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Abstract

This work introduces a new error indicator which can be used to determine
areas of insufficient numerical resolution in unfiltered finite difference sim-
ulations. The background behind the methodology is that smaller scales
(i.e. the flow features with higher wave numbers) are physically charac-
terised by a smaller energy content in comparison with larger scales. This
energy should decrease with increasing wavenumber at a minimum rate; if
this rate is not attained it likely means that the smaller scales are not being
properly resolved on the computational grid of solution points. An approach
using spectral techniques is used to formulate two varieties of the error in-
dicator — one integer-valued and one floating point-valued. These values are
computed at a finite number of ‘blocks’ which span the domain. The indi-
cator is implemented within the OpenSBLI finite difference-based modelling

framework, and evaluated in the context of a three-dimensional Taylor-Green
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vortex problem and flow past a V2C laminar flow aerofoil.
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1. Introduction

Computational grids are at the core of many numerical models. They
comprise a set of points upon which the governing equations are solved. One
of the crucial constraints of grid generation is that small-scale structures
must be sufficiently well resolved by the grid, since any errors (introduced
through numerical dispersion and dissipation, as well as nonlinear effects
such as aliasing) can cause the simulation to become inaccurate and unsta-
ble [1]. Adopting a uniformly-fine grid to ensure this constraint is satisfied
often results in a large number of superfluous grid points, which is detrimen-
tal to the model’s computational efficiency. At the same time, it is often not
possible to know a priori exactly where high resolution needs to be placed in
the domain, particularly when dealing with transient and turbulent dynam-
ics frequently encountered in real-world applications. The formulation of a
posteriori error estimators and indicators [2, 3, 4, 5, 6], and their coupling
with adaptive grid refinement methods [7, 8, 9, 10, 11, 12, 13|, has therefore
attracted a considerable amount of attention over the last few decades.

The current work is focussed on finite difference solutions of the compress-
ible Navier-Stokes equations in the absence of explicit filtering or artificial
dissipation. Such an approach is commonly used for DNS [14]. A feature of
under-resolved regions of flow is the appearance of grid-to-grid point oscilla-
tions, usually first apparent in derivative quantities such as vorticity or di-

latation rate. Typically the appearance of such numerical errors/oscillations



23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

a1

42

43

44

is used to decide when and where grid refinement is required. This work
aims to quantify and calibrate these features of under-resolution such that
the grid refinement process can ultimately be automated.

A new error indicator, based on spectral techniques using small-domain
Fourier transforms, is presented herein. It does not attempt to quantify the
solution error, but instead estimates the severity of any under-resolution that
occurs in the solution field. The indicator is implemented in the OpenSBLI
finite difference modelling framework [15]. Section 2 describes the error in-
dicator in further detail. It is then evaluated in Section 3 by considering
three-dimensional simulations of the Taylor-Green vortex problem [16] and
flow past a V2C laminar aerofoil (see e.g. [17]). Some conclusions are drawn

in Section 5.

2. Error Indicator

The error indicator considers a finite number of small cubes which to-
gether span the whole 3D domain. For each N3 block, and for each line of
N, points within it, various Fourier amplitudes of a user-specified solution
field are computed. These amplitudes are subsequently averaged over N2
lines to determine the anisotropic error ‘severity’ values.

The first step to computing the error indicator is to apply a Hamming
window to the solution field y, in order to ensure its smoothness and peri-
odicity for Fourier analysis. Thus for each line of N, solution points in each

direction:

27mg
(0.54 — 0.46 cos (ﬁ))
0.54 ’

Yji =Yj
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where y; is the j-th component of the solution field ¥ in the line of solution
points under consideration.

The Fourier amplitudes (proportional to the square root of the spectral
energy) for selected modes/wavenumbers N, /2, N./4 and N,/8 of the solu-
tion field are then computed, for each N3 block. In order to avoid doing a
computationally intensive Fourier transform each time, the amplitudes are
reconstructed by using simple summations, S:

Ne—1

Se= Y (—=1Vy;, (2)

Jj=0

Ne—1

Si= Y (=1)y; (3)

7=0
Ne—1
%= exp(— 1Py, (4)
where i = v/—1. These values were checked for correctness against a fast
Fourier transform.

