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This paper investigates the effects of local leading-edge geometry on unsteady aerofoil in-
teraction noise. Analytical results are obtained by extending previous work for parabolic
leading edges to leading edges of the form 2™ for 0 < m < 1. Rapid distortion theory
governs the interaction of an unsteady vortical perturbation interacting with a rigid aero-
foil in compressible steady mean flow that is uniform far upstream. For high-frequency
gusts interacting with aerofoils of small total thickness this allows a matched asymptotic
solution to be obtained. This paper mainly focusses on obtaining the analytic solution
in the leading-edge inner region, which is the dominant term in determining the total
far-field acoustic directivity, and contains the effects of the local leading-edge geometry.
Experimental measurements for the noise generated by aerofoils with different leading-
edge nose radii in uniform flow with approximate homogeneous, isotropic turbulence are
also presented. Both experimental and analytic results predict that a larger nose radius
generates less overall noise in low Mach number flow. By considering individual terms in
the analytic solution, this paper is able to propose reasons behind this result.

1. Introduction

Aerofoil turbulence interaction noise, also commonly known as leading-edge noise, is
a dominant contributor to overall levels of unwanted noise generated by aeroengines due
to rotor-stator interaction (Peake & Parry 2012), and is produced due to the interaction
of the wakes generated by a forward blade row with a subsequent blade row. With
increasingly tight European noise regulations, such as the Flightpath 2050 target of a
65% aircraft noise reduction with respect to 2000 noise levels, it is imperative we improve
our understanding of noise generation within aircrafts and develop new designs to reduce
this noise.

In one of the simplest (analytic) models Sears (1941) predicts the far-field noise gen-
erated by a single flat plate interacting with an unsteady vortical gust. This is extended
by Amiet (1975) to consider the effects of homogeneous isotropic turbulence interacting
with a flat plate in uniform flow. Realistic geometry effects are now included in analytic
solutions; Myers & Kerschen (1997) considers the effects of angle of attack and camber,
Tsai (1992) considers the effects of non-zero maximum blade thickness, and Ayton (2016)
combines maximum thickness, camber and angle of attack effects, thus accounting for
full aerofoil geometry. In the latest analytic models (Myers & Kerschen 1997; Tsai 1992;
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Ayton 2016), only high-frequency, k > 1, incident gusts are considered to allow matched
asymptotic solutions to be found, and the effects of geometry are parameterised by a
single constant, € < 1, which denotes the global size of the mean flow perturbation from
a uniform flow (hence ¢ denotes the maximum thickness or camber of the aerofoil under
consideration).

These analytic approaches use rapid distortion theory (Goldstein 1978) to separate the
unsteady flow field into two parts; a convective part that describes the distortion of the
gust in the mean flow, and a scattered part that contains the acoustic field due to the
interaction of the distorted gust with the rigid aerofoil. Acoustic pressure is generated
in two ways; the distorted vorticity acting as a source term, and the unsteady vorticity
interacting with the rigid surface. One benefit of analytic solutions is that they can easily
identify the effects on the far-field noise of these two different contributors.

A variety of numerical methods also consider the effects of geometry on unsteady aero-
foil interaction noise (Grace 2001; Allampalli et al. 2009; Lockard & Morris 1998; Glegg
& Devenport 2009). With regards to the effects of thickness, these use a single param-
eter denoting the maximum thickness of the aerofoil, and supposed the aerofoils have
parabolic leading edges (y ~ +/x) (as do the analytic methods Tsai (1992) and Ayton
(2016)). It is found both numerically and analytically that for high-frequency interac-
tions, increasing maximum aerofoil thickness reduces the total far field noise, which is
confirmed experimentally (Olsen & Wagner 1982). There are however some contradic-
tions between numerical and experimental results, for example Lockard & Morris (1998)
find that the far-field directivity patterns skew towards the upstream direction with in-
creasing thickness, but this is not found experimentally by Olsen & Wagner (1982). This
could be due to difficulties in taking experimental measurements directly upstream of
the aerofoil due to the location of the nozzle, or because the unsteady Kutta condition
(Crighton 1985) is not imposed in the inviscid results presented in Lockard & Morris
(1998); neglecting the unsteady Kutta condition is shown to significantly affect the up-
stream far-field directivity pattern (Ayton et al. 2016).

The idea that increased thickness can reduce high-frequency far-field noise led to in-
vestigating the effects of leading-edge nose radius on unsteady interaction noise, with
experimental (Hall et al. 2011; Devenport et al. 2010; Chaitanya et al. 2015) and nu-
merical (Gill et al. 2013) results both showing trends of a reduction of far-field noise
with increased nose radius. It is proposed in Gill et al. (2013) that the distortions of
the steady flow near the nose of the aerofoil are the primary noise reduction mechanism
for increasing maximum thickness, and increasing nose radius. Typical outlet guide vane
(OGV) geometries have approximately 5% thickness relative to aerofoil chord. To reduce
the interaction noise, increasing the total thickness is unrealistic due to its influence on
aerodynamic performance. Understanding how small changes in nose radius can lead to
significant changes in far-field radiated noise is therefore key to realistically reducing
aerofoil interaction noise.

In this paper we wish to improve the understanding of the effects of aerofoil leading-
edge geometry on gust-aerofoil interaction noise by obtaining an analytic solution for the
far-field acoustics, extending previous work based on rapid distortion theory. In partic-
ular, the analytic solution found can separate the effects of volume sources, the locally
distorted mean flow, and unsteady vorticity interacting with the rigid surface, hence
by considering these effects separately we aim to develop a broader understanding of
the roles of each feature on noise generation. The analytic results determine trends for
single-frequency unsteady upstream perturbations that are compared to the trends seen
in (fully turbulent) experimental data.

In Section 2 we discuss the analytic formulation of the problem, and how to extend pre-
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vious analytic results (Tsai 1992; Ayton 2016) to a more general leading-edge geometry.
In Section 2.2 we solve the governing equations in a local inner region around the aerofoil
nose. This region contains the key terms contributing to the overall solution that depend
on the local leading-edge geometry. The experimental setup is discussed in Section 3, and
results are presented in Section 4. We discuss our conclusions in Section 5.

2. Analytic Solution

We wish to find the acoustic field generated by a small unsteady vortical perturbation
interacting with an aerofoil with arbitrary leading-edge geometry and chord length 2¢*
in steady flow which far upstream is uniform U = UX e, (where * denotes a dimensional
quantity). From hereon in lengths are non-dimensionalised by semi-chord, ¢*, and veloc-
ities by UZ . The boundary of the aerofoil is denoted as ey(z) such that y(0) = y(2) =0
and, since we consider only thin aerofoils, we have an asymptotic parameter ¢ < 1
governing the maximum thickness of the aerofoil. We consider leading-edge geometries
y ~ eapzr™ as x — 0 for 0 < m < 1 and ag a suitable O(1) constant.

