Quantum-aided multi-objective routing optimization using back-tracing-aided dynamic programming
Quantum-aided multi-objective routing optimization using back-tracing-aided dynamic programming
Pareto optimality is capable of striking the optimal trade-off amongst the diverse conflicting QoS requirements of routing in wireless multihop networks. However, this comes at the cost of increased complexity owing to searching through the extended multi-objective search-space. We will demonstrate that the powerful quantum-assisted dynamic programming optimization framework is capable of circumventing this problem. In this context, the so-called Evolutionary Quantum Pareto Optimization~(EQPO) algorithm has been proposed, which is capable of identifying most of the optimal routes at a near-polynomial complexity versus the number of nodes. As a benefit, we improve both the EQPO algorithm by introducing a back-tracing process. We also demonstrate that the improved algorithm, namely the Back-Tracing-Aided EQPO (BTA-EQPO) algorithm, imposes a negligible complexity overhead, while substantially improving our performance metrics, namely the relative frequency of finding all Pareto-optimal solutions and the probability that the Pareto-optimal solutions are indeed part of the optimal Pareto front.
Quantum computing, QoS, dynamic programming, pareto optimality, Routing, Multi-Objective Optimization
1-5
Alanis, Dimitrios
8ae8ead6-3974-4886-8e17-1b4bff1d94e0
Botsinis, Panagiotis
d7927fb0-95ca-4969-9f8c-1c0455524a1f
Babar, Zunaira
23ede793-1796-449d-b5aa-93a297e5677a
Nguyen, Hung Viet
6f5a71ef-ea98-49e0-9be7-7f5bb9880f52
Chandra, Daryus
d629163f-25d0-42fd-a912-b35cd93e8334
Ng, Soon
e19a63b0-0f12-4591-ab5f-554820d5f78c
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
Alanis, Dimitrios
8ae8ead6-3974-4886-8e17-1b4bff1d94e0
Botsinis, Panagiotis
d7927fb0-95ca-4969-9f8c-1c0455524a1f
Babar, Zunaira
23ede793-1796-449d-b5aa-93a297e5677a
Nguyen, Hung Viet
6f5a71ef-ea98-49e0-9be7-7f5bb9880f52
Chandra, Daryus
d629163f-25d0-42fd-a912-b35cd93e8334
Ng, Soon
e19a63b0-0f12-4591-ab5f-554820d5f78c
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
Alanis, Dimitrios, Botsinis, Panagiotis, Babar, Zunaira, Nguyen, Hung Viet, Chandra, Daryus, Ng, Soon and Hanzo, Lajos
(2018)
Quantum-aided multi-objective routing optimization using back-tracing-aided dynamic programming.
IEEE Transactions on Vehicular Technology, .
(doi:10.1109/TVT.2018.2822626).
Abstract
Pareto optimality is capable of striking the optimal trade-off amongst the diverse conflicting QoS requirements of routing in wireless multihop networks. However, this comes at the cost of increased complexity owing to searching through the extended multi-objective search-space. We will demonstrate that the powerful quantum-assisted dynamic programming optimization framework is capable of circumventing this problem. In this context, the so-called Evolutionary Quantum Pareto Optimization~(EQPO) algorithm has been proposed, which is capable of identifying most of the optimal routes at a near-polynomial complexity versus the number of nodes. As a benefit, we improve both the EQPO algorithm by introducing a back-tracing process. We also demonstrate that the improved algorithm, namely the Back-Tracing-Aided EQPO (BTA-EQPO) algorithm, imposes a negligible complexity overhead, while substantially improving our performance metrics, namely the relative frequency of finding all Pareto-optimal solutions and the probability that the Pareto-optimal solutions are indeed part of the optimal Pareto front.
Text
2_col_bta_eqpo.pdf
- Accepted Manuscript
More information
Accepted/In Press date: 2 April 2018
e-pub ahead of print date: 2 April 2018
Keywords:
Quantum computing, QoS, dynamic programming, pareto optimality, Routing, Multi-Objective Optimization
Identifiers
Local EPrints ID: 419141
URI: http://eprints.soton.ac.uk/id/eprint/419141
ISSN: 0018-9545
PURE UUID: 893823ec-9961-44fd-bc20-16f1b5e45e3c
Catalogue record
Date deposited: 06 Apr 2018 16:30
Last modified: 18 Mar 2024 04:01
Export record
Altmetrics
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics