framework in model (2.8). A pair of fractionally coin-

tegrated processes Xt = (st, ft)
′ has a fractionally integrated order of d. The long-run
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cointegrating relationship β′Xt = (1,−β2)(st, ft)
′ can be written in a single equation,

st − β2ft = et. A lot of literature focused on assessing the unity of β2 and the I(0)

stationarity of disequilibrium error et for cointegration analysis. In fractionally cointe-

grated VAR framework, the cointegrating vector β′Xt has an order d− b ∈ [0, 1) where

b determines the degree of fractional cointegration.

It is relevant to distinguish between long-run and short-run contango/ backwardation

from the cointegrating vector st − β2ft = et. The long-run contango or backwardation

refers to the “normal” state of a futures market. It is about the discussion of the slope of

cointegrating vector β2, see the econometric studies in commodity futures by Figuerola-

Ferretti and Gonzalo (2010) and Dolatabadi et al. (2015). When the slope parameter

β2 > 1 (β2 < 1), the market has long-run backwardation (contango). On the other

hand, the short-run contango or backwardation used by financial practitioners refers to

the temporary discrepancy from long-run equilibrium, that is, the disequilibrium error et,

and the error correction is picked up by adjustment parameter α in the error correction

mechanism. When et−1 > 0 (et−1 < 0), the market is at backwardation (contango) state.

Since this study aims to test for nonlinear adjustment towards the long-run relation, the

short-run “contango” and “backwardation” are of interest. In addition, when the idea of

temporary contango and backwardation is framed into the regime-switching adjustment

dynamics, the disequilibrium error et is said to be deviated from a threshold value

γ rather than a fixed value 0. The threshold parameter γ is optimised through the

maximum likelihood value of the threshold model.

The initial value of fractional series is a concern in fractionally integrated model specifi-

cation. As mentioned previously, fractional difference is an infinite series by definition,

yet observed sample cropped the fractional difference with finite terms. It is unrealis-

tic to impose the initial value of volatility processes to be zero which implies S&P500

equity market has zero volatility, and also, this assumption induces bias to parameter

estimation. Therefore, a level parameter µ = (µs, µf )′ is included within the fractional

integrated process Xt which shifts each of the fractional difference series by a constant,

that is, becomes ∆d(Xt − µ). The cointegrating vector takes a slightly different form

as (st − µs) − β2(ft − µf ) = et. Actually, it does not affect the definition of contango

and backwardation regime states, since the elements of level parameter is entered into

the equilibrium relation as a constant term which will be absorbed by the threshold

parameter estimate.

The model selection choices in terms of the number of lag length k is specified in the linear

FCVAR model. Several information criteria include the Akaike Information Criterion

(AIC), the Bayesian Information Criterion (BIC) the Likelihood-Ratio (LR) test statistic

for significance of Γk are reported. For each criterion, the model specification with

level parameter µ and full rank r = p is considered up to the maximum k = 3. The

BIC suggests k = 0, LR statistic suggests k = 2 and AIC suggests k = 3 for lag

length selection. Since our focus is more on the presence of threshold adjustment in
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the error correction term, the model with no lags k = 0 is slected based on BIC for the

simplification of the threshold model. In addition, the cointegration rank test determines

the number of cointegrating relation based on a sequential test of null hypothesis H(r) :

rank = r against H(p) : rank = p for r = 0, 1, 2. The estimated rank is selected by the

first non-rejected value of the LR test statistic. The asymptotic distribution of the LR

statistic is nonstandard. Asymptotic p-value can be calculated using the algorithm by

Johansen and Nielsen (2016). The null hypothesis that r = 0 is rejected but r = 1 is

not rejected.

Have made the model specifications from the above, the relation of VIX spot and futures

is modelled by a bivariate 2-regime threshold FCVAR model with level parameter µ,

number of lags k = 0 and rank r = 1 as the following formulation.

Unrestricted model :

∆d

(
st − µs
ft − µf

)
= ∆d−bLb

(
α1
s

α1
f

)
etD1t(β, γ) + ∆d−bLb

(
α2
s

α2
f

)
etD2t(β, γ) + εt (2.26)

Equilibrium relation:

st = µs + β2(ft − µf ) + et (2.27)

States of deviation from equilibrium relation:

D1t(β, γ) = 1(et−1 ≤ γ) indicates market is at short-run contango at t− 1, and

D2t(β, γ) = 1(et−1 > γ) indicates market is at stort-run backwardation at t− 1,

where 1(·) denotes the indicator function.

2.6.5 Empirical results

To facilitate comparison with a general class of cointegration models, the estimations

from the standard I(1)/I(0) cointegrated VAR (Johansen, 1995), the 2-regime threshold

cointegration (Hansen and Seo, 2002) and the linear FCVAR (Johansen, 2008) also

presented as benchmark for the proposed threshold fractionally cointegrated VAR model.

It is relevant to figure out common and different specifications of model 1 to 4. The

fractional cointegration (model 3 and 4) has similar representation theorem as the usual

I(1)/I(0) cointegration (model 1 and 2), apart from the long memory parameters in

the standard cointegration are restricted as unity. The threshold model (2 and 4) is

estimated after the estimation of linear model (1 and 3), in which those parameters

assumed to be fixed across regimes can be concentrated out from the maximum likelihood

function for threshold estimation. In model 2, the estimate of cointegrating parameter

β̂ is extracted from linear case and undertaken a 2-dimensional grid search for threshold



2.6 Application: volatility spot-futures relation 37

estimate. Similarly, the proposed threshold FCVAR (model 4) of this study also extracts

the long memory parameter estimates d̂, b̂ and the estimates β̂ and µ̂ in the long-

run cointegrating relation from the linear model. Note that unlike in model 2 where

the unrestricted constant is changed across regimes, the level parameter in model 4 is

assumed to be fixed as it is inside the long-run relation as a constant.

Before proceeding to threshold estimation, a supLM test for the presence of threshold

effect is conducted on the unrestricted threshold FCVAR model. The result of the test

shown in table 2.5 supports a 2-regime threshold effect for the nonlinear adjustment

dynamics in the long-run relation of volatility spot and futures. The supLM statistic

is calculated at 19.050 with a bootstrap p-value of 0.009, it is statistically significant

at 1% level. The nonstandard distribution is calculated by 500 replications and with a

trimming parameter πγ = 0.15.

Table 2.5 about here (see P.48).

The estimation results are presented in table 2.6.

Table 2.6 about here (see P.49).

First, the estimate of fractional parameter d̂ for the fractionally integrated volatility spot

and futures is 0.848 indicates a pair of long memory nonstationary processes, which is

close the range of d estimates by various semi-parametric estimators (see table 2.4). The

cofractional parameter b̂ is 0.771 which indicates the degree of cointegration between spot

and futures is fairly strong. In addition, the memory of long-run relation β′(Xt − µ) is

d− b = 0.077 shows that the long memory feature in disequilibrium error is mild. It is

different from the semi-parametric estimates of the memory of volatility difference series

(st − ft) which are ranging from 0.31 to 0.62. It might be due to the slope parameter β

is estimated rather than taken as one, or due to the possible misspecification of d and

b; yet further investigation should be given.

Second, recall that the cointegrating parameter β provides empirical evidence on the

normal state of contango or backwardation in long-run. By the fact that VIX futures

market has long-run contango (st ≤ ft), the estimate β̂2 is expected to be less than one.

Based on the estimations reported, only the threshold FCVAR (model 4) successfully

obtained an estimate as expected, which is β̂2 = 0.990, while all other slope parameter

estimates from model 1 to 3 are larger than unity. Moreover, the estimates of the mean

level of volatility processes µ̂ = (µ̂s, µ̂f )′ from all models reflect the long-run contango

with µ̂f > µ̂s.

Next, we consider the threshold estimate γ and the sample split between regimes in

the threshold models. This application takes a trimming parameter π0 = 0.1 which
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implies at least 10% of observations will be in either one of the regimes. In model 4, the

estimate of threshold parameter γ̂ = 1.156 is optimised through a 2-dimensional grid

search over [β, γ] with [100×100] grids. The bound [βL, βU ] = [0.98, 1.11] with increment

∆β = 0.0013, is given by the confidence interval of the consistent estimate β̃2 in the

equilibrium relation in the linear FCVAR model, in which β̃2 = 1.05 (s.e. = 0.01) and

6 standard error apart from mean are used for calculation. The bound [γL, γU ] is given

by the sorted distribution of the disequilibrium error ẽt−1 with a trimming constraint

0.10 ≤ P (et ≤ γ) ≤ 0.90. The log-likelihood plot over the 2-dimensional grid [β2, γ] is

shown in figure 2.4. Both MLE β̂2 and γ̂ are precise and strongly convexified around a

small region where the lowest negative likelihood lies on. An optimal pair of [β̂2, γ̂] yields

the lowest value of negative log-likelihood. The percentage of observations are 89% in

regime 1 and 11% in regime 2, which is realistic to suggest market turbulence accounts

for 11% of the total sample period. However, the standard threshold cointegration

(model 2) tells a different story regarding the threshold estimate and the sample split.

The threshold estimate is negative, γ̂ = −1.431, and it divides the sample into 68% and

32% of observations in regime 1 and 2, respectively. Yet the observations in regime 2

still account for smaller proportion, it is surprising to say the market has 32% bad time

over the sample period.

Figure 2.4 about here (see P.44).

The adjustment parameter α = (αs, αf )′ is of interest in this empirical application.

Threshold cointegration and threshold FCVAR models found different evidence in ad-

justment dynamics. First of all, the threshold FCVAR reports zero adjustment in the

first regime which implies that the cointegrating relation of VIX spot and futures dies

out when the market is calm. The adjustment parameter estimate in the second regime

is (−0.006, 0.213)′ with s.e. = (0.080, 0.029)′, which indicates during the turbulent time,

there is an error correction dynamics by VIX futures but the adjustment by spot remains

minimal. Note that α2
f = 0.213 means that volatility futures in period t+ 1 will adjust

on average 21.3% of the disequilibrium error et in period t. The result of adjustment

dynamics from threshold FCVAR mdoel successfully provides economic meaning to the

asymmetric hedging behaviour by using VIX products. When market is highly uncer-

tain, i.e. when volatility spot is much higher than futures, people tend to hedge against

the downside risk. Hence, futures price has upward tendency and reverts the volatility

difference towards the long-run equilibrium relation. On the other hand, when market

is normal, volatility products are less attractive, thus there is no noticeable adjustment

by VIX futures. Comparing to threshold FCVAR, standard threshold cointegration

found opposite results in adjustment parameters across regimes. Futures exhibits mean-

reverting behaviour in the first regime with α1
f = 0.072 (significant at 5%); however, the

cointegrating relation is statistically insignificant in the second regime.
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Lastly, the linear fractional and nonfractional cointegration models conceal the het-

erogeneous error correction dynamics across different regimes due to the linear model

specification; yet both model 1 and 3 found significant adjustment behaviour from VIX

futures, standard cointegration also found significant adjustment by spot.

2.6.6 Momentum strategy

Empirical results demonstrate that the disequilibrium error et from the long-run relation

of VIX spot and futures exhibits regime dependent responses given different economic

states. Financial practitioners refer the states as (short-run) contango and backwar-

dation and use them as an enter-and-exit directional signal for frequent trading. For

example, from the estimation of 2-regime threshold FCVAR model, one may enter into

VIX futures contract when the error et = (st−µs)−β2(ft−µf ) is larger than γ̂ = 1.156,

i.e. in regime 2. As illustrated in figure 2.5, the sequence of switches between regime

1 and regime 2 seems to be able to detect the market turbulence, such as the Chinese

stock market crash in 2015 and Brexit referendum in 2016.

Figure 2.5 about here (see P.45).

This section attempts to examine the profitability of such strategy based on the infor-

mation arrival of contango and backwardation of the VIX futures market. The portfolio

performance is compared to those from the benchmark I(1)/I(0) threshold cointegration

and the simple st− ft definition for contango and backwardation adopted by traders. A

simple strategy is constructed by:

longing VIX futures when it is in backwardation, holding a long position

until it enters into contango.

This trading strategy takes the advantage of contract rolling, because futures is bought

at discount in backwardation and sold at premium in contango. It is noteworthy that

this strategy may expose to risks associated with adverse moves in VIX futures, other

researchers (see. Simon and Campasano, 2014) suggested a more sophisticated strategy

by hedging the adverse moves of VIX futures with opposite direction of mini S&P500 fu-

tures. This study would rather keep the trading application straightforward to compare

the nonlinear trading signals generated from different models. Both threshold FCVAR

and threshold cointegration use the threshold estimate γ̂ as the trigger point to buy

VIX futures, the decision rule is longing futures when et > γ̂. The commonly adopted

contango-backwardation strategy fixed the threshold γ at zero and β at one, hence

traders long futures when st − ft > 0.
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An abstract portfolio is constructed as follows. Assuming there is an initial investment of

$1000 in VIX one-month futures14. The sample period from 4 January to 30 December

2016 is tested. It is important to note that VIX futures settlement is calculated with a

Special Opening Quotation using opening prices of actual traded S&P500 options that

expire 30 days from the day of settlement. Accumulated profit is calculated as the sum

of profit(or loss) in futures contract times principal over the sample period.

Table 2.7 about here (see P.50).

Table 2.7 shows the profit performance using different sequences of enter-and-exit in-

formation for trading VIX futures. Regarding the total profit, the st − ft contango-

backwardation strategy harvested the largest amount of profit, it is $962.70, while thresh-

old cointegration gained the least, it is $399.98; the proposed threshold FCVAR model

earned $454.01. However, if we consider the number of trading signals each model are

given, threshold FCVAR model provided only 7 directions for the entire year and only

2 out of 7 (29%) made a loss. The simple contango-backwardation gave 14 signals and

5 out of 14 (36%) made negative profit. The threshold cointegration was the noisiest

one which provided 17 directions but 10 out of 17 (59%) generated negative profit. If

other transaction costs and slippage are taking effect in the portfolio, the more number

of transactions implied the more profit can be eaten up.

Threshold FCVAR provides the most conservative signal to enter a long position in

VIX futures, while threshold cointegration seems providing an aggressive trading signal.

Given the similar representation theory of threshold models, one may concern the sig-

nalling difference is a consequence of the misspecification of long memory parameters.

Any unabsorbed long range dependence in the nonfractional threshold cointegration

might be wrongly assigned to threshold adjustment dynamics, and ends up generated

lots of noise in adjustment dynamics. As shown in section 2.5, misspecifying the memory

parameters distorted the estimates of threshold and adjustment parameters.

From this illustrative example, regime dependent adjustment dynamic is found to be

useful to provide investment direction for VIX futures. Due to the simplicity of the

portfolio construction, there is no enough evidence to conclude which model provides

the most profitable signal for VIX trading. If one is interested in VIX trading, more

effort should be given to decide sophisticated strategies in a realistic portfolio.

14There are various VIX-tracking derivatives products available on financial market, e.g. iPath S&P500
VIX short-term futures ETN, ProShares Ultra VIX short-term futures ETF, Velocity Shares Daily 2X
VIX short-term ETN, etc. The same strategy can be applied to different VIX products, though one
should beware the imperfect correlation between the underlying futures contracts and the ETF/ETN
products.
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2.7 Conclusion

This research contributes to the coexistence of long memory and nonlinearity in time

series analysis. The recently developed fractionally cointegrated vector autoregressive

(FCVAR) model is extended to accommodate regime dependent adjustment dynamics

in the error correction mechanism. A model-based supLM test is derived to test for the

presence of threshold. Since the distribution of test statistic is nonstandard given by the

presence of nuisance parameter in the restricted model in null hypothesis, Bootstrapping

test statistic and p-value are deriving by simulation. Size and power of the test are

verified. Simulation evidence regarding the model misspecification is also presented in

support of the need of accurate estimates on memory parameters and threshold.

With the presence of long memory in bivariate volatility processes, their long-run relation

is found to exhibit regime switching, in which the states of switch can be explained

by different situations - contango and backwardation - of futures markets. Previous

theoretical studies mainly paid attention to the equilibrium relation among commodity

futures market and investigate the long-run contango and backwardation. However in

financial practice, the nonlinear short-run deviations from normal relation effectively

provide investment direction.

Still, there are many interesting questions worth for further research. The asymptotic

theory in the context of threshold model is challenging. The main problem is due to

the discontinuity in threshold. One extension to this recent research is to investigate

different nonlinear forms in the FCVAR model. A smooth transition FCVAR model

could be a promising attempt, in which asymptotic theory is more straightforward to

be derived given its continuity. Furthermore, a more comprehensive hypothesis test-

ing for the presence of threshold in FCVAR in which the null of linear no fractional

cointegration against nonlinear fractional cointegrated alternative could be an improve-

ment to the current two-step testing approach. It is of an empirical interest to examine

the coexistence of long memory and short-run regime dependent adjustment in other

macroeconomic and financial time series.
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Figures of Chapter 2
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Figure 2.1: Xt generated by a 2-regime threshold FCVAR model.
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Figure 2.2: Scatter plot of VIX index spot and one-month futures for the observation
from 26 March 2004 to 30 December 2016.
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Figure 2.3: Time series plot of VIX index spot, one-month futures and the difference
(st − ft) from 26 March 2004 to 30 December 2016.
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Tables of Chapter 2

level of significance 5% 10%

α2 0 0.25 0.5 0 0.25 0.5

n = 200, Γi = Γ0

Fixed regressor bootstrap 0.088 0.084 0.079 0.130 0.128 0.132

Residual bootstrap 0.067 0.056 0.062 0.116 0.109 0.111

n = 500, Γi = Γ0

Fixed regressor bootstrap 0.073 0.065 0.069 0.125 0.121 0.119

Residual bootstrap 0.056 0.051 0.052 0.107 0.098 0.101

n = 200, Γi = Γ1

Fixed regressor bootstrap 0.079 0.081 0.082 0.126 0.121 0.130

Residual bootstrap 0.072 0.062 0.060 0.113 0.106 0.120

n = 500, Γi = Γ1

Fixed regressor bootstrap 0.071 0.068 0.070 0.125 0.121 0.119

Residual bootstrap 0.058 0.053 0.055 0.111 0.105 0.108

Table 2.1: Size of supLM Test.