2.1. Governing Equations

Analytic solutions for high-frequency gust-aerofoil interaction noise exist in the case of
a parabolic leading edge, m = 1/2, for both symmetric (Tsai 1992) and non-symmetric
(Ayton 2016) aerofoils in steady flow that far upstream is uniform with Mach number
M. These are obtained by solving the rapid distortion theory equations (Goldstein 1978)
governing the acoustic field. Full derivation of these equations (which are relevant still for
arbitrary leading-edge geometry) can be found in Myers & Kerschen (1995, 1997), Tsai
(1992) and Ayton (2016) and therefore are just quoted here. Whilst this work is valid for
both symmetric and non-symmetric aerofoils, for simplicity we shall restrict the analysis
to the symmetric case only, since it has been found that the effects of camber and angle
of attack on aerofoil noise in isotropic turbulence are relatively small in comparison to
the effects of thickness (Devenport et al. 2010).

As is typical in thin aerofoil interaction theory, we work in coordinate system (¢, )
which denote the potential and streamfunction of the steady mean flow, and relate to
Cartesian coordinates via

x+iﬁooy:2+6F(z)7 (21)
where z = ¢+, Boo = v/1 — M2 is the Prandtl-Glauert transformation factor account-
ing for compressibility, and F is the complex potential of the mean flow. A key benefit
of this coordinate system is that the aerofoil boundary is now mapped to ¥ = 0.

The complex potential, F'(z), can be found by using thin aerofoil theory (Thwaites
1960)

dF
T odz’

2
(¢ —ip)(z) . /Oy(w)d% (2.3)

TBoo z—x
and the constant of integration for F' is chosen such that F(0) = 0. The mean flow around
the aerofoil in our new coordinates is therefore (1 + €g)e.
We denote the convective vortical disturbance far upstream as vvo, = v(A¢, Ay, A3)eik(¢+k"w+k3z_t>,
and require A; + Apk,Bs0 + Asks = 0. We set v < € so that the unsteady perturba-
tion is much smaller than the mean flow distortion due to the aerofoil, and consider a
high-frequency limit, & > 1, with a distinguished scaling ek = O(1), in line with all

where
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previous analytical gust-aerofoil interaction models (Myers & Kerschen 1995, 1997; Tsai
1992; Ayton 2016). We separate the total unsteady flow field into two parts; the known
evolution of the gust in the mean flow, vv,; and the unknown response to the interaction
with the aerofoil, vv, = ¥'VG, which contains the acoustics that propagate to the far
field. We suppose the flow is inviscid, non-heat conducting, and a perfect gas.

We define the modified potential as

h(p, ) = GelMwd/FMocca, (2.4)

hence the linearised Euler equations become

9h  9%h 1) M2 9?h oh
90 + 702 + E2w?(1 — 26% eq)h + W (672 + 2ik68—¢ + K2 (w? + 52)h)
4
- %g—; <% - ik§h> = keS(8,¥)e*?,  (2.5q)
where

§=1/8%  w'=(Mx0)’ = (ks/B)?, Q=06 +knt+eg(¢0),  (25D)
and the forcing arising from v is

AM2 8q | AuM2Ba D

S(¢» 1/)) = 2 (Z(At - Anknﬁgo)q + i(ﬁgoknAt + Anﬁoo)p’ +

s ko 0o koY
(2.5¢)
The function, g(¢, ), is Lighthill’s drift function,
@
9(¢,9) = —2/ q(n,)dn, (2.5d)

and the boundary condition of zero normal velocity on the aerofoil surface is given by

oh dq A, A, M2 eq\ .
— 4+ Mfoe—h’ = <f + 2ep Ay + “R00 L) R (2.6)
o0 T P Boc -
Pressure is obtained from the modified potential via
p=— (%Z — ik:5h> e iROML S, (2.7)

which is derived in Myers & Kerschen (1995, eq. (2.7)).

The method of matched asymptotic expansions (Van Dyke 1975) is used to solve (2.5q)
subject to (2.6). There are five regions of interest; inner regions around the leading and
trailing edges, transition regions above the rigid surfaces and wake, and an outer region.
These are depicted in Figure 1. For aerofoils with parabolic leading edges, y ~ /7 as
x — 0, the solution in all regions can be found in Ayton (2016).

For high-frequency gusts, it is known that the leading-edge inner solution is dominant
in determining the far-field acoustic pressure (Tsai 1992). The trailing-edge inner region
produces an acoustic field that propagates to the outer region and acts predominantly to
enforce a continuity of pressure and velocity across the trailing edge via a Kutta condition.
This trailing-edge solution is O(k~'/2) smaller than the leading-edge inner solution and
propagates with a phase shift compared to the leading-edge solution thus modulates the
total far-field directivity. The transition solutions do not propagate acoustics to the far
field except at small downstream angles § = O(k~'/2). Therefore if we wish to determine
the effects of altering the leading-edge geometry on the far-field noise it is sufficient to

).
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Figure 1: Asymptotic regions around the aerofoil; leading- and trailing-edge inner regions,
(i) and (iv); transition regions, (iii) and (v); and the outer region, (ii).

consider the leading-edge inner region at O(1)+first-order correction (the size of which
will be discussed in the next section) in Sections 2.2 and 2.3, and the trailing-edge inner
region at O(k~'/2) (which is the leading-order term of the trailing-edge inner solution)
in Section 2.4. We must also account for the distortion of the inner solutions as they
propagate noise to the far field, which is discussed in Section 2.5.

2.2. Leading-Edge Inner Region

In the leading-edge inner region, (i) in Figure 1, we use leading-edge inner variables
(®, V) = k(¢, ), and define the leading-edge inner potential as H(®, V). The governing
equation becomes

0’H 0°H 9 9 (v + 1ML 0’H OH 9 | oo
(y+1)ML 0q (OH . € .o
_ 0 L[ _i5H ) = =€t o, U 2.
) A ¢ S(®,¥), (2.8a)
Q=0®+k, VU + keg(®, V), (2.8b)
S(@,0) = 2 (ig(Ar — ApknBL) + iBoopt( Bk AT + An) + AsM2 09 4 4 p2 5, 90
) Bz ql Ay nfnPoo oo M\ PocRin Ay n t Moo 55 nooloo oy
(2.8¢)
and the boundary condition becomes
OH 8q 1 Ay AnM2 €q i)
— +Mie-~H = - (—— + 2ep A + TR0 L) i , (2.9)
oV 7 R oo ‘ Boo w=0
for @ > 0.

