

An error indicator for finite difference methods using spectral techniques with application to aerofoil simulation

Christian T. Jacobs^{a,*}, Markus Zauner^a, Nicola De Tullio^a, Satya P. Jammy^a, David J. Lusher^a, Neil D. Sandham^a

^a*Aerodynamics and Flight Mechanics Group, Faculty of Engineering and the Environment, University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom*

Abstract

This work introduces a new error indicator which can be used to determine areas of insufficient numerical resolution in unfiltered finite difference simulations. The background behind the methodology is that smaller scales (i.e. the flow features with higher wave numbers) are physically characterised by a smaller energy content in comparison with larger scales. This energy should decrease with increasing wavenumber at a minimum rate; if this rate is not attained it likely means that the smaller scales are not being properly resolved on the computational grid of solution points. An approach using spectral techniques is used to formulate two varieties of the error indicator – one integer-valued and one floating point-valued. These values are computed at a finite number of ‘blocks’ which span the domain. The indicator is implemented within the OpenSBLI finite difference-based modelling framework, and evaluated in the context of a three-dimensional Taylor-Green

*Corresponding author.
E-mail address: C.T.Jacobs@soton.ac.uk

vortex problem and flow past a V2C laminar flow aerofoil.

Keywords: Error indicators, Finite difference methods

1. Introduction

Computational grids are at the core of many numerical models. They comprise a set of points upon which the governing equations are solved. One of the crucial constraints of grid generation is that small-scale structures must be sufficiently well resolved by the grid, since any errors (introduced through numerical dispersion and dissipation, as well as nonlinear effects such as aliasing) can cause the simulation to become inaccurate and unstable [1]. Adopting a uniformly-fine grid to ensure this constraint is satisfied often results in a large number of superfluous grid points, which is detrimental to the model's computational efficiency. At the same time, it is often not possible to know *a priori* exactly where high resolution needs to be placed in the domain, particularly when dealing with transient and turbulent dynamics frequently encountered in real-world applications. The formulation of *a posteriori* error estimators and indicators [2, 3, 4, 5, 6], and their coupling with adaptive grid refinement methods [7, 8, 9, 10, 11, 12, 13], has therefore attracted a considerable amount of attention over the last few decades.

The current work is focussed on finite difference solutions of the compressible Navier-Stokes equations in the absence of explicit filtering or artificial dissipation. Such an approach is commonly used for DNS [14]. A feature of under-resolved regions of flow is the appearance of grid-to-grid point oscillations, usually first apparent in derivative quantities such as vorticity or dilatation rate. Typically the appearance of such numerical errors/oscillations

23 is used to decide when and where grid refinement is required. This work
24 aims to quantify and calibrate these features of under-resolution such that
25 the grid refinement process can ultimately be automated.

26 A new error indicator, based on spectral techniques using small-domain
27 Fourier transforms, is presented herein. It does not attempt to quantify the
28 solution error, but instead estimates the severity of any under-resolution that
29 occurs in the solution field. The indicator is implemented in the OpenSBLI
30 finite difference modelling framework [15]. Section 2 describes the error in-
31 dicator in further detail. It is then evaluated in Section 3 by considering
32 three-dimensional simulations of the Taylor-Green vortex problem [16] and
33 flow past a V2C laminar aerofoil (see e.g. [17]). Some conclusions are drawn
34 in Section 5.

35 2. Error Indicator

36 The error indicator considers a finite number of small cubes which to-
37 gether span the whole 3D domain. For each N_e^3 block, and for each line of
38 N_e points within it, various Fourier amplitudes of a user-specified solution
39 field are computed. These amplitudes are subsequently averaged over N_e^2
40 lines to determine the anisotropic error ‘severity’ values.

41 The first step to computing the error indicator is to apply a Hamming
42 window to the solution field y , in order to ensure its smoothness and peri-
43 odicity for Fourier analysis. Thus for each line of N_e solution points in each
44 direction:

$$y_j = y_j \frac{\left(0.54 - 0.46 \cos\left(\frac{2\pi j}{N_e}\right)\right)}{0.54}, \quad (1)$$

45 where y_j is the j -th component of the solution field y in the line of solution
 46 points under consideration.

47 The Fourier amplitudes (proportional to the square root of the spectral
 48 energy) for selected modes/wavenumbers $N_e/2$, $N_e/4$ and $N_e/8$ of the solu-
 49 tion field are then computed, for each N_e^3 block. In order to avoid doing a
 50 computationally intensive Fourier transform each time, the amplitudes are
 51 reconstructed by using simple summations, S :

$$S_2 = \sum_{j=0}^{N_e-1} (-1)^j y_j, \quad (2)$$

$$S_4 = \sum_{j=0}^{N_e-1} (-i)^j y_j, \quad (3)$$

$$S_8 = \sum_{j=0}^{N_e-1} \exp\left(-\frac{\pi}{4}i\right)^j y_j, \quad (4)$$

52 where $i = \sqrt{-1}$. These values were checked for correctness against a fast
 53 Fourier transform.

