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This thesis develops theoretical tools for the stylised facts of multivariate volatility pro-
cesses and stock returns in financial markets. The first essay of this thesis contributes
to the literature of fractionally cointegrated processes. Threshold adjustment is allowed
in the error correction of bivariate fractionally cointegrated systems. Hypothesis testing
for the presence of threshold and simulation evidence are provided to support the need of
threshold specification in the adjustment dynamics of fractionally cointegrated processes.
Empirical application considers the cointegrating relation and adjustment dynamics of
S&P500 option implied volatility index spot and futures. Empirical finding shows that
investors tend to hedge against volatility by using volatility-tracking products during
market turbulence. The next two essays investigate some econometric issues that arise
from the use of asynchronous data on modelling the joint dynamics of stock returns.
The return correlation is inaccurate if asynchronicity is not taken into consideration.
As a result, portfolio risk management can be highly distorted. Aiming to develop an
accurate estimation on the return correlation dynamics, several econometric techniques
are introduced to tackle this asynchronicity problem that allow financial practitioners to
adequately adjust the asynchronous stock return series. This research also attempts to
analyse asynchronicity problem as a measurement error problem, parameter estimates
from the conventional vector autoregressive models are inconsistent if the vector of mul-
tivariate stock returns contains asynchronous returns. A good proxy of measurement
error can effectively correct the asynchronous return vector and hence yield consistent

parameter estimates.
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Chapter 1

Introduction

Fractional cointegration is a generalised class of cointegrated systems which provides
feasibility to estimate the fractional and cofractional memory orders of the time series,
rather than fixing the memory parameters to be integer values. Empirical studies found
that many macroeconomic and financial variables possess long memory in the long-
run; however, not much focus has been given to the short-run adjustment dynamics of
the fractional cointegrating relation. The feature of nonlinear adjustments in long-run
equilibrium relation of cointegrating variables is separately documented in the strand of
I(1)/1(0) cointegration literature.

Nonstationarity and nonlinearity are key features in time series analysis, yet only a
few literature attempted to describe long memory and nonlinearity within a time se-
ries model. Chapter 2 extends the fractional cointegrated vector autoregressive model
(FCVAR) by allowing two regimes in the speed of adjustment parameter in the error-
correction term, treating long memory features and cointegrating relation invariant
across regimes. Since the threshold parameter is not identified under the null hypothesis
of no threshold, supLM test for the presence of a threshold is proposed for the FCVAR
model. Bootstrapping test statistic and p-value are derived. Monte Carlo simulation
demonstrates the test under finite-sample maintains satisfactory size and power. A DGP
from threshold FCVAR model provides simulation evidence about the effects of misspec-
ification in long memory parameter and threshold adjustment from other cointegration
models. The threshold FCVAR model is applied to the volatility index spot (VIX) and
its related futures. VIX-tracking products are more attractive during market turbulence
since investors treat VIX products as a security for hedging market downside risk. It
is argued that the adjustment towards the relation of VIX spot and futures could be
regime specific. Empirical result shows that in the two-regime case, the co-movement
among the VIX spot and futures is insignificant in the contango regime, while the fu-
tures contributes significant error correction in the backwardation regime. This result
provides a theoretical ground to explain the momentum strategy based on contango and

backwardation commonly adopted by volatility traders.

1



2 CHAPTER 1. INTRODUCTION

Another focus is given to asynchronicity of stock returns and its related econometric
problems. Accurately modelling the joint dynamics of stock returns across different
markets is a fundamental prerequisite for understanding how crises propagate, how
strongly markets co-move and for quantifying the risk characteristics of international
portfolios containing assets from geographically different segments. Multivariate time
series modellings have long been used to identify the return correlation and volatility
dynamics across financial markets. Vector autoregressive moving average processes with
multivariate generalised autoregressive conditional heteroscedastic variances are found
to be appropriate to analyse the joint dynamics of return correlation and volatility, in
a multivariate return series framework. Nonetheless, when attempting to track return
correlations across time and markets, an important concern arises from the fact that
assets trade at their local trading time hence causing raw return series based on closing
prices to be effectively asynchronous. The multivariate time series models may lead to
highly distorted correlation estimates if the presence of asynchronicity in the financial
data is not taken into consideration. A biased correlation dynamic does not reflect the
true underlying degree of co-movement among the financial assets, portfolio management

and risk analyses can be mislead.

Chapter 3 and 4 develop formal econometric techniques that tackle this problem of re-
turn asynchronicity and offer a rigorous set of approaches that allow practitioner to
construct suitably adjusted series for the purpose of portfolio risk management, dy-
namics correlation analysis, and many other financial applications on the multivariate
financial assets. In particular, Chapter 3 proposes a synchronisation technique which is
generalised from the benchmark synchronisation method by Burns et al. (1998). The
synchronised correlation estimates by the proposed model are less restrictive than the
benchmark method since the assumption of random walk stock prices is relaxed when for-
mulating the synchronised returns. Empirical application considers a seven-market data
series including stock price indices located from eastern to western countries. Empirical
findings show that the correlation dynamics are larger for the estimated synchronised
returns. In a one-day Value-at-Risk (VaR) back-testing exercise, the synchronised re-
turns and synchronised correlations produce more reliable risk measures and superior
forecasting performance than the VaR from asynchronous data. The portfolio value
calculated from asynchronous data is more volatile since the portfolio recognises profit

and loss from the stale market value overnight.

Chapter 4 analytically reviews the use of asynchronous data on the conventional vector
autoregressive (VAR) models results in measurement error problem. The measurement
error is defined as the difference between synchronous and asynchronous returns. It
follows that the coefficient estimates are no longer consistent. Next, the maximum like-
lihood estimators from the conventional VAR model are proved to be asymptotically

consistent if an adequate proxy is used for the measurement error. Several transformed



VAR models are provided as the solutions to this measurement error problem. Assum-
ing the measurement error in asynchronous returns has a linear relation to the true
synchronous returns, the unobserved measurement error can be explained in terms of
observed asynchronous returns. A transformed VAR model given this assumption is de-
rived from the asynchronous VAR model, in which the maximum likelihood estimators
are asymptotically consistent. An additional spatial proxy is also discussed in which
the spatial weighted matrix captures the time zone differences correspond to the later
markets closing. Using the spatial proxy as a measurement error correction results in a

spatio-temporal vector autoregressive model.






Chapter 2

Threshold fractionally
cointegrated vector autoregressive
model and application to

volatility index

2.1 Introduction

Fractional cointegration is a generalisation of a standard I(1)/I(0) cointegration which
allows the time series variables and their error correction dynamics following fraction-
ally integrated processes. This research aims to make two contributions to the fractional
cointegration literature. The first is an econometric contribution to propose a two-regime
threshold adjustment in the equilibrium error in the class of fractionally cointegrated
vector autoregressive models (FCVAR) by Johansen (2008). The second is an empirical
contribution to analyse the fractionally cointegrated relation of the S&P500 options im-
plied volatility (VIX) and the one-month volatility futures using the proposed threshold

model.

The proposed threshold FCVAR model is a bivariate fractionally cointegrated vector
autoregressive process on a pair of long memory time series Xy = (14, z2¢), with one
cointegrating relation 3’ X; and a discontinuous two-regime switching in the adjustment
coefficient . The fractional and cofractional orders and the cointegrating relation are
presumed to determine the intrinsic long memory characteristic of the time series pro-
cesses in the long-run. In this sense, the long memory parameters d and b, the cointe-
grating vector 3 and the level parameter (if any) p are unchanged; while the adjustment

coefficient & and the short-run dynamic I" (if any) are allowed to switch across regimes.
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A two-step conditional Gaussian maximum likelihood is implemented for the estimation.
In the first step, the parameters (d, b, 1) are estimated from the linear model. Given the
parameter estimates (ci, 3, ft), the second step conducts a two-dimensional grid search
over the cointegrating vector 8 € [5r, Sy] and the threshold parameter v € [yr,v]. To
provide statistical evidence of the nonlinear specification in favour of the linear one, a
supLM test for the presence of threshold is derived based on the threshold cointegration
literature by Hansen and Seo (2002). The difficulty of a threshold test is that the
asymptotic distribution is nonstandard due to the presence of nuisance parameters under
null hypothesis. As a result, simulation-based bootstrap sampling null distribution and
p-value are derived. According to a Monte-Carlo simulation, the size and power of the
test are working well in small sample. Concerning the misspecification issues of a class of
(both fractional and non-fractional) cointegration systems with (or without) threshold
adjustment, this study also provides simulation evidence for a comparison of coefficient
estimates from four different cointegration models. Similar to the theoretical results
from Lasak (2010), misspecifying the long memory parameters results in inconsistent
estimates of the adjustment coefficient. The adjustment dynamics are distorted in the

linear cases.

In recent literature, empirical evidence usually showed that realised volatility possesses a
long memory parameter d of 0.4 to 0.5 and implied volatility possesses a parameter d of
0.5 to 0.8, which correspond to long memory stationary and nonstationary, respectively.
Semiparametric estimators of fractionally cointegrated systems see e.g. the narrow-band
least squares and the exact local Whittle estimation, are found to be useful in modelling
bivariate volatility processes. Yet they are developed for assessing long-run features

through cointegrating vector and memory parameters.

Thanks to the attractive features of Johansen (2008)’s fractionally cointegrated VAR
model, estimation of multiple cointegration relationship is allowed through the reduced-
rank approach. The number of cointegrating ranks can be determined via statistical
tests, hence the fractional and cofractional orders, cointegrating relations, adjustment
coefficients, and the short-run dynamics can be jointly estimated. Each of these fea-
tures is relevant to the empirical analysis of multiple volatility processes. While the
memory parameters and cointegrating vector express the long-run characteristics of the
volatility processes, the adjustment process and lead-lag dynamic provide the short-run
information dependency which are particularly useful for empirical practice. Consider-
ing the cointegrated relation between implied volatility spot and futures, investors are
interested in assessing the size of disequilibrium between the spot and futures and the
forecast of disequilibrium correction in the next period. Hence, one can design short

term investment decisions correspond to the estimate of adjustments.

Due to the empirical importance of the adjustment dynamics, this research investi-
gates the presence of threshold adjustment in the equilibrium relation between the VIX

spot and futures through the fractionally cointegrated VAR model. A large number of
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empirical studies in economic theory demonstrated the presence of stochastic nonlin-
ear dependence in long-run equilibrium relations. For instance, the equilibrium model
of prices parity exhibits disequilibrium adjustment only if the arbitrage is larger than
transaction costs. However, lack of attention has been given to the nonlinear mean rever-
sion of volatility processes. The intuition of nonlinear adjustment among the volatility
spot and futures can be observed from the investment need of VIX futures. The S&P500
implied volatility index is a mathematical measure for how sharply the market moves.
Since the VIX prices tend to skyrocket when the stock prices plunge, investors may use
the volatility related derivatives as a mean to insure the possible market downturn. In
practice, constantly longing a futures is not a sophisticated strategy for portfolio man-
agement. The generally negative correlation between the stock prices and VIX says that
the cost of buying volatility “insurance” eats up profit from the investment portfolio.
Technically speaking, futures contracts on VIX are normally in “contango”, that is, the
longer-dated futures prices are higher than the near-dated one and the spot. Thus, con-
stantly rolling futures contracts means buying high and selling low which guaranteed
loss to the portfolio in long-term. A legitimate use of volatility futures or other related
derivatives is to buy volatility securities when market has high uncertainty. Hedging
against volatility is more attractive when market is facing a bad time than a good time.
This implies investors behave differently in volatility investment given different market
conditions. In fact, some volatility traders who adopt momentum investing strategy use
the temporary “contango” and “backwardation” conditions of VIX as the enter-and-exit
signal. For example, buy when you need - one can long the VIX-tracking ETFs when

futures is in backwardation, and short when futures is back to contango.

Several findings are reported in empirical application. First, there is a significant thresh-
old effect in the equilibrium relation 3’ X; where X; = (s¢, f¢) denotes implied volatility
spot and futures. Assuming a constant cointegrating vector S in the long-run, the adjust-
ment coefficients are regime-dependent. Second, the cointegrating relationship vanished
when the disequilibrium does not exceed the threshold. On the other hand, only the
futures exhibits significant adjustment when the disequilibrium exceeds the threshold.
This result provides empirical regularity to the nonlinear responses towards the disequi-
librium of implied volatility spot and futures which is concealed in the linear FCVAR
model. Spot has no adjustment effect on the equilibrium relation since the VIX spot
is a non-tradable measure. In addition, futures seems not to be attractive until it is

significantly below the spot prices.

The remainder of the chapter is organised as follows. Section 2.2 provides an extensive
literature review on fractional cointegration, threshold cointegration, and their inter-
section. Section 2.3 introduces the formulation of threshold FCVAR model, derives
the estimation procedure and briefly discusses other forms of nonlinearity. Section 2.4
proposes a supLM test for the presence of threshold in fractional cointegration. The

bootstrapping test statistic and p-value are also discussed. Section 2.5 reports Monte
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Carlo simulation evidence for the size and power of the test and the misspecification
issues by ignoring fractional parameters and threshold nonlinearity. Section 2.6 ap-
plies the threshold FCVAR model to the fractional cointegration of the S&P500 implied

volatility index and its one-month futures.

2.2 Literature review

Fractional cointegrated systems laid the ground for the long-run relationship of mul-
tiple volatility processes. Threshold specification provides feasibility to take nonlinear
relations into account in the short-run adjustment dynamics among the variables. This
chapter provides a review of the major econometric work and empirical findings on

fractional cointegration and threshold models.

2.2.1 Fractional cointegration

Cointegration of nonstationary time series had been studied intensively over the last
three decades since the seminal contributions of Granger (1981) and Engle and Granger
(1987). The early studies of cointegration focused on the standard I(1)/1(0) type of coin-
tegration in which the linear combinations of the /(1) nonstationary processes are I(0)
stationary. Fully parametric inference of cointegration in the error correction mechanism
was developed by Johansen (1988, 1991, 1995). In Johansen’s framework, cointegration
is modelled by the vector autoregressive model for nonstationary variables. The cointe-
grating vector, the speed of adjustment towards the long run cointegrated relation and
the short run dynamics are allowed to be estimated after selecting a cointegrating rank.
Empirical applications adopted Johansen’s cointegration in the studies of prices pari-
ties! by rational expectations theory in which the model based expectation restrictions

provide testable information on cointegrating relations and short-run adjustments.

However, the premises of the standard I(1)/I(0) cointegration that the time series vari-
ables are integrated of order one and co-moved of order zero are somehow restrictive.
Substantial evidence in the literature demonstrated that many economic and financial
time series possess long range dependence in the autocorrelation function, but not ex-
actly exhibit a unit root process, so called the long memory process. For instance, the
volatility of asset prices, forward premium, exchange rates, interest rate term structure,
and see Baillie (1996) for a comprehensive review of long memory processes in econo-
metrics. Granger and Joyeux (1980) and Hosking (1981) defined a time series X; be a
fractionally integrated process of order d for non-integer d € (0,1), denote X; € I(d),
if it has a I(0) stationary, invertible autoregressive moving average representation after

!For instance, the parity relations include interest rate parity, purchasing power parity, commodity
spot and futures (see Hansen et al., 1981).
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fractional differencing, i.e. A?X; € I(0). The precise definition is:
AYXy = T (—d) Xy (2.1)
n=0

where the parameter d determines the memory of the process, and the fractional coef-

ficients, m,(—d), are defined by the binomial expansion?

(1-2) = i(—m < - ) z"

n=0 n
= d(d+1)..(d+n-1) _,  DI(d+n)
=2 nl 2= T@rme VAl<b dER

I
=

n

in which the fractional coefficients are O(n9~!). This shows that, for a valid d < 1/2,

ZZOZO(—nd)Q < o0o. Hence the fractional process X; is stationary process with finite

variance and can be written as

A_th = (1 — L)_th = i(—l)n < —d ) €t—n

n=0 n

with ¢ the iid variables with zero mean and finite variance. For d > 1/2, the infinite
sum does not exist; yet a nonstationary I(d) process is defined by partial sums by the
operator Ajrd as

t—1
Al = (1= L)% = (-1)" ( ¢ ) t=1,..,T.

The semiparametric estimators of the long memory parameter d have been developed
in the literature include the log-periodogram estimator, see Geweke and Porter-Hudak
(1983), Robinson (1995a) and some modified versions by Andrews and Guggenberger
(2003) and Sun and Phillips (2003), and the Gaussian semiparametric local Whittle
estimator by Kiinsch (1987), Robinson (1995b), Andrews and Sun (2004) and Shimotsu
and Phillips (2005), among others. The standard unit root and stationarity hypothesis
tests may result in contradicting evidence if a time series possesses long memory. The
semiparametric estimators of the fractional integrated order are helpful for supporting
the long memory fashion in the time series process. Noteworthy the fully parametric
long memory estimator, e.g. the ARFIMA model, is more efficient, but it is inconsistent

if the parametric form such as the number of lags is misspecified.

One of the most important motivations distinguishing the long memory from 7(0) and
I(1) processes is that long memory processes imply different predictions of long run dy-

namics and effects of shocks to the macroeconomic variables. The arbitrary restriction

2Further definition and intermediate results of the fractional difference operator can be seen in Jo-
hansen (2008) and Johansen and Nielsen (2012).
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of integrated orders d to integer values in the /(1)/1(0) cointegration framework will re-
sult in misspecified likelihood function and incorrect statistical inference. The empirical
discussions regarding the fractional cointegrated economic variables can be dated back
to 1990s by Baillie and Bollerslev (1994), Cheung and Lai (1993), Dueker and Startz
(1998) and Mohanty et al. (1998), among others, which argued that the macroeconomic
variables possess long memory may be well described as fractional integrated process,
and fitting the fractional integrated variables into the standard case may result in false

rejection of the economic hypotheses.

Granger (1986) and Engle and Granger (1987) provided representation theorem for a
general case of cointegration that the variables are fractionally integrated of non-integer
order d and cofractional of a smaller order (d —b), for 0 < d — b < 1/2. The parameter
b determines the degree of cointegration among the variables. In the early studies of
long memory data, the autoregressive fractionally integrated moving average (ARFIMA)
model is a feasible parametric method for the fractional cointegration which extended the
ARMA model to account for hyperbolic rate of decaying autocorrelations. As discussed
by Robinson (1991, 1994) and Robinson and Hidalgo (1997), the complication is that,
when the cointegrating errors have long memory, they are correlated at long horizons and
thus rendering the ordinary least squares estimators inconsistent. The recent study by
Haldrup et al. (2017) showed that the standard ARFIMA models fail to fit the dynam-
ics of the fractional processes properly when the long memory is caused by aggregation.
Having made these points, several semiparametric approaches had been developed for
the fractionally cointegrated processes. Robinson (1994) derived a semi-parametric con-
sistent narrow-band frequency domain least squares estimator (henceforth NBLS) that
performs OLS on a degenerating band of frequencies around the origin. The NBLS in
the multivariate long memory systems had been developed by Lobato (1997), Marinucci
and Robinson (2001). Hence, Robinson and Marinucci (2003) established limiting distri-
bution of the NBLS of the cointegrating relation for the long memory nonstationary case
d>1/2,d—b > 0. Christensen and Nielsen (2006) provided complementary asymptotic
distribution theory for the NBLS estimator in the stationary case d > 0, d — b > 0,
2d — b < 1/2. The consistency and asymptotic nomality of the local Whittle estima-
tor in a bivariate stationary cointegrated system were derived by Robinson (2008). A
two-step estimation of the exact local Whittle estimator of a bivariate fractionally coin-
tegrated system was proposed by Shimotsu (2012) which accommodates both stationary
(d <1/2) and nonstationary (d > 1/2) integrated and/or cointegrated order.

Much attention has been given to the long run cointegrating relation of the fractionally
cointegrated systems through the semiparametric approaches, Johansen (2008) gener-
alised the well-known I(1)/I(0) cointegrated vector autoregressive model of Johansen
(1995) by allowing for modelling the long memory time series with non-integer order of
integration. The fractionally cointegrated vector autoregressive (FCVAR) model permits

one to determine the number of equilibrium relations via cointegrating rank test, and to
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jointly estimate the memory parameters, the long-run cointegrating relations with the
adjustment parameters, and the short-run lagged dynamics. The FCVAR model allows
for flexibility to estimate the long memory parameters of the cointegrated systems; it
reduces to the standard cointegration case when the fractional and cofractional orders
equal to unity. Asymptotic theory for likelihood estimation and inference in the frac-
tionally cointegrated VAR model was developed by Johansen and Nielsen (2010, 2012).
The role of observed and unobserved initial values in conditional maximum likelihood
estimators of the nonstationary fractional systems was analysed by Johansen and Nielsen
(2016). The inclusion of a level parameter in the FCVAR formulation is found to have
the advantage of reducing the bias of pre-sample observations. Dolatabadi et al. (2016)
provided an additional formulation of deterministic term which allows for deterministic

linear time trends or drift in the variables.

Empirical relevance of the fractionally cointegrated VAR system has been recognised in
the areas of financial markets and political economics. Dolatabadi et al. (2015, 2016) ap-
plied the FCVAR model for the analysis of price discovery in commodity spot and futures
for five non-ferrous metals (aluminium, copper, lead, nickel and zinc). The discussions
of long-run contango or backwardation characteristic and disequilibrium errors are al-
lowed through equilibrium relation. By using the same data from Figuerola-Ferretti and
Gonzalo (2010) who instead applied the standard cointegrated VAR model, Dolatabadi
et al. (2015, 2016) found more support of price discovery in the spot compared to the
result from the non-fractional case. Other applications in empirical finance include a
no-arbitrage relation between spot and futures (Rossi and Santucci de Magistris, 2013),
and the stock prices predictability from a relation of high and low prices (Caporin et al.,
2013). Regarding the studies in social science, Jones et al. (2014) examined the fraction-
ally cointegrated relationship between Canadian political support and macroeconomic

conditions.

2.2.2 Threshold in the error correction mechanism

One potential limitation of the cointegration model in relation to empirical application is
that, due to the linear combinations of time series variables linked through the long-run
cointegrating relationships, the adjustment processes tend to correct any small deviation
from the long-run equilibrium. A large number of economic studies® showed that key
macroeconomic data such as output growth, interest rate term structure, commodity
prices with transaction costs, and the stock return volatility exhibit nonlinear adjustment

over the business cycle.

Threshold autoregressive (TAR) model was first developed by Tong and Lim (1980).
The model allows the autoregression to depend on the state of the transition variable of

interest in which the process is piecewise linear in the threshold space. A useful extension

3See Hansen (2011) for a comprehensive literature of threshold autoregressive models.
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of the univariate threshold autoregresion to a multivariate cointegrated system was made
by Balke and Fomby (1997). Their threshold cointegration model allows the equilibrium
errors in the cointegrating relation to follow a self-exacting threshold autoregressive
process, such that the error correction parameter exhibits regime-switching dynamics.
For the AR(1) process as an example, the adjustment z; takes autoregression depending

on the state of the previous value:

przt—1 + ug if 2156
2t = PmZt—1 + Ut if 0 <z_1<86,, (22)
PhZt—1 + Uy if O <z

The coefficients p;, pp, < 1 are the sufficient condition for stationarity*. The inner regime
is allowed to have a unit root. This type of discrete adjustment dynamics is appropriate
to describe many economic phenomena. In macroeconomics, the exchange rate might
be maintained around a certain bound, in such case policy intervention only takes place
when the exchange rate is deviated alove or below the range. In asset pricing, sometimes

arbitrage can be too small to be profitable with the presence of transaction costs.

There are several other model specifications of the threshold cointegration in literature.
Enders and Siklos (2001) generalised the Engle-Granger cointegration test to accommo-
date the threshold autoregressive and momentum-threshold autoregressive in multivari-
ate content. Hansen and Seo (2002) adopted Johansen (1995)’s reduced rank approach,
developed maximum likelihood estimation for a bivariate threshold cointegrated VECM
model. A supLM test for testing the presence of a threshold in the adjustment pro-
cess was also derived. Gonzalo and Pitarakis (2006a) proposed an alternative threshold
framework to allow the long-run cointegrating relationship itself to be regime-specific
whereas the adjustment coefficient is linear. Gonzalo and Pitarakis (2006b) used an ex-
ternal variable rather than the equilibrium deviation as a transition variable of interest.
It is easier to perform model estimation, yet the current threshold tests restrict the ex-
ternal variable to be a stationary. Also, one would need to convince why an influencing

variable is included in the threshold switching dynamics but not in the main equation.

Despite the empirical importance of threshold models, there are complications in devel-
oping asymptotic theory and statistical inference of threshold estimation. Chan (1993)
showed that in the univariate self-exciting model with a single threshold (SETAR), the
least squares estimator of the threshold parameter 0 is n-consistent (or said to be super-
consistent) whereas the estimator of autoregressive slope parameter p is y/n-consistent.
The limiting distribution of the threshold parameter is a compound Poisson process.
The super consistence of the threshold estimator allows the estimated value to take as
given asymptotically when conducting inference on p. The inference on threshold pa-
rameters was provided by Hansen (1996, 1997, 1999, 2000). The statistical tests for

“See Balke and Fomby (1997) for a set of sufficient conditions in a more general TAR model.



2.2 Literature review 13

nonlinearity has nonstandard distribution since the threshold parameter under null hy-
pothesis remains unidentified. The tabulation of asymptotic distribution of the test is
not feasible. The sup-test statistics (Davies, 1987) ® are employed and the asymptotic
null distribution is obtained through bootstrap methods.

The econometric theory of threshold cointegration is more difficult than the univari-
ate case. Allowing for joint estimation of the cointegrating relation § and adjustment
dynamic o complicates the asymptotic distributions of the quasi-maximum likelihood es-
timators and the test statistics. It is because the limiting distributions of the estimators
of cointegrating vector and adjustment parameter are asymptotically dependent (Kris-
tensen and Rahbek, 2013). Thus, when testing for linearity in the adjustment dynamics
through sup-test inference, the estimation of long-run parameter should not be ignored if
it is unknown. The existing literature addressed this issue by assuming the cointegrating
vector 3 is known (see, e.g. Gonzalo and Pitarakis, 2006b; Seo, 2006) or the estimation
error of 8 will not affect the asymptotic behaviour of the test statistic (Hansen and
Seo, 2002). When the parameter § is known, all regressors can be treated as stationary,
hence the sup-testing is reduced to the testing framework in Hansen (1996). In order
to deal with the tests of nonlinearity and nonstationarity simultaneously, Kristensen
and Rahbek (2013) provided full asymptotic theory to the case with the estimation of
B in the multivariate nonlinear VECMs. The limiting distribution of sup test statistic
consists of two components, one is a stationary component from the short-run adjust-
ment dynamics, another is a nonstationary component from the long-run cointegrating
parameter. The results are closely related to the previous studies by Caner and Hansen
(2001) and Shi and Phillips (2012) in univariate threshold case with unit root under
weak identification. Some other studies proposed a Taylor approximation of the non-
linear component for the test of linearity in cointegrating systems, see for instance, the

approximation frameworks of Saikkonen and Choi (2004) and Kapetanios et al. (2006).

