
Refinement of Timing Constraints for

Concurrent Tasks with Scheduling

Chenyang Zhu, Michael Butler and Corina Cirstea

School of Electronics and Computer Science
University of Southampton

Southampton, United Kingdom
{cz4g16,mjb,cc2}@ecs.soton.ac.uk

Abstract. Event-B is a refinement-based formal method that is used for
system-level modeling and analysis of concurrent and distributed systems.
Work has been done to extend Event-B with discrete time constraints.
However the previous work does not capture the communication and
competition between concurrent processes. In this paper, we distinguish
task-based timing properties with scheduler-based timing properties from
the perspective of different system design phases. To refine task-based
timing properties with scheduler-based timing properties based on ex-
isting trigger-response patterns, we introduce a nondeterministic queue
based scheduling framework to schedule processes under concurrent cir-
cumstances, which addresses the problems of refining deadline constraint
under concurrent situations. Additional gluing invariants are provided to
this refinement. To demonstrate the usability of the framework, we pro-
vide approaches to refine this framework with FIFO scheduling policy as
well as deferrable priority based scheduling policy with aging technique.
We demonstrate our framework and refinement with a timed mutual
exclusion case study. The model is proved using the Rodin tool.

Keywords: Event-B, Refinement, Timing, Concurrency, Scheduling

1 Introduction

Cyber Physical Systems (CPS) have received much attention in recent years due to
their capabilities with advanced processors, sensors and wireless communication.
Timing and concurrency are two key features of CPS [4]. The physical world
evolves with time and this needs to be taken into account of within the computing
devices in CPS. Real-time constraints need to be introduced to computing devices
to ensure that the devices are interacting with the physical world correctly. What’s
more, with the advanced processors of CPS, multiple threads of computation are
executing concurrently to achieve the goal of computation as a whole. For this
reason understanding models and design principles for timing and concurrency is
critical for CPS. In addition, it is difficult to model a complicated CPS with all
the detailed features in one step. An abstraction and refinement approach can be
adapted to manage complexity by modeling the system from abstract level to

2 Chenyang Zhu, Michael Butler and Corina Cirstea

more concrete levels with reasoning to verify the consistency between refinement
levels [7].

Event-B is a formal method for system-level modeling and analysis that is
based on predicate logic and set theory [2]. Apart from its ability to model systems
with precise mathematical abstractions, it also provides notions of abstraction
and refinement. However, an explicit notion of real-time is not supported in Event-
B, while real-time performance is critical for CPS. Existing work that extends
Event-B models with timing properties uses a trigger-response pattern to model
discrete time [16]. The pattern sets timestamps for trigger and response events
and uses a tick event to prevent the global clock proceeding to a point where time
constraints between trigger and response events would be violated. This pattern,
however, does not distinguish timing properties for different system design phases.
We define task-based timing properties as high level timing properties from
system requirement specification phase, which place discrete time constraint
on individual processes or tasks. These task-based timing properties can not
describe the concurrent behaviour of tasks precisely. In real time systems, there
are always several tasks running concurrently. High level time constraints for
each task cannot guarantee the timing behaviour of the whole system. To model
the behaviour of these concurrent processes, we define scheduler-based timing
properties as concrete timing properties for the system design phase, which place
discrete time constrains on the scheduler which schedules the concurrent tasks.
Fairness can be imposed to restrict the nondeterministic behaviour of concurrent
tasks. In many real-time applications, the weak guarantee of eventual occurrence
of some event with weak/strong fairness assumption may be insufficient [11]. Alur
and Henzinger proposed the definition of finitary fairness to impose a bound on
the relative frequency in scheduling a set of events [3]. This definition of weak
fairness requires that there is an unknown bound 𝑘 for every computation of a
system such that no enabled transition is postponed more than 𝑘 consecutive
steps.

We propose a nondeterministic queue based scheduling framework based on
the idea of finitary fairness. Processes are placed in a nondeterministic position
in the queue and once a process enters the queue, it cannot be postponed for
more than 𝑘 consecutive times. Additional gluing invariants are provided to use
the framework to refine task-based deadline constraints with scheduler-based
deadline constraints. Our approach is demonstrated by a timed mutual exclusion
case study. Two alternative refinements from the nondeterministic queue to a
FIFO scheduling policy as well as a deferrable priority based scheduling policy
with aging technique are used to demonstrate the usability of the framework. In
addition, we only need to prove the timing is satisfied by the nondeterministic
queue since any refinement of the nondeterministic queue wll also satisfy the
same timing deadlines.

Section 2 introduces some related work on modeling discrete time in Event-B
with trigger-response patterns. We also discuss some additional fairness assump-
tions on the tick event introduced in the trigger-response pattern. In Section 3
we introduce task-based deadlines used in the requirement specification phase.

Refinement of Timing Constraints for Concurrent Tasks with Scheduling 3

We use a timed mutual exclusion case study to illustrate the usage of task-based
timing property. Section 4 refines the task-based deadlines to scheduler-based
deadlines with a nondeterministic queue based scheduling policy as well as some
additional gluing invariants. Section 5 gives two different implementations of the
nondeterministic queue based scheduling policy. Section 6 gives the conclusion
and some future work.

