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ABSTRACT

We present Karl G. Jansky Very Large Array radio frequency observations of the new accreting millisecond X-ray
pulsar (AMXP), IGR J16597—3704, located in the globular cluster NGC 6256. With these data, we detect a radio
counterpart to IGR J16597—3704, and determine an improved source position. Pairing our radio observations with
quasi-simultaneous Swift/XRT X-ray observations, we place IGR J16597—3704 on the radio — X-ray luminosity plane,
where we find that IGR J16597—3704 is one of the more radio-quiet neutron star low-mass X-ray binaries known to
date. We discuss the mechanisms that may govern radio luminosity (and in turn jet production and evolution) in
AMXPs. Further, we use our derived radio position to search for a counterpart in archival Hubble Space Telescope and
Chandra X-ray Observatory data, and estimate an upper limit on the X-ray luminosity of IGR J16597—3704 during
quiescence.
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1. INTRODUCTION

Relativistic jets are launched from many different
types of accreting stellar-mass compact objects (black
holes, neutron stars, and possibly white dwarfs; Fender
2006; Migliari & Fender 2006; Kording et al. 2008;
Coppejans et al. 2015; Russell et al. 2016); however our
current knowledge of the physics that gives rise to and
governs jet behaviour is still somewhat limited. A cru-
cial step towards understanding the mechanisms that
drive jet behaviour is characterizing jet properties (and
how these properties are coupled to the conditions in
the accretion flow) in different accreting systems across
the mass scale.

A key observational diagnostic for comparing jet prop-
erties between different systems is the radio — X-ray cor-
relation, relating radio and X-ray luminosities (Lg o
L)ﬁ(, where [ represents the disc-jet coupling index; Gallo
et al. 2003; Corbel et al. 2013). This empirical relation-
ship, which couples a compact, partially self-absorbed
synchrotron jet (probed by radio emission) to the prop-
erties of the accretion flow (probed by X-ray emission),
has been well studied in black hole X-ray binary sys-
tems (BHXBs; binary systems harbouring a black hole
accreting matter from a companion star). In particular,
different BHXB systems, sampled over several orders of
magnitude in X-ray luminosity, are known to display
correlations that range from § ~ 0.6 — 1.8 (potentially
following one of two tracks in the radio X-ray plane at
Lx > 1036 ergs™!; Coriat et al. 2011b; Gallo et al. 2014;
Russell et al. 2015). However, the different classes of
neutron star X-ray binary systems (NSXBs; binary sys-
tems harbouring a neutron star accreting matter from a
companion star) are not as well sampled (in particular
due to the limited range of X-ray luminosities that have
been sampled to date), and have shown more complex
behaviour in the radio — X-ray plane, as compared to
the BHXBs.

While NSXBs are generally more radio quiet than
BHXBEs, different neutron star X-ray binary classes have
shown varying correlation indices! and normalizations
in the radio-X-ray plane (Migliari et al. 2003; Migliari
& Fender 2006; Tudose et al. 2009; Miller-Jones et al.
2010; Tetarenko et al. 2016; Tudor et al. 2017). For ex-
ample, some non-pulsating neutron stars display 5 ~ 1.4
(Migliari & Fender 2006; Miller-Jones et al. 2010), while
some accreting millisecond X-ray pulsars (AMXPs; ac-

1 We note that these correlation indices are measured over a
limited range of X-ray luminosity, and Corbel et al. (2013) found
that an X-ray luminosity lever arm extending across at least 2 dex
is needed to accurately measure a correlation in the radio — X-ray
plane.

creting neutron star binaries where X-ray pulsations
at the spin period of the neutron star are observed)
and three transitional millisecond X-ray pulsars (tMSPs;
accreting neutron star binaries that switch between a
rotation-powered pulsar state and an accretion-powered
state; Archibald et al. 2009; Papitto et al. 2013; Bassa
et al. 2014; Patruno et al. 2014) have been suggested to
follow a shallower correlation of 5 ~ 0.7 (Deller et al.
2015). Further, differences are also observed between in-
dividual systems of the same class. For example, recent
work has shown that not all AMXPs and non-pulsating
NSXBs follow the above mentioned ‘standard’ tracks in
the radio — X-ray plane (where some systems may dis-
play lower/higher radio luminosities; Tetarenko et al.
2016; Tudor et al. 2017). Many different factors could
play a role in causing these observed differences, such
as variations in jet power, compact object mass, spin,
magnetic field, and jet launching mechanism. To disen-
tangle these factors, understand the reason(s) for a lack
of clear correlation(s) and the wide range of radio lu-
minosities observed in neutron star systems, constraints
from a larger population of neutron star systems (espe-
cially at Lx < 1036 ergs™!), are strongly needed. How-
ever, sampling neutron star systems at X-ray luminosi-
ties between 1034 < Ly < 1036 ergs~! is observationally
challenging, as neutron stars tend to evolve quickly in
this luminosity range and are faint at radio frequencies.
Rapid, coordinated radio and X-ray observations of new
X-ray transients discovered in our Galaxy can in princi-
ple provide these much needed constraints.