2.2.3 Nonstationarity and nonlinearity

Nonstationarity and nonlinearity are two of the key features in time series analysis.
Interestingly, only few of them attempted to describe long memory and nonlinearity
simultaneously within a time series model. Van Dijk et al. (2002) was the first empir-
ical study considered the coexistence of nonlinear and long memory properties in the
US unemployment rate. They introduced a fractionally integrated smooth transition
(FI-STAR) model to capture the asymmetric behaviour over the business cycle (during
expansion and recession), and found that the FI-STAR model outperforms the regular
STAR model regarding the measure of fit. Haldrup and Nielsen (2006) developed a
regime dependent vector autoregressive model allows the degree of long memory to be

different in different regime states. Their model was applied to the electricity prices in

®See also Tsay (1998), Lee et al. (2011), and among others for sup-type threshold tests.
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Nordic countries, and resulted that the price behaviour is subject to occasional conges-
tion periods in which the dynamic of two long memory electricity prices is bilateral in

the congestion state but it exhibits fractional cointegration in the non-congestion state.

The combination of nonstationarity and nonlinearity gives rise to some challenges. The
features of these two processes can easily be mistaken for each other. A long memory
process has autocorrelation function with hyperbolic decay at long lags; nevertheless,
a short memory process with regime switching or a smooth trend has similar auto-
correlation feature. The classic work of unit root by Perron (1989) emphasised the
standard tests of unit root can misinterpret a stationary series with one-time break as
an I(1) process with drift. In the recent long memory literature, Granger and Terésvirta
(1999), Diebold and Inoue (2001) and Granger and Hyung (2004) demonstrated that the
stochastic regime switching can be fitted into long memory models and result in spurious
conclusion of long memory. Qu (2011) based on the derivative of profile local Whittle
likelihood function, proposed a test for the null hypothesis that a stationary time series
has long memory against the alternative that it has regime switching. Although some
studies argued the possibility of confusing long memory and nonlinearity, some other
addressed statistical tests for the coexistence of long memory dynamics and nonlinearity
in short memory dynamics, see for instance, Baillie and Kapetanios (2007) and Choi
and Saikkonen (2010). This research contributes to this area by jointly estimating the
long-run fractionally cointegrated relationship and the short-run threshold adjustment
on volatility data, and specifying a fractionally cointegrated models against nonlinear

alternatives.

On the other hand, a theoretical work by Dittmann and Granger (2002) derived the
properties of various nonlinear transformations of discrete time® fractionally intergrated
processes. They showed that memory parameter d of the nonlinear transformed fraction-
ally integrated series may or may not reduce depending on whether the initial process
is stationary or not. Any nonlinear transformation of an anti-persistent I(d) process
with d < 0 is I(0). Nonlinear transformation of a stationary long memory process with
d € (0,1/2) results in either the same value of d or a smaller d depending on the Hermite
rank of the transformation. The polynomial transformations of nonstationary process
with d € (1/2,1] still have very persistence nonstationary long memory dynamics and
the long memory parameter d is just slightly smaller than the initial one. Their sim-
ulation results provide conjecture in support of the adequacy of nonlinear extension in
the error correction dynamics in this study. Referring to equation (2.3), the long-run
equilibrium relation in the FCVAR model, 5’ X; possesses memory of order d—b € [0, 1].
Therefore, introducing nonlinearity in the adjustment process implies a nonlinear trans-
formation to the equilibrium relation which may affect the degree of long memory in

the initial process. Dittmann and Granger (2002) showed that the memory parameter

5Two similar studies, Taqqu (1979) and Giraitis and Surgailis (1985), prior to Dittmann and Granger
(2002) worked out continuous time long-memory properties of nonlinear transformations of fractional
Brownian motions.
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of the polynomial transformed break process decreases only slightly. More interestingly,
a logistic transformation of stationary long memory process retains exactly the same
memory parameter as in the initial process. For nonstationary process, logistic transfor-
mation reduces the memory order but it is still larger than a half. Those indicate that
nonlinear transformations do not seriously distort the memory dynamics of data in the

long-run.

2.3 Econometric models

The representation theorem of the fractionally cointegrated vector autoregressive (FC-
VAR) model (Johansen, 2008) is generalised from the I(1)/I(0) cointegrated vector
autoregressive (CVAR) mechanism (Johansen, 1995) to allow for fractional processes of
order d that cointegrate to order d — b. The recent development of FCVAR framework
only accommodates linear and symmetric adjustment in the error correction term. In
this chapter, the fractional cointegrated VAR process permits threshold adjustment to-
wards the long-run equilibrium relation. The proposed threshold FCVAR model provides
feasibility to assess long memory and nonlinerity which are two important empirical fea-
tures of time series. With certain restrictions on the parameters, the threshold FCVAR

model effectively reduces to other cointegration models include:

e the linear FCVAR model when the regime-specific parameter sets ®; and ®, in

regime 1 and 2 respectively are not statistically different from each other;

e the I(1)/1(0) threshold cointegration model (Hansen and Seo, 2002) when d = b =
1; and

e the I(1)/1(0) CVAR model when both d =b =1 and ®&; = .

2.3.1 The fractionally cointegrated VAR models

To derive the FCVAR model, it is straightforward to begin with the well-known CVAR
model with nonfractional integrated order. The CVAR model for a p-dimensional non-
stationary time series Z; is

k
AZy=aB'Zi 4 + Z LiAZi i+
=1
k .
=af'LZi+Y TiAL'Zi+e&, t=1,..,T (2.3)

i=1

where AZ;_; = Z;_; — Zy_i—1 and Z;_; can be written as L'Z; by the use of lag
operator L. In the standard cointegration framework, the time series Z; is I(1) and
their cofractional 8'Z; is 1(0).
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The FCVAR model allows Z; to be fractional integrated of order d and 'Z; to be
fractional of order d — b > 0 which can be built from (2.3) in two steps. First, the usual
lag operator L = 1 — A and the difference operator A are replaced by their fractional
counterparts, Ly = 1 — A® and A® = (1 — L), where A’ is defined by the binomial
expansion A’Z; = 3°° (—1)”(3) Zt_p. It results:

n=0

k
A"Z, = aB' Ly Z; + Z DAPLEZ, + € (2.4)

i=1

Next, applying model (2.4) to Z; = AY*X;. This defines the fractional cointegrated
VAR as

AX, = af LAY X, + zk: DALEX, s +e, t=1,..,T (2.5)
i=1

where ¢; is p-dimensional i.i.d.(0, Q) and Q is a positive definite. The fractional param-
eter d determines the fractional integration order of the variables Xy, while the cofrac-
tional paramter b determines the degree of cointegration, i.e. the amount of reduction in
fractional integration. It appears that both A?X; and A?~3'X; are I(0). The long-run
parameter 5 and the adjustment parameter « are the p X r matrices where r denote the
number of cointegrating ranks and 0 < r < p. The parameters I'; = (I'y, ..., I'x) govern
the short-run dynamics from lag terms. Denote the product of o and 3 as II = a8’ a
p X p matrix. When cointegrating relations exist, the elements of 5'X; are the linear
combinations of the variables in the system. The adjustment coefficients o determine

the speed of adjustment towards the long-run equilibrium.

In some special cases, when r = p, the matrix Il is unrestricted; when r = 0, the
cointegrating relation is not present; and when r = k = 0, the model reduces to A?X, =
€;. It might be helpful to note that the cointegrating relation 3’ X; enters into the right-
hand-side of (2.5) with time period ¢ but one is only required to provide observations
up to time ¢ — 1 to calculate the fractional difference of 5'X;. To see this, the fractional
process X; is govern by the fractional lag operator Lj such that Ly X; = (1 — Ab)Xt is

an infinite series starts from X;_1 to negative infinity.

Deterministic terms can be assumed in the FCVAR model in several ways. Johansen
and Nielsen (2012) considered the inclusion of restricted constant p in the long-run
cointegrating relation. Dolatabadi et al. (2016) suggested an unrestricted constant £ as
the linear trend of the fractionally integrated processes. The general formulation of the
FCVAR with deterministic terms can be written as

k
AYXy =+ aLp AT X+ ) + > TIAYLLX, i+ et (2.6)

=1
The restricted constant is interpreted as the mean level of equilibrium relation; on the
other hand, the unrestricted constant is the level of the fractionally differenced variables.

According to (2.6), if d = b = 1, the restricted constant becomes ap’ and will be reduced
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to unrestricted constant. Otherwise, the FCVAR model allows both unrestricted and

restricted constants exist in the model at the same time.

There is an important issue about sampling fractional processes. Fractional difference
(see equation (2.1)) is defined in terms of an infinite series; however, sample data only
has finite number of observations. Consequently, the fractional difference calculated
from the observed sample is not the same as defined. To reduce sampling bias, one
can assume the fractional series X; has initial value of zero Xg = 0 in sample; albeit
economic data seldom initiates from zero. Another solution is to assume a sample length
of N +T on X; where N is the number of initial values for conditioning and T is the
number of observations for modelling. Johansen and Nielsen (2016) proposed a simpler
model to get rid of the impact of pre-sample observations. The fractionally integrated
variables are assumed to have non-zero level parameter u. The level parameter in model
(2.5) shifts the fractional series by a constant:

k
AN Xy —p) = E+ af LA (X, — p) + Z DALY (X — p) + €, (2.7)

=1
which is equivalent to the inclusion of restricted constant by having 8’y = p’. Johansen
and Nielsen (2016) showed that the formulation (2.7) has advantage of reducing sampling

bias even when conditioning on no initial values.

The FCVAR models (2.5 and 2.6) are estimated by conditional maximum likelihood
with respect to the parameter set A\ = (d, b, o, 3,&, p,I';), conditional on N initial val-
ues. For model (2.7), the number of initial values can be zero. Johansen and Nielsen
(2012) showed that, for a fixed pair of memory parameters (d,b), the estimation of FC-
VAR model is reduced to reduced rank regression as in Johansen (1995) of A?X; on
AL, X, corrected for {AdLiXt}le. In this way, the parameters («, 3, &, p,T;) can be
concentrated out from the likelihood function of model (2.5 or 2.6) and estimation of
(d,b) can be done by maximising the profile likelihood function over the memory pa-
rameters d and b only. With the presence of level parameter p in (2.7), the optimisation

is conducted over (d, b, u).

Asymptotic theory of the quasi-maximum likelihood estimators is provided by Johansen
and Nielsen (2012). Note that the parameter value by = 1/2 is a singular point thus
inference is different for by < 1/2 or by > 1/2. For 0 < by < 1/2 with by denotes
the true value of b, the limit distributions are standard Gaussian for (d, 13, Q, B,fi), or
mixed Gaussian for (B , p) with the presence of restricted constant p, and chi-squared for
likelihood ratio statistic of I = a8’. For by > 1/2, the limit distributions of estimators
for (cz, b, &, f‘z) are Gaussian, while the distribution of 7% (B — Bo) is mixed Gaussian.
The asymptotic distributions for other deterministic terms é and [ remain unknown in

the literature.
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2.3.2 FCVAR model with threshold adjustment

The main extension to the fractionally cointegrated vector autoregressive models (2.5-
2.7) is to allow the speed of adjustment parameter « to differs across two regimes de-
pending on a threshold parameter. Threshold cointegration has been widely adopted
in macroeconomics and finance to analyse nonlinear dynamics in I(1) nonstationary
systems. This research takes a further step to provide flexibility in the degree of long

memory of the nonstationary processes.

A bivariate two-regime threshold FCVAR model for a pair of fractionally cointegrated
processes Xy = (214, x9;) is formulated as

k
ANXy — p) :(AdibLbalﬁ/(Xt — )+ Z T, AL (X — N))D1t(57 )

i=1

k
+ (Ad*bLbOQﬁ/(Xt — )+ TioALy(X i — H))DQt(ﬂa V) + e (2.8)

i=1
where D1(8,7) = 1(ei—1 < 7), Da(B,7) = 1(ei—1 > =) in which 1(-) denotes the
indicator function and e;—1 equals to the disequilibrium error 3’(X; — u1) in the previous

period.

Threshold FCVAR model (2.8) exhibits regime switching depending on the value of
the error-correction term e; in the previous period. The equilibrium deviation is not
the only specification for the threshold variables. Other choices of threshold variables
can be an external factor (see Gonzalo and Pitarakis, 2006b) or the lagged difference
of the dependent variable (see Caner and Hansen, 2001) which are expected to drive
the regime-specific adjustment dynamics. In general, it is only necessary to ensure the

threshold variable is stationary and ergodic with a continuous distribution function.

Threshold effect has content only if the error correction term e;_ satisfies 0 < P(e;—1 <
v) < 1, otherwise the model reduces to linear FCVAR model. A constraint, mp <
P(ei—1 <) < 1—m, is imposed to guarantee each regime has no less than my% of
observations of the total sample. The pre-determine trimming parameter, g, is chosen
by concerning two aspects. One is that the critical values of supLM statistic will increase
as mg decreases and the distribution of the test statistic diverges to positive infinity as
mg — 0. The power of the test will be reduced if the choice of my is too close to the
endpoint. On the other hand, it is desirable to choose a value of 7y so that the trimming
parameter given the true value of threshold lies in the interval [mg, 1 — mp]. To balance
the trade-off among these considerations, Andrews (1993) suggested 7y may take a value

between 0.05 and 0.15 according to his simulation result.

For model (2.8), the long memory parameters d, b and the cointegrating relation 3’ (X; —

u) are presumed to determine the intrinsic long memory characteristic of the variables
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X, in the long-run, thus they are assumed to be unchanged across regimes. The short-
run dynamics of the time series, include adjustment coefficient « and lagged terms

coefficients I';, are assumed to be different across regimes.

The above model specification is somehow similar to Van Dijk et al. (2002) who mod-
elled the nonlinear and long memory dynamics of the US unemployment by a fractionally
integrated smooth transition autoregressive (FI-STAR) model. Their model aimed to
capture the nonlinear responses of US unemployment to economic shocks during reces-
sion and expansion. The long-run properties of the time series are considered as the
characteristics of the time series itself, are restricted to be constant; however, the short-
run dynamics react to economic shock differently, are allowed to vary depending on the
indicator function. The proposed model of this study incorporates the idea of Van Dijk
et al. (2002) into a multivariate content, in which the nonlinearity is coming from the
disequilibrium among the time series and affecting the short-run dynamics but not devi-
ating the long-run properties. Although it is not the focus of this study, the fractionally
cointegrated VAR models can also be extended to have regime-specific long memory
parameters; for instance, if the time series of interest are believed to have different long

memory characteristics under different states of switching variable.

It is relevant to note that, in model (2.8), the level parameter p and its implicit form of
restricted constant p’ = 5’y measure the mean level of cointegrating relation, thus it is
considered to be constant at different regimes. If one is interested in regime dependent
deterministic term, the alternative form with regime dependent unrestricted constant &
can be taken as

k
A'Xy = (& + AT Ly B'X + YT AL X ) Du(8,7)
i=1
k .
+ (52 + AT Lyan B Xy > Fi,2AdL?)Xt7i)D2t(5a )+ €t (2.9)

i=1

The Matlab programme for threshold FCVAR models (2.8 and 2.9) provided in appendix
B is written based on Nielsen and Popiel (2016) and Hansen and Seo (2002). There are

options to opt-in level parameter and/or unrestricted constant which are compatible to
Nielsen and Popiel (2016)’s Matlab programme for linear FCVAR model.

2.3.3 Estimation

The estimation of a bivariate two-regime threshold FCVAR model can be done by maxi-
mum likelihood estimation (MLE) in two steps. Under the assumption that the residuals
e are 4.i.d.(0,2), the Gaussian likelihood function from model (2.8) with N = 0 initial
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values is given as
T
—2T MogLy(\) = log(det()) + tr (Q*lel Zet()\)et()\)/), (2.10)
t=1

where the MLE parameter set A = (d,b, i, Q, 8, 1, 2,11, 2,) involves two sets
of regime-specific parameters which are denoted ®; = (041,]?1;1)/ and ®y = (ag,]?i72)’
henceforth, and the residuals

k
e(\) =A4X, — p) — (Ad‘bLbalﬂ’(Xt — )+ Y T AL (X — u))DM(ﬁ, )
=1

k
— (AT Ly (X, = ) + Y TiaA Li(Xomi = 1)) Dar(8, 7).
=1

Given a pair of fixed long memory parameters (d,b), the threshold FCVAR model is
reduced to the I(1)/1(0) threshold cointegration by Hansen and Seo (2002). In addition,
threshold FCVAR model assumes the long-run fractionally cointegrated relationship
remains unchanged across regimes, turns out that in the first step of estimation, the
maximum likelihood parameters of (d,b, u) can be estimated by maximising function

(2.10) regardless any nonlinearity in the short-run dynamics.

In the second step of estimation, since the MLE estimates (d, b, ft) is given from the
previous step, the concentrated likelihood can be computed for the regime-specific pa-
rameters (1, P9, Q) by holding (3, ) fixed. The MLE ®1 and D, are piecewise linear in
the threshold space for the sub-samples for which e;_; <~ and e;_1 > 7, respectively.
More specifically, this yields the concentrated likelihood function

logLr(B,7) = logLr (®1(B,7), P2(B,v

), B,7))
_ 7%10gdet(ﬂ(ﬂ,v)) - %‘

(2.11)

The MLE (3,4) maximise the likelihood function (2.11) subject to the constraint m <
T-1 ZtT:1 1(et—1 <) < 1—mg. Since, the likelihood function in (2.11) is not smooth, so
the gradient hill climbing optimisation techniques cannot guarantee a global maximum.
Therefore, similar to Hansen and Seo (2002), a grid search over the two-dimensional

space (8,7) is adopted for the estimation of 5 and ~.

The two-dimensional grid 3, ] is constituted by Ng x N, number of grid points, with
Ng and N, denote the evenly spaced grids on [5r,By] and [yr,7v], respectively. It
computationally convenient to calibrate the grid region [f1, B7] over the slope parameter
B2 from B’ = (B, 52) with a fixed value of B1 = 1. Hence, the grid of B2 can be
obtained by the confidence interval of consistent estimate Bg in the equilibrium relation
of the linear FCVAR model. Set é;_; = et_l(Bg), the grid region [yr,vy] is given
by the empirical support of the sorted distribution of €;_; with a trimming constraint
mo < T71 Zthl 1(é;—1 <) < 1—mg. For each value of (32,7) on the grid, the likelihood
parameter estimates (<i>1, o, Q) are recalculated. A pair of optimal MLE (B,'Ay) yields
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the largest value of the likelihood value in (2.11). Finally the MLE (&1, ®3,) are set
given the optimal (5,7), as (21(8,9), ®2(5.4). (5, 9))-

At this stage, the optimisation is only described to implement maximum likelihood
estimations. Since the regime-specific parameters are discontinuous and piecewise linear
in the threshold space, deriving asymptotic theory for the estimators is challenging. The
proof of consistency of the MLE could be a focus for further research. According to the
likelihood inference in linear FCVAR model Johansen and Nielsen (2012), the MLE j3
converges to normal distribution at rate T2 for cofractional parameter by < 1 /2, and
to mixed normal at rate T% for by > 1/2. In threshold stationary models, 4 converges
to v at rate T. It might be reasonable to guess in the threshold FCVAR model, the
MLE (B ,%) may converge to (3,7) at rate between 7% and T. With known values of 3
and +, the limit distributions of the remaining parameters (d, b, ®1, ®2) are conjectured

to be Gaussian, as they are showed to be Gaussian in the linear FCVAR model.

2.3.4 Other nonlinear extensions

This study examines one of various forms of nonlinearity in the cointegrated time series.
The two-regime threshold cointegration has been widely adopted to provide empirical
regularity in many macroeconomic problems, for instance, in the business cycles and the
equilibrium parities of exchange rates or commodity prices. Nevertheless, other nonlinear

specifications are also worth exploring to select an appropriate nonlinear model.

The nonlinear adjustment in the FCVAR model can be extended to other forms of
nonlinearity. For instance, the three-regime threshold cointegration has been examined
(see Gonzalo and Pitarakis, 2002; Seo, 2003; etc.) in nonfractional case. The 3-regime
threshold specification of the fractional case can be formulated as

k
AdXt :(AdibLquB/Xt + Z Fi,1AdLZXt_i) l(et_l S ’)/1)

=1

k
+ (AdibLbalﬁ/Xt + ZF171AdLiXt_,'>1(’}/1 <e-1 < 72)
=1
k

+ (AT Ly X + DT AL X ) (e > 92) + e (2.12)

=1
The three-regime case is a straightforward extension from the two-regime one. Error
correction depending on three states is also commonly observed in many macroeconomic
time series such as the interest rates term structure exhibits different mean-reversion
dynamics at good /normal/bad economic conditions. However, the grid search techniques

for MLE will be computationally intensive with two thresholds and one slope parameter.

Another nonlinear specification can make use of smooth transition in the adjustment
dynamic. Unlike threshold models which are characterised by discrete regime shifts, the
smooth transition models allow for continuous and smooth transitions across regimes.
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The recent literature e.g. Saikkonen (2008), Seo (2011) and Kristensen and Rahbek
(2013) investigate the nonfractional smooth tsransition vector error correction models.
The two-regime smooth transition extension in FCVAR model is defined as

k
AYX, (AT L0 B/ + 3 Tia AL X ) G(B' X )

i=1

k
+ (Ad*bLbOzzﬁ/Xt + Z Fi,2AdLiXt—i> {1-6(F'Xi—1)} +e (2.13)

=1
where the transition function G(-) is commonly the logistic or the exponential.

The logistic smooth transition function is: G(3'X;) = (1+exp{—d(8'X;—c)})~!, and the
exponential function is: G(3'X;) = 1+exp{—6(3'X;—c)?}, where § > 0 is the smoothness
(velocity) of the transition and c is the location parameter. Smooth transition model is
continuous in the smooth transition parameter 5. The model reduces to linear model

when § = 0 and approaches to a discrete two-regime threshold model when § — 0.

Asymptotic theory of regime-switching and/or discontinuous cases is difficult to establish
due to the lack of uniformity in the convergence over the cointegrating vector space.
Given the smooth transition case is a continuous generalisation of threshold models,
it may provide convenient properties to derive asymptotic inference in the nonlinear
fractionally cointegration. Hopefully this question can be neatly answered in my future

research.

2.4 Testing for a threshold

Strictly speaking, there are two testing objectives on the two-regime threshold fraction-
ally cointegrated VAR model. One is testing for the presence of long-run fractional
cointegration, and the other is testing for the threshold nonlinearity in short-run ad-
justment dynamics. This study adopts a two-step approach in which the absence of
linear fractional cointegration against the linear fractional cointegration alternative is
examined in the first step, while the null of linear fractional cointegration against the
threshold nonlinear comes in the second step. The first step of hypothesis testing applies
the cointegration rank test of fractionally cointegrated VAR systems by Johansen and
Nielsen (2012). This section derives a hypothesis testing for the presence of threshold
adjustment in a FCVAR model.

2.4.1 Test statistic

This research focuses on model-based statistical tests for direct model comparisons. The
crucial issue in nonlinear testing of this type is the null hypothesis contains a nuisance

parameter, i.e. the threshold parameter is not identified, leading to a nonstandard
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testing problem. Thus, the test follows Hansen and Seo (2002) and employs the sup-type
Lagrange Multiplier statistic (henceforth supLM), as it does not require a distribution

theory for the parameter estimates in unrestricted model.

Let Hp denote the class of linear FCVAR models (2.7) and H; denote the class of
two-regime threshold FCVAR models (2.8). The restricted and unrestricted models in
compact form can be written as

Ho : ANX, — p) = D'2(B) + & (2.14)
Hy AN Xy — ) = D1 2(B)D1e(8,7) + P5z4(B) Dot (8,7) + e (2.15)

AP LB (X — )
ALY (X, — p)
where 2 (B ’ ) '

SN~—
I

ATLE(Xy — )

The g x 1 regressor z;(3) corresponds to the g x p where ¢ = pk + 1 parameter matrix
® = (o, 1) in Hp and its regime-specific parameter sets ®; = («a;,I ;)" for j = 1,2
denotes the state j of regimes in H;. The linear model is nested in the threshold

alternative which satisfies 1 — ®5 = 0.

For fixed memory parameters (d,b) and known values of parameters (3, ), the alterna-
tive of threshold FCVAR model is effectively reduced to piecewise linear reduced rank
regressions. Specifically, A%(X; — p) on 2(3)D14(B,7) in regime 1 and AY(X; — u) on
2(8) D(B,7) in regime 2.

The LM statistic has standard expression as
LM()‘O>’Y) = S()‘077)IH_1()‘Uu’Y)S(AO7’7) (216)

where \g = (d,b, i, 2, 3, @) are the parameters of interest under the null, S(\g,~y) and
H(Ao,y) are the score and Hessian of the log-likelihood (3.8) evaluated at the param-
eter set under the null, respectively. As in Hansen and Seo (2002), the asymptotically
equivalent version of LM statistic could be given as

LM(B,) = vece(®1(8,7) — ®a2(8,7)) (Vi + V&) ' vee(®1(8,7) — $2(8,7)) (2.17)

where vec(-) is the vectorization operator, Vi and Vj are the covariance estimators for
vec(®1(3,7)) and vec(P2(5,7)), respectively. They are defined as

Vl - ‘71(677) = Ml(ﬁa’}/)_lgl(ﬁ7’Y)Ml(ﬁa’}/)_17 (218)
VZ - ‘72(/877) = MQ(/Ba7)7152(/877)]\42({377)71 (219)
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with the product matrices

Ml(ﬂ,’y):Ip®21(5,’7)121(67’7) and M2<67’7):IP®Z2(677)122(ﬂ77)7
E1(8,7) = L, © G(B,7)G(B,y) and Eax(B,7) = I, ® ¢2(B,7) C2(B,7)

Let z1(3,7) and z2(8, ) be the matrices of the staked rows z¢(5) D1¢(3, ) and z¢(8) Da(8,7),
respectively, in (2.15). Denote (1(f5,v) and (2(3,7) as the matrices of the stacked rows
€ ® 21(8,7) and & ® z2(f8,7), respectively, with & the estimate of residuals in (2.14).

For those who are interested in assuming time-varying conditional variances, the expres-
sion in (2.17) can allow for heteroskedasticity-robust covariance estimators in Vi and
Va.