2 Related Work

2.1 Event-B

Event-B [2] is a formal modeling method based on set theory and first-order logic,
which is usually used for system-level modeling and analysis with abstraction,
refinement and reasoning on the model. Formal modeling is used to address
the problem of lack of precision of specifications. However, formality on its own
does not handle the problem of complex requirements and specifications [7].
Refinement helps to simplify the process of modeling with a stepwise approach.
Gluing invariants which refer to variables of abstract and concrete machines are
used to relate the states of concrete and abstract machines during refinement
steps [14].

2.2 Time modeling

Timing issues are critical in cyber physical systems. Timing analysis should
be carried out together with the development of the system to improve the
real-time performance as well as guarantee the safety of the whole system. Timed
automata [5] that are supported by the UPPAAL [15] model checker have been
used in industrial modeling of real time systems. It is challenging to model a
complex system with the timed automata formalism and UPPAAL as it does
not support refinement of the model. Some approaches such as counter example
guided abstraction refinement have been brought up to add abstraction and
refinement when modeling a complex system [12]. This approach uses a model
checker to get the counter examples from the abstract model and uses these
counter examples as guides to refine the system. However it is difficult to find
the missing part from the model just from counter examples.

Event-B is a general purpose modeling language that lacks explicit support
for expressing and verifying timing constraints [19]. Work has been done to add
time constraints to Event-B. Butler and Falampin proposed an approach to
model and refine timing properties in classical B [1], which adds a clock variable
representing the current time and an operation which advances the clock [9]. The
approach ensures the timing properties are satisfied by preventing behaviours in
which the clock advances to a point where deadlines would be violated. More
work concerning time constraints such as delay, expiry, deadline and interval
are presented recently [10, 16, 19]. These approaches define timing properties
between different events, while Graf and Prinz introduce time to state transition
systems [13].

4 Chenyang Zhu, Michael Butler and Corina Cirstea

2.3 Trigger-response pattern

To formally model the timing properties for the trigger-response pattern in
control systems, Sarshogh and Butler proposed an approach that categorizes
timing constraints in three groups: delay, expiry and deadline [16], which are
denoted in (1a), (1b), (1c) below. All these three timing constraints follows a
trigger-response pattern where trigger and response events are modeled as events
in Event-B. (1a) shows that the 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 event can only happen if the 𝑑𝑒𝑙𝑎𝑦
period has passed following the occurrence of the 𝑇𝑟𝑖𝑔𝑔𝑒𝑟 event. (1b) shows that
if the 𝑒𝑥𝑝𝑖𝑟𝑦 period has passed then the 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 event can never happen. (1c)
denotes that if the 𝑇𝑟𝑖𝑔𝑔𝑒𝑟 event occurs, then one of the events 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒1
to 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑛 must occur before 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 passes. To model these three timing
properties in Event-B, a global clock as well as tick events are added to model
the discrete time.

𝐷𝑒𝑙𝑎𝑦(𝑇𝑟𝑖𝑔𝑔𝑒𝑟, 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒, 𝑑𝑒𝑙𝑎𝑦) (1a)
𝐸𝑥𝑝𝑖𝑟𝑦(𝑇𝑟𝑖𝑔𝑔𝑒𝑟, 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒, 𝑒𝑥𝑝𝑖𝑟𝑦) (1b)

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑇𝑟𝑖𝑔𝑔𝑒𝑟, 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒1 ∨ .. ∨ 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑛, 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒) (1c)

Figure 1 shows the trigger response pattern as an Event-B machine for the
delay and deadline constraints, where 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 and 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 are modelled as
events. The response event 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 must occur within time 𝑑𝑑𝑙 of trigger event
𝑡𝑟𝑖𝑔𝑔𝑒𝑟 occurring and can only occur if the delay period has passed. We use
𝑡𝑇 to refer to the time that trigger event happens, and we use 𝑡𝑅 to refer to
the time that response event happens. Invariant @𝑖𝑛𝑣1 and @𝑖𝑛𝑣2 specify the
delay and deadline timing property between 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 and 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 respectively.
Guard @𝑔𝑟𝑑3 of the 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 event guarantees that the response is disabled
when the global clock has not passed the delay period thus preserving @𝑖𝑛𝑣1.
Guard @𝑔𝑟𝑑1 of the 𝑇𝑖𝑐𝑘 event constrains the global clock not to tick when the
response event is missing its deadline thus preserving @𝑖𝑛𝑣2. @𝑖𝑛𝑣3 is needed
to prove invariant @𝑖𝑛𝑣2. When modeling the expiry time constraint, @𝑔𝑟𝑑3 of
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 event should be 𝑐𝑙𝑘 < 𝑡𝑇 + 𝑒𝑥𝑝𝑖𝑟𝑦 to guarantee that the response is
disabled when the global clock has passed the expiry period.

There are several patterns developed by Sarshogh to refine deadlines, delay
and expiry. For example, to refine an abstract deadline 𝐷 to sequential sub-
deadlines 𝐷1..𝐷𝑛, there should be invariants to ensure the order of sequential
sub-deadlines and the sum of the duration of sub-deadlines should be less than
the abstract deadline duration [16].

Sarshogh’s approach only handles the system with trigger and response pattern
without specifying some possible interrupt events from the environment. To model
a more complex system that supports interrupt events to interrupt current time
intervals, Sulskus et al brought up the notion of time interval constraints in
Event-B [19].