π0 = P (et−1 ≤ γ) 0.2 0.5

α2
2 0.2 0.5 0.8 0.2 0.5 0.8

n = 200

Fixed regressor bootstrap 0.317 0.495 0.649 0.330 0.508 0.714

Residual bootstrap 0.297 0.392 0.594 0.308 0.476 0.687

n = 500

Fixed regressor bootstrap 0.531 0.875 0.939 0.558 0.896 0.940

Residual bootstrap 0.486 0.819 0.923 0.591 0.824 0.931

Table 2.2: Power of supLM Test at 5% size.
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DGP Model (1) Model (2) Model (3)

2-Regime FCVAR Linear CVAR 2-Regime CVAR Linear FCVAR

d 0.8 1 1 0.802
(0.001)

b 0.6 1 1 0.573
(0.008)

β [1, −1] [1, −1.128] [1, −1.020] [1, -1.084]

µ1 10 −0.089
(0.030)

- 15.240
(0.030)

µ2 10 0.183
(0.029)

- 18.062
(0.028)

γ 1 - 0.518 -

regime 1 linear regime 1 linear

α1
1 0 −0.015

(0.003)
−0.012
(0.004)

−0.0158
(0.0118)

α1
2 0 0.027

(0.003)
0.004
(0.003)

0.2360
(0.0291)

µ1
1 - - −0.032

(0.032)
-

µ1
2 - - 0.068

(0.034)
-

regime 2 regime 2

α2
1 −0.005 - −0.089

(0.039)
-

α2
2 0.250 - 0.155

(0.040)
-

µ2
1 - - 0.038

(0.090)
-

µ2
2 - - 0.164

(0.093)
-

Notes:

(1) The coefficients of DGP in the first column assume similar values as in the process of VIX

spot-futures relation.

(2) All other cointegration models assume one cointegrating relationship between x1,t and x2,t

and the number of lags k = 0.

Table 2.3: Coefficient estimates of the threshold FCVAR DGP from three different
cointegration models.
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d̂ for Spot (st) d̂ for futures (ft) d̂ for st − ft
Fourier frequencies GPH LW ELW GPH LW ELW GPH LW ELW

m = bn0.5c = 56 0.836 0.757 0.761 0.918 0.838 0.849 0.388 0.314 0.310

bn0.6c = 127 0.923 0.906 0.908 0.966 0.962 0.968 0.553 0.574 0.622

bn0.7c = 285 0.879 0.836 0.842 0.936 0.889 0.895 0.465 0.479 0.484

Notes:

(1) The table reports semi-parametric estimators of long memory parameter d for S&P500

option implied volatility spot st, one-month futures ft and their difference st − ft. Three semi-

parameter estimators are considered, they are: Geweke-Porter-Hudak (GPH) estimator, local

Whittle (LW) estimator and the 2-step exact local Whittle (ELW) estimator. The estimations

use the computation algorithms by Kanzler et al. (1998) for the GPH estimator and Shimotsu

and Phillips (2005) for LW and ELW estimators.

(2) The number of Fourier frequencies equals to m = bnwc where m is the floor integer part, n

is the number of observations and w is the bandwidth size. According to literature, the choices

of bandwidth are usually ranging from 0.25 to 0.8. This study reports three bandwidth choices,

0.5, 0.6 and 0.7.

Table 2.4: Estimates of d for VIX spot, futures, and the difference between spot and
futures

2-Regime FCVAR (spot, futures)

No of replications 500

SupLM Test Statistic 19.050

Critical Value at 5% 15.134

p-value 0.009

Table 2.5: supLM test for the presence of a threshold in the FCVAR model.
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Model 1 Model 2 Model 3 Model 4

I(1)/I(0) 2-Regime I(1)/I(0) Linear FCVAR 2-Regime FCVAR

d 1 1 0.848 0.848

b 1 1 0.771 0.771

β [1, −1.071] [1, −1.069] [1, −1.050] [1, −0.990]

µs −0.216 - 20.419 20.419

µf 0.140 - 20.912 20.912

γ - −1.431 - 1.156

regime 1 regime 1

(linear) (contango) (linear) (contango)

% of obs. - 68% - 89%

α1
s −0.111

(0.054)∗∗∗
−0.052
(0.044)

−0.007
(0.030)

−0.000
(0.035)

α1
f 0.074

(0.026)∗∗∗
0.072
(0.037)∗∗

0.156
(0.021)∗∗∗

0.000
(0.029)

µ1
s - −0.061 - -

µ1
f - 0.108 - -

regime 2 regime 2

(backwardation) (backwardation)

% of obs. - 32% - 11%

α2
s - −0.143

(0.101)
- −0.006

(0.080)

α2
f - 0.045

(0.053)
- 0.213

(0.029)∗∗∗

µ2
s - −0.220 - -

µ2
f - 0.179 - -

likelihood −609.635 −600.600 −9661.439 −8817.840

Notes:

(1) The table shows estimation results for the cointegrating relationship between VIX spot and

futures from four different cointegration models for comparison. Model 1 and 2 are the stan-

dard I(1)/I(0) and threshold cointegration, respectively which are estimated using the Matlab

programme of Hansen and Seo (2002). Model 3 is the fractionally cointegrated VAR model

estimated using the Matlab programme of Nielsen and Popiel (2016). Model 4 is the 2-regime

threshold fractionally cointegrated VAR model proposed by this study. The main Matlab codes

are provided in appendix B.

(2) The likelihood value for each model is the maximum log-likelihood value resulted by the

optimal parameter estimates. The larger value, the better measure of fit to the data.

(3) one, two and three asterisk(s) indicate 10%, 5% and 1% level of significance, respectively.

Table 2.6: Estimation results from four different cointegration models.
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Enter Date Exit Date Return Profit of $1,000 investment

Threshold 04 Jan, 16 05 Jan, 16 4.7% 46.7

FCVAR 07 Jan, 16 12 Jan, 16 −2.4% −23.6

21 Jan, 16 22 Jun, 16 −3.4% −34.5

22 Jun, 16 23 Jun, 16 0.6% 5.9

24 Jun, 16 27 Jun, 16 7.6% 76.4

09 Sep, 16 12 Sep, 16 22.2% 221.9

01 Nov, 16 09 Nov, 16 16.1% 161.3

Total profit $454.01

Threshold 04 Jan, 16 19 Jan, 16 28.1% 281.2

Cointegration 21 Jan, 16 22 Jan, 16 −3.4% −34.5

08 Feb, 16 10 Feb, 16 1.3% 12.8

15 Mar, 16 16 Mar, 16 −5.6% −55.6

18 Apr, 16 21 Apr, 16 −4.5% −45.2

17 May, 16 19 May, 16 6.1% 61.3

15 Jun, 16 16 Jun, 16 4.5% 45.2

20 Jun, 16 21 Jun, 16 −4.4% −43.6

22 Jun, 16 27 Jun, 16 25.5% 255.1

28 Jun, 16 29 Jun, 16 −4.0% −40.0

19 Jul, 16 21 Jul, 16 −3.5% −34.8

15 Aug, 16 18 Aug, 16 −0.2% −2.0

09 Sep, 16 14 Sep, 16 7.0% 70.1

19 Sep, 16 21 Sep, 16 −3.9% −38.6

31 Oct, 16 09 Nov, 16 20.2% 201.7

14 Nov, 16 17 Nov, 16 −7.6% −76.3

14 Dec, 16 22 Dec, 16 −15.7% −156.8

Total profit $399.98

st − ft 04 Jan, 16 05 Jan, 16 4.7% 46.7

Cotango- 06 Jan, 16 20 Jan, 16 36.7% 366.8

Backwardation 21 Jan, 16 22 Jan, 16 −3.4% −34.5

Strategy 25 Jan, 16 26 Jan, 16 −1.1% −11.4

08 Feb, 16 12 Feb, 16 6.8% 68.2

20 Apr, 16 21 Apr, 16 4.3% 42.7

17 May, 16 19 May, 16 6.1% 61.3

15 Jun, 16 16 Jun, 16 4.5% 45.2

22 Jun, 16 28 Jun, 16 12.0% 120.2

09 Sep, 16 12 Sep, 16 22.2% 221.9

13 Sep, 16 14 Sep, 16 −0.8% −8.2

20 Sep, 16 21 Sep, 16 −5.1% −50.7

01 Nov, 16 09 Nov, 16 16.1% 161.3

14 Nov, 16 16 Nov, 16 −6.7% −66.7

Total profit $962.70

Table 2.7: Profit performance using different sequences of enter-and-exit signal for
buying VIX futures.



Chapter 3

Deriving synchronised daily

correlations from asynchronous

stock returns

3.1 Introduction

Accurately modelling the joint dynamics of asset returns across different markets is a

fundamental requirement for understanding how strongly markets co-move and for quan-

tifying the risk characteristics of portfolios containing assets from different geographical

segments. An important concern when measuring return correlations across interna-

tional markets arisen from the fact that assets trade at their local time hence causing

the daily return series based on closing prices to be asynchronous at the time point of

data collection. The asynchronicity of returns may lead to highly distorted correlation

dynamics if the modellers do not take this issue into consideration.

This research produces reliable synchronised correlation estimates that allow financial

practitioner to construct suitably adjusted series for the purposes of correlation analysis

and portfolio risk management. Since synchronous returns are generally unobserved, an

assumption is imposed by formulating the structure of synchronous returns as a func-

tion of some observables. The benchmark synchronisation model in Burns et al. (1998)

(henceforth BEM) imposed a random walk assumption on synchronous prices. In their

case, any lead-lag correlations among the stock returns of different markets are consid-

ered as misspecified correlation. This assumption is somehow restrictive because it rules

out any lead-lag movements between markets. Instead, the synchronised correlations

proposed in this study are derived from a vector autoregressive process of asynchronous

stock returns with less restrictive assumption on price processes. The formulation of

synchronised returns assumes a fraction of asynchronous returns from the later close

market contains information to explain part of the synchronised returns from the earlier

51
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close market. This is a more intuitive and loose assumption comparing to the assump-

tion of random walk. More importantly, the existing asynchronous GARCH model of

BEM is nested in the proposed synchronised model of this study. This model is identi-

cal to BEM’s model with certain restriction imposed to the parameter. In other words,

the synchronisation model in this study may provide implications about the degree of

market efficiency among the stock markets with asynchronous trading hours.

Correlation dynamics play an important role in many financial applications. One may be

interested in estimating how the assets move in relation to each other before construct-

ing a multi-asset portfolio or setting up their hedging strategies. The multivariate time

series models, e.g vector autoregressive moving average process, had long been adopted

to explore correlation dynamics and transmission mechanism between the financial as-

sets. Yet, significant bias on the correlation dynamics may result from the assumption

that multiple time series are sampled simultaneously but in fact the sampling is non-

synchronous (Lo and MacKinlay, 1990).

When Information flows continuously across international stock markets, stock prices

change in response to the relevant information. However, assets at different markets

trade at their local trading time and hence the prices are only recorded in a discrete

time basis. Stock prices are stale at closing time and are no longer reflecting the current

market values upon new information. The closing prices observed from the different

time of measurement are known to be asynchronous.

To illustrate the phenomenon of return asynchronicity, think of an internationally diver-

sified portfolio contains equity investment in Japanese NIKKEI 225, the UK FTSE 100

and the US S&P 500 (see figure 3.1 for a graphical illustration). Suppose at the time of

the US market closes, the S&P 500 reports a drop by 1% of stock price, the Japanese

and the UK markets had already closed thus cannot respond to the innovations from US.

If both of the Japanese and the UK stock markets are positively correlated with the US

market, the true market values of the Japanese and the UK should have declined at the

same trading day in response to the drop from the US; however, their closing prices are

stale but their next day opening prices would assimilate the overnight information and

show decline in values. Consequently, the use of asynchronous closing prices underesti-

mates the contemporaneous correlations and leads to spurious lag-1 cross correlations.

The systematic error on correlation is bigger when the asynchronous trading difference

between markets is larger, as there is larger portion of asynchronous return incorporated

to the next day’s return. In our example, the systematic error on correlation between

the US and the Japanese stocks is expected to be bigger than the US and the UK one.

Scherer (2013) found empirical evidence that the unreliable correlations affect risk mod-

els arrive at too low (high) VaR forecasts for long (short) position in portfolios, and risk

decisions arrive at too small hedge ratios. Therefore, the phenomenon of asynchronicity

should be taken into consideration when modelling the stock returns of global financial

markets.
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Figure 3.1 about here (see P.72).

By looking at some international stock markets which are trading partially overlap with

others, we could have a comparative view of how the degree of systematic error on

correlation depends on the asynchronous timing. Figure 3.2 compares the uncondi-

tional correlations between the UK FTSE 100 and the US S&P 500 using synchronous

(16:30 GMT) and asynchronous (closing) data1, in which the time horizon moves from

1-day to 20-day return intervals. As we can observe the systematic error on correlations

diminishes when the time horizon becomes longer, by the reason that the degree of asyn-

chronicity is less sensitive for the longer sampling time interval2. The daily correlation

calculated from asynchronous data is significantly lower than the one from synchronous

data (0.52 vs. 0.82). Once past the 5-day (weekly) interval, the effect of asynchronicity

on correlation is minor.

Figure 3.2 about here (see P.73).

Among the existing empirical studies related to the price co-movement and return cor-

relation, some studies (Theodossiou et al., 1997; Ramchand and Susmel, 1998; Chow

et al., 2003) simply by-pass the asynchronicity problem using weekly or monthly data.

However, the low frequency data is relatively small sample which may lead to inefficient

parameter estimates in multivariate time series, and in practice the potential investors

or decision makers especially treasure the correlation measures from shorter horizons. It

is because the daily or even the higher frequency data allow the exploration of market

microstructures at the same time acquiring more relative information. Moreover, the

daily synchronous prices can only be observed for limited markets (e.g. UK with US)

which have common trading within 24 hours. For other stock markets (e.g. Japan with

US) which have no overlapping trading, the asynchronicity issue remains unsolved.

The issues of asynchronous data take on greater importance in today’s global financial

applications. Various asynchronous problems have been studied for many years. Perhaps

Scholes and Williams (1977) is the first literature that considered the effects of asyn-

chronous trading on asset modelling. They proposed a statistical method to estimate a

consistent Beta at the Capital Asset Pricing Model. Dimson (1979) and Cohen et al.

(1980; 1983) considered the asynchronous returns caused by infrequent trading or other

frictions in trading process can bias the beta estimates of the asset pricing models, hence

provided an analytical expression to the relationship between observed returns and true

1The UK FTSE 100 is trading from 8:00 to 16:30 GMT, while the US S&P 500 is trading from 9:30
to 16:00 EST which corresponds to 14:30 - 21:00 GMT; thus the US and the UK stock markets have 2
hours (14:30 - 16:30 GMT) of contemporaneous trading. Then the synchronous prices for both UK and
US markets can be observed between 14:30 and 16:30 GMT. In this illustration, the synchronous data
are collected from Bloomberg at 16:30 GMT using 30-minute frequency.

2The idea is that the 5-hour trading difference between the UK and the US markets has greater
impact on the correlations at daily 24-hour interval than at weekly (5 trading days) 120-hour interval.
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returns. Another milestone of study, Lo and MacKinlay (1990), focused on the spurious

correlations induced by asynchronous data, analysed the market microstructure using

high-frequency data by a stochastic model with some probabilities of trading (or non-

trading) assigned to the data at each time interval. RiskmetricsTM provided an explicit

expression for synchronised correlations as a function of asynchronous correlations. The

drawback of Riskmetrics is that the syncrhonised covariance matrix is not guaranteed

to be a positive definite hence the synchronised correlations are not bounded on [−1, 1].

More related to this study, Burns et al. (1998) proposed a data synchronisation method

particular for daily return series whose stock markets are located at different time re-

gions. They used a first-order vector moving average process as a linear projection of

the asynchronous part of the returns. Their synchronising technique can be adopted as

either the preliminary synchronisation step on asynchronous data before applying the

multivariate time series models, or the mean process of the multivariate-GARCH type

procedure. Martens and Poon (2001) applied BEM and compared it with Riskmetrics on

their Value-at-Risk measures. The BEM synchronisation approach produces better VaR

estimates than the Riskmetrics. Audrino and Buhlmann (2004), Scherer (2013) and

Bell et al. (2013) improved the BEM method with a first-order vector autoregressive

process, which is somehow simpler due to the Markov structure, because the conditional

expectation of a Markov process depends only on finite number of previous term(s).

The synchronisation methodology of this study mainly relaxes random walk stock prices

assumption in BEM’s technique. It is an important consideration because the efficient

market hypothesis applied to asynchronous data can be less reasonable. Unlike syn-

chronous markets have mutual information for every participant, asynchronous markets

have asymmetric information where investors may behave differently. Given asymmetric

information from the global financial markets, investors can only assess the best guess

(expectation) of other’s market values, instead of the contemporaneous observations

from others.

The remainder of this study is organised as follows. Section 3.2 discusses the existing

synchronisation methodology introduced by Burns et al. (1998). Section 3.3 discusses

the econometric techniques adopted in this study. The assumptions and propositions

imposed are also explained. Section 3.4 conducts an empirical analysis on seven in-

ternational stock markets located at different time regions. Section 3.5 presents a

Value-at-Risk back-testing exercise on both asynchronous and synchronised returns. The

performance of Value-at-Risk one-step ahead forecast from different returns series are

discussed. Section 3.6 concludes the study.

3.2 The existing synchronisation model

Burns et al. (1998) considered the trading time difference of international stock markets
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underestimated daily return correlations and volatility measures. Their study proposed a

solution to estimate a synchronised return series and from that the correlation estimates

are free of systemic error. The idea is to recognise that asset values may change even

when markets are closed, these unrecorded asset prices can be estimated for use before

the markets reopen. When a market closes before synchronised time t, there are past

values of this market P iti−1, P iti−2, ... and new information from other subsequently close

markets P jtj , P
k
tk

, ... for i < j < k that can be used to predict what the market price of

this earlier close market would be if it was open.

A random walk process is assumed in the stock prices series such that any future changes

of stock prices from the synchronised time are unpredictable. In this way synchronised

returns Rt can be formulated by an innovation with mean zero and time-varying covari-

ance matrix Ht. Assuming zero mean in the synchronised stock returns, then it is given

by

Rt = εt.

