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Summary

In recent years, M-quantile regression has been applied to small area estimation to obtain reliable
and outlier robust estimators without recourse to strong parametric assumptions. In this paper,
after a review of M-quantile regression and its application to small area estimation, we cover
several topics related to model specification and selection for M-quantile regression that received
little attention so far. Specifically, a pseudo-R> goodness-of-fit measure is proposed, along with
likelihood ratio and Wald type tests for model specification. A test to assess the presence of actual
area heterogeneity in the data is also proposed. Finally, we introduce a new estimator of the scale of
the regression residuals, motivated by a representation of the M-quantile regression estimation as
a regression model with Generalised Asymmetric Least Informative distributed error terms. The
Generalised Asymmetric Least Informative distribution, introduced in this paper, generalises the
asymmetric Laplace distribution often associated to quantile regression. As the testing procedures
discussed in the paper are motivated asymptotically, their finite sample properties are empirically
assessed in Monte Carlo simulations. Although the proposed methods apply generally to M-
quantile regression, in this paper, their use ar illustrated by means of an application to Small Area
Estimation using a well known real dataset.

Key words: Generalised Asymmetric Least Informative distribution; goodness-of-fit; likelihood ratio
type test; loss function; robust regression.

1 Introduction

In sample surveys, estimates of population descriptive quantities for a target variable y are
usually needed both for the population as a whole and for subpopulations, known as domains or
areas. Provided that large enough domain-specific sample sizes are available, statistical agencies
can perform domain estimation by using the same design-based methods used for the estimation
of population level quantities (direct estimation). In the case of small domain-specific sample
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sizes, direct estimation may lead to estimates with large sampling variability. When direct esti-
mation is not reliable in all or most of the domains, there is need to use small area estimation
(SAE) techniques.

Area-level and unit-level linear mixed models have been studied in the literature to obtain
empirical best linear unbiased predictors of small area means (Rao & Molina, 2015, chapter
5). Empirical best estimation is useful for estimating the small area means efficiently when
normality holds, otherwise, its properties can be deteriorated especially by the presence of
outliers in the data. Consequently, it is of interest to see how robust estimation can be adapted
to SAE.

In recent years, Chambers & Tzavidis (2006) and Sinha & Rao (2009) addressed the issue of
outlier robustness in SAE proposing techniques that can be used to down-weight any outliers
when fitting the underlying model. Sinha & Rao (2009) addressed this issue from the perspec-
tive of linear mixed models. Chambers & Tzavidis (2006) proposed to apply the M-quantile
(hereafter, MQ) regression models to SAE with the aim of obtaining reliable and outlier robust
estimators without recourse to parametric assumptions for the residuals distribution using M-
estimation theory. A comparison of these two alternative approaches can be found in Chambers
et al. (2014a). The distinguishing features of the approach by Chambers & Tzavidis (2006)
include the protection that a careful choice of a quantile-specific loss function p;(-),0 < 7 < 1,
offers against the effect of outliers and the characterisation of domain heterogeneity in terms
of domain-specific MQs. They can be viewed as an alternative to random effects for mea-
suring area-specific unobserved heterogeneity. Whenever there is insufficient evidence of this
heterogeneity, a prediction based on a simpler median linear regression model would be more
efficient.

A number of papers on MQ regression that focus on theoretical developments (Tzavidis et
al., 2010; Fabrizi et al., 2012; Salvati et al., 2012; Bianchi & Salvati, 2015; Chambers et al.,
2014a; Fabrizi et al., 2014a; Tzavidis et al., 2016; Alfo et al., 2017), extensions to non-linear
models (Pratesi et al., 2009; Chambers et al., 2014b; Dreassi et al., 2014; Tzavidis et al., 2015;
Chambers et al., 2016) and various small area applications (Tzavidis et al., 2008; Pratesi et al.,
2008; Salvati et al., 2011; Tzavidis et al., 2012; Fabrizi et al., 2014b) have been published in
recent years. In view of this growing number of studies, in this paper, we review MQ linear
regression with special focus on its application to SAE.

The aim of SAE is to complement and extend the published official statistics. As models
play a key role in MQ-based SAE, it is important that they are carefully selected and checked.
While in the SAE literature based on linear mixed models, diagnostics and model selection are
widely discussed (Rao & Molina, 2015, section 5.4), these topics have received, comparatively,
little attention in MQ applications to SAE. For this reason, we complement the review of MQ
regression by proposing (a) a measure of goodness-of-fit of the model parallel to the ordinary
R?; (b) model specification tests based on likelihood ratio and Wald type tests; and (c) a test on
the presence of actual area heterogeneity.

As a preliminary step, we introduce the parametric distribution associated with a general loss
function p,(+), that we will call Generalised Asymmetric Least Informative (GALI) distribution.
This distribution relates to MQ regression in the same way as the normal distribution is linked
to ordinary least squares and the asymmetric Laplace distribution to quantile regression (Yu &
Moyeed, 2001). The likelihood under the GALI model is a working likelihood, that is, it is only
used to facilitate maximum likelihood estimation. We use this term following Yang et al. (2015)
who uses the same term for maximum likelihood estimation of quantile regression parameters
under the asymmetric Laplace distribution. We propose a new estimator for the scale parameter
based on the GALI distribution. Furthermore, if the loss function p; involves tuning constants
that regulate the trade-off between robustness and efficiency (as is the case with the Huber
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loss function), we propose to use the distribution associated to the loss function to estimate a
data-driven value for these tuning constants.

The goodness-of-fit measure (analogous to the usual R?) that we propose is similar to that
introduced by Koenker & Machado (1999) for ordinary quantile regression. The likelihood ratio
and the Wald type tests that we discuss are motivated asymptotically. We explore their finite
sample properties by simulation exercises.

The paper is organised as follows. In Section 2, we review MQ regression, while its applica-
tion to SAE is reviewed in Section 3. In Section 4, we introduce the GALI distribution and new
estimators for the scale of the residuals in MQ regression and the tuning constant. In Section 5,
we introduce the pseudo-R? goodness-of-fit measure and likelihood ratio and Wald type tests
for linear hypotheses on the MQ regression parameters. Section 6 presents the test for assess-
ing the presence of area-specific effects. In Section 7, we present simulation studies aimed at
assessing the finite sample properties of the proposed tests and estimators. In Section 8, we
discuss an application of the methods to real data. Finally, Section 9 concludes the paper with
some final remarks.

2 A Review of M-quantile Regression

Quantile regression (Koenker & Bassett, 1978; Koenker, 2005) represents a useful generali-
sation of median regression whenever the interest is not limited to the estimation of a location
parameter at the centre of the conditional distribution of the target variable, but it focuses also
on location parameters (quantiles) at different parts of this conditional distribution. Similarly,
expectile regression (Newey & Powell, 1987) generalises least squares regression to estimation
of location parameters at other parts of the target conditional distribution, namely, expectiles.
Breckling & Chambers (1988) introduce MQ regression that extends the ideas of M-estimation
(Huber, 1964; Huber & Ronchetti, 2009) to a different set of location parameters of the target
conditional distribution that lie between quantiles and expectiles. MQs aim at combining the
robustness properties of quantiles with the efficiency properties of expectiles.

Given an (a.e.) continuously differentiable convex loss function p(u), u € R, we define the
tilted version of the loss function as

pr() = |t = I(u < 0)|p(u), (D

where t € (0, 1) represents the MQ. In line with most of the applications cited in the introduc-
tion, in this paper, special attention is devoted to the tilted version of the popular Huber loss
function,
_ o JCelul = ¢?/2)|e = I(u < 0)] Ju| > ¢
’Or(u)_z{uz/2|t—l(u50)| lu| <c, 2)

where /(-) is an indicator function, and c is a cutoff constant. By setting t = 0.5, a well-known
distribution, the so-called least informative distribution, is associated to this function (Huber,
1981, section 4.5).

Given a random variable y with cdf F(y), the t-th MQ of y, denoted 6, is obtained as the
minimiser of

[ pets =0 Fian. )
Depending on the choice of the loss function, MQs may reduce to ordinary quantiles (p(u) =
lu|) or to expectiles (p(u) = u?), while other choices are also possible (Dodge & Jureckova,
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2000). However, as it is well known, quantiles and expectiles should be treated separately due
to different properties of the corresponding influence functions (Wooldridge, 2010, p. 407).

In case of regression, the argument inside the loss function is replaced by standardised resid-
uals. More precisely, let x a p-dimensional random vector with first component x; = 1. The
observed data {(x;, y;),i = 1,...,n} are assumed to be a random sample of size n drawn
from an infinite population; thus, (x;, y;) are independent and identically distributed random
variables. Assuming a linear model, for any ¢ € (0, 1), the MQ of order t of y; given x; is
defined by

MO (yi|xi) = x! B, (4)

where B, € ©® C R? is the solution to

. Yi _X,'Tﬂr
pi e o () | ¥

and o is a scale parameter that characterises the distribution of ¢;; = y; — xiT B .. The linear
specification in (4) can be alternatively written as

T
yi :Xi ﬂr+8ti7

where {e;;} is a sequence of independent and identically distributed errors with unknown dis-
tribution function F; satisfying, by definition, M Q. (e.;|x;) = 0. The estimator of the MQ
regression coefficients (Breckling & Chambers, 1988) is defined as

n T
P . yi_x‘ﬁr
= | ———. 6
S S :

i=1 t
where 6 is a consistent estimator of o,. Because p is (a.e.) continuously differentiable and

convex, the vector 8, can equivalently be obtained as the solution of the following system of
equations

" —x!
> v (#) X =0, ™

i=1

where Y. (v) = dp.(w)/du = |t — I(u < 0)|Y(u), with ¥ (u) = dp(u)/du. An itera-
tive method is needed here to obtain a solution, like an iteratively re-weighted least squares
algorithm or the Newton—Raphson algorithm.

Regarding the scale parameter o;, it may generally be defined by an implicit relation of the

form
Eti
O¢

where the expectation is taken with respect to the distribution of €;;. In MQ regression, a
typical choice for y is y(u) = sgn(jlu — Med(u)| — 1), which leads to the scaled popula-
tion median absolute deviation o, = Med{|e; — &1/2,¢|}/q, where &), = Med(F:(e;)),
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g = ®71(3/4) = 0.6745, with ® denoting the distribution function of the standard normal dis-
tribution. The constant ¢ is generally added at the denominator of the mean absolute deviation
(MAD), so that it corresponds to the standard deviation in case of normality (e.g., Falk, 1997).
The corresponding estimator is the scaled sample MAD

A Med{|eé; — Med(&.)|}
O = )
q

©

where &; = (€71,...,8¢n), Eri = Vi — xiTBr. The consistency of the MAD estimator can be
proved by standard theory of M-estimators (Wooldridge, 2010), assuming that (8) has a unique
solution. Uniqueness of the solution in (8) is related to the absolute continuity of the distribution
of the errors. We refer the reader to Hall & Welsh (1985) for detailed conditions and a proof of
the strong consistency of the MAD estimator.

The asymptotic theory for MQ regression with independent and identically distributed (iid)
errors and fixed regressors can be derived from the results in Huber (1973), as pointed out
in Breckling & Chambers (1988). In case of stochastic regressors and in the presence of het-
eroskedasticity, Bianchi & Salvati (2015) show the consistency and the asymptotic normality
of B, and the consistency of its asymptotic variance estimator,

Var(B,) = (n — p) 'nW;'G,W7! (10)
where

n
. o .
W, = (n6;) Z Wl xix!,

i=1

n
s 72 T
G, =n E YoiXiX;

i=1

with ¥/, o= Y. (8i/8¢), Vei = Ve (Bir/60).

3 A Review of M-quantile Models in Small Area Estimation

Let us now consider a finite population and suppose that it is divided into D non-overlapping
small areas of size N;, j = 1,..., D, so that Zle Nj = N. Suppose that a sample of size
n; > 0 is drawn from each small area. For simplicity of exposition, we do not consider the
case n; = 0, although the theory can be easily extended to it. For convenience, we introduce a
second subscript in the notation to indicate the hierarchical nature of the data, {(x;;, y;j),i =
l,....n;;j = 1,...,D}. Here, values y;; represent the variable of interest, and values x;;
of a p x 1 vector are the individual level covariates. For the non-sampled population units, we
assume that the values of x;; are known. We also assume that sampling is non-informative for
the small area distribution of y; given X;;, allowing us to use population level models with the
sample data.

The papers by Chambers & Tzavidis (2006) and Aragon ef al. (2005) were the first to intro-
duce the idea of measuring heterogeneity in the data via MQs. In particular, Chambers &
Tzavidis (2006) characterise the variability across the population of interest by introducing the
idea of MQ coefficients. At the population level, the MQ coefficient for a unit within a small
area is defined as the value 7;; such that M Q. (vij|xi;) = y;j. If a hierarchical structure does
explain part of the variability, after accounting for the effect of covariates, units within small
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area are expected to have similar MQ coefficients. Chambers & Tzavidis (2006) propose to
characterise each small area j by the average of the MQ coefficients of the units that belong
to that small area. The small area-specific MQ coefficient, denoted by 7;, identifies the most
characteristic MQ regression line for that small area. We can think of this in the context of
linear mixed models as the group-specific regression line that is distinguished from population-
average line by the random effect. The aim is to use the small area-specific MQ coefficient 7;
to predict various area specific quantities, including (but not only) the area mean of y. In what
follows, we focus on the estimation of the small area j mean of y, denoted m ;. When (4) holds,
and B, is a sufficiently smooth function of t, Chambers & Tzavidis (2006) suggest a predictor
of m; of the form:

~M - T3
ij:le Z)’ij'i‘zxijﬂ%j g (1)

1E€S; 1€r;

where we use indices s and r to denote sample and non-sample quantities, respectively. Thus,
the set s; contains the n ; indices of the units drawn from the population and the set r; contains
the N; — n; indices of the non-sampled units in small area j. Here, 7; is an estimate of the
average value of the MQ coefficients of the units in area j. The case of n; = 0, mentioned
earlier, can be easi g dealt with by using a synthetic MQ predictor, which is obtained by setting
z; = 0.5 (AMQ/ ) According to Chambers et al. (2014a), such method is defined as
robust- pro;ectzve as it projects sample non-outlier (i.e. working model) behaviour onto the non-
sampled part of the survey population. In contrast, Chambers et al. (2014a) propose methods
to address the presence of representative outliers (Chambers, 1986), that is, sample outliers that
are potentially drawn from a group of population outliers and hence cannot be unit weighted
in estimation. This method allows for contributions from representative sample outliers, and
it is defined as a robust-predictive method because it attempts to predict the contribution of
the population outliers to the population quantity of interest. In the robust-predictive context, a
bias-corrected version of estimator (11) is given by

~MQ—BC _ rr—1 Nj—nj MQ Yij zjﬁ
et S S+ 2 e (I
IGS_/ l€r_, ZESl a)l]
where a)IyQ is a robust estimator of the scale of the residual y;; — x;; ﬂr in area j. The robust

influence function i, used to define ,3 25 is replaced in the third addend of (12) by ¢; such
function is still bounded but more accommodatlng with respect to sample outliers, that is, such
that || < |¢|. Its purpose is to define an adjustment for the bias caused by the fact that the
first two terms on the right hand side of (12) treat sample outliers as not representative (for
details, see Chambers et al. 2014a). If ¢ is the identity function, predictor (12) corresponds to
the Chambers and Dunstan estimator (Tzavidis et al., 2010).

Two different analytic methods of mean squared error (MSE) estimation for MQ-based robust
predictors of small area means under the robust-projective and robust-predictive approaches
have been proposed in the literature. Both are developed under the assumption that the working
model for inference is conditioned on the realised values of the area effects. As a consequence,
the proposed MSE estimators are conditional estimators. The first method is introduced by
Chambers ef al. (2011) as a pseudo-linearisation estimator for the conditional MSE of predictor
(11), and it is labelled as CCT (Chambers, Chandra, Tzavidis) estimator. The second method
uses first-order approximations to the variances of solutions of estimating equations to develop
conditional MSE estimators for predictors (11) and (12), and it is labelled as CST (Chambers,
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Chandra, Salvati, Tzavidis) (Chambers et al., 2014a). The MSE estimator for predictor (12) is
based on the approximation

. 2 A A A
MSEM2-EC) = (1 - ;"V—’) [{fw )TV By )y — %) + V(@)
J

R 2
Yi ,T.B-Ej
el ) |

J i€s; ij

(13)

where V(ﬁ%j) is the estimated variance of the fitted MQ regression coefficients at t = 7;,

17(5”) = (Nj — n])_l(n -1t Dok Z,esk ik — lTkléq )2 and X,;, X;; denote the vectors
of average values of x;; for the N; —n ; non-sampled units and the 7 ; of sampled units, respec-
tively, in area j . The results of the s1mulat10n experiments in Chambers ef al. (2014a) show that
the CST estimator has lower bias than the CCT and that it is also more stable for both predictors
(11) and (12).

Several methodological developments on MQ regression in SAE have been made in recent
years and they are briefly reviewed in the following. Fabrizi et al. (2012) consider two prob-
lems relevant to practical small area applications. First, they propose a solution to guarantee the
benchmarking property of small area estimators. The proposed procedure is consistent with the
MQ regression framework, thus, it is theoretically more interesting than a simple ratio adjust-
ment. Second, they consider the problem of the correction of the under/over-shrinkage of small
area estimators. The authors note that the MQ small area estimators may under-shrink (under
normality) or over-shrink (when the distribution of actual small area parameters is skewed).
In line with most of the literature, notions of under-shrinkage and over-shrinkage are defined
in terms of variance calculated over the ensemble of small area parameters. This may not be
robust to the presence of outlying areas, but the method proposed by Fabrizi ef al. (2012) can
be readily extended to other descriptions of the variability of the ensemble of area parameters.