If the threshold parameter v is identified, LM statistic in (2.16) or (2.17) would be the
test statistic. However, if 7 is unidentified under the null of Hp, information matrix
is singular and the asymptotic distribution of LM statistic is nonstandard due to the
presence of nuisance parameters under Hg. A solution to the unidentified parameter in
Ho has been raised by Davies (1987) who proposed to obtain the optimal LM test statistic
from a set of LM statistics at each value of the unidentified parameter. Each one of those
test statistics would be chi-squared with one degree of freedom, but the maximum of
a set of dependent chi-squared distributions is not a chi-squared. The nonstandard

limiting distribution of the test can be identified through bootstrap techniques.

The supremum of LM test statistic is defined as

sup LM = sup LMt (,7) (2.20)
yelr'*

where 3 denotes the null estimate of 3, and the threshold parameter y is given in the
search region I'* = [yr, ]| with v, is the 7, percentile of error correction term e;—; and

v is the 1 — m, percentile”.

For the development of asymptotic properties, the following assumptions are formulated.

Assumption 2.1.
(1) The errors {e;} are i.i.d.(0,€) with Q > 0 and Ele|® < oo.
(2) The initial values X_,, for n > 0, are uniformly bounded.

(3) Define the parameter set N = {d,b:0 < b<d <di} for some dy > 0 which
can be arbitrarily large. The true parameter values (dg,bg) € N, 0 < dy—bg < 1/2,

by # 1/2.

(4) If rank r < p, then det(¥(y)) = 0 has (p — r) unit roots and the remaining

roots are outside Coga(p1)-

"Note that for empirical application, the trimming parameter mo corresponds to the constraint in the
grid search of MLE 4, while the trimming parameter 7., corresponds the constraint in the search region
of LM test statistic.
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(5) Under Ho, LM%(8,~) = LM (B + §/T,~) has the same asymptotic finite di-
mensional distribtuions as LM (Bo,"y).

(6) The estimates of d and b under Ho do not affect piecewise linear reduced rank

regressions under H;.

Conditions (1)-(4) are assumptions imposed in the fractionally cointegrated VAR data
generating process, see section 2.4 of Johansen and Nielsen (2012) for more detail. As-
sumption 2.1(1) does not impose Gaussian to the errors but only assumes the i.i.d. and
finite eight moments. Assumption 2.1(2) is needed for nonstationary processes to ensure
the fractionally differencing series A%X; is defined for any d > 0. In Assumption 2.1(3),
the condition 0 < dp — by < 1/2 ensures )X, is asymptotically stationary. Assump-
tion 2.1(4) guarantee the cofractionality when r > 0 in which X; is fractional of order
do and B(X; is fractional of order dy — by, such that both A% X, and Ado—bo By X; are
I(0) stationary. Assumption 2.1(5) is suggested by the Theorem 2 of Hansen and Seo
(2002) which implies the use of the estimate 3 from linear model, rather than the true
Bo, does not affect the asymptotic distribution of the LM test statistic. Similar to 1(5),
Assumption 2.1(6) ensures the estimate d and b from linear model does not affect the

asymptotic distribution of the test statistic.

Definition 2.1. Let F(-) be the marginal distribution of the error correction e;—1. Define
wi—1 = Fle—1), M(r) = I, ® Elziz1(wi—1 < 7)] and Z(r) = E[l(wi—1 < 1) (e, @ ze27)].

Theorem 2.1. Under Hy, Assumption 2.1 and Definition 2.1,

supLM = B = suRB(r)
re

where
A=[r,1—m7] and 7 = P(ws_1 <),
B(r) = S*(r)E*(r)S*(r), in which
S*(r) = S(r) = M(r)M(1)~'5(1),
EX(r)=Z2(r) = M(r)M(1)7'Z(r) = Z(r)M (1) "M (r) + M (r)M (1) *E(1)M (1)~ 1M (r).

Theorem 2.1 is reproduced from Theorem 2.1 of Hansen and Seo (2002) for the case of

fractionally cointegrated series. Sketch proof is provided in Appendix A.

2.4.2 Bootstrap statistic and p-value

The LM statistic has nonstandard distribution and hence tabulation is not feasible.

As in Hansen and Seo (2002), fixed regressor and residual-based bootstrap inferences
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are proposed to approximate the distribution of supLM. Refinement of finite sample

performance is investigated through simulation experiment in section 2.5.1.

Fized regressor bootstrap constructs the bootstrap distribution of supLM test us-
ing the residuals from the reduced rank regression in Hg and the parameter estimates
<i>1(’y) and <i>2('y) under the unrestricted model. The fixed regressor bootstrap procedure

proceeds as follows.

First, it is noted that Assumption 2.1(5) suggests the estimate of cointegrating vector
ﬁN in linear model does not affect the asymptotic distribution of the supLM test. Hence,
the estimate of 5 does not need to be considered in the inference of threshold estimate
and can be held fixed along the bootstrap procedure. Let the dependent variable Zy; =
AJ(Xt — [i), the regressor % = z/(f) in which z(j) is given in (2.14) and the error
correction term e;_1 = €t—1(ﬁ~)- The residuals €, the estimates of fractional memory
parameters d, b and the level parameter estimate fi from the linear model in Hy are held

fixed at their sample values.

Next, let vy, be an i.4.d.N(0, I2) and set up; = € o vp;. Regressing up; on Z; yields
bootstrap residuals €,; in linear model. Regressing u; on ZtDlt(B,y) and Ztht(B,’y)
yields bootstrap estimates ®;4(7), ®o4(7) and residuals é,(y) in unrestricted model.
Hence, define the bootstrap covariance matrices Vi 5(7) and Vap(v) as in (2.18) and
(2.19) by replacing 8 = 3 and & = &(7).

Then, the bootstrap supLLM test statistic can be set as

sup LM" = sup vee(®15(7) = 2.0(7)) (Vi) + Vo (7)) ™ vee(@r(7) — B2p(7)).  (2:21)

The bootstrap description above generates one draw from the distribution. With a
repeated large number of draws (e.g. 1000 times), the simulated distribution of supLM?
is created. The bootstrap p-value can be obtained by counting the percentage of simu-
lated supLM exceeds the sample supLM statistic. If the bootstrap p-value is less than
the nominal size chosen, the null hypothesis is rejected in favour of the alternative of
nonlinear FCVAR model.

Residual bootstrap constructs the bootstrap sampling distribution of the test using a
complete specification of the model in Hy. The disturbance term ¢; in (2.14) is assumed
to be i.i.d. normal. The resampled residuals €,; are randomly drawn from the sample
estimated residuals €;. Then the bootstrap sample 28775 can be constructed using the
parameter estimates in 7o and the resampled residuals. The bootstrap supLM? statistic
can be calculated for each resampled data. By repeating sufficient large number of
resamples, the bootstrap p-value can be obtained by counting the percentage of simulated

supLM exceeds the sample supLM statistic.
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2.5 Simulation evidence

This chapter performs a set of simulations to evaluate 1) the size and power of supLM
test, and 2) the model misspecification of a threshold fractionally cointegrated VAR
model. Simulation evidence is provided in support of the supLM test maintains good
empirical size and power in small sample. With regard the incomplete asymptotic the-
ory of Gaussian maximum likelihood estimators in the threshold FCVAR model, a data
generating process from the threshold FCVAR is simulated and fitted into the misspec-
ified forms of cointegration models. By doing this, the misspecification of long memory
parameters (d,b) and threshold adjustment from other forms of cointegration might be

evident.

2.5.1 Finite-sample size and power

The empirical size and power of the supLM test under finite-samples are studied based
on linear fractionally cointegrated VAR model in null hypothesis Hg and the alternative
choices Hy of the two-regime threshold adjustment in the FCVAR model. A bivariate
fractionally cointegrated process X; = (x14,224) is the variables for data generating

processes.

Empirical size is assessed under Hy which is the fractionally cointegrated VAR model
with linear adjustment coefficients. Data is generated based on:

k
AN X, —p) = AL, (Zl>5/(Xt — )+ Z DALY (X — p) + (2.22)

2 i=1
where disturbance term €; ~ 4.i.d.N (0, I2). Assume the number of lags k equals 0 and 1.
Parameters are fixed at d = 0.8, b= 0.6, u = (1,1), 8 = (1,—1)" and ay = —0.05. The
parameter ag varies among {0,0.25,0.5}. The lagged term coefficient I" varies among

Ty :{ 8 8 } and I'y :{ 0(')1 g'z } The supLLM test is calculated setting the trimming

parameter my = 0.15 and number of grid points N, = 50 on [yr,yy]. The number of
simulations is 1000 and bootstrap frequency is 200 for each replication. The samples
of sizes 200 and 500 with number of initial values Ny = 10 are considered. Note that
the DGP of fractional difference series adopts Jensen and Nielsen (2014)’s fast fractional
differencing algorithm and the initial value is necessary to generating fractional difference

series.

For each simulated sample, supLM statistic and p-value from fixed regressor bootstrap
and residual bootstrap are calculated. Table 2.1 summarises the rejection frequencies
from the conventional 5% and 10% tests for supLM statistics. It is shown that the rejec-

tion sizes are close to the conventional sizes with the variates of ay among {0,0.25,0.5}.

8The rejection frequencies of each scenario is the percentage of simulated p—values are smaller than
the level of significance.
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The empirical sizes improve slightly when sample size increased from 200 to 500. The
lagged term coefficient I'; varies among I'g and I'; does not distort the sizes of the test.
Similarly to Hansen and Seo (2002)’s threshold test for nonfractional cointegration, the
fixed regressor bootstrap tend to over reject the null hypothesis, while the residual boot-
strap gives much better size than the fixed regressor bootstrap. The overall size of the
supLM test using fixed-regressor bootstrap range from 0.065 to 0.088 for 5% rate and
from 0.119 to 0.132 for 10% rate. The size using residual bootstrap range from 0.051 to
0.067 for 5% rate and from 0.098 to 0.116 for 10% rate. The proposed supLM test using

residual bootstrap is found to maintain satisfactory empirical size under small sample.

Table 2.1 about here (see P.46).

Empirical power of the test is assessed against H; of the two-regime adjustment coef-
ficients in fractionally cointegrated VAR model. To keep the computation manageable,
the short-run lagged dynamics is ignored, i.e. assume k = 0. A simple 2-regime threshold
FCVAR model in H; is as

al
AYXy — p) A‘“’Lb< h
@3

>B’(Xt W) <)

012
+ A%bL, <a;>ﬂ’(xt — (e > ) + e (2.23)
2

with disturbance term €; ~ i.i.d.N(0, I2). Parameters are fixed at d = 0.8, b = 0.6,
p=(1,1), 8= (1,-1), oy = (0,0.05)" and the parameter as = (—0.01,03)" with a3
varies among {0.2,0.5,0.8}. The threshold parameter - is set to have P(e;—1 < 7) equals
to 0.2 and 0.5. Again, sample sizes of 200 and 500 with number of initial values 10 from
the fractional difference series are considered. Table 2.2 presents the rejection frequencies
of the test at 5% level of significance with different values of adjustment coefficient a3
and different sub-sample sizes 7y in the first regime. The fixed regressor bootstrap seems
to have higher empirical power than residual bootstrap; yet it is likely caused by the
artifact of the empirical size distortions. The power performance increases when the
values of adjustment coefficient increase, since the threshold adjustment is more obvious
with larger 3. When sample size increased from 200 to 500, the power improved a lot
at each scenario. Comparing the powers with different values of 7y, the threshold effect
is more likely to be identified with larger portion of the sub-sample, thus power is higher

with larger value of 7.

Table 2.2 about here (see P.46).

2.5.2 Misspecification

The goal of this simulation experiment is to show the need of accurate specifications on

the long run parameters (d, b) and the regime-specific threshold adjustment « in a class
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of cointegrated systems. If the true data generating process (DGP) is from a two-regime
threshold FCVAR model but it is fitted to different econometric models, the model is

misspecified and the coefficient estimates might be inconsistent.

Suppose that a true DGP for X; = (214, 22;)" is generated from a bivariate two-regime
threshold FCVAR model as

B 1
Al (Iu /M) =A%, (Z})etl(et—l <)+ AdbLb(

2
1

1(et—1 > 2.24

T2,6 — 2 2 2>et 1>+ e ( :

[0
@3
with equilibrium relation e; = 8/(X; — p) and innovations ¢ ~ i.i.d.N (0, I2).

The DGP is generated given the autoregressive order k = 0 and remaining parameters:

= 0.8, b = 0.6, p = (10,10)", a1 = (0,0)’, ag = (—0.005,0.25)", 8 = (1,—1)" and
~ = 1. This DGP mimics the characteristics of volatility spot-futures relation which
will be discussed in empirical application of this study, in which the memory parameters
(d,b) are larger than 0.5, with non-zero level parameter p, and adjustment dynamic oy
vanished in the first regime. To avoid the possible small sample bias, sample size of one
simulated X; process is T' = 3000 with number of initial values Ny = 10. Figure 2.1

shows an example of simulated X; from a bivariate 2-regime threshold FCVAR process.
Figure 2.1 about here (see P.42).

The above DGP is fitted to three different specifications of cointegrated VAR models,
they are: (1) linear cointegrated VAR, (2) threshold cointegrated VAR; and (3) linear
fractionally cointegrated VAR. For each fitted model, data generating process and model
fitting are conducted repeatedly for 1000 times. Table 2.3 summarises the mean and
standard error of the sampling distributions of coefficient estimates® from three different
cointegrated models. There are three simulation evidence that seem relevant to the

misspecification of long memory parameters and threshold adjustments.
Table 2.3 about here (see P.47).

First, fitting DGP to an I(1)/I(0) 2-regime threshold CVAR (model 2) forced the long
memory parameters d = b = 1. Although the cointegrating slope parameter Bg =1.021is
preserved, the threshold parameter estimate %/ = 0.518 is distorted. Hence the nonlinear
adjustment dynamics from x ¢ in regime 2 is diluted by 40%; while the adjustment from
x1,4 in regime 1 become significant. This result provides partial evidence in support of
Lasak (2010)’s Theorem 2, WhiC}} suggests in linear fractional case :chat, for any fixed d,
d # dy and d > 0.5, the MLE J remains consistent with a rate 3 — 8 = Op(Tl/Q*dO)

but & is not consistent any more. The simulation evidence here further suggests that in

9To avoid confusion with the the maximum likelihood estimates in empirical chapter, the MLE from
the misspecified cointegration models is denoted with symbol “double hat”.
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threshold case, misspecifying long memory parameters may also induce misspecification
of threshold parameter v. It is suspected that the unabsorbed long range dependence in
(d,b) is captured by the short-run nonlinear adjustment dynamics and thus misspecified

'ﬁy and @.

Second, by comparing DGP to the estimation of linear FCVAR (model 3), it can be
seen that the long memory parameters d and b are close to the true values in DGP,
but the slope parameter of cointegrating relation /32 = 1.08 is slightly bigger than unity.
Interestingly, the linear adjustment dynamics have very close magnitudes as in the regime
2 of DGP. This simulation scenario suggests that misspecifying short-run adjustment
dynamics may not affect the estimates of memory parameters; however, the possible

nonlinear adjustment is concealed.

Lastly, one can see that forcing integer memory parameters and linear adjustment dy-
namics in linear CVAR (model 1) may affect the estimate of cointegrating slope param-

eter, i.e. Bo = 1.13, and the adjustment dynamics & become very weak.

To sum up the simulation evidence from the threshold FCVAR DGP,

e the non-fractional 2-regime threshold cointegration fails to capture the long mem-
ory feature of DGP, and hence the unabsorbed long memory may distort the

estimates of threshold parameter and adjustment coefficients;
e the linear FCVAR model preserved similar values in long memory parameters;

e cointegrating slope parameter does not have dramatic changes in all the misspec-
ified models.

The simulation experiment demonstrates the importance of accurate specifications in
fractional memory parameters and threshold adjustment dynamics. More importantly,
it also shows that long memory feature is not distorted in both linear and nonlinear
FCVAR systems; thus assuming fixed values of long memory parameters across regimes

is reasonable at least in sufficiently large sample.

2.6 Application: volatility spot-futures relation

The appropriate modelling of S&P500 option implied volatility index (VIX) and its
related futures prices is of interest for several reasons. First, with regard the empirical
literature, the relation between realised and implied volatility of an underlying asset is of
interest to identify either option market efficiency or short-run unbiasedness of implied

volatility as a forecast of realised volatility, see e.g. Christensen and Prabhala (1998).
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Multivariate volatility process is found to be fractionally cointegrated by semi-parametric

approaches!?.

Second, because the futures is a tradable asset, the relation between VIX spot and futures
is similar to the cointegrated price processes in futures markets and commodity markets.
Thus, different to the typical analysis of implied-realised volatility relation, modelling the
cointegrated relation among VIX spot and futures provides separate interest to identify

the futures price dynamics for hedging and risk management.

Furthermore, volatility traders tend to use VIX related derivatives as volatility security
and behave differently in different states of market. When the market has high uncer-
tainty, people are willing to hedge against volatility risk. However, when the market is
certain, buying security is not necessary. The logic can be thought of one does not need

travel insurance if no travel is planned.

Having make all these points above, this research models the fractionally cointegrated
relation between VIX spot and futures by a parametric fractionally cointegrated VAR
framework. Especially, it is of interest to investigate the possible regime-specific dynam-
ics of the VIX spot-futures relation and to provide theoretical ground for the nonlinear

trading behaviour in volatility derivatives market.

2.6.1 Volatility index and futures

The Chicago Board Options Exchange (CBOE) introduced the S&P500 implied volatility
index (VIX)!! in 2003. The VIX measures a risk neutral 30-day implied volatility derived
from a basket of out-of-money S&P500 options which has an average maturity of 30 days.
Essentially, the VIX is a current expectation on market volatility over the next 30 days
given by investors’ attitude on S&P500 options. The higher VIX indicates that investors

expect a more volatile market; therefore, it is termed the “fear gauge” (Whaley, 2000).

Volatility index itself is not tradable. To allow for trading opportunities, investors rely
on the derivatives products such as futures, options or exchange traded funds (ETF)
on VIX. Due to the negative relation between VIX and S&P500 equity index, volatility
tracking products are mainly used for hedging the downside risk of S&P500. Since the
second moment of volatility measure is extremely high, VIX products provide a huge
leverage of hedge on S&P500 which means one could secure for a crash in the S&P500

by giving up just a small amount of gain in the portfolio.

'"Bandi and Perron (2006) used the narrow-band least squares estimators and Nielsen (2007) used the
local Whittle estimator to to analyse the long-run implied-realised volatility relation.

HThe S&P500 implied volatility index is denoted as “spot” in order to distinguish from the VIX
futures, but it is not a direct underlying of the futures.
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2.6.2 Stylised facts about VIX futures market

The VIX futures can be seen as a current bet on some future values of VIX. It is
noteworthy that the settlement price of futures is not calculated by the “cost of carry
relationship” as in other futures markets. In fact, the fair price of VIX futures expiring
at day j is calculated by the current value of a basket of S&P500 options expiring at
day j + 30. For example, a short-term VIX futures with j = 5 days of expiration
is projecting a current bet on the S&P500 option implied volatility in 35 days. This
implies an imperfect correlation between VIX spot and futures because futures is not

tracking spot directly.

In addition, VIX futures has normal contango state, or noted as “long-run” contango in
econometric literature (see Figuerola-Ferretti and Gonzalo, 2010). Contango is a state
of which the futures price is higher than the spot price, in turn investors are paying
at a premium for the asset at some point in the future. The opposite market state to
contango is known as backwardation. The long-run contango of VIX futures means that
rolling futures contracts forces to buy the long-date contract at high price and to sell the
short-date contract at low price continuously. In long term, volatility hedge effectively
eats up potential gain in the portfolio. Instead, it makes more practical sense to buy
volatility securities only when market is facing downside pressure. Brexit referendum
is a good example to show the volatility derivatives as a protective bet against market
uncertainty. At the day of referendum result announcement, the S&P500 index spot
reported a plunge of 3.6% while the one-month VIX futures had a spike of 35%.

With regard the short-term futures price dynamics, contango and backwardation of VIX
futures tend to depend on the market conditions. The scatter plot in figure 2.2 shows
that, when the VIX spot is relatively low '? which indicates market is calm, on average,
the futures price is at contango state. It is because market expects the future volatility
to rise with respect to the current VIX level. On the other hand, when the level of
VIX is high which implies market has high uncertainty, the futures price tends to be at
backwardation. It means that market expects the future volatility may drop below the

current spot level.

Figure 2.2 about here (see P.42).

To illustrate the nonlinear response by investors upon the states of contango and back-
wardation in volatility futures market, a preliminary evidence is shown by an OLS
regression for the period 2009-2016.

12Tn practice, the level of VIX spot is considered to be low when it is below 20. Note that the sample
average of VIX spot from 2003 to 2016 is 19. The VIX level was above 35 during most of the time
of 07-08 financial crisis and of the European debt crisis in 2011, and it is above 25 during the Brexit
referendum.
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The percentage change in trading volume of VIX futures, Alog(vol), is regressed on
its lag term and the logarithmic difference of spot and futures in the previous period,
vdi—1 = log(si—1) — log(fi—1), with the regime switch depends on contango (s — f < 0)
and backwardation (s — f > 0).
= 0. —0. ~1—0. _ —f<
Alog(vol), ((2)-(3?01) (%%ggAlog(vol)t 1 (()0‘4115192)1)dt 11(s—f<0)
1.229vd; 1 1(s — 2.2
—1—(0-3689)1) —11(s—f>0) (2.25)

where 1(-) denotes the indicator function and standard errors are in parentheses.

The regression result in (2.25) shows that, on average, when it is at contango state, a
100% increase in volatility difference increases the volume change by 41.2%; however,
when it is at backwardation, a 100% increase in volatility difference increases the volume
change by 122.9%, which is three times of the change at contango. As can be seen, market
is more nervous during the volatile period and is urging to hedge the downside risk by
trading volatility futures, while there is less incentive to trade volatility futures during
the calm period. Moreover, the difference between spot and futures is more sensitive to

volume change at backwardation than at contango.

Having seen investors’ willingness to hedge against volatility may depend on market
condition, a question is posed to ask whether the possible regime dependent relation
between VIX spot and futures can be an “enter-and-exit” indicator for volatility invest-
ment. Using the states of contango and backwardation to derive investment strategies
is related to a method called “momentum strategies” adopted by many financial practi-
tioners. This study aims to provide a theoretical ground for the empirical regularity of

momentum strategies.

2.6.3 Data description

This research uses a balanced dataset of the Chicago Board Options Exchange S&P500
option implied volatility index and the corresponding one-month futures contract from
24 March 2004'3 to 30 December 2016. There are 3215 observations in the sample. Along
the study, the VIX index and VIX futures are simply denoted as spot (s;) and futures
(ft). The one-month futures prices are the weighted prices of the first and the second
month futures contract which give futures prices with an average 30 days of expiration.
Using one-month futures price has the advantage that the price difference between spot
and futures implies the change of market expectation on market volatility over a constant
time window between day 30 and day 60, that is, similar to the idea of term structure.
Instead of taking natural logarithm as in many macroeconomic and asset prices data, the
original values of VIX spot and futures are used in this study due to several reasons. First

of all, this application aims to verify the “momentum strategy” which uses contango and

13The first day of the sample is the date of introduction of VIX futures.
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backwardation as enter-and-exit signal. The financial practitioners always look at the
original values of spot and futures rather than the logarithmic values. Secondly, since
fractionally cointegrated processes are sensitive to initial values (Johansen and Nielsen,
2016), transforming the data series may initiate the risk of inconsistency in parameter

estimates.

The time series plot of VIX spot, futures and their price difference, spot minus futures,
is shown in figure 2.3. From a preliminary inspection on spot and futures, they seem
to co-move with each other across the sample period. They have a level around 15 to
20 over time. Noticeably, there are several spikes match the periods of market crashes,
including the global financial crisis in 2008, the European sovereign debt crises around
2010 and 2011 and the China market flash crash in 2015. The strong persistence of
volatility around the crash periods may indicate the presence of long memory feature.
Next, considering the difference series of spot minus futures, s; — f;, it has a slightly
negative level over the sample which matches the property of long-run contango (s; < ft)
in volatility futures market. Although the difference price series seems to be more
stationary than the original volatility processes, the spikes around market downturn
periods are still very obvious. Moreover, the significant positive spikes indicate strong
backwardation (s; > f) state. Those imply that the long-run relation of volatility spot
and futures may have informative switch from contango to backwardation when market

has risk to turn from normal to downside.
Figure 2.3 about here (see P.43).

To show the presence of long memory in volatility processes and their volatility difference,
table 2.4 reports the estimators of long memory parameter d using three semi-parametric
estimators. Given different Fourier frequencies for various estimators, the long memory
parameter estimates, CZ, of VIX spot range from 0.75 to 0.92, while the d of futures
price is slightly higher than but very close to those of spot, range from 0.84 to 0.97.
With d > 1 /2, the volatility spot and futures are long memory nonstationary processes.
Regarding the difference of spot and futures, the estimates of d range from 0.31 to
0.62. It indicates that the difference series possesses long memory, yet the stationarity

is inconclusive.

Table 2.4 about here. (see P.48)

2.6.4 Model specification

The relation of volatility spot (s;) and futures (f;) is modelled by a bivariate 2-regime
threshold FCVAR model as the framework in model (2.8). A pair of fractionally coin-

tegrated processes X; = (s¢, ft)’ has a fractionally integrated order of d. The long-run
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cointegrating relationship 5'X; = (1, —f2)(st, fi)' can be written in a single equation,
st — PBaft = er. A lot of literature focused on assessing the unity of 5, and the I(0)
stationarity of disequilibrium error e; for cointegration analysis. In fractionally cointe-
grated VAR framework, the cointegrating vector 5’ X; has an order d — b € [0, 1) where

b determines the degree of fractional cointegration.

It is relevant to distinguish between long-run and short-run contango/ backwardation
from the cointegrating vector s; — s f; = e;. The long-run contango or backwardation
refers to the “normal” state of a futures market. It is about the discussion of the slope of
cointegrating vector (2, see the econometric studies in commodity futures by Figuerola-
Ferretti and Gonzalo (2010) and Dolatabadi et al. (2015). When the slope parameter
P2 > 1 (B2 < 1), the market has long-run backwardation (contango). On the other
hand, the short-run contango or backwardation used by financial practitioners refers to
the temporary discrepancy from long-run equilibrium, that is, the disequilibrium error e,
and the error correction is picked up by adjustment parameter « in the error correction
mechanism. When e;_; > 0 (e;—1 < 0), the market is at backwardation (contango) state.
Since this study aims to test for nonlinear adjustment towards the long-run relation, the
short-run “contango” and “backwardation” are of interest. In addition, when the idea of
temporary contango and backwardation is framed into the regime-switching adjustment
dynamics, the disequilibrium error e; is said to be deviated from a threshold value
~ rather than a fixed value 0. The threshold parameter « is optimised through the

maximum likelihood value of the threshold model.