The trigger-response pattern only models discrete time constraints, while the
real-world events do not always happen at integer-value times. Continuous time
can be modelled approximated by choosing the granularity of the global clock,

Refinement of Timing Constraints for Concurrent Tasks with Scheduling 5

1 invariants
2 @inv1 tT<tR⇒tR−tT≥ dly

3 @inv2 tR≥ tT⇒tR−tT≤ ddl

4 @inv3 t=TRUE∧r=FALSE⇒clk−
tT≤ ddl

5 event trigger

6 where
7 @grd1 t=FALSE

8 Ga(c,v)
9 then

10 @act1 t:= TRUE

11 @act2 tT:= clk

12 Act_a

13 end

1 event response

2 where
3 @grd1 t=TRUE

4 @grd2 r=FALSE

5 @grd3 clk≥ tT+dly

6 Gb(c,v)
7 then
8 @act1 r:= TRUE

9 @act2 tR:= clk

10 Act_b

11 end
12

13 event Tick

14 where
15 @grd1 t=TRUE∧r=FALSE⇒clk

+1−tT≤ ddl

16 then
17 t:= FALSE

18 r:= FALSE

19 end

Fig. 1: Model Timing Properties of Trigger-Response Events with Delay and
Deadline

which model the timed system with an approximate sense. Banach et al presents
the Hybrid Event-B extension which accommodates continuous behaviours in
between discrete transitions [6]. Based on this extension, Butler et al outlines an
approach to modeling and reasoning about hybrid systems which uses continuous
functions over real intervals to model the evolution of continuous values over
time [8].

The trigger-response pattern also introduces a 𝑇𝑖𝑐𝑘 event to proceed the
global clock without any fairness assumption. Without fairness, a valid event
trace may repeat trigger and response events without executing any 𝑇𝑖𝑐𝑘 event,
which makes the global clock never proceed. Guard @𝑔𝑟𝑑1 of 𝑇𝑖𝑐𝑘 event from
Figure 1 shows that the only event that disables 𝑇𝑖𝑐𝑘 event is itself. With weak
fairness assumption on the 𝑇𝑖𝑐𝑘 event, the 𝑇𝑖𝑐𝑘 event is guaranteed to proceed
the global clock in the system if the 𝑇𝑖𝑐𝑘 event is enabled.

3 Task-Based Deadline Constraint

During the system design level, requirement specification are used to specify
some high level specifications. We define task-based timing properties as high
level timing properties to specify time constraints of individual tasks or processes.
To better explain the definition, we use a simple timed mutual exclusion case

6 Chenyang Zhu, Michael Butler and Corina Cirstea

study to demonstrate the usage of the framework. The timed mutual exclusion
case study has two minimum requirements:

– No more than one process can be in its critical section at any time.
– If a process wishes to enter its critical section, it will enter the critical section

within a certain deadline.

In the most abstract level, a mutual exclusion model is proposed which guarantees
no two processes can be in the critical section at the same time. However a
process can enter the critical section multiple times without allowing other
process to proceed. Figure 2 gives the abstract mutual exclusion model. Here
we use quantified variable 𝑝 to represent one process. The event 𝑤𝑖𝑠ℎ(𝑝) models
the point at which process 𝑝 wishes to enter the critical section. Event 𝑒𝑛𝑡𝑒𝑟(𝑝)
models the process entering the critical section while event 𝑙𝑒𝑎𝑣𝑒(𝑝) models the
process leaving the critical section. We add a task-based deadline constraint for

1 invariants
2 @inv1 wait ⊆PROCESS

3 @inv2 process ⊆PROCESS

4 @inv3 finite(process)
5 @inv4 card(process)≤ 1
6 @inv5 wait ∩process = ∅
7 event wish

8 any p

9 where
10 @grd1 pro∈ PROCESS∖wait
11 @grd2 pro∈ PROCESS∖process
12 then
13 @act1 wait:= wait∪{p}
14 end

1 event enter

2 any p

3 where
4 @grd1 pro∈ wait

5 @grd2 process = ∅
6 then
7 @act1 wait:= wait∖{p}
8 @act2 process:= process ∪{p}
9 end

10

11 event leave

12 any p

13 where
14 @grd1 pro∈ process

15 then
16 @act1 process:= process∖{p}
17 end

Fig. 2: Abstract Model With Timed Mutual Exclusion Problem

each process in the first refinement, which ensures that if a process wishes to
enter its critical section, it will enter the critical section within a certain deadline.
The specification of the task-based deadline is presented in (2), which states
that any process that wishes to enter the critical section, will enter the critical
section within 𝑑𝑑𝑙. Figure 3 shows the refinement with task-based deadline for
each process. 𝑡1(𝑝) models the timestamp at which process 𝑝 wishes to enter the
critical section. 𝑟1(𝑝) models the timestamp process entering the critical section.
@𝑖𝑛𝑣4 captures the task-based deadline constraint, and @𝑖𝑛𝑣5 is needed to prove

Refinement of Timing Constraints for Concurrent Tasks with Scheduling 7

that @𝑖𝑛𝑣4 is preserved. @𝑔𝑟𝑑1 of 𝑇𝑖𝑐𝑘 event ensures @𝑖𝑛𝑣5 is preserved.