The inner governing equation and boundary condition contain small terms of size
O(eq). To determine the asymptotic scaling parameter required in the inner region we
need to determine the scaling of these small terms. Therefore we consider (2.3) for inner



6
variable Z = kz to find

m

m(—l)m csc(mm) + O(ek™™). (2.10)

q—ip ~ eaok!™™

Note this is singular at m = 1 since thin aerofoil theory is not appropriate for a sharp
wedge y ~ x. We find ¢ = O(ek!™™) x O(m/ sin(mm)), which is O(ek!=™) for 0 < m <
0.8, therefore we shall restrict our attention to values of m such that 0 < m < 0.8, to
avoid unnecessary complexity of the asymptotic scaling parameter.

We therefore seek a solution
1 ..
H(®,0) = EeZZ’“eF(—OO) (Ho + ek' ™™ (Hy + H> + H3)), (2.11)

The O(ek!~™) term is separated into three components as done for the parabolic (m =
1/2) leading-edge cases (Tsai 1992; Ayton 2016). The separate terms correspond to dif-
ferent physical mechanisms which will be discussed as we present analysis for each term.

2.2.1. Solution for Hy

This is as if we had a gust impinging on a semi-infinite flat plate, and corresponds to
the effects of blocking the vertical gust velocity components. We must solve

D(Hy) =0, (2.12a)
0H, An e

where D is the Helmholtz operator defined by D = a‘% + 8‘9—;2 +w?. We solve using the
Wiener-Hopf method, obtaining

Ay sgu(W) [0 emARTIVIVATILE i
Boc2mVo+w J_oo (A+0)VA+w

Hy = (2.13)

To covert back to (¢,1) variables from leading-edge variables, (®, V), we take an outer
limit and use the method of steepest descents (Bender & Orszag 1978). The saddle point
is at A = —wcos 0, yielding

ikwr

Hy ~ Lo(0) N +O(k=3/%), (2.14a)
—im/4
Lo(6) = Ape cos /2 (2.14)

_ﬂoo\/%\/(ﬂ—w(é —wcosh)’

This flat-plate solution is discussed in detail in Tsai (1992). The outer limit, (2.14),
represents the acoustic field propagating from the inner region to the outer region, and
provides a directivity function, Ly(6), for the acoustic pressure in the outer region.
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2.2.2. Solution for Hy

This solution takes account of the effects of thickness on the boundary condition, due
to changing of the surface normal direction. We must solve

D(H,) =0, (2.15a)
0H, _ sgn(¥) . A, M2 ] e
50 P e I'(1 —m)['(1 + m) |2A] sin(mm) . cos(mm) Piom
(2.15b)
id®
= sgn(\Il)C(m)q)lim. (2.15¢)

This yields

H = _Cm)L(m)(=)~™ [ e~ iAP—|TVAZ—w? 0 (2.16)
2n coo VAE—w2( A+ 0)m

which has outer limit

ikwr

(&
leLl(e) m

ir(m)c(m)cfni/zlcnim/Q

2mw(d — w cos B)™

+O(k™3/%), (2.17a)

Li(0) = (2.17b)

2.2.3. Solution for Ho

We now take account of the volume source in (2.8), arising from the distortion of the
incident gust in the locally non-uniform flow at the leading edge. We must solve

1-m

D(Hy) = e o®+ikn¥ <R1C—1m cos [(1 —m)0 + mm| + R02 sin [(1 — m)0 + mmn]

c C
+R23m cos [(2 — m)f + mmn] + RQfm sin [(2 — m)f + mﬂ}) (2.184)
H
% .. =0 (2.18b)
Toot
where
2iC 2iC

> it 2.1

CAIM2 (1 —m) 20 A, M2, (2.18¢)
Cs = o Gi=msp

with C =T'(1 — m)I'(1 + m)ao/ (7o)

We follow the same procedure as the parabolic leading-edge cases (Tsai 1992; Ayton
2016); we split the solution into a particular solution, Hs, that solves for the forcing
in the governing equation, and a complementary solution, Hs., that then enforces the
correct boundary condition. We solve for Ha, by taking Fourier transforms in both the
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® and ¥ variables yielding;

Hop (D, 0) =
ea(A,@,\Il)dA

—e~TIM/2(1 — 2T () /°° ((5 + A) f1(A) + ikn fa(N)
—sgn(W) f2(A)
1671 — m)(0° + k2) Novarr: & )
eik,,\I/ef‘rrim/Q(l _ e271im)r(m) /OO < fl (/\) B Sgﬂ(‘l’)fz(A)) eh()\,q),\ll)d/\
( (

— 00

167(1 — m) (62 + k2) oo \(AF )™ (A+0)m A=A —A2)’
(2.19a)
where
N = [Crim — 1) —i(8 + N)C3] (—k2 4+ w? + 6% + 20)) + 2(6 + Nk, [Co(m — 1) —i(0 + N)Cy],
(2.190)
F2(N) = [Co(m — 1)i+ (5 + N)Cy] (k2 — w? — 6% — 207) + 2(6 + Nk, [iC1(m — 1) —E—Q(fg—l—))\)Cg,] ,
.19¢

The acoustic phase is

a(\, @, 1) = —iA® — [T|\/A2 — w?, (2.19¢)

and the hydrodynamic phase is

B\ @, T) = —iA® — ||/ (N + 6) (A + ). (2.19f)

For convergence, § is assumed to have a small positive imaginary part, and ¢’ has a
corresponding small negative imaginary part.

We notice two types of solution; an acoustic and a hydrodynamic solution. It is only
the acoustic field that will provide pressure fluctuations in the far field. The key func-
tional difference between our solution for a general leading-edge geometry and that for a
parabolic leading edge is the (A 4 0)™ poles present in both acoustic and hydrodynamic
terms. We can therefore obtain the complementary solution from previous work that
assumes m = 1/2 (Tsai 1992; Ayton 2016) by making the relevant changes to these pole
terms;

_ —sgn(W)e "M/2(1 — &2 )[(m) [ 1
HQC(CD,\I/) = 167‘[(1 —m)(52+k%) /_DO {2(*504+kn03)7'[(§ *m)

_ < Mfz(A) n \/mfz()q) > 1
A+)mA=A2) (M +)" (M —A2) ) A=\

(A2 4 6) f2(A2) + ikn f1(A2) } et e

VA2 —w(Ae +8)m (A2 = A (A—=XA) ) VA+w

This is obtained using the Wiener-Hopf method, with the Heaviside function, H (de-

fined such that #(0) = 1/2), occurring due to the entire function arising from Liouville’s

theorem. The outer limit, La(8)e!*™" /\/kr, for the acoustic contributions can be obtained
using steepest descents as before, and is given in Appendix A.

