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Abstract

This work introduces a new error indicator which can be used to determine

areas of insufficient numerical resolution in unfiltered finite difference sim-

ulations. The background behind the methodology is that smaller scales

(i.e. the flow features with higher wave numbers) are physically charac-

terised by a smaller energy content in comparison with larger scales. This

energy should decrease with increasing wavenumber at a minimum rate; if

this rate is not attained it likely means that the smaller scales are not being

properly resolved on the computational grid of solution points. An approach

using spectral techniques is used to formulate two varieties of the error in-

dicator – one integer-valued and one floating point-valued. These values are

computed at a finite number of ‘blocks’ which span the domain. The indi-

cator is implemented within the OpenSBLI finite difference-based modelling

framework, and evaluated in the context of a three-dimensional Taylor-Green
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vortex problem and flow past a V2C laminar flow aerofoil.

Keywords: Error indicators, Finite difference methods

1. Introduction1

Computational grids are at the core of many numerical models. They2

comprise a set of points upon which the governing equations are solved. One3

of the crucial constraints of grid generation is that small-scale structures4

must be sufficiently well resolved by the grid, since any errors (introduced5

through numerical dispersion and dissipation, as well as nonlinear effects6

such as aliasing) can cause the simulation to become inaccurate and unsta-7

ble [1]. Adopting a uniformly-fine grid to ensure this constraint is satisfied8

often results in a large number of superfluous grid points, which is detrimen-9

tal to the model’s computational efficiency. At the same time, it is often not10

possible to know a priori exactly where high resolution needs to be placed in11

the domain, particularly when dealing with transient and turbulent dynam-12

ics frequently encountered in real-world applications. The formulation of a13

posteriori error estimators and indicators [2, 3, 4, 5, 6], and their coupling14

with adaptive grid refinement methods [7, 8, 9, 10, 11, 12, 13], has therefore15

attracted a considerable amount of attention over the last few decades.16

The current work is focussed on finite difference solutions of the compress-17

ible Navier-Stokes equations in the absence of explicit filtering or artificial18

dissipation. Such an approach is commonly used for DNS [14]. A feature of19

under-resolved regions of flow is the appearance of grid-to-grid point oscilla-20

tions, usually first apparent in derivative quantities such as vorticity or di-21

latation rate. Typically the appearance of such numerical errors/oscillations22
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is used to decide when and where grid refinement is required. This work23

aims to quantify and calibrate these features of under-resolution such that24

the grid refinement process can ultimately be automated.25

A new error indicator, based on spectral techniques using small-domain26

Fourier transforms, is presented herein. It does not attempt to quantify the27

solution error, but instead estimates the severity of any under-resolution that28

occurs in the solution field. The indicator is implemented in the OpenSBLI29

finite difference modelling framework [15]. Section 2 describes the error in-30

dicator in further detail. It is then evaluated in Section 3 by considering31

three-dimensional simulations of the Taylor-Green vortex problem [16] and32

flow past a V2C laminar aerofoil (see e.g. [17]). Some conclusions are drawn33

in Section 5.34

2. Error Indicator35

The error indicator considers a finite number of small cubes which to-36

gether span the whole 3D domain. For each N3
e block, and for each line of37

Ne points within it, various Fourier amplitudes of a user-specified solution38

field are computed. These amplitudes are subsequently averaged over N2
e39

lines to determine the anisotropic error ‘severity’ values.40

The first step to computing the error indicator is to apply a Hamming41

window to the solution field y, in order to ensure its smoothness and peri-42

odicity for Fourier analysis. Thus for each line of Ne solution points in each43

direction:44

yj = yj

(
0.54− 0.46 cos

(
2πj
Ne

))
0.54

, (1)
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where yj is the j-th component of the solution field y in the line of solution45

points under consideration.46

The Fourier amplitudes (proportional to the square root of the spectral47

energy) for selected modes/wavenumbers Ne/2, Ne/4 and Ne/8 of the solu-48

tion field are then computed, for each N3
e block. In order to avoid doing a49

computationally intensive Fourier transform each time, the amplitudes are50

reconstructed by using simple summations, S:51

S2 =
Ne−1∑
j=0

(−1)jyj, (2)

S4 =
Ne−1∑
j=0

(−i)jyj, (3)

S8 =
Ne−1∑
j=0

exp(−π
4

i)jyj, (4)

where i =
√
−1. These values were checked for correctness against a fast52

Fourier transform.53

With an increasing mode/wavenumber k, we desire the spectral energy54

E(k) (and therefore the mode amplitude Y (k)) to decrease at a minimum55

rate, such that the smallest scales have the lowest energy content. An increase56

in E(k), for example due to aliasing errors arising from non-linear terms,57

is likely to mean that we are not resolving the small scales well enough.58

Determining where this increase occurs in the domain facilitates the dynamic59

focussing of resolution in that area. To this end, the error indicator presented60

here is based on detecting whether the spectrum decay rate is worse than61

some prescribed value.62
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Two versions of the error indicator, denoted Ii and If , were developed;63