∀𝑝·𝑝 ∈ 𝑤𝑎𝑖𝑡 ⇒ 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑤𝑖𝑠ℎ(𝑝), 𝑒𝑛𝑡𝑒𝑟(𝑝), 𝑑𝑑𝑙) (2)

1 invariants
2 @inv1 clk ∈ N
3 @inv2 t1 ∈ wait →0..clk
4 @inv3 r1 ∈ process →0..clk
5 @inv4 ∀p·r1(p)>t1(p) ⇒r1(p)−t1(p

)≤ ddl1

6 @inv5 ∀p·p∈ wait ⇒clk−t1(p)≤
ddl1

7

8 event enter extends enter
9 then

10 @act3 r1(p):= clk

11 end

1 event wish refines wish
2 any p

3 where
4 @grd1 pro∈ PROCESS∖wait
5 @grd2 pro∈ PROCESS∖process
6 then
7 @act1 wait:= wait∪{p}
8 @act2 t1(p):= clk

9 end
10

11 event tick

12 where
13 @grd1 ∀p·p∈ wait ⇒clk+1−t1(p)

≤ ddl1

14 then
15 @act1 clk:= clk+1
16 end

Fig.3: First refinement with task-based deadline constraint

4 Scheduler-Based Deadline Constraint with

Nondeterministic Queue Based Scheduling

In concurrent computing, concurrent processes are executed by interleaving the
execution steps of each process, which models processes in the outside world that
happen concurrently. In real time systems, scheduling is used to make sure that
all processes meet their deadlines [4]. A scheduler is used to allocate the resource
to a process for some time.

In this case study, we specify two scheduler-based deadlines: (3a) and (3b). (3a)
requires that when the system is idle, one of the requesting processes will enter
the critical section within 𝑑𝑑𝑙3. Specifically, there are two cases that trigger the
scheduling of the enter event: 1) a process wishes to enter and both the queue
and the critical section are empty, and 2) some process leaves the critical section
and there is some other process waiting in the queue. Observe here that events
can act as timing triggers only under certain conditions, e.g., the wish event is
only a timing trigger when the queue and critical section are empty. To deal
which such conditional triggers, we split the event into separate refinements

8 Chenyang Zhu, Michael Butler and Corina Cirstea

representing separate cases. We refine the 𝑤𝑖𝑠ℎ event into a 𝑤𝑖𝑠ℎ_𝑒𝑚𝑝𝑡𝑦 event,
enabled when condition 1 is true, and a 𝑤𝑖𝑠ℎ_𝑛𝑜𝑛𝑒𝑚𝑝𝑡𝑦 event, enabled in all
other cases. Similarly, we split the 𝑙𝑒𝑎𝑣𝑒 event into a 𝑙𝑒𝑎𝑣𝑒_𝑛𝑜𝑛𝑒𝑚𝑝𝑡𝑦 event,
enabled when condition 2 is true, and a 𝑙𝑒𝑎𝑣𝑒_𝑖𝑑𝑙𝑒 event, enabled in the other
cases (see Fig. 5). The events 𝑤𝑖𝑠ℎ_𝑒𝑚𝑝𝑡𝑦 and 𝑙𝑒𝑎𝑣𝑒_𝑛𝑜𝑛𝑒𝑚𝑝𝑡𝑦 are therefore
used as trigger events in (3a), whereas the response event 𝑒𝑛𝑡𝑒𝑟 is the event
modeling entering the critical section.

(3b) requires that, once a process enters the critical section, it will leave
the critical section within 𝑑𝑑𝑙2. Therefore the trigger event is the 𝑒𝑛𝑡𝑒𝑟 event,
whereas the response events should correspond to leaving the critical section. As
the latter is now captured by two events, there are two response events in (3b).

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒({𝑤𝑖𝑠ℎ_𝑒𝑚𝑝𝑡𝑦, 𝑙𝑒𝑎𝑣𝑒_𝑛𝑜𝑛𝑒𝑚𝑝𝑡𝑦}, 𝑒𝑛𝑡𝑒𝑟, 𝑑𝑑𝑙3) (3a)
𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑒𝑛𝑡𝑒𝑟, {𝑙𝑒𝑎𝑣𝑒_𝑒𝑚𝑝𝑡𝑦, 𝑙𝑒𝑎𝑣𝑒_𝑛𝑜𝑛𝑒𝑚𝑝𝑡𝑦}, 𝑑𝑑𝑙2) (3b)

To refine the task-based deadline constraint with scheduler-based deadline
constraints, we propose a nondeterministic queue based scheduling framework to
address the schedule order of the sequential execution of a set of events. In this
framework, a queue is used to manage the ready processes. Each process is assigned
a position in the queue, formally: 𝑞𝑢𝑒𝑢𝑒 ∈ 𝑤𝑎𝑖𝑡� (0..𝑁 − 1). When one process
is ready, it is nondeterministically assigned a natural number that is not in the
range of the queue. Only the process in the front of the queue (𝑚𝑖𝑛(𝑟𝑎𝑛(𝑞𝑢𝑒𝑢𝑒)))
can get the resource to run. The dequeue operation will decrease the indexes
of all the other processes in the queue by the index of the front process plus
one (𝑚𝑖𝑛(𝑟𝑎𝑛(𝑞𝑢𝑒𝑢𝑒))+1) to guarantee that once a process is added to the queue,
it will eventually get the chance to run. In the second refinement, we use this
nondeterministic queue based framework to impose an order on the execution of
the concurrent tasks. This refinement prevents a process from entering the critical
section forever without allowing other processes to enter the critical section. The
second refinement is shown in Figure 4.