IGR J16597—3704 is a new X-ray transient discovered
with the INTErnational Gamma-Ray Astrophysics Lab-
oratory (INTEGRAL) on 2017 October 21 (Bozzo et al.
2017a). Followup Swift X-Ray Telescope (XRT; Burrows
et al. 2005) observations (Bozzo et al. 2017b) on 2017
October 22 confirmed the presence of a new bright X-ray
source within the INTEGRAL error circle, and placed
this new transient in the globular cluster NGC 6256
(D = 9.1 kpc; Valenti et al. 2007). To determine the
nature of IGR J16597-3704 and localize its position, we
performed Karl G. Jansky Very Large Array (VLA) ra-
dio frequency observations of IGR J16597-3704 on 2017
October 23 and 27 (Tetarenko et al. 2017a). These ra-
dio observations were taken within 3 days of Swift/XRT
observations of the source, allowing us to also place this
new source in the radio — X-ray correlation plane. The
preliminary position of IGR J16597—3704 on the radio —
X-ray plane strongly suggested that this new transient is
a neutron star system. This classification was confirmed
by Sanna et al. (2017), who report the discovery of X-
ray pulsations, find that IGR J16597—3704 is an ultra-
compact binary (~ 46 minute orbital period), with a
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Table 1. Radio and X-ray observation details and luminosities for IGR J16597—3704

Epoch Radio Observation
(mm/dd/yy, UTC)

X-ray Observation Lsgn,™

(mm/dd/yy, UTC)

a
Li—10kev

(x10*® ergs™) (x10%¢ ergs™)

1 10/23/2017, 21:01-22:42
2 10/27/2017, 20:44-22:25

10/22/2017, 20:29-20:47
10/25/2017, 07:30-07:51

2.69+£0.11
2.76 £0.08

0.87£0.22
1.20£0.21

@To calculate the luminosities, we use a distance to NGC 6256 of D = 9.1 kpc (Valenti et al. 2007). Uncertainties
include measurement errors only, and are quoted at the 1o level.

bWe calculate 5 GHz radio luminosities (Lr = vL,) by combining the two VLA base-bands in each observation and

assuming a flat spectral index to extrapolate to 5 GHz.

short spin period (9.5 ms), and suggest a high magnetic
field (9.2 x 108 < B < 5.2 x 1019 G). IGR J16597—3704
was also observed with Chandra on 2017 October 25
(Chakrabarty et al. 2017). In this paper, we report on
our VLA radio and Swift/XRT X-ray observations, as
well as our search for the optical and quiescent X-ray
counterparts to IGR J16597—3704.

2. OBSERVATIONS AND DATA ANALYSIS
2.1. VLA radio observations of IGR J16597—3704

IGR J16597—3704 was observed with the VLA
(project code VLA/17B-257) over two epochs, 2017
October 23 and 27 (see Table 1 for observation times),
with 88.6 min on source at each epoch. The array was
in its B configuration, with a beam size of 2.2 x 0.8
arcsec. All observations were taken using the 3-bit sam-
plers at X-band (8-12 GHz), and were comprised of two
base-bands, each with 16 spectral windows of sixty-four
2-MHz channels, providing a total bandwidth of 2.048
GHz per base-band. We carried out flagging, calibra-
tion, and imaging within the Common Astronomy Soft-
ware Application package (CASA, v5.1.1; McMullin et al.
2007), using standard procedures outlined in the casa
Guides? for VLA data reduction (i.e., apriori flagging,
re-quantizer gain corrections, setting the flux density
scale, initial phase calibration, solving for antenna-
based delays, bandpass calibration, gain calibration,
scaling the amplitude gains, and final target flagging).
When imaging we used a natural weighting scheme to
maximize sensitivity and two Taylor terms (nterms=2)
to account for the large fractional bandwidth. We used
3C 286 (J1331+305) as a flux calibrator and J1717-3948
as a phase calibrator (with a cycle time of 9 minutes on
source, and 1 minute on the calibrator).

2 https://casaguides.nrao.edu
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Figure 1. VLA radio image of IGR J16597—3704 taken
at 10 GHz. We produced this image by stacking the data
of both VLA epochs in the uv-plane. The source is clearly
detected in the image, where contour levels are 2*/2 x the
RMS noise of 2.8uJybm™", with n = 3,4,5. The color bar
represents the flux density in units of pJybm™', and the
blue ellipse is the VLA beam (the elongated beam shape is
due to the low declination of IGR J16597—3704). The Chan-
dra (pink circle) X-ray error region is also shown, indicating
that the VLA and Chandra localizations of the source are
consistent.

We significantly detect a radio source at a position
consistent with the Swift X-ray position reported in
Bozzo et al. (2017b) (see Figure 1). In the combined 4
GHz of bandwidth centered on 10 GHz, we measure flux
densities of 17.7+4.4 uJy and 24.4+4.3 pJy on October
23 and 27, respectively. To measure these flux densities
we fit a point source in the image plane (with the imfit
task). The fluxes were too low to obtain a meaningful
constraint on the radio spectral index using images of
the two individual basebands. The corresponding radio
luminosities are shown in Table 1.

Additionally, we searched for intra-observation vari-
ability within both epochs of VLA data, on timescales
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Table 2.
IGR J16597—3704

Best-fit X-ray spectral fitting parameters for

Table 3. Radio and X-ray luminosities of additional neu-
tron star sources

Epoch Nu® Photon Fi_1okev”
(x10*2 cm™?) Index  (x107ergs ' cm™?)

1 1.5+0.2 1.5+0.1 2.73+0.11

2 1.1+0.1 1.3+0.1 2.80 £0.08

@ Absorption column density.

b Unabsorbed 1-10 keV flux.

as short as 30 min, which is the shortest timescale we
can probe given the low source brightness. In both ob-
servations, the variance in the data points is consistent
with the measurement uncertainties; we thus find no
statistically significant evidence for flux variability on
intra-observation timescales.

2.2. Swift X-ray observations of IGR J16597—3704

IGR J16597—3704 was observed with Swift/XRT
twice following its detection with INTEGRAL. These
observations occurred on 2017 October 22 in photon
counting mode (PC; which produces 2-dimensional im-
ages), and 2017 October 25 in windowed timing mode
(WT; which collapses data to 1-dimension for fast read-
out). Observation times are displayed in Table 1.

We used HEASOFT v6.22 and FTOOLS® (Blackburn
1995) for all data reduction and analysis. All Swift/XRT
observations were reprocessed via xrtpipeline, and
xselect was used to manually extract source and back-
ground spectra. We used xrtmkarf to produce ancillary
response files. Finally, we performed spectral analysis
using XSPEC 12.9.1n (Arnaud 1996).

The PC mode observation was piled up. Therefore, we
followed the recommended procedure for handling pile
up?, and extracted a source spectrum from an annulus,
excluding the piled up region (estimated to be ~ 10
arcsec), out to 80 arcsec. Following the recommended
procedure for Swift/XRT data analysis, we used events
from grades 0-12, and performed spectral analysis in the
0.3-10 keV band.

For the WT mode observation we used circular regions
with a radius of ~ 47 arcsec (20 pixels) for both source
and background. To minimize the effects of WT spectral

3 http://heasarc.gsfc.nasa.gov/ftools/
4 http://www.swift.ac.uk/analysis/xrt/pileup.php

b

Source Lscuz® Li-10kev D¢ Ref.

(ergs™!)  (ergs™!) (kpc)

<4.5x 1028 2.5 x 1036 104 [1]

MAXI J0911—-635
SAX J1748.9—2021 <4.5x10%7 2.1 x10%6 85 [2]
< 5.1 x 10%8 3.0 x 10%7 [3]
Swift J175233.9-290952 < 5.7 x 1027 1.4 x 103% 8.0 [4]
4U 1543—624 <7.2x10%7 1.7x10%7 6.7 [5]
MAXI J0556—332 5.3 x 10% 1.8 x 1037 8.0 [6]
MXB 1730—-3354 2.0 x 10%® 6.1 x 103%> 8.6 [7]
1.6 x 1029 4.0 x 1037

1.3 x 1029 4.1 x 1037

1.5 x 1029 7.2 x 1037

1.8 x 10%® 3.3 x 1036

References—[1] Tudor et al. (2016); [2] Tetarenko et al.
(2017b); [3] Miller-Jones et al. (2010); [4] Tetarenko et al.
(2017c¢); [5] Ludlam et al. (2017); [6] Coriat et al. (2011a);
[7] Rutledge et al. (1998).

@Upper limits are quoted at the 3o level.

bWe calculate 5 GHz radio luminosities (Lr = vL,) by as-
suming a flat spectral index to extrapolate to 5 GHz.

¢ Distance value used to calculate luminosity.

dNote that we use a model with Ny = 1.7 x 1022 cm—2 (Mar-
shall et al. 2001), and a photon index of 1.5, to convert from
RXTE count rates to flux for this source.

residuals®, we only extracted a spectrum from grade 0
events and performed spectral analysis in the 0.5-10 keV
band, as these residuals become prominent around and
below 0.5 keV.