Given the assumption of random walk prices, the synchronised prices are also unbiased

estimates of the next recorded prices. In other words, the conditional expected future

price movements beyond the synchronised time t given the complete information at

synchronised time t is zero. Then synchronised returns can be written in terms of asyn-

chronous returns plus the next day’s expected asynchronous returns given information

at synchronised time t (which is the missing part) minus today’s expected asynchronous

returns given information at t− 1 (which is the extra part):

Rt = rt + E[rt+1|Ft]− E[rt|Ft−1], (3.1)

denote the logarithmic asynchronous close-to-close return as rt.

The random walk stock prices assure synchronised returns do not depend on the past

stock prices. However, asynchronous returns show serial cross-correlations in practice.

It is because different markets measure close-to-close returns at different time and there

are time shifts forward for the later close markets. As a result, next day’s asynchronous

returns of the earlier close markets are predictable from the current asynchronous returns

of the later close markets. The vector of asynchronous returns is modelled by a vector

first-order moving average process with a GARCH covariance matrix to capture the

return predictability for one day in the future as

rt = Mut−1 + ut

V art−1[ut] = ht, (3.2)

where the error term ut is assumed to be serially uncorrelated and E[ut|Ft−1] = 0, ht

is a time-varying conditional covariance matrix.

The formulation in (3.2) is named asynchronous GARCH model. The first-order moving

average coefficient M is a J × J matrix. The random walk stock prices suggest that the

coefficient matrix should be zero if the stock prices are synchronised. Therefore, any
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predictability captured by M is entirely attributed to time asynchronicity of returns

vector. This predictability resulted from asynchronicity is spurious and doesn’t rule out

the random walk assumption on stock prices. With elements ordered by the closing

time of J markets, the diagonal and below-diagonal elements of M should be zero, since

there are no overlaps in trading time. This implied that coefficient M should be in this

form if the innovations ut are serially uncorrelated. BEM only restricted the last row

of matrix M must be zero and empirically resulted in some non-zero estimates on the

diagonal and below-diagonal elements.

From model (3.2), the conditional expectation of rt is E[rt|Ft−1] = Mut−1, synchronised

returns Rt in equation (3.1) can be constructed using the VMA(1) parameter as

Rt = rt + E[rt+1|Ft]− E[rt|Ft−1]

Rt =
(
Mut−1 + ut

)
+Mut −Mut−1

= (I +M)ut. (3.3)

This synchronising procedure brings forward the fraction of daily return which is oc-

curred but not yet recorded by the synchronised time. The covariance matrix of syn-

chronised returns Ht is

V ar[Rt|Ft−1] = (I +M)ht(I +M)′. (3.4)

The synchronised covariance matrix Ht is positive-definite since the asynchronous co-

variance matrix ht is positive-definite. The asynchronous variances and covariances are

typically smaller as some of the variability of asynchronous returns are spread across

days.

Their asynchronous GARCH is applied to the G-7 equity markets3 which obviously

have asynchronicity problem. Empirical findings yielded the unconditional correlation

estimates from asynchronous data are too small for the ”high-asynchronous” markets.

Although there is no reason to believe correlations are always large for each pair of

markets, the weekly correlations are much higher than the daily correlations for the

high-asynchronous markets. The weekly data are time-aggregated thus have less degree

of asynchronicity, yet they are not perfectly synchronised. Empirically the unconditional

correlation estimates from synchronised returns are slightly larger than the weekly cor-

relations.

The conditional covariance, correlations and forecasts of these for both asynchronous

and synchronised returns can be computed at each particular time by their proposed

asynchronous GARCH model. In their study, a BEKK type multivariate GARCH is

assumed in the asynchronous covariance matrix. Recall that this synchronisation method

based on the assumption of random walk stock prices required serially uncorrelated error

3The G-7 equity markets include France CAC40, Germany DAX30, the U.K. FTSE 100, Italy MIL,
Japan NIKKEI225, the U.S. S&P500 and Canada TSX. Some markets are trading perfectly synchronous
and some other are completely asynchronous.
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terms and the diagonal and below diagonal elements of the moving average matrix be

zero. However, BEM only restricted the last row of the moving average matrix must

be zero and empirically resulted in some non-zero estimates on the diagonal and below-

diagonal elements. Moreover, the post-estimation diagnostics by Ljung-box tests for

testing the dependence of standardised residuals showed that the standardised residuals

are serially correlated; the diagnostics tests indicated that the error terms from the

asynchronous GARCH model still have some non-captured patterns and a richer model

may be needed.

Since the synchronisation model proposed by Burns et al. (1998) is an important con-

tribution to the applications in risk management, other literatures adopted the asyn-

chronous GARCH focused on testing the forecasting performance of the synchronised

data, but they put less focus on the model specification and diagnostic tests. Martens

and Poon (2001) compared BEM with RiskMetricsTM on their Value-at-Risk measures

using both synchronised and synchronous4 returns. Their key findings are that corre-

lation dynamics are highly sensitive to the model chosen and the data used, and both

synchronisation models add noise to the correlation dynamics. Regarding the VaR es-

timates, the RiskMetrics VaR provisions have fewer violations than the Asynchronous

GARCH by using both data types; while the synchronised data resulted in fewer vio-

lations than the synchronous data on both synchronisation methods. However, those

results should not be interpreted as one is superior to another. The number of VaR vio-

lations depends on the size of conditional covariance estimates. In fact, the RiskMetrics

covariance is higher than the covariance from asynchronous GARCH, and the covariance

from synchronised returns are expected to be higher.

It is noteworthy that Martens and Poon (2001) strictly followed the assumption of zero

serial correlation and zero serial cross-correlations in the efficient market for both syn-

chronisation models; therefore, the vector of asynchronous returns is assumed a VMA

process the diagonal and the below-diagonal elements of moving average matrix in

asynchronous GARCH are assumed to be zero. Other studies including Audrino and

Bühlmann (2002), Scherer (2013) and Bell et al. (2013) assumed a first order autore-

gressive structure to the mean process of the asynchronous GARCH model since the

first-order autoregressive Markov structure is simpler for estimation. However, those

studies ignored the fact that the VAR(1) process on asynchronous returns violated the

assumption of random walk stock prices, such that the formulation (3.1) for synchronised

returns is invalid. This proposition can be expressed mathematically as follows.

Given the first order autoregressive asynchronous returns rt = Mrt−1 + ut where

E[ut|Ft−1] = 0, its conditional expectation E[rt|Ft−1] = Mrt−1 forms the estimated

4The synchronised data are obtained from the synchronisation method proposed by BEM. Taking the
advantage of partially trading overlap between the UK FTSE 100 and the US S&P 500 stock markets,
the synchronous data are collected at 16:00 London time for both stock exchanges.
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synchronised returns as

Rt = rt +Mrt −Mrt−1

= Mrt + ut. (3.5)

Taking the conditional expectation on the estimated synchronised returns on the above,

yields

E[Rt|Ft−1] = M2rt−1, (3.6)

where the conditional expected synchronised returns are time-varying and depending

on the past stock prices unless the first order autoregressive matrix M = 0. Recall

that the formulation of estimated synchronised returns at (3.1) was built on top of the

assumption that all the future stock price changes beyond the synchronised time t are

unpredictable, which required a constant expected synchronised returns.

The assumption of random walk stock prices in BEM can be too restrictive. Symmetric

information is observed by every market in the case of contemporaneous trading, hence

informationally efficient market condition is easier to be achieved. Regarding the world

of asynchronous trading, information is asymmetric - investors in markets that closed

earlier are not able to response further innovations; even investors in the latest close

market who have the most recent information do not know the true response from

those markets have already been closed. Investors may respond to innovations slower

than they should, due to the uncertainty on other markets’ true values, and thus the

information available at synchronised time t can possibly be used to predict at least

some morning transactions in the next day. This may be the reason why there are

non-zero elements in the coefficient matrix of asynchronous GARCH model, bringing

forward all the predictability from the past to the current returns may over-allocate

correlation estimates. Therefore, this study aims to modify BEM to provide a less

restrictive synchronisation method by relaxing the assumption of random walk stock

prices when formulating synchronised returns.

3.3 The synchronising methodology

3.3.1 Asynchronous and synchronised returns

Asynchronous returns are formulated in line with BEM. Since daily returns are measured

from one time to 24 hours later next day at the same time, different markets may have

different time of measurement.

Time. Concerning the time notation along this chapter, denote tj as the closing time

of each individual market j in an order of closing time from the earliest to the latest.



3.3 The synchronising methodology 59

Denote t as the daily synchronised time vector where t = {1, 2, ..., T} ∈ N. Let the

closing time as a fraction of a day such that tj−1 ≤ tj ≤ t.

Asychronous prices. The logarithmic closing price of market j is denoted as

P jtj for j = 1, ..., J and tj = {t1, t2, ..., tJ} ∈ R+. (3.7)

Typically, market with the latest closing time of the day refers to the time of synchro-

nisation. As an illustration in Figure 3.3, assume the closing price of the US S&P500 to

be the last element of the closing price vector denoted PUS
1 , the Japanese NIKKEI225

price is denoted P JPN
0.375, and the UK FTSE 100 price is denoted PUK

0.8125.

Figure 3.3 about here (see P.74).

If the closing prices of a market are observed at synchronising time t ∈ N, the synchro-

nised prices are just its closing prices, i.e. P s,jt ; for instance the case for the US stocks.

However, most of the international stock markets record their closing prices before time

t, the synchronised prices are unobserved for those markets.

Synchronised prices. The logarithmic synchronised price P s,jt are unobserved at time

t and have to be estimated when market j is closed, given by information from markets

that are open. Define the conditional expectation of the synchronised price of market j

by

Sjt = E[P s,jt |Ft], where Ft = {P jtj |tj ≤ t, j = 1, ..., J}. (3.8)

The complete information set Ft, contains all recorded prices up to time t.

Let rtj be the J × 1 vector of asynchronous close-to-close returns measured at different

closing time tj for j different markets as

rtj =
(
∆P 1

t1 , ...,∆P
J
tJ

)′
= ∆Ptj , (3.9)

where tj = {t1, t2, ..., tJ} is a multi-index.

Let Rt be the J × 1 vector of estimated synchronised returns as

Rt =
(
∆S1

t , ...,∆S
J
t

)′
= ∆St. (3.10)

where t = {1, 2, ..., T} ∈ N.

By (3.7)-(3.10), synchronised returns can be expressed in terms of closing prices and

synchronised prices as

Rt = St − St−1

= (Ptj − Ptj−1) + (St − Ptj )− (St−1 − Ptj−1)

= rtj + E[P st − Ptj |Ft]− E[P st−1 − Ptj−1|Ft−1] (3.11)
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As shown in (3.11), synchronised returns can be seen as asynchronous returns with

adjustments from the expectation of unobserved returns given the most updated infor-

mation available.

Recall that BEM assumed random walk stock prices, any price change beyond the syn-

chronised time point t is unpredictable given the most recent information. It follows

that Sjt = E[P s,jt |Ft] = E[P jtj+1|Ft], tj ≤ t < tj + 1. It implies the conditional expected

future price movements beyond the synchronised time t given the complete information

at synchronised time t is zero E[P jtj+1 − P s,jt |Ft] = 0. BEM defined the adjustment

terms in (3.11) as E[P st −Ptj |Ft] = E[rtj+1|Ft] and E[P st−1−Ptj−1|Ft−1] = E[rtj |Ft−1].

This study is distinctive from BEM by relaxing the random walk assumption on stock

prices at the definition of synchronised returns in (3.5).

Denote the stock return from the closing to the synchronising time of P st − Ptj as the

corrected return R∗t and obtain

Rt = rtj + E[R∗t |Ft]− E[R∗t−1|Ft−1]. (3.12)

If a market’ synchronising time is just its closing time, its R∗t vanished. However, if a

market closes before synchronising time t, there is no record for its synchronised price

and hence R∗t ∀t are unobserved.

It is easy to understand that the correction return R∗t composes part of the next day’s

asynchronous close-to-close return which is observable. Therefore, we make the following

assumption:

Assumption 3.1. The (J × 1) vector of correction returns R∗t for market j at time t

makes up of a (J × J) matrix fraction A of the next day’s asynchronous close-to-close

returns rtj+1, denote

R∗t = Artj+1. (A1)

The (J × 1) fraction parameter matrix A has elements αij for the observed market

i, j = 1, ..., J . The fraction parameter projects the unobserved R∗t from the asynchronous

return rtj , thus it can be seen as a correlation matrix between R∗t and rtj . To maintain a

good property of fraction parameter, each element of matrix A is bounded on the closed

interval [−1, 1]. The parameter A can either be constant or dynamic. In this study, we

assume it is constant and unchanged overtime, then synchronised returns is re-written

by substituting (A3.1) into (3.12) in terms of asynchronous returns by

Rt = rtj + E[R∗t |Ft]− E[R∗t−1|Ft−1]

= rtj +A(E[rtj+1|Ft]− E[rtj |Ft−1]). (3.13)

Synchronised returns equal asynchronous close-to-close returns plus a correction, which

consists of linear combination of return increments from time t + 1 to t, representing

some degree of dynamics adjusted to the multivariate synchronised return process given

asynchronous returns.
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Unlike Burns, et al.(1998) who imposed random walk hypothesis and made an approx-

imation that E[R∗t |Ft] = E[rtj+1|Ft], our assumption only borrows the simple fact of

asynchronicity and expresses the correction return as a fraction of the asynchronous re-

turn is less restrictive. Nevertheless, the random walk assumption can also be viewed as

a special case within our Assumption 3.1 when parameter A equals an identity matrix.

Saying matrix A is a fraction parameter of E[R∗t |Ft] on E[rt+1|Ft] may be abstract, yet

it has some economic expressions that i) when any diagonal element of A closes to one,

the corresponding market may be more efficient and its own E[R∗,jt+1|Ft] cannot predict

its next day’s return; ii) when the off-diagonal elements of A are statistically different

from zero, the correction return E[R∗,jt+1|Ft] can be explained by the next day’s returns

of other markets i for i 6= j.

3.3.2 The model

The formulation of synchronised returns in (3.13) depends on conditional expectation

of asynchronous returns which should be modelled. As this model does not assume ran-

dom walk stock prices, assuming the first-order autoregressive process to asynchronous

returns will not contradict the formulation of synchronised returns.

Assumption 3.2. Asynchronous returns for market j at day t follow a first order

autoregressive process, i.e.

rtj = c0 +Brtj−1 + et, (A2)

with a (J × 1) vector of serially uncorrelated errors et such that E[et|Ft−1] = 0,

E[ete
′
s|Ft−1] = 0 ∀ t 6= s, E[ete

′
t] = Σe, a (J × J) first order autoregressive coefficient

matrix B, and a (J×1) vector of constants c0. Assume that the VAR(1) of asynchronous

returns satisfies the stationary condition, i.e. the root of det(IJ − B) = 0 lies outside

the complex unit circle, or |B| < 1.

From Assumption 3.2, synchronised returns in (3.13) is as

Rt = rtj +A(E[rtj+1|Ft]− E[rtj |Ft−1])

= rtj +A(c0 +Brtj − c0 −Brtj−1)

= (IJ +AB)rtj −ABrtj−1. (3.14)

Synchronised returns in (3.14) are expressed as a linear combination of two consecutive

asynchronous returns. Next, a more specific stochastic process for synchronised returns

is needed to model the left-hand side of equation (3.14).

Assumption 3.3. The (J × 1) vector of synchronised returns is framed by a location-

scale model in terms of its mean and variance, i.e.

Rt = µt + εt for t ∈ N, (A3)
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with a (J×1) vector of conditional mean µt = E[Rt|Ft−1], a (J×1) vector of innovation

process εt = ΣtZt where Zt is a sequence of i.i.d. multivariate innovation variables

with zero mean and unit variance. The conditional variance-covariance matrix of the

innovation is E[εtε
′
t|Ft−1] = Σt. We can further consider GARCH-type structure for the

error term εt.

Alternative parameter identification is also provided in Appendix B, in which the syn-

chronised returns are not derived from Assumption 3.3 but from an auxiliary regression.

Note that adopting the parameter identification from an auxiliaryy regression may suffer

from efficiency loss of parameter estimates, since the parameter of interest A and B are

identified from a set of structural parameters.

Using the derivation of synchronised returns in (3.14), the conditional mean of synchro-

nised returns are:

µt = E[Rt|Ft−1] = E[(IJ +AB)rtj −ABrtj−1|Ft−1]

= (IJ +AB)(c0 +Brtj−1)−ABrtj−1

= (IJ +AB)c0 + (IJ +AB −A)Brtj−1 (3.15)

Hence, the location-scale model of synchronised returns can be transformed by replacing

Rt with the derivation in (3.14) and the conditional mean with the derivation in (3.15),

to obtain

(IJ +AB)rtj −ABrtj−1 = (IJ +AB)c0 + (IJ +AB −A)Brtj−1 + εt

⇔ (IJ +AB)rtj = (IJ +AB)c0 + (IJ +AB)Brtj−1 + εt (3.16)

The matrix (IJ +AB) is invertible. Pre-multiplying the matrix (IJ +AB) the equation

(3.16) on both sides, obtaining

rtj = c0 +Brtj−1 + (IJ +AB)−1εt. (3.17)

The model structure in (3.17) is exactly the same as the asynchronous VAR(1) model

in (A3.2), except the expression of asynchronous error term et is as a transformation

of synchronised error term (I + AB)−1εt. It implied that the synchronised conditional

variance-covariance matrix E[εtε
′
t|Ft−1] = Σt can be obtained from the asynchronous

conditional variance-covariance matrix E[ete
′
t|Ft−1] = Σe

t by

Σt = (IJ +AB)Σet (IJ +AB)′. (3.18)

The derivation in (3.18) implied that the volatility structure of synchronised returns

V ar[Rt|Ft−1] can be produced from the volatility of asynchronous returns ht, with a cor-

rection metric (I+AB) derived from the mean equation of stock returns. The proposed
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conditional variance of synchronised returns in (3.18) can be modelled by some kinds of

multivariate volatility models and taken trading asynchronicity into consideration.

It is interesting to see that the conditional variance in equation (3.18) has the same

structure of the conditional variance equation by Burns et al. (1998)’s synchronisation in

(3.4). The only discrimination between these two variance matrices is that their return

correction (I + M) is derived from a VMA(1) process with random walk assumption

on stock prices; while the methodology proposed here uses a return correction matrix

(I + AB) which is derived from a VAR(1) process with Assumption 3.1 imposed in

the relation of asynchronous and synchronous returns. Random walk stock prices is

not necessarily be assumed in (3.18), but the critical implication is that the proposed

return correction (I + AB) provides flexibility to let the data shows the degree of co-

movement among different asynchronous stock markets. For some extreme cases, let

the fraction matrix A = 0, the synchronised variance-covariance matrix reduced to

asynchronous variance-covariance matrix which implied no asynchronicity. Let A = I,

the synchronised variance matrix reduced to the form of synchronised variance by BEM

in (3.4).