+ dX. (2.199)

2.2.4. Solution for Hj

The final term to be found in our leading-edge inner solution arises due to the distortion
of the zeroth-order term, Hy, as it interacts with the locally non-uniform mean flow

A+ )N = A)(A = A2)
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around the nose of the aerofoil. We must solve

(’74— 1)M§o <62H0 0H,

D(Hj) = 265, w”qHo — +2i6—— + (w? + 52)H0)

2 o2 9%
+1)M2% 0q (O0Hy .
+ %6—; (T@O - 16H0) , (2.20a)
OH: )
Sl = fooa—\%Ho. (2.200)
T=0+

We solve by splitting the solution into a particular, Hs,, and a complementary solution,
Hs. = Hs., + Hsc, + Hs.,, as for the parabolic case. The solutions can be found in the
Appendix B along with their outer limits, Ls,(0)e*" /v/kr and L, , ,(0)e*"" /Vkr.

2.3. Outer limit of the leading-edge inner solution

We have now completed the solution for the leading-edge inner region which is domi-
nant in determining the effects of leading-edge geometry on the far-field acoustics. To
summarise, the outer limit of the leading-edge inner solution yields

eikwr+2ikeF(—oo)

hu(r, 6) ~ TN (Lo(8) + k'™ [L1(6) + La(6) + Lyp(6) + Lye, (8) + Lac, (8) + L, (9)])
(2.21a)
Cikwr+2ik€F(7oo)
= D), (2:21b)

Vir

which gives the leading-edge directivity function, D;(#), correct to O(ek!=™), generated
by interactions at the leading edge. Note the phase function, 2ike F'(—c0), and additional
amplitude multiplier, k!, have arisen due to the proposed form of the leading-edge inner
solution, (2.11).

We can use this solution, (2.21), to investigate the effects of altering the leading-
edge geometry on the far-field acoustics, in particular, the different contributions to the
solution can highlight the effects of different physical processes.

2.4. Trailing-edge solution

Here we discuss the solution in region (iv) of Figure 1.
Trailing-edge coordinates are defined as (¢;,1;), where

¢ =2+ s+ ¢y, Y =1y, (2.22)

with a; = Re(eF(2)). The inner acoustic potential is labelled Hy(®;, ¥;), where (&, ¥;) =
k(¢¢,1)4) are trailing-edge inner coordinates.

We wish to find only the leading-order contribution to the trailing-edge inner acoustic
solution (in region (iv) of Figure 1) which is O(k~'/?) smaller than the leading-edge inner
solution. The total trailing-edge inner acoustic solution arises from the rescattering of
the leading-edge acoustic field by the sharp trailing edge. If we wish to retain only the
first term, we only need to consider the rescattering of the leading-order leading-edge
solution, i.e. the flat plate term associated to Hy. This is independent of nose geometry,
and thus we can use the solution derived in previous work (Tsai 1992; Myers & Kerschen
1995, 1997; Ayton 2016).



10

We therefore have an outer limit of the trailing-edge inner solution given by

sgn(p)e™ e Ap (- e™/4|sin, /2] . —2ikw(1—cos 0 —
h ~ Vo2 (0 — w) (\/ﬁ(é—wcosé't) + VEkie ( Jerfe [e / ka(l—cose)})
(2.23)
Cikwrt
= —5—=Di(0), (2.24)

k2 /r¢
where Ap denotes the leading-order pressure jump across the trailing edge due to the
leading-edge acoustic solution,

Ap — \/51(6 _ w)LO(O)Qik(w*‘”\ﬁo)(2+Qt)+2”“F(*°°). (225)

The phase terms arise in (2.25) due to the shift of coordinates from the leading edge
to the trailing edge, recalling that pressure, defined by (2.7), contains additional phase
factors. Dy is the trailing-edge directivity function.

2.5. Solution in the outer region

To construct an approximate solution in the outer region, (ii) in Figure 1, we must
account for phase differences in the leading- and trailing-edge acoustic solutions. Both
solutions will undergo a phase distortion as they propagate from the inner regions to the
far field, and there will be a further phase shift between the two solutions due to the
differing positions of the leading and trailing edges. These phase effects are not a result
of the precise geometry of the nose, hence we can recover these effects directly from Tsai
(1992); Ayton (2016).

The asymptotic solution for the far-field acoustics, correct to O(k*3/ 2ekl-m k™2), is
hence given by

Clkwr

K32\ /r

where the phase shift is given by

h(r,t) ~

(Dl(é) 42 Dt(a)eikw“s) (2.26)

NG

s =V (0)aycosd + a; cosl — 2e F(—00), (2.27)

with
v+ 1) M3

V(o) = —i (2520102 _{ 32 == (0 —wcos 9)2) . (2.28)

The last two terms in (2.27) arise due to the different positions of the leading and trailing
edges, whilst the first term arises because of the (relative) distortion of the inner acoustics
as they propagate to the far field. We define the far-field directivity, D(0) as

D(9) = (Dl(e) + %Dt(G)eik“"’S> : (2.29)

3. Experimental Setup and Procedure

We shall compare our analytical solution for a single high-frequency vortical pertur-
bation interacting with a leading edge of variable nose radius to experimental results
measuring the far-field noise generated by such aerofoils in a fully turbulent stream. In
this section we discuss the test facility, specific experimental setup, and extraction of
results. Further details can be found in Chong et al. (2008) and Narayanan et al. (2015).
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\_\

Figure 2: Photograph of jet nozzle and test setup inside the ISVR anechoic chamber.

3.1. Open jet test facility and instrumentation

Far-field noise measurements were carried out at the ISVR’s open-jet wind tunnel facility.
Figure 2 shows a photograph of the facility within the anechoic chamber of dimensions 8
m x 8 m X 8 m. The walls are acoustically treated with glass wool wedges and the cut-off
frequency of the chamber is about 80Hz. The nozzle is designed as a three-dimensional,
25:1 CR nozzle. The inlet of the nozzle is a square section measuring 1.3 m x 1.3 m
and the outlet is rectangular shape measuring 0.15 m x 0.45 m. The axial length of the
nozzle is 1.35 m. To maintain two-dimensional flow around the aerofoil, side plates are
mounted to the nozzle exit which also support the aerofoil. The nozzle dimensions are
15 cm x 45 cm. Aerofoils are located 0.15 m downstream of the nozzle to ensure that the
entire aerofoil is located well within the jet potential core, whose width is at least 0.12m,
as shown in figure 11a in Chong et al. (2008). Chong et al. (2008) also shows that the
flow is two dimensional (no spanwise variation) to within a deviation of about 4%. The

maximum jet speed investigated in this study is 80 m s~

3.2. Far-field noise measurements

Free-field noise measurements are made using 11, half-inch condenser microphones (B&K
type 4189) located at a constant radial distance of 1.2 m from the mid span of the aerofoil
leading edge. These microphones are placed at emission angles of between 40° and 140°
measured relative to the downstream jet axis. Measurements are carried out for a duration
of 10 seconds at a sampling frequency of 50 kHz, and the noise spectra are calculated
with a window size of 1024 data points corresponding to a frequency resolution of 48.83
Hz and a BT product of about 500, which is sufficient to ensure negligible variance in
the spectral estimate.