The initial value of fractional series is a concern in fractionally integrated model specifi-
cation. As mentioned previously, fractional difference is an infinite series by definition,
yet observed sample cropped the fractional difference with finite terms. It is unrealis-
tic to impose the initial value of volatility processes to be zero which implies S&P500
equity market has zero volatility, and also, this assumption induces bias to parameter
estimation. Therefore, a level parameter p1 = (us, f1y)" is included within the fractional
integrated process X; which shifts each of the fractional difference series by a constant,
that is, becomes A4(X; — ). The cointegrating vector takes a slightly different form
as (s¢ — ps) — Ba(ft — pf) = €4 Actually, it does not affect the definition of contango
and backwardation regime states, since the elements of level parameter is entered into
the equilibrium relation as a constant term which will be absorbed by the threshold

parameter estimate.

The model selection choices in terms of the number of lag length k& is specified in the linear
FCVAR model. Several information criteria include the Akaike Information Criterion
(AIC), the Bayesian Information Criterion (BIC) the Likelihood-Ratio (LR) test statistic
for significance of I'y are reported. For each criterion, the model specification with
level parameter p and full rank r = p is considered up to the maximum k£ = 3. The
BIC suggests k = 0, LR statistic suggests k = 2 and AIC suggests £ = 3 for lag

length selection. Since our focus is more on the presence of threshold adjustment in
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the error correction term, the model with no lags k = 0 is slected based on BIC for the
simplification of the threshold model. In addition, the cointegration rank test determines
the number of cointegrating relation based on a sequential test of null hypothesis H(r) :
rank = r against H(p) : rank = p for r = 0, 1, 2. The estimated rank is selected by the
first non-rejected value of the LR test statistic. The asymptotic distribution of the LR
statistic is nonstandard. Asymptotic p-value can be calculated using the algorithm by
Johansen and Nielsen (2016). The null hypothesis that » = 0 is rejected but r = 1 is

not rejected.

Have made the model specifications from the above, the relation of VIX spot and futures
is modelled by a bivariate 2-regime threshold FCVAR model with level parameter pu,

number of lags k = 0 and rank r = 1 as the following formulation.

Unrestricted model:
Ad [ StTHs ) A4, o
ft — 13 a

Equilibrium relation:

«

> e:D1(B,7) + AL, < > etDos(B,7) + e (2.26)

e
L LRV

(67

st = s + Bafe — pg) + et (2.27)

States of deviation from equilibrium relation:

D1(B,v) = 1(et—1 < 7y) indicates market is at short-run contango at ¢t — 1, and
Do:(8,7) = 1(et—1 > =) indicates market is at stort-run backwardation at ¢ — 1,

where 1(-) denotes the indicator function.

2.6.5 Empirical results

To facilitate comparison with a general class of cointegration models, the estimations
from the standard I(1)/1(0) cointegrated VAR (Johansen, 1995), the 2-regime threshold
cointegration (Hansen and Seo, 2002) and the linear FCVAR (Johansen, 2008) also
presented as benchmark for the proposed threshold fractionally cointegrated VAR model.
It is relevant to figure out common and different specifications of model 1 to 4. The
fractional cointegration (model 3 and 4) has similar representation theorem as the usual
I(1)/1(0) cointegration (model 1 and 2), apart from the long memory parameters in
the standard cointegration are restricted as unity. The threshold model (2 and 4) is
estimated after the estimation of linear model (1 and 3), in which those parameters
assumed to be fixed across regimes can be concentrated out from the maximum likelihood
function for threshold estimation. In model 2, the estimate of cointegrating parameter

~

B is extracted from linear case and undertaken a 2-dimensional grid search for threshold
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estimate. Similarly, the proposed threshold FCVAR (model 4) of this study also extracts
the long memory parameter estimates d, b and the estimates B and [ in the long-
run cointegrating relation from the linear model. Note that unlike in model 2 where
the unrestricted constant is changed across regimes, the level parameter in model 4 is

assumed to be fixed as it is inside the long-run relation as a constant.

Before proceeding to threshold estimation, a supLM test for the presence of threshold
effect is conducted on the unrestricted threshold FCVAR model. The result of the test
shown in table 2.5 supports a 2-regime threshold effect for the nonlinear adjustment
dynamics in the long-run relation of volatility spot and futures. The supLM statistic
is calculated at 19.050 with a bootstrap p-value of 0.009, it is statistically significant
at 1% level. The nonstandard distribution is calculated by 500 replications and with a

trimming parameter 7, = 0.15.

Table 2.5 about here (see P.48).
The estimation results are presented in table 2.6.

Table 2.6 about here (see P.49).

First, the estimate of fractional parameter d for the fractionally integrated volatility spot
and futures is 0.848 indicates a pair of long memory nonstationary processes, which is
close the range of d estimates by various semi-parametric estimators (see table 2.4). The
cofractional parameter bis 0.771 which indicates the degree of cointegration between spot
and futures is fairly strong. In addition, the memory of long-run relation '(X; — p) is
d — b = 0.077 shows that the long memory feature in disequilibrium error is mild. It is
different from the semi-parametric estimates of the memory of volatility difference series
(st — f+) which are ranging from 0.31 to 0.62. It might be due to the slope parameter [
is estimated rather than taken as one, or due to the possible misspecification of d and

b; yet further investigation should be given.

Second, recall that the cointegrating parameter § provides empirical evidence on the
normal state of contango or backwardation in long-run. By the fact that VIX futures
market has long-run contango (s; < f¢), the estimate Bg is expected to be less than one.
Based on the estimations reported, only the threshold FCVAR (model 4) successfully
obtained an estimate as expected, which is 82 = 0.990, while all other slope parameter
estimates from model 1 to 3 are larger than unity. Moreover, the estimates of the mean
level of volatility processes i = (fis, fif)’ from all models reflect the long-run contango

with fip > fis.

Next, we consider the threshold estimate v and the sample split between regimes in

the threshold models. This application takes a trimming parameter myg = 0.1 which
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implies at least 10% of observations will be in either one of the regimes. In model 4, the
estimate of threshold parameter 4 = 1.156 is optimised through a 2-dimensional grid
search over [3,~] with [100x 100] grids. The bound [, ] = [0.98,1.11] with increment
Ag = 0.0013, is given by the confidence interval of the consistent estimate By in the
equilibrium relation in the linear FCVAR model, in which 3, = 1.05 (s.e. = 0.01) and
6 standard error apart from mean are used for calculation. The bound [yz,7y] is given
by the sorted distribution of the disequilibrium error é;_; with a trimming constraint
0.10 < P(e; < ) < 0.90. The log-likelihood plot over the 2-dimensional grid [f2,7] is
shown in figure 2.4. Both MLE Bg and 4 are precise and strongly convexified around a
small region where the lowest negative likelihood lies on. An optimal pair of [Bg, 4] yields
the lowest value of negative log-likelihood. The percentage of observations are 89% in
regime 1 and 11% in regime 2, which is realistic to suggest market turbulence accounts
for 11% of the total sample period. However, the standard threshold cointegration
(model 2) tells a different story regarding the threshold estimate and the sample split.
The threshold estimate is negative, 4 = —1.431, and it divides the sample into 68% and
32% of observations in regime 1 and 2, respectively. Yet the observations in regime 2
still account for smaller proportion, it is surprising to say the market has 32% bad time

over the sample period.
Figure 2.4 about here (see P.44).

The adjustment parameter o = (ag,af)" is of interest in this empirical application.
Threshold cointegration and threshold FCVAR models found different evidence in ad-
justment dynamics. First of all, the threshold FCVAR reports zero adjustment in the
first regime which implies that the cointegrating relation of VIX spot and futures dies
out when the market is calm. The adjustment parameter estimate in the second regime
is (—0.006,0.213)" with s.e. = (0.080,0.029)", which indicates during the turbulent time,
there is an error correction dynamics by VIX futures but the adjustment by spot remains
minimal. Note that a?p = 0.213 means that volatility futures in period t 4+ 1 will adjust
on average 21.3% of the disequilibrium error e; in period ¢. The result of adjustment
dynamics from threshold FCVAR mdoel successfully provides economic meaning to the
asymmetric hedging behaviour by using VIX products. When market is highly uncer-
tain, i.e. when volatility spot is much higher than futures, people tend to hedge against
the downside risk. Hence, futures price has upward tendency and reverts the volatility
difference towards the long-run equilibrium relation. On the other hand, when market
is normal, volatility products are less attractive, thus there is no noticeable adjustment
by VIX futures. Comparing to threshold FCVAR, standard threshold cointegration
found opposite results in adjustment parameters across regimes. Futures exhibits mean-
reverting behaviour in the first regime with a} = 0.072 (significant at 5%); however, the

cointegrating relation is statistically insignificant in the second regime.
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Lastly, the linear fractional and nonfractional cointegration models conceal the het-
erogeneous error correction dynamics across different regimes due to the linear model
specification; yet both model 1 and 3 found significant adjustment behaviour from VIX

futures, standard cointegration also found significant adjustment by spot.

2.6.6 Momentum strategy

Empirical results demonstrate that the disequilibrium error e; from the long-run relation
of VIX spot and futures exhibits regime dependent responses given different economic
states. Financial practitioners refer the states as (short-run) contango and backwar-
dation and use them as an enter-and-exit directional signal for frequent trading. For
example, from the estimation of 2-regime threshold FCVAR model, one may enter into
VIX futures contract when the error e; = (s; — f5) — Bo( ft — jt¢) is larger than 4 = 1.156,
i.e. in regime 2. As illustrated in figure 2.5, the sequence of switches between regime
1 and regime 2 seems to be able to detect the market turbulence, such as the Chinese

stock market crash in 2015 and Brexit referendum in 2016.

Figure 2.5 about here (see P.45).

This section attempts to examine the profitability of such strategy based on the infor-
mation arrival of contango and backwardation of the VIX futures market. The portfolio
performance is compared to those from the benchmark 7(1)/1(0) threshold cointegration
and the simple s; — f; definition for contango and backwardation adopted by traders. A

simple strategy is constructed by:

longing VIX futures when it is in backwardation, holding a long position

until it enters into contango.

This trading strategy takes the advantage of contract rolling, because futures is bought
at discount in backwardation and sold at premium in contango. It is noteworthy that
this strategy may expose to risks associated with adverse moves in VIX futures, other
researchers (see. Simon and Campasano, 2014) suggested a more sophisticated strategy
by hedging the adverse moves of VIX futures with opposite direction of mini S&P500 fu-
tures. This study would rather keep the trading application straightforward to compare
the nonlinear trading signals generated from different models. Both threshold FCVAR
and threshold cointegration use the threshold estimate 4 as the trigger point to buy
VIX futures, the decision rule is longing futures when e; > 4. The commonly adopted
contango-backwardation strategy fixed the threshold =~ at zero and S at one, hence

traders long futures when s; — f; > 0.
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An abstract portfolio is constructed as follows. Assuming there is an initial investment of
$1000 in VIX one-month futures'*. The sample period from 4 January to 30 December
2016 is tested. It is important to note that VIX futures settlement is calculated with a
Special Opening Quotation using opening prices of actual traded S&P500 options that
expire 30 days from the day of settlement. Accumulated profit is calculated as the sum

of profit(or loss) in futures contract times principal over the sample period.

Table 2.7 about here (see P.50).

Table 2.7 shows the profit performance using different sequences of enter-and-exit in-
formation for trading VIX futures. Regarding the total profit, the s; — f; contango-
backwardation strategy harvested the largest amount of profit, it is $962.70, while thresh-
old cointegration gained the least, it is $399.98; the proposed threshold FCVAR model
earned $454.01. However, if we consider the number of trading signals each model are
given, threshold FCVAR model provided only 7 directions for the entire year and only
2 out of 7 (29%) made a loss. The simple contango-backwardation gave 14 signals and
5 out of 14 (36%) made negative profit. The threshold cointegration was the noisiest
one which provided 17 directions but 10 out of 17 (59%) generated negative profit. If
other transaction costs and slippage are taking effect in the portfolio, the more number

of transactions implied the more profit can be eaten up.

Threshold FCVAR provides the most conservative signal to enter a long position in
VIX futures, while threshold cointegration seems providing an aggressive trading signal.
Given the similar representation theory of threshold models, one may concern the sig-
nalling difference is a consequence of the misspecification of long memory parameters.
Any unabsorbed long range dependence in the nonfractional threshold cointegration
might be wrongly assigned to threshold adjustment dynamics, and ends up generated
lots of noise in adjustment dynamics. As shown in section 2.5, misspecifying the memory

parameters distorted the estimates of threshold and adjustment parameters.

From this illustrative example, regime dependent adjustment dynamic is found to be
useful to provide investment direction for VIX futures. Due to the simplicity of the
portfolio construction, there is no enough evidence to conclude which model provides
the most profitable signal for VIX trading. If one is interested in VIX trading, more

effort should be given to decide sophisticated strategies in a realistic portfolio.

M There are various VIX-tracking derivatives products available on financial market, e.g. iPath S&P500
VIX short-term futures ETN, ProShares Ultra VIX short-term futures ETF, Velocity Shares Daily 2X
VIX short-term ETN, etc. The same strategy can be applied to different VIX products, though one
should beware the imperfect correlation between the underlying futures contracts and the ETF/ETN
products.
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2.7 Conclusion

This research contributes to the coexistence of long memory and nonlinearity in time
series analysis. The recently developed fractionally cointegrated vector autoregressive
(FCVAR) model is extended to accommodate regime dependent adjustment dynamics
in the error correction mechanism. A model-based supLM test is derived to test for the
presence of threshold. Since the distribution of test statistic is nonstandard given by the
presence of nuisance parameter in the restricted model in null hypothesis, Bootstrapping
test statistic and p-value are deriving by simulation. Size and power of the test are
verified. Simulation evidence regarding the model misspecification is also presented in

support of the need of accurate estimates on memory parameters and threshold.

With the presence of long memory in bivariate volatility processes, their long-run relation
is found to exhibit regime switching, in which the states of switch can be explained
by different situations - contango and backwardation - of futures markets. Previous
theoretical studies mainly paid attention to the equilibrium relation among commodity
futures market and investigate the long-run contango and backwardation. However in
financial practice, the nonlinear short-run deviations from normal relation effectively

provide investment direction.

Still, there are many interesting questions worth for further research. The asymptotic
theory in the context of threshold model is challenging. The main problem is due to
the discontinuity in threshold. One extension to this recent research is to investigate
different nonlinear forms in the FCVAR model. A smooth transition FCVAR model
could be a promising attempt, in which asymptotic theory is more straightforward to
be derived given its continuity. Furthermore, a more comprehensive hypothesis test-
ing for the presence of threshold in FCVAR in which the null of linear no fractional
cointegration against nonlinear fractional cointegrated alternative could be an improve-
ment to the current two-step testing approach. It is of an empirical interest to examine
the coexistence of long memory and short-run regime dependent adjustment in other

macroeconomic and financial time series.
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Figures of Chapter 2
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Figure 2.2: Scatter plot of VIX index spot and one-month futures for the observation
from 26 March 2004 to 30 December 2016.
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Tables of Chapter 2

level of significance 5% 10%

a9 0 0.25 0.5 0 0.25 0.5
n =200, I'; =T

Fixed regressor bootstrap 0.088 0.084 0.079 0.130 0.128 0.132
Residual bootstrap 0.067 0.056 0.062 0.116 0.109 0.111
n =500, I'; =T

Fixed regressor bootstrap 0.073 0.065 0.069 0.125 0.121 0.119
Residual bootstrap 0.056 0.051 0.052 0.107 0.098 0.101

n=200,T1;=1"
Fixed regressor bootstrap 0.079 0.081 0.082 0.126 0.121 0.130
Residual bootstrap 0.072 0.062 0.060 0.113 0.106 0.120
n=>500,T; =T
Fixed regressor bootstrap 0.071 0.068 0.070 0.125 0.121 0.119
Residual bootstrap 0.058 0.053 0.055 0.111 0.105 0.108

Table 2.1: Size of supLM Test.

mo = Ples—1 <) 0.2 0.5

% 02 05 0.8 02 05 08
n = 200

Fixed regressor bootstrap 0.317 0.495 0.649 0.330 0.508 0.714
Residual bootstrap 0.297 0.392 0.594 0.308 0.476 0.687
n = 500

Fixed regressor bootstrap 0.531 0.875 0.939 0.558 0.896 0.940
Residual bootstrap 0.486 0.819 0.923 0.591 0.824 0.931

Table 2.2: Power of supLM Test at 5% size.
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DGP Model (1) Model (2) Model (3)
2-Regime FCVAR Linear CVAR 2-Regime CVAR Linear FCVAR
d 0.8 1 1 0.802
(0.001)
b 0.6 1 1 0.573
(0.008)
154 1, —1] [1, —1.128] [1, —1.020] [1, -1.084]
11 10 —0.089 - 15.240
(0.030) (0.030)
1) 10 0.183 - 18.062
(0.029) (0.028)
v 1 - 0.518 -
regime 1 linear regime 1 linear
a% 0 —0.015 —0.012 —0.0158
(0.003) (0.004) (0.0118)
ol 0 0.027 0.004 0.2360
(0.003) (0.003) (0.0291)
% - - —0.032 -
(0.032)
! - - 0.068 -
H2 (0.034)
regime 2 regime 2
a% —0.005 - —0.089 -
(0.039)
a3 0.250 - 0.155 -
(0.040)
2 - - 0.038 -
o (0.090)
2 - - 0.164 -
H2 (0.093)
Notes:

(1) The coefficients of DGP in the first column assume similar values as in the process of VIX

spot-futures relation.

(2) All other cointegration models assume one cointegrating relationship between z; ; and za

and the number of lags k = 0.

Table 2.3: Coefficient estimates of the threshold FCVAR DGP from three different
cointegration models.
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d for Spot (s¢) d for futures (f;) d for s; — f,
Fourier frequencies | GPH LW ELW | GPH LW ELW | GPH LW ELW
m = [n%5] = 56 0.836 0.757 0.761 | 0.918 0.838 0.849 | 0.388 0.314 0.310
Lno'ﬁj = 127 0.923 0.906 0.908 | 0.966 0.962 0.968 | 0.553 0.574 0.622
Lno'q = 285 0.879 0.836 0.842 | 0.936 0.889 0.895 | 0.465 0.479 0.484
Notes:

(1) The table reports semi-parametric estimators of long memory parameter d for S&P500
option implied volatility spot s;, one-month futures f; and their difference s; — f;. Three semi-
parameter estimators are considered, they are: Geweke-Porter-Hudak (GPH) estimator, local
Whittle (LW) estimator and the 2-step exact local Whittle (ELW) estimator. The estimations
use the computation algorithms by Kanzler et al. (1998) for the GPH estimator and Shimotsu
and Phillips (2005) for LW and ELW estimators.

(2) The number of Fourier frequencies equals to m = |n™] where m is the floor integer part, n
is the number of observations and w is the bandwidth size. According to literature, the choices
of bandwidth are usually ranging from 0.25 to 0.8. This study reports three bandwidth choices,
0.5, 0.6 and 0.7.

Table 2.4: Estimates of d for VIX spot, futures, and the difference between spot and
futures

2-Regime FCVAR (spot, futures)

No of replications 500

SupLM Test Statistic 19.050
Critical Value at 5% 15.134
p-value 0.009

Table 2.5: supLM test for the presence of a threshold in the FCVAR model.
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Model 1 Model 2 Model 8 Model 4
I(1)/I(0) 2-Regime I(1)/I(0) Linear FCVAR 2-Regime FCVAR
d 1 1 0.848 0.848
b 1 1 0.771 0.771
B [1, —1.071] [1, —1.069] [1, —1.050] [1, —0.990]
s —0.216 - 20.419 20.419
[y 0.140 - 20.912 20.912
~y - —1.431 - 1.156
regime 1 regime 1
(linear) (contango) (linear) (contango)
% of obs. - 68% - 89%
al —0.111 —0.052 —0.007 —0.000
(0.054)** (0.044) (0.030) (0.035)
aj 0.074 0.072 0.156 0.000
(0.026)** (0.037)* (0.021)** (0.029)
ul - —0.061 - -
,u} - 0.108 - -
regime 2 regime 2
(backwardation) (backwardation)
% of obs. - 32% - 11%
o? - —0.143 - —0.006
(0.101) (0.080)
af - 0.045 - 0.213
(0.053) (0.029)***
w2 - —0.220 - -
I - 0.179 - -
likelihood —609.635 —600.600 —9661.439 —8817.840
Notes:

(1) The table shows estimation results for the cointegrating relationship between VIX spot and

futures from four different cointegration models for comparison. Model 1 and 2 are the stan-

dard I(1)/1(0) and threshold cointegration, respectively which are estimated using the Matlab

programme of Hansen and Seo (2002). Model 3 is the fractionally cointegrated VAR model

estimated using the Matlab programme of Nielsen and Popiel (2016). Model 4 is the 2-regime

threshold fractionally cointegrated VAR model proposed by this study. The main Matlab codes

are provided in appendix B.

(2) The likelihood value for each model is the maximum log-likelihood value resulted by the

optimal parameter estimates. The larger value, the better measure of fit to the data.

(3) one, two and three asterisk(s) indicate 10%, 5% and 1% level of significance, respectively.

Table 2.6: Estimation results from four different cointegration models.
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Enter Date  Exit Date Return  Profit of $1,000 investment
Threshold 04 Jan, 16 05 Jan, 16 4.7% 46.7
FCVAR 07 Jan, 16 12 Jan, 16 —2.4% —23.6
921 Jan, 16 22 Jun, 16 —3.4% 345
22 Jun, 16 23 Jun, 16 0.6% 5.9
94 Jun, 16 27 Jun, 16 7.6% 76.4
09 Sep, 16 12 Sep, 16 22.2% 221.9
01 Nov, 16 09 Nov, 16  16.1% 161.3
Total profit $454.01
Threshold 04 Jan, 16 19 Jan, 16 28.1% 281.2
Cointegration 21 Jan, 16 22 Jan, 16 —3.4% —34.5
08 Feb, 16 10 Feb, 16 1.3% 12.8
15 Mar, 16 16 Mar, 16 —5.6% —55.6
18 Apr, 16 21 Apr, 16  —4.5% —45.2
17 May, 16 19 May, 16 6.1% 61.3
15 Jun, 16 16 Jun, 16 4.5% 45.2
20 Jun, 16 21 Jun, 16  —4.4% —43.6
92 Jun, 16 27 Jun, 16 25.5% 255.1
98 Jun, 16 29 Jun, 16  —4.0% —40.0
19 Jul, 16 21 Jul, 16 —3.5% ~34.8
15 Aug, 16 18 Aug, 16 —0.2% 2.0
09 Sep, 16 14 Sep, 16 7.0% 70.1
19 Sep, 16 21 Sep, 16 -3.9% —38.6
31 Oct, 16 09 Nov, 16 20.2% 201.7
14 Nov, 16 17 Nov, 16 —7.6% ~76.3
14 Dec, 16 22 Dec, 16 —15.7% —156.8
Total profit $399.98
i — i 04 Jan, 16 05 Jan, 16 4.7% 46.7
Cotango- 06 Jan, 16 20 Jan, 16 36.7% 366.8
Backwardation | 21 Jan, 16 22 Jan, 16 —3.4% —34.5
Strategy 25 Jan, 16 26 Jan, 16 -1.1% —-114
08 Feb, 16 12 Feb, 16 6.8% 68.2
20 Apr, 16 21 Apr, 16 4.3% 42.7
17 May, 16 19 May, 16 6.1% 61.3
15 Jun, 16 16 Jun, 16 4.5% 45.2
22 Jun, 16 28 Jun, 16 12.0% 120.2
09 Sep, 16 12 Sep, 16 22.2% 921.9
13 Sep, 16 14 Sep, 16 —0.8% -8.2
20 Sep, 16 21 Sep, 16 —-5.1% —50.7
01 Nov, 16 09 Nov, 16 16.1% 161.3
14 Nov, 16 16 Nov, 16 —6.7% —66.7
Total profit $962.70

Table 2.7: Profit performance using different sequences of enter-and-exit signal for
buying VIX futures.



Chapter 3

Deriving synchronised daily
correlations from asynchronous

stock returns

3.1 Introduction

Accurately modelling the joint dynamics of asset returns across different markets is a
fundamental requirement for understanding how strongly markets co-move and for quan-
tifying the risk characteristics of portfolios containing assets from different geographical
segments. An important concern when measuring return correlations across interna-
tional markets arisen from the fact that assets trade at their local time hence causing
the daily return series based on closing prices to be asynchronous at the time point of
data collection. The asynchronicity of returns may lead to highly distorted correlation

dynamics if the modellers do not take this issue into consideration.

This research produces reliable synchronised correlation estimates that allow financial
practitioner to construct suitably adjusted series for the purposes of correlation analysis
and portfolio risk management. Since synchronous returns are generally unobserved, an
assumption is imposed by formulating the structure of synchronous returns as a func-
tion of some observables. The benchmark synchronisation model in Burns et al. (1998)
(henceforth BEM) imposed a random walk assumption on synchronous prices. In their
case, any lead-lag correlations among the stock returns of different markets are consid-
ered as misspecified correlation. This assumption is somehow restrictive because it rules
out any lead-lag movements between markets. Instead, the synchronised correlations
proposed in this study are derived from a vector autoregressive process of asynchronous
stock returns with less restrictive assumption on price processes. The formulation of
synchronised returns assumes a fraction of asynchronous returns from the later close

market contains information to explain part of the synchronised returns from the earlier
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close market. This is a more intuitive and loose assumption comparing to the assump-
tion of random walk. More importantly, the existing asynchronous GARCH model of
BEM is nested in the proposed synchronised model of this study. This model is identi-
cal to BEM’s model with certain restriction imposed to the parameter. In other words,
the synchronisation model in this study may provide implications about the degree of

market efficiency among the stock markets with asynchronous trading hours.

Correlation dynamics play an important role in many financial applications. One may be
interested in estimating how the assets move in relation to each other before construct-
ing a multi-asset portfolio or setting up their hedging strategies. The multivariate time
series models, e.g vector autoregressive moving average process, had long been adopted
to explore correlation dynamics and transmission mechanism between the financial as-
sets. Yet, significant bias on the correlation dynamics may result from the assumption
that multiple time series are sampled simultaneously but in fact the sampling is non-

synchronous (Lo and MacKinlay, 1990).

When Information flows continuously across international stock markets, stock prices
change in response to the relevant information. However, assets at different markets
trade at their local trading time and hence the prices are only recorded in a discrete
time basis. Stock prices are stale at closing time and are no longer reflecting the current
market values upon new information. The closing prices observed from the different

time of measurement are known to be asynchronous.

To illustrate the phenomenon of return asynchronicity, think of an internationally diver-
sified portfolio contains equity investment in Japanese NIKKEI 225, the UK FTSE 100
and the US S&P 500 (see figure 3.1 for a graphical illustration). Suppose at the time of
the US market closes, the S&P 500 reports a drop by 1% of stock price, the Japanese
and the UK markets had already closed thus cannot respond to the innovations from US.
If both of the Japanese and the UK stock markets are positively correlated with the US
market, the true market values of the Japanese and the UK should have declined at the
same trading day in response to the drop from the US; however, their closing prices are
stale but their next day opening prices would assimilate the overnight information and
show decline in values. Consequently, the use of asynchronous closing prices underesti-
mates the contemporaneous correlations and leads to spurious lag-1 cross correlations.
The systematic error on correlation is bigger when the asynchronous trading difference
between markets is larger, as there is larger portion of asynchronous return incorporated
to the next day’s return. In our example, the systematic error on correlation between
the US and the Japanese stocks is expected to be bigger than the US and the UK one.
Scherer (2013) found empirical evidence that the unreliable correlations affect risk mod-
els arrive at too low (high) VaR forecasts for long (short) position in portfolios, and risk
decisions arrive at too small hedge ratios. Therefore, the phenomenon of asynchronicity
should be taken into consideration when modelling the stock returns of global financial

markets.
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Figure 3.1 about here (see P.72).

By looking at some international stock markets which are trading partially overlap with
others, we could have a comparative view of how the degree of systematic error on
correlation depends on the asynchronous timing. Figure 3.2 compares the uncondi-
tional correlations between the UK FTSE 100 and the US S&P 500 using synchronous
(16:30 GMT) and asynchronous (closing) datal, in which the time horizon moves from
1-day to 20-day return intervals. As we can observe the systematic error on correlations
diminishes when the time horizon becomes longer, by the reason that the degree of asyn-
chronicity is less sensitive for the longer sampling time interval?>. The daily correlation
calculated from asynchronous data is significantly lower than the one from synchronous
data (0.52 vs. 0.82). Once past the 5-day (weekly) interval, the effect of asynchronicity

on correlation is minor.

Figure 3.2 about here (see P.73).

Among the existing empirical studies related to the price co-movement and return cor-
relation, some studies (Theodossiou et al., 1997; Ramchand and Susmel, 1998; Chow
et al., 2003) simply by-pass the asynchronicity problem using weekly or monthly data.
However, the low frequency data is relatively small sample which may lead to inefficient
parameter estimates in multivariate time series, and in practice the potential investors
or decision makers especially treasure the correlation measures from shorter horizons. It
is because the daily or even the higher frequency data allow the exploration of market
microstructures at the same time acquiring more relative information. Moreover, the
daily synchronous prices can only be observed for limited markets (e.g. UK with US)
which have common trading within 24 hours. For other stock markets (e.g. Japan with

US) which have no overlapping trading, the asynchronicity issue remains unsolved.

The issues of asynchronous data take on greater importance in today’s global financial
applications. Various asynchronous problems have been studied for many years. Perhaps
Scholes and Williams (1977) is the first literature that considered the effects of asyn-
chronous trading on asset modelling. They proposed a statistical method to estimate a
consistent Beta at the Capital Asset Pricing Model. Dimson (1979) and Cohen et al.
(1980; 1983) considered the asynchronous returns caused by infrequent trading or other
frictions in trading process can bias the beta estimates of the asset pricing models, hence

provided an analytical expression to the relationship between observed returns and true

'The UK FTSE 100 is trading from 8:00 to 16:30 GMT, while the US S&P 500 is trading from 9:30
to 16:00 EST which corresponds to 14:30 - 21:00 GMT; thus the US and the UK stock markets have 2
hours (14:30 - 16:30 GMT) of contemporaneous trading. Then the synchronous prices for both UK and
US markets can be observed between 14:30 and 16:30 GMT. In this illustration, the synchronous data
are collected from Bloomberg at 16:30 GMT using 30-minute frequency.

2The idea is that the 5-hour trading difference between the UK and the US markets has greater
impact on the correlations at daily 24-hour interval than at weekly (5 trading days) 120-hour interval.
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returns. Another milestone of study, Lo and MacKinlay (1990), focused on the spurious
correlations induced by asynchronous data, analysed the market microstructure using
high-frequency data by a stochastic model with some probabilities of trading (or non-
trading) assigned to the data at each time interval. Riskmetrics™ provided an explicit
expression for synchronised correlations as a function of asynchronous correlations. The
drawback of Riskmetrics is that the syncrhonised covariance matrix is not guaranteed

to be a positive definite hence the synchronised correlations are not bounded on [—1, 1].

More related to this study, Burns et al. (1998) proposed a data synchronisation method
particular for daily return series whose stock markets are located at different time re-
gions. They used a first-order vector moving average process as a linear projection of
the asynchronous part of the returns. Their synchronising technique can be adopted as
either the preliminary synchronisation step on asynchronous data before applying the
multivariate time series models, or the mean process of the multivariate-GARCH type
procedure. Martens and Poon (2001) applied BEM and compared it with Riskmetrics on
their Value-at-Risk measures. The BEM synchronisation approach produces better VaR
estimates than the Riskmetrics. Audrino and Buhlmann (2004), Scherer (2013) and
Bell et al. (2013) improved the BEM method with a first-order vector autoregressive
process, which is somehow simpler due to the Markov structure, because the conditional

expectation of a Markov process depends only on finite number of previous term(s).

The synchronisation methodology of this study mainly relaxes random walk stock prices
assumption in BEM’s technique. It is an important consideration because the efficient
market hypothesis applied to asynchronous data can be less reasonable. Unlike syn-
chronous markets have mutual information for every participant, asynchronous markets
have asymmetric information where investors may behave differently. Given asymmetric
information from the global financial markets, investors can only assess the best guess
(expectation) of other’s market values, instead of the contemporaneous observations

from others.

The remainder of this study is organised as follows. Section 3.2 discusses the existing
synchronisation methodology introduced by Burns et al. (1998). Section 3.3 discusses
the econometric techniques adopted in this study. The assumptions and propositions
imposed are also explained. Section 3.4 conducts an empirical analysis on seven in-
ternational stock markets located at different time regions. Section 3.5 presents a
Value-at-Risk back-testing exercise on both asynchronous and synchronised returns. The
performance of Value-at-Risk one-step ahead forecast from different returns series are

discussed. Section 3.6 concludes the study.

3.2 The existing synchronisation model

Burns et al. (1998) considered the trading time difference of international stock markets
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underestimated daily return correlations and volatility measures. Their study proposed a
solution to estimate a synchronised return series and from that the correlation estimates
are free of systemic error. The idea is to recognise that asset values may change even
when markets are closed, these unrecorded asset prices can be estimated for use before
the markets reopen. When a market closes before synchronised time ¢, there are past
values of this market Ptii_l, Pti,-—2v ... and new information from other subsequently close
markets Pé, Pt’z, ... for i < j < k that can be used to predict what the market price of

this earlier close market would be if it was open.

A random walk process is assumed in the stock prices series such that any future changes
of stock prices from the synchronised time are unpredictable. In this way synchronised
returns R; can be formulated by an innovation with mean zero and time-varying covari-
ance matrix H;. Assuming zero mean in the synchronised stock returns, then it is given

by
Rt = €¢.

Given the assumption of random walk prices, the synchronised prices are also unbiased
estimates of the next recorded prices. In other words, the conditional expected future
price movements beyond the synchronised time t given the complete information at
synchronised time ¢ is zero. Then synchronised returns can be written in terms of asyn-
chronous returns plus the next day’s expected asynchronous returns given information
at synchronised time ¢ (which is the missing part) minus today’s expected asynchronous
returns given information at ¢ — 1 (which is the extra part):

Ry =1y + E[ri1|F] — Ere| Fe—al, (3.1)

denote the logarithmic asynchronous close-to-close return as r;.

The random walk stock prices assure synchronised returns do not depend on the past
stock prices. However, asynchronous returns show serial cross-correlations in practice.
It is because different markets measure close-to-close returns at different time and there
are time shifts forward for the later close markets. As a result, next day’s asynchronous
returns of the earlier close markets are predictable from the current asynchronous returns
of the later close markets. The vector of asynchronous returns is modelled by a vector
first-order moving average process with a GARCH covariance matrix to capture the
return predictability for one day in the future as

re = Mug_1 + ug

VCL’I"t_l[U,t] = ht, (32)

where the error term wu; is assumed to be serially uncorrelated and E[us|Fi—1] = 0, hy

is a time-varying conditional covariance matrix.

The formulation in (3.2) is named asynchronous GARCH model. The first-order moving
average coefficient M is a J x J matrix. The random walk stock prices suggest that the

coefficient matrix should be zero if the stock prices are synchronised. Therefore, any
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predictability captured by M is entirely attributed to time asynchronicity of returns
vector. This predictability resulted from asynchronicity is spurious and doesn’t rule out
the random walk assumption on stock prices. With elements ordered by the closing
time of J markets, the diagonal and below-diagonal elements of M should be zero, since
there are no overlaps in trading time. This implied that coefficient M should be in this
form if the innovations wu; are serially uncorrelated. BEM only restricted the last row
of matrix M must be zero and empirically resulted in some non-zero estimates on the

diagonal and below-diagonal elements.

From model (3.2), the conditional expectation of r; is E[r¢|Fi—1] = Mus—1, synchronised
returns R; in equation (3.1) can be constructed using the VMA(1) parameter as

Rt =1+ E[T‘t_‘_l‘ft} — E[Tt‘./_'.t_l]
Rt = (M'Llltfl + ’th) + Mut — Mut,1
= (I + M)u,. (3.3)

This synchronising procedure brings forward the fraction of daily return which is oc-
curred but not yet recorded by the synchronised time. The covariance matrix of syn-
chronised returns Hy is

VCL’I’[Rt|]:t_1] == (I + M)hf([ + M)/ (34)

The synchronised covariance matrix H; is positive-definite since the asynchronous co-
variance matrix h; is positive-definite. The asynchronous variances and covariances are
typically smaller as some of the variability of asynchronous returns are spread across

days.

Their asynchronous GARCH is applied to the G-7 equity markets® which obviously
have asynchronicity problem. Empirical findings yielded the unconditional correlation
estimates from asynchronous data are too small for the ”high-asynchronous” markets.
Although there is no reason to believe correlations are always large for each pair of
markets, the weekly correlations are much higher than the daily correlations for the
high-asynchronous markets. The weekly data are time-aggregated thus have less degree
of asynchronicity, yet they are not perfectly synchronised. Empirically the unconditional
correlation estimates from synchronised returns are slightly larger than the weekly cor-

relations.

The conditional covariance, correlations and forecasts of these for both asynchronous
and synchronised returns can be computed at each particular time by their proposed
asynchronous GARCH model. In their study, a BEKK type multivariate GARCH is
assumed in the asynchronous covariance matrix. Recall that this synchronisation method

based on the assumption of random walk stock prices required serially uncorrelated error

3The G-7 equity markets include France CAC40, Germany DAX30, the U.K. FTSE 100, Italy MIL,
Japan NIKKEI225, the U.S. S&P500 and Canada TSX. Some markets are trading perfectly synchronous
and some other are completely asynchronous.
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terms and the diagonal and below diagonal elements of the moving average matrix be
zero. However, BEM only restricted the last row of the moving average matrix must
be zero and empirically resulted in some non-zero estimates on the diagonal and below-
diagonal elements. Moreover, the post-estimation diagnostics by Ljung-box tests for
testing the dependence of standardised residuals showed that the standardised residuals
are serially correlated; the diagnostics tests indicated that the error terms from the
asynchronous GARCH model still have some non-captured patterns and a richer model

may be needed.

Since the synchronisation model proposed by Burns et al. (1998) is an important con-
tribution to the applications in risk management, other literatures adopted the asyn-
chronous GARCH focused on testing the forecasting performance of the synchronised
data, but they put less focus on the model specification and diagnostic tests. Martens
and Poon (2001) compared BEM with RiskMetrics™ on their Value-at-Risk measures
using both synchronised and synchronous? returns. Their key findings are that corre-
lation dynamics are highly sensitive to the model chosen and the data used, and both
synchronisation models add noise to the correlation dynamics. Regarding the VaR es-
timates, the RiskMetrics VaR provisions have fewer violations than the Asynchronous
GARCH by using both data types; while the synchronised data resulted in fewer vio-
lations than the synchronous data on both synchronisation methods. However, those
results should not be interpreted as one is superior to another. The number of VaR vio-
lations depends on the size of conditional covariance estimates. In fact, the RiskMetrics
covariance is higher than the covariance from asynchronous GARCH, and the covariance

from synchronised returns are expected to be higher.

It is noteworthy that Martens and Poon (2001) strictly followed the assumption of zero
serial correlation and zero serial cross-correlations in the efficient market for both syn-
chronisation models; therefore, the vector of asynchronous returns is assumed a VMA
process the diagonal and the below-diagonal elements of moving average matrix in
asynchronous GARCH are assumed to be zero. Other studies including Audrino and
Biihlmann (2002), Scherer (2013) and Bell et al. (2013) assumed a first order autore-
gressive structure to the mean process of the asynchronous GARCH model since the
first-order autoregressive Markov structure is simpler for estimation. However, those
studies ignored the fact that the VAR(1) process on asynchronous returns violated the
assumption of random walk stock prices, such that the formulation (3.1) for synchronised

returns is invalid. This proposition can be expressed mathematically as follows.

Given the first order autoregressive asynchronous returns v, = Mr;_1 + u; where
Eluy|Fi—1] = 0, its conditional expectation E[r|Fi—1] = Mr,—1 forms the estimated

4The synchronised data are obtained from the synchronisation method proposed by BEM. Taking the
advantage of partially trading overlap between the UK FTSE 100 and the US S&P 500 stock markets,
the synchronous data are collected at 16:00 London time for both stock exchanges.
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synchronised returns as

Rt :Tt-i-MTt—M’l"t,l
= Mry + us. (3.5)

Taking the conditional expectation on the estimated synchronised returns on the above,
yields

E[Ry|Fi1] = M?ry 1, (3.6)

where the conditional expected synchronised returns are time-varying and depending
on the past stock prices unless the first order autoregressive matrix M = 0. Recall
that the formulation of estimated synchronised returns at (3.1) was built on top of the
assumption that all the future stock price changes beyond the synchronised time t are

unpredictable, which required a constant expected synchronised returns.

The assumption of random walk stock prices in BEM can be too restrictive. Symmetric
information is observed by every market in the case of contemporaneous trading, hence
informationally efficient market condition is easier to be achieved. Regarding the world
of asynchronous trading, information is asymmetric - investors in markets that closed
earlier are not able to response further innovations; even investors in the latest close
market who have the most recent information do not know the true response from
those markets have already been closed. Investors may respond to innovations slower
than they should, due to the uncertainty on other markets’ true values, and thus the
information available at synchronised time ¢ can possibly be used to predict at least
some morning transactions in the next day. This may be the reason why there are
non-zero elements in the coefficient matrix of asynchronous GARCH model, bringing
forward all the predictability from the past to the current returns may over-allocate
correlation estimates. Therefore, this study aims to modify BEM to provide a less
restrictive synchronisation method by relaxing the assumption of random walk stock

prices when formulating synchronised returns.

3.3 The synchronising methodology

3.3.1 Asynchronous and synchronised returns

Asynchronous returns are formulated in line with BEM. Since daily returns are measured
from one time to 24 hours later next day at the same time, different markets may have

different time of measurement.

Time. Concerning the time notation along this chapter, denote ¢; as the closing time

of each individual market j in an order of closing time from the earliest to the latest.
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Denote t as the daily synchronised time vector where ¢ = {1,2,...,7} € N. Let the

closing time as a fraction of a day such that t;_; <t; <t.

Asychronous prices. The logarithmic closing price of market j is denoted as
Pl for j=1,...J and t;={t,ts,...t;} €RT. (3.7)

Typically, market with the latest closing time of the day refers to the time of synchro-
nisation. As an illustration in Figure 3.3, assume the closing price of the US S&P500 to
be the last element of the closing price vector denoted PlUS, the Japanese NIKKEI225
price is denoted P(‘)]g%, and the UK FTSE 100 price is denoted P&%%.

Figure 3.3 about here (see P.74).

If the closing prices of a market are observed at synchronising time ¢ € N, the synchro-
nised prices are just its closing prices, i.e. P;’; for instance the case for the US stocks.
However, most of the international stock markets record their closing prices before time

t, the synchronised prices are unobserved for those markets.

Synchronised prices. The logarithmic synchronised price Pts’j are unobserved at time
t and have to be estimated when market j is closed, given by information from markets
that are open. Define the conditional expectation of the synchronised price of market j
by

S! = E[PY7|F), where Fy={P]|t; <t,j=1,.,J} (3.8)

The complete information set F, contains all recorded prices up to time t.

Let r¢; be the J x 1 vector of asynchronous close-to-close returns measured at different
closing time ¢; for j different markets as

r, = (AP, ., AP/) = AP, (3.9)

where t; = {t1,t2,...,t;} is a multi-index.

Let R; be the J x 1 vector of estimated synchronised returns as
R, = (AS},..,AS]) = AS,. (3.10)

where t = {1,2,...,T} € N.

By (3.7)-(3.10), synchronised returns can be expressed in terms of closing prices and
synchronised prices as

Ry =5 — Si—1
= (P, — Py, 1)+ (St — P;) — (S¢-1 — Py, -1)
=Tt + B[P — Ptj |\ Fi] — B[P — Ptj—1|-7:t—1] (3.11)
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As shown in (3.11), synchronised returns can be seen as asynchronous returns with
adjustments from the expectation of unobserved returns given the most updated infor-

mation available.

Recall that BEM assumed random walk stock prices, any price change beyond the syn-
chronised time point ¢ is unpredictable given the most recent information. It follows
that S/ = B[P |F] = E[P%+1|ft], tj <t <t;j+ 1. It implies the conditional expected
future price movements beyond the synchronised time t given the complete information
at synchronised time ¢ is zero E [Pt]] 1 PP F] = 0. BEM defined the adjustment
terms in (3.11) as B[P — Py, |Fy] = Elry;41|F] and B[P — P, 1| Fi1] = Elry | Fe-1]-

This study is distinctive from BEM by relaxing the random walk assumption on stock

prices at the definition of synchronised returns in (3.5).

Denote the stock return from the closing to the synchronising time of P — P;; as the
corrected return R} and obtain

Rt = ’/‘tj + E[Rﬂ./—"t] - E[Rf_l\]-}_l]. (312)

If a market’ synchronising time is just its closing time, its R; vanished. However, if a
market closes before synchronising time ¢, there is no record for its synchronised price

and hence R} Vt are unobserved.

It is easy to understand that the correction return R} composes part of the next day’s
asynchronous close-to-close return which is observable. Therefore, we make the following

assumption:

Assumption 3.1. The (J x 1) vector of correction returns R} for market j at time t
makes up of a (J x J) matriz fraction A of the next day’s asynchronous close-to-close
returns i, 41, denote

Rf = Ary 41. (A1)

The (J x 1) fraction parameter matrix A has elements «;; for the observed market
i,j =1,...,J. The fraction parameter projects the unobserved R} from the asynchronous
return ¢, thus it can be seen as a correlation matrix between R} and r¢;. 'To maintain a
good property of fraction parameter, each element of matrix A is bounded on the closed
interval [—1,1]. The parameter A can either be constant or dynamic. In this study, we
assume it is constant and unchanged overtime, then synchronised returns is re-written
by substituting (A3.1) into (3.12) in terms of asynchronous returns by

Ry =ry; + E[R{|Fi] — E[R;_|F¢—1]
=, + A(Elre, 11| F] — Elre; | Fia]).- (3.13)

Synchronised returns equal asynchronous close-to-close returns plus a correction, which
consists of linear combination of return increments from time ¢ + 1 to ¢, representing
some degree of dynamics adjusted to the multivariate synchronised return process given

asynchronous returns.
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Unlike Burns, et al.(1998) who imposed random walk hypothesis and made an approx-
imation that E[R;|F;] = E[r,y1|F], our assumption only borrows the simple fact of
asynchronicity and expresses the correction return as a fraction of the asynchronous re-
turn is less restrictive. Nevertheless, the random walk assumption can also be viewed as

a special case within our Assumption 3.1 when parameter A equals an identity matrix.

Saying matrix A is a fraction parameter of E[R}|F;] on E[r.y1|F:] may be abstract, yet
it has some economic expressions that i) when any diagonal element of A closes to one,
the corresponding market may be more efficient and its own E [R:jfl\ft] cannot predict
its next day’s return; ii) when the off-diagonal elements of A are statistically different
from zero, the correction return F [R;’fﬂft] can be explained by the next day’s returns

of other markets i for i # j.

3.3.2 The model

The formulation of synchronised returns in (3.13) depends on conditional expectation
of asynchronous returns which should be modelled. As this model does not assume ran-
dom walk stock prices, assuming the first-order autoregressive process to asynchronous

returns will not contradict the formulation of synchronised returns.

Assumption 3.2. Asynchronous returns for market j at day t follow a first order
autoregressive process, i.e.
re, =co+ Bry,—1 + ey, (A2)

with a (J x 1) vector of serially uncorrelated errors e; such that Ele;Fi—i1] = 0,
Eleiel|Fi—1]) = 0Vt # s, Elere}] = 3¢, a (J x J) first order autoregressive coefficient
matrix B, and a (J x 1) vector of constants ¢g. Assume that the VAR(1) of asynchronous
returns satisfies the stationary condition, i.e. the root of det(I; — B) = 0 lies outside

the complex unit circle, or |B| < 1.
From Assumption 3.2, synchronised returns in (3.13) is as
Rt = ’/‘tj —|- A(E[’I‘tj+1|]:t] — E[th |./T"t_1])

=71y, + A(co + Bry; —co — Bry; 1)
= ([J + AB)T‘tJ - ABth—l- (314)

Synchronised returns in (3.14) are expressed as a linear combination of two consecutive
asynchronous returns. Next, a more specific stochastic process for synchronised returns
is needed to model the left-hand side of equation (3.14).

Assumption 3.3. The (J x 1) vector of synchronised returns is framed by a location-
scale model in terms of its mean and variance, i.e.

Rt = Ut + € fOT’t S N, (A3)
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with a (J x 1) vector of conditional mean p; = E[R¢|F:—1], a (J x 1) vector of innovation
process ¢, = X;Z; where Z; is a sequence of i.i.d. multivariate innovation variables
with zero mean and unit variance. The conditional variance-covariance matrix of the
innovation is Fleie}|Fi—1] = X¢. We can further consider GARCH-type structure for the

error term ;.

Alternative parameter identification is also provided in Appendix B, in which the syn-
chronised returns are not derived from Assumption 3.3 but from an auxiliary regression.
Note that adopting the parameter identification from an auxiliaryy regression may suffer
from efficiency loss of parameter estimates, since the parameter of interest A and B are

identified from a set of structural parameters.

Using the derivation of synchronised returns in (3.14), the conditional mean of synchro-
nised returns are:

e = E[Rt|]:t71] = E[(IJ + AB)’!’tj — AB’I’t].,1|.7:t,1]
= (IJ + AB)(CO + B?“tjfl) — ABTt].,1
= (IJ + AB)CO + (IJ + AB — A)Brtj_l (315)

Hence, the location-scale model of synchronised returns can be transformed by replacing
R; with the derivation in (3.14) and the conditional mean with the derivation in (3.15),
to obtain

(IJ + AB)’I"t]. — AB'I’t].,1 = (I] + AB)C() + (I] + AB — A)B'I"t].,1 + €
& (I;+AB)ry; = (I;+ AB)co + (I; + AB)Bry, 1 + € (3.16)

The matrix (I; + AB) is invertible. Pre-multiplying the matrix (I; + AB) the equation
(3.16) on both sides, obtaining

re; = co+ Bry,_1+ (I; + AB) e, (3.17)

The model structure in (3.17) is exactly the same as the asynchronous VAR(1) model
in (A3.2), except the expression of asynchronous error term e; is as a transformation
of synchronised error term (I + AB)~!¢;. It implied that the synchronised conditional
variance-covariance matrix Fle;e;|F;—1] = ¥; can be obtained from the asynchronous
conditional variance-covariance matrix Eleie;|Fi—1] = ¢ by

S = (I; + AB)X¢(I; + AB)'. (3.18)

The derivation in (3.18) implied that the volatility structure of synchronised returns
Var|Ry|Fi—1] can be produced from the volatility of asynchronous returns hy, with a cor-

rection metric (I + AB) derived from the mean equation of stock returns. The proposed
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conditional variance of synchronised returns in (3.18) can be modelled by some kinds of

multivariate volatility models and taken trading asynchronicity into consideration.

It is interesting to see that the conditional variance in equation (3.18) has the same
structure of the conditional variance equation by Burns et al. (1998)’s synchronisation in
(3.4). The only discrimination between these two variance matrices is that their return
correction (I + M) is derived from a VMA(1) process with random walk assumption
on stock prices; while the methodology proposed here uses a return correction matrix
(I + AB) which is derived from a VAR(1) process with Assumption 3.1 imposed in
the relation of asynchronous and synchronous returns. Random walk stock prices is
not necessarily be assumed in (3.18), but the critical implication is that the proposed
return correction (I + AB) provides flexibility to let the data shows the degree of co-
movement among different asynchronous stock markets. For some extreme cases, let
the fraction matrix A = 0, the synchronised variance-covariance matrix reduced to
asynchronous variance-covariance matrix which implied no asynchronicity. Let A = I,
the synchronised variance matrix reduced to the form of synchronised variance by BEM
in (3.4).

3.3.3 The estimation

The model (3.17) involves two parameters to be estimated: the coefficient matrix B
and the fraction parameter A. The model suffers from under-identification problem
by estimating the process directly using OLS or maximum likelihood estimations, since
there are two unknowns ¢; and A in one equation e; = (I+AB)~'¢;. Therefore, this study
proceeds with a “two-step” maximum-likelihood procedure (see Greene, 2003 p.576-582,
and Heckman, 1977).

To perform the two-step estimation, consider the following system of models constructed
by asynchronous VAR in (A3.2) and synchronised VAR in (3.16), assuming the error

terms in both models are normally distributed:

Model 1: Te; = o+ Bri—1 + e
Model 2: (IJ + AB)T’t]. = (IJ + AB)CO =+ (IJ =+ AB)B’I’tj_l + € with
€t — (I + AB)et.