Ii is integer-valued while the other, If , is floating-point-valued. These are64

defined as65

Ii =

1, if A2 > A4 + ε

0, otherwise

+

1, if A4 > A8 + ε

0, otherwise

+

1, if A2 > A8 + ε

0, otherwise

(5)

If = log

(
1 + b A2

A4 + ε
c+ b A4

A8 + ε
c+ b A2

A8 + ε
c
)
, (6)

where b. . .c is a ‘floor’ operation, and the values A2, A4 and A8 are defined66

as67

A2 = 2−2r

∣∣∣∣S2

Ne

∣∣∣∣ , (7)

A4 = 2−r
∣∣∣∣2S4

Ne

∣∣∣∣ , (8)

A8 =

∣∣∣∣2S8

Ne

∣∣∣∣ , (9)

which (in the case of a 3D domain) are computed in each direction along N2
e68

lines. The small value ε (set to 10−2 in Section 3 and 3 × 10−2 in Section69

4) is used to avoid division-by-zero problems in uniform flow conditions.70

Note that either the maximum or mean of these A values can be taken,71

thereby generating slightly different variants of Ii and If . It was found a72

posteriori that considering the maximum values in each block seems to make73

the indicators Ii and If more sensitive compared to taking the mean values74
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(an operation that likely smears out any under-resolution effects). Therefore,75

only the maximum values are considered in this paper.76

The quantity Ii is an integer in the set {0, 1, 2, 3}, where a value of77

3 indicates the worst possible error according to the error indicator, and 078

indicates that no error is present. In contrast, the quantity If is a real value79

bounded below by zero (which indicates that little or no solution error is80

present). The Ii indicator was devised by partitioning the spectrum decay81

into 3 spectral amplitude ‘pairs’ (S2–S4, S4–S8, S2–S8). The ratios of these82

pairs give a piecewise indication of how the spectrum decays and should83

satisfy a maximum acceptable deviation/‘turn-up’ in the spectrum’s slope.84

Any breach of these criteria is penalised accordingly, with a similar approach85

also being applied to If :86

∣∣∣∣S2

S4

∣∣∣∣ ≤ 2r, (10)

∣∣∣∣S4

S8

∣∣∣∣ ≤ 2r+1, (11)

∣∣∣∣S2

S8

∣∣∣∣ ≤ 22r+1. (12)

Deciding what constitutes an unacceptably high ‘turn-up’ in the spec-87

trum’s slope depends on the specific problem at hand. One of the caveats88

of the approach is the need to estimate the minimal acceptable slope r of89

the spectrum. For example, this could be taken to decrease with a slope of90

r=-5/6 for turbulent dynamics (following Kolomogorov’s k−5/3 law for the91

inertial subrange of the spectral energy spectrum), but in practise r will be92

higher or lower locally; throughout this paper we consider a slope value of r93
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= -0.5. If shocks are present, then a slope of -1 (following the k−2 law for94

discontinuities [18]) may be more appropriate. Note also that the slope r may95

also depend on the behaviour of the solution field/quantity being considered.96

The typical values mentioned so far correspond to the decay of energy, but it97

was found a posteriori that these values also worked well for vorticity which98

followed a similar decay pattern. Nevertheless, it is important to remem-99

ber that the desired slope may vary depending on the chosen quantity and100

problem.101

The current approach is different to error indicators already appearing in102

the literature. For example, robust indicators that are based on the second103

derivative (such as the Hessian matrix [19, 20]) or interior penalty methods104

[21] could also be used. However, one potential caveat with second derivative-105

based methods occurs when the solution has a low second derivative but still106

shows a ‘turn-up’ in the Fourier spectrum decay. A flat spectrum without107

any ‘turn-up’ in the Fourier amplitude would pass our measure but fail the108

Hessian measure. Conversely, a steep spectrum with a ‘turn-up’ would pass109

the Hessian measure but fail our measure. Moreover, the way our approach110

analyses solution error mimics the way a user would manually check flow111

fields for grid-to-grid point oscillations and refine as necessary.112

3. Test Case: Compressible Taylor-Green Vortex113

A three-dimensional compressible Taylor-Vortex problem (see e.g. [16]) in114

a periodic cube domain of length 2π was used to evaluate the effectiveness of115

the error indicator. This considered a fourth-order finite difference solution116

without additional filtering on computational grids of size N = 323, 643, 1283
117
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and 2563. The robustness of the error indicator was improved by considering118