The acoustic pressure at the microphones is recorded at the mean flow velocities of 20,
40, 60 and 80 m s~! at the exit of the jet nozzle. Details of the calculation method for
deducing the Sound Pressure Level spectra SPL, and the Sound Power Level spectra
PW L as functions of frequency, k, are presented in Narayanan et al. (2015).
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Figure 3: Comparison between the measured axial velocity spectra and theoretical von-
Karman spectra.

3.3. Turbulence characterization

A bi-planar rectangular grid with overall dimensions of 0.63 x 0.69 m? located in the con-
traction section of the nozzle is used to generate turbulence that is closely homogeneous
and isotropic. This bi-planar grid is designed based on empirical equations presented
in Roach (1987) and Hinze (1959). The grid is located 0.75 m upstream of the nozzle
exit. The streamwise velocity spectrum is measured using a hot wire at a single on-axis
position 0.145 m down- stream from the nozzle exit. It is found to be in close agreement
with the von-Karman spectrum for homogeneous and isotropic turbulence with a 2.5%
turbulence intensity and a 7.5 mm integral length scale. The turbulence integral length
scale is obtained by matching the theoretical spectra to the measured streamwise veloc-
ity spectra and dividing by two, assuming perfect isotropic turbulence. A comparison of
the two measured streamwise velocity spectra (S, /U*) plotted against non-dimensional
frequency k together with the theoretical von-Karman spectra are plotted in figure 3,
where close agreement is observed.

3.4. 38D Aerofoil models

In this study, six NACA symmetric aerofoils are produced using 3D printing technology.
We systematically vary thickness and nose radius of the aerofoils as shown in Figure 4.
In the case of the NACA 4-digit aerofoils, the leading edge nose radius R, is related to
maximum thickness by

R, =05 {0.29690—; <é)r (3.1)

where [ is a non-dimensional parameter that defines the shape of the leading edge as de-
scribed in (Gill et al. 2013). I = 0, represents a sharp leading edge, represented as NACA
xxxx-03, whereas I = 10 represents blunt aerofoils, represented as NACA xxxx-103 and
I = 6 represents standard NACA profile geometries. Recall the analytic description of
the leading edge is y ~ eapx™ where m and ag are used to alter the leading edge radius.
The values of I used experimentally correspond to values and m and ag as given in Table
1.

In order to prevent tonal noise generation due to Tollmien-Schlichting waves convecting
in the laminar boundary layer, and to ensure complete consistency between the differ-
ent cases, the flow near the leading edge of the aerofoil is tripped to force transition to
turbulence using a rough band of tape of width 0.0125 m located 16.6% of chord from
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€ Il m | ao
0.06| 0 [0.83] 2.3
0.06| 6 [0.44| 1.1
0.06]10{0.32|0.95
0.12| 0 [0.83] 2.3
0.12| 6 [0.44| 1.1
0.1210]0.32|0.96

Table 1: Table of values of m and ag that correspond to I = 0,6,10 for NACA aerofoils
with maximum thickness of 6% or 12%

NACA 0006-03

NACA 0006-63

NACA 0006-103

e — e —— S ————
NACA 0012-03 NACA 6012-63 NACA 0012-103
=0 I=6 =10

Figure 4: Symmetric aerofoil geometries considered in the study

the leading edge, on both suction and pressure sides. The tape has roughness of SS 100,
corresponding to a surface roughness of 140 p m. Transition is forced by the use of trip
tape, which is many orders of magnitude rougher than the aerofoil surface, and is there-
fore highly unlikely to affect transition. Previous noise measurements in the facility have
indicated that self-noise is insensitive to the method of tripping.

4. Results

In this section we investigate the effects of altering the leading-edge geometry on the
far-field acoustic pressure solution found both analytically and experimentally. We first
validate the analytical solution by showing it agrees with the experimental findings in
Section 4.1, then in Section 4.2 we use the analytical solution to decompose the acoustic
flow field to investigate the different physical processes happening at the aerofoil leading
edge, and what the effects of altering nose radius are on these.

4.1. Comparison of Ezxperimental and Analytical Results

We first compare the analytical and experimental results for the set of test cases given
in Table 1. In Figure 7 we present results for the measured acoustic sound pressure
levels at each of the 11 microphone locations, for aerofoils with 6% or 12% thickness
that are modified forms of standard NACA 4-digit aerofoils, with leading-edge nose radii
described by (3.1). Two low Mach number mean flow velocities are used corresponding to
U* =20,80ms™! (M = 0.06,0.24), and two non-dimensionalised frequencies, k = 2.5, 5.

The total noise radiated by the aerofoil located within a turbulent flow is dominated
by leading-edge noise at these chosen frequencies but by trailing-edge noise at higher fre-
quencies. As it is very difficult to measure leading-edge noise and trailing-edge self-noise
separately, our experimental analysis was limited to the frequency region where the inter-
action noise dominates trailing-edge self-noise. Figure 5 shows the influence of self-noise
on the total noise spectra. The spectra of radiated noise due to trailing-edge self-noise
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Figure 5: The Influence of Self-Noise on Total noise for 6% and 18% thickness to chord
at jet velocity of 60 ms~! (M = 0.18).

alone is obtained by removing the turbulence grid. Sound power levels are plotted against
a non-dimensional frequency (k) for aerofoils with two different thicknesses for highest
flow speed of M = 0.24. It is observed that the thicker aerofoil has lower interaction noise
and the self-noise starts dominating the total noise at a relatively lower frequency com-
pared to the thinner aerofoil. The non-dimensional frequency (k) where self-noise starts
to dominant the total noise for NACA0012 is around 6. Whereas for NACAO0006 it is
greater than 10. These frequencies are function of incoming turbulence intensity, where
in our present study it is about 2.5%. Below these frequencies the difference between
total noise and trailing-edge self-noise is greater than 5dB suggesting the dominance of
trailing-edge noise on total noise is negligible. Hence in the frequency range considered in
this present study, leading-edge noise is the main contributor to the total far-field noise
measured.

For the highest frequency, k = 5, and 12% thickness we see in Figure 7 that as nose
radius increases ([ increases), the magnitude of the acoustic pressure decreases. The
level of reduction is decreased for the higher mean flow. It is known from Chaitanya
et al. (2015) that the ratio of nose radius, R, (which contains both € and I dependence),
to the hydrodynamic wavelength, U*/k*, is an important factor and defines the extent of
gust distortion which in turn governs the far-field noise. With the increase of jet velocity,
we observe a decrease in k*R./U* resulting in decrease in level of noise reduction. For
a thinner overall aerofoil, 6% thickness we see the same trends to the 12%-thickness
aerofoils, although the reduction in magnitude of the overall SPL is lower for an aerofoil
of 6% thickness than 12% thickness. At lower frequencies k = 2.5 the trend continues;
aerofoils with larger nose radii generate less far-field noise, however the difference in SPL
for the thinnest aerofoil (6%) at the highest mean flow speed (80ms™!) is very small.
We can summarise these results by returning to the factor, k*R./U*; greater values of
k*R./U* produce greater noise reductions.

