

Your query was:
shackleton

17:40h

PP42D-06 INVITED

**Implications From a new
Continuous Astronomically Calibrated
Geological Time Scale Back to \sim 42
Myrs**

*** P{"a}like, H**

heiko@geo.su.se

*Department of Geology & Geochemistry,
Stockholm University, Stockholm, 10691 Sweden*

Moore, T C

tedmoore@umich.edu

*Geological Sciences, University of Michigan
2534 C.C. Little Building, 425 E. University Ave., Ann
Arbor, MI 48109-1063 United States*

Backman, J

backman@geo.su.se

*Department of Geology & Geochemistry,
Stockholm University, Stockholm, 10691 Sweden*

Raffi, I

raffi@phobos.unich.it

*Dipartimento di Scienze della Terra,
Universitario "G. D'Annunzio" Campus Universitario via
dei Vestini 31, Chieti Scalo, 66013 Italy*

Par{"e}s, J M

jmpares@umich.edu

*Geological Sciences, University of Michigan
2534 C.C. Little Building, 425 E. University Ave., Ann
Arbor, MI 48109-1063 United States*

Lanci, L

llanci@uniurb.it

*Istituto di Dinamica Ambientale, Universita'
di Urbino Localita Crocicchia, Urbino, 61029 Italy*

Shackleton, N J

njs5@cam.ac.uk

*Godwin Laboratory, University of
Cambridge, Cambridge, CB2 3RS United Kingdom*

Precise, orbitally calibrated geological time scales form a pre-requisite to further our understanding of phase relationships between orbitally driven climatic processes, and to decipher the detailed mechanisms that interact to encode orbitally forced (Milankovitch) processes in the geological record. One of the great successes of ODP Leg 199 was the recovery of a high-resolution (\sim 1-2 cm/ky) biogenic sediment record, together with an uninterrupted set of geomagnetic chron, as well as a detailed sequence of calcareous and siliceous biostratigraphic datum points. In addition, lithological measurements revealed clearly

recognisable cycles that can be attributed to climatic change, driven by Milankovitch style orbital variations of the Earth. By integrating lithological, geochemical, and stable isotope data sets, we have now derived a long, astronomically calibrated, time scale from the Miocene into the latest Eocene from ODP Leg 199. Using additional data from ODP Legs 177 and 171B, we have generated a detailed continuous time scale back to \sim 42 Myrs. We can contrast the encoding of astronomical forcing terms in sedimentary records from different ocean basins, latitudes, water-depths, and water masses. Our results show that the dominantly recorded orbital parameters vary as a function of the carbonate system response, with a very strong eccentricity component in the record from the deep equatorial Pacific, and a stronger obliquity component in the equatorial Atlantic. In addition, we investigate the phase relationship between astronomical forcing terms and carbonate preservation, with a potentially different response during "green-house" and "ice-house" conditions, separating the Oligocene and Eocene.

1035 Geochronology

1535 Reversals (process, timescale, magnetostratigraphy)

4267 Paleoceanography

5450 Orbital and rotational dynamics

9604 Cenozoic

Paleoceanography and Paleoclimatology

[PP]

2003 Fall Meeting

[New Search](#)