3.3.3 The estimation

The model (3.17) involves two parameters to be estimated: the coefficient matrix B

and the fraction parameter A. The model suffers from under-identification problem

by estimating the process directly using OLS or maximum likelihood estimations, since

there are two unknowns εt and A in one equation et = (I+AB)−1εt. Therefore, this study

proceeds with a “two-step” maximum-likelihood procedure (see Greene, 2003 p.576-582,

and Heckman, 1977).

To perform the two-step estimation, consider the following system of models constructed

by asynchronous VAR in (A3.2) and synchronised VAR in (3.16), assuming the error

terms in both models are normally distributed:

Model 1: rtj = c0 +Brtj−1 + et

Model 2: (IJ +AB)rtj = (IJ +AB)c0 + (IJ +AB)Brtj−1 + εt with

εt = (I +AB)et.

There are two parameter matrices, B and A, to be estimated in the system of models.

The coefficient B appears in both model 1 and 2, but the fraction matrix A only appears

in model 2. See model 1 as a reduced model whereas model 2 as a full model, a two-step

estimation procedure estimates the parameters in the reduced model, and then estimates

the full model by embedding the consistent estimators from the reduced model. The

two steps of maximum-likelihood estimations are conducted as follows.
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Step 1: Estimating the coefficient matrix B of model 1 by maximising the log-likelihood

function lnL1 as

lnL1(B,Σe) = −TJ
2

ln(2π)− T

2
ln|Σe|

− 1

2

T∑
t=1

[(rtj − c0 −Brtj−1)′(Σe)−1(rtj − c0 −Brtj−1)] (3.19)

Step 2: Maximising the concentrated log-likelihood function lnL2 in terms of parameter

A embedded with the consistent maximum-likelihood estimators of B and Σe from step

1 as

lnL2(A, B̂, Σ̂e) = C + ln|I +AB̂| − T

2
ln|(I +AB̂)êtê

′
t(I +AB̂)′| (3.20)

Finally the estimate of synchronised variance-covariance matrix is obtained by

Σ̂ = (IJ + ÂB̂)Σ̂e(IJ + ÂB̂)′ (3.21)

where B̂ and Σ̂e are the maximum-likelihood estimates from model 1 and Â is the

maximum-likelihood estimate from model 2 given the consistent estimators of B and

Σe from model 1. The time-varying synchronised variance Σt can also be obtained by

further assuming heteroskecdastic structure for asynchronous variance-covariance matrix

Σe
t .

3.4 Empirical analysis

This section applied the proposed synchronisation method on seven international stock

markets from the eastern to western time zones including Japan, Australia, Hong Kong,

Germany, the United Kingdom, Canada and the United States. The use of their daily

close-to-close returns is obviously suffering from the problems of asynchronicity. This

application assumed a dynamic conditional correlation (DCC) structure on the asyn-

chronous variance-covariance matrix to allow time-varying correlations.

3.4.1 Data description

The data consists of seven stock market closing price series collected at the local closing

time of each market, including Nikkei Stock Average (NIKKEI225) of Japan, Australian

Stock Exchange (ASX) of Australia, Heng Seng Index (HSI) of Hong Kong, German

stock index (DAX) of Germany, Financial Times Stock Exchange 100 index (FTSE 100)

of the United Kingdom, Toronto Stock Exchange (TSE) of Canada and Standard &

Poor 500 index (S&P500) of the United States. The data is extracted from Bloomberg

Database for the period 1 January 2005 - 30 September 2015. After dropping the

observations with holidays/non-trading days in the time series data panel (i.e. the
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whole observation for each market j at day t is dropped if day t is the holiday for at

least one of the investigated stock markets), there are 2360 common trading days for

each stock price series.

The data set is divided into two sub-samples, the first sample is ranging from 1 January

2005 to 31 December 2014, with 2190 trading days in total, for the purpose of model

estimation. The second sample is ranging 1 January - 30 September 2015, with 170

trading days, for the purpose of out-of-sample forecast. The vector of asynchronous

daily close-to-close returns rt for the seven market indices (J = 7) are calculated by

taking the natural logarithmic difference of the closing prices pt for each market j at the

local closing time tj in a time order of the earliest close to the latest close as

rtj = {rASX
t1 , rNIK

t2 , rHSI
t3 , rDAX

t4 , rFTSE
t5 , rTSE

t6 , rS&P
t7 }′ =


∆PASX

t1
...

∆P S&P
t7

 = ∆Ptj

These markets are located at different time zones from eastern to the western hemisphere

globe, some of them are trading contemporaneously (e.g. DAX and FTSE 100, TSE and

S&P500), some of them are trading partially overlap (e.g. NIKKEI225 and HSI), and

some of them are completely out of phase. The opening and closing times at local time

and at US time, trading time differences correspond to the US closing time, and the

trading overlap corresponds to the US market are presented for each data series in Table

3.1. The first three indices, NIKKEI225, ASX and HSI, are the Pacific markets located

at the eastern hemisphere with no trading overlap with the North American markets

TSE and S&P500; and there are also a few trading differences among themselves. The

second two indices, DAX and FTSE 100 are the European markets located in Europe

which are trading partially overlap with the North American markets but have no trading

overlap with the Pacific stock markets. The last two indices, TSE and S&P500 are the

North American markets located at the western hemisphere which are the latest close

stock markets every day. The closing time of the TSE and S&P500 is considered as the

synchronised time relative to this application.

Table 3.1 about here (see P.75).

The daily contemporaneous correlations and the lagged correlations of the seven inter-

national stock markets using asynchronous close-to-close returns are presented in Table

3.2. In panel A of Table 3.2, the contemporaneous correlations are the highest with mar-

kets at the same region, for instance, 0.69 between ASX and NIKKEI225, 0.87 between

DAX and FTSE 100, 0.79 between TSE and S&P500. The correlations are small when

the markets are highly asynchronous, such as 0.21 between NIKKEI225 and S&P500,

0.38 between HSI and TSE. Although there is no reason to believe that all the contem-

poraneous correlations should be high, the significant lagged correlations may indicate
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the effect of asynchronicity. Panel B of Table 3.2 presented the lagged-1 correlations

among the seven stock returns. The Pacific stock markets have minimal lag-1 cross

correlations within the same Pacific region, but the lag-1 correlations are getting larger

when the trading asynchronicity is getting higher for the markets close later, the lag-1

correlation between ASX and lag-1 S&P500 0.52 is the largest among all the lag-1 cor-

relations. The lagged correlations between the European stock markets and the North

American markets also have noticeable values between 0.07 to 0.22. Regarding the latest

close stock markets in North American region, all the lagged correlations with the earlier

close markets are negligible, while the TS S&P500 has noticeable negative lag-1 correla-

tions with TSE -0.15 and with itself -0.11. These results implied that the close-to-close

returns of the latest markets predict the next day’s returns of the earlier markets as

the stock prices of the latest markets involve much more information. However, this

predictability is spurious because the true contemporaneous correlations are diluted by

the lagged correlations with the presence of trading asynchronicity.

Table 3.2 about here (see P.75).

3.4.2 Estimating the synchronised model

The (7 × 1) vector of asynchronous close-to-close returns of the seven stock markets

is modelled by the proposed synchronisation method. Additionally, the time-varying

dynamics of the conditional variance-covariance is captured through a Multivariate Dy-

namic Conditional Correlation (DCC) model (Engle, 2002). The synchronised VAR-

DCC is specified as follows.

rtj = c0 +Brtj−1 + et

et = (I +AB)−1εt (3.22)

where

et|Ft−1 ∼ N(0, ht)

ht = DtR̃tDt

Dt = diag(h
1
2
t )

hi,i,t = ωi + α′iet−1e
′
t−1 + βiHi,i,t−1 for i = 1, 2, ..., 7

R̃t = diag(Q
− 1

2
t )Qtdiag(Q

− 1
2

t )

Qt = Ω + αet−1e
′
t−1 + βQt−1

This study considers the DCC(1,1) model. The conditional covariance matrix in the

DCC model is decomposed into a relation between the estimated univariate GARCH

variances Dt and the conditional correlation matrix R̃t. ht and R̃t are positive definite,

Dt is a diagonal matrix with the elements of the estimated univariate GARCH variances,
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Qt is the quasi-correlation matrix which is rescaled by ρi,j,t = Q
− 1

2
i,i,tQi,j,tQ

− 1
2

j,j,t to ensure

the correlation estimate is [0, 1] bounded. The parameters (αi, βi) in the GARCH process

are positive ∀i and has a sum less than unity to ensure the stationary condition. The

maximum-likelihood estimators θ ≡ (ωi, αi, ...,Ω, α, β) of ht is estimated by maximising

the log-likelihood function (since the asynchronous error et are multivariate normal):

lnL(rtj , θ) = −TJ
2

ln(2π)− T

2
ln|ht| −

1

2

T∑
t=1

[e′th
−1
t et] (3.23)

The synchronised conditional covariance matrix is then given by

Et−1[εtε
′
t] = Ht = (I +AB)ht(I +AB)′. (3.24)

The synchronised conditional covariance Ht is positive definite since the asynchronous

conditional covariance ht is positive definite.

The two-step maximum likelihood estimation produces the maximum likelihood estima-

tors B and ht in the first step and the estimator A in the second step. To reduce the

number of parameters to be estimated in the second step, the matrix elements of B̂ are

set to zero if they are found to be statistically insignificant. The estimation results are

reported in Table 3.3. The non-zero diagonal and lower-diagonal elements resulted in

matrix B implied that the assumption of random walk stock prices may be invalid.

Table 3.3 about here (see P.76).

3.4.3 Synchronised correlations

The (7× 1) vector of estimated synchronised returns is given by

R̂t = {R̂ASX
t , R̂NIK

t , R̂HSI
t , R̂DAX

t , R̂FTSE
t , R̂TSE

t , R̂S&P
t }′ = (I + ÂB̂)rtj − ÂB̂rtj−1

The unconditional correlations of synchronised returns can be directly calculated, they

are presented in Table 3.4. As expected, the contemporaneous correlations among the

seven stock indices after the synchronisation adjustment are higher than the correlations

from asynchronous data. The largest increase are the correlations between the Pacific

stock markets and the North American markets from 0.2 to 0.7. The correlations between

European markets and the North American markets also raise from 0.6 to 0.8. The

correlations among the stock indices in the same regions, such as DAX and FTSE 100,

TSE and S&P500 have no noticeable changes because they are relatively synchronised.

Table 3.4 about here (see P.77).
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3.4.4 Diagnostic tests

The diagnostic tests are performed for the the standardised residuals zt = h−
1
2 et. If the

asynchronous VAR model in (A3.2) is correctly specified, the innovations et are serially

uncorrelated with zero mean and a conditional variance-covariance matrix ht. Then

the covariance matrix of the standardised residuals should be approximately an identity

matrix.

The first test is a χ2 test of whether the estimated covariance matrix of the standardised

residuals is an identity matrix. The degrees of freedom is 28 as there are 1
2(7×6)+7 = 28

elements to be estimated in the covariance matrix. The χ2 test statistic is 40.69 with

d.f. = 28 and a p-value of 0.0573. Therefore, the estimated covariance matrix of the

standardised residuals is approximately an identity matrix at 5% level of significance.

The second test is a Lagrange multiplier χ2 test of the serial correlations of the esti-

mated standardised residuals. The test statistics are computed using lags up to 30, the

asymptotc 5% critical value is 66.34 with 49 (7 × 7) degrees of freedom. All of the χ2

test statistics for lags up to 30 are exceed the critical value. The serially correlated

standardised residuals indicated that there exists some dependences are not captured

by the asynchronous VAR thus a richer autoregressive model may be needed.

3.5 An application to Value-at-Risk measurement under

asynchronicity

This section performs an out-of-sample analysis to compare the forecasting performance

of the synchronised returns derived from the proposed synchronisation method with the

asynchronous returns. The economic significance of their differences are illustrated by a

Value-at-Risk application. The forecasting exercise uses the second part of the data set

from 1 January to 30 September 2015. The synchronised VAR-DCC(1,1) model is not

re-estimated, but the one-step-ahead conditional measures are updated with the new

observations available.

Value-at-Risk measure is a popular financial risk management tool defined as the maxi-

mum estimated loss that is expected to occur given a specified probaility in the market

value of a portfolio. That is, mathematically, the prob(∆Z∆t ≤ −VaR) = α%, where

∆Zt is the change of the market value of the portfolio P within the period of ∆t, α% is

the probability of loss.

Consider a portfolio of seven equally weighted investments in the seven stock assets

Z = {1
7(ZASX + ZNIK + ZHSI + ZDAX + ZFTSE + ZTSE + ZS&P)}′. The DCC structure

of variance-covariance constructed a VaR measure as:

V aRt+1 = −k ×
√
w2

1H11,t + w2
2H22,t + ...+ 2w1w2ρ12,tH

1/2
11,tH

1/2
22,t + ...
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where k is the critical value corresponds to the confidence interval of the targeted α%.

wi for i = 1, 2, ..., 7 is the weights of the total investments assigned to each asset, ρij,t for

i, j = 1, 2, ..., 7 is the time-varying dynamic correlation coefficient between asset i and j.

This exercise assumed the VaR follows the normal distribution with mean zero and 99%

confidence interval. The time period ∆t = 1 day. The critical value −k is approximately

−2.25 with α% = 1% on the left tail.

The performance of Value-at-Risk using different different stock returns series are in-

vestigated. The performance is evaluated by a back-testing of an investment portfolio,

which is the frequency count of the number of the loss in a day exceeded the VaR mea-

sure of 1% provision. This exercise is inspired in a similar study of asynchornous daily

correlations by Martens and Poon (2001). To compare the forecasting performance of

asynchronous and synchronised returns, the one-day-ahead forecast of the portfolio re-

turns and the VaR measures are calculated and plotted in Figure 3.4. The incidents of

violations (the larger dots) when the value of market portfolio losses more than the VaR

provision (the black lines). With 170 one-step ahead forecasts, asynchronous returns

have 10 (5.9%) violations to the VaR provision; while estimated synchronised returns

have only 3 (1.8%)violations to the VaR provision. In addition, the violations in the

synchronised VaR measures lie about on the VaR provision line. The performance of

VaR using asynchronous data for measuring portfolio risk is more volatile; however,

synchronised returns estimated from the proposed model provide a more conservative

measure of portfolio risk.

Figure 3.4 about here (see P.74).

The empirical result agreed with our expectation that the portfolio value calculated

from asynchronous returns is more volatile by recognising unnecessary profit and loss

overnight. This can be explained by an illustrative example. Imagine there are two

perfectly hedged assets in a portfolio, one is trading in the UK (short position) and

another one is trading in the US (long position). After the UK market closed, the

US asset price dropped by 1%. This perfectly hedged portfolio should not report loss

because the value of the UK asset is expected to offset this 1% decrease. However, the

UK asset price is stale after the UK market close, any adjustment is reported until the

next open of UK market. Then the portfolio recognised this unnecessary loss overnight

until the short position responds. Therefore, the VaR forecasting performance of the

proposed synchronised stock returns is superior over the use of asynchronous returns.
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3.6 Conclusion

Asynchronous data are resulted by the fact that information flows continuously across

markets, yet the asset prices are only recorded within their local trading time. The need

of synchronising multivariate daily stock returns is strongly motivated by the distorted

correlation estimates of asynchronous data. In particular, the daily correlation dynamics

of the multivariate financial time series are significantly understated. The underestima-

tion of correlations leads to the distortion of portfolio values, the volatile VaR measures

and many other financial applications.

This study proposed a synchronisation model to estimate synchronised returns and their

contemporaneous correlations from the observed asynchronous returns. The fundamen-

tal set up of this synchronisation algorithm is inspired by the benchmark paper Burns,

Engle, and Mezrich (1998) which is the first paper discussed about the importance of

time zone differences among the international time series. However, their paper as-

sumed random walk stock price series to construct synchronised returns and hence the

synchronised model. Under the random walk hypothesis on stock prices, any future

price change is unpredictable; in other words, any predictability from asynchronous re-

turns are due to trading asynchronicity. The empirical results did not strongly support

the random walk assumption in their model, and once the random walk assumption is

rejected, the entire formulation of synchronised returns is invalid. Therefore, this study

relaxed the random walk assumption on stock prices and constructed a more generalised

synchronisation model by claiming a less restrictive assumption, that is, the unrecorded

returns for the earlier markets make up a fraction of the next day’s asynchronous re-

turns. This proposed model is a generalised class of Burns, et al.’s (1998) (when A = IJ)

and asynchronous VAR (when A = 0).

The empirical results show that asynchronous correlations are too low as some of the

contemporaneous correlations are spread to the lagged correlations. After synchronis-

ing the stock returns, the correlations are brought back to the same synchronised time

point. Regarding the diagnostic tests associated with the standardised residuals, the un-

conditional covariance matrix of the standardised residuals is approximately an identity

matrix; yet the LM tests of serial correlated residuals indicated that a rich autoregressive

model may be needed to capture the serial dependence. The VaR Back-testing analysis

is supporting evidence that the proposed synchronised VAR model leads to better risk

measure than those from asynchronous model.
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Panel A

Day

Panel B

Panel A: The open-to-close daily stock prices for Nikkei, DAX and S&P 500 stock indices.
Panel B: The close-to-close asynchronous returns and synchronizaed returns for Mikkei, DAX and S&P 500 stock indices. 
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Figure 3.1: The World of Asynchronous Trading
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Return Interval (Number of days) 1-Day 2-Day 3-Day 5-Day 10-Day 20-Day

Synchronous returns at 16:30 GMT 0.817 0.859 0.789 0.902 0.874 0.865

Asynchronous close-to-close returns 0.517 0.701 0.749 0.896 0.855 0.848

1-Day 2-Day 3-Day 5-Day 10-Day 20-Day

Synchronous returns at 16:30 GMT 0.817 0.859 0.789 0.902 0.874 0.865

Asynchronous close-to-close returns 0.517 0.701 0.749 0.896 0.855 0.848
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Figure 3.2: Correlations between FTSE 100 and S&P 500 using synchronous vs. asynchronous data evolve from 1-day to 20-day return intervals
(sample period: 2 Jun - 21 Dec 2014)
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Figure 3.3: The closing prices of Japanese, the UK and the US stock markets corre-
sponds to synchronised time t.
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Figure 3.4: The 1% one-day VaR forecast using asynchronous returns and synchronised
returns for the period 1 January - 30 September 2015.
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Tables of Chapter 3

Local Time US Time

Index Opening Closing Opening Closing Overlap

with US?