We compare the experimental results of Figures 7(a)—(h) to the analytical results in
Figure 8, which plot the far-field acoustic directivity for low Mach number flow (M =
0.06,0.24) at two different frequencies k = 2.5,5. The directivity, D(), is defined in
(2.29), and is restricted in Figure 8 to the experimentally measured range, 6 € [40°, 140°].

Analytically we focus on gusts with zero spanwise wavenumber, k3 = 0 and Az = 0,
since the experimental setup is fundamentally two dimensional. The dominant contrib-
utor to leading-edge noise for symmetric aerofoils in homogeneous isotropic turbulence
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Figure 6: Legend for experimental and analytical results in Figures 7 and 8, with I defined
n (3.1). The corresponding values of m can be found in Table 1 for aerofoil thicknesses
of 6% and 12%.

arises from purely transverse disturbances (k, = A,, = 0) (Gill et al. 2014) thus we take
kn =0.

We require the gust to be solenoidal, therefore A; + Ank,B- = 0, and to ensure
we ensure the magnitude of the incident gust vector far upstream is constant we set
A2 4+ A% = 1. Specifying k,, thus completely determines the incident gust.

We observe a good agreement between the experimental and analytical trends which
overall indicate that an increased nose radius (blunter nose) reduces noise.

The analytical and experimental results agree well for £ = 5, with the NACA 0006
indicating a linear reduction of noise with increasing nose radius, whilst the NACA 0012
results showing the I = 10 result can produce more noise that the I = 6.

The analytic k = 2.5 results show a weaker effect of altering nose radius on the noise
produced, in agreement with the experimental measurements. The analytic results predict
an increase of noise for a very blunt nose (I = 10) compared to a very sharp nose
(I = 0) in the upstream direction (§ = 7t being the directly upstream direction) except
for 6% thickness in the lowest speed flow, M = 0.06 (Figure 8(f)). This feature is only
shown in the experimental results at the final upstream microphone location for the 12%
aerofoils. We note the analytic results neglect transition regions which heavily influence
an O(kil/ 2) polar angle region directly upstream and downstream (Ayton 2016). This
is equivalent to an angle of 36°, thus we would expect potential inaccuracies at the
extremities of the analytic results for £ = 2.5. Further, the amplitude errors elsewhere in
the analytic solution are O(k~!) as we assume k > 1. Thus we expect bigger errors in
the lower frequency analytic results than the higher frequency analytic results. We also
see a difference in overall pattern between the analytically predicted SPL for & = 2.5,
M = 0.06 - the analytic results do not decrease with increasing 6. We also attribute this
to a lack of inclusion of a transition region for the larger 6 values.

4.2. Mechanisms for noise generation

Having determined the trends experimentally for increasing nose radius we see good
agreement to the analytical solution. We now use our analytical leading-edge solution,
(2.21), to investigate the individual flow features that could impact the change of noise
generation when nose radius is altered. We do so by considering the individual terms in
the leading-edge solution given by L1 2 3¢, ,,,3p(0) as each describes a different physical
process occurring in the governing equations.

We previously considered only k,, = 0, however to get a full picture of the effects of all
leading-edge terms we shall consider two cases here, k, = 0,1. We also wish to determine
the effects of higher Mach number flow, which are practically relevant to the leading-edge
noise problem, but due to facility restrictions could not be investigated experimentally.
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Figure 7: Sound pressure level measured experimentally against polar angle 0. Legend
given in Figure 6.
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Figure 8: Analytic far-field acoustic directivity, log,, |D(0)|, against polar angle 6. Legend

given in Figure 6.

We hence consider both low and high Mach number flows analytically, M = 0.3,0.6.
Finally, since a higher frequency leads to a greater difference in noise generation with
varying nose radius, and the analytic results become increasingly accurate with increasing
frequency, we shall focus on two high-frequency cases k = 5, 10.

We notice that k,, does not explicitly feature in the terms Ls, ., in the leading-edge
solution (2.21), and A, is an overall factor, since the H3 solution considers the distortion
of the flat-plate acoustics through a locally non-uniform flow at the nose - a process that
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Figure 9: Legend for analytic results.

is independent of the gust. Therefore the effect of altering k,, on these terms will be an
overall scaling factor only (since altering k,, alters the coefficient A4,,). The main influence
of k, lies in the L; 2 terms which represent the effects of the changing surface normal
direction on blocking gust velocities, and effects of the volume source generated by the
gust in the locally non-uniform flow at the nose, respectively. Both processes are clearly
dependent on the gust normal wavevector component. We therefore present |L; | for
both k,, = 0,1, but |Lg, ., , ,| only for k, = 0, in Figures 10 and 11 when My, = 0.6, and
|L1,2,3p,3¢: | for k, =0 at My, = 0.3 in Figure 12. We consider five different leading-edge
geometries, defined by m = 0.2, 0.3, 0.5, 0.7, 0.8, and all analytic plots share the legend
shown in Figure 9.

In Figure 10 (k, = 0, My, = 0.6), Figure 11 (k, = 1, Mo, = 0.6) and Figure 12
(k, = 0, My, = 0.3) the scaling parameter eapk'™™ is neglected, therefore we have
removed the thickness and frequency scaling of the locally non-uniform mean flow at the
nose (which as m increases to give a sharper nose, reduces in magnitude). Having removed
this asymptotic parameter, for each given m, the relative magnitude of the results in
Figures 10, 11 and 12 indicate the level of influence of that term in the total leading-edge
acoustic pressure. We see that by increasing m, the influence of Lz, ,, reduces, but
the influence of Lj 3, increases. This indicates that source terms (the volume source for
Ly, and the flat-plate acoustics for Ls,) become more important as the leading edge is
sharpened.

By considering the boundary condition for Hy, (2.15b), we see it consists of normal and
tangential gust terms, A, ;, multiplied by directional terms, sin(mm) and cos(m). In the
case of k, = 0, the outer limit, L; shown in Figure 10a, has no tangential component
(A: = 0), thus the solution depends only on the (vertical) directional term sin(mr). The
magnitude of L; hence varies proportionally to |sin(m)| as m varies, thus unlike Ly 3
there is no trend of overall increase or decrease with increasing m. When A; # 0 in Figure
11a, we see L decreases in magnitude for increasing m. Here the variation in size of the
directional terms sin(mm) and cos(mm) are less important, and the overall scaling in m
arising from the Fourier transform of ®™~!, which represents the rate of slowing of the
steady flow on approach to the frontal stagnation point, dominates. A smaller value of
m indicates a blunter nose, therefore a greater rate of slowing of the flow and a larger
magnitude of the solution L.