Fabrizi et al. (2014a) adopt a model-assisted approach for developing design-consistent
(weighted) MQ small area estimators. The authors assume a working linear MQ model and
consider only properties with respect to the randomisation distribution induced by the sam-
ple design. Fabrizi et al. (2014a) note that for the estimation of small area means and totals,
the weighted MQ based estimators may be expressed in generalized regression (GREG) form
and can therefore be easily interpreted. Moreover, this estimator remains consistent even under
informative sampling design provided that the sampling weights incorporate all the relevant
information about the selection process.

Salvati et al. (2012) incorporate the spatial information in small area predictors based on
MQ models via geographically weighted regression. In particular, the authors specify an MQ-
geographically weighted regression model that is a local model for the MQs of the conditional
distribution of the outcome variable given the covariates. This model is then used to define a
bias-robust predictor of the small area characteristic of interest that also accounts for spatial
association in the data. Another approach to take into account spatial information in small
area MQ predictors is by using a semiparametric MQ regression model as proposed by Pratesi
et al. (2008). In this case, the response variable depends on the geographical position of the
observations through an unknown smooth bivariate function estimated by low-rank thin plate
splines. From the simulation results, the semiparametric MQ models in SAE appear to be a
useful tool when the functional form of the relationship between the variable of interest and
the covariates is left unspecified, and the data are characterised by complex patterns of spatial
dependence (Salvati et al., 2011).
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The MQ approach to small area prediction has been extended to discrete responses. In par-
ticular, Tzavidis et al. (2015) propose a small area predictor based on a new semiparametric
MQ model for counts that extends the ideas of Cantoni & Ronchetti (2001) and Chambers
& Tzavidis (2006). This predictor can be viewed as an outlier robust alternative to the more
commonly used conditional expectation predictor for counts that is based on a Poisson gener-
alised linear mixed models with Gaussian random effects. Chambers et al. (2014b) introduce
a semi-parametric approach to ecological regression for disease mapping, based on modelling
the regression MQs of a negative binomial variable. The method is robust to outliers in the
model covariates, including those due to measurement error, and can account for both spatial
heterogeneity and spatial clustering. Chambers et al. (2016) extend the MQ approach to SAE
for counts (Tzavidis et al., 2015; Chambers et al., 2014b) to the case where the response is
binary. Modelling the MQs of a binary outcome presents more challenges than modelling the
MQs of a count outcome. A detailed account of these challenges is provided in the paper. With
the proposed approach, random effects are avoided, and between-area variation in the response
is characterised by variation in area-specific values of MQ indices. Furthermore, outlier robust
inference is achieved in the presence of both misclassification and measurement error.

A common criticism of the application of MQ regression in SAE is the limited availability of
model selection and diagnostics tools that are well researched for linear mixed models. Focus-
ing on linear MQ models, we partially fill this gap in Sections 5 and 6 discussing new tools
for model selection and diagnostics. Some of these diagnostics can be applied to general MQ
regression models, and some are specific to SAE problems.

4 A Working Likelihood for M-quantiles: The Generalised Asymmetric Least
Informative distribution

Yu & Moyeed (2001) show the relationship between the loss function for quantile regression
and the maximisation of a likelihood function for independently distributed asymmetric Laplace
random variables. In this section, we show a similar relationship for MQ regression models.

Given the loss function p;, in an infinite population context, we define the GALI random
variable as the random variable having density function

1 —
exp {—,or (y ,ur)} , —00 <Yy < -4o0. (14)
B o

¥t T

Se(yi e, 00) =

where B, = ffozo %exp {—p, (%)} dy < +oo, and p; and o, are location and scale

parameters, respectively. We note that i, coincides with the 7 MQ of the distribution; in fact,
[Lr can be obtained as the solution of

+o0 _
/_ (2% (y MT) Sr(y; pe,00)dy =0,

O¢

that defines the MQ of the distribution.

Because the theory developed in this section can be applied more generally and not only to
SAE, we drop subscript j from our notation. For linear MQ regression, that is, when w, =
Ui = xiT B, the estimators of the unknown regression parameters 8, and the scale o; may be
obtained by maximising the log-likelihood function obtained from densities (14):

~ [(yi—xB
1 i T
I:(y) = —nlogo; —nlog By — > pe | ——|. (15)
: Ot
i=1
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Given o, the estimating equations for the regression coefficients 8, are the same as those of
Equation (7). The estimating equation for o is

1 " i T T
Y (%) (i —x[ ) =0, (16)

and its solution defines a new estimator for o, alternative to (9). With respect to (8), in this
case, y(u) = —ur;(u) — 1, and the parameter is defined as the solution of

[ — (8)] — 0,

This choice is in line with what Koenker & Machado (1999) and Yu & Zhang (2005) propose
for quantile regression, considering the maximum likelihood estimator under the asymmetric
Laplace distribution.

Solving Equations (7) and (16) requires an iterative algorithm. The steps of this algorithm
are as follows:

~ (0 .
1. For specified 7, define initial estimates 8, © and & (O)
2. At each iteration ¢, calculate w(t D= w,(u(t ]))/u(t D with u(t D= (yi —
At—=1) (41—
x/ B, /6",

3. Compute the new weighted least squares estimates from

A N S R

i=l1 i=l1

4. Compute the new estimate of 6, by

1/2
. NG
oi”={ 1Zw(‘ Vi —x[ B, )} : (18)

i=1

5. Repeat Steps 2—4 until convergence. Convergence is achieved when the difference between
the estimated model parameters obtained from two successive iterations is less than a small
pre-specified value. This algorithm is similar to that proposed by Street et al. (1988). In
simulation experiments, the proposed algorithm usually converges, on average, after 10
iterations.

If p.(+) is the Huber loss function defined in (2), we call (14) the asymmetric least informative
(ALI) distribution. In this case, the normalizing constant B is given by
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B, = \E[qn(c«/ﬁ) - 1/2] + ,/lf—t [@@M) — 1/2]

exp{—c*(1 —1)}.

| (19)
2ct (1-1)

This distribution is essentially a modified normal distribution with heavier tails (when |y| > ¢).
For = 0.5, this distribution was derived by Huber (1981, section 4.5) as the one minimizing
the Fisher information in the e-contaminated neighbourhood of the normal distribution. Formu-
lae for the cumulative distribution function and moments of the ALI distribution (z € (0, 1))
are provided in Appendix A.

The ALI distribution depends on the tuning constant ¢. Conventionally, in M-regression, the
tuning constant is set by the data analyst in a way that provides a trade-off between robustness
and efficiency. Huber (1981, p.18) suggests that ‘good choices are in the range between 1 and
2, say, 1.5°. The default value for ¢ in the R package MASS (r1m function) is 1.345 which cor-
responds to 90% of efficiency of the estimates under normality. When the errors are normally
distributed, the best choice is to set the tuning constant equal to a large value, that is, co. Using
a smaller value, say 1.345, in this case will offer unnecessary robustness at the cost of reduced
efficiency of the estimates. To overcome this ad hoc approach to selecting the tuning constant,
Wang et al. (2007) propose a data-driven method such that the tuning constant is numerically
chosen in a way that maximises the asymptotic efficiency of the estimated parameters.

We can treat ¢ as a parameter of the density f; and estimate this (together with §, and
o) by maximising the log-likelihood function (15). In fact, in the ALI distribution, ¢ can be
interpreted as an additional parameter that determines how heavy the tails of the distribution
are. For estimating the tuning constant, there is no closed form expression. In this case, the
compass search algorithm or the Nelder—Mead algorithm (Griva et al., 2008) can be used. The
final estimating procedure works by adding to the proposed iterative algorithm the new step 4':

1
+ —exp{—c®t} +
2c

4’ Given ﬁ it) and 6,0) maximise the log-likelihood function (15) with respect to ¢ using the
compass search algorithm (Bottai et al., 2015) or the Nelder—-Mead algorithm.

An R function that implements an iterative algorithm for estimating the parameters is
available from the authors.

The idea of estimating the tuning constant using likelihood equations can be applied to other
loss functions as well whenever they include an additional parameter or tuning constant.

5 Goodness-of-Fit and Likelihood Ratio Type Tests in M-quantile Regression

In this section, we present, in an infinite population context, a pseudo-R? goodness-of-fit
measure for MQ regression and likelihood ratio and Wald type tests for linear hypotheses on the
regression parameters. The asymptotic theory is developed according to standard M-estimation
theory, as in Gourieroux & Monfort (1989) and Wooldridge (2010).

5.1 A Goodness-of-Fit Measure

For a given MQ, the introduction of the pseudo-R? is motivated by the need for a measure
analogous to the ordinary R? used in least squares regression, where the goodness-of-fit is
expressed with respect to the null model under which all the coefficients except for the inter-
cept are set to zero. Consider the general MQ model (4), where the first component of the

International Statistical Review (2018), 0, 0, 1-30
© 2018 The Authors. International Statistical Review © 2018 International Statistical Institute.