1 invariants
2 @inv2 queue ∈ wait � 0..N−1
3 event wish extends wish
4 any i

5 where
6 @grd3 i ∈ 0...N−1
7 @grd4 i/∈ ran(queue)
8 then
9 @act3 queue(p):= i

10 end

1 event enter extends enter
2 any j

3 where
4 @grd4 p=queue∼(j)
5 @grd5 j=min(ran(queue))
6 @grd6 j∈ ran(queue)
7 @grd7 queue ̸=∅
8 then
9 @act4 queue:= (𝜆 q·q∈ dom({p}C−

queue)| queue(q)−j−1)
10 end

Fig. 4: Second Refinement with Queue Based Scheduling Framework

Refinement of Timing Constraints for Concurrent Tasks with Scheduling 9

In order the prove that the scheduler deadlines refine the task-based deadlines,
invariants capturing the relation between task-based deadlines and scheduler-
based deadlines are needed. Assume that in the abstract machine the trigger event
of one process 𝑝 occurs at timestamp 𝑡1, and the deadline is 𝑑𝑑𝑙. In the refined
machine the trigger event (𝑤𝑖𝑠ℎ_𝑒𝑚𝑝𝑡𝑦/𝑤𝑖𝑠ℎ_𝑛𝑜𝑛𝑒𝑚𝑝𝑡𝑦) starts at timestamp
𝑡3 and its deadline is 𝑑𝑑𝑙3. The trigger event (𝑒𝑛𝑡𝑒𝑟) starts at timestamp 𝑡2
and its deadline is 𝑑𝑑𝑙2. We assume that all processes have the same maximum
possible deadline to enter and leave the critical section 𝑑𝑑𝑙23 = 𝑑𝑑𝑙2 + 𝑑𝑑𝑙3. The
process 𝑝 has to wait for all the processes ahead of it in the queue to enter and
leave the critical section. The total waiting time is proportional to its index in
the queue, which is 𝑞𝑢𝑒𝑢𝑒(𝑝) * 𝑑𝑑𝑙23. If the critical section is empty and the
time that last process leaves the critical section is 𝑡3, 𝑝 should enter the critical
section within 𝑡3 + 𝑞𝑢𝑒𝑢𝑒(𝑝) * 𝑑𝑑𝑙23 + 𝑑𝑑𝑙3. If the critical section is not empty
and the time that last process enters the critical section is 𝑡2, 𝑝 should enter the
critical section within 𝑡2+𝑞𝑢𝑒𝑢𝑒(𝑝)*𝑑𝑑𝑙23+𝑑𝑑𝑙23. Based on different conditions,
the sum of the refined sequential deadline should be less than abstract deadline
𝑡1 + 𝑑𝑑𝑙1, which is shown in @𝑖𝑛𝑣9 and 𝑖𝑛𝑣10 in Figure 6. @𝑖𝑛𝑣9 and 𝑖𝑛𝑣10
present these two conditions as required gluing invariants. Assume there are
𝑁 processes, the worst case is 𝑁 − 1 processes in the waiting list. As @𝑎𝑥𝑚8
presents, in the worst case the refined deadline is less than the abstract deadline.
Figure 6 shows the required axioms and invariants to refine the task-based
deadlines to scheduler-based deadlines. @𝑖𝑛𝑣5 and @𝑖𝑛𝑣8 present the invariant
for scheduler-based deadlines (3b), @𝑖𝑛𝑣6 and @𝑖𝑛𝑣7 present the invariants for
scheduler-based deadlines (3a).

5 Two Implementation of Nondeterministic Queue-Based

Framework

The nondeterministic queue based scheduling framework is a general framework
that assign indexes to processes nondeterministically. By applying additional
rules on the assignment of these indexes, the queue based scheduling framework
can be refined to some scheduling policies such as First In First Out (FIFO) and
deferrable priority based scheduling policy with aging technique.

First In First Out FIFO is one of the scheduling policies that guarantee that
the resources are assigned to each process with the order that they require the
resource. The FIFO scheduling policy handles all processes without priorities.
The queue based scheduling framework assigns each process with a corresponding
natural number 𝑘 ∈ N, and FIFO scheduling policy limits this natural number to
the current size of the queue. And when the critical section is empty, the process
that is in the front of queue leaves the queue and enters the critical section. The
indexes of all the other processes in the queue are reduced by one.