Close time diff.

with US (hour)

ASX 10:00 16:00 18:00(−1t) 00:00 no 16

NIKKEI225 09:00 15:00 19:00(−1t) 01:00 no 15

HSI 09:30 16:00 20:30(−1t) 03:00 no 13

DAX 09:00 17:30 03:00 11:30 partially 4.5

FTSE 100 08:00 16:30 03:00 11:30 partially 4.5

TSE 09:30 16:00 09:30 16:00 overlap 0

S&P500 09:30 16:00 09:30 16:00 overlap 0

Table 3.1: Opening and closing times, overlapping and closing time differneces corre-
sponds to the US markets for seven international stock indices.

Panel A: Contemporaneous Correlations

Index ASX NIKKEI225 HSI DAX FTSE 100 TSE S&P500

ASX 1.000 0.691 0.676 0.414 0.462 0.315 0.218

NIK 225 0.691 1.000 0.650 0.397 0.419 0.298 0.214

HSI 0.676 0.650 1.000 0.441 0.472 0.382 0.300

DAX 0.414 0.397 0.441 1.000 0.868 0.599 0.664

FTSE 100 0.462 0.419 0.472 0.868 1.000 0.638 0.636

TSE 0.315 0.298 0.382 0.599 0.638 1.000 0.785

S&P500 0.218 0.214 0.300 0.664 0.636 0.785 1.000

Panel B: Lagged-1 Correlations

Index ASX NIKKEI225 HSI DAX FTSE 100 TSE S&P500

L1.ASX −0.041 −0.014 −0.032 −0.030 −0.056 −0.044 −0.065

L1.NIK 225 −0.047 −0.048 −0.052 −0.050 −0.061 −0.006 −0.038

L1.HSI 0.021 0.036 −0.058 −0.014 0.004 −0.021 −0.059

L1.DAX 0.332 0.342 0.239 −0.010 −0.027 0.019 −0.069

L1.FTSE 100 0.336 0.317 0.243 −0.030 −0.052 −0.004 −0.079

L1.TSE 0.428 0.338 0.278 0.069 0.121 −0.055 −0.153

L1.S&P500 0.522 0.461 0.375 0.185 0.223 0.039 −0.110

Table 3.2: Daily contemporaneous correlations (Panel A) and lagged correlations (Panel
B) of asynchronous close-to-close stock returns for seven markets for the period 1 Jan-
uary 2005 - 31 December 2014.
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Step 1 maximum likelihood

Parameter ASX NIKKEI225 HSI DAX FTSE 100 TSE S&P500

BASX,i −0.097 −0.047 −0.067 0 0 0.094 0.348

BNIK,i −0.095 −0.082 0 0.187 0 0 0.374

BHSI,i 0 −0.079 −0.101 0 0 0 0.406

BDAX,i 0 0 0 0 −0.189 0 0.355

BFTSE,i 0.058 0 0 −0.094 −0.172 0 0.321

BTSE,i 0 0 0 0 0 −0.106 0.077

BS&P,i 0 0 0 0 0 −0.084 −0.071

c0,i 0.001 0.001 0.001 0.001 0.001 0.001 0.001

ωi 0.000 0.000 0.000 0.000 0.000 0.000 0.000

αi 0.065 0.112 0.065 0.073 0.075 0.064 0.090

βi 0.916 0.859 0.918 0.901 0.898 0.918 0.880

Step 2 maximum likelihood

Parameter ASX NIKKEI225 HSI DAX FTSE 100 TSE S&P500

AASX,i 0.304 0.272 0.574 0.115 −0.256 −0.024 −0.199

ANIK,i 0.284 0.308 0.276 0.703 0.426 −0.019 −0.281

AHSI,i 0.276 0.654 0.305 0.648 0.355 −0.019 −0.240

ADAX,i −0.498 −0.267 −0.417 0.186 0.262 0.014 0.132

AFTSE,i 0.989 0.081 1.000 0.272 0.305 −0.003 −0.412

ATSE,i −0.269 −0.338 −0.346 −0.326 −0.310 0.297 0.264

AS&P,i −0.298 −0.295 −0.294 −0.294 −0.290 −0.260 0.325

Note: All the non-zero parameter estimates are statistically significant at 1% level of significance.

Table 3.3: The estimation results of synchronised VAR(1)-DCC(1,1) from the 2-step
maximum likelihood proceduce.
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Index ASX NIKKEI225 HSI DAX FTSE 100 TSE S&P500

ASX 1.000 0.650 0.650 0.629 0.655 0.590 0.619

NIKKEI225 0.650 1.000 0.681 0.732 0.740 0.641 0.724

HSI 0.650 0.681 1.000 0.599 0.634 0.579 0.608

DAX 0.629 0.732 0.599 1.000 0.843 0.662 0.820

FTSE 100 0.655 0.740 0.634 0.843 1.000 0.755 0.827

TSE 0.590 0.641 0.579 0.662 0.755 1.000 0.786

S&P500 0.619 0.724 0.608 0.820 0.827 0.786 1.000

Table 3.4: Daily contemporaneous correlations of estimated synchronised stock returns
for seven markets for the period 3 January 2005 - 31 December 2014.



Chapter 4

Vector autoregressive models

with measurement errors for

asynchronous data and a spatially

synchronised correlation

4.1 Introduction

Multivariate time series modelling has crucial implications for the quantitative assess-

ments of the variables of interests in many financial applications. Specifically, the vector

autoregressive model is widely used by its attractivenesses of estimation simplicity, and

of the identifications of Granger causal relationships (Granger, 1969) between financial

assets. The analysis of Granger causality on stock market returns can help identifying

information flow between markets and explaining the hypothesis of informational market

efficiency. Nevertheless, it is important to highlight that the conventional VAR model

would not identify correct relationships between the true variables if the data used is

subject to error. When the measurement errors are ignored in the estimation process

and the observed variables are assumed to be the true variable of interest, the maximum-

likelihood estimators are inconsistent. Some special inferences may carry out for model

parameters in order to correct for the inconsistency. The measurement equations should

be added to the model to capture the measurement error effect, then the maximum-

likelihood estimators are consistent by having known information about measurement

error.

As investigated in the previous chapter, the daily stock returns are collected at a discrete

basis at the stock markets’ local closing time. Asynchronicity is not an issue for the

univariate asset return modelling as the time of close is absolute for each market alone;

77
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however, the point of time when each data series is recorded is a material issue for

multivariate return modelling because a point of close for one market may be relative

to a point of trading for another. Information continuously flows across markets but

markets respond only within their trading hours. As a result, for some earlier closed

markets, a piece of information from closing to a time of analysis is missed and does not

reflect on the recorded stock returns. If the synchronous returns are the true variable

of interest in the multivariate time series analysis, the observed asynchronous returns

are measured with errors because there are some information missing. Intuitively, the

larger the degree of asynchronicity, the more information between true returns and

asynchronous returns is missing, as a result, the bigger the measurement error appears.

The main focus of this research is to analyse the inconsistent estimators from the usual

VAR models using observed close-to-close stock returns by the reason that the observed

stock returns are subject to measurement bias attributed to trading asynchronicity.

Next, the maximum-likelihood estimators are proved to be asymptotically consistent if

a consistent proxy is used to replace the measurement error. Since the amount of the un-

derestimation on the contemporaneous correlations are subject to the degree of trading

asynchronicity. This chapter proposes a predetermined spatial structure to the un-

recorded returns, such that the asynchronous returns are adjusted according to the time

zone differences between the earlier close markets and the synchronous market. Then

the multivariate stock return analysis can still be implemented by a spatio-temporal

vector autoregressive models with an alternative inference.

This is the first study considers measurement error problem on asynchronous data.

According to the benchmark paper Burns et al. (1998) who modelled the asynchronous

returns by a first-order vector moving average process, the synchronised returns are

computed by shifting the lagged dependence to the current time, in which the lagged

dependence is captured by the first-order moving average matrix. The validation of their

synchronisation model is based on the model specification of the asynchronous returns,

that is, the error terms from the VMA(1) model are required to be serially uncorrelated.

In case the measurement error exhibits on the asynchronous returns, their model is

no longer correctly specified. The empirical results and diagnostic tests in their study

also suspected that the error terms may not be serially uncorrelated. Patriota et al.

(2010) discussed about the observed data with measurement errors lead to inconsistent

estimate from the conventional vector autoregressive models, if the measurement errors

are not negligible. The alternative inference is to recognise the possible measurement

errors and model the true variable of interest instead of the observed variable. Then the

estimators are asymptotically consistent by taking the measurement error equation into

consideration.

Another scope of literature related to this study is the spatial analysis applied in financial

time series. Spatial analysis deals with the measurements of a particular phenomenon

associated with specific locations or regions. Generally, the spatial correlations detect
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whether a event happened in one place affects the same measure of another place. Spatial

dependence has been studied in many research areas including economic geography,

environmental sciences, and urban economics, etc. However, there are relatively fewer

studies consider the spatial dependence in the field of finance. Even there are a few

research (Asgharian et al., 2013; Durante and Foscolo, 2013; Fernandez, 2011) focus on

the spatial linkages in the international financial markets, the spatial dependencies are

usually referred the geographic closeness between firms or markets, bilateral trade, or

the size of markets measured by market capitalisation, book-to market-ratio, and many

other financial indicators. This study introduces a new spatial dependence among the

international financial markets, which is motivated by the absolute time zone differences

between the stock markets located in different time regions.

The remainder of this chapter is organised as follows. Section 4.2 discusses the con-

ventional VAR model. Section 4.3 discusses the inconsistent estimators resulted from

the conventional VAR using asynchronous data. Section 4.4 proposes a spatial proxy

of the measurement error between true returns and asynchronous returns. Section 4.5

conducts an empirical analysis on seven international stock markets at different time

regions. Section 4.6 concludes the study.

4.2 The conventional VAR model

Denote the latent variable as a (J × 1) vector of synchronous return for J markets at

the point of synchronising time t by

Rt = ∆P st =


∆P s,1t

...

∆P s,Jt

 , t = 1, 2, ..., T (4.1)

where P s,jt = ln(ps,jt ) is the log of synchronous prices at time t for market j.

In the following, we define the usual VAR(1) model for the latent variable as

Rt = c+BRt−1 + εt, t = 1, ..., T (4.2)

where T is the sample size, B is the J × J first order coefficient matrix and εt is a

j × 1 unobservable zero mean innovation vector process with covariance matrix Σ. To

simplify the presentation of formulae along this research, the constant c is set to be zero.

The empirical section allows for a non-zero constant term.
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Assuming the synchronous return vector Rt follows a multivariate normal distribution

with mean and autocovariance functions given, respectively, by

E[Rt] = µ = (IJ −B)−1c = 0,

Γ(0) = E[(Rt − µ)(Rt − µ)′] = Σ +BΣB′ + ... = Σ +BΓ(1)′, for h = 0

Γ(h) = E[(Rt − µ)(Rt−h − µ)′] = BΓ(h− 1), for h = 1, 2, 3, ...

where IJ denotes the J × J identity matrix.

Assume that the innovation process εt is multivariate normally distributed, the log-

likelihood function in matrix form is given by

lnL(B,Σ) = −TJ
2

ln(2π)− T

2
ln det(Σ)

− 1

2

T∑
t=1

(
(Rt −BRt−1)′Σ−1(Rt −BRt−1)

)
(4.3)

From the first order partial differentiation of the log-likelihood function with respect to

B and Σ, we obtain the system of normal equations (see Appendix C for the subsequent

proofs) for deriving the consistent maximum-likelihood estimators, which are given by

B̂ML = {Q−1
Rt−1

QRt−1Rt
}
′
, and (4.4)

Σ̂ML = T−1
T∑
t=1

ε̂tε̂
′
t, (4.5)

where QRt−1
= T−1

∑T
t=1Rt−1R

′
t−1, QRt−1Rt

= T−1
∑T
t=1Rt−1R

′
t, and ε̂t = Rt − B̂MLRt−1.

Lemma 4.1. Under the stationary conditions, the consistency of those maximum-

likelihood estimators is assured as

QRt−1

p→ Γ(0), QRt−1Rt

p→ Γ(0)B′,

and hence

B̂ML
p→ B.

where
p→ denotes convergence in probability asymptotically.

Lemma 4.1 is a classical result from the literature on measurement error problem.
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4.3 VAR with measurement error

Normally, we may not be able to observe daily stock returns synchronously at each

international stock markets. In fact, people usually observe the asynchronous close-to-

close stock returns rt with error vt such that

Rt = rt + vt, (4.6)

where rt = ∆ln(pt) is a (J × 1) log of close-to-close return vector at time t and vt =

(v1t, v2t, ..., vkt)
′ is the J × 1 vector of white noise measurement errors with mean zero

and variance matrix Σv.

By substituting the measurement error equation (4.6) into the true VAR model at (4.2),

we obtain

rt = Brt−1 + et, (4.7)

denote et = Bvt−1 − vt + εt.

People usually replace the synchronous return Rt with the observed asynchronous return

rt and estimate equation (4.7), without taking the measurement equation into account.

The maximum likelihood estimators from this model are inconsistent since the error

term has some elements which are correlated with the regressors. That is, E[ete
′
s] 6= 0

∀ t 6= s. Denote the inconsistent estimator of B and Σ as b and Σe respectively.

Lemma 4.2. Given (4.2), (4.6) and Lemma 4.1, the inconsistent estimators are as

b̂ = {Q−1
rt−1

Qrt−1rt}
′

and Σ̂e = T−1
T∑
t=1

êtê
′
t,

where Qrt−1
= T−1

∑T
t=1 rt−1r

′
t−1, Qrt−1rt = T−1

∑T
t=1 rt−1r

′
t, êt = rt − b̂rt−1, and hence,

b̂
p→
(
Γ(0) + Σv

)−1
Γ(0)B′.

Again, lemma 4.2 is a classical result from measurement error problem.

Therefore, the measurement equation (4.6) should be included in the estimation pro-

cedure. The complete model (assumed a zero constant for simplicity) for estimation

should be as follows

Rt = BRt−1 + εt

Rt = rt + vt.
(4.8)

Writing the system of equations in a single equation gives

rt = Brt−1 − vt +Bvt−1 + εt. (4.9)
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People’s interests on equation (4.9) could be the Granger causality of the (true) variable

of interests which is measured by the coefficient matrix B; or could be the correlations

and volatilities of true returns, which are measured by V ar[εt]. The coefficient B is a true

parameter from the true model at (4.2), the parameter estimate of B is not identified

if we do not observe Rt. The extreme case is that when the true parameter B = 0,

the variance-covariance matrices of vt and εt are confounded since rt = −vt + εt. It is

not possible to estimate Σv and Σ separately by observing only asynchronous returns

rt (see Patriota et al., 2010). Thus, the straightforward approach is to assume we have

some knowledge to approximate the measurement error vt, although vt is not directly

observed.

By correcting the unobserved measurement errors to the model, the maximum likelihood

estimators from equation (4.9) are consistent with good asymptotic properties such as

normality. The consistent estimators and their asymptotic distributions are proposed in

the following.

Under the stationary condition of the true VAR model, the measurement errors vt and

vt−1 are assumed to be observable. Then the log-likelihood function is given by

lnL(B,Σ) = −TJ
2

ln(2π)− T

2
ln det(Σ)

− 1

2

T∑
t=1

(
(rt + vt −Brt−1 −Bvt−1)′Σ−1(rt + vt −Brt−1 −Bvt−1)

)
. (4.10)

The likelihood function above has no change compared to equation (4.3) but only the

measurement equation is substituted into the latent variable Rt. We must remark that

the ML estimators derived below is under the assumption that measurement error is

serially uncorrelated, there are more complicated forms presented at Appendix A if

measurement error is serially correlated.

Lemma 4.3. The consistent estimators are yielded by maximising the log-likelihood

function (4.10), as

B̂ML = {(Qrt−1 − Σv)−1Qrt−1rt}′,

Σ̂ML = T−1
T∑
t=1

êtê
′
t − Σv − B̂ΣvB̂′,

where Qrt−1 = T−1
∑T
t=1 rt−1r

′
t−1, Qrt−1rt = T−1

∑T
t=1 rt−1r

′
t, and êt = rt − B̂rt−1.

Theorem 4.1. The ML estimators in Lemma 4.3 assured consistency as

(Qrt−1 − Σv)−1 p→ Γ(0)−1, Qrt−1rt
p→ Γ(0)B′

then

B̂ML
p→ B and Σ̂ML

p→ Σ
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Theorem 4.2. Subsequent to Theorem 4.1, the asymptotic distribution of the consistent

ML estimator B̂ is as

√
T (B̂ −B)

D→ N (0,Ω), (4.11)

where Ω ≡ ΣeΓ(0)−1 + Γ(0)−1(ΣeΣv − ΣvB′BΣv)Γ(0)−1.

Comparing the estimators in Lemma 4.3 to the inconsistent estimators Lemma 4.2, the

inconsistent estimators are biased by missing the measurement error variance. It can be

seen that if Σv = 0, that is, when there is no measurement error, estimators in Lemma

4.2 reduced to the consistent estimators as in Lemma 4.3.

We can see the ML estimator of B by asynchronous VAR model b̂ is not consistent, since

it converges in probability to

b̂
p→ B

(
IJ + ΣvΓ(0)−1

)−1
. (4.12)

The asymptotic variance of the inconsistent estimator b̂ equals only the first term

ΣeΓ(0)−1. If the variance bias correction is positive (given by Σv ≤ Σe and |B| < 1),

The asymptotic variance of the inconsistent estimator is understated by the amount of

the variance bias correction. Consequently, the statistical inference of the lagged return

coefficients is misleading under the asynchronous VAR models. With a smaller asymp-

totic variance of the parameter estimate, the null hypothesis of parameter restrictions

can be false rejected hence affecting the analysis of Granger causality.