54 With an increasing mode/wavenumber k , we desire the spectral energy
 55 $E(k)$ (and therefore the mode amplitude $Y(k)$) to decrease at a minimum
 56 rate, such that the smallest scales have the lowest energy content. An increase
 57 in $E(k)$, for example due to aliasing errors arising from non-linear terms,
 58 is likely to mean that we are not resolving the small scales well enough.
 59 Determining where this increase occurs in the domain facilitates the dynamic
 60 focussing of resolution in that area. To this end, the error indicator presented
 61 here is based on detecting whether the spectrum decay rate is worse than
 62 some prescribed value.

63 Two versions of the error indicator, denoted I_i and I_f , were developed;
 64 I_i is integer-valued while the other, I_f , is floating-point-valued. These are
 65 defined as

$$I_i = \begin{cases} 1, & \text{if } A_2 > A_4 + \varepsilon \\ 0, & \text{otherwise} \end{cases} + \begin{cases} 1, & \text{if } A_4 > A_8 + \varepsilon \\ 0, & \text{otherwise} \end{cases} + \begin{cases} 1, & \text{if } A_2 > A_8 + \varepsilon \\ 0, & \text{otherwise} \end{cases} \quad (5)$$

$$I_f = \log \left(1 + \lfloor \frac{A_2}{A_4 + \varepsilon} \rfloor + \lfloor \frac{A_4}{A_8 + \varepsilon} \rfloor + \lfloor \frac{A_2}{A_8 + \varepsilon} \rfloor \right), \quad (6)$$

66 where $\lfloor \dots \rfloor$ is a ‘floor’ operation, and the values A_2 , A_4 and A_8 are defined
 67 as

$$A_2 = 2^{-2r} \left| \frac{S_2}{N_e} \right|, \quad (7)$$

$$A_4 = 2^{-r} \left| \frac{2S_4}{N_e} \right|, \quad (8)$$

$$A_8 = \left| \frac{2S_8}{N_e} \right|, \quad (9)$$

68 which (in the case of a 3D domain) are computed in each direction along N_e^2
 69 lines. The small value ε (set to 10^{-2} in Section 3 and 3×10^{-2} in Section
 70 4) is used to avoid division-by-zero problems in uniform flow conditions.
 71 Note that either the maximum or mean of these A values can be taken,
 72 thereby generating slightly different variants of I_i and I_f . It was found *a*
 73 *posteriori* that considering the maximum values in each block seems to make
 74 the indicators I_i and I_f more sensitive compared to taking the mean values

75 (an operation that likely smears out any under-resolution effects). Therefore,
 76 only the maximum values are considered in this paper.

77 The quantity I_i is an integer in the set $\{0, 1, 2, 3\}$, where a value of
 78 3 indicates the worst possible error according to the error indicator, and 0
 79 indicates that no error is present. In contrast, the quantity I_f is a real value
 80 bounded below by zero (which indicates that little or no solution error is
 81 present). The I_i indicator was devised by partitioning the spectrum decay
 82 into 3 spectral amplitude ‘pairs’ (S_2-S_4 , S_4-S_8 , S_2-S_8). The ratios of these
 83 pairs give a piecewise indication of how the spectrum decays and should
 84 satisfy a maximum acceptable deviation/‘turn-up’ in the spectrum’s slope.
 85 Any breach of these criteria is penalised accordingly, with a similar approach
 86 also being applied to I_f :

$$\left| \frac{S_2}{S_4} \right| \leq 2^r, \quad (10)$$

$$\left| \frac{S_4}{S_8} \right| \leq 2^{r+1}, \quad (11)$$

$$\left| \frac{S_2}{S_8} \right| \leq 2^{2r+1}. \quad (12)$$

87 Deciding what constitutes an unacceptably high ‘turn-up’ in the spec-
 88 trum’s slope depends on the specific problem at hand. One of the caveats
 89 of the approach is the need to estimate the minimal acceptable slope r of
 90 the spectrum. For example, this could be taken to decrease with a slope of
 91 $r=-5/6$ for turbulent dynamics (following Kolomogorov’s $k^{-5/3}$ law for the
 92 inertial subrange of the spectral energy spectrum), but in practise r will be
 93 higher or lower locally; throughout this paper we consider a slope value of r

94 = -0.5. If shocks are present, then a slope of -1 (following the k^{-2} law for
95 discontinuities [18]) may be more appropriate. Note also that the slope r may
96 also depend on the behaviour of the solution field/quantity being considered.
97 The typical values mentioned so far correspond to the decay of energy, but it
98 was found *a posteriori* that these values also worked well for vorticity which
99 followed a similar decay pattern. Nevertheless, it is important to remem-
100 ber that the desired slope may vary depending on the chosen quantity and
101 problem.