The refinement from the scheduler-based model is shown in Figure 7. Initially
the queue is empty and 𝑞𝑠𝑖𝑧𝑒 is zero. Whenever some process is added to the
queue, it is assigned with the number of queue size and the queue size increases

10 Chenyang Zhu, Michael Butler and Corina Cirstea

1 event wish_empty extends wish
2 where
3 @grd5 wait=∅∧process=∅
4 then
5 @act5 t3 := clk

6 end
7

8 event wish_nonempty extends wish
9 where

10 @grd5 wait̸=∅∨process ̸=∅
11 end
12

13 event enter extends enter
14 then
15 @act6 t2 := clk

16 @act7 r3 := clk

17 end

1 event leave_nonempty extends leave
2 where
3 @grd2 queue ̸=∅
4 then
5 @act3 r2 := clk

6 @act4 t3 := clk

7 end
8

9 event leave_idle extends leave
10 where
11 @grd2 queue=∅
12 then
13 @act2 r2 := clk

14 end
15

16 event tick refines tick
17 where
18 @grd2 process=∅ ∧wait̸=∅ ⇒clk

+1−t3≤ ddl3

19 @grd4 process ̸=∅ ⇒clk+1−t2≤ ddl2

20 then
21 @act1 clk:= clk+1
22 end

Fig. 5: Third Refinement to scheduler-based deadline Constraint

1 axioms
2 @axm7 ddl23 = ddl2+ddl3

3 @axm8 ((N−1) ∗ ddl23)+ddl3 ≤ ddl1

4 invariants
5 @inv5 r2>t2 ⇒r2−t2≤ ddl2 // deadline2(enter, leave_idle|leave_nonempty,

ddl2)
6 @inv6 r3>t3 ⇒r3−t3≤ ddl3 // deadline3(wish_empty|leave_nonempty, enter,

ddl3)
7 @inv7 queue ̸=∅ ∧process=∅ ⇒clk−t3≤ ddl3 // required for enter to preserve

inv6
8 @inv8 process ̸=∅ ⇒clk−t2≤ ddl2 // required for leave to preserve inv5
9 @inv9 ∀p·process=∅ ∧p∈ wait ⇒t3+(queue(p)∗ddl23)+ddl3 ≤ t1(p)+ddl1

10 @inv10 ∀p·process ̸=∅ ∧p∈ wait ⇒t2+(queue(p)∗ddl23)+ddl23 ≤ t1(p)+ddl1

Fig.6: Axioms and invariants needed to refine task-based deadline to scheduler-
based deadline

Refinement of Timing Constraints for Concurrent Tasks with Scheduling 11

1 event enter refines enter
2 any p j

3 where
4 @grd1 pro∈ wait

5 @grd2 process = ∅
6 @grd6 j∈ ran(queue)
7 @grd4 p=queue∼(j)
8 @grd5 j=0
9 @grd7 queue ̸=∅

10 then
11 @act1 wait:= wait∖{p}
12 @act2 process:= process ∪{p}
13 @act3 r1(p):= clk

14 @act4 queue:= (𝜆 q·q∈ dom({p}C−
queue) | queue(q)−j−1)

15 @act6 t2 := clk

16 @act7 r3 := clk

17 @act8 qsize:= qsize−1
18 end

1 invariants
2 @inv1 qsize ∈ 0..N−1
3 @inv2 ∀i·i≥ qsize⇒i/∈ ran(queue)
4

5 event wish_empty refines wish_empty

6 any p i

7 where
8 @grd1 pro∈ PROCESS∖wait
9 @grd2 pro∈ PROCESS∖process

10 @grd3 i =qsize

11 @grd5 wait=∅∧process=∅
12 @grd6 qsize<N

13 then
14 @act1 wait:= wait∪{p}
15 @act2 t1(p):= clk

16 @act3 queue(p):= i

17 @act5 t3 := clk

18 @act6 qsize:= qsize+1
19 end

Fig. 7: Refinement with FIFO Queue

by one. When the critical section is empty, the process in the front of queue
𝑞𝑢𝑒𝑢𝑒(0) is removed from the queue, the indexes of all the other processes in the
queue are reduced by one. The queue size also decreases by one. 𝑤𝑖𝑠ℎ_𝑛𝑜𝑛𝑒𝑚𝑝𝑡𝑦
uses the same refinement strategy as 𝑤𝑖𝑠ℎ_𝑒𝑚𝑝𝑡𝑦.

Deferrable Priority Based Scheduling with Aging Technique Fixed pri-
ority scheduling policies assign the tasks with fixed priorities: 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑒𝑠 ∈
𝑒𝑣𝑒𝑛𝑡 → N. The scheduler will select the tasks with higher priorities to ac-
cess the system resources before those with lower priorities. However there is a
disadvantage of these scheduling policies that tasks with lower priorities may be
starved when the tasks with higher priorities keep coming and jumping the queue.
An aging technique is used to ensure that tasks with lower priorities eventually
complete their execution. The general way to implement aging technique is to
increase the priorities of the tasks with lower priorities while they are waiting in
the ready queue. However with the increasing priorities of some processes, it will
occupy the positions of some other processes. Deferrable priority based scheduling
allows that when the position of one process is occupied by some other processes,
this process is deferred with a random position after its assigned position. Using
the timed mutual exclusion problem as an example, our approach to refine the
scheduling framework to priority based scheduling with aging technique is to
define a 𝑝𝑖𝑛𝑑𝑒𝑥 ∈ 𝑃𝑅𝑂𝐶𝐸𝑆𝑆�� 0..𝑁 − 1, where 𝑝𝑖𝑛𝑑𝑒𝑥 is a bijection function
from 𝑃𝑅𝑂𝐶𝐸𝑆𝑆 to natural numbers. Equation (4) shows that the higher priority

12 Chenyang Zhu, Michael Butler and Corina Cirstea

of a process is, the lower its index is.