With an increasing mode/wavenumber k, we desire the spectral energy
E(k) (and therefore the mode amplitude Y'(k)) to decrease at a minimum
rate, such that the smallest scales have the lowest energy content. An increase
in E(k), for example due to aliasing errors arising from non-linear terms,
is likely to mean that we are not resolving the small scales well enough.
Determining where this increase occurs in the domain facilitates the dynamic
focussing of resolution in that area. To this end, the error indicator presented
here is based on detecting whether the spectrum decay rate is worse than

some prescribed value.



63 Two versions of the error indicator, denoted I; and Iy, were developed;
e« 1I; is integer-valued while the other, I, is floating-point-valued. These are

es defined as

1, ifA2>A4+€ 1, ifA4>A8+€ 1, ifA2>A8+E
I = + + (5)
0, otherwise 0, otherwise 0, otherwise
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Ileog(l—i-L Az |+
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s where |...| is a ‘floor’ operation, and the values Ay, Ay and Ag are defined

67 aAS

S
Ay =277 FQ : (7)
28
A4 =27 Nj ) <8>
25
AS = Nj ) (9)

s which (in the case of a 3D domain) are computed in each direction along N?
e lines. The small value € (set to 1072 in Section 3 and 3 x 1072 in Section
7 4) is used to avoid division-by-zero problems in uniform flow conditions.
7 Note that either the maximum or mean of these A values can be taken,
72 thereby generating slightly different variants of I; and I;. It was found a
73 posteriori that considering the maximum values in each block seems to make

74 the indicators I; and I; more sensitive compared to taking the mean values
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(an operation that likely smears out any under-resolution effects). Therefore,
only the maximum values are considered in this paper.

The quantity I; is an integer in the set {0, 1, 2, 3}, where a value of
3 indicates the worst possible error according to the error indicator, and 0
indicates that no error is present. In contrast, the quantity I is a real value
bounded below by zero (which indicates that little or no solution error is
present). The I; indicator was devised by partitioning the spectrum decay
into 3 spectral amplitude ‘pairs’ (So—Sy, S4—Ss, S2—Ss). The ratios of these
pairs give a piecewise indication of how the spectrum decays and should
satisfy a maximum acceptable deviation/‘turn-up’ in the spectrum’s slope.
Any breach of these criteria is penalised accordingly, with a similar approach

also being applied to [:

S

=<2 1
Sa

2l < gt 11
SS —_ Y ( )
2| < 92l 12
2| < 12

Deciding what constitutes an unacceptably high ‘turn-up’ in the spec-
trum’s slope depends on the specific problem at hand. One of the caveats
of the approach is the need to estimate the minimal acceptable slope r of
the spectrum. For example, this could be taken to decrease with a slope of
r=-5/6 for turbulent dynamics (following Kolomogorov’s k=°/3 law for the
inertial subrange of the spectral energy spectrum), but in practise r will be

higher or lower locally; throughout this paper we consider a slope value of r

6
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= -0.5. If shocks are present, then a slope of -1 (following the k=2 law for
discontinuities [18]) may be more appropriate. Note also that the slope r may
also depend on the behaviour of the solution field/quantity being considered.
The typical values mentioned so far correspond to the decay of energy, but it
was found a posteriori that these values also worked well for vorticity which
followed a similar decay pattern. Nevertheless, it is important to remem-
ber that the desired slope may vary depending on the chosen quantity and
problem.

The current approach is different to error indicators already appearing in
the literature. For example, robust indicators that are based on the second
derivative (such as the Hessian matrix [19, 20]) or interior penalty methods
[21] could also be used. However, one potential caveat with second derivative-
based methods occurs when the solution has a low second derivative but still
shows a ‘turn-up’ in the Fourier spectrum decay. A flat spectrum without
any ‘turn-up’ in the Fourier amplitude would pass our measure but fail the
Hessian measure. Conversely, a steep spectrum with a ‘turn-up’ would pass
the Hessian measure but fail our measure. Moreover, the way our approach
analyses solution error mimics the way a user would manually check flow

fields for grid-to-grid point oscillations and refine as necessary.

3. Test Case: Compressible Taylor-Green Vortex

A three-dimensional compressible Taylor-Vortex problem (see e.g. [16]) in
a periodic cube domain of length 27 was used to evaluate the effectiveness of
the error indicator. This considered a fourth-order finite difference solution

without additional filtering on computational grids of size N = 323, 643, 1283
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and 256°. The robustness of the error indicator was improved by considering
overlapping blocks, with the grid point count per block remaining the same.
The number of blocks in each direction was set to 7 such that each block
contained (N/4)? solution points. This provided an error severity value every
N./2 points in all directions. The N=323 case adopted a non-dimensional
time-step At of 6.77 x 1073 [16]. As the grid was refined, the time-step size
was halved. The simulation was run until non-dimensional time 7" = 20. All
simulations considered here were performed on a single NVIDIA Tesla K40c
GPU. Further details of the simulation setup can be found in [15], where it
is shown that a grid of at least 2563 points should be employed to give close
agreement with reference data [22].