102 The current approach is different to error indicators already appearing in
103 the literature. For example, robust indicators that are based on the second
104 derivative (such as the Hessian matrix [19, 20]) or interior penalty methods
105 [21] could also be used. However, one potential caveat with second derivative-
106 based methods occurs when the solution has a low second derivative but still
107 shows a ‘turn-up’ in the Fourier spectrum decay. A flat spectrum without
108 any ‘turn-up’ in the Fourier amplitude would pass our measure but fail the
109 Hessian measure. Conversely, a steep spectrum with a ‘turn-up’ would pass
110 the Hessian measure but fail our measure. Moreover, the way our approach
111 analyses solution error mimics the way a user would manually check flow
112 fields for grid-to-grid point oscillations and refine as necessary.

113 3. Test Case: Compressible Taylor-Green Vortex

114 A three-dimensional compressible Taylor-Vortex problem (see e.g. [16]) in
115 a periodic cube domain of length 2π was used to evaluate the effectiveness of
116 the error indicator. This considered a fourth-order finite difference solution
117 without additional filtering on computational grids of size $N = 32^3, 64^3, 128^3$

118 and 256^3 . The robustness of the error indicator was improved by considering
119 overlapping blocks, with the grid point count per block remaining the same.
120 The number of blocks in each direction was set to 7 such that each block
121 contained $(N/4)^3$ solution points. This provided an error severity value every
122 $N_e/2$ points in all directions. The $N=32^3$ case adopted a non-dimensional
123 time-step Δt of 6.77×10^{-3} [16]. As the grid was refined, the time-step size
124 was halved. The simulation was run until non-dimensional time $T = 20$. All
125 simulations considered here were performed on a single NVIDIA Tesla K40c
126 GPU. Further details of the simulation setup can be found in [15], where it
127 is shown that a grid of at least 256^3 points should be employed to give close
128 agreement with reference data [22].

129 The indicator computed the severity of under-resolution in the z -component
130 of the vorticity field, denoted $(\nabla \times \mathbf{u})_z$, every 100 iterations. The 32^3 grid
131 greatly under-resolved the turbulent dynamics and, particularly around the
132 point of peak enstrophy, displayed grid-to-grid point oscillations as a result.
133 As the grid was refined the overall severity of the solution error was reduced.
134 This is reflected by the reduction in the Fourier amplitude slope in Figure
135 1, and also in Table 1 which shows a reduction in the maximum values of
136 I_i and I_f across both space and time. The small increase of I_f in the 64^3
137 case was caused by an intermittently-high severity value at early times ($t =$
138 5–6); an even larger value of ε would be required to suppress this anomalous
139 behaviour.

140 A clearer visualisation is provided in Figure 2 which displays a general
141 reduction in the number of high severity values of I_i throughout time. Larger
142 errors were particularly noticeable around non-dimensional time $t = 9$ –10 at

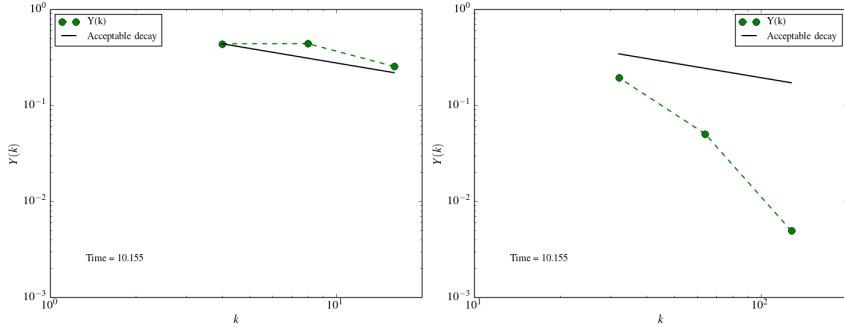


Figure 1: Comparison of Fourier amplitudes computed along a representative line of solution points in a 32^3 and 256^3 simulation near the point of peak enstrophy. The 32^3 case severely under-resolved the dynamics and the Fourier amplitude fails to decrease at the desired minimum rate, whereas the well-resolved 256^3 case demonstrates an acceptable rate of decay.