We extracted the X-ray spectrum from each XRT ob-
servation separately to perform spectral fitting. Both of
the XRT spectra are well fit with an absorbed power-
law (TBABS*PEGPWRLW in XSPEC), where we assume
photo-electric cross sections from Verner et al. (1996)
and abundances from Wilms et al. (2000). We chose to
use the TBABS ISM absorption model, as this model im-
plements more recent estimates for the elemental abun-
dance of the ISM, when compared with older models
(e.g., PHABS or WABS; Bahramian et al. 2015; Foight

5 For more details on these effects see the Swift/XRT cali-
bration digest; http://www.swift.ac.uk/analysis/xrt/digest_
cal.php#abs
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Figure 2.

Archival HST and Chandra images of the field surrounding IGR J16597—3704. The left panel displays the HST

F814W image, the middle panel displays the HST F555W image, and the right panel displays the Chandra (0.3-10 keV band)
image. The Chandra (magenta circles), and VLA (green ellipses) error regions are indicated in all panels, and the blue diamonds
indicate the possible counterpart discussed in §3.2. Note the different scales in the optical (left and middle) and X-ray (right)
images. We do not detect an optical or quiescent X-ray counterpart to IGR J16597—3704 in these archival data.

et al. 2016). The best fit spectral fitting parameters for
both epochs are shown in Table 2, and the correspond-
ing X-ray luminosities are shown in Table 1. We report
1o confidence intervals on all fitted parameters. To cal-
culate these 1o confidence intervals, we first binned each
spectrum to a minimum of 50 counts per bin using the
grppha task, and utilized x? statistics for spectral analy-
sis. Following this analysis, the parameter uncertainties
were estimated using the error task in XSPEC ©.

2.3. Archival Optical and X-ray observations

We obtained archival X-ray and optical data of the
field surrounding IGR J16597—3704 (see Figure 2),
taken with the Chandra X-ray Observatory and the Hub-
ble Space Telescope (HST). Chandra data were taken on
2008 January 26 (13:09:51 UTC start time, 9.4 ks expo-
sure time, Obs ID: 8951) with the ACIS-S instrument.
We reprocessed the data using c1a0 v4.9 (Fruscione
et al. 2006). HST images were obtained from the Hub-
ble Legacy Archive (http://hla.stsci.edu/) in the
F555W and F814W filters. These HST observations
were taken with the WFC3/UVIS1 detector on 2009
August 02 (19:47:12/20:43:35 UTC start time, 1.1/0.3
ks exposure time, in the F555W/F814W filters). The
absolute astrometry of the HST images was corrected
by matching sources in the field to the GAIA catalog
(Gaia Collaboration et al. 2016). We estimate that af-
ter matching to the GAIA catalog, the uncertainty in
the absolute position registration of the HST images is
< 0702.

2.4. Additional neutron star sources

6 For details on how this task works see https://heasarc.gsfc.
nasa.gov/xanadu/xspec/manual/node80.html

We supplement” these new radio/X-ray data on
IGR J16597—3704 with our team’s recent radio/X-
ray measurements of a number of other neutron star
sources for further comparison, MAXI J0911-635 (Tu-
dor et al. 2016), SAX J1748.9-2021 (Miller-Jones et al.
2010; Tetarenko et al. 2017b), Swift J175233.9-290952
(Tetarenko et al. 2017c), and 4U 1543-624 (Ludlam
et al. 2017). Additionally, we also include older detec-
tions of MAXT J0556-332 (Coriat et al. 2011a) and MXB
1730-335 (Rutledge et al. 1998) in this work. Table 3
displays a summary of the radio and X-ray luminosity
measurements for these sources.

3. RESULTS
3.1. Radio source position

Stacking both epochs of our VLA data in the wv-
plane (see Figure 1) refines the radio position of
IGR J16597—3704 to be the following (J2000),

RA : 16"59™32390230 £ 0300092 + 03005
DEC : —37°07'147278 +07088 +0/22 ,

where the quoted errors represent the statistical error
from fitting in the image plane and the nominal system-
atic uncertainties of 10 percent of the beam size, respec-
tively. The elongated beam shape arises from the low
declination of the source. This radio source position is
consistent (within 0704) with the best X-ray position of
the source during outburst from Chandra (Chakrabarty
et al. 2017).

3.2. Search for the quiescent X-ray and optical
counterparts

7 The additional neutron star data reported in this section have
only been reported in Astronomer’s Telegrams, and not previously
published in refereed journals.
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We examined archival Chandra and HST observations
in search of the quiescent X-ray and optical counterparts
to IGR J16597—-3704.