The indicator computed the severity of under-resolution in the z-component
of the vorticity field, denoted (V x u)_, every 100 iterations. The 32® grid
greatly under-resolved the turbulent dynamics and, particularly around the
point of peak enstrophy, displayed grid-to-grid point oscillations as a result.
As the grid was refined the overall severity of the solution error was reduced.
This is reflected by the reduction in the Fourier amplitude slope in Figure
1, and also in Table 1 which shows a reduction in the maximum values of
I; and I; across both space and time. The small increase of I in the 643
case was caused by an intermittently-high severity value at early times (¢ =
5-6); an even larger value of e would be required to suppress this anomalous
behaviour.

A clearer visualisation is provided in Figure 2 which displays a general
reduction in the number of high severity values of I; throughout time. Larger

errors were particularly noticeable around non-dimensional time ¢ = 9-10 at
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Figure 1: Comparison of Fourier amplitudes computed along a representative line of solu-
tion points in a 323 and 2562 simulation near the point of peak enstrophy. The 323 case
severely under-resolved the dynamics and the Fourier amplitude fails to decrease at the
desired minimum rate, whereas the well-resolved 2563 case demonstrates an acceptable

rate of decay.

Grid size | max(/;) | max([y)
323 3 1.945910
643 3 2.197225
1283 2 1.386294
2563 1 0.693147

Table 1: Grid sizes considered in the Taylor-Green vortex simulation and the maximum

severity value of the error indicators over all I/O dumps.

the point of peak enstrophy where the flow becomes fully turbulent, suggest-
ing that further grid refinement is necessary to properly resolve the turbulent
fluctuations. Due to the symmetry of the problem and the domain-wide tur-
bulence, refinement is often shown to be necessary in large portions or even

all of the domain; the real benefits of error indicators and their coupling with
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Figure 2: The counts of all the error indicator values across the entire domain for 323,

643, 1283 and 2563 grids (top-left to bottom-right), using overlapping blocks. Blue, green,

yellow and red indicate I; error severity values of 0, 1, 2 and 3, respectively.

4. Application: V2C laminar flow aerofoil

The error indicator was applied to a three-dimensional direct numerical

simulation of transonic, compressible flow past a V2C laminar flow aerofoil (a

profile designed by Dassault Aviation [17]) at an incidence o = 4°, Reynolds

number based on the aerofoil chord Re, = 5x10° and Mach number M = 0.7.



156 The computational domain is illustrated in Figure 3 and partitioned
17 into three blocks, with interface boundary conditions between neighbouring
158 blocks. The domain dimensions are R = 7.5¢c and W = 6¢ with a spanwise
159 extension of L, = 0.05¢. Blocks 1 and 3 are associated with Cartesian grids
1o stretched in the z and y directions such that more resolution is present near
11 the trailing edge of the aerofoil and in the wake. Block 2 contains the aerofoil
12 itself and is associated with a C-grid, with resolution being focused near the

13 leading and trailing edges and near the wall.
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Figure 3: Sketch of the computational domain. Block 2 (denoted B2) contains the V2C

aerofoil, while blocks 1 and 3 (Bl and B3) are resolving the wake line.

164 The V2C aerofoil profile has a blunt trailing edge and therefore two singu-

11
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lar points at the corners. The grid points resolving the trailing edge surface
are contained in blocks 1 and 3. The grid lines containing the corners of
the blunt trailing edge are designed as a continuous extension of the aerofoil
geometry. A corner treatment is applied according to the trailing edge treat-
ment used by Jones [23]. In order to increase the numerical stability of su-
personic flows, a total variation diminishing (TVD) scheme is applied to cap-
ture shock waves. Characteristic conditions were enforced at all the domain
boundaries in order to minimise wave reflections. In particular, a zonal char-
acteristic boundary condition [24] is applied over a distance L,,nq = 0.45¢
near the outflow boundary of blocks 1 and 3, using 51 grid points. An inte-
gral characteristic condition [25] is applied at the other boundaries where, in
addition, the free-stream solution is imposed at each time-step. The aerofoil
is modelled using a no-slip, isothermal boundary condition, with the wall
temperature equal to the free-stream temperature.