There are two parameter matrices, B and A, to be estimated in the system of models.
The coefficient B appears in both model 1 and 2, but the fraction matrix A only appears
in model 2. See model 1 as a reduced model whereas model 2 as a full model, a two-step
estimation procedure estimates the parameters in the reduced model, and then estimates
the full model by embedding the consistent estimators from the reduced model. The

two steps of maximum-likelihood estimations are conducted as follows.
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Step 1: Estimating the coefficient matrix B of model 1 by maximising the log-likelihood
function InL as

Ly (B,5) = — - n(om) - —ln|Ze|

2
T
— =3 [(re; = co = Bre, 1)/ (59) " (rs, — co — Bry, _1)] (3.19)

t=1

l\D\H

Step 2: Maximising the concentrated log-likelihood function InLs in terms of parameter
A embedded with the consistent maximum-likelihood estimators of B and X¢ from step
1 as

A A . T N N
InLs(A, B,X€) = C + |l + AB| = Shn|(I + AB)éwéy(I + AB)' (3.20)
Finally the estimate of synchronised variance-covariance matrix is obtained by
S = (I;+AB)X(I; + ABY (3.21)

where B and X¢ are the maximum-likelihood estimates from model 1 and A is the
maximum-likelihood estimate from model 2 given the consistent estimators of B and
3¢ from model 1. The time-varying synchronised variance ¥; can also be obtained by

further assuming heteroskecdastic structure for asynchronous variance-covariance matrix
e
¢

3.4 Empirical analysis

This section applied the proposed synchronisation method on seven international stock
markets from the eastern to western time zones including Japan, Australia, Hong Kong,
Germany, the United Kingdom, Canada and the United States. The use of their daily
close-to-close returns is obviously suffering from the problems of asynchronicity. This
application assumed a dynamic conditional correlation (DCC) structure on the asyn-

chronous variance-covariance matrix to allow time-varying correlations.

3.4.1 Data description

The data consists of seven stock market closing price series collected at the local closing
time of each market, including Nikkei Stock Average (NIKKEI225) of Japan, Australian
Stock Exchange (ASX) of Australia, Heng Seng Index (HSI) of Hong Kong, German
stock index (DAX) of Germany, Financial Times Stock Exchange 100 index (FTSE 100)
of the United Kingdom, Toronto Stock Exchange (TSE) of Canada and Standard &
Poor 500 index (S&P500) of the United States. The data is extracted from Bloomberg
Database for the period 1 January 2005 - 30 September 2015. After dropping the

observations with holidays/non-trading days in the time series data panel (i.e. the
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whole observation for each market j at day t¢ is dropped if day ¢ is the holiday for at
least one of the investigated stock markets), there are 2360 common trading days for

each stock price series.

The data set is divided into two sub-samples, the first sample is ranging from 1 January
2005 to 31 December 2014, with 2190 trading days in total, for the purpose of model
estimation. The second sample is ranging 1 January - 30 September 2015, with 170
trading days, for the purpose of out-of-sample forecast. The vector of asynchronous
daily close-to-close returns r; for the seven market indices (J = 7) are calculated by
taking the natural logarithmic difference of the closing prices p, for each market j at the
local closing time ¢; in a time order of the earliest close to the latest close as

APASX

_ ASX _ NIK ,_HSI ,DAX _FTSE , TSE , L S&Py/ __ . _
Te; = {Ttl Tty 5Tty Tty 5Tty Tt Tty } - : - APtj

APSEP

These markets are located at different time zones from eastern to the western hemisphere
globe, some of them are trading contemporaneously (e.g. DAX and FTSE 100, TSE and
S&P500), some of them are trading partially overlap (e.g. NIKKEI225 and HSI), and
some of them are completely out of phase. The opening and closing times at local time
and at US time, trading time differences correspond to the US closing time, and the
trading overlap corresponds to the US market are presented for each data series in Table
3.1. The first three indices, NIKKEI225, ASX and HSI, are the Pacific markets located
at the eastern hemisphere with no trading overlap with the North American markets
TSE and S&P500; and there are also a few trading differences among themselves. The
second two indices, DAX and FTSE 100 are the European markets located in Europe
which are trading partially overlap with the North American markets but have no trading
overlap with the Pacific stock markets. The last two indices, TSE and S&P500 are the
North American markets located at the western hemisphere which are the latest close
stock markets every day. The closing time of the TSE and S&P500 is considered as the

synchronised time relative to this application.
Table 3.1 about here (see P.75).

The daily contemporaneous correlations and the lagged correlations of the seven inter-
national stock markets using asynchronous close-to-close returns are presented in Table
3.2. In panel A of Table 3.2, the contemporaneous correlations are the highest with mar-
kets at the same region, for instance, 0.69 between ASX and NIKKEI225, 0.87 between
DAX and FTSE 100, 0.79 between TSE and S&P500. The correlations are small when
the markets are highly asynchronous, such as 0.21 between NIKKEI225 and S&P500,
0.38 between HSI and TSE. Although there is no reason to believe that all the contem-

poraneous correlations should be high, the significant lagged correlations may indicate
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the effect of asynchronicity. Panel B of Table 3.2 presented the lagged-1 correlations
among the seven stock returns. The Pacific stock markets have minimal lag-1 cross
correlations within the same Pacific region, but the lag-1 correlations are getting larger
when the trading asynchronicity is getting higher for the markets close later, the lag-1
correlation between ASX and lag-1 S&P500 0.52 is the largest among all the lag-1 cor-
relations. The lagged correlations between the European stock markets and the North
American markets also have noticeable values between 0.07 to 0.22. Regarding the latest
close stock markets in North American region, all the lagged correlations with the earlier
close markets are negligible, while the T'S S&P500 has noticeable negative lag-1 correla-
tions with TSE -0.15 and with itself -0.11. These results implied that the close-to-close
returns of the latest markets predict the next day’s returns of the earlier markets as
the stock prices of the latest markets involve much more information. However, this
predictability is spurious because the true contemporaneous correlations are diluted by

the lagged correlations with the presence of trading asynchronicity.

Table 3.2 about here (see P.75).

3.4.2 Estimating the synchronised model

The (7 x 1) vector of asynchronous close-to-close returns of the seven stock markets
is modelled by the proposed synchronisation method. Additionally, the time-varying
dynamics of the conditional variance-covariance is captured through a Multivariate Dy-
namic Conditional Correlation (DCC) model (Engle, 2002). The synchronised VAR-
DCC is specified as follows.

T, =co+ Bry—1te

et = (I+AB) ¢ (3.22)
where

e¢|Fi—1 ~ N(0, ht)

hy = D,R.D,

Dy = diag(h?)

hiie = wi + oges_1€s_y + BiH; -1 for i=1,2,..,7
Ry = diag(Q; ) Qudiag(Q; })

Q=0+ aet_le;_l + BQi-1

This study considers the DCC(1,1) model. The conditional covariance matrix in the
DCC model is decomposed into a relation between the estimated univariate GARCH
variances D; and the conditional correlation matrix R;. h; and R; are positive definite,
Dy is a diagonal matrix with the elements of the estimated univariate GARCH variances,
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_1 _1
Q¢ is the quasi-correlation matrix which is rescaled by p; j; = Qiyfth‘,j,tQ . ﬁt to ensure
the correlation estimate is [0, 1] bounded. The parameters (o, 3;) in the GARCH process
are positive Vi and has a sum less than unity to ensure the stationary condition. The
maximum-likelihood estimators 6 = (w;, g, ..., Q, «, ) of h is estimated by maximising
the log-likelihood function (since the asynchronous error e; are multivariate normal):
TJ T e
IL(ry,,0) = ——-In(2r) — S lnfhy| - 5 > leh; ted] (3.23)

2
t=1

The synchronised conditional covariance matrix is then given by
Et—l[eteﬂ = Ht = (I + AB)ht(I+ AB)/ (324)

The synchronised conditional covariance H; is positive definite since the asynchronous

conditional covariance h; is positive definite.

The two-step maximum likelihood estimation produces the maximum likelihood estima-
tors B and h; in the first step and the estimator A in the second step. To reduce the
number of parameters to be estimated in the second step, the matrix elements of B are
set to zero if they are found to be statistically insignificant. The estimation results are
reported in Table 3.3. The non-zero diagonal and lower-diagonal elements resulted in

matrix B implied that the assumption of random walk stock prices may be invalid.

Table 3.3 about here (see P.76).

3.4.3 Synchronised correlations

The (7 x 1) vector of estimated synchronised returns is given by

Ry = {RASK RIS RUSI RDAX RETSE RSB RSPy (14 AB)r, — ABr,

The unconditional correlations of synchronised returns can be directly calculated, they
are presented in Table 3.4. As expected, the contemporaneous correlations among the
seven stock indices after the synchronisation adjustment are higher than the correlations
from asynchronous data. The largest increase are the correlations between the Pacific
stock markets and the North American markets from 0.2 to 0.7. The correlations between
European markets and the North American markets also raise from 0.6 to 0.8. The
correlations among the stock indices in the same regions, such as DAX and FTSE 100,

TSE and S&P500 have no noticeable changes because they are relatively synchronised.

Table 3.4 about here (see P.77).
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3.4.4 Diagnostic tests

The diagnostic tests are performed for the the standardised residuals z; = h_%et. If the
asynchronous VAR model in (A3.2) is correctly specified, the innovations e; are serially
uncorrelated with zero mean and a conditional variance-covariance matrix h;. Then
the covariance matrix of the standardised residuals should be approximately an identity

matrix.

The first test is a x? test of whether the estimated covariance matrix of the standardised
residuals is an identity matrix. The degrees of freedom is 28 as there are %(7 X6)+7 =28
elements to be estimated in the covariance matrix. The y? test statistic is 40.69 with
d.f. = 28 and a p-value of 0.0573. Therefore, the estimated covariance matrix of the

standardised residuals is approximately an identity matrix at 5% level of significance.

The second test is a Lagrange multiplier y? test of the serial correlations of the esti-
mated standardised residuals. The test statistics are computed using lags up to 30, the
asymptotc 5% critical value is 66.34 with 49 (7 x 7) degrees of freedom. All of the x?
test statistics for lags up to 30 are exceed the critical value. The serially correlated
standardised residuals indicated that there exists some dependences are not captured

by the asynchronous VAR thus a richer autoregressive model may be needed.

3.5 An application to Value-at-Risk measurement under

asynchronicity

This section performs an out-of-sample analysis to compare the forecasting performance
of the synchronised returns derived from the proposed synchronisation method with the
asynchronous returns. The economic significance of their differences are illustrated by a
Value-at-Risk application. The forecasting exercise uses the second part of the data set
from 1 January to 30 September 2015. The synchronised VAR-DCC(1,1) model is not
re-estimated, but the one-step-ahead conditional measures are updated with the new

observations available.

Value-at-Risk measure is a popular financial risk management tool defined as the maxi-
mum estimated loss that is expected to occur given a specified probaility in the market
value of a portfolio. That is, mathematically, the prob(AZx; < —VaR) = a%, where
AZ; is the change of the market value of the portfolio P within the period of At, a% is
the probability of loss.

Consider a portfolio of seven equally weighted investments in the seven stock assets
Z = {3(ZAX 4 ZNIK 4 ZHSL . ZDAX  ZFTSE o ZTSE 4 Z5&P)Y  The DCC structure
of variance-covariance constructed a VaR measure as:

VCLRH_l = —k‘ X \/w%H117t —|— U}%Hggi —|— + lewgplg,tHlll/iHQIQ/i +
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where k is the critical value corresponds to the confidence interval of the targeted a%.
w; for 1 = 1,2,...,7 is the weights of the total investments assigned to each asset, p;;; for
1,7 =1,2,...,7 is the time-varying dynamic correlation coefficient between asset ¢ and j.
This exercise assumed the VaR follows the normal distribution with mean zero and 99%
confidence interval. The time period At = 1 day. The critical value —k is approximately
—2.25 with a% = 1% on the left tail.

The performance of Value-at-Risk using different different stock returns series are in-
vestigated. The performance is evaluated by a back-testing of an investment portfolio,
which is the frequency count of the number of the loss in a day exceeded the VaR mea-
sure of 1% provision. This exercise is inspired in a similar study of asynchornous daily
correlations by Martens and Poon (2001). To compare the forecasting performance of
asynchronous and synchronised returns, the one-day-ahead forecast of the portfolio re-
turns and the VaR measures are calculated and plotted in Figure 3.4. The incidents of
violations (the larger dots) when the value of market portfolio losses more than the VaR
provision (the black lines). With 170 one-step ahead forecasts, asynchronous returns
have 10 (5.9%) violations to the VaR provision; while estimated synchronised returns
have only 3 (1.8%)violations to the VaR provision. In addition, the violations in the
synchronised VaR measures lie about on the VaR provision line. The performance of
VaR using asynchronous data for measuring portfolio risk is more volatile; however,
synchronised returns estimated from the proposed model provide a more conservative

measure of portfolio risk.

Figure 3.4 about here (see P.74).

The empirical result agreed with our expectation that the portfolio value calculated
from asynchronous returns is more volatile by recognising unnecessary profit and loss
overnight. This can be explained by an illustrative example. Imagine there are two
perfectly hedged assets in a portfolio, one is trading in the UK (short position) and
another one is trading in the US (long position). After the UK market closed, the
US asset price dropped by 1%. This perfectly hedged portfolio should not report loss
because the value of the UK asset is expected to offset this 1% decrease. However, the
UK asset price is stale after the UK market close, any adjustment is reported until the
next open of UK market. Then the portfolio recognised this unnecessary loss overnight
until the short position responds. Therefore, the VaR forecasting performance of the

proposed synchronised stock returns is superior over the use of asynchronous returns.
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3.6 Conclusion

Asynchronous data are resulted by the fact that information flows continuously across
markets, yet the asset prices are only recorded within their local trading time. The need
of synchronising multivariate daily stock returns is strongly motivated by the distorted
correlation estimates of asynchronous data. In particular, the daily correlation dynamics
of the multivariate financial time series are significantly understated. The underestima-
tion of correlations leads to the distortion of portfolio values, the volatile VaR measures

and many other financial applications.

This study proposed a synchronisation model to estimate synchronised returns and their
contemporaneous correlations from the observed asynchronous returns. The fundamen-
tal set up of this synchronisation algorithm is inspired by the benchmark paper Burns,
Engle, and Mezrich (1998) which is the first paper discussed about the importance of
time zone differences among the international time series. However, their paper as-
sumed random walk stock price series to construct synchronised returns and hence the
synchronised model. Under the random walk hypothesis on stock prices, any future
price change is unpredictable; in other words, any predictability from asynchronous re-
turns are due to trading asynchronicity. The empirical results did not strongly support
the random walk assumption in their model, and once the random walk assumption is
rejected, the entire formulation of synchronised returns is invalid. Therefore, this study
relaxed the random walk assumption on stock prices and constructed a more generalised
synchronisation model by claiming a less restrictive assumption, that is, the unrecorded
returns for the earlier markets make up a fraction of the next day’s asynchronous re-
turns. This proposed model is a generalised class of Burns, et al.’s (1998) (when A = 1)
and asynchronous VAR (when A = 0).

The empirical results show that asynchronous correlations are too low as some of the
contemporaneous correlations are spread to the lagged correlations. After synchronis-
ing the stock returns, the correlations are brought back to the same synchronised time
point. Regarding the diagnostic tests associated with the standardised residuals, the un-
conditional covariance matrix of the standardised residuals is approximately an identity
matrix; yet the LM tests of serial correlated residuals indicated that a rich autoregressive
model may be needed to capture the serial dependence. The VaR Back-testing analysis
is supporting evidence that the proposed synchronised VAR model leads to better risk

measure than those from asynchronous model.
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Panel A: The open-to-close daily stock prices for Nikkei, DAX and S&P 500 stock indices.
Panel B: The close-to-close asynchronous returns and synchronizaed returns for Mikkei, DAX and S&P 500 stock indices.

Figure 3.1: The World of Asynchronous Trading
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Figure 3.3: The closing prices of Japanese, the UK and the US stock markets corre-
sponds to synchronised time ¢.
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Figure 3.4: The 1% one-day VaR forecast using asynchronous returns and synchronised
returns for the period 1 January - 30 September 2015.
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3.6 Conclusion

Tables of Chapter 3

Local Time US Time
Index Opening Closing Opening Closing Overlap Close time diff.
with US?  with US (hour)

ASX 10:00 16:00 18:00(—1¢) 00:00 no 16

NIKKEI225 09:00 15:00 19:00(—1¢) 01:00 no 15

HSI 09:30 16:00 20:30(—1t) 03:00 no 13

DAX 09:00 17:30 03:00 11:30 partially 4.5

FTSE 100 08:00 16:30 03:00 11:30 partially 4.5

TSE 09:30 16:00 09:30 16:00 overlap 0

S&P500 09:30 16:00 09:30 16:00 overlap 0

Table 3.1: Opening and closing times, overlapping and closing time differneces corre-
sponds to the US markets for seven international stock indices.

Panel A: Contemporaneous Correlations

Index ASX NIKKEI225  HSI DAX FTSE 100 TSE  S&P500
ASX 1.000 0.691 0.676 0.414 0.462 0.315 0.218
NIK 225 0.691 1.000 0.650 0.397 0.419 0.298 0.214
HSI 0.676 0.650 1.000 0.441 0.472 0.382 0.300
DAX 0.414 0.397 0.441 1.000 0.868 0.599 0.664
FTSE 100 0.462 0.419 0.472 0.868 1.000 0.638 0.636
TSE 0.315 0.298 0.382 0.599 0.638 1.000 0.785
S&P500 0.218 0.214 0.300 0.664 0.636 0.785 1.000
Panel B: Lagged-1 Correlations

Index ASX  NIKKEI225  HSI DAX FTSE 100 TSE  S&P500
L1.ASX —0.041 —0.014 —0.032  —0.030 —0.056 —0.044 —0.065
L1.NIK 225 —0.047 —0.048 —0.052 —0.050 —0.061 —0.006 —0.038
L1.HSI 0.021 0.036 —0.058 —0.014 0.004 —-0.021  —0.059
L1.DAX 0.332 0.342 0.239 —0.010 —0.027 0.019  —0.069
L1.FTSE 100 0.336 0.317 0.243 —0.030 —0.052 —0.004 —0.079
L1.TSE 0.428 0.338 0.278 0.069 0.121 —0.055 —0.153
L1.8&P500 0.522 0.461 0.375 0.185 0.223 0.039 —0.110

Table 3.2: Daily contemporaneous correlations (Panel A) and lagged correlations (Panel
B) of asynchronous close-to-close stock returns for seven markets for the period 1 Jan-

uary 2005 - 31 December 2014.
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Step 1 maximum likelihood
Parameter ASX  NIKKEI225 HSI DAX FTSE 100 TSE S&P500
Busx.i —0.097 —0.047 —0.067 0 0 0.094 0.348
Bnik.i —0.095 —0.082 0 0.187 0 0 0.374
Bysi 0 —0.079 —0.101 0 0 0 0.406
Bpax, 0 0 0 0 —0.189 0 0.355
Brrse, 0.058 0 0 —0.094 —0.172 0 0.321
Brsgi 0 0 0 0 0 —0.106 0.077
Bsg.pi 0 0 0 0 0 —0.084 —0.071
Co,i 0.001 0.001 0.001 0.001 0.001 0.001 0.001
wj 0.000 0.000 0.000 0.000 0.000 0.000 0.000
o 0.065 0.112 0.065 0.073 0.075 0.064 0.090
B; 0.916 0.859 0.918 0.901 0.898 0.918 0.880
Step 2 maximum likelihood
Parameter ASX  NIKKEI225 HSI DAX FTSE 100 TSE S&P500
Aasx.i 0.304 0.272 0.574 0.115 —0.256 —0.024 —0.199
ANTK 0.284 0.308 0.276 0.703 0.426 —0.019 —0.281
Afsri 0.276 0.654 0.305 0.648 0.355 —0.019 —0.240
Apax,i —0.498 —0.267 —0.417  0.186 0.262 0.014 0.132
ArPTSE;i 0.989 0.081 1.000 0.272 0.305 —0.003 —0.412
Arse, —0.269 —0.338 —0.346 —0.326 —0.310 0.297 0.264
Asgpi —0.298 —0.295 —-0.294 —0.294 —0.290 —0.260 0.325

Note: All the non-zero parameter estimates are statistically significant at 1% level of significance.

Table 3.3: The estimation results of synchronised VAR(1)-DCC(1,1) from the 2-step

maximum likelihood proceduce.
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Index ASX NIKKEI225 HSI DAX FTSE 100 TSE S&P500
ASX 1.000 0.650 0.650 0.629 0.655 0.590 0.619
NIKKEI225 0.650 1.000 0.681 0.732 0.740 0.641 0.724
HSI 0.650 0.681 1.000 0.599 0.634 0.579 0.608
DAX 0.629 0.732 0.599 1.000 0.843 0.662 0.820
FTSE 100 0.655 0.740 0.634 0.843 1.000 0.755 0.827
TSE 0.590 0.641 0.579 0.662 0.755 1.000 0.786
S&P500 0.619 0.724 0.608 0.820 0.827 0.786 1.000

Table 3.4: Daily contemporaneous correlations of estimated synchronised stock returns
for seven markets for the period 3 January 2005 - 31 December 2014.



Chapter 4

Vector autoregressive models
with measurement errors for
asynchronous data and a spatially

synchronised correlation

4.1 Introduction

Multivariate time series modelling has crucial implications for the quantitative assess-
ments of the variables of interests in many financial applications. Specifically, the vector
autoregressive model is widely used by its attractivenesses of estimation simplicity, and
of the identifications of Granger causal relationships (Granger, 1969) between financial
assets. The analysis of Granger causality on stock market returns can help identifying
information flow between markets and explaining the hypothesis of informational market
efficiency. Nevertheless, it is important to highlight that the conventional VAR model
would not identify correct relationships between the true variables if the data used is
subject to error. When the measurement errors are ignored in the estimation process
and the observed variables are assumed to be the true variable of interest, the maximum-
likelihood estimators are inconsistent. Some special inferences may carry out for model
parameters in order to correct for the inconsistency. The measurement equations should
be added to the model to capture the measurement error effect, then the maximum-
likelihood estimators are consistent by having known information about measurement

error.

As investigated in the previous chapter, the daily stock returns are collected at a discrete
basis at the stock markets’ local closing time. Asynchronicity is not an issue for the

univariate asset return modelling as the time of close is absolute for each market alone;

T
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however, the point of time when each data series is recorded is a material issue for
multivariate return modelling because a point of close for one market may be relative
to a point of trading for another. Information continuously flows across markets but
markets respond only within their trading hours. As a result, for some earlier closed
markets, a piece of information from closing to a time of analysis is missed and does not
reflect on the recorded stock returns. If the synchronous returns are the true variable
of interest in the multivariate time series analysis, the observed asynchronous returns
are measured with errors because there are some information missing. Intuitively, the
larger the degree of asynchronicity, the more information between true returns and

asynchronous returns is missing, as a result, the bigger the measurement error appears.

The main focus of this research is to analyse the inconsistent estimators from the usual
VAR models using observed close-to-close stock returns by the reason that the observed
stock returns are subject to measurement bias attributed to trading asynchronicity.
Next, the maximume-likelihood estimators are proved to be asymptotically consistent if
a consistent proxy is used to replace the measurement error. Since the amount of the un-
derestimation on the contemporaneous correlations are subject to the degree of trading
asynchronicity. This chapter proposes a predetermined spatial structure to the un-
recorded returns, such that the asynchronous returns are adjusted according to the time
zone differences between the earlier close markets and the synchronous market. Then
the multivariate stock return analysis can still be implemented by a spatio-temporal

vector autoregressive models with an alternative inference.

This is the first study considers measurement error problem on asynchronous data.
According to the benchmark paper Burns et al. (1998) who modelled the asynchronous
returns by a first-order vector moving average process, the synchronised returns are
computed by shifting the lagged dependence to the current time, in which the lagged
dependence is captured by the first-order moving average matrix. The validation of their
synchronisation model is based on the model specification of the asynchronous returns,
that is, the error terms from the VMA (1) model are required to be serially uncorrelated.
In case the measurement error exhibits on the asynchronous returns, their model is
no longer correctly specified. The empirical results and diagnostic tests in their study
also suspected that the error terms may not be serially uncorrelated. Patriota et al.
(2010) discussed about the observed data with measurement errors lead to inconsistent
estimate from the conventional vector autoregressive models, if the measurement errors
are not negligible. The alternative inference is to recognise the possible measurement
errors and model the true variable of interest instead of the observed variable. Then the
estimators are asymptotically consistent by taking the measurement error equation into

consideration.

Another scope of literature related to this study is the spatial analysis applied in financial
time series. Spatial analysis deals with the measurements of a particular phenomenon

associated with specific locations or regions. Generally, the spatial correlations detect
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whether a event happened in one place affects the same measure of another place. Spatial
dependence has been studied in many research areas including economic geography,
environmental sciences, and urban economics, etc. However, there are relatively fewer
studies consider the spatial dependence in the field of finance. Even there are a few
research (Asgharian et al., 2013; Durante and Foscolo, 2013; Fernandez, 2011) focus on
the spatial linkages in the international financial markets, the spatial dependencies are
usually referred the geographic closeness between firms or markets, bilateral trade, or
the size of markets measured by market capitalisation, book-to market-ratio, and many
other financial indicators. This study introduces a new spatial dependence among the
international financial markets, which is motivated by the absolute time zone differences

between the stock markets located in different time regions.

The remainder of this chapter is organised as follows. Section 4.2 discusses the con-
ventional VAR model. Section 4.3 discusses the inconsistent estimators resulted from
the conventional VAR using asynchronous data. Section 4.4 proposes a spatial proxy
of the measurement error between true returns and asynchronous returns. Section 4.5
conducts an empirical analysis on seven international stock markets at different time

regions. Section 4.6 concludes the study.

4.2 The conventional VAR model

Denote the latent variable as a (J x 1) vector of synchronous return for J markets at
the point of synchronising time ¢ by

AP

Re=AP =| : |, t=1,2..T (4.1)
AP
where P77 = In(p”) is the log of synchronous prices at time ¢ for market ;.

In the following, we define the usual VAR(1) model for the latent variable as
Rt :C+BRt,1+6t, t= 1,...,T (42)

where T is the sample size, B is the J x J first order coefficient matrix and €; is a
j x 1 unobservable zero mean innovation vector process with covariance matrix 3. To
simplify the presentation of formulae along this research, the constant c is set to be zero.

The empirical section allows for a non-zero constant term.
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Assuming the synchronous return vector R; follows a multivariate normal distribution
with mean and autocovariance functions given, respectively, by

E[R)=p= Iy —B) tc=0,

I'(0) = E[(R: — u)(Ry — )] =X+ BEB' + ... =X 4+ Br(1), forh=0

I'(h) = E[(Ry — u)(Ry—p — )’ = BT'(h — 1), forh=1,2,3,...

where I; denotes the J x J identity matrix.