Grid size	$\max(I_i)$	$\max(I_f)$
32^3	3	1.945910
64^3	3	2.197225
128^3	2	1.386294
256^3	1	0.693147

Table 1: Grid sizes considered in the Taylor-Green vortex simulation and the maximum severity value of the error indicators over all I/O dumps.

143 the point of peak enstrophy where the flow becomes fully turbulent, suggest-
 144 ing that further grid refinement is necessary to properly resolve the turbulent
 145 fluctuations. Due to the symmetry of the problem and the domain-wide tur-
 146 bulence, refinement is often shown to be necessary in large portions or even
 147 all of the domain; the real benefits of error indicators and their coupling with

148 grid refinement techniques will become apparent when such an approach is
 149 applied to more realistic flow problems where turbulent dynamics that re-
 150 quire higher resolution may only be present in a small section of the domain.

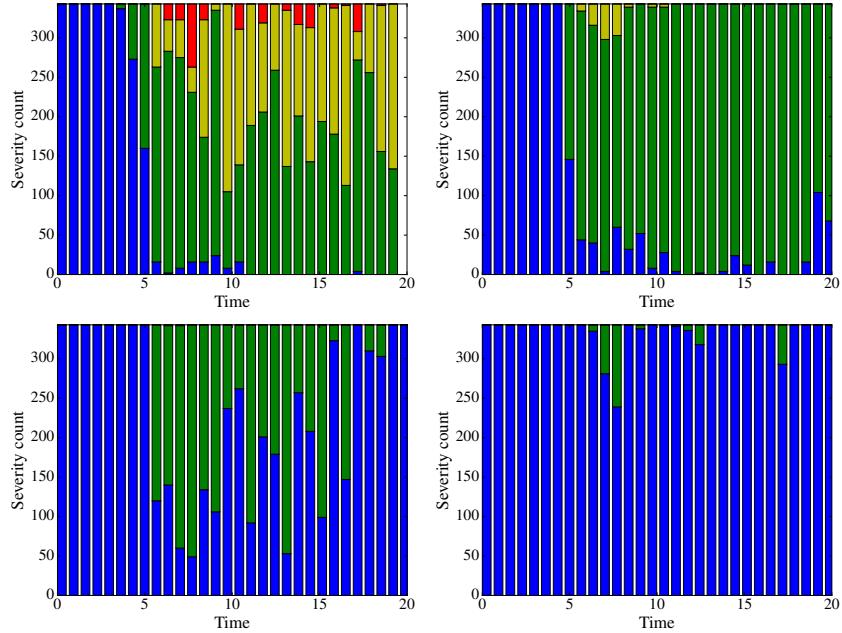


Figure 2: The counts of all the error indicator values across the entire domain for 32^3 , 64^3 , 128^3 and 256^3 grids (top-left to bottom-right), using overlapping blocks. Blue, green, yellow and red indicate I_i error severity values of 0, 1, 2 and 3, respectively.

151 **4. Application: V2C laminar flow aerofoil**

152 The error indicator was applied to a three-dimensional direct numerical
 153 simulation of transonic, compressible flow past a V2C laminar flow aerofoil (a
 154 profile designed by Dassault Aviation [17]) at an incidence $\alpha = 4^\circ$, Reynolds
 155 number based on the aerofoil chord $Re_c = 5 \times 10^5$ and Mach number $M = 0.7$.

156 The computational domain is illustrated in Figure 3 and partitioned
 157 into three blocks, with interface boundary conditions between neighbouring
 158 blocks. The domain dimensions are $R = 7.5c$ and $W = 6c$ with a spanwise
 159 extension of $L_z = 0.05c$. Blocks 1 and 3 are associated with Cartesian grids
 160 stretched in the x and y directions such that more resolution is present near
 161 the trailing edge of the aerofoil and in the wake. Block 2 contains the aerofoil
 162 itself and is associated with a C-grid, with resolution being focused near the
 163 leading and trailing edges and near the wall.