A summary of the two computational grids employed is given in Table
2: the first is relatively coarse, and the second is a refined version with
more resolution placed near laminar-turbulent transition regions and along
the wake path. The two simulations were carried out on the UK National
Supercomputing Service (ARCHER). Fourth-order central differences with a
Carpenter scheme near boundaries [26], and a third-order low-storage Runge-
Kutta timestepping scheme (with a time step of At = 2 x 107°), were used.

The error indicator implemented in the OpenSBLI code was once again
applied to the z-component of the vorticity field. However, the simulation
itself was performed using the legacy Fortran-based SBLI code [27] (because

characteristic boundary conditions were not available in OpenSBLI at the

12
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R/c | W/e | L;/e| Neo | Nyo | Neays | Ny | N Niotar

)

75 | 6.0 | 0.05 (2095|999 | 999 | 1023 | 50 | 2.07 x 10®
7.5 | 6.0 | 0.05|3045| 999 | 1999 | 1023 | 150 | 1.07 x 10?

Table 2: Numerical grid details for the grid before (first row) and after refinement (second
row). Note that N¢ o and N,, 5 are the number of grid points of block 2 around the aerofoil
in the ¢ and 7 direction, respectively, whereas N¢ ;/3 and N, ;,3 denote the number of
grid points in block 1 and block 3 to resolve the wake (see Figure 3). N, is the spanwise

resolution and N, denotes the total number of grid points.

time of writing) and the solution fields were read into OpenSBLI from a
binary file. Each error indicator block comprised 16% grid points.

Error severity values of I; near the aerofoil when the flow was fully de-
veloped are shown in Figure 4. The uniform flow away from the aerofoil
is relatively well-resolved by both grids as suggested by I; values of 0 or
1. The flow dynamics in the vicinity of the aerofoil are characterised by a
separation of the laminar boundary layer on both sides of the aerofoil, fol-
lowed by a laminar-turbulent transition of the separated flow and turbulent
flow reattachment just downstream of the mid-chord position. The process
of turbulent flow separation/reattachment gives rise to a highly unsteady
wake downstream of the aerofoil. In the case of the coarse grid, a signifi-
cant number of I; = 2 and I; = 3 values suggested that these latter areas of
the domain exhibiting turbulent dynamics were heavily under-resolved. The
grid was therefore manually refined around the trailing edge of the aerofoil
and in the wake region, which resulted in a reduction in error severity (the

presence of mainly I; = 0 and I; = 1 values) and the adequate resolution of

13
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the turbulent structures. This demonstrates how the error indicator can be
used to help target refinement strategies.

The dominant flow structures in the transitional separation region on ei-
ther side of the aerofoil are represented by Kelvin-Helmholtz rollers. The
interaction between these structures and the trailing edge leads to the scat-
tering of acoustic waves that sustain the laminar-turbulent transition. The
global modes caused by these acoustic waves are likely to be the cause of the
occasional I; = 1 values away from the aerofoil where the flow appears to be
uniform. The cluster of I; = 2 and I; = 3 values at the leading edge is due
to the thin boundary layer and has been addressed with a combination of

further grid refinement and localised filtering.

5. Conclusion

A new error indicator has been developed for the purpose of determining
where grid refinement needs to take place in order to ensure solution accuracy
and stability in finite difference solutions of partial differential equations, here
the compressible Navier-Stokes equations. It was found that both versions
of the indicator (integer-based and floating point-based) correctly demon-
strated a reduction in error severity when the grid was refined uniformly in
a three-dimensional Taylor-Green vortex test case. Its application to a V2C
industrial use case further demonstrated its usefulness by suggesting that
grid refinement was particularly necessary at the trailing edge of the aerofoil
where turbulent eddy shedding occurs and along the wake path. The indi-
cator developed in this paper could potentially be used in conjunction with

adaptive grid refinement techniques to dynamically alter the resolution as a

14



Figure 4: Contours of velocity magnitude in a two-dimensional slice of the V2C aerofoil
simulation, for the initial grid (top) and the refined grid (bottom). Circles filled with blue,
green, yellow and red indicate I; error severity values of 0, 1, 2 and 3, respectively. The

slices are taken at different times (after 5.33 x 10° and 6.18 x 10° timesteps, respectively).

230 simulation progresses, thereby enhancing the efficiency of the model.
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