Assume that the innovation process ¢; is multivariate normally distributed, the log-
likelihood function in matrix form is given by

InL(B,%) = —%IH(QTF) — gln det(X)
T
_ % t:Zl ((Rt - BRt—l)’E*l(Rt — BRt_l)) (43)

From the first order partial differentiation of the log-likelihood function with respect to
B and X, we obtain the system of normal equations (see Appendix C for the subsequent
proofs) for deriving the consistent maximum-likelihood estimators, which are given by

Bur = {Q}}}leRtflRt}/a and (4.4)
T

Syp=T"" Z €y (4.5)
t=1

where Qr, , =T "SI R 1R, 1, Qr,_,r, =T 3.1 Ri 1R}, and & = R, — By R 1.

Lemma 4.1. Under the stationary conditions, the consistency of those maximum-
likelihood estimators is assured as

Qr,_, 2T(0), Qr,_,r 2>T(0)B,

and hence
Bur 5 B.

where 2> denotes convergence in probability asymptotically.

Lemma 4.1 is a classical result from the literature on measurement error problem.
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4.3 VAR with measurement error

Normally, we may not be able to observe daily stock returns synchronously at each
international stock markets. In fact, people usually observe the asynchronous close-to-
close stock returns r; with error v; such that

Rt =Tt + V¢, (46)

where r;, = Aln(p;) is a (J x 1) log of close-to-close return vector at time ¢t and v; =
(v1t, Vat, ..oy V)| 18 the J X 1 vector of white noise measurement errors with mean zero

and variance matrix 2V.

By substituting the measurement error equation (4.6) into the true VAR model at (4.2),
we obtain

ry = Bri_1 + ey, (4.7)

denote e; = Bvys_1 — v + €.

People usually replace the synchronous return R; with the observed asynchronous return
r; and estimate equation (4.7), without taking the measurement equation into account.
The maximum likelihood estimators from this model are inconsistent since the error
term has some elements which are correlated with the regressors. That is, E[eiel] # 0

YVt # s. Denote the inconsistent estimator of B and ¥ as b and 3¢ respectively.

Lemma 4.2. Given (4.2), (4.6) and Lemma 4.1, the inconsistent estimators are as
) A T
b= {Q"Ttlfl QTt—ITt} and Y= T_l Z été;
t=1

_p-1vT / _ 1T Ioa 7
where Qp,_, =T > reari_y, Qryyry =T >, 117y, € =1 — bry_1, and hence,

1

b (T(0) +3%) T(0)B".

Again, lemma 4.2 is a classical result from measurement error problem.

Therefore, the measurement equation (4.6) should be included in the estimation pro-
cedure. The complete model (assumed a zero constant for simplicity) for estimation
should be as follows

Ry =BR;_ 1+ ¢

(4.8)
Rt =Ty + V.

Writing the system of equations in a single equation gives

Tt = BT’t_l — v + B’Ut_l + €. (49)
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People’s interests on equation (4.9) could be the Granger causality of the (true) variable
of interests which is measured by the coefficient matrix B; or could be the correlations
and volatilities of true returns, which are measured by Var[e;]. The coefficient B is a true
parameter from the true model at (4.2), the parameter estimate of B is not identified
if we do not observe R;. The extreme case is that when the true parameter B = 0,
the variance-covariance matrices of v; and ¢; are confounded since r; = —v; + €. It is
not possible to estimate >V and 3 separately by observing only asynchronous returns
r¢ (see Patriota et al., 2010). Thus, the straightforward approach is to assume we have
some knowledge to approximate the measurement error vy, although v; is not directly

observed.

By correcting the unobserved measurement errors to the model, the maximum likelihood
estimators from equation (4.9) are consistent with good asymptotic properties such as
normality. The consistent estimators and their asymptotic distributions are proposed in

the following.

Under the stationary condition of the true VAR model, the measurement errors v; and
v;—1 are assumed to be observable. Then the log-likelihood function is given by

T T
InL(B,Y) = f%ln(%r) - §1n det(X)
T
1
— 5 ((T‘t =+ vy — BT’t_l — th_l)'Efl(rt + vy — BT’t_l - th—l))- (410)
t=1

The likelihood function above has no change compared to equation (4.3) but only the
measurement equation is substituted into the latent variable R;. We must remark that
the ML estimators derived below is under the assumption that measurement error is
serially uncorrelated, there are more complicated forms presented at Appendix A if

measurement error is serially correlated.

Lemma 4.3. The consistent estimators are yielded by maximising the log-likelihood
function (4.10), as

BML = {(Q"'t—l - ZU)_lQthth}/’

T
Sur=T""Y é¢é, - — BY'B,
t=1
h =7-137 ! =7-137 ' and é, = B
where Qr,_, = Y1 T—1T— 15 Qry v, = Doy Te—1ry, and é =ry — Bry_q.

Theorem 4.1. The ML estimators in Lemma 4.3 assured consistency as

then
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Theorem 4.2. Subsequent to Theorem 4.1, the asymptotic distribution of the consistent
ML estimator B is as

VT(B - B) 3 N(0,9), (4.11)

where Q = $eT(0)~1 + I(0)~1(Z°X — SVB'BRY)I(0) 1.

Comparing the estimators in Lemma 4.3 to the inconsistent estimators Lemma 4.2, the
inconsistent estimators are biased by missing the measurement error variance. It can be
seen that if ¥ = 0, that is, when there is no measurement error, estimators in Lemma

4.2 reduced to the consistent estimators as in Lemma 4.3.

We can see the ML estimator of B by asynchronous VAR model b is not consistent, since
it converges in probability to

-1

b % B(I; +%°T(0)71) (4.12)

The asymptotic variance of the inconsistent estimator b equals only the first term
Yr(0)~!. If the variance bias correction is positive (given by ¥ < %€ and |B| < 1),
The asymptotic variance of the inconsistent estimator is understated by the amount of
the variance bias correction. Consequently, the statistical inference of the lagged return
coefficients is misleading under the asynchronous VAR models. With a smaller asymp-
totic variance of the parameter estimate, the null hypothesis of parameter restrictions

can be false rejected hence affecting the analysis of Granger causality.

From the above illustration, we see that if the measurement error (or at least its variance)
is known or can be consistently estimated, i.e. DI >¥, then the asymptotic result

derived in the above remains valid.

4.4 The spatio-temporal VAR model

To proximate the measurement error in asynchronous returns, we may think of the
missing part from asynchronous returns compared to synchronous returns is larger for
the markets with higher degree of time asynchronicity. Hence a spatial lag term is
introduced to the observed asynchronous return vector, which is weighted by the closing
time difference between market k to the synchronous market. In most related literature,
the spatial weighted matrix is commonly formulated as a symmetric weighted matrix
captures the symmetric spatial differences between the individuals, it is intuitive because
the spatial differences refer to “physical” distances. Unlike the formulation of spatial
matrix in most literature, the spatial weighted matrix stores the trading time differences

At; ; within a day between earlier markets 7 and later markets j in which the weights
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refer to positive vector direction of trading time differences At. Suppose the elements
in the return vector are in an order of closing time differences from earliest to latest,
the spatial weighted matrix has a form that 1) the upper diagonal elements are positive
with the closing time differences between i and j for ¢ < j fractioned by 1-day; 2) the
diagonal elements are zero since there is no trading time difference among the market
itself; 3) the lower diagonal elements are also set to be zero because only the later
close markets provide additional information for the earlier close markets to estimate
their stock market values. The lower diagonal matrix for the spatial weights is possible
when observed asynchronous returns are synchronised to the earliest market; although
synchronising backward is not a practical interest for financial applications. For an
illustrative example, the Japanese stock market closes fifteen hours ahead of the US
market and nine hours ahead of the UK market, the spatial weights for JPN-US and
JPN-UK is 15/24 and 9/24 respectively. For instance, a three-market stock returns

re = {rP", rik rs1 has a spatial weighted matrix as

0 2 3
— 4.5
00 0

The motivation to impose the following assumption is that the asynchronicity has an
obvious pattern of higher degree of time zone difference associated with larger measure-
ment error. The spatial correlation matrix is set to assign larger weight for the market
with higher time zone difference corresponds to larger correction of measurement error.
Assumption 4.1. Assume that the (J x 1) vector of measurement error vf for market
i at time t is made up by a spatial lag on the vector of (J x 1) observed returns r], for

i,7=1,2,...,J and i < j, where the matriz A is a (J x J) deterministic spatial weighted
matriz, written as

vy = pAry. (A4.1)

The spatial correlation parameter p is a scalar. Unlike other spatial models in the
literature, the spatial weighted matrix in the above assumption is not row-standardised.
It is because the lower-diagonal elements of the weighted matrix are set to be zero, row

standardisation artificially inflates the values of non-zero elements at the same row.

By substituting (A4.1) into the measurement error equation, we obtain

Rt =7+ pA?“t. (413)

Synchronised returns at (4.13) are expressed as asynchronous returns with a spatial
adjustment. Substituting (4.13) into the true VAR model, suppose the true model is a
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VAR(1) process, we obtain a first-order spatio-temporal VAR as

(I +pA)ry =B+ pA)ri_1 + €
S ry=Bry — pA’I"t + BpArt,l + €4 (414)

where the first term of (4.14) at the right-hand side is the temporal lag as in the con-
ventional VAR, the second and the third terms are the spatial lags introduced to adjust

the time zone asynchronicity.

An alternative proxy is presented in Appendix C. It is a temporal proxy instead of
a spatial one, in which the unrecorded return is in a function of the current returns
from other later markets. The use of such proxy leads to a transformed VAR(2) to be
estimated; yet the estimation is complicated by using real data. Some simulation based
methods can be conducted to obtain simulation results given the proposed maximum
likelihood estimators. However, this study puts the main focus on the spatial-temporal
VAR model.

4.4.1 The estimation

The spatio-temporal VAR(1) at (4.14) is the model to estimate. It can be seen as a
temporal VAR(1) if pre-multiplying (I —pA) = W on both sides, assuming (I —pA) = W

is invertible, we obtain

re = (I + pA) ' B(I + pA)ri_1 + (I + pA) e, (4.15)

Recall that the asynchronous VAR(1) is given by r; = Bri_1 +e€; as in (4.7). Comparing
the terms with (4.15), the disturbance terms ¢ in the true model can be expressed as
the spatially weighted error terms from asynchronous VAR model, as

e = (I + pA)ey (4.16)

However, such a temporal VAR(1) is suffering from parameters under-identification.
Two unknown parameters p and B are not identified by knowing only the estimate of
the matrix product (I +pA)~tB(I+pA). Therefore, the conventional inference of vector

autoregressive models should not be conducted.

Instead, this chapter uses an alternative estimation procedure which is inspired by the

spatial cross-sectional models.
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Let (I + pA) = W, then (4.13) becomes

=Wr,=BWri_1 +¢ (4.17)
with € ~ N(0,%).
The log-likelihood function is as follows

Inf = ——In det(X) + In det(W) — gln(Qw)

M L

1
-5 ((Wrt — BWri)'S ™ (Wi — BWrt,l)). (4.18)
t=1

The ML estimator of B is given by

am,c a
ZWTt 1 W?“t ZW?”t 1 W?“t 1)
=1 t—1
T T R
= Z Wr_amW') = ZWTFNQAW/B/
t—1 t—1

T
X -1
= B = (Zwrt,lr;,lw’) (an,ﬁ;w’).
t=1 =1
Since (I + pA) = W, the ML estimate of B can be computed if p is known.

Next, the ML estimator of ¥ can be written as
T
S=T7"" Z éré
=71 Z Wée,w

where é; = (I+pA)~1¢;. The estimated residuals é; is from the VAR(1) of asynchronous

returns. Similarly, the estimate of 3 can be computed if p is known.

Following Anselin and Bera (1998), the spatial correlation parameter p can be estimated
by maximum-likelihood provided by the concentrated log-likelihood function in terms of
p only, as

InL*(p) =C — gln det(X) + In det(WW)

T
=C - §ln det(é; + pAé;)(ér + pAéy)' +1In det(I + pA) (4.19)

where C' is irrelevant to p, In det(W) is the log-determinant of (I + pA), and InL*(p) is

a non-linear function in terms of the parameter p that must be maximised. Once the
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ML estimate of p is yielded, the estimates of 3, W and B can be obtained by working

backwards.

Recall the restriction imposed in the spatial weighted matrix A such that matrix A is a
upper diagonal matrix. The determinant of I+ pA is the product of the diagonal entries
equals unity, and hence log(1) = 0.

The concentrated log-likelihood in terms of the unknown parameter p is reduced to

T

The ML estimator of p is given by

alnﬁ* ET:

t=1

T 4, T
o= (Y@aae)) (D@ae)).

t=1 t=1

||
Mﬂ

(el AAe)p

o~
Il
-

4.5 Empirical application: a spatio-temporal VAR

In order to compare the estimation results and forecasting performance from two differ-
ent synchronisation algorithms proposed, this empirical analysis uses the same dataset as
in the previous chapter. The proposed spatio-temporal VAR model is applied on seven
international stock markets from the eastern to western time zones including Japan,
Australia, Hong Kong, Germany, the United Kingdom, Canada and the United States.
The use of their daily close-to-close returns leaves time zone differences non-captured.
This application assumed a dynamic conditional correlation (DCC) structure on the

asynchronous variance-covariance matrix to allow time-varying correlations.

4.5.1 Data description

The data consists of seven stock market closing price series collected at the local closing
time of each market, including Nikkei Stock Average (NIKKEI225) of Japan, Australian
Stock Exchange (ASX) of Australia, Heng Seng Index (HSI) of Hong Kong, German
stock index (DAX) of Germany, Financial Times Stock Exchange 100 index (FTSE100)
of the United Kingdom, Toronto Stock Exchange (TSE) of Canada and Standard &
Poor 500 index (S&P500) of the United States. The data is extracted from Bloomberg
Database for the period 1 January 2005 - 30 September 2015. After dropping the

observations with holidays/non-trading days in the time series data panel (i.e. the whole
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observation for each market j at day ¢ is dropped if day ¢ is the holiday for at least one
of the investigated stock markets), there are 2360 common trading days for each stock
price series. The data set is divided into two sub-samples, the first sample is ranging
from 1 January 2005 to 31 December 2014, with 2190 trading days in total, for the
purpose of model estimation. The second sample is ranging 1 January - 30 September

2015, with 170 trading days, for the purpose of out-of-sample forecast.

4.5.2 The spatial weighted matrix

The vector of observed close-to-close returns r; for the seven market indices (J = 7) is
calculated by taking the natural logarithmic difference of the closing prices p; for each
market j at the local closing time ¢; in a time order of the earliest close to the latest

close as

Aln(pésx)

_ ASX  NIK _HSI ,DAX ([ FTSE ,TSE [ S&P\/ _ . —
e = {Ttl ) Ttg ) Ttg ) ’rt4 ) ’rt5 ’ Tt@ ’ Tt7 } - . - Aln(pt)

Aln(pf?&P)

These markets are located at different time zones from eastern to the western hemisphere,
the local closing times and the time zone differences correspond to the US time (EDT)
for the seven market stock indices are presented in Table 4.1. Expect the observed
returns of the latest stock markets TSE and S&P500 are evaluated at the latest time of
a day t, the observed returns of other earlier markets are recorded at t; < ¢, denote the
time differences between market 7 and j for all 7 < j as At; ;; in other words, the time

direction for the earlier markets are out of phase and shifted backward.
Table 4.1 about here (see P.96).

Consider a (J x J) vector of synchronous returns R; for the seven markets (J = 7) as a
log difference of the synchronous prices p; for each market j evaluated at a synchronised

time t as
Aln(py )
R, = {RfSX7 RiVIK’ RFSI’ R?AX’ RfTSE, RtTSE’ RE&P}/ _ : — Aln(p})

Aln(p; ")

where the closing time of the TSE and S&P500 is considered as the synchronised time

t in this application.

Since synchronous returns R; are not observed for each international market at synchro-

nised time ¢, instead, asynchronous returns r; are observed locally at local closing time
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tj. The differences in between are defined as measurement errors v;(as in 4.6), and a

(7 x 1) vector of measurement errors is as

Aln(p; %) — Aln(p{sX) vfsX

’l}t:Rt—’r’t: . =

Aln(pf’S&P) — Aln(pf&P) vf&P

The assumption 1 in (A4.1) approximates the measurement errors v} for earlier markets
i as the spatial weights A;; on the current observed returns rgj Vi<gjandi,je€J,
where t he spatial weights capture the positive directions of time differences from the

earlier to the latest closing time. In matrix form, the spatial proxy is as

v X 0 Aasxur ... Aasxus\ [risX
PN PN
UZJ 0 0 . A]PNJ]S Tt‘]2
=p
vPer 0 0 . 0 rp&l

where the spatial correlation parameter p is a scalar.

In particular to this empirical analysis, the spatial weighted matrix A 7,7 is numerically

defined as

Ausxj 0 1/24 3/24 11.5/24 11.5/24 16/24 16/24
ANik, 0 0 2/24 10.5/24 10.5/24 15/24 15/24
Ansi, 0 0 0 85/24 85/24 13/24 13/24
A=|Apax; =10 0o 0 0 0 45/24 45/24
ApTsE,j 0 0 0 0 0 45/24 4.5/24
Arse,j 0 0 0 0 0 0 0
Asepj 0 0 0 0 0 0 0

4.5.3 Estimating the spatio-temporal VAR

The (7 x 1) vector of observed returns of the seven stock markets is modelled by the
proposed “first-order spatio-temporal VAR” in (4.14). Additionally, the time-varying
dynamics of the conditional variance-covariance is modelled through a Multivariate Dy-
namic Conditional Correlation (DCC) model (Engle, 2002). The model specification is

as follows.

True model: Ry =¢+ BR;_1 + €
Spatial Proxy: Ry = (I + pA)ry
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The spatio-temporal VAR is given by substituting the spatial proxy equation into the
true VAR model, as

ry =C+ Bri_1 — pAry + BpAry_ 1 + ¢ (4.21)
where

B is the (7 x 7) coefficient matrix of the temporal lag;
— pA is the (7 x 7) spatial coefficient matrix of the spatial lag;
BpA is the (7 x 7) spatio-temporal coefficient matrix of the lagged spatial lag.

The hypothesis tests of Granger Causality can be constructed on parameter matrix B
from the true model as long as the parameter B can be consistently estimated from
the spatio-temporal VAR model in (4.21). However, the parameters are under-identified
through the spatio-temporal VAR in (4.21). Thus the parameter estimates are produced
by an alternative estimation procedure as follows.

WT‘t =cC+ BWTt_l + € with €t|~Ft—1 ~ N(O, Ht) (422)
where
W = (I + pA)
Hy = DR, D,

1
D; = diag(H?)
Hiit=w+aier_16,_1+ BiHii1—1 for :=1,2,...,7
~ _1 _1
Ry = diag(Qt Q)Qtdiag(Qt 2)
Qt=Q+ ae_16,_1 + BQi—1

This research considers the DCC(1,1) model. The conditional covariance matrix in the
DCC model is decomposed into a relation between the estimated univariate GARCH
variances D; and the conditional correlation matrix f%t. H; and Rt are positive definite,
Dy is a diagonal matrix with the elements of the estimated univaria‘ge GARCI;I variances,
Q¢ is the quasi-correlation matrix which is rescaled by p; j; = Qi,i?tQi,j,tQ . ﬁt to ensure
the correlation estimate is [0, 1] bounded. The parameters (o, 3;) in the GARCH process

are positive Vi and has a sum less than unity to ensure the stationary condition.
The maximum likelihood estimation procedure is given step-by-step as follows.

Step 1: Estimate the (7 x 1) vector of e; from asynchronous VAR: r, = ¢o + bry—1 + e

by maximum-likelihood, assume the error terms are multivariate normally distributed.



4.5 Empirical application: a spatio-temporal VAR 91

Step 2: Estimate the spatial correlation parameter p through the concentrated log-

likelihood function as given by (4.20).

Step 3: Given the maximum likelihood estimate p in step 2, W=1+ pA is obtained
immediately. Then the maximum likelihood estimators B and H; can be obtained by

maximising the likelihood function of model (4.2).

The estimation results are reported in Table 4.2. Any insignificant elements are set
to be zero for clearer presentation. The parameter estimate b is the coefficient matrix
estimated from the asynchronous VAR(1) which is inconsistent and cannot be used for
conducting tests of Granger causality. After performing the spatial adjustment to the
asynchronous data, most of the parameter estimates of B from the true model are zero,
except the first five elements of the last column are statistically significant and maternal
in values. The last column is corresponding to the dependences between the US S&P500

and other earlier markets.

Table 4.2 about here (see P.97).

4.5.4 Spatially adjusted correlations

The (7 x 1) vector of estimated synchronised returns is given by
R, = {R?SX’ RiN]K’ R{{S]’ thDAX’ RfTSE’ ]%?SE’RZS&P}/ — (I + pA)ry

The spatially adjusted correlations of synchronised returns can be directly calculated,
they are presented in Table 4.3. As expected, the contemporaneous correlations among
the seven stock indices after the synchronisation adjustment are higher than the corre-
lations from asynchronous data. The largest increase are the correlations between the
Pacific stock markets and the North American markets from 0.2 to 0.6. The correlations
between European markets and the North American markets also has slightly increase
from 0.6 to 0.7. The correlations among the stock indices in the same time zone regions,
such as DAX and FTSE100, TSE and S&P500 are almost unchanged because they are

relatively synchronised.

Table 4.3 about here (see P.98).

4.5.5 Specification test

The specification test is performed to see whether the spatial autocorrelation exhibit
is important or not. The most common test for the existence of spatial dependence is
Moran’s I by Moran (1948; 1950). The Moran’s I statistic is defined for data vector x
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with R number of spatial regions and the spatial weights w; ; between individual 7 and
J by
R > wij(w —2)(z; — @)

2

= 2 Ej Wij >ilzi— )

and the variance of Moran’s I is given by

Var(I) = 5%(1;1)(1{251 — RSy +383) — [E(I))?
where
E(I) = R_— 7 is the expectation of Moran’s I
So=2.> wy
g
g = 2 Zj(w;j +wji)?

Sy = Z(wi. +w.)? is the sum of square of the ith column plus the ith row

i

Moran’s I statistic is asymptotically normal given by

I—E()

VVar(I)

The Moran’s 1T test statistic from this empirical analysis is I = 2.979 which rejects

I=

the null hypothesis of no spatial autocorrelation at 1% level of significance. Therefore,
the spatial weights with time zone differences are found to be statistically significant to

capture the spatial dependence among the asynchronous stock returns.

4.6 Conclusion

Different stock markets are trading at their only local time, the correlations among inter-
national stock markets are underestimated when the data asynchronicity is not adjusted.
The use of asynchronous data on the multivariate time series models not only underes-
timates the correlation dynamics among the data, but also results in measurement error
problem which leads to inconsistent parameter estimates. This research proved that
as long as a good proxy is available to replace the measurement error, the maximum

likelihood estimators are still asymptotically consistent.

This study provides analytical evidence that the maximum likelihood estimators are
inconsistent if using asynchronous data on the multivariate time series model. The

measurement error bias is closely associated with the degree of asynchronicity among
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two markets. Therefore, this study proposed a spatial proxy to the measurement er-
ror which is inspired by the fact that the amount of underestimation depends on the
degree of trading asynchronicity. The spatial weighted matrix captures the time zone
differences between the early and later close markets, in which the latest close market
is taken as the base. By using the spatial proxy, the temporal vector autoregressive
process of the unobserved true returns can be expressed as a spatio-temporal vector
autoregressive process of the observed asynchronous returns. In this model, the test
of Granger causality can be conducted on the true coefficient matrix B. The Moran’s
I specification test also confirmed that the spatial autocorrelation is significant on the
asynchronous returns, thus the proposed model can be useful to capture the spatial time

zone differences of data.
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Tables of Chapter 4

Index Closing at Closing at Trading Overlap Closing time diff. with
Local Time  US Time with US? US (in hours)

ASX 16:00 00:00 non-overlap 16

NIKKEI225 15:00 01:00 non-overlap 15

HSI 16:00 03:00 non-overlap 13

DAX 17:30 11:30 partially 4.5

FTSE100 16:30 11:30 partially 4.5

TSE 16:00 16:00 overlap 0

S&P500 16:00 16:00 overlap 0

Table 4.1: Closing times, overlapping and closing time differneces corresponds to the
US markets for seven international stock indices.



4.6 Conclusion 95
Step 1 & 2: Spatial Correlation Parameter p
Parameter ASX NIK HSI DAX FTSE TSE S&P
p = 0.2752***
basx,i —0.097 —-0.047 —0.067 0.061 0.059 0.094 0.348
bnIK,i —0.095 —0.082 0 0.187 0 0 0.374
brsr.i 0 —0.079 —0.101 0 0 0 0.406
bpax.i 0 0 0 —0.064 —-0.189 —0.066 0.355
brTsE.i 0 0 0 —0.094 -0.172 0 0.321
brse. 0 0 0 0 0 —0.106  0.077
bse i 0 0 0 0 0 —0.084 —-0.071
Step 3: Spatio-Temporal VAR Wr; =c¢+ BWry_1 + €
Parameter ASX NIK HSI DAX FTSE TSE S&P
Busx.i 0 0 0 0 0 0 0.480
Bnik.i 0 —0.089 0 0.197 0 0 0.531
Bysi 0 —0.080 —0.102 0 0 0 0.510
Bpax,i 0 0 0 0 —0.196 0 0.366
Brrse, 0 0 0 —0.099 -0.176 0 0.333
Brsgi 0 0 0 0 0 —0.121 0
Bsgp;i 0 0 0 0 0 —0.099 0
C; 0.002 0.002 0.002 0.002 0.001 0.001 0.001
wj 0.000 0.000 0.000 0.000 0.000 0.000 0.000
o 0.069 0.097 0.070 0.073 0.073 0.062 0.087
B; 0.903 0.868 0.907 0.900 0.899 0.919 0.882

Note: All the parameter estimates are statistically significant at 1% level of significance.