∀𝑎, 𝑏·𝑎 ∈ 𝑃𝑅𝑂𝐶𝐸𝑆𝑆 ∧ 𝑏 ∈ 𝑃𝑅𝑂𝐶𝐸𝑆𝑆 ∧ 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑎) < 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑏)
⇒ 𝑝𝑖𝑛𝑑𝑒𝑥(𝑎) > 𝑝𝑖𝑛𝑑𝑒𝑥(𝑏)

(4)

To avoid the starving problem of processes with lower priorities, we add a rule to
the priority based scheduling that when the position of some process is occupied
by some other process with lower priority, which means that the lower priority
one has waited some time in the queue, the high priority one is deferred by some
higher random index. Specifically, the indexes of the processes are decreasing
by 𝑚𝑖𝑛(𝑟𝑎𝑛(𝑞𝑢𝑒𝑢𝑒)) + 1 when the process at the front queue, whose index is
𝑚𝑖𝑛(𝑟𝑎𝑛(𝑞𝑢𝑒𝑢𝑒)), leave the queue and enter the critical section. The 𝑒𝑛𝑞𝑢𝑒𝑢𝑒
operation will assign the process with its corresponding index in the queue.
However, this would cause a conflict as this operation will make some processes
occupy the spaces of some other processes. For example, process 𝑎’s level is 3
and process 𝑏’s level is 2. One process 𝑐 is at the front of queue. When 𝑐 leaves
the queue, the index of 𝑎 is reduced to 2. When 𝑏 wishes to enter the queue,
its position is taken by 𝑎. Here we choose the next available space available
in the queue 𝑖 = 𝑚𝑖𝑛(𝑘 | 𝑘 ∈ 𝑟𝑎𝑛(𝑝𝑖𝑛𝑑𝑒𝑥) ∧ 𝑘 /∈ 𝑟𝑎𝑛(𝑞𝑢𝑒𝑢𝑒) ∧ 𝑘 > 𝑝𝑖𝑛𝑑𝑒𝑥(𝑝)).
When the position is not taken by other processes, the process takes its assigned
position 𝑝𝑖𝑛𝑑𝑒𝑥(𝑝). The dequeue operation is the same as the basic queue based
scheduling framework. Figure 8 shows the refinement from scheduler-based model
with a deferrable priority based scheduling policy with aging technique.

1 event wish_empty refines wish_empty

2 any p i

3 where
4 @grd1 pro∈ PROCESS∖wait
5 @grd2 pro∈ PROCESS∖process
6 @grd3 {k|k∈ ran(pindex)∧k/∈ ran(queue)∧k≥ pindex(p)}̸=∅
7 @grd4 i=min({k|k∈ ran(pindex)∧k/∈ ran(queue)∧k≥ pindex(p)})
8 @grd5 wait=∅∧process=∅
9 then

10 @act1 wait:= wait∪{p}
11 @act2 t1(p):= clk

12 @act3 queue(p):= i

13 @act5 t3 := clk

14 end

Fig.8: Refinement with Deferrable Priority Based Scheduling with Aging Tech-
nique

Proof Statics Table 1 shows the proof statics of the model. Here 𝑚0 is the
abstract machine with a simple mutual exclusion problem. 𝑚1 refines 𝑚0 with

Refinement of Timing Constraints for Concurrent Tasks with Scheduling 13

the task-based deadline for each process. 𝑚2 refines 𝑚1 with a nondeterministic
queue based scheduling policy. 𝑚3 refines 𝑚2 to the scheduler-based deadline
with additional gluing invariants. 𝑚4_𝑓𝑖𝑓𝑜 and 𝑚4_𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 are two different
implementations of the nondeterministic queue. FIFO queue has more proof
obligations than priority queue because additional invarinats @𝑖𝑛𝑣1 and @𝑖𝑛𝑣2
of Figure 7 are needed for the FIFO queue refinement.

Table 1: Proof Statistics
Machine Number of Generate PO Automatically Proved Automatically Proved%

m0 7 7 100
m1 18 18 100
m2 9 7 77.8
m3 49 43 87.8

m4_fifo 17 12 70.6
m4_priority 9 7 77.8

6 Conclusions and Future Work

Based on a trigger-response approach to modeling deadlines in Event-B, we
distinguish the concept of task-based timing properties and scheduler-based
timing properties from the perspective of different system design phases. We define
timing properties that place discrete time constraints on individual processes or
tasks as task-based timing properties, which describe high level timing properties
from system requirement specification phase. These task-based timing properties
can not describe the concurrent behaviour of tasks precisely. In real time systems,
schedulers are used to schedule concurrent tasks. To model the behaviour of these
concurrent processes, we define scheduler-based timing properties as concrete
timing properties for the system design phase, which place discrete time constrains
on the scheduler which schedules the concurrent tasks. To refine task-based timing
properties to scheduler-based timing properties, we introduce a nondeterministic
queue based scheduling policy with some additional gluing invariants. The queue
based scheduling policy can also be implemented as a FIFO queue scheduling
policy or a deferrable priority based scheduling policy with aging technique. We
prove that the two refinements of the nondeterministic queue satisfy the same
deadlines with the mutual timed exclusion case study.