Estimation and Testing in M-quantile Regression 11

p-dimensional vector x is the intercept, that is, x; = 1 and the MQ estimator /§ . of B.. Now
consider the null model, given by

MQ:(yilxi) = Pie. (20)

and denote by ,3 1z its MQ estimator. A relative goodness-of-fit measure comparing the full to
the null MQ regression model is defined as
i ,Tﬁr
S (202

Z?:l Pz (—y’;f”)

R(t)=1- (21)

T3 .
yi—x: B - . .
Because Y i_, pr =) = Y pe (y : &f - ), this measure is always between 0 and

1. R%(7) is a local relative measure of goodness-of-fit of the MQ regression model with respect
to the null model at a specific 7. Because this goodness-of-fit statistic depends on t, it is useful
to study its variation across MQs. As in Koenker & Machado (1999), we explore the behaviour
of the index Rf, (7) using a range of simulated data. We consider a simple bivariate regression
setting under three different scenarios with n = 100:

e (Gaussian noise: the data are generated with y; iid standard normal distribution and indepen-
dent of x. Values x; are generated as iid N (5, 1).
® Gaussian location shift: the data are generated according to the model

Yi =X +¢€

with ¢; iid N(0, 1) and x; iid N(5, 1).
o Gaussian scale shift: a heteroskedastic version of the regression model is given by

12
Yi = xi+in €

with € iid N(0, 1/100) and x; iid N(3, 1).

First row in Figure 1 illustrates the MQ model lines fitted at = =
(0.01,0.10, 0.25,0.50,0.75,0.90, and 0.99). The bottom row of the figure shows the values
of Rf)(r) as a function of 7. As we expected, under Gaussian noise, the values of R%(r) are
nearly 0 over the entire range t € (0, 1). Under the Gaussian location shift scenario, the
values of R%(r) show a flat relationship between y and x for each t. This indicates that all the
conditional MQs are equally successful in reducing variability (Koenker & Machado, 1999).
In the case of heterosketasiticity (scenario 3), the conditional median and the unconditional
median are both 0, so in line with what we expected under this data generation scenario, we
have Rf)(O.S) =~ (. For the other values of 7, there is a clear benefit from the MQ form of the
conditional MQ specification.

5.2 Hypothesis Testing
We start by partitioning MQ regression as follows:

MQ(yilxi) = x/1B1; + X5 B, (22)
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12 A. BIANCHI ET AL.

where 8, = (.B{vﬂzTr)T, Birisa(p—k)x1vectorand B,,isak x1(0 < k < p) vector
and x;, X;; are defined accordingly. We are interested in testing the null hypothesis:

HO : 1321 =0. (23)

Let ﬁ . denote the MQ estimator of the full model and let B . = (B Z;, 07)T denote the MQ
estimator under the null hypothesis (23). For testing the null hypothesis (23), we propose a
likelihood ratio type test that is valid when the residuals follow a general distribution. Let

n o T" _ n ;- TR
"0 =Y p (%) 7= r (%)

i=1 i=1
Consider the following regularity conditions:

(C1) ® compact set in R?;
(C2) pis (a.e.) twice continuously differentiable;
T i—X; B¢
(C3) | supg, co e —) | < h(xi, i) and | supg, co ¥ (y—) xixT| < g(xi 1),
with & and g are P-integrable functions;
(C4H E [x,' xl.thf/((yi — xl.T,Br)/af)] is uniformly nonsingular for 8, € ©.
(C5) The errors &; are independent of x; .

Assumption (C3) guarantees the applicability of the Unlform Law of Large Numbers. In
case of the Huber loss function, (C3) is satisfied provided E|x;|* < 400 and E|y;| < +oo.
Assumption (C5) is required for the validity of the generalised information equality. This would
hold also if the x;’s are fixed regressors. The information equality is needed for the validity of
the likelihood ratio type test. It can be relaxed for the Wald type test. The following theorem
presents the distribution of the likelihood ratio statistic.

Theorem 1. Provided conditions (C1)—(C5) are satisfied, under the null hypothesis H

E
2 R - Vo) L 9

where ‘/féi = wé(En'/Gr), Vei = Vel(ri/00).

The proof of Theorem 1 is reported in Appendix B. A hypothesis test for Hy is obtained by
substituting the unknown quantities in (24) with consistent estimators leading to,

MUY D Ry vi—x'B.\ < yi —x! B,
e Zl 1 1,01 |:Z Pt <—6-c ) - Zpt <—6-c ):| s (25)

i=l1 i=1

where 1/}41 and 1/},,- have been previously defined, and the nuisance parameter o, is estimated
under the full model. This is to ensure that the test statistic is nonnegative. Even though the
asymptotic distribution of (25) is not exactly )(i, simulations show that )(i is still a good approx-
imation for it (Section 7.2). This is due to the fact that the contribution of the estimation of
o to the asymptotic variance is negligible, as it was noticed in Bianchi & Salvati (2015). The
same approach was adopted in Schrader & Hettmansperger (1980). This test is more commonly
known as likelihood ratio (LR)-type test because the density of the ;; does not have to corre-
spond to the loss function. Note also that the proposed test can be easily extended to test more
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Estimation and Testing in M-quantile Regression 13

general linear hypotheses, for example, Hy : Rf, = r, where R is a k x p full rank matrix,
and r is a k x 1 vector. Similar results for M-regression estimators are provided by Schrader
& Hettmansperger (1980) in the case of fixed regressors and for quantile regression with fixed
regressors by Koenker & Machado (1999).

An alternative to the LR-type test is to use a Wald type test. The test statistic is derived from
Theorem 2.1 in Bianchi & Salvati (2015). Let R = [0 : I]. It follows that under H

~ T _ ~ d
n(RB,) [RER]™'(RB,) — 1.
where X ; is defined in (B4). Replacing X ; with its consistent estimator

A -1
—1 n 2 n
N n— . .
Zr — 6_3( p) Zl—l Tl [E Xle} ,

—1 n v
nT Y i Y i=1

the statistic
~ T ~ -1 ~
W =nRB,) [RXR] (RB,).

follows asymptotically a )(i distribution. A major difference between the LR-type test and the
Wald type test is that the latter can be made robust to the presence of heteroskedasticity by
using a robust estimator of the covariance matrix in place of X ;.

6 A Test to Assess the Presence of Area-Specific Effects

In this section, we introduce an LR-type test for the presence of unobserved heterogeneity
(area-specific effects). The proposed test has a similar aim to that for the strict positiveness of
variance components in the case of a linear mixed (random) effects model. Testing for the pres-
ence of significant cluster effects is a well-known problem in the literature (Greven et al., 2008;
Crainiceanu & Ruppert, 2004; Datta et al., 2011). Clustering can exist either because of the
design used to collect the data (i.e. use of a multi-stage cluster design) or because of the natural
structures that exist in the population (e.g. pupils nested within schools or individuals nested
within households). The discussion in this section will pay special attention to the existence of
area-effects in SAE.

Our aim is to test for the presence of significant area/cluster effects by proposing a test-
ing procedure based on the cluster-specific MQ coefficients ;. The development considers an
infinite population.

We define the MQ coefficients T = (14, ..., rd)T by adopting an approach that is explicitly
based on the loss function. Within group j, t; is defined to be the one that uniquely solves

4T
min E |:p (_y,‘, ”ﬂr lj 1.
2 o

Intuitively, 7; is defined as the MQ for which the regression plane identified by B T is the
closest to observations from group j, according to the metrics of p(-). Note that p(-) is the
untilted loss function, that is, pg5(-), so that the scale o coincides with o s. The use of the
untilted loss function is motivated by the search of the regression plane that best fits the units
in a specific subgroup of the population. Testing for the presence of clustering is equivalent to
testing whether the group-specific MQ coefficients are all equal, that is,

International Statistical Review (2018), 0, 0, 1-30
© 2018 The Authors. International Statistical Review © 2018 International Statistical Institute.



14 A. BIANCHI ET AL.

Hy:t;=05Vj=1,....d
Hy : tj # 0.5 for at least one J.

Of course, © = 0.5 represents the global minimiser when considering all groups j = 1,....,d.
A natural estimator 7; for ; is obtained by solving

nj TQ
. Yij _xijﬂr
mrlnz,o (T) > (26)

i=I

where & is an estimator of o such as the one obtained solving (16) for t = 0.5. Because p
is a positive function, the problem may be rewritten as follows. The vector of estimated MQ
coefficients T = (71, .. rd) is obtained as the solution of

min ZZJ (y,, X”ﬂr’). 27)

T]yeees T,
(t ) imlim

Note that Chambers & Tzavidis (2006) define 7; in a different way: they define it as the average
value of the MQ coefficients within the area, suggesting that alternative definitions (such as the
median value) and consequently alternative estimators can be used. In this paper, we define 7;
and 7, as the solution to the minimisation problem defined in (26). Although different from the
original definition used in Chambers & Tzavidis (2006), we expect that the area-specific coef-
ficients under the two definitions will lead to similar solutions. The advantage of the definition
we use in this paper is that it provides an easier approach to study the distribution of the test
statistic we are interested in.