From the above illustration, we see that if the measurement error (or at least its variance)

is known or can be consistently estimated, i.e. Σ̂v p→ Σv, then the asymptotic result

derived in the above remains valid.

4.4 The spatio-temporal VAR model

To proximate the measurement error in asynchronous returns, we may think of the

missing part from asynchronous returns compared to synchronous returns is larger for

the markets with higher degree of time asynchronicity. Hence a spatial lag term is

introduced to the observed asynchronous return vector, which is weighted by the closing

time difference between market k to the synchronous market. In most related literature,

the spatial weighted matrix is commonly formulated as a symmetric weighted matrix

captures the symmetric spatial differences between the individuals, it is intuitive because

the spatial differences refer to “physical” distances. Unlike the formulation of spatial

matrix in most literature, the spatial weighted matrix stores the trading time differences

∆ti,j within a day between earlier markets i and later markets j in which the weights
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refer to positive vector direction of trading time differences ~∆t. Suppose the elements

in the return vector are in an order of closing time differences from earliest to latest,

the spatial weighted matrix has a form that 1) the upper diagonal elements are positive

with the closing time differences between i and j for i < j fractioned by 1-day; 2) the

diagonal elements are zero since there is no trading time difference among the market

itself; 3) the lower diagonal elements are also set to be zero because only the later

close markets provide additional information for the earlier close markets to estimate

their stock market values. The lower diagonal matrix for the spatial weights is possible

when observed asynchronous returns are synchronised to the earliest market; although

synchronising backward is not a practical interest for financial applications. For an

illustrative example, the Japanese stock market closes fifteen hours ahead of the US

market and nine hours ahead of the UK market, the spatial weights for JPN-US and

JPN-UK is 15/24 and 9/24 respectively. For instance, a three-market stock returns

rt = {rjpnt , rukt , rust } has a spatial weighted matrix as

A =

0 9
24

15
24

0 0 4.5
24

0 0 0



The motivation to impose the following assumption is that the asynchronicity has an

obvious pattern of higher degree of time zone difference associated with larger measure-

ment error. The spatial correlation matrix is set to assign larger weight for the market

with higher time zone difference corresponds to larger correction of measurement error.

Assumption 4.1. Assume that the (J × 1) vector of measurement error vjt for market

i at time t is made up by a spatial lag on the vector of (J × 1) observed returns rjt , for

i, j = 1, 2, ..., J and i < j, where the matrix A is a (J×J) deterministic spatial weighted

matrix, written as

vt = ρArt. (A4.1)

The spatial correlation parameter ρ is a scalar. Unlike other spatial models in the

literature, the spatial weighted matrix in the above assumption is not row-standardised.

It is because the lower-diagonal elements of the weighted matrix are set to be zero, row

standardisation artificially inflates the values of non-zero elements at the same row.

By substituting (A4.1) into the measurement error equation, we obtain

Rt = rt + ρArt. (4.13)

Synchronised returns at (4.13) are expressed as asynchronous returns with a spatial

adjustment. Substituting (4.13) into the true VAR model, suppose the true model is a
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VAR(1) process, we obtain a first-order spatio-temporal VAR as

(I + ρA)rt = B(I + ρA)rt−1 + εt

⇔ rt = Brt−1 − ρArt +BρArt−1 + εt (4.14)

where the first term of (4.14) at the right-hand side is the temporal lag as in the con-

ventional VAR, the second and the third terms are the spatial lags introduced to adjust

the time zone asynchronicity.

An alternative proxy is presented in Appendix C. It is a temporal proxy instead of

a spatial one, in which the unrecorded return is in a function of the current returns

from other later markets. The use of such proxy leads to a transformed VAR(2) to be

estimated; yet the estimation is complicated by using real data. Some simulation based

methods can be conducted to obtain simulation results given the proposed maximum

likelihood estimators. However, this study puts the main focus on the spatial-temporal

VAR model.

4.4.1 The estimation

The spatio-temporal VAR(1) at (4.14) is the model to estimate. It can be seen as a

temporal VAR(1) if pre-multiplying (I−ρA) = W on both sides, assuming (I−ρA) = W

is invertible, we obtain

rt = (I + ρA)−1B(I + ρA)rt−1 + (I + ρA)−1εt. (4.15)

Recall that the asynchronous VAR(1) is given by rt = Brt−1 +et as in (4.7). Comparing

the terms with (4.15), the disturbance terms εt in the true model can be expressed as

the spatially weighted error terms from asynchronous VAR model, as

εt = (I + ρA)et (4.16)

However, such a temporal VAR(1) is suffering from parameters under-identification.

Two unknown parameters ρ and B are not identified by knowing only the estimate of

the matrix product (I+ρA)−1B(I+ρA). Therefore, the conventional inference of vector

autoregressive models should not be conducted.

Instead, this chapter uses an alternative estimation procedure which is inspired by the

spatial cross-sectional models.
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Let (I + ρA) = W , then (4.13) becomes

⇒Wrt = BWrt−1 + εt (4.17)

with εt ∼ N(0,Σ).

The log-likelihood function is as follows

lnL = −T
2

ln det(Σ) + ln det(W )− T

2
ln(2π)

− 1

2

T∑
t=1

(
(Wrt −BWrt−1)′Σ−1(Wrt −BWrt−1)

)
. (4.18)

The ML estimator of B is given by

∂lnL
∂B

= 0⇒
T∑
t=1

Wrt−1(Wrt)
′ =

T∑
t=1

Wrt−1(Wrt−1)′B̂′

⇒
T∑
t=1

(Wrt−1r
′
tW
′) =

T∑
t=1

Wrt−1r
′
t−1W

′B̂′

⇒ B̂′ =
( T∑
t=1

Wrt−1r
′
t−1W

′
)−1( T∑

t=1

Wrt−1r
′
tW
′
)
.

Since (I + ρA) = W , the ML estimate of B can be computed if ρ is known.

Next, the ML estimator of Σ can be written as

Σ̂ = T−1
T∑
t=1

ε̂tε̂
′
t

= T−1
T∑
t=1

Wêtê
′
tW
′,

where êt = (I+ρA)−1ε̂t. The estimated residuals êt is from the VAR(1) of asynchronous

returns. Similarly, the estimate of Σ can be computed if ρ is known.

Following Anselin and Bera (1998), the spatial correlation parameter ρ can be estimated

by maximum-likelihood provided by the concentrated log-likelihood function in terms of

ρ only, as

lnL∗(ρ) = C − T

2
ln det(Σ) + ln det(W )

= C − T

2
ln det(êt + ρAêt)(êt + ρAêt)

′ + ln det(I + ρA) (4.19)

where C is irrelevant to ρ, ln det(W ) is the log-determinant of (I + ρA), and lnL∗(ρ) is

a non-linear function in terms of the parameter ρ that must be maximised. Once the
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ML estimate of ρ is yielded, the estimates of Σ, W and B can be obtained by working

backwards.

Recall the restriction imposed in the spatial weighted matrix A such that matrix A is a

upper diagonal matrix. The determinant of I+ρA is the product of the diagonal entries

equals unity, and hence log(1) = 0.

The concentrated log-likelihood in terms of the unknown parameter ρ is reduced to

lnL∗(ρ) = −T
2

ln(êt + ρAêt)
′(êt + ρAêt). (4.20)

The ML estimator of ρ is given by

∂lnL∗

∂ρ
= 0⇒

T∑
t=1

(ê′tA
′êt) =

T∑
t=1

(ê′tAA
′êt)ρ̂

⇒ ρ̂ =
( T∑
t=1

(ê′tA
′Aêt)

)−1( T∑
t=1

(ê′tA
′êt)
)
.

4.5 Empirical application: a spatio-temporal VAR

In order to compare the estimation results and forecasting performance from two differ-

ent synchronisation algorithms proposed, this empirical analysis uses the same dataset as

in the previous chapter. The proposed spatio-temporal VAR model is applied on seven

international stock markets from the eastern to western time zones including Japan,

Australia, Hong Kong, Germany, the United Kingdom, Canada and the United States.

The use of their daily close-to-close returns leaves time zone differences non-captured.

This application assumed a dynamic conditional correlation (DCC) structure on the

asynchronous variance-covariance matrix to allow time-varying correlations.

4.5.1 Data description

The data consists of seven stock market closing price series collected at the local closing

time of each market, including Nikkei Stock Average (NIKKEI225) of Japan, Australian

Stock Exchange (ASX) of Australia, Heng Seng Index (HSI) of Hong Kong, German

stock index (DAX) of Germany, Financial Times Stock Exchange 100 index (FTSE100)

of the United Kingdom, Toronto Stock Exchange (TSE) of Canada and Standard &

Poor 500 index (S&P500) of the United States. The data is extracted from Bloomberg

Database for the period 1 January 2005 - 30 September 2015. After dropping the

observations with holidays/non-trading days in the time series data panel (i.e. the whole
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observation for each market j at day t is dropped if day t is the holiday for at least one

of the investigated stock markets), there are 2360 common trading days for each stock

price series. The data set is divided into two sub-samples, the first sample is ranging

from 1 January 2005 to 31 December 2014, with 2190 trading days in total, for the

purpose of model estimation. The second sample is ranging 1 January - 30 September

2015, with 170 trading days, for the purpose of out-of-sample forecast.

4.5.2 The spatial weighted matrix

The vector of observed close-to-close returns rt for the seven market indices (J = 7) is

calculated by taking the natural logarithmic difference of the closing prices pt for each

market j at the local closing time tj in a time order of the earliest close to the latest

close as

rt = {rASXt1 , rNIKt2 , rHSIt3 , rDAXt4 , rFTSEt5 , rTSEt6 , rS&P
t7 }′ =


∆ln(pASXt1 )

...

∆ln(pS&P
t7 )

 = ∆ln(pt)

These markets are located at different time zones from eastern to the western hemisphere,

the local closing times and the time zone differences correspond to the US time (EDT)

for the seven market stock indices are presented in Table 4.1. Expect the observed

returns of the latest stock markets TSE and S&P500 are evaluated at the latest time of

a day t, the observed returns of other earlier markets are recorded at tj < t, denote the

time differences between market i and j for all i < j as ∆ti,j ; in other words, the time

direction for the earlier markets are out of phase and shifted backward.

Table 4.1 about here (see P.96).

Consider a (J × J) vector of synchronous returns Rt for the seven markets (J = 7) as a

log difference of the synchronous prices pst for each market j evaluated at a synchronised

time t as

Rt = {RASXt , RNIKt , RHSIt , RDAXt , RFTSEt , RTSEt , RS&P
t }′ =


∆ln(ps,ASXt )

...

∆ln(ps,S&P
t )

 = ∆ln(pst )

where the closing time of the TSE and S&P500 is considered as the synchronised time

t in this application.

Since synchronous returns Rt are not observed for each international market at synchro-

nised time t, instead, asynchronous returns rt are observed locally at local closing time
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tj . The differences in between are defined as measurement errors vt(as in 4.6), and a

(7× 1) vector of measurement errors is as

vt = Rt − rt =


∆ln(ps,ASXt )−∆ln(pASXt )

...

∆ln(ps,S&P
t )−∆ln(pS&P

t )

 =


vASXt

...

vS&P
t


The assumption 1 in (A4.1) approximates the measurement errors vit for earlier markets

i as the spatial weights Ai,j on the current observed returns rjtj ∀ i < j and i, j ∈ J ,

where t he spatial weights capture the positive directions of time differences from the

earlier to the latest closing time. In matrix form, the spatial proxy is as
vASXt

vJPNt
...

vS&P
t

 = ρ


0 AASX,UK . . . AASX,US

0 0 . . . AJPN,US
...

...
. . .

...

0 0 . . . 0



rASXt1

rJPNt2
...

rS&P
t7


where the spatial correlation parameter ρ is a scalar.

In particular to this empirical analysis, the spatial weighted matrix A(7×7) is numerically

defined as

A =



AASX,j

ANIK,j

AHSI,j

ADAX,j

AFTSE,j

ATSE,j

AS&P,j


=



0 1/24 3/24 11.5/24 11.5/24 16/24 16/24

0 0 2/24 10.5/24 10.5/24 15/24 15/24

0 0 0 8.5/24 8.5/24 13/24 13/24

0 0 0 0 0 4.5/24 4.5/24

0 0 0 0 0 4.5/24 4.5/24

0 0 0 0 0 0 0

0 0 0 0 0 0 0



4.5.3 Estimating the spatio-temporal VAR

The (7 × 1) vector of observed returns of the seven stock markets is modelled by the

proposed “first-order spatio-temporal VAR” in (4.14). Additionally, the time-varying

dynamics of the conditional variance-covariance is modelled through a Multivariate Dy-

namic Conditional Correlation (DCC) model (Engle, 2002). The model specification is

as follows.

True model: Rt = c̄+BRt−1 + εt

Spatial Proxy: Rt = (I + ρA)rt
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The spatio-temporal VAR is given by substituting the spatial proxy equation into the

true VAR model, as

rt = c̄+Brt−1 − ρArt +BρArt−1 + εt (4.21)

where

B is the (7× 7) coefficient matrix of the temporal lag;

− ρA is the (7× 7) spatial coefficient matrix of the spatial lag;

BρA is the (7× 7) spatio-temporal coefficient matrix of the lagged spatial lag.

The hypothesis tests of Granger Causality can be constructed on parameter matrix B

from the true model as long as the parameter B can be consistently estimated from

the spatio-temporal VAR model in (4.21). However, the parameters are under-identified

through the spatio-temporal VAR in (4.21). Thus the parameter estimates are produced

by an alternative estimation procedure as follows.

Wrt = c̄+BWrt−1 + εt with εt|Ft−1 ∼ N(0, Ht) (4.22)

where

W ≡ (I + ρA)

Ht = DtR̃tDt

Dt = diag(H
1
2
t )

Hi,i,t = ωi + α′iεt−1ε
′
t−1 + βiHi,i,t−1 for i = 1, 2, ..., 7

R̃t = diag(Q
− 1

2
t )Qtdiag(Q

− 1
2

t )

Qt = Ω + αεt−1ε
′
t−1 + βQt−1

This research considers the DCC(1,1) model. The conditional covariance matrix in the

DCC model is decomposed into a relation between the estimated univariate GARCH

variances Dt and the conditional correlation matrix R̃t. Ht and R̃t are positive definite,

Dt is a diagonal matrix with the elements of the estimated univariate GARCH variances,

Qt is the quasi-correlation matrix which is rescaled by ρi,j,t = Q
− 1

2
i,i,tQi,j,tQ

− 1
2

j,j,t to ensure

the correlation estimate is [0, 1] bounded. The parameters (αi, βi) in the GARCH process

are positive ∀i and has a sum less than unity to ensure the stationary condition.

The maximum likelihood estimation procedure is given step-by-step as follows.

Step 1 : Estimate the (7× 1) vector of et from asynchronous VAR: rt = c0 + brt−1 + et

by maximum-likelihood, assume the error terms are multivariate normally distributed.
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Step 2 : Estimate the spatial correlation parameter ρ through the concentrated log-

likelihood function as given by (4.20).

Step 3 : Given the maximum likelihood estimate ρ̂ in step 2, Ŵ = I + ρA is obtained

immediately. Then the maximum likelihood estimators B and Ht can be obtained by

maximising the likelihood function of model (4.2).

The estimation results are reported in Table 4.2. Any insignificant elements are set

to be zero for clearer presentation. The parameter estimate b̂ is the coefficient matrix

estimated from the asynchronous VAR(1) which is inconsistent and cannot be used for

conducting tests of Granger causality. After performing the spatial adjustment to the

asynchronous data, most of the parameter estimates of B from the true model are zero,

except the first five elements of the last column are statistically significant and maternal

in values. The last column is corresponding to the dependences between the US S&P500

and other earlier markets.

Table 4.2 about here (see P.97).

4.5.4 Spatially adjusted correlations

The (7× 1) vector of estimated synchronised returns is given by

R̂t = {R̂ASXt , R̂NIKt , R̂HSIt , R̂DAXt , R̂FTSEt , R̂TSEt , R̂S&P
t }′ = (I + ρ̂A)rt

The spatially adjusted correlations of synchronised returns can be directly calculated,

they are presented in Table 4.3. As expected, the contemporaneous correlations among

the seven stock indices after the synchronisation adjustment are higher than the corre-

lations from asynchronous data. The largest increase are the correlations between the

Pacific stock markets and the North American markets from 0.2 to 0.6. The correlations

between European markets and the North American markets also has slightly increase

from 0.6 to 0.7. The correlations among the stock indices in the same time zone regions,

such as DAX and FTSE100, TSE and S&P500 are almost unchanged because they are

relatively synchronised.

Table 4.3 about here (see P.98).

4.5.5 Specification test

The specification test is performed to see whether the spatial autocorrelation exhibit

is important or not. The most common test for the existence of spatial dependence is

Moran’s I by Moran (1948; 1950). The Moran’s I statistic is defined for data vector x
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with R number of spatial regions and the spatial weights wi,j between individual i and

j by

I =
R∑

i

∑
j ωij

∑
i

∑
j ωij(xi − x̄)(xj − x̄)∑

i(xi − x̄)2

and the variance of Moran’s I is given by

V ar(I) =
1

S2
0(R2 − 1)

(R2S1 −RS2 + 3S2
0)− [E(I)]2

where

E(I) =
−1

R− 1
is the expectation of Moran’s I

S0 =
∑
i

∑
j

ωij

S1 =

∑
i

∑
j(ωij + ωji)

2

2

S2 =
∑
i

(ωi· + ω·)
2 is the sum of square of the ith column plus the ith row

Moran’s I statistic is asymptotically normal given by

I =
I − E(I)√
V ar(I)

The Moran’s I test statistic from this empirical analysis is I = 2.979 which rejects

the null hypothesis of no spatial autocorrelation at 1% level of significance. Therefore,

the spatial weights with time zone differences are found to be statistically significant to

capture the spatial dependence among the asynchronous stock returns.

4.6 Conclusion

Different stock markets are trading at their only local time, the correlations among inter-

national stock markets are underestimated when the data asynchronicity is not adjusted.

The use of asynchronous data on the multivariate time series models not only underes-

timates the correlation dynamics among the data, but also results in measurement error

problem which leads to inconsistent parameter estimates. This research proved that

as long as a good proxy is available to replace the measurement error, the maximum

likelihood estimators are still asymptotically consistent.