This paper does not address the possible time deadlock caused by the trigger-
response pattern. For example, if the delay is larger than the deadline between
the same trigger-response pair, there would be a point where the global clock
cannot proceed as it is constrained by the deadline constraint not to proceed but
also constrained by the delay constraint to proceed, a deadlock will occur in the
model. Additional conditions to avoid these deadlocks and formal specifications

14 Chenyang Zhu, Michael Butler and Corina Cirstea

of the enabledness and weak fairness assumptions on response events with proofs
are left for future work. In addition, the mutual exclusion case study assumes
no intermediate events between trigger and response events, while intermediate
events are common in real systems such as CPS. More exploration is needed for
the enabledness of intermediate and response events under different situations.
Fairness and convergence assumptions on intermediate events and response events
will help with the scaling of the proposed approach.

In the cases that the system does not require explicit mention of time, the
notion of bounded fairness and finitary fairness allows one to express eventual
occurrence of a set of events. Some work has been done to model fairness in Event-
B [17, 18]. Bounded fairness modeling as well as finitary fairness modeling can be
researched further with some addition prove rules and refinement frameworks.

In order to explicitly represent timing properties in a cyber physical system,
there are three typical time constraints to look into: period, deadline, worst-case
execution time. More work can be done to apply some scheduling policies such
as Rate-Monotonic (RM) and priority inheritance protocol based on the queue
based scheduling framework to analyze real-time performance of CPS together
with the mentioned time constraints in Event-B.

Acknowledgement This work is supported in part by the scholarship from
China Scholarship Council (CSC) under the Grant CSC NO. 201708060147.

References

1. Abrial, J.R.: The B-book: assigning programs to meanings. Cambridge University
Press (2005)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

3. Alur, R., Henzinger, T.A.: Finitary fairness. In: Proceedings Ninth Annual IEEE
Symposium on Logic in Computer Science. pp. 52–61 (Jul 1994)

4. Alur, R.: Principles of Cyber-Physical Systems. The MIT Press (2015)
5. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical computer science

126(2), 183–235 (1994)
6. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core hybrid event-b i: Single

hybrid event-b machines. Science of Computer Programming 105, 92 – 123 (July
2015)

7. Butler, M.: Mastering System Analysis and Design through Abstraction and Re-
finement. IOS Press (2013), http://eprints.soton.ac.uk/349769/

8. Butler, M., Abrial, J.R., Banach, R.: Modelling and refining hybrid systems in
Event-B and rodin. In: Petre, L., Sekerinski, E. (eds.) From Action System to
Distributed Systems: The Refinement Approach. Taylor & Francis (April 2016),
https://eprints.soton.ac.uk/376053/

9. Butler, M., Falampin, J.: An approach to modelling and refining timing properties
in B (January 2002), https://eprints.soton.ac.uk/256235/

10. Cansell, D., Méry, D., Rehm, J.: Time constraint patterns for event b develop-
ment. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007: Formal Specification and
Development in B. pp. 140–154. Springer Berlin Heidelberg (2006)

http://eprints.soton.ac.uk/349769/
https://eprints.soton.ac.uk/376053/
https://eprints.soton.ac.uk/256235/

Refinement of Timing Constraints for Concurrent Tasks with Scheduling 15

11. Dershowitz, N., Jayasimha, D.N., Park, S.: Bounded Fairness, pp. 304–317. Springer
Berlin Heidelberg (2003), https://doi.org/10.1007/978-3-540-39910-0_14

12. Dierks, H., Kupferschmid, S., Larsen, K.G.: Automatic abstraction refinement for
timed automata. In: Raskin, J.F., Thiagarajan, P.S. (eds.) Formal Modeling and
Analysis of Timed Systems. pp. 114–129. Springer Berlin Heidelberg (2007)

13. Graf, S., Prinz, A.: Time in state machines. Fundamenta Informaticae 77, 143–174
(2007)

14. Jastram, M., Butler, P.: Rodin User’s Handbook: Covers Rodin V.2.8. 2.8covers
Rodin, Createspace Independent Pub (2014), https://books.google.co.uk/books?

id=ws2WoAEACAAJ

15. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International journal on
software tools for technology transfer 1(1-2), 134–152 (1997)

16. Sarshogh, M.R., Butler, M.: Specification and refinement of discrete timing proper-
ties in Event-B. AVoCS 2011 (2011), https://eprints.soton.ac.uk/272480/

17. Sekerinski, E., Zhang, T.: Finitary fairness in event-b. In: Dagstuhl Seminar on
Refinement Based Methods for the Construction of Dependable Systems (Dagstuhl,
Germany (2009)

18. Sekerinski, E., Zhang, T.: Finitary fairness in action systems. In: Liu, Z., Woodcock,
J., Zhu, H. (eds.) Theoretical Aspects of Computing – ICTAC 2013. pp. 319–336.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

19. Sulskus, G., Poppleton, M., Rezazadeh, A.: An interval-based approach to modelling
time in Event-B. Fundamentals of Software Engineering 9392, 292–307 (2015),
http://eprints.soton.ac.uk/377201/

https://doi.org/10.1007/978-3-540-39910-0_14
https://books.google.co.uk/books?id=ws2WoAEACAAJ
https://books.google.co.uk/books?id=ws2WoAEACAAJ
https://eprints.soton.ac.uk/272480/
http://eprints.soton.ac.uk/377201/

	Refinement of Timing Constraints for Concurrent Tasks with Scheduling