Assuming that conditions (C1)—(C5) are satisfied and that B is differentiable in t with
02B,/0t> = 0 (i.e. B, linear in 7), it may be shown that under H,

_2%2, Zi (yu X B ) ZZJ (y,, Xl,ﬁos) ERIR
ij

j=1li=1 j=li=l

where ¥/, = ¥'(e0.5ij/0), Yij = ¥ (eosi7/0) and eo.si; = (yij — xiTjﬂo.S) (for a sketch of the
proof of (28), see Appendix C). By simulation (Section 7.3), we show that by substituting the
unknown parameters in (28) by consistent estimators, the asymptotic distribution is still well
approximated by a )(2_1 distribution. Hence, a hypothesis test may be based on

(n—p)~! Z,‘/A’; d Yij Xl ﬂr] < Yij Xl ﬂ
-2 n—IZ._AJ;. ] ZZ ( J J ) ZZ ( J J 05) ’
ij 7ij

j=li=1 j=li=lI

where W,-/j = ¥'(80.5ij/6), Vij = ¥ (805ij/6). é0sij = (yij — X,-Tj.Bo.s) and ﬂ%_,— and B s are
replaced by the corresponding consistent estimators.

The proposed test can assist the decision to include or not cluster effects in the model. We
note that the asymptotic result holds if n; — +oo foreach j = 1,...,d. Even though the test
is asymptotically valid when the sample size within each group tends to infinity, we empirically
show in Section 7 that it provides reasonable results in the SAE context as well.
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Figure 1. The figure shows three different scenarios and their associated Rf) (1): (a) Gaussian noise, (b) Gaussian location
shift; (c) Gaussian scale shift. The top row presents the data and in solid font the M-quantile model lines fitted at T =
(0.01,0.10,0.25,0.50,0.75,0.90, 0.99). The second row depicts the values ofRf,(t) at different M-quantiles.

The test we propose has a different aim to that of specification tests such as that recently
proposed by Parente & Santos Silva (2013) as we are not testing the assumptions needed for the
estimation of B, but whether units belonging to the same cluster are characterised by similar
quantile coefficients, which is useful in prediction.

7 Simulation Studies

In this section, we present results from three simulation studies used to investigate the method
for selecting the tuning constant ¢ proposed in Section 4, the finite sample properties of the tests
proposed in Section 5 and of the test statistic used for assessing the presence of area-specific
effects proposed in Section 6. All these tools are related to model selection and checking. This
is very important in SAE as its aim is to produce model-based estimates that practitioners are
confident to use.

Although estimation of the tuning constant and LR and Wald type tests are useful tools for
general MQ regression, we consider a typical small area setting with observations clustered
within area for all simulations, in line with our focus on this type of application. Thus, in the
simulation, we generate data under linear mixed (random) effects models that incorporate area
specific variation.

7.1 Choosing the Tuning Constant

We consider data generated under the following mixed (random) effects model,

vij =Bo+Pixij +ui +eij, i =1,....n;, j=1,....d, (29)
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16 A. BIANCHI ET AL.

where j indexes areas (clusters), and i indexes units within areas, By = 1, ; = 2, x follows a
uniform distribution (0, 5), d = 100, n; = 5 (n = 500). The error terms of the mixed model,
u; and g;;, are generated by using different parametric assumptions. The random effects u; are
generated from a Normal distribution with mean 0, and 62 = 1 and ¢ are drawn from different
error distributions.

1. Gaussian with mean 0, variance 1: ‘regularly’ noisy data;

2. t-Student with 3 degrees of freedom (#3): more noisy data with heavy tails;

3. Contaminated Normal with ¢ ~ (1 — y)N(0, 1) + yN(0,25) where y is an independently
generated Bernoulli random variable with Pr(y = 1) = 0.1; and

4. Cauchy with location 0 and scale 1: noisy data with the likely presence of extreme and
outlying observations.

These assumptions on the errors replicate the design in Sinha & Rao (2009), Giusti et al.
(2014) and Salvati et al. (2010). We have chosen these settings, ranging from a situation of
‘regularly’ noisy data to situations of more noisy data with huge extreme values, for evaluating
the estimation of the tuning constant ¢ under the ALI distribution as proposed in Section 4. The
residuals are rescaled so their variance is equal to 1, and the value of intracluster correlation
under different scenarios is always approximately equal to 0.3. For each Monte Carlo sample,
we estimate the tuning constant ¢ under the ALI distribution as proposed in Section 4. Figure 2
shows the distribution, obtained with 10 000 Monte Carlo samples of the estimated tuning con-
stants for the four scenarios at t = 0.25, 0.5, 0.75. The horizontal dashed line represents the
usual choice of ¢ = 1.345. Under the Gaussian setting, the values of the tuning constants are
clearly larger than the value 1.345 at each t. The estimated value of the tuning constant sug-
gests that using a robust estimator in this case is not justified as one would expect under the
assumptions of normality. In contrast, the values of the estimated tuning constant are smaller
than 1.345 in the contaminated and Cauchy scenarios. For instance, in the case of the contam-
inated scenario, the median value of the estimated tuning constant at t = 0.5 is 0.794. In the
case of the Cauchy scenario, the median value of the estimated tuning constant, at each quan-
tile, degenerates to 0 because the Cauchy distribution has very heavy tails. For the #-student
scenario, the median value of the estimated tuning constant is 1.27 at ¢ = 0.5, and it becomes
higher than 1.345 (about 2.0) at 7 = 0.25, 0.75.

In applications, a unique ¢ should be chosen; it can be the optimal one at 0.5 or chosen taking
into consideration also optimal values at other quantiles.

7.2 Likelihood Ratio Type Test

For evaluating the LR and Wald type tests for linear hypotheses on the MQ regression
parameters, data are generated under the following mixed (random) effects model

vij = Bo + Bixij1 + Paxijo + Baxijz +ui + €5, i =1,....n5, j=1,....d. (30)

The regression coefficients are set as follows: By = 0, B; = 0.5 and f,, B3 vary pairwise
from 0 to 1, that is, (B2,83) = (0,0), (B2, B83) = (0.25,0.25), (B>,B3) = (0.5,0.5) and
(B2, B3) = (1,1). With respect to the choice of the values of the regression coefficients, we
consider departures from the null hypothesis up to a level where the power of the test is expected
to reach level 1. Equality of 8, and B3 is motivated only by simplicity, and it is in line with the
simulations proposed by Koenker & Machado (1999). The values of x|, x; and x3 are drawn
from a Normal distribution with mean 5, 3 and 2, respectively, and variance equals to 1. The
number of small areas is set equal to d = 8, 20, 100 and sample size in each small arean; = 5,
so we consider three different overall sample sizes: n = 40, 100, 500. We consider n = 40 for
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evaluating the properties of the LR and the Wald type tests under a small sample size. Note that
in the application (Section 8), the sample size is 37. The error terms of the mixed model, u;
and ¢;;, are generated by using different parametric assumptions. Three settings for generating
&; are considered.

1. Gaussian with mean 0, variance 1;
2. t-Student distribution with 3 degrees of freedom (¢3); and
3. Chi-squared errors with 2 degrees of freedom (x3).

t-Student and chi-squared random variables are re-scaled so to have variance equal to 1; in
the case of chi-squared, we subtract the mean to generate zero-mean residuals. The random
effects are generated from a Normal distribution with mean 0 and 07 = 0.43. This entails

(a) (b)
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Figure 2. The distribution of the values of the tuning constant over Monte Carlo samples and different settings for the error
distribution at T = 0.25, 0.50, 0.75 and d = 100: (a) Gaussian distribution; (b) t-student distribution; (c) Contaminated
Normal distribution, (d) Cauchy distribution. The horizontal dashed line represents the choice of ¢ = 1.345.
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that for all the scenarios the value of the intracluster correlation is approximately equal to 0.3.
These choices define a 4 x 3 x 3 design of simulations. As in the previous section, we con-
sider different settings ranging from a situation of regularly noisy data to situations of skewed
distributed data. Each scenario is independently simulated 77 = 10 000 times. MQ regression
is fitted at ¢ = 0.5, 0.75, 0.90 by using the Huber influence function with ¢ = 1.345 for
t-Student and chi-squared errors, ¢ = 100 for Gaussian errors and the maximum likelihood
estimator (18) based on the ALI distribution as the estimator of o;. Setting ¢ equal to 1.345
gives reasonably high efficiency under normality and protects against outliers when the Gaus-
sian assumption is violated (Huber, 1981). For the Gaussian scenario, the resistance against
outliers is not necessary, and a large value for the tuning constant is preferred.
The results for the LR-type test for the null hypothesis

Hy: Bre =B3:=0

at the significance level « = 0.10, 0.05, 0.01 are presented in Table 1. In all cases, when
B> = B3 = 0 and the null hypothesis is true, the Type I error is very close to the nominal
o, with deviations in the case of T = 0.9 in the #; and )(% scenarios with d = 8 and 20
(n = 40, 100) where the test turns out to be conservative. For the Gaussian scenario, the power
of the test tends to 1 as soon as the values of 8, and B3 increase, that is, the null hypothesis
is rejected for all sample sizes. In case of departures from normality, for example, under the #;
scenario, the power of the test tends to 1 at T = 0.5 and 0.75 once 8,, 83 = 0.25 especially
ford = 100 (n = 500). At T = 0.9, the LR type test performs well as regression coefficients
increase (as soon as fB,, B3 = 0.5). Under the chi-squared setting, the test at T = 0.75, 0.90
appears to have lower power in rejecting the null hypothesis especially for the scenario with
d = 8 and d = 20. Results for this scenario improve as the number of groups, d, and the
values of the regression parameters (,, 83) increase. In the interest of brevity, results for the
Wald type test are not reported. They are available from the authors upon request. However,
here, we provide a summary of the comparison between the Wald and LR-type tests. Under the
Gaussian scenario, results from the two tests are very similar. Under the #3 and )(% scenarios,
convergence for the Wald type test is slower than convergence for the LR-type test under the
null hypothesis, especially for extreme MQs. Of course, the two tests are equivalent when the
sample size is large. In general, we have a slight preference towards the use of the LR-type test.

7.3 Testing for the Presence of Area-Specific Heterogeneity

In this section, we present an empirical evaluation of the properties of the test for the presence
of area heterogeneity, and we show how this test can be useful in the SAE context. For these
simulations, data are generated under model (29). We consider three scenarios for the number
of groups d,d = 8,d = 20 and d = 100 and three scenarios for the within group samples
size, nj = 5,nj = 20 and n; = 50 with the overall sample size that varies from 40 to 500.
The error terms of the mixed model, u; and ¢;;, are generated by using different parametric
assumptions. In particular, the random effects are generated from a Normal distribution with
mean 0 and different scenarios for the level 2 variance components o,f = 0,1, 2.5, 7.5. For
02 = 0, data are generated under the null hypothesis of no clustering. For the values of o2 other
than 0, clustering is introduced in the simulated data. Individual effects are generated according
to Normal distribution with mean 0 and variance 5. The intracluster correlation varies between
0 and 0.60. In general, in SAE applications, the observed intracluster correlation is about 0.30.
When 05 = 0, that is, under the null hypothesis, we empirically study the Type I error by using
the proposed test. For all other scenarios of 0,3 # 0, we study the power of the proposed test.
Each scenario is independently simulated 77 = 10 000 times.
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Table 1. Bype I error and power of the proposed likelihood ratio type test under Gaussian, t; and x> distributions at T =
0.50, 0.75, 0.90 with B,, B5 varying pairwise from 0 to 1, & = 0.10, 0.05, 0.01 and d = 8, 20, 100 withn ; = 5.

d o Gaussian, ¢ = 100 t, ¢ =1.345 X3, ¢ = 1345

T=050 t=075 t=090 t=050 t=075 t=090 T=050 =075 =090
(B2, B3) = (0,0)

0.10 0.117 0.132 0.181 0.119 0.143 0.322 0.120 0.159 0.355
8 0.05 0.066 0.079 0.117 0.067 0.087 0.232 0.069 0.096 0.268
0.01 0.018 0.021 0.044 0.017 0.028 0.128 0.017 0.029 0.150
0.10 0.110 0.114 0.133 0.103 0.114 0.147 0.109 0.120 0.181
20 0.05 0.059 0.062 0.075 0.050 0.063 0.089 0.057 0.064 0.112
0.01 0.012 0.015 0.021 0.012 0.016 0.030 0.012 0.016 0.049
0.10 0.101 0.105 0.109 0.102 0.108 0.122 0.103 0.106 0.126
100 0.05 0.052 0.058 0.058 0.052 0.053 0.063 0.050 0.055 0.069
0.01 0.010 0.011 0.012 0.013 0.012 0.017 0.010 0.011 0.018
(B2, B3) = (0.25,0.25)
0.10 0.392 0.394 0.400 0.547 0.491 0.490 0.353 0.248 0.188
8 0.05 0.283 0.282 0.301 0.430 0.380 0.401 0.251 0.166 0.102
0.01 0.130 0.135 0.159 0.229 0.205 0.156 0.104 0.068 0.073
0.10 0.574 0.547 0.481 0.681 0.605 0.457 0.497 0.313 0.273
20  0.05 0.453 0.430 0.371 0.566 0.488 0.357 0.375 0.215 0.191
0.01 0.245 0.225 0.192 0.337 0.267 0.191 0.184 0.088 0.082
0.10 1.000 0.999 0.964 1.000 0.996 0.909 0.984 0.823 0.395
100 0.05 0.991 0.998 0.934 0.998 0.991 0.846 0.967 0.728 0.282
0.01 0.962 0.989 0.914 0.991 0.968 0.671 0.903 0.498 0.128
(B2, B3) = (0.50,0.50)
0.10 0.849 0.827 0.774 0.952 0.900 0.761 0.779 0.498 0.437
8 0.05 0.776 0.746 0.694 0.919 0.846 0.692 0.689 0.391 0.397
0.01 0.580 0.554 0.516 0.807 0.702 0.546 0.485 0.212 0.200
0.10 0.978 0.962 0.920 0.993 0.982 0.852 0.944 0.729 0.449
20  0.05 0.960 0.941 0.873 0.987 0.961 0.784 0.905 0.619 0.352
0.01 0.883 0.841 0.729 0.953 0.890 0.619 0.774 0.400 0.196
0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.872
100 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.795
0.01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.590
(B2, 8:) = (1, 1)
0.10 1.000 1.000 0.995 1.000 0.998 0.973 0.994 0.906 0.731
8 0.05 1.000 1.000 0.991 1.000 0.997 0.958 0.990 0.854 0.657
0.01 0.995 0.991 0.968 0.998 0.991 0.916 0.966 0.708 0.501
0.10 1.000 1.000 1.000 1.000 1.000 0.998 1.000 0.996 0.841
20 0.05 1.000 1.000 1.000 1.000 1.000 0.996 1.000 0.990 0.767
0.01 1.000 1.000 1.000 1.000 1.000 0.985 1.000 0.965 0.604
0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

In this Monte Carlo simulation, MQ regression is fitted by using the Huber influence func-
tion with ¢ = 100 and the maximum likelihood estimator for the scale (18) under the ALI
distribution. The use of a large value for the tuning constant is justified by the normality of the
simulated data. Table 2 reports the results of the simulation experiment. The table shows the
values of the intracluster correlation, r = 02/(02 + o?), the Type I error and the power of
the proposed test statistic for « = 0.01, 0.05, 0.10. To start with, we note that under the null
hypothesis, the Type I error is very close to the nominal value of . As the value of o2 increases,
the power of the test increases too. The power increases more sharply for larger within cluster
sample sizes. The number of clusters also seems to impact on the power of the test. The power
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Table 2. Type I error and power of the proposed test statistic for clustering under Gaussian distribution with r varying
between 0 and 0.6, « = 0.10, 0.05, 0.01, d = 8, 20, 100 and n; =5, 20, 50.

o d=38 d =20 d =100

n;=5 n; =20 n; =5 n;=5 n;=20 n; =5 n;=5 n;, =20 n; =50

r=0
0.10 0.114 0.085 0.103 0.141 0.104 0.099 0.120 0.089 0.103
0.05 0.062 0.035 0.048 0.075 0.059 0.047 0.060 0.036 0.042
0.01 0.008 0.007 0.014 0.015 0.012 0.008 0.018 0.009 0.009
r=0.16
0.10 0.413 0910 0.991 0.702 0.999 1.000 0.983 1.000 1.000
0.05 0.213 0.875 0.985 0.565 0.998 1.000 0.969 1.000 1.000
0.01 0.118 0.765 0.971 0.325 0.992 1.000 0.906 1.000 1.000
r=0.33
0.10 0.707 0.983 0.998 0.954 1.000 1.000 1.000 1.000 1.000
0.05 0.572 0.981 0.998 0.904 1.000 1.000 1.000 1.000 1.000
0.01 0.330 0.955 0.995 0.763 1.000 1.000 1.000 1.000 1.000
r =0.60
0.10 0.933 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000
0.05 0.881 0.999 1.000 0.998 1.000 1.000 1.000 1.000 1.000
0.01 0.720 0.995 1.000 0.989 1.000 1.000 1.000 1.000 1.000

of the test increases fairly sharply when we have a larger number of clusters even if each cluster
consists of a small number of units.

Under the null hypothesis, we have also computed the empirical expected value and variance
of the test statistic. We expect that, under the Xfi—l asymptotic approximation, the expected
value of the test statistic will be equal to d — 1 and the variance equal to 2 X (d — 1). These
expectations are confirmed by the simulation results.

Finally, we have run a simulation where the individual effects are generated according to ¢-
student with 3 degrees of freedom and the MQ regression is fitted by using the Huber influence
function with ¢ = 1.345. Also, in this case, under the null hypothesis, the Type I error is very
close to the nominal value of o, and the power of the test increases as the value of 02 increases.
The detailed results are available to the interested reader from the authors.

The test can be used in the SAE framework to detect the presence of area effects. If the test
rejects Hy, it means that there is unobserved heterogeneity between areas and predictor (11)
can be used to estimate the small area mean. Otherwise, if H is not rejected, the synthetic
estimator is preferred for predicting the small area quantity, because, in the case of absence of
unobserved heterogeneity between areas, it guarantees less variability and bias than estimator
(11). To evaluate the performance of the synthetic predictor and the MQ predictor (11), the
absolute relative bias (ARB) and the relative root mean squared error (RRMSE) of estimates
of the mean value in each small area are computed. Table 3 reports the average values over
areas of these indices for n; = 5,20, 50 and d = 100. The results for d = 8 and d =
20 are not reported because these are very similar to those for d = 100 but are available
from from the authors upon request. Table 3 shows that the average ARB and RRMSE of the
synthetic predictor increase as the intracluster correlation increases. The average values of ARB
and RRMSE for estimator (11) remain constant at different values of r given the sample size.
From the results in Table 3, it is apparent that when the assumption of significant between-area
heterogeneity is not rejected, the synthetic estimator offers the best performance. On the other
hand, as soon as the intracluster correlation increases, the predictor (11) performs best. Thus,
the LR-type test for the presence of clustering can drive the choice of the MQ predictor in SAE.
The increase in the RRMSE when unnecessarily incorporating the area effect into prediction
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has been documented by other authors (Datta et al., 2011). Our work extends these results to
the case of SAE based on MQ regression.

8 Application

In this section, we use a dataset well-known in the SAE literature for illustrating how the
proposed model fit, selection and diagnostic criteria work in a finite population context. Battese
et al. (1988) analyse survey and satellite data for corn and soybean production for 12 counties
in North Central Iowa. The dataset comes from the June 1978 Enumerative Survey, it consists
of 37 observations and it includes information on the number of segments in each county, the
number of hectares of corn and soybeans for each sample segment, the number of pixels clas-
sified by the LANDSAT satellite as corn and soybeans for each sample segment and the mean
number of pixels per segment in each county classified as corn and soybeans. These data were
used by Battese et al. (1988) to predict the hectares of corn and soybean by county. We use
this dataset to compute the tuning constant ¢ (Huber loss function is going to be adopted) and
the R? goodness-of-fit measure and to perform the LR-type test for specifying the explanatory
variables to be included in MQ regression. Note that county-specific random effects were intro-
duced by Battese et al. (1988) to improve prediction, so we apply the LR-type test proposed in
Section 6 to test whether there is significant between-county variation in the MQ coefficients,
something that would justify the inclusion of county-specific MQs.

The response variables are y, the number of hectares of corn, and y;, the number of hectares
of soybeans. The models for the two variables are independent and include two fixed effects,
x1 and x;, that represent the number of pixels classified by the LANDSAT satellite as corn
and soybeans, respectively, for each sample segment. Battese et al. (1988) use the following
two-level linear mixed model where i denotes the counties and j denotes the segments.

Yhij = Bo + Bixiij + Baxaij +u; +epij, h=1,2.

A random effect u; is specified at the county level. This model will be used for benchmarking
our results. Diagnostic for this model is reported in other papers (e.g. Sinha & Rao, 2009).

Table 3. Values of the average absolute relative bias (ARB) and average relative
root mean squared error (RRMSE) over small areas for synthetic and (11) pre-
dictors under Gaussian distribution with r varying between 0 and 0.6, d = 100
andn; =5, 20, 50. Values are expressed as percentages.

Predictor n; =5 n; =20 n; =50
ARB RRMSE ARB RRMSE ARB RRMSE
r=20
e 11.07  13.62 5.66 7.04 3.55 4.45
mMe/SYN 139 1.74 0.99 1.24 0.86 1.08

~.

r =20.16

e 1063 1325 544 682 345 433

myC/SYN 141 1429 1120 1402 1084 1358
r =033

e 1054 1320 560 710 373 487

mife/SYN 1796 2250 17.67 2213 17.12 2144
r =0.60

e 11.71 15.10 7.17 10.40 5.46 8.91

mMe/SYN 3107 3892 3059 3831  29.65  37.13

J
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They indicate that for the soybean model normality of u and e approximately holds. This is
confirmed by a Shapiro—Wilk normality test, which does not reject the null hypothesis that the
residuals follow a normal distribution (p-values: level 1=0.8583, level 2=0.2929). For the
corn variable, on the other hand, there is an influential outlier in the Hardin county. Despite this,
the null hypothesis of the Shapiro—Wilk test is not rejected (p-values: level 1=0.9987, level
2=0.1704).

We present results for MQ regression at t = 0.05, 0.10, 0.25, 0.5, 0.75, 0.90, 0.95. We
further compare our results at ¢ = 0.5 to model diagnostics from the linear mixed model
used by Battese et al. (1988). For the analysis of the corn outcome, the estimate of the tuning
constant ¢ using the GALI pseudo-likelihood at 7 = 0.5 is equal to 1.94, a relatively low value,
consistent with the presence of the outlier identified in diagnostic analysis. For the soybean
variable, the tuning constant ¢ estimate at T = 0.5 is 7.85. This value suggests that there are no
issues with contamination. Using ¢ = 1.345 or the value we chose for corn in this case would
increase the robustness unnecessarily at the cost of lower efficiency. Similar conclusions hold
for other values of <.

Estimates of the scale parameter o, obtained with the GALI-based method are shown in
Figure 3. We note that these are sensitive to the MQ being considered and exhibit an inverted u-
shape: for quantiles far from 0.5, the proportion of residuals for which |u| > c¢ is larger, and this
proportion reduces their average size. For t close to 0.5, estimates are close to those obtained
using the MAD estimator (9). On the contrary, MAD estimates are larger for quantiles far from
0.5 compared with those obtained in the central part of the distribution. This can be due to the
fact that the scaling constant g in (9) should be quantile-adjusted. Looking at the R?> model fit
criterion, the R? increases as T increases for the corn outcome (Figure 3(b) solid line). For the
soybean outcome, there appears to be an almost constant high value of R? at all values of ©
(Figure 3 (b) dashed line). Overall, for both outcomes, there appears to be a moderate to strong
linear relationship between the outcome and the explanatory variables at the different values of
T.

The LR-type tests results for the corn outcome are presented in Table 4 and for the soybean
outcome in Table 5. The use of the LR-type test is justified by the simulation results obtained
in Section 7.2, according to which this type of test should be preferred to the Wald type test
in case of normality, when limited sample size is available and inference has to be made on
extreme quantiles. When testing jointly the significance of x; and x;, the tests suggest that these
covariates are significant for explaining the variability in both outcomes. For the corn outcome,
the tests show that after controlling for the number of pixels classified by the LANDSAT satel-
lite as corn (x;), the number of pixels classified by the LANDSAT satellite as soybean (x;) is
not significant. Similarly, for the soybean outcome, after controlling for the number of pixels
classified by the LANDSAT satellite as soybean (x,), the number of pixels classified by the
LANDSAT satellite as corn (x) is not significant. Hence, the model specification can be sim-
plified by dropping non-significant terms. The same conclusions can be obtained by using the
Wald type test. For validating these results at T = 0.5, we run the same analysis under the two-
level linear mixed model used by Battese ef al. (1988). For the corn outcome, after controlling
for x;, the p-value for including x; is equal to 0.6315 indicating that x, can be dropped from
the model. For the corn outcome, after controlling for x,, the p-value for including x; is equal
to 0.6049 indicating that x; can be dropped from the model.

We turn our attention to testing the significance of the between-county variability. The two
scatter plots in Figure 4 show the relationship between the predicted county random effects
computed with the mixed model and the MQ county coefficients computed with the MQ model
for the corn outcome (scatter plot (a)) and the soybean outcome (scatter plot (b)). For both
outcomes, the two measures of county effects are well-correlated. For testing the significance
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Figure 3. Plot (a) shows the values of the estimated scale at different value of t for corn (B) and soybean (X). Plot (b)
presents the R-squared, as defined in (21), at different value of T for corn (solid line) and soybean (dashed line).

Table 4. Likelihood ratio (LR)-type test for the model
specification of the corn outcome, Hy : (B1,82) = 0
and HO . Bz =0.