This study provides analytical evidence that the maximum likelihood estimators are

inconsistent if using asynchronous data on the multivariate time series model. The

measurement error bias is closely associated with the degree of asynchronicity among
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two markets. Therefore, this study proposed a spatial proxy to the measurement er-

ror which is inspired by the fact that the amount of underestimation depends on the

degree of trading asynchronicity. The spatial weighted matrix captures the time zone

differences between the early and later close markets, in which the latest close market

is taken as the base. By using the spatial proxy, the temporal vector autoregressive

process of the unobserved true returns can be expressed as a spatio-temporal vector

autoregressive process of the observed asynchronous returns. In this model, the test

of Granger causality can be conducted on the true coefficient matrix B. The Moran’s

I specification test also confirmed that the spatial autocorrelation is significant on the

asynchronous returns, thus the proposed model can be useful to capture the spatial time

zone differences of data.
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Tables of Chapter 4

Index Closing at

Local Time

Closing at

US Time

Trading Overlap

with US?

Closing time diff. with

US (in hours)

ASX 16:00 00:00 non-overlap 16

NIKKEI225 15:00 01:00 non-overlap 15

HSI 16:00 03:00 non-overlap 13

DAX 17:30 11:30 partially 4.5

FTSE100 16:30 11:30 partially 4.5

TSE 16:00 16:00 overlap 0

S&P500 16:00 16:00 overlap 0

Table 4.1: Closing times, overlapping and closing time differneces corresponds to the
US markets for seven international stock indices.
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Step 1 & 2: Spatial Correlation Parameter ρ

Parameter ASX NIK HSI DAX FTSE TSE S&P

ρ = 0.2752∗∗∗

bASX,i −0.097 −0.047 −0.067 0.061 0.059 0.094 0.348

bNIK,i −0.095 −0.082 0 0.187 0 0 0.374

bHSI,i 0 −0.079 −0.101 0 0 0 0.406

bDAX,i 0 0 0 −0.064 −0.189 −0.066 0.355

bFTSE,i 0 0 0 −0.094 −0.172 0 0.321

bTSE,i 0 0 0 0 0 −0.106 0.077

bS&P,i 0 0 0 0 0 −0.084 −0.071

Step 3: Spatio-Temporal VAR Wrt = c̄+BWrt−1 + εt

Parameter ASX NIK HSI DAX FTSE TSE S&P

BASX,i 0 0 0 0 0 0 0.480

BNIK,i 0 −0.089 0 0.197 0 0 0.531

BHSI,i 0 −0.080 −0.102 0 0 0 0.510

BDAX,i 0 0 0 0 −0.196 0 0.366

BFTSE,i 0 0 0 −0.099 −0.176 0 0.333

BTSE,i 0 0 0 0 0 −0.121 0

BS&P,i 0 0 0 0 0 −0.099 0

c̄i 0.002 0.002 0.002 0.002 0.001 0.001 0.001

ωi 0.000 0.000 0.000 0.000 0.000 0.000 0.000

αi 0.069 0.097 0.070 0.073 0.073 0.062 0.087

βi 0.903 0.868 0.907 0.900 0.899 0.919 0.882

Note: All the parameter estimates are statistically significant at 1% level of significance.

Table 4.2: The estimation results of spatio-temporal VAR(1)-DCC(1,1) by the maxi-
mum likelihood.



96 4.6 Conclusion

Panel A: Asynchronous Correlations

Index ASX NIKKEI HSI DAX FTSE TSE S&P

ASX 1.000 0.691 0.676 0.414 0.462 0.315 0.218

NIKKEI225 0.691 1.000 0.650 0.397 0.419 0.298 0.214

HSI 0.676 0.650 1.000 0.441 0.472 0.382 0.300

DAX 0.414 0.397 0.441 1.000 0.868 0.599 0.664

FTSE100 0.462 0.419 0.472 0.868 1.000 0.638 0.636

TSE 0.315 0.298 0.382 0.599 0.638 1.000 0.785

S&P500 0.218 0.214 0.300 0.664 0.636 0.785 1.000

Panel B: Spatially Adjusted Correlations

Index ASX NIKKEI HSI DAX FTSE TSE S&P

ASX 1.000 0.817 0.810 0.707 0.741 0.624 0.561

NIKKEI225 0.817 1.000 0.768 0.634 0.651 0.546 0.483

HSI 0.810 0.768 1.000 0.629 0.655 0.574 0.511

DAX 0.707 0.634 0.629 1.000 0.884 0.642 0.703

FTSE100 0.741 0.651 0.655 0.884 1.000 0.684 0.683

TSE 0.624 0.546 0.574 0.642 0.684 1.000 0.785

S&P500 0.561 0.483 0.511 0.703 0.683 0.785 1.000

Table 4.3: The asynchronous daily correlations (Panel A) and the spatially adjusted
correlations (Panel B) for seven markets for the period 3 January 2005 - 31 December
2014.
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Appendix of Chapter 2

A.1 Proof of Theorem 2.1

According to the standard expression of LM statistic (2.16), the pointwise LM statistic

evaluated under the null in (2.14) is given as

LM(β, γ) = S∗T (β, γ)′Ξ∗T (β, γ)−1S∗T (β, γ)

where the product matrices are given by

Ξ∗T (β, γ) = ΞT (β, γ)−MT (β, γ)MT (β)−1ΞT (β, γ)− ΞT (β, γ)MT (β)−1MT (β, γ)

+MT (β, γ)MT (β)−1ΞT (β)MT (β)−1MT (β, γ),

S∗T (β, γ) = ST (β, γ)−M(β, γ)MT (β)−1ST (β),

MT (β, γ) = Ip ⊗
1

T

T∑
t=1

D1t(β, γ)zt(β)zt(β)′ and MT (β) = Ip ⊗
1

T

T∑
t=1

zt(β)zt(β)′

ΞT (β, γ) =
1

T

T∑
t=1

D1t(β, γ)(ε̃tε̃
′
t ⊗ zt(β)zt(β)′) and Ξ(β) =

1

T

T∑
t=1

(ε̃tε̃
′
t ⊗ zt(β)zt(β)′),

ST (β, γ) =
1√
T

T∑
t=1

D1t(β, γ)(z0,t ⊗ zt(β)) and ST (β) =
1√
T

T∑
t=1

(z̃0,t ⊗ zt(β))

where z̃0,t = ∆d̃(Xt − µ̃).

Given by assumption 1(5), the estimate of β does not enter into the optimality of supLM

statistic. Then

supLM = sup
γ∈Γ∗

LM(β0, γ) = sup
r∈Λ

LM(β0,F−1(r))

where r = F(γ) given in Definition 1. Since LM(β0, γ) is a function of γ only through

1(et−1 ≤ γ) = 1(ωt−1 ≤ r), it follows that

supLM = sup
r∈Λ

LM(β0, r)
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Under H0 and replacing 1(et−1 ≤ γ) with 1(ωt−1 ≤ r) for the above product matrices,

the LM statistic simplifies to

LM(r) = S∗T (r)′Ξ∗T (r)−1S∗T (r)

where

Ξ∗T (r) = ΞT (r)−MT (r)M−1
T ΞT (r)− ΞT (r)M−1

T MT (r) +MT (r)M−1
T ΞTM

−1
T MT (β, γ),

S∗T (r) = ST (r)−M(r)M
−1
T ST ,

MT (r) = Ip ⊗
1

T

T∑
t=1

1(ωt−1 ≤ r)ztz′t and MT = Ip ⊗
1

T

T∑
t=1

ztz
′
t

ΞT (r) =
1

T

T∑
t=1

1(ωt−1 ≤ r)(ε̃tε̃′t ⊗ ztz′t) and Ξ =
1

T

T∑
t=1

(ε̃tε̃
′
t ⊗ ztz′t),

ST (r) =
1√
T

T∑
t=1

1(ωt−1 ≤ r)(z0,t ⊗ zt) and ST =
1√
T

T∑
t=1

(z̃0,t ⊗ zt).

The stated rsult then follows from the joint convergence

MT (r)⇒M(r),

Ωt(r)⇒ Ω(r),

ST (r)⇒ S(r).

The sketch proof above is reproduced from Theorem 1 of Hansen and Seo (2002) and

Theorem 3 of Hansen (1996).
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A.2 Matlab codes

 
%% TWO REGIME THRESHOLD FCVAR MODEL %%
%-------------------------------------------------------------------------%
%-------------------------------------------------------------------------%
% This ThresholdGrid.m file is written by Chi Wan Cheang for the paper 
% "Threshold Fractionally Cointegrated VAR Model and Application to VIX Index".
%
% The Matlab code provided in this file is based on the Matlab programme
% for the (Linear) Fractionally Cointegrated VAR Model written by Nielsen
% and Popiel (2016), and the Matlab code for the Threshold Cointegration by 
% Hansen and Seo (2002). 
%
% The proposed 2-regime threshold model is compatable with Johansen and 
% Nielsen (2012)'s FCVAR model and Hansen and Seo (2002)'s threshold 
% cointegration. Level parameter is assumed in the FCVAR and is assumed to
% be fixed across regimes. Option for a regime-switching unrestricted
% constant (Xi) is also allowed for programme users. When restriction
% d=b=1 is imposed, the threshold FCVAR model reduced to the standard 
% threshold cointegration model. 
 
% -------- Import Data ----------%
clc;
clear all;
 
[data, date, raw] = xlsread('vix', 'Sheet1', 'A2:D3216');
vix = [data(:,1), data(:,2)];
 
% Add path containing Auxillary files required for estimation.
addpath Auxiliary/
 
% A bivariate time series. 
x = vix(:, [1 2]);
sp = data(:,3);
 
%% -------- INITIALIZATION ----------% 
p                = size(x, 2); % system dimension.
T                = size(x, 1); % number of observations in the sample.
kmax             = 3;    % maximum number of lags for VECM.
order            = 12;   % number of lags for white noise test in lag selection.
printWNtest      = 1;    % to print results of white noise tests post-estimation.        
 
% -------- Choosing estimation options ----------%
opt = EstOptions; % Define variable to store Estimation Options (object).
opt.dbMin        = [0.01 0.01]; % lower bound for d,b.
opt.dbMax        = [1.00 1.00]; % upper bound for d,b.
opt.unrConstant  = 0; % include an unrestricted constant? 1 = yes, 0 = no.
opt.rConstant    = 0; % include a restricted constant? 1 = yes, 0 = no.
opt.levelParam   = 1; % include level parameter? 1 = yes, 0 = no.
opt.constrained  = 0; % impose restriction dbMax >= d >= b >= dbMin ? 1 = yes, 0 = no.
opt.restrictDB   = 0; % impose restriction d=b ? 1 = yes, 0 = no.
opt.db0          = [0.75 0.75]; % set starting values for optimization algorithm.
opt.N            = 0; % number of initial values to condition upon.
opt.print2screen = 1; % print output.
opt.printRoots   = 1; % do not print roots of characteristic polynomial.
opt.plotRoots    = 0; % plot roots of characteristic polynomial.
opt.gridSearch   = 0; % For more accurate estimation, perform the grid search.
opt.plotLike     = 1; % Plot the likelihood (if gridSearch = 1).
opt.progress     = 1; % Show grid search progress indicator waitbar.
opt.updateTime   = .5; % How often progress is updated (seconds).
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% Linux example:
opt.progLoc = '"/usr/bin/fdpval"';  % location path with program name 
                                    % of fracdist program, if installed
                                    % Note: use both single (outside) and double 
                                    % quotes (inside). This is especially important 
                                    % if path name has spaces.
 
DefaultOpt = opt; % store the options for restoring them in between hypothesis tests.
 
startProg = tic(); % start timer
 
 
%% --------- LINEAR FCVAR MODEL ESTIMATION ---------- % 
 
k = 0;             % number of lags (short run dynamic).
r = 1;             % number of cointegrating rank.
opt1 = DefaultOpt; % define an estimation option.
 
% Estimate the linear FCVAR model.
m = FCVARestn(x, k, r, opt1);   
 
% Call the coefficient estimates from the estimated linear model.
db = m.coeffs.db;
beta0 = m.coeffs.betaHat;   
muHat = m.coeffs.muHat;   
 
%% --------- THRESHOLD FCVAR MODEL ----------- %
 
% --------- Initialization --------- %
  tn = 100;          % number of grid points for threshold parameter gamma.
  bn = 100;          % number of grid points for beta. 
  TotIters = tn*bn; % total iterations in the grid search.
  trim = 0.10;      % trimming (%) from the probability distribution of e0.
  trim_test = 0.15; % trimming for threshold test.
  beta_gs = 1;      % set to 1 to perform grid search around beta estimate. 
  plotlike = 1;     % set to 1 to plot the likelihood functions of beta 
                    % and gamma.    
  n = size(x,1);   % number of observations. 
  nlag = n - 1;
  x1 = x(2:n, :);
  
  % ------ Construct the grid --------- %
  beta = beta0(2);
  
  % Extract the standard error from long-run relation.
  seb = 0.01;     
  
  % Calculate the threshold variable.
  if (opt.levelParam)
        dx = x - ones(size(x,1),1)*muHat; % Demean by mu.
        dx1 = x1 - ones(size(x1,1),1)*muHat; % Demean by mu.
        dxlag = dx(1:nlag,:);
        e0 = dxlag*beta0;    
        q = unique(e0);
  else
        xlag = x(1:nlag,:);
        e0 = xlag*beta0;    
        q = unique(e0);
  end
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  % Define a set of threshold parameters given the number of grids.  
  gamma1=q(round((1/(tn+1):1/(tn+1):(tn/(tn+1)))*size(q,1)));
  
  % Define the threshold parameters for hypothesis testing.
  gamma2=q(round((trim_test:((1-2*trim_test)/tn):((tn-1)*((1-2*trim_test)/tn)
+trim_test))*size(q,1)));
  
  % Construct evenly spaced grid on beta.
  Lbeta = beta - 6*seb;
  Ubeta = beta + 6*seb;
  inc_step = (2*6)*seb/(bn-1);
 
  if beta_gs == 1
        if bn == 1
            beta == beta0(2);
        else
        beta =(Lbeta:inc_step:Ubeta);
        end;
   else
        beta = beta0(2);
        bn = 1;
   end;
 
   % Create a matrix of NaN's to store likelihoods of grid search, we use 
   % NaN's here because NaN entries are not plotted and do not affect the
   % finding of the maximum.
   like = ones(tn,bn)*NaN;
   
   % -------- Calculate likelihood over each grid. -------- %
   j = 1;
while j <= tn
    gamma=gamma1(j);
    bj = 1;
    while bj <= bn
        beta_g = [1; beta(bj)];
      if (opt.levelParam)
        e = dxlag*beta_g;
      else
        e = xlag*beta_g;
      end
        d1 = (e<=gamma); % logical result (Yes = 1, No = 0) 
                         % error correction variable less than/equal to gamma
        d2 = 1 - d1;     % error correction variable larger than gamma   
        n1 = sum(d1)';   % number of "Yes"
        
        if min([n1;nlag-n1])/n>trim    % split the sample into two
            if (opt.levelParam)
                col = size(dx1,2);
                r1=[dx1.*(d1*ones(1,col))];  % sample at regime 1
                r2=[dx1.*(d2*ones(1,col))];  % sample at regime 2
            else
                col = size(x1,2);
                r1=[x1.*(d1*ones(1,col))];  % sample at regime 1
                r2=[x1.*(d2*ones(1,col))];  % sample at regime 2
            end
            
    % Stack the observations into the corresponding regime.
        % Regime 1
         index = 0;
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         for i=1:size(d1,1)
           if d1(i)==1
             if index ==0
               y1 = r1(i,:);
               index = 1;
             else
               y1 = [y1;r1(i,:)];
             end;
           end;
         end;
 
       % Regime 2
        index = 0;
         for i=1:size(d2,1)
           if d2(i)==1
             if index ==0
               y2 = r2(i,:);
               index = 1;
             else
               y2 = [y2; r2(i,:)];
             end;
           end;
         end;
     
    % Impose restriction to beta in the estimation option.
    opt1.R_Beta = [1 1];
    opt1.r_Beta = beta_g(1,1) + beta_g(2,1);
    
    t1 = size(y1,1);
    T1 = t1 - opt1.N;      % opt1.N is the number of initial values.
    t2 = size(y2,1);
    T2 = t2 - opt1.N;
    p = size(y1,2);  
    opt1 = updateRestrictions(opt1,p,r);
    
    % Calculate the parameter estimates subject to the constraint on beta.
    estimates1 = GetParamsT(y1, k, r, db, beta_g, opt1);
    estimates2 = GetParamsT(y2, k, r, db, beta_g, opt1); 
    
    % Calculate the new likelihood value given the new coefficient matrix.
    like1 = - T1*p/2*( log(2*pi) + 1)  - T1/2*log(det(estimates1.OmegaHat));
    like2 = - T2*p/2*( log(2*pi) + 1)  - T2/2*log(det(estimates2.OmegaHat)); 
 
    % Store the likelihood for each iteration.
    like(j,bj)= -(like1+like2);
    end;
      bj=bj+1;
   end;
    j=j+1;
end;
 
% -------------- Identify the MLE of beta and gamma --------------%
[temp, mlike] = min(like);
[temp, c] = min(diag(like(mlike,:)));
v = mlike(c);
gammaHat=gamma1(v);
b1=beta(c);
beta_H = [1 ;beta(c)];
minlike=like(v,c);
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if (opt.levelParam)
    e_star = dxlag*beta_H;
else
    e_star = xlag*beta_H;
end
d1=(e_star<=gammaHat);
d2=1-d1;
R1=[x1.*(d1*ones(1,size(x1,2)))];
R2=[x1.*(d2*ones(1,size(x1,2)))];
 
index = 0;
for i=1:length(d1)
   if d1(i)==1
      if index ==0
         regime1 = R1(i,:);
         index = 1;
        else
         regime1 = [regime1; R1(i,:)];
      end;
   end;
end;
 
index = 0;
for i=1:length(d2)
    if d2(i)==1
        if index ==0
         regime2 = R2(i,:);
         index = 1;
        else
         regime2 = [regime2; R2(i,:)];
        end;
    end;
end;
 
% Piecewise linear estimation of threshold model.
Sample1 = FCVARestnT(regime1, k, r, db, muHat, beta_H, opt1);        
Sample2 = FCVARestnT(regime2, k, r, db, muHat, beta_H, opt1);
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Appendix of Chapter 3

The synchronised return model at equation (3.14) involves the fraction parameter matrix

A and the autoregressive parameter matrix B. The matrix B can be estimated from the

first-order autoregressive process of asynchronous returns (A2), and the matrix A can

then be identified by an addition location-scale model at (A3).