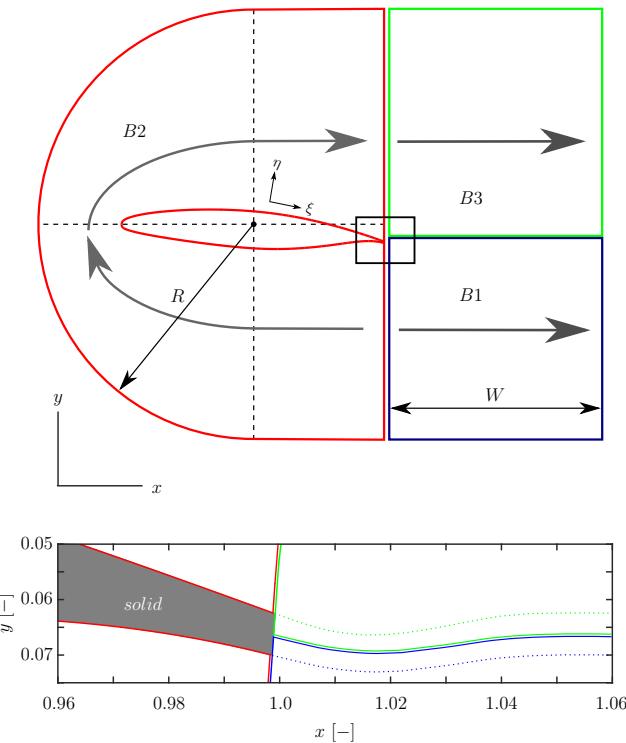


Figure 3: Sketch of the computational domain. Block 2 (denoted B2) contains the V2C aerofoil, while blocks 1 and 3 (B1 and B3) are resolving the wake line.

164 The V2C aerofoil profile has a blunt trailing edge and therefore two singu-

lar points at the corners. The grid points resolving the trailing edge surface are contained in blocks 1 and 3. The grid lines containing the corners of the blunt trailing edge are designed as a continuous extension of the aerofoil geometry. A corner treatment is applied according to the trailing edge treatment used by Jones [23]. In order to increase the numerical stability of supersonic flows, a total variation diminishing (TVD) scheme is applied to capture shock waves. Characteristic conditions were enforced at all the domain boundaries in order to minimise wave reflections. In particular, a zonal characteristic boundary condition [24] is applied over a distance $L_{zonal} \approx 0.45c$ near the outflow boundary of blocks 1 and 3, using 51 grid points. An integral characteristic condition [25] is applied at the other boundaries where, in addition, the free-stream solution is imposed at each time-step. The aerofoil is modelled using a no-slip, isothermal boundary condition, with the wall temperature equal to the free-stream temperature.

A summary of the two computational grids employed is given in Table 2; the first is relatively coarse, and the second is a refined version with more resolution placed near laminar-turbulent transition regions and along the wake path. The two simulations were carried out on the UK National Supercomputing Service (ARCHER). Fourth-order central differences with a Carpenter scheme near boundaries [26], and a third-order low-storage Runge-Kutta timestepping scheme (with a time step of $\Delta t = 2 \times 10^{-5}$), were used.

The error indicator implemented in the OpenSBLI code was once again applied to the z -component of the vorticity field. However, the simulation itself was performed using the legacy Fortran-based SBLI code [27] (because characteristic boundary conditions were not available in OpenSBLI at the

R/c	W/c	L _z /c	N _{ξ,2}	N _{η,2}	N _{ξ,1/3}	N _{η,1/3}	N _z	N _{total}
7.5	6.0	0.05	2095	999	999	1023	50	2.07×10^8
7.5	6.0	0.05	3045	999	1999	1023	150	1.07×10^9

Table 2: Numerical grid details for the grid before (first row) and after refinement (second row). Note that $N_{\xi,2}$ and $N_{\eta,2}$ are the number of grid points of block 2 around the aerofoil in the ξ and η direction, respectively, whereas $N_{\xi,1/3}$ and $N_{\eta,1/3}$ denote the number of grid points in block 1 and block 3 to resolve the wake (see Figure 3). N_z is the spanwise resolution and N_{total} denotes the total number of grid points.

190 time of writing) and the solution fields were read into OpenSBLI from a
 191 binary file. Each error indicator block comprised 16^3 grid points.

192 Error severity values of I_i near the aerofoil when the flow was fully de-
 193 veloped are shown in Figure 4. The uniform flow away from the aerofoil
 194 is relatively well-resolved by both grids as suggested by I_i values of 0 or
 195 1. The flow dynamics in the vicinity of the aerofoil are characterised by a
 196 separation of the laminar boundary layer on both sides of the aerofoil, fol-
 197 lowed by a laminar-turbulent transition of the separated flow and turbulent
 198 flow reattachment just downstream of the mid-chord position. The process
 199 of turbulent flow separation/reattachment gives rise to a highly unsteady
 200 wake downstream of the aerofoil. In the case of the coarse grid, a signifi-
 201 cant number of $I_i = 2$ and $I_i = 3$ values suggested that these latter areas of
 202 the domain exhibiting turbulent dynamics were heavily under-resolved. The
 203 grid was therefore manually refined around the trailing edge of the aerofoil
 204 and in the wake region, which resulted in a reduction in error severity (the
 205 presence of mainly $I_i = 0$ and $I_i = 1$ values) and the adequate resolution of

206 the turbulent structures. This demonstrates how the error indicator can be
207 used to help target refinement strategies.