Figure 11b illustrates the effects of an asymmetric incident field on a symmetric aero-
foil, as the gust distortion at the nose depends on the angle at which it approaches the
aerofoil. The overall trend as m varies agrees with the symmetric k,, = 0 case in Figure
10b, indicating for k,, # 0 the volume source term is still promoted as m increases.

We now consider the magnitudes of the L1 3 3 3¢, , 5 for low Mach number, M., = 0.3,
in Figure 12 and compare to the results for moderate Mach number, M., = 0.6 (Figure
10). Overall all directivities are stretched horizontally for M., = 0.6 compared to M, =
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Figure 10: Polar plot of Ly 2 3p 3¢, , , for different leading-edge geometries, for M, = 0.6,
and k,, = 0. Legend given in Figure 9.
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(b) [L2(0)]

Figure 11: Polar plot of L, o for different leading-edge geometries, for M., = 0.6, and
ky, = 1. Legend given in Figure 9.

m| ao |eao5 ™™ |eap10t™™
0.2]0.567| 0.123 0.215
0.3]10.683| 0.126 0.205
0.5[1.000| 0.134 0.190
0.7]1.517| 0.147 0.182
0.81.933| 0.160 0.184

Table 2: Table of values of m and ap chosen to ensure equal total aerofoil thickness
€ = 0.06 for a modified NACA 4-digit profile, and asymptotic parameter eapk!~™ with
k= 5,10.

0.3 due to Doppler effects, but trends when varying m for each individual directivity
function remain the same. We also see that the relative sizes of certain Li 2 3 3¢, ,, are
decreased; in particular, at low Mach number, L; 3, are substantially smaller than at
moderate Mach number. Thus at low Mach number, and effects of L; 3, will be less
evident in the total far-field acoustic solution than at moderate Mach number.

Finally we plot the full pressure directivity, |D(#)|, as given by (2.29). We focus specif-
ically on k, = 0 gusts. All aerofoils have the same maximum thickness, but varying
leading-edge geometry, as can be seen in Figure 13, produced by taking the standard
NACA-4 digit profile but altering the first term from 2°° to ™. To ensure the maxi-
mum thickness is fixed across all aerofoils, different values of ag have to be chosen for
different values of m. These are given in Table 2. We see from this table that the pa-
rameter, eagk! =™ is similar across the range of m chosen for our two chosen frequencies
k = 5,10, therefore any effects seen altering the far-field noise are not caused purely by
the changing scaling of the steady flow at the nose, g (2.3).

Figure 14 gives the directivity for k, = 0 and M., = 0.3 at two gust frequencies, k =
5,10; we see that as the aerofoil nose becomes blunter (decreasing m) the noise reduces
across all angles for both frequencies (as also seen in Figure 8 for the comparison with
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Figure 12: Polar plot of Ly 2 3p 3¢, , , for different leading-edge geometries, for M., = 0.3,
and k,, = 0. Legend given in Figure 9.
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Figure 13: Full aerofoil shapes (with chord length 2) used for different leading-edge ge-
ometries y ~ eagz™. Legend given in Figure 9.

experimental data). To cause this we would expect source terms, indicated by solutions
Ly and Ly, to add to the total noise, which is justified by the consistent trends seen in
Figures 10c,10b and 14. Terms L3, , , likely subtract. We see similar results at frequency
k =5 as those seen at k = 10, since the only influence of the frequency on the directivity
is in the asymptotic scaling parameter eagk! =™, which affects the total size of the added
thickness-related terms, but not the individual effects seen by varying m in the L; 23
terms.

At higher Mach number, M., = 0.6, Figure 15 for frequencies k = 5,10 shows more
significant modulation of the solution, due to the greater interference between leading-
and trailing-edge fields. At both frequencies we see an increase of noise in the upstream
region for a very blunt leading edges (m = 0.2), although elsewhere the noise is reduced
as m is decreased. This upstream increase was observed experimentally in Figure 7 for a
12% total thickness aerofoil in low Mach number flow. Analytically the upstream increase
is greatest for & = 10. By increasing the Mach number we have increased the relative
importance of terms Lj 3,. We can determine that the L; term subtracts from the flat-
plate term, Lo, by considering the phase difference between L; and Lg. Therefore the
rate of slowing of the flow on approach to the stagnation point decreases far-field noise.
Since L; subtracts from the flat-plate term we do not expect this term to be contributing
to the increase of noise upstream. Instead we notice that the Lz, term for M, = 0.6
in Figure 10c shows an increase in magnitude in the upstream region as m is reduced,
which is more extreme than the distortion to the upstream direction seen for M., = 0.3
in Figure 12c. We therefore attribute the increase in noise upstream seen in Figure 15
to the increased upstream distortion seen in L3, at higher Mach numbers, which as a
source term adds to the total noise. Specifically, L3, accounts for the distortion of the
volume source generated by the flat-plate term due to the locally non-uniform mean flow
around the nose. This locally non-uniform flow is directed upstream, and increases with
the bluntness of the nose thus as we decrease m we see a distortion of the acoustics from
L3, to the upstream direction, that is increasingly evident at higher Mach numbers.

5. Conclusions

In this paper we have considered the effects of local aerofoil nose geometry on leading-
edge noise, both analytically and experimentally. We have seen that increasing the nose
radius (to create a blunter nose) reduces the far-field noise generated for a fixed overall
thickness of aerofoil for high-frequency interactions at low Mach numbers. At higher
Mach numbers the analytic solution predicts an increase of noise upstream for blunter
aerofoils but a decrease downstream for blunter aerofoils. The analytic solution for the
far-field acoustics is correct to two orders of magnitude in the amplitude and phase at all
polar angles, # > O(k~'/2). We have neglected the transition regions formally required
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Figure 14: Polar plot of the far-field acoustic directivity, | D ()], for different leading-edge
geometries, for k,, = 0, M, = 0.3. Legend given in Figure 9.

L L
0.005 0.010 0.015

(b) k =10

Figure 15: Polar plot of the far-field acoustic directivity, | D ()], for different leading-edge
geometries, for k,, = 0, M, = 0.6. Legend given in Figure 9.

for a full matched asymptotic solution and accuracy across all observer angles since these
transition solutions only have an effect at small downstream angles, § = O(k~1/?).

The analytic solution, which extends previous analytic work for parabolic leading edges,
qualitatively agrees with the experimental findings, and has been used to understand the
reasons behind the noise generated by different leading-edge geometries. Importantly, it
is not just the overall steady flow speed near the nose (the asymptotic scaling parameter
eagk!™™) that has an effect on the total noise; we have seen that volume sources are
promoted for sharper leading edges, increasing noise, and the greater the rate of slowing
of the steady velocity on approach to the nose the lower the overall sound levels. There
is also a difference in the importance of acoustic generation mechanisms between low
or moderate Mach numbers; the volume source term and horizontal blocking term are
substantially smaller than other terms at low Mach numbers (M = 0.3), but are com-
parable with other terms at moderate Mach number (M., = 0.6). At moderate Mach
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numbers, the analytic solution predicts a blunter leading edge can increase far-field noise
in the upstream direction for high-frequency gusts. This upstream increase has also been
observed when increasing total aerofoil thickness in the numerical results of Lockard &
Morris (1998) at M., = 0.5.