In the archival Chandra data, there is an X-ray source
~ 2.2 arcsec to the south-west of the VLA radio posi-
tion (see Figure 2 right panel). However, this Chandra
source is unlikely to be the quiescent counterpart of IGR
J16597-3704 given the typical Chandra absolute astro-
metric accuracy of 0.5 arcsec. To further confirm the
Chandra absolute astrometry is accurate (i.e., as good as
0.5 arcsec or better), we compare the positions of known
X-ray sources in the cluster to their radio and optical
counterparts. In particular, there is a radio continuum
source ~ 2.5 arcmin from the center of the cluster that
has a Chandra X-ray counterpart, and the positions of
these match to within 0.5 arcsec. Additionally, there are
three X-ray sources in the outer regions of the cluster,
where the optical source density is lower, that all clearly
match bright stars present in the Gaia catalog. The in-
dividual offsets between the Gaia and Chandra positions
vary from 0.6-1.0 arcsec, well within the uncertainties of
the individual X-ray positions, and there is no evidence
of a significant net astrometric shift. Together these ar-
guments strongly suggest that the bright X-ray source
in question is not associated with IGR J16597-3704, and
that the quiescent counterpart of this transient is unde-
tected in existing X-ray data.

We assert a non-detection in this Chandra observa-
tion and estimate a 95% upper limit on the count rate
of 2.9 x 1074 ctss™!. Assuming a distance of D = 9.1
kpc (Valenti et al. 2007), hydrogen column density of
~ 1.1 x 1022cm~2, and power law spectrum (with a
canonical photon index of 1.5), this translates to upper
limits of 4.9 x 1071 erg s~! ecm ™2 on the absorbed X-ray
flux in the 0.5-10 keV band, and Lx < 6.4x 103! ergs™!
for the luminosity, of the quiescent counterpart. Alter-
natively, assuming an neutron star atmosphere model
(NSATMOS in XSPEC) with canonical values of 1.4M
and a radius of 10 km, this translates to upper limits of
1.1 x 10715 erg s7! cm~2 on the absorbed X-ray flux in
the 0.5-10 keV band, and Ly < 9.9 x 103° erg s—! for
the luminosity. In this model, the upper limit on the ab-
sorbed flux corresponds to a neutron star temperature
of < 75eV. Neutron star temperatures have been mea-
sured in other systems to extend across a range of values,
from < 50eV for the coolest neutron stars (e.g., EXO
1745—248, SAX J1808.4—3658, 1H 1905+000; Jonker
et al. 2007; Heinke et al. 2009; Degenaar & Wijnands
2012), up to ~ 150V for the hottest neutron stars (e.g.,
XTE J1701-462; Wijnands et al. 2017). Our new tem-
perature measurement indicates that the neutron star
in IGR J16597—3704 is not an overly hot neutron star,

but rather is consistent with an average or lower tem-
perature neutron star, when compared with the current
measured population.

In the HST data, there is no clear optical source within
the VLA error circle (see Figure 2 left & middle). How-
ever, we identify a bright optical source 0’13 to the SE
of our VLA radio position, which lies outside the 1o
VLA confidence interval. Optical photometry indicates
this HST source was at mpsss5w /pe1aw ~ 22.4/20.3 (AB
magnitudes) on 2009 August 02, consistent with a typi-
cal giant star within the NGC 6256 cluster. Given that
IGR J16597—3704 has been recently identified (Sanna
et al. 2017) to be an ultra-compact system (which
typically have compact white dwarf companions), this
HST source is unlikely to be the optical counterpart.
Therefore, the optical counterpart is probably too faint
to be detected in the existing HST data. We esti-
mate 30 upper limits from the archival HST images of

Mpss5w /re1aw < 26.0/23.4.

3.3. Radio — X-ray correlation

To explore the nature of IGR J16597—3704, we place
our observations on the radio — X-ray plane, using the
5 GHz radio luminosity and the 1.0 — 10 keV X-ray lu-
minosity (where that frequency and band are chosen to
match measurements from the literature; see Figure 3 &
Table 1).

The location of IGR J16597—3704 on the radio —
X-ray plane lies at least an order of magnitude be-
low most BHXBs, and instead is more consistent with
neutron star systems (both non-pulsating NSXBs and
AMXPs/tMSPs; see Figure 3). The recent detection of
X-ray pulsations from this source with NuSTAR (Sanna
et al. 2017), confirms that IGR J16597-3704 is a new
AMXP source. All of the neutron star sources pre-
sented in this work display a significant range in ra-
dio luminosity. In particular, IGR J16597—3704, along
with SAX J1748.9-2021, Swift J175233.9-290952, and
4U 1543-624, display radio luminosities that are at the
low end of the sampled NSXB population, while MAXI
J0911-635, MAXI J0556-332, MXB 1730-335 display ra-
dio luminosities at the mid to high end of the sampled
NSXB population.