overlapping blocks, with the grid point count per block remaining the same.119

The number of blocks in each direction was set to 7 such that each block120

contained (N/4)3 solution points. This provided an error severity value every121

Ne/2 points in all directions. The N=323 case adopted a non-dimensional122

time-step ∆t of 6.77 × 10−3 [16]. As the grid was refined, the time-step size123

was halved. The simulation was run until non-dimensional time T = 20. All124

simulations considered here were performed on a single NVIDIA Tesla K40c125

GPU. Further details of the simulation setup can be found in [15], where it126

is shown that a grid of at least 2563 points should be employed to give close127

agreement with reference data [22].128

The indicator computed the severity of under-resolution in the z-component129

of the vorticity field, denoted (∇× u)z, every 100 iterations. The 323 grid130

greatly under-resolved the turbulent dynamics and, particularly around the131

point of peak enstrophy, displayed grid-to-grid point oscillations as a result.132

As the grid was refined the overall severity of the solution error was reduced.133

This is reflected by the reduction in the Fourier amplitude slope in Figure134

1, and also in Table 1 which shows a reduction in the maximum values of135

Ii and If across both space and time. The small increase of If in the 643
136

case was caused by an intermittently-high severity value at early times (t =137

5–6); an even larger value of ε would be required to suppress this anomalous138

behaviour.139

A clearer visualisation is provided in Figure 2 which displays a general140

reduction in the number of high severity values of Ii throughout time. Larger141

errors were particularly noticeable around non-dimensional time t = 9–10 at142
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Figure 1: Comparison of Fourier amplitudes computed along a representative line of solu-

tion points in a 323 and 2563 simulation near the point of peak enstrophy. The 323 case

severely under-resolved the dynamics and the Fourier amplitude fails to decrease at the

desired minimum rate, whereas the well-resolved 2563 case demonstrates an acceptable

rate of decay.

Grid size max(Ii) max(If )

323 3 1.945910

643 3 2.197225

1283 2 1.386294

2563 1 0.693147

Table 1: Grid sizes considered in the Taylor-Green vortex simulation and the maximum

severity value of the error indicators over all I/O dumps.

the point of peak enstrophy where the flow becomes fully turbulent, suggest-143

ing that further grid refinement is necessary to properly resolve the turbulent144

fluctuations. Due to the symmetry of the problem and the domain-wide tur-145

bulence, refinement is often shown to be necessary in large portions or even146

all of the domain; the real benefits of error indicators and their coupling with147
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grid refinement techniques will become apparent when such an approach is148

applied to more realistic flow problems where turbulent dynamics that re-149

quire higher resolution may only be present in a small section of the domain.150
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Figure 2: The counts of all the error indicator values across the entire domain for 323,

643, 1283 and 2563 grids (top-left to bottom-right), using overlapping blocks. Blue, green,

yellow and red indicate Ii error severity values of 0, 1, 2 and 3, respectively.

4. Application: V2C laminar flow aerofoil151

The error indicator was applied to a three-dimensional direct numerical152

simulation of transonic, compressible flow past a V2C laminar flow aerofoil (a153

profile designed by Dassault Aviation [17]) at an incidence α = 4◦, Reynolds154

number based on the aerofoil chord Rec = 5×105 and Mach number M = 0.7.155
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The computational domain is illustrated in Figure 3 and partitioned156

into three blocks, with interface boundary conditions between neighbouring157

blocks. The domain dimensions are R = 7.5c and W = 6c with a spanwise158

extension of Lz = 0.05c. Blocks 1 and 3 are associated with Cartesian grids159

stretched in the x and y directions such that more resolution is present near160

the trailing edge of the aerofoil and in the wake. Block 2 contains the aerofoil161

itself and is associated with a C-grid, with resolution being focused near the162

leading and trailing edges and near the wall.163

x

y
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B3

B2

ξ

η

R

1.00.980.96 1.02 1.04 1.06

0.07

0.06

0.05

y
[−

]

x [−]

solid

W

Figure 3: Sketch of the computational domain. Block 2 (denoted B2) contains the V2C

aerofoil, while blocks 1 and 3 (B1 and B3) are resolving the wake line.