208 The dominant flow structures in the transitional separation region on ei-
209 ther side of the aerofoil are represented by Kelvin-Helmholtz rollers. The
210 interaction between these structures and the trailing edge leads to the scat-
211 tering of acoustic waves that sustain the laminar-turbulent transition. The
212 global modes caused by these acoustic waves are likely to be the cause of the
213 occasional $I_i = 1$ values away from the aerofoil where the flow appears to be
214 uniform. The cluster of $I_i = 2$ and $I_i = 3$ values at the leading edge is due
215 to the thin boundary layer and has been addressed with a combination of
216 further grid refinement and localised filtering.

217 **5. Conclusion**

218 A new error indicator has been developed for the purpose of determining
219 where grid refinement needs to take place in order to ensure solution accuracy
220 and stability in finite difference solutions of partial differential equations, here
221 the compressible Navier-Stokes equations. It was found that both versions
222 of the indicator (integer-based and floating point-based) correctly demon-
223 strated a reduction in error severity when the grid was refined uniformly in
224 a three-dimensional Taylor-Green vortex test case. Its application to a V2C
225 industrial use case further demonstrated its usefulness by suggesting that
226 grid refinement was particularly necessary at the trailing edge of the aerofoil
227 where turbulent eddy shedding occurs and along the wake path. The indi-
228 cator developed in this paper could potentially be used in conjunction with
229 adaptive grid refinement techniques to dynamically alter the resolution as a

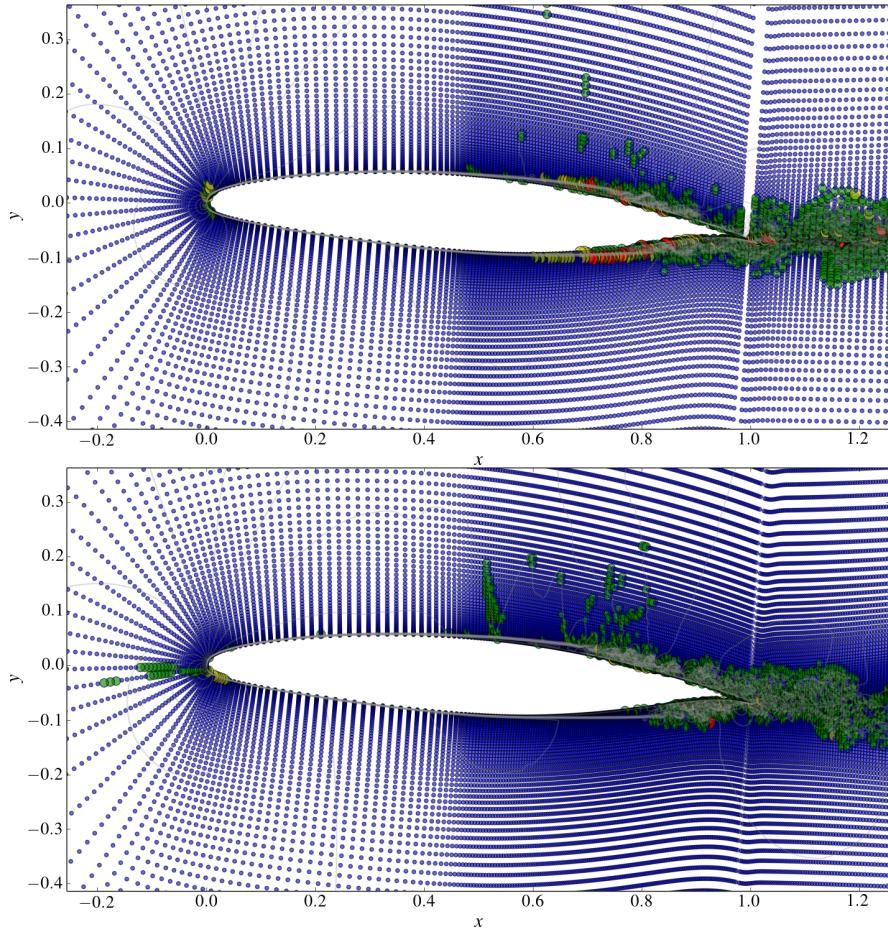


Figure 4: Contours of velocity magnitude in a two-dimensional slice of the V2C aerofoil simulation, for the initial grid (top) and the refined grid (bottom). Circles filled with blue, green, yellow and red indicate I_i error severity values of 0, 1, 2 and 3, respectively. The slices are taken at different times (after 5.33×10^6 and 6.18×10^6 timesteps, respectively).