Alternatively, instead of imposing Assumption 3.3 a location-scale model to synchronised

returns, an auxiliary regression is proposed to identify the fraction parameter A.

B.1 Auxiliary regression

Suppose a vector of proxy Xt is observable has a linear relationship with the synchronised

return Rt, we have a vector auxiliary regression such that

Xt = MRt + vt (B.1)

with parameter M a J × J matrix.

The linear relation of the proxy variable Xt on synchronised returns Rt may be econo-

metrically problematic if that auxiliary regression in which not only Rt affects the proxy

Xt but also Xt affects Rt. If this is the case Xt and Rt have feedback effects instead.

The unidirectional regression will lead to bias and inconsistent estimators, given by a

non-zero covariance between Rt and the error vt. To avoid this model misspecification,

the choice of the proxy Xt is the key; alternatively it will be convenient to set-up a

simultaneous regression model.

Recall that synchronised returns Rt are not observable but it can be written in terms of

asynchronous returns as (3.14). Therefore, we are setting up a simultaneous regression

model for the proxy Xt on asynchronous returns rt.
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Firstly we substitute Rt on (B1) by (3.14) and yield

Xt = M [(IJ +AB)rt −ABrt−1] + vt

= β1rt + β2rt−1 + vt, (B.2)

let β1 = M(IJ +AB) and β1 = −MAB.

Note that the fraction parameter A can be algebraically identified by

A = −(β1 + β2)−1β2B
−1. (B.3)

Referring to figure 1 for illustration, there is possibility that asynchronous returns rt
affect on both Xt and Xt−1. Thus we suppose the reverse causality of rt on Xt is given

by

rt = Γ1Xt + Γ2Xt−1 + ut. (B.4)

Considering equation (B2) and (B4) as a simultaneous equation model:

Xt = β1rt + β2rt−1 + vt

rt = Γ1Xt + Γ2Xt−1 + ut

Possibly, the asynchronous return rt and the proxy Xt are endogenous, while the lag-1

proxy Xt−1 and the lag-1 asynchornous return rt−1 are exogenous.

As the standard OLS method is not appropriate for simultaneous equation models, we

should perform the parameter estimation by obtaining the reduced form model.

To do that, we substitute Xt given by (B2) into (B4) obtain

rt = Γ1(β1rt + β2rt−1 + vt) + Γ2Xt−1 + ut

= Γ1β1rt + Γ1β2rt−1 + Γ2Xt−1 + Γ1vt + ut

= Ψ1rt−1 + Ψ2Xt−1 + U1t, (B.5)

where Ψ1 = (I − Γ1β1)−1Γ1β2, Ψ2 = (I − Γ1β1)−1Γ2, U1t = (I − Γ1β1)−1(Γ1vt + ut).

Then, we replace rt on (B2) with its expression on (B5) to obtain

Xt = β1(Ψ1rt−1 + Ψ2Xt−1 + U1t) + β2rt−1 + vt

= (β1Ψ1 + β2)rt−1 + β1Ψ2Xt−1 + β1U1t + vt

= Φ1rt−1 + Φ2Xt−1 + U2t, (B.6)

where Φ1 = β1Ψ1 + β2, Φ2 = β1Ψ2 and U2t = β1U1t + vt.
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B.2 Parameters identification

Now we can correctly estimate (B5) and (B6) by OLS and obtain their parameters Ψ1,

Ψ2 and Φ1, Φ2 respectively. Since we have four unknown structural parameters β1, β2,

Γ1 and Γ2 with four equations given by Ψ1, Ψ2, Φ1 and Φ2, we are able to identify the

structural parameters and hence calculate the fraction parameter A as follows.

There are four equations for coefficients

i) Ψ1 = (I − Γ1β1)−1Γ1β2,

ii) Ψ2 = (I − Γ1β1)−1Γ2,

iii) Φ1 = β1Ψ1 + β2, and

iv) Φ2 = β1Ψ2.

From iv), β1 = Φ2Ψ−1
2 . Substituting β1 into iii) we obtain

Φ1 = Φ2Ψ−1
2 Ψ1 + β2

→ β2 = Φ1 − Φ2Ψ−1
2 Ψ1.

Recall that the fraction parameter A can be expressed in terms of β1 and β2 as (B3);

therefore, the matrix A in terms of those four structural parameters is given by

A = −(β1 + β2)−1β2B
−1

= −(Φ2Ψ−1
2 + Φ1 − Φ2Ψ−1

2 Ψ1)−1(Φ1 − Φ2Ψ−1
2 Ψ1)B−1. (B.7)
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Appendix of Chapter 4

C.1 Proof of inconsistency of MLE from asynchronous VAR

I. Maximum likelihood estimators of B and Σ from true model (4.2), let c = 0 for

simplification.

• MLE of B:

∂lnL
∂B

= −1

2

T∑
t=1

∂

∂B

(
(Rt −BRt−1)′Σ−1(Rt −BRt−1)

)
=

1

2

T∑
t=1

∂

∂B

(
R′tΣ

−1BRt−1 +R′t−1B
′Σ−1Rt −R′t−1B

′Σ−1BRt−1

)
=

1

2

T∑
t=1

∂

∂B

(
tr(Rt−1R

′
tΣ
−1B) + tr(Σ−1RtR

′
t−1B

′)− tr(Rt−1R
′
t−1B

′Σ−1B)
)

=
1

2

T∑
t=1

(
Rt−1R

′
tΣ
−1 +Rt−1R

′
tΣ
−1 − 2Rt−1R

′
t−1B

′Σ−1
)

=

T∑
t=1

(
Rt−1R

′
tΣ
−1 −Rt−1R

′
t−1B

′Σ−1
)

∂lnL
∂B = 0 gives the maximum likelihood estimator of B as follows:

∂lnL
∂B

= 0→
T∑
t=1

Rt−1R
′
t =

T∑
t=1

Rt−1R
′
t−1B̂

′

→ T−1
T∑
t=1

(
Rt−1R

′
t−1

)
B̂′ = T−1

T∑
t=1

Rt−1R
′
t

→ B̂′ML =
( T∑
t=1

Rt−1R
′
t−1

)−1( T∑
t=1

Rt−1R
′
t

)
.
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• MLE of Σ:

∂lnL
∂Σ

= −T
2

∂

∂Σ
ln|Σ| − 1

2

T∑
t=1

∂

∂Σ

(
ε′tΣ
−1εt

)
= −T

2

1

Σ
− 1

2

T∑
t=1

∂

∂Σ

(
tr(εtε

′
tΣ
−1)
)

= − T

2Σ
+

1

2

T∑
t=1

εtε
′
tΣ
−2

∂lnL
∂Σ = 0 gives the maximum likelihood estimator of Σ as follows:

∂lnL
∂Σ

= 0→ T

Σ̂
=

T∑
t=1

ε̂tε̂t
′Σ̂−2

→ Σ̂ = T−1
T∑
t=1

ε̂tε̂t
′.

II. Maximum likelihood estimators of B and Σ from the model of observed returns rt
with the consideration of measurement equations, assuming serially uncorrelated mea-

surement errors.

• MLE of B:

∂lnL
∂B

= −1

2

T∑
t=1

∂

∂B

(
(rt + vt −B(rt−1 + vt−1))′Σ−1(rt + vt −B(rt−1 + vt−1))

)
=

1

2

T∑
t=1

∂

∂B

(
2(rt + vt)

′Σ−1B(rt−1 + vt−1)− (rt−1 + vt−1)′B′Σ−1B(rt−1 + vt−1)
)

=

T∑
t=1

(
(rt−1 + vt−1)(rt + vt)

′Σ−1 − (rt−1 + vt−1)(rt−1 + vt−1)′B′Σ−1
)

∂lnL
∂B = 0 gives the maximum likelihood estimator of B as follows:

∂lnL
∂B

= 0→
T∑
t=1

(rt−1 + vt−1)(rt + vt)
′ =

T∑
t=1

(rt−1 + vt−1)(rt−1 + vt−1)′B̂′

→ T−1
T∑
t=1

(rt−1r
′
t) = T−1

T∑
t=1

(rt−1r
′
t−1 − vt−1v

′
t−1)B̂′

→ B̂′ML =
( T∑
t=1

(rt−1r
′
t−1 − vt−1v

′
t−1)

)−1( T∑
t=1

rt−1r
′
t

)
,

denote Qrt−1
= T−1

∑T
t=1 rt−1r

′
t−1, Qrt−1rt = T−1

∑T
t=1 rt−1r

′
t, T

−1
∑T
t=1 vt−1v

′
t−1 = Σv,

→ B̂′ML =
(
Qrt−1

− Σv
)−1

Qrt−1rt .
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• MLE of Σ:

∂lnL
∂Σ

= −T
2

∂

∂Σ
lnΣ− 1

2

T∑
t=1

∂

∂Σ

(
ε′tΣ
−1εt

)
= − T

2Σ
+

1

2

T∑
t=1

εtε
′
tΣ
−2

∂lnL
∂Σ = 0 gives the maximum likelihood estimator of Σ as follows:

∂lnL
∂Σ

= 0→ Σ̂ = T−1
T∑
t=1

ε̂tε̂t
′

→ Σ̂ = T−1
T∑
t=1

(rt + vt − B̂rt−1 − B̂vt−1)(rt + vt − B̂rt−1 − B̂vt−1)′

→ Σ̂ = T−1
T∑
t=1

(rt − B̂rt−1)(rt − B̂rt−1)′ − T−1
T∑
t=1

vtv
′
t − T−1

T∑
t=1

B̂vtv
′
tB̂
′

→ Σ̂ = Σe − Σv − B̂ΣvB̂′.

III. Repeat II, assuming serially correlated measurement errors.

• MLE of B:

∂lnL
∂B

= 0→
T∑
t=1

(rt−1r
′
t − vt−1v

′
t) =

T∑
t=1

(rt−1r
′
t−1 − vt−1v

′
t−1)B̂′

→ B̂′ML =
( T∑
t=1

(rt−1r
′
t−1 − vt−1v

′
t−1)

)−1( T∑
t=1

(rt−1r
′
t − vt−1v

′
t)
)
,

denote Qvt−1vt = T−1
∑T
t=1 vt−1v

′
t,

→ B̂′ML =
(
Qrt−1 − Σv

)−1(
Qrt−1rt −Qvt−1vt

)
.

• MLE of Σ:

∂lnL
∂Σ

= 0→ Σ̂ = T−1
T∑
t=1

(rt + vt − B̂rt−1 − B̂vt−1)(rt + vt − B̂rt−1 − B̂vt−1)′

→ Σ̂ = T−1
T∑
t=1

(
(rt − B̂rt−1)(rt − B̂rt−1)′ − vtv′t − B̂vtv′tB̂′ + B̂vt−1v

′
t + vtv

′
t−1B̂

′)
→ Σ̂ = Σe − Σv − B̂ΣvB̂′ + B̂Qvt−1vt +Q′vt−1vtB̂

′.
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IV. Proof of Theorem 4.1.

Proof.

• The probability limit of Qrt−1
when T →∞.

Qrt−1
= T−1

T∑
t=1

rt−1r
′
t−1

= T−1
T∑
t=1

(Rt−1 − vt−1)(Rt−1 − vt−1)′

= T−1
T∑
t=1

(Rt−1R
′
t−1 −Rt−1v

′
t−1 − vt−1R

′
t−1 + vt−1v

′
t−1)

= QRt−1
+Qvt−1

+Op(n
−1/2),

then Qrt−1

p→ Γ(0) + Σv; hence, Qrt−1 − Σv
p→ Γ(0).

• The probability limit of Qrt−1rt when T →∞.

Qrt−1rt = T−1
T∑
t=1

rt−1r
′
t

= T−1
T∑
t=1

(Rt−1R
′
t −Rt−1v

′
t − vt−1R

′
t + vt−1v

′
t)

= QRt−1Rt +Op(n
−1/2),

then

Qrt−1rt
p→ Γ(0)B′.
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V. Proof of Theorem 4.2.

Proof.

• Asymptotic mean of B̂ML:

plimB̂′ML = plim
(
(Qrt−1 − Σv)−1Qrt−1rt

)
= plim

(
(Qrt−1

− Σv)−1T−1
T∑
t=1

rt−1r
′
t

)
= plim

(
(Qrt−1

− Σv)−1T−1
T∑
t=1

rt−1(Brt−1 + et)
′)

= plim
(
(Qrt−1 − Σv)−1(T−1

T∑
t=1

rt−1r
′
t−1B

′ + T−1
T∑
t=1

rt−1e
′
t)
)

= plim
(
(Qrt−1

− Σv)−1(Qrt−1
B′ − T−1

T∑
t=1

rt−1(vt −Bvt−1 + εt)
′)
)

= plim
(
(Qrt−1 − Σv)−1(Qrt−1 − Σv)B′

)
= B′

• Asymptotic variance of B̂ML: since

B̂′ = (Qrt−1
− Σv)−1Qrt−1rt

= (Qrt−1
− Σv)−1T−1

T∑
t=1

rt−1(Brt−1 + et)
′

= (Qrt−1 − Σv)−1T−1
T∑
t=1

rt−1(Brt−1 − ΣvB′ + ΣvB′ + et)
′

= B′ + (Qrt−1
− Σv)−1(ΣvB′ + T−1

T∑
t=1

rt−1e
′
t)

→ B̂′ −B′ = (Qrt−1
− Σv)−1(ΣvB′ + T−1

T∑
t=1

rt−1e
′
t)

where et = −vt +Bvt−1 + εt, then

V ar
(√
T (B̂′ −B′)

)
= TΓ(0)−1V ar(ΣvB′ + T−1

T∑
t=1

rt−1e
′
t)Γ(0)−1

= TΓ(0)−1E
(
(ΣvB′ + T−1

T∑
t=1

rt−1e
′
t)(Σ

vB′ + T−1
T∑
t=1

rt−1e
′
t)
′)Γ(0)−1

= Γ(0)−1E
(
− ΣvB′BΣv +Qrt−1(Σv +BΣvB′ + Σ)

)
Γ(0)−1

since Qrt−1

p→ Γ(0) + Σv, and Σe = Σv +BΣvB′ + Σ, then

V ar
(√
T (B̂′ −B′)

) p→ ΣeΓ(0)−1 + Γ(0)−1(ΣvΣe − ΣvB′BΣv)Γ(0)−1 ≡ Ω.
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C.2 An alternative proxy

This alternative proxy is derived from the definition of asynchronous returns in relation

to the true return variable and the measurement error. Recall that the (J × 1) vector of

asynchronous returns is defined as the log difference of two consecutive closing prices at

the local closing time of each market, written as rt = ∆Pt; similarly, the (J × 1) vector

of true returns is defined as the log difference of two consecutive synchronous prices

Rt = ∆P st .

By adding and subtracting the true returns from asynchronous returns, we obtain an

expression of asynchronous returns as true returns plus some non-captured returns, given

by

rt = rt −Rt +Rt

= ∆P st − (P st − Pt) + (P st−1 − Pt−1)

= Rt − (P st − Pt) + (P st−1 − Pt−1)

denote P st − Pt = R∗t as the (J × 1) vector of missing returns, then

rt = Rt −R∗t +R∗t−1.

Recall that the measurement error equation is as rt = Rt + vt, thus the measurement

error should be the uncaptured returns, that is

vt = −R∗t +R∗t−1.

The good thing is that we now have a meaningful definition to the measurement error,

the question needed to solve is that such missing return R∗t is unobserved since it is

made up by the unobserved synchronous price. Therefore, the following assumption can

be an option to proxy the missing return R∗t .

Assumption C.1. Assume that the (J × 1) vector of missing returns R∗,jt for market

j at time t is made up by a (J × J) fraction matrix A of the observed return rjt for

j = 1, 2, ..., J , written as

R∗t = Art (C1)

where the (J × J) fraction matrix A is closed and bounded on [0, 1].

By substituting (C1) into the measurement error equation, we obtain

rt = Rt −Art +Art−1

⇔ Rt = (I +A)rt −Art−1

denote I +A = α, then

Rt = αrt + (I − α)rt−1
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the (J × J) fraction parameter α is also [0, 1] bounded given A is closed and bounded

on [0, 1].

Next the expression of true returns in terms of observed returns is substituted into the

true VAR model, suppose the true model is a VAR(1) such that Rt = BRt−1 +εt, obtain

αrt + (I − α)rt−1 = B(αrt + (I − α)rt−1) + εt

⇔ αrt = (Bα− I + α)rt−1 +B(I − α)rt−2 + εt

⇔ rt = α−1(Bα− I + α)rt−1 + α−1B(I − α)rt−2 + α−1εt

denote β1 = α−1(Bα− I + α), β2 = α−1B(I − α), and et = α−1εt, the equation above

is a VAR(2) process of observed returns, that is

rt = β1rt−1 + β2rt−2 + et.

This transformed VAR(2) model can be estimated by the usual maximum likelihood

method, but our aims are identifying the true parameter B, the fraction parameter α

and the estimate of the variance matrix of the true disturbance term, V ar[εt] = Σ.

Therefore, instead of estimating β1 and β2, the maximum likelihood estimators of α, B

and Σ are derived from the transformed VAR(2).

The maximum likelihood estimators assuming normally distributed error are derived as

follows.

B̂′ML = [

T∑
t=1

R̂t−1R̂
′
t−1]−1[

T∑
t=1

R̂t−1R̂
′
t],

α̂′ =
( T∑
t=1

(rt − (I + B̂)rt−1 + B̂rt−2)(rt − (I + B̂)rt−1 + B̂rt−2)′
)−1

×
( T∑
t=1

(rt − (I + B̂)rt−1 + B̂rt−2)(B̂rt−2 − rt−1)′
)
,

Σ̂ = T−1
T∑
t=1

ε̂tε̂
′
t.

where R̂t = α̂rt + (I − α̂)rt−1, and ε̂t = α̂rt − (B̂α̂− I + α̂)rt−1 + B̂(I − α̂)rt−2.

The maximum likelihood estimators derived above invloved complicated non-linear op-

timisations that are difficult to applied in the real data. Further research could conduct

some Monte Carlo simulation studies to estimate the parameters and to evaluate the

adequacy of the asymptotic distributions of the estimators.
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