4. DISCUSSION

In this paper, we have reported on the discovery of the
radio counterpart to the new AMXP, IGR J16597—3704,
located in the NGC 6256 globular cluster. We do not
conclusively identify an optical or quiescent X-ray coun-
terpart to IGR J16597—3704 in archival HST and Chan-
dra data; our 30 upper limits are mpsssw/Fsiaw <
26.0/23.4 and Lx < 6.1 x 103! erg s~ 1.
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Figure 3. The radio — X-ray correlation for different types of accreting stellar-mass compact objects: black holes; different
classes of neutron stars (non-pulsating NSXBs, AMXPs, and tMSPs); and out-bursting cataclysmic variables. This plot is
adapted from Bahramian et al. (2017), with additional measurements from more recent publications, as well as those displayed
in Table 3; Rutledge et al. 1998; Gallo et al. 2006; Miller-Jones et al. 2010; Coriat et al. 2011a; Russell et al. 2015; Marsh
et al. 2016; Tetarenko et al. 2016; Rushton et al. 2016; Tudor et al. 2016; Ribé et al. 2017; Plotkin et al. 2017; Tudor et al.
2017; Tetarenko et al. 2017b; Gusinskaia et al. 2017; Tetarenko et al. 2017c; Ludlam et al. 2017; Bogdanov et al. 2017; Dincer
et al. 2017. The best-fit relation for black holes (8 = 0.61, grey dashed; Gallo et al. 2014) is also shown. Our measurements of
IGR J16597—3704 and the measurements of other NSXBs reported in Table 3 are displayed with colored symbols (where non-
pulsating NSXBs, AMXPs, and unclassified sources are indicated by the square, star, and inverted triangle shapes, respectively).
IGR J16597—3704 (pink star shapes) is one of the more radio quiet systems in the NSXB population.

Our recent radio observations indicate that IGR
J16597—370 is one of the more radio faint systems in
the NSXB population. For example, IGR J16597—3704
displays a similar radio luminosity to IGR J17511—3057
(AMXP; Tudor et al. 2017), SAX J1748.9—2021
(AMXP; Tetarenko et al. 2017b), and EXO 1745—248
(non-pulsating NSXB; Tetarenko et al. 2016). Examin-
ing our updated radio — X-ray plane figure (Figure 3),
it is clear that both non-pulsating NSXBs and AMXPs
can display a range of radio luminosities at a simi-
lar X-ray luminosity (where it is unclear whether the
radio-brighter or radio-fainter systems form the domi-
nant population). Here we postulate on the mechanisms
driving the radio luminosity in IGR J16597—3704 (and
potentially other AMXPs), by exploring the relation-
ships between radio luminosity and spectral state, spin,
magnetic field, orbital period, accretion regime, and
evolutionary state.

The jets from some NSXBs (like BHXBs) have been
observed to be quenched by over an order of magnitude
(or faded below current detection limits; e.g., Migliari

et al. 2003; Gusinskaia et al. 2017) during softer accre-
tion states. As such, we may naively expect radio jets
to be fainter in these states when compared to their
harder accretion states. Since, the X-ray spectral prop-
erties reported in §2.2 suggest that IGR J16597—3704
was in a canonical hard state during our observations, it
is unlikely that jet quenching in the soft accretion state
explains the low radio luminosity of IGR J16597—3704.
By extension, many other radio quieter systems in the
sampled population, such as EXO 1745—248 (Tetarenko
et al. 2016), have also been observed firmly in the hard
accretion state.

Sanna et al. (2017) have shown that IGR J16597—3704
displays a longer spin period (9.5 ms), when compared to
the average values for AMXPs (Patruno & Watts 2012;
Mukherjee et al. 2015; Patruno et al. 2017a,b). The
spin of a neutron star has long been suggested to po-
tentially affect the radio luminosity of NSXBs (Migliari
et al. 2011). Depending on how the magnetic field (an-
chored to the NS magnetic poles) interacts with the ac-
cretion disc, AMXP jets could be directly powered by
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the extraction of energy from the spin of the neutron
star, or the jet may be driven by the rotation power of
the accretion disc (Migliari et al. 2011, 2012). In both
cases, we expect the neutron star spin period to corre-
late with jet power. For example, a longer spin period
could be linked to a lower radio luminosity in AMXPs,
analogous to the spin dependence of jet power for black
holes (Ljey o< a?, where a is the black hole spin pa-
rameter) predicted by Blandford & Znajek (1977). Past
studies (Migliari et al. 2011) have found hints of a pos-
sible positive correlation® between spin frequency of the
neutron star and jet power in AMXPs, and our mea-
surements of IGR J16597—3704 are compatible with this
scaling. Therefore, it seems plausible that spin period
may play a role in governing the radio luminosity levels
in IGR J16597—3704 (and potentially other radio-quiet
AMXPs).