230 simulation progresses, thereby enhancing the efficiency of the model.

231 **6. Acknowledgments**

232 CTJ and SPJ were supported by a European Commission Horizon 2020
233 project grant entitled “ExaFLOW: Enabling Exascale Fluid Dynamics Sim-
234 ulations” (671571). DJL was supported by an EPSRC Centre for Doctoral
235 Training grant (EP/L015382/1). NDT was supported by an EPSRC grant
236 entitled “Unsteady aerodynamics of wings in extreme conditions” (EP/M022692/1).
237 Computer time was provided by an ARCHER Leadership grant entitled
238 “Transonic flow over an aerofoil” (e509). The data behind the results pre-
239 sented in this paper will be available from the University of Southampton’s
240 institutional repository. The authors thank the NVIDIA Corporation for
241 donating the Tesla K40c GPU used for this research.

242 **References**

243 [1] A. E. Honein, P. Moin, Higher entropy conservation and numerical sta-
244 bility of compressible turbulence simulations, *Journal of Computational*
245 *Physics* 201 (2) (2004) 531–545. doi:10.1016/j.jcp.2004.06.006.

246 [2] I. Babuška, W. C. Rheinboldt, A-posteriori error estimates for the fi-
247 nite element method, *International Journal for Numerical Methods in*
248 *Engineering* 12 (10) (1978) 1597–1615. doi:10.1002/nme.1620121010.

249 [3] I. Babuška, A. Miller, A feedback finite element method with a pos-
250 teriori error estimation: Part I. The finite element method and some
251 basic properties of the a posteriori error estimator, *Computer Meth-
252 ods in Applied Mechanics and Engineering* 12 (10) (1987) 1597–1615.
253 doi:10.1016/0045-7825(87)90114-9.

254 [4] O. C. Zienkiewicz, J. Z. Zhu, A simple error estimator and adap-
255 tive procedure for practical engineering analysis, International Jour-
256 nal for Numerical Methods in Engineering 24 (2) (1987) 337–357.
257 doi:10.1002/nme.1620240206.

258 [5] C. Mavriplis, A Posteriori Error Estimators for Adaptive Spectral Ele-
259 ment Techniques, Vieweg+Teubner Verlag, Wiesbaden, 1990, pp. 333–
260 342. doi:10.1007/978-3-663-13975-1_34.

261 [6] M. Ainsworth, J. T. Oden, A posteriori error estimation in finite ele-
262 ment analysis, Computer Methods in Applied Mechanics and Engineer-
263 ing 142 (1–2) (1997) 1–88. doi:10.1016/S0045-7825(96)01107-3.

264 [7] J. Peraire, M. Vahdati, K. Morgan, O. C. Zienkiewicz, Adaptive remesh-
265 ing for compressible flow computations, Journal of Computational
266 Physics 72 (2) (1987) 449–466. doi:10.1016/0021-9991(87)90093-3.

267 [8] R. Löhner, An adaptive finite element solver for transient problems
268 with moving bodies, Computers and Structures 30 (1) (1988) 303–317.
269 doi:10.1016/0045-7949(88)90236-2.

270 [9] R. Löhner, Three-dimensional fluid-structure interaction using a finite
271 element solver and adaptive remeshing, Computing Systems in Engi-
272 neering 1 (2) (1990) 257–272. doi:10.1016/0956-0521(90)90012-A.

273 [10] C. C. Pain, A. P. Umpleby, C. R. E. de Oliveira, A. J. H. Goddard,
274 Tetrahedral mesh optimisation and adaptivity for steady-state and trans-
275 ient finite element calculations, Computer Methods in Applied Mechan-

276 ics and Engineering 190 (29-30) (2001) 3771–3796. doi:10.1016/S0045-
277 7825(00)00294-2.

278 [11] M. J. Berger, P. Colella, Local adaptive mesh refinement for shock hy-
279 drodynamics, *Journal of Computational Physics* 82 (1) (1989) 64–84.
280 doi:10.1016/0021-9991(89)90035-1.

281 [12] J. Behrens, M. Bader, Efficiency considerations in triangular adaptive
282 mesh refinement, *Philosophical Transactions of the Royal Society A*
283 367 (1907) (2009) 4577–4589. doi:10.1098/rsta.2009.0175.

284 [13] M. T. Jones, P. E. Plassmann, Parallel Algorithms for Adaptive Mesh
285 Refinement, *SIAM Journal on Scientific Computing* 18 (3) (1997) 686–
286 708. doi:10.1137/S106482759528065X.