Aerofoil thickness remains the main geometric parameter controlling turbulence in-
teraction noise (shown previously). Local leading-edge geometry, such as nose radius,
nevertheless is an important parameter for thin aerofoils at high frequencies, particularly
when the gust wavelength is comparable to nose radius. Therefore attempts to predict
interaction noise based on single values of thickness-chord ratio, €, and frequency, k, are
likely to be inaccurate for thin aerofoils since nose-radius parameter, m, also plays a key
role. The ability to reduce aerofoil interaction noise by increasing the nose radius but
maintaining a constant overall thickness could be very useful for controlling acroengine
noise, where increasing blade thickness is not practical.
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Appendix A. Outer limit of Hs solution

Upon evaluating the acoustic parts of Ha. p using the method of steepest descents, we
obtained the outer limit as

eikwr
Hy ~ ——Ly(6), Al
2~ 2(0) (A.1)
where
_efﬂiﬂL/Q(l _ e27rim)r(m) /27rw| sin9|e*”i/4
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with H denoting the Heaviside function.
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Appendix B. Solution for Hs3. and Hj3,

Here we find the solution to (2.20). First, we evaluate the Hy terms in the governing
equation and boundary condition thus we must solve

Apsgn(¥)Cw? < _1 /OO [ 1
D(H3)=———~——(R™ 5((1 —m)0 + mm _
(H3) RN cos((1 —m)f + mm) S YT Wear
(MY A4S } RICERIPN
2/3?)0102 VA +w
i(y +1)M2 I 0 qa(X,®,T)
+ W(l —m)R COS((Q—m)9+m7T) . ﬁd}\
(B.1)
OH; _ AMZ.C(1 —m)sin(mmn) /°° e NP I\ (B.2)
OV | a0 226+ wd2m o A+ 0)VA+w '
By considering a particular solution of the form
f(6) / B(\)e®N ) g ), (B.3)
with
f(0) = {R™ " cos((1 —m)f + mm), R™ 'sin((1 — m)f + mm),
R™ cos(—mé + mm), R™ sin(—m#b + mm)}, (B.4)

we can find appropriate B(A) functions to satisfy the forcing in the governing equation.

We obtain a particular solution

Hzy = —

Ansgn(¥)Cu? [Rm cos(—m# + mm) /DO 2 < !
™o +w —oo 2mw? \ A+ VA +w

_ (fy + 1)]\/[§o A+4 ea()\,@'ﬂl/)d)\
282 w2 A+ w

. ° —sgn(¥ A — +1)MA
+R™ sm(—m9 + mT()/ 255721(]2) < - 610 . (’7264 )w20<> /N — w‘()\ + 5)) ca(A 2. W) 7y

m—1 (ML A
+R cos((lfm)9+mn)/_oo ot e

oSl 4
+R™sin((1 - m)f + mn)/ tsan(D)(y + DM r—rcar gy |
484wt
(B.5)

ea(k,@,\ll)dA

—00

This solution, like that for the parabolic leading edge, is singular as R — 0 which is not
a permitted solution of the governing equation. To correct this singularity, we introduce a
homogeneous solution that has the required small R behaviour to cancel the singularity.
This process is very similar to that in Tsai (1992) and therefore not repeated here. We
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find the additional solution we must include is

ACme™/ (y + 1) ML i(2m —3)Has _,,(w®) cos((3 —m)d + mm) (E) 5om
2

Hs, = 4 02 5
myvo + w 862w F(% —m)
(=20 +w = 2mw)Hasz _,, (w®) cos( 3 —m)f +mm) s\ 3-m
- INER) (5) :
(B.6)
where Ha are Hankel functions of the first kind.
We now require a complementary solution to (B.1) that satisfies
OH3, _ AMZC(1 — m)sin(mm) /°° e iA® D OHsp oM, ‘
ov a0 2132, 1/0 + wd2—m oo A+ H)VA+w ov &0 ov &0
(B.7)
Analogously to the parabolic case can write the boundary condition as
OH3s,
2 = dy(®) + do(®) + d3(®), (B.8)
ov o
=0

and define Hz. = Hs., + Hs., + Hs., so that Hs., satisfies the d; term in the boundary
condition.
The d; are defined as

di(®) = % sin(mm)e?® (ié@mfl - %(62 - w2)‘1>7"> (B.9)
_ 24,CBsw 1 /A iwd My 1

N N E (m 1) ° sim(mm (1= gz O ) g
(B.10)

ds(®) = ﬁ% sin(mm)e® {ﬁe—i‘“i/%m—% KE - 2) -6 2w)<1>}

+ 1ML aame 15 1
VRS g (42 15 )

+i 76w+9fw+2mw+573—6 Lj
2m 2m ) @z
_ 2Ancﬁoow <i _ 1) eiw<I>+7'ri/4 sin(mﬂ)
VIV + w(d —w) \m pz—m

— 714"0590 sin(mﬂt)eié@ [ié@m_l -

52 — w2

A MZC  sin(mm) 5 /4
+ R/ AR =0 e'*%erf (e (5—w)<1>)
N 240, CBoo/me™/* (v +41)J\g§o sin(mm) [—i(g —m)(2m — 3) Has ., (w®) (g) §-m

Vo +wm 883 w ® 2

GomC2rw=2me) ) (w)gm] - (B.11)

L(3—m)




Page 27 of 28

Effects of leading-edge radius 27

The solutions for Hs., are then give by

—sgn (V) /Do e1(X,2,9)
Hap, = 207 [ p oS, B.12
3c; 2t e + ( ) \/m ( )
where
1 dk oo .
Fru) = — [ —2 [ d(x)e"da, B.13
L) Qm/C+ | e (B.13)

and Cy is a contour parallel to but slightly above the real line.
The outer limits of Hj,., are

0 eikwr
Hy.. ~ L., : B.14
3 3 ()m (B.14)
where
e—7ti/4
Ls., = —F4;(—wcos@)sgn(h) cos = (B.15)

2 Jm

As with the parabolic leading-edge case, Ls., is singular at § = 0, indicating the need
for a uniformly valid far-field expansion of Hgs., for small 6 values. The leading-edge
transition solution then exists in this region of small 6 values and acts to ensure the
(total) normal velocity along the whole rigid aerofoil surface is zero. These two features
only take effect for small 6 values, and since we do not calculate the transition solution,
we shall not calculate a uniformly valid expansion of Hs., here.
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