Similar to the spin period, IGR J16597—3704 may
also display a higher magnetic field (9.2 x 10® < B <
5.2 x 101% G) when compared to the average values for
AMXPs. The role of a high magnetic field in jet produc-
tion is still an open question. Past works have suggested
that high magnetic fields (Z 10'' G; Fender & Hendry
2000; Migliari et al. 2012) may inhibit jet formation, but
the recent work by van den Eijnden et al. 2017a,b (de-
scribed below) provides a counterpoint, thus we explore
both possibilities here. Using the condition that the
gas pressure must dominate over the magnetic pressure,
Massi & Kaufman Bernadé (2008) derive a condition for
jet formation based on the magnetic field strength (B,)

and accretion rate (M), such that,

. —2/7
Ba _osr (Do Y / (1)
R,  \10G 108 Mgyr—!

where R4 is the Alfvén radius, and %‘*‘ ~ 1 indi-
cates the portion of the parameter space where jet
formation is likely to not be suppressed by the neu-
tron star magnetic field. Substituting in estimates of
9.2 x 108 < B, < 5.2 x 10'% G (Sanna et al. 2017) and
M = 5x 1072 Mgyr~' (estimated from the M /Ppy,
relationship reported in van Haaften et al. 2012°) for
IGR J16597—-3704, indicates that IGR J16597—3704
may be in a regime (%f > 1) where the magnetic field

8 Although, we note that the jet power was not measured di-
rectly in this work, with the normalization of the sources on the
radio X-ray plane (assuming a disc-jet coupling index of 1.4) being
used as a proxy for jet power. Thus this correlation may break
down for different disc-jet coupling indices.

9 While Sanna et al. (2017) report an M = 5.5x10710 Mg yr—1,
this estimate only represents the peak M in the outburst.

could potentially be inhibiting jet formation (and in turn
lead to the lower radio luminosity observed).

Contrary to this hypothesis, radio emission (consis-
tent with a synchrotron jet) has been recently detected
in the high magnetic field neutron star systems GX
144 (van den Eijnden et al. 2017a) and Her X-1 (van
den Eijnden et al. 2017b). Moreover, another AMXP,
IGR J17511-43057, displays a magnetic field strength
similar to the average AMXP population, but lower than
average radio luminosity (Tudor et al. 2017). Further-
more, if high magnetic fields are linked to lower ra-
dio luminosities in neutron stars, we may expect that
the AMXP population in general would display lower
radio luminosities compared to the population of non-
pulsating NSXBs (which presumably display lower mag-
netic fields than pulsating systems). This is clearly
not the case, as for example, the non-pulsating NSXB,
EXO 1745—248, displays a radio luminosity similar to
IGR J16597—3704 (also see Figure 3). Therefore, there
does not appear to be a clear relationship between mag-
netic field strength of the neutron star and radio lu-
minosity in the current sampled population, suggesting
that the high magnetic field in IGR J16597—3704 does
not strongly influence the radio luminosities we observe.

Although, if different jet production mechanisms are
at work in different classes of neutron star systems, we
may expect a much more complicated (beyond a simple
scaling) relationship between the magnetic field strength
of the neutron star and the radio luminosity. For in-
stance, the jet production mechanism in neutron star
systems could be highly dependent on how dynamically
important the magnetic field of the neutron star is in
each system (i.e, how significant a role the stellar mag-
netic fields play in the accretion process). In this case,
jets launched from non-pulsating NSXBs, with dynam-
ically unimportant magnetic fields, may be powered by
the accretion disc, similar to BHXBs, while the dynami-
cally important magnetic fields in tMSPs/AMXPs could
disrupt this physical connection between the jet and the
disc. Therefore, in some systems we may not be observ-
ing an accretion powered jet, but rather another mech-
anism, such as the propeller effect!’ (Romanova et al.
2009; Parfrey et al. 2017), which may be powering the
jet (e.g., the propeller effect is thought to be the origin of
the anti-correlation between radio and X-ray luminosity
observed in PSR J1023+0038; Bogdanov et al. 2017).