287 [14] S. Pirozzoli, Numerical Methods for High-Speed Flows, *Annual Review*
288 of Fluid Mechanics 43 (1) (2011) 163–194.

289 [15] C. T. Jacobs, S. P. Jammy, N. D. Sandham, OpenSBLI: A framework
290 for the automated derivation and parallel execution of finite difference
291 solvers on a range of computer architectures, *Journal of Computational*
292 *Science* 18 (2017) 12–23. doi:10.1016/j.jocs.2016.11.001.

293 [16] J. DeBonis, Solutions of the Taylor-Green Vortex Problem Using High-
294 Resolution Explicit Finite Difference Methods, in: 51st AIAA Aerospace
295 Sciences Meeting including the New Horizons Forum and Aerospace Ex-
296 position, Aerospace Sciences Meetings, 2013. doi:10.2514/6.2013-382.

297 [17] J. Sznajder, T. Kwiatkowski, Analysis of effects of shape and location
298 of micro-turbulators on unsteady shockwave-boundary layer interaction

299 in transonic flow, in: Proceedings of the VII European Congress on
300 Computational Methods in Applied Sciences and Engineering, 2016.

301 [18] J. P. Boyd, The Energy Spectrum of Fronts: Time Evolution of Shocks
302 in Burgers' Equation, *J. Atmos. Sci.* 49 (2) (1992) 128–139.

303 [19] G. C. Buscaglia, E. A. Dari, Anisotropic mesh optimization and its
304 application in adaptivity, *International Journal for Numerical Methods
305 in Engineering* 40 (22) (1997) 4119–4136. doi:10.1002/(SICI)1097-
306 0207(19971130)40:22;4119::AID-NME254;3.0.CO;2-R.

307 URL [http://dx.doi.org/10.1002/\(SICI\)1097-0207\(19971130\)40:22<4119::AID-NME254](http://dx.doi.org/10.1002/(SICI)1097-0207(19971130)40:22<4119::AID-NME254)

308 [20] K. Lipnikov, Y. Vassilevski, Error Estimates for Hessian-Based Mesh
309 Adaptation Algorithms with Control of Adaptivity, in: 13th Inter-
310 national Meshing Roundtable, Williamsburg, Virginia, USA, 2004.
311 doi:10.2514/6.2014-3210.

312 [21] C. Dawson, J. Proft, A priori error estimates for interior penalty ver-
313 sions of the local discontinuous Galerkin method applied to transport
314 equations, *Numerical Methods for Partial Differential Equations* 17 (6)
315 (2001) 545–564. doi:10.1002/num.1026.

316 URL <http://dx.doi.org/10.1002/num.1026>

317 [22] Z. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary, H. De-
318 coninck, R. Hartmann, K. Hillewaert, H. Huynh, N. Kroll, G. May, P.-O.
319 Persson, B. van Leer, M. Visbal, High-order CFD methods: current sta-
320 tus and perspective, *International Journal for Numerical Methods in
321 Fluids* 72 (8) (2013) 811–845. doi:10.1002/fld.3767.

322 [23] L. E. Jones, Numerical studies of the flow around an airfoil at low
323 Reynolds number, Ph.D. thesis, University of Southampton (2008).

324 [24] R. Sandberg, N. Sandham, Nonreflecting zonal characteristic boundary
325 condition for direct numerical simulation of aerodynamic sound, AIAA
326 J. 44 (2) (2006) 402–405.

327 [25] H. Sandhu, N. D. Sandham, Boundary conditions for spatially growing
328 compressible shear layers, Report QMW-EP-1100, Faculty of Engineering,
329 Queen Mary and Westfield College, University of London (1994).

330 [26] M. H. Carpenter, D. Gottlieb, S. Abarbanel, Time-Stable Boundary
331 Conditions for Finite-Difference Schemes Solving Hyperbolic Systems:
332 Methodology and Application to High-Order Compact Schemes, Journal
333 of Computational Physics 111 (2) (1994) 220–236.

334 [27] Y. Yao, Z. Shang, J. Castagna, N. D. Sandham, R. Johnstone, R. D.
335 Sandberg, V. Suponitsky, J. A. Redford, L. E. Jones, N. De Tullio, Re-
336 Engineering a DNS Code for High-Performance Computation of Tur-
337 bulent Flows, in: Proceedings of the 47th AIAA Aerospace Sciences
338 Meeting including The New Horizons Forum and Aerospace Exposition,
339 Aerospace Sciences Meetings, 2009. doi:10.2514/6.2009-566.