The V2C aerofoil profile has a blunt trailing edge and therefore two singu-164
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lar points at the corners. The grid points resolving the trailing edge surface165

are contained in blocks 1 and 3. The grid lines containing the corners of166

the blunt trailing edge are designed as a continuous extension of the aerofoil167

geometry. A corner treatment is applied according to the trailing edge treat-168

ment used by Jones [23]. In order to increase the numerical stability of su-169

personic flows, a total variation diminishing (TVD) scheme is applied to cap-170

ture shock waves. Characteristic conditions were enforced at all the domain171

boundaries in order to minimise wave reflections. In particular, a zonal char-172

acteristic boundary condition [24] is applied over a distance Lzonal ≈ 0.45c173

near the outflow boundary of blocks 1 and 3, using 51 grid points. An inte-174

gral characteristic condition [25] is applied at the other boundaries where, in175

addition, the free-stream solution is imposed at each time-step. The aerofoil176

is modelled using a no-slip, isothermal boundary condition, with the wall177

temperature equal to the free-stream temperature.178

A summary of the two computational grids employed is given in Table179

2; the first is relatively coarse, and the second is a refined version with180

more resolution placed near laminar-turbulent transition regions and along181

the wake path. The two simulations were carried out on the UK National182

Supercomputing Service (ARCHER). Fourth-order central differences with a183

Carpenter scheme near boundaries [26], and a third-order low-storage Runge-184

Kutta timestepping scheme (with a time step of ∆t = 2× 10−5), were used.185

The error indicator implemented in the OpenSBLI code was once again186

applied to the z-component of the vorticity field. However, the simulation187

itself was performed using the legacy Fortran-based SBLI code [27] (because188

characteristic boundary conditions were not available in OpenSBLI at the189
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R/c W/c Lz/c Nξ,2 Nη,2 Nξ,1/3 Nη,1/3 Nz Ntotal

7.5 6.0 0.05 2095 999 999 1023 50 2.07× 108

7.5 6.0 0.05 3045 999 1999 1023 150 1.07× 109

Table 2: Numerical grid details for the grid before (first row) and after refinement (second

row). Note that Nξ,2 and Nη,2 are the number of grid points of block 2 around the aerofoil

in the ξ and η direction, respectively, whereas Nξ,1/3 and Nη,1/3 denote the number of

grid points in block 1 and block 3 to resolve the wake (see Figure 3). Nz is the spanwise

resolution and Ntotal denotes the total number of grid points.

time of writing) and the solution fields were read into OpenSBLI from a190

binary file. Each error indicator block comprised 163 grid points.191

Error severity values of Ii near the aerofoil when the flow was fully de-192

veloped are shown in Figure 4. The uniform flow away from the aerofoil193

is relatively well-resolved by both grids as suggested by Ii values of 0 or194

1. The flow dynamics in the vicinity of the aerofoil are characterised by a195

separation of the laminar boundary layer on both sides of the aerofoil, fol-196

lowed by a laminar-turbulent transition of the separated flow and turbulent197

flow reattachment just downstream of the mid-chord position. The process198

of turbulent flow separation/reattachment gives rise to a highly unsteady199

wake downstream of the aerofoil. In the case of the coarse grid, a signifi-200

cant number of Ii = 2 and Ii = 3 values suggested that these latter areas of201

the domain exhibiting turbulent dynamics were heavily under-resolved. The202

grid was therefore manually refined around the trailing edge of the aerofoil203

and in the wake region, which resulted in a reduction in error severity (the204

presence of mainly Ii = 0 and Ii = 1 values) and the adequate resolution of205
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the turbulent structures. This demonstrates how the error indicator can be206

used to help target refinement strategies.207

The dominant flow structures in the transitional separation region on ei-208

ther side of the aerofoil are represented by Kelvin-Helmholtz rollers. The209

interaction between these structures and the trailing edge leads to the scat-210

tering of acoustic waves that sustain the laminar-turbulent transition. The211

global modes caused by these acoustic waves are likely to be the cause of the212

occasional Ii = 1 values away from the aerofoil where the flow appears to be213

uniform. The cluster of Ii = 2 and Ii = 3 values at the leading edge is due214

to the thin boundary layer and has been addressed with a combination of215

further grid refinement and localised filtering.216

5. Conclusion217

A new error indicator has been developed for the purpose of determining218

where grid refinement needs to take place in order to ensure solution accuracy219

and stability in finite difference solutions of partial differential equations, here220

the compressible Navier-Stokes equations. It was found that both versions221

of the indicator (integer-based and floating point-based) correctly demon-222

strated a reduction in error severity when the grid was refined uniformly in223

a three-dimensional Taylor-Green vortex test case. Its application to a V2C224

industrial use case further demonstrated its usefulness by suggesting that225

grid refinement was particularly necessary at the trailing edge of the aerofoil226

where turbulent eddy shedding occurs and along the wake path. The indi-227

cator developed in this paper could potentially be used in conjunction with228

adaptive grid refinement techniques to dynamically alter the resolution as a229

14



Figure 4: Contours of velocity magnitude in a two-dimensional slice of the V2C aerofoil

simulation, for the initial grid (top) and the refined grid (bottom). Circles filled with blue,

green, yellow and red indicate Ii error severity values of 0, 1, 2 and 3, respectively. The

slices are taken at different times (after 5.33 × 106 and 6.18 × 106 timesteps, respectively).

simulation progresses, thereby enhancing the efficiency of the model.230
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