As IGR J16597—3704 is an ultra-compact binary
(with an orbital period < 80 min), we opt to briefly

10 In the case of the propeller effect, the radio emission may
originate in a broader outflow, as opposed to a well-collimated
jet.
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Table 4. Properties of ultra-compact neutron star binaries

Source Lsgus™P Litokev?® D4 Popd Ref.
(ergs™1) (ergs™)  (kpc) (min)

4U1728-34 6.83x 1028 52x10% 52 10.87% [1]
4U 1820-303 8.78 x 1028 9.7x10% 79 11 [1]
4U 0513-40 <5.50x10%8 29x10%" 121 17 |2
250918-549 <521 x10%8 95x10%" 54 174 [3]
4U 1543-624 < 7.20 x 1027 1.7 x 1037 6.7 18.2 [4]
4U 1850-087 4.60 x 1028 1.2x 103" 6.9 20.6 [5]
M15 X-2 3.67x 1028 23x10%7 104 22.6 [6]
4U 1916-053 < 1.80 x 1020 2.7 x 103" 93 50 [7]

4U 0614+091 1.72 x 1028 3.2x 1036 3.2 517F [
XTE J1751-305 < 1.14 x 1028 < 2.3 x 10327 8.0 42 [9]
XTE J0929-314 1.37 x 102° 4.7x 1036 8.0 43.6 [10]

References—(1] Diaz Trigo et al. 2017; [2] Machin et al. 1990; [3]
Zwarthoed et al. 1993; [4] Ludlam et al. 2017; [5] Lehto et al.
1990; [6] Sivakoff et al. 2011; [7] Grindlay & Seaquist 1986; [8]
Migliari et al. 2010; [9] Iacolina et al. 2010; [10] Rupen et al. 2002

@Upper limits are quoted at the 3o level.

b We calculate 5 GHz radio luminosities (Lr = vL,) by assuming
a flat spectral index to extrapolate to 5 GHz.

¢ Distance value used to calculate luminosity.

d Al distance and orbital period measurements are taken from
Cartwright et al. (2013).

* These systems did not have X-ray measurements reported with
their radio measurements; we place limits on the X-ray lumi-
nosity by using the luminosity functions reported in Cartwright
et al. (2013).

T XTE J1751—305 did not have an X-ray measurement reported
with its radio measurement; we use the upper limit on the qui-
escent X-ray luminosity reported in Wijnands et al. (2005).

i Cartwright et al. (2013) classify these estimates of orbital period
as more uncertain, as they are supported by only weak evidence.

investigate a possible link between radio luminosity
and orbital period, by compiling a list of all the ultra-
compact neutron star binaries with radio frequency
measurements (see Table 4 and Figure 4). We find that
in these ultra-compact binaries, the orbital period does
not appear to be correlated with the position of the sys-
tem in the radio — X-ray plane. Further, we also find no
evidence of a direct correlation between orbital period
and radio luminosity (Spearman rank correlation coeffi-
cient of —0.22, and p-value of 0.46). This suggests that
orbital period may not play a key role in governing the
radio luminosity in IGR J16597—3704 or other systems.

103 g 60
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~ 48 8
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N ° 36 &
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| -
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E 1028 | —_
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= f I 12 g
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Figure 4. Radio — X-ray correlation for ultra-compact neu-
tron star binaries. The data points are color coded by orbital
period. Our IGR J16597—3704 measurements are indicated
by the star symbols. The data points with horizontal error
bars represent those systems for which the X-ray luminosity
measurement were estimated from luminosity functions or
quiescent X-ray limits (see Table 4 for details). We observe
no clear correlation between the position of these sources on
the radio — X-ray plane and orbital period.

Lastly, the radio luminosity in AMXPs may be closely
tied to the evolutionary state or the accretion regime
(i.e., X-ray spectral state and mass accretion rate, as
suggested by Migliari et al. 2011) of the system. In
IGR J16597—3704, Sanna et al. (2017) estimate that
very little mass has been accreted so far in the system,
and suggest that this indicates it is in an early stage
of its evolution (i.e., it is a partially-recycled pulsar).
However, the likelihood of catching this system in such
a short-lived early evolutionary state is quite low. Since
IGR J16597—3704 is an ultra-compact binary (with a
low donor star mass; Sanna et al. 2017), it is much
more consistent with a system in the later stages of its
evolution. This uncertainty makes it difficult to postu-
late whether the evolutionary state of IGR J16597—3704
(and other AMXPs) influences their observed radio lu-
minosities, without further study.

A larger sample of radio luminosity constraints from
AMXPs is needed to definitively determine whether the
spectral state, spin period, magnetic field strength, or-
bital period, or accretion regime/evolutionary state are
linked to jet behaviour.

Overall, these results highlight the need for more ra-
dio and X-ray measurements of all classes of NSXBs to
place improved constraints on the mechanisms that gov-
ern radio luminosity, jet production and jet evolution
in NSXBs. The low X-ray luminosity regime (Lx <
1036 ergs™1) is particularly vital, as this regime remains
under-sampled for the different classes of NSXBs. Fi-
nally, despite the lack of a clear correlation for neutron



10 TETARENKO, A.J. ET AL.

star systems, IGR J16597—3704 is a clear example that
the radio — X-ray plane can still be a reliable diagnos-
tic to identify the nature of the accretor in these binary
systems.
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