Table 4.2: The estimation results of spatio-temporal VAR(1)-DCC(1,1) by the maxi-

mum likelihood.
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Panel A: Asynchronous Correlations

Index ASX NIKKEI HSI DAX FTSE TSE S&P
ASX 1.000 0.691 0.676 0.414 0.462 0.315 0.218
NIKKEI225 0.691 1.000 0.650 0.397 0.419 0.298 0.214
HSI 0.676 0.650 1.000 0.441 0.472 0.382 0.300
DAX 0.414 0.397 0.441 1.000 0.868 0.599 0.664
FTSE100 0.462 0.419 0.472 0.868 1.000 0.638 0.636
TSE 0.315 0.298 0.382 0.599 0.638 1.000 0.785
S&P500 0.218 0.214 0.300 0.664 0.636 0.785 1.000

Panel B: Spatially Adjusted Correlations

Index ASX NIKKEI HSI DAX FTSE TSE S&P
ASX 1.000 0.817 0.810 0.707 0.741 0.624 0.561
NIKKEI225 0.817 1.000 0.768 0.634 0.651 0.546 0.483
HSI 0.810 0.768 1.000 0.629 0.655 0.574 0.511
DAX 0.707 0.634 0.629 1.000 0.884 0.642 0.703
FTSE100 0.741 0.651 0.655 0.884 1.000 0.684 0.683
TSE 0.624 0.546 0.574 0.642 0.684 1.000 0.785
S&P500 0.561 0.483 0.511 0.703 0.683 0.785 1.000

Table 4.3: The asynchronous daily correlations (Panel A) and the spatially adjusted
correlations (Panel B) for seven markets for the period 3 January 2005 - 31 December
2014.
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Appendix of Chapter 2

A.1 Proof of Theorem 2.1

According to the standard expression of LM statistic (2.16), the pointwise LM statistic
evaluated under the null in (2.14) is given as

M(B,v) = S7(8,7)'E+(8,7) " S+(6,7)
where the product matrices are given by

27(8,7) = Er(8,7) — Mz (8,7)Mr(8) "Ex(B,7) — Er(8,7)Mr(8) " Mz (8,7)
+ My (B,7)Mr(8) " Er(B)Mr(8) " Mr(B,7),
S3(B,7) = Sr(B,7) — M(B,7y)Mr(B)~"Sr(8),

T
Mr(B,7) =1, ® : Z D14(B,7)z(B)z(B) and  Mr(B) =1, ® % Z z(B)2(8)'

Il
—

M ~
—
M
o+

M2
BU
(24

I\

B
—
=S
—
N

B
—
=S
~
N

Z +(B,7) (&€ ® z(8)z(B)') and  E(B)

'ﬂ \

Sr(8,7) \/~ ZDlt B, ) (204 @ 2(B)) and  Sr(B) = —=> (%0:® z(B))
where Zp; = A (Xt — [).

Given by assumption 1(5), the estimate of 5 does not enter into the optimality of supLM
statistic. Then

sup LM = sup LM (Bo,~) = sup LM (o, F (1))
yer* reEA

where r = F(v) given in Definition 1. Since LM (f3p,~) is a function of 7 only through
1(er—1 <) = L(wi—1 < 1), it follows that

sup LM = sup LM (f3y,r)
reA

97
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Under Hg and replacing 1(e;—1 < ) with 1(w;—1 < r) for the above product matrices,
the LM statistic simplifies to

LM (r) = Sp(r) 5 (r) = S7(r)

where
=5 (r) = E¢(r) — Mp(r)Mp "Ex(r) — E¢(r) My My (r) + My (r) My 'Er Myt Mz (B, 7),
St(r) = Sr(r) — M )MﬁlST,
T
Mry(r) = T; Wi— 1<TZth and Mr =1, ®TZztzt

t=1

(1]

T T
1 - —
r(r) = 7 Z Hwie1 <7)(61€; @ 2¢21) and == Z &6, ® 2:2}),

— (2,t®zt~
77 2o @ 2)

—_

T
let 1<7)(20t®2) and Sp=

t=1

w
N

The stated rsult then follows from the joint convergence

My (r) = M(r),
Qi (r) = Q(r),
Sr(r) = S(r).

The sketch proof above is reproduced from Theorem 1 of Hansen and Seo (2002) and
Theorem 3 of Hansen (1996).
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A.2 Matlab codes

%% TWO REGIME THRESHOLD FCVAR MODEL %%

% This ThresholdGrid.m File is written by Chi Wan Cheang for the paper
% "Threshold Fractionally Cointegrated VAR Model and Application to VIX Index".

% The Matlab code provided in this file is based on the Matlab programme

% for the (Linear) Fractionally Cointegrated VAR Model written by Nielsen

% and Popiel (2016), and the Matlab code for the Threshold Cointegration by
% Hansen and Seo (2002).

% The proposed 2-regime threshold model is compatable with Johansen and

% Nielsen (2012)"s FCVAR model and Hansen and Seo (2002)"s threshold

% cointegration. Level parameter is assumed in the FCVAR and is assumed to
% be fixed across regimes. Option for a regime-switching unrestricted

% constant (Xi) is also allowed for programme users. When restriction

% d=b=1 is imposed, the threshold FCVAR model reduced to the standard

% threshold cointegration model.

% ————=——= Import Data --————----—- %
clc;
clear all;

[data, date, raw] = xlIsread("vix", "Sheetl”, "A2:D3216%);
vix = [data(:,1), data(:,2)];

% Add path containing Auxillary fTiles required for estimation.
addpath Auxiliary/

% A bivariate time series.
x = vix(z, [1 2]);
sp = data(:,3);

%% ———————- INITIALIZATION -————————- %

p = size(Xx, 2); % system dimension.

T = size(X, 1); % number of observations in the sample.

kmax = 3; % maximum number of lags for VECM.

order = 12; % number of lags for white noise test in lag selection.
printWNtest =1; % to print results of white noise tests post-estimation.
% ———————= Choosing estimation options —----———-—-- %

opt = EstOptions; % Define variable to store Estimation Options (object).
opt.dbMin = [0.01 0.01]; % lower bound for d,b.

opt.dbMax = [1.00 1.00]; % upper bound for d,b.

opt.unrConstant = 0; % include an unrestricted constant? 1 = yes, 0 = no.
opt.rConstant = 0; % include a restricted constant? 1 = yes, 0 = no.
opt.levelParam = 1; % include level parameter? 1 = yes, 0 = no.

opt.constrained = 0; % impose restriction dbMax >= d >= b >= dbMin ? 1 = yes, 0 = no.
opt.restrictDB = 0; % impose restriction d=b ? 1 = yes, 0 = no.

opt.db0 = [0.75 0.75]; % set starting values for optimization algorithm.
opt.N = 0; % number of initial values to condition upon.
opt.print2screen = 1; % print output.

opt.printRoots = 1; % do not print roots of characteristic polynomial.
opt.plotRoots = 0; % plot roots of characteristic polynomial.

opt.gridSearch = 0; % For more accurate estimation, perform the grid search.
opt.plotLike = 1; % Plot the likelihood (if gridSearch = 1).

opt.progress = 1; % Show grid search progress indicator waitbar.

opt.updateTime = .5; % How often progress is updated (seconds).
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% Linux example:
opt.progLoc = ""/usr/bin/fdpval™"; % location path with program name
% of fracdist program, if installed
% Note: use both single (outside) and double
% quotes (inside). This is especially important
% if path name has spaces.

DefaultOpt = opt; % store the options for restoring them in between hypothesis tests.

startProg = tic(); % start timer

%% ————————- LINEAR FCVAR MODEL ESTIMATION -——---—-—-—- %
k = 0; % number of lags (short run dynamic).
r =1; % number of cointegrating rank.

optl = DefaultOpt; % define an estimation option.

% Estimate the linear FCVAR model.
m = FCVARestn(x, k, r, optl);

% Call the coefficient estimates from the estimated linear model.
db = m.coeffs.db;

beta0 = m.coeffs._betaHat;

muHat = m.coeffs._muHat;

%% ————————- THRESHOLD FCVAR MODEL -----——---- %

% ————————- Initialization ---——-—-——- %
tn = 100; % number of grid points for threshold parameter gamma.
bn = 100; % number of grid points for beta.
Totlters = tn*bn; % total iterations in the grid search.
trim = 0.10; % trimming (%) from the probability distribution of e0.
trim_test = 0.15; % trimming for threshold test.
beta_gs = 1; % set to 1 to perform grid search around beta estimate.
plotlike = 1; % set to 1 to plot the likelihood functions of beta

% and gamma.

n = size(x,1); % number of observations.
nlag = n - 1;

x1 = x(2:n, :);

% —————= Construct the grid --———---—- %

beta = beta0(2);

% Extract the standard error from long-run relation.
seb = 0.01;

% Calculate the threshold variable.
iT (opt.levelParam)
dx = x - ones(size(x,1),1)*muHat; % Demean by mu.
dxl = x1 - ones(size(x1,1),1)*muHat; % Demean by mu.
dxlag = dx(1:nlag,:);
e0 = dxlag*betaO;
g = unique(e0);
else
xlag = x(1:nlag,:);
e0 = xlag*betal;
q = unique(e0);
end
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% Define a set of threshold parameters given the number of grids.
gammal=q(round((1/(tn+1):1/(tn+1) : (tn/(tn+1)))*size(q,1)));

% Define the threshold parameters for hypothesis testing.
gamma2=q(round((trim_test: ((1-2*trim_test)/tn): ((tn-1)*((1-2*trim_test)/tn) ¢
+trim_test))*size(q,1)));

% Construct evenly spaced grid on beta.
Lbeta = beta - 6*seb;

Ubeta = beta + 6*seb;

inc_step = (2*6)*seb/(bn-1);

if beta gs ==
if bn ==
beta == beta0(2);
else
beta =(Lbeta:inc_step:Ubeta);
end;
else
beta = betal0(2);
bn = 1;
end;

% Create a matrix of NaN"s to store likelihoods of grid search, we use
% NaN"s here because NaN entries are not plotted and do not affect the
% Finding of the maximum.

like = ones(tn,bn)*NaN;

% ———————- Calculate likelihood over each grid. ----—---- %
1=1;
while j <= tn
gamma=gammal(j);
bj = 1;
while bj <= bn
beta_g = [1; beta(bj)]:
it (opt.levelParam)
e = dxlag*beta_g;

else
e = xlag*beta_g;
end
dl = (e<=gamma); % logical result (Yes = 1, No = 0)
% error correction variable less than/equal to gamma
d2 = 1 - di; % error correction variable larger than gamma
nl = sum(dl)"; % number of "Yes"

if min([nl;nlag-n1])/n>trim % split the sample into two

iT (opt.levelParam)

col = size(dx1,2);

rl=[dx1.*(d1*ones(1l,col))]; % sample at regime 1

r2=[dx1.*(d2*ones(1,col))]; % sample at regime 2
else

col = size(x1,2);

ri=[x1.*(d1*ones(1l,col))]; % sample at regime 1

r2=[x1.*(d2*ones(1,col))]; % sample at regime 2
end

% Stack the observations into the corresponding regime.
% Regime 1
index = 0;
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% Impose restriction to beta in the estimation option.

for i=1l:size(dl,bl)
if d1(i)==
if index ==
yl = ri(i,:);
index = 1;
else
yl = [yl;rl(i,:)];
end;
end;
end;

% Regime 2
index = 0;
for i=1l:size(d2,1)
if d2(i)==1
if index ==
y2 = r2(i,:);
index = 1;
else

y2 = [y2; r2(i,:=)];

end;
end;
end;

optl.R_Beta = [1 1];

optl.r_Beta = beta_g(1,1) + beta g(2,1);

tl = size(yl,1);

Tl = t1 - optl.N; % optl.N is the number of initial values.
t2 = size(y2,1);

T2 = t2 - optl.N;

p = size(y1,2);

optl = updateRestrictions(optl,p,r);

% Calculate the parameter estimates subject to the constraint on beta.

estimatesl = GetParamsT(yl, k, r,
estimates2 = GetParamsT(y2, k, r, db, beta_g, optl);

db, beta_g, optl);

% Calculate the new likelihood value given the new coefficient matrix.

likel = - T1*p/2*( log(2*pi) + 1)

like2 = - T2*p/2*( log(2*pi) + 1)

% Store the likelihood for each iteration.
like(,bj)= -(likel+like2);

end;

bj=bj+1;

end;

J=i+1;

Identify the MLE of beta and gamma
[temp, mlike] = min(like);
[temp, c] = min(diag(like(mlike,:)));
v = mlike(c);
gammaHat=gammal(V);
bl=beta(c);

beta_ H = [1 ;beta(c)];
minlike=like(v,cC);

- T1/2*log(det(estimatesl.OmegaHat));
- T2/2*log(det(estimates2.OmegaHat));
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it (opt.levelParam)
e_star = dxlag*beta_H;
else
e_star = xlag*beta_H;

end
dl=(e_star<=gammaHat);
d2=1-d1;

R1=[x1.*(d1l*ones(1,size(x1,2)))]1;
R2=[x1.*(d2*ones(1,size(x1,2)))1;

index = O;
for i=1:length(dl)
if di(i)==1
if index ==
regimel = R1(i,:);
index = 1;
else
regimel = [regimel; R1(i,:)]:
end;
end;
end;
index = 0;
for i=1l:length(d2)
if d2(i)==1
if index ==
regime2 = R2(i,:);
index = 1;
else
regime2 = [regime2; R2(i,:)]:
end;
end;
end;

% Piecewise linear estimation of threshold model.

Samplel = FCVARestnT(regimel, k, r, db, muHat, beta H, optl);
Sample2 = FCVARestnT(regime2, k, r, db, muHat, beta_H, optl);
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Appendix of Chapter 3

The synchronised return model at equation (3.14) involves the fraction parameter matrix
A and the autoregressive parameter matrix B. The matrix B can be estimated from the
first-order autoregressive process of asynchronous returns (A2), and the matrix A can
then be identified by an addition location-scale model at (A3).

Alternatively, instead of imposing Assumption 3.3 a location-scale model to synchronised

returns, an auxiliary regression is proposed to identify the fraction parameter A.

B.1 Auxiliary regression

Suppose a vector of proxy X; is observable has a linear relationship with the synchronised
return Ry, we have a vector auxiliary regression such that

Xt :MRt + Vg (Bl)

with parameter M a J x J matrix.

The linear relation of the proxy variable X; on synchronised returns R; may be econo-
metrically problematic if that auxiliary regression in which not only R; affects the proxy
X; but also X; affects R;. If this is the case X; and R; have feedback effects instead.
The unidirectional regression will lead to bias and inconsistent estimators, given by a
non-zero covariance between R; and the error v;. To avoid this model misspecification,
the choice of the proxy X; is the key; alternatively it will be convenient to set-up a

simultaneous regression model.

Recall that synchronised returns R; are not observable but it can be written in terms of
asynchronous returns as (3.14). Therefore, we are setting up a simultaneous regression

model for the proxy X; on asynchronous returns r;.
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Firstly we substitute R; on (B1) by (3.14) and yield

Xt = M[(IJ + AB)’I"t — ABthl] —+ v
= 1t + Bari—1 + vt, (B.2)

let f1 = M(I;+ AB) and 1 = —M AB.
Note that the fraction parameter A can be algebraically identified by
A=—(B1+82) 2B (B.3)

Referring to figure 1 for illustration, there is possibility that asynchronous returns ry
affect on both X; and X;_;. Thus we suppose the reverse causality of r, on X; is given
by

Ty = FlXt + FQXt_l =+ Uy (B4)
Considering equation (B2) and (B4) as a simultaneous equation model:

Xy = Bire + Bori—1 + e
re =Xy + D2 Xp 1+

Possibly, the asynchronous return r; and the proxy X; are endogenous, while the lag-1

proxy X;_1 and the lag-1 asynchornous return r;_1 are exogenous.

As the standard OLS method is not appropriate for simultaneous equation models, we

should perform the parameter estimation by obtaining the reduced form model.

To do that, we substitute X; given by (B2) into (B4) obtain

re =T (Bire + Bare—1 +v) + Do X1 + we
=116 +TiBare—1 +ToXe 1 + vy +uy
=Uiri g + WX + Uy, (B.5)

where Wy = (I —T181) 'T182, Yo = (I —T151) 'Ta, Uy = (I —=T181) H(T1v + ).
Then, we replace r, on (B2) with its expression on (B5) to obtain

X = L1(Urri—1 + Yo Xy 1 + Ury) + Bori—1 + vy
= (B1Y1 + Bo)ri1 + B1Va X1 + B1UL + vy
=®11r—1 + Po X1 + Uy, (B.6)

where ®; = 3,9, + (2, @3 = 1 W3 and Uy = S1Ur¢ + v4.
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B.2 Parameters identification

Now we can correctly estimate (B5) and (B6) by OLS and obtain their parameters ¥y,
Wy and @1, Py respectively. Since we have four unknown structural parameters 31, B2,
I'y and I's with four equations given by Wy, Wy, ®; and ®o, we are able to identify the

structural parameters and hence calculate the fraction parameter A as follows.

There are four equations for coeflicients

i) Uy = (I—T161)" T,
i) Wy =(I—T1p1) Ty,
iii) ®1 = 1P + B2, and

iV) q)g == 51\112.

From iv), 81 = ®2 ¥, !. Substituting £ into iii) we obtain

Dy = O 0, ' Uy + B
— 52 = '1)1 — @2\112_1\1/1.

Recall that the fraction parameter A can be expressed in terms of §; and [ as (B3);
therefore, the matrix A in terms of those four structural parameters is given by

A=—(B1+ B2) BB}
= (DUt + &) — DU )T (D) — DU, MY )BT (B.7)
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Appendix of Chapter 4

C.1 Proofof inconsistency of MLE from asynchronous VAR

I. Maximum likelihood estimators of B and ¥ from true model (4.2), let ¢ = 0 for
simplification.

e MLE of B:
olnL lzT: 0 (R — BR_1)’S" (R, — BR;_1))
- = —— P — t — t—1 t — t—1
0B 24~0B
1 £l 8 F—1 / Ivo—1 / IN—1
=32 55 (RIS BRy + R B'ST'R — R\ B'ST'BR,_y)
t=1
1 d 0 Je—1 -1 / / / /y—1
=5 g tr(Ra RS B) + tr(ST R R B) — tr(Ry 1 Ry B'S 7' B))

T
1
=3 > (RaRS™'+ R RY™ —2R, 1R, B'S7")

t=1
T
=> (RRX™' =R, 1R, ,B'S™)
t=1
olnL

55~ = 0 gives the maximum likelihood estimator of B as follows:

dlnL d d
o5 =0~ > R 1R;=) R 1R, B
t=1

t=1

T T
=Ty (RaR,_)B' =T"'Y R 1R,
t=1 t=1

T

T
- B;V[L = (ZRtflRéfl)_l(ZRtflR;f).
t=1

t=1
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e MLE of %:
_ _% + % éete;Z‘Z
dlnL

55~ = 0 gives the maximum likelihood estimator of X as follows:

II. Maximum likelihood estimators of B and ¥ from the model of observed returns r;

with the consideration of measurement equations, assuming serially uncorrelated mea-
surement errors.

e MLE of B:

8ln£

1 3
= —= P~ 7’,5 —+ vy — B(T‘t_l +Ut_1))/271(7’t + vy — B(Tt—l + 'Ut—l)))
9B~ 2 thl 55

0
87B(2(7"t + ) ST B(re—1 +vim1) — (re—1 4+ ve-1) B'ST B(re_1 4 vi-1))

I
[NCRI
M=

1

I
] =

((re—1 o) (re +0) 7" = (re1 +vem1) (re—1 +ve-1) B'S™)

t=1

%LBE = 0 gives the maximum likelihood estimator of B as follows:

T T
alnﬁ oY
= E (re—1+ve—1)(re + vp)’ E (re—1 +ve—1)(re—1 +ve—1)' B
0B
t=1 t=1
T T
Tfl / / B/
- (re1ry) (re—17p—1 — Ve—1V;_q)
t=1 t=1
T T
! /
- BML = E (re—1Tt_q — Vi—10;_q) g Ti— 17}
t=1 t=1

_ 1T / _ 1T 1 =1 T A
denote @, , =T Zt=1 Te-171—1, Qry_yr, =T Zt=1 re—1ry, T Zt=1 Vv = XY,

— BgVIL = (mel - Zv)ilQthth'
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e MLE of %:
onL _ —zilnE EZT: Q(eiE‘let)
ox ~ 2oz 2440
—% + % ZT: A Y
t=1
alnL

55 = 0 gives the maximum likelihood estimator of X as follows:

olnL
oy

M>

1

3
M’ﬂ

0—

(’)"t —+ vy — BTt_l — th_l)(rt —+ vy — Brt—l — B’Ut_l)/

1

M

1

.
N

T T
- ért_l)(rt - Brt_l)' -7 Z VU — 71 Z thvgél

M)

I

.
M=
£

%
=1
¥ =%"-3%"- ByB.
II1. Repeat II, assuming serially correlated measurement errors.

e MLE of B:

T
8ln£ , PN
E Te 1Ty — Vp_10}) E (re—1ri_q —vi—1v;_q)B

T T
N —1
— By = (D (rearhoy —ve1vi0)) " (D (reeart —viav})),
t=1 t=1

_ 1T /
denote Q, v, =T >, Ve—17},

— B;WL = (QT't—l - Ev)il(Qthlm - Q'Ut—lvt)'

dnL . o . . . .
=02 =T" Z(Tt + vy — Bry_1 — B’Ut_l)(Tt + vy — Bry_1 — th—l)/

T
Sy =7" Z ((re — Bri_1)(re — Bri_1) — v — Buw! B + Bu_qvl + vtvgflé’)

X =%°-%"— BYB + BQy, v, +Q), 0, B
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IV. Proof of Theorem 4.1.

Proof.

e The probability limit of @), , when T" — oco.

T
_ —1 /
Qr,, =T Ert—lrt—l

t=1

T
T Z(Rt—l —vp1)(Rem1 — 1)’

t

l
—

M=

-1 / / / /
T (Re—1 Ry — Re1vy_y —vi1 By g + vm1vp )

&~
Il
—

= QRt—l =+ Q“t—l + O;D(nil/Q)v

then Q,,_, & T(0) + X¥; hence, Q,, , — X% 5 T(0).
e The probability limit of @, ,,, when T — oco.

T

—1 /

Qrt,lrt =T § Tt—1T¢
t=1

T

_ T—l R R/ R / R/ /

= ( 14t — 10 — v 4 + 'Utflvt)

t=1
= QRt—lRt + Op(nil/Q)v

then
Qr, \r, > T(0)B.
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V. Proof of Theorem 4.2.

Proof.

e Asymptotic mean of B ML:
plimBY,, = plim((Qr,_, — 5) "' Qr,_1r)

T
= plim((an1 —yy)irt Z rt,lrg)
t=1

T
= th((anl - Ev)_lT_l Zrtfl(Brtfl + et)’)

t=1

T T
=phim((Qr,_, =) T rar) B AT riae)))
t=1 t=1

T
=plim((Qr,_, - )" QB - T Zml(”t — Bu_1+€)'))

t=1
= plim((Q”71 - Zv)_l(QTt—l - 2D)B/)
=B

e Asymptotic variance of By since

B/ = (Q"'t—l - Zv)le”il”
T
=(Qr,_, — Zv)ilTil Zrtfl(BTt—l + €t)l

=1
T
=(Qr,_, — x)~tr! ZTt—l(BT't—1 —Y'B' +X'B +¢)
=1
T
B4 Qe ) B AT Y )

t=1

T
=B =B =(Qr,_, — ") (=B + T > riae})

t=1
where e; = —v; + Bvy_1 + ¢, then
T
Var(VT(B' — B')) = TT(0)"'Var(S*B' + T7' Y " r_1€,)I(0) ™
t=1
T T
=Tr(0)'E((S'B' +T7') rae)) ("B + 771> re_ye}))I(0) "
t=1 t=1

=T(0)'E(-X"B'BY" + Q,,_,(X"+ BS'B' + £))I(0) !
since Q,,_, 5 T'(0) + X%, and X¢ = XV + BYYB’ 4+ %, then

Var(VT(B' — B')) & £°T(0)~! + 1(0) (22 — "B'BE")T(0) ! = Q. O
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C.2 An alternative proxy

This alternative proxy is derived from the definition of asynchronous returns in relation
to the true return variable and the measurement error. Recall that the (J x 1) vector of
asynchronous returns is defined as the log difference of two consecutive closing prices at
the local closing time of each market, written as r, = AP;; similarly, the (J x 1) vector
of true returns is defined as the log difference of two consecutive synchronous prices

R, = APy,

By adding and subtracting the true returns from asynchronous returns, we obtain an
expression of asynchronous returns as true returns plus some non-captured returns, given

by

Tt:Tt—Rt+Rt
= AP — (P} = P)+ (P, — Pi—1)
=Ry — (P} — P)+ (P, — Pi1)

denote P’ — P, = R} as the (J x 1) vector of missing returns, then
re =Ry — Rf + Rl_,.

Recall that the measurement error equation is as r; = R; + v, thus the measurement
error should be the uncaptured returns, that is

Ve = _R: +R:71.

The good thing is that we now have a meaningful definition to the measurement error,
the question needed to solve is that such missing return R; is unobserved since it is
made up by the unobserved synchronous price. Therefore, the following assumption can

be an option to proxy the missing return Rj.

Assumption C.1. Assume that the (J x 1) vector of missing returns Rf’j for market
J at time t is made up by a (J x J) fraction matriz A of the observed return r] for
1 =12 ..J, written as

Rr = A’I“t (Cl)

where the (J x J) fraction matrix A is closed and bounded on [0, 1].

By substituting (C1) into the measurement error equation, we obtain

re = Ry — Ary + Ary_q
s Ry = (I+A)7"t — Ari_q

denote I + A = «, then

Ri=ari+ (I —a)ri—y
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the (J x J) fraction parameter « is also [0, 1] bounded given A is closed and bounded
on [0, 1].

Next the expression of true returns in terms of observed returns is substituted into the
true VAR model, suppose the true model is a VAR(1) such that Ry = BR;_1 +¢€;, obtain

ary + (I —a)ri—y = Blary+ (I — @)ri—1) + &
Sary=(Ba—IT+a)ri1+BI—a)ri—a+ e
Sy = a_l(Ba —I4+a)yr—1+ a_lB(I —Q)ri_o + a e

denote 1 = a }(Ba — I +a), 2 = a 'B(I — a), and e, = a~ ¢, the equation above
is a VAR(2) process of observed returns, that is

Ty = Biri—1 + Pari—2 + €.

This transformed VAR(2) model can be estimated by the usual maximum likelihood
method, but our aims are identifying the true parameter B, the fraction parameter o
and the estimate of the variance matrix of the true disturbance term, Var[e] = X.
Therefore, instead of estimating 7 and (2, the maximum likelihood estimators of o, B
and X are derived from the transformed VAR(2).

The maximum likelihood estimators assuming normally distributed error are derived as
follows.

T T
Bip =) Bk 7Y RiaR),
t=1

t=1

T _
& = (Z(rt — (I + B)ry—1 + Bri_o)(re — (I + B)re—1 + BTt—2)/> 1

=1

~

X (XT:(Q — (I + B)r—1 + Bri_o)(Bry_s — 7‘t—1)/>,

t=

—

where R; = éry + (I — &)ri—1, and & = ary — (Bé — I + &)r—1 + B(I — &)re—s.

The maximum likelihood estimators derived above invloved complicated non-linear op-
timisations that are difficult to applied in the real data. Further research could conduct
some Monte Carlo simulation studies to estimate the parameters and to evaluate the

adequacy of the asymptotic distributions of the estimators.
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