Hy:(B1,8) =0 Hy:B8,=0
T LR test p-value LRtest p-value
0.05 214 0.000 1.4 0.4935
0.10 23.8 0.000 0.3 0.8350
0.25 384 0.000 0.0 0.9996
0.50 68.3 0.000 0.4 0.7855
0.75 105.1 0.000 0.6 0.7376
0.90 97.1 0.000 0.1 0.9534
0.95 65.8 0.000 0.0 0.9959

Table 5. Likelihood ratio (LR)-type test for the model

specification of the soybean outcome, Hy : (B, B,) =
Oanng :ﬁl = 0.
Ho:(B1,B,) =0 Hy: =0
T LRtest p-value LR Test p-value
0.05 195.7 0.000 2.6 0.2696
0.10 146.6 0.000 1.2 0.5496
0.25 116.0 0.000 0.3 0.8557
0.50 91.8 0.000 0.0 0.9972
0.75 66.7 0.000 0.4 0.8129
0.90 61.9 0.000 1.2 0.5380
0.95 65.3 0.000 01.6 0.4532

International Statistical Review (2018), 0, 0, 1-30

© 2018 The Authors. International Statistical Review © 2018 International Statistical Institute.



24 A. BIANCHI ET AL.

Predicted random eff
0
1
Predicted random eff

T T T T
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
M-quantile coeff. M-quantile coeff.

Figure 4. Scatter plots for the relationship between the predicted county random effects (computed with the mixed model)
and the M-quantile county coefficients (computed with the M-quantile model) for the corn outcome (a) and for the soybean
outcome (b).

of the county MQ coefficients, we use the proposed LR-type test. For the corn outcome, the
value of the test statistic is 17.152, and the corresponding p-value= 0.103. For comparison
purposes, we have also conducted the hypothesis test for the presence of significant between-
county variation by using the linear mixed model. Under the null hypothesis 62 = 0, the test
statistic has an asymptotic distribution which is an equal mixture of a point mass at zero and a
x*-distribution with 1 degree of freedom, denoted 1/2y3 4+ 1/2y} (Self & Liang, 1987). This
type of test leads to a p-value equal to 0.5 thus suggesting that there is no presence of between-
county variation in agreement with the result of the test based on MQ. Alternatively, for testing
the null hypothesis of a zero between-county variation, we could compute the conditional-
Akaike Information Criterion (cAIC) value (Vaida & Blanchard, 2005) and compare this to the
AIC value for a linear regression model without random effects. The cAIC for the linear mixed
model is 327.5109, and the AIC for the linear regression model is 327.4116. This indicates that
the linear model without random effects fits almost and the more complex model that includes
random effects. Hence, random effects may not be needed in the analysis of the corn outcome.

For the soybean outcome, the value of the LR-type test based on MQ coefficients for the
presence of clustering is 26.791, and the corresponding p-value= 0.0049. As in the case of
the corn outcome, we have also conducted the hypothesis test for the presence of significant
between-county variation by using the linear mixed model. Under the null hypothesis 02 = 0
and using the Self & Liang (1987) testing procedure, the p-value of the LR-type test is 0.00127.
The cAIC for the linear mixed model is 311.8459, and the AIC for the linear regression model
is 333.8107. Overall, these results indicate that the linear model with county random effects fits
better than the simpler model that ignores the random effects.

9 Final Remarks

In this paper, we review the MQ regression model and its application to SAE. We also extend
the available toolkit for inference in MQ regression. For a given 7, we propose a pseudo-R?
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goodness-of-fit measure and LR and Wald type tests for testing linear hypotheses on the MQ
regression parameters.

The cluster-specific MQ coefficients are used for proposing a new test for the presence of
clustering in the data. The set of tests we present in the paper is useful in the SAE framework
to validate the MQ models used for prediction. For a large class of continuously differen-
tiable convex loss functions, we show the relationship between the loss function used in MQ
regression and the maximisation of a likelihood function formed by combining independently
distributed GALI densities. Using this parametrisation, we further propose an estimator of the
scale parameter and a data-driven tuning constant to be used in the loss function. For each test,
the asymptotic theory is developed, according to Gourieroux & Monfort (1989) and involving
recent work on inference by Bianchi & Salvati (2015).

The simulation results for studying the finite sample properties of the model-fit criteria and
the tests show that the Type I error of the LR-type test and the clustering test is very close to the
nominal level . For both tests, the results also indicate that the power tends to 1 as the values of
the regression coefficients and the intraclass correlation coefficient increase. In the simulation
experiments, we also investigate the behaviour of the method proposed for estimating the tuning
constant in the Huber loss function. The tuning constant derived by using the likelihood method
is able to reflect different levels of contamination in the data.

Despite the wide range of topics covered in this paper, some research problems remain open.
For example, our proposed toolkit assumes the sampling design to be non-informative. Devel-
oping the theory for model selection and diagnostics under informative sampling remains an
open research problem.

Moreover, the parametric representation of MQ regression developed in Section 4 could be
used for proposing an AIC or a Bayesian Information Criterion for model selection. Finally, the
pseudo-R? proposed in Section 5.1 could be an alternative method for estimating the optimal
tuning constant: this goodness-of-fit measure can be computed with different values of the
tuning constant to select the one that best fits the data. Both proposals are beyond the scope of
this paper, however, and are left for further research.
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Appendix A: Properties of the Asymmetric Least Informative

In this appendix, we provide some more properties for special case of the GALI distribution
when the p(-) is given by (2), that is the ALI we introduced in Section 4. Suppose that U
is a random variable with the standard ALI density (4, = 0,0, = 1), then its cumulative
distribution function is written as

=z, el + (1 - 1)} U< —c

B%{me—cz(l—t)+\/§[q>(u\/2(17—f) —@(—c/ﬁ)]} —c<u<0

F(u) =
(®) 2 Leaesy e 00 4+ /12 [cb(c,/z(l “0) - 1/2] n ﬁ[@(u\/%) - 1/2]} O<us<c
i ﬁe‘czt — ga-exp{—2tcu + CZT}} u>c

For obtaining the expected value and the variance of U, the moment generating function is
computed, and it can be written as

M () = B.pe(l— 1) +Z]exp{ c“(1—1)—ct}

+€XP{%}\/T of— _® —2c(l—1)—1t
B, (1-1) V2(1=1) V2(1—1)

t
2
exp{-} [w [ (20‘[—[) ( t )} 1 )
+ — || — | - — — ——————exp\—C°T + cty,
B, T V2t V2t B (1 —2c7) 4 }

for —2¢(1 — 1) <t < 2crt.
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The first moment then is

1—-271

1
2 2
sexp{—c (1 — 1)} + ———exp{—c't} + 2= 0B,

1
EU)= ———
) 4B.c2(1—1) 4B.c%t

and the variance is

U vani 4220 -0 | o142 17| @vV2D) - 03]
e —

Var(U) = E m +e 4¢373 + ) 73/2
| V7| @(ey20T—1) - 0.5]
+§ (1 _ .[)3/2

These formulae may be easily generalised to the location and scale case. They can be used to
obtain method of moments estimates of ¢ and o; to be used as initial values when minimizing
(15) when p(-) is the Huber loss function, in line with Yu & Zhang (2005). The computations
for obtaining the moment generating function, the expected value and the variance of U are not
reported in the paper, but they are available from the authors upon request.

Appendix B: Proof of Theorem 1

Using a second order Taylor expansion,

2V (1) = V(0)] = V(B — By) (We/or)/n (B, — Bo) + 0p(1). (B1)

where, by using (C4), ¥, = o, 'E(Y,)E(x; xl.T). Theorem 2.1 in Bianchi & Salvati (2015)
ensures that

V(B —B.) = W'Y yixi + 0,p(1). (B2)
i=1

Similarly, a standard mean value expansion (under H) gives

2 Z Yeixi =n~'? Z VeiXi — Wo/n(B, — By) +0,(1),

i=1 i=1

where Ve; = Y1 (8¢i/07), 82 = yi — x! B. Hence,

NACEEY BES Ve [— Y Vexi+ Yy vfn-xl} +0p(1). (B3)

i=1 i=1

Substituting (B2) and (B3) into (B1), we obtain
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T n
2V (1) = V()] = ( lfzzwnx,) (E@L)EixD)) ™ (n—‘/zzlﬁﬁx,-)mp(l).

i=1 i=1

Following Wooldridge (2010), we introduce the k x p full rank matrix R = [0 : I] and write
Hy as RB, = 0. Because R/n(B, — B,) = 0, it can be proved (multiplying Equation (B3) by
RV ) that

n
~ d
RY'n™123 " x; — N(0.RERT),
i=1

where
Ey2. -
R (B4)
Ewri
so that

n T n
(n 1/22%1-:(,-) v 'RT(RZRT) RY;' (n 1/2Z‘/fu'xi) — Xk

i=1 i=1
The previous expression can be simplified to
n T —1 n d
(n_l/zz%ixi) (EQWI)EMXxX])) (”_I/ZZWriXi) — Xi-
i=1 i=1
and therefore, we have that

Ey.,
AR

n T n
= (n—”zzlﬁﬂx,-) (EWX)E®xT)) ™ (n—l/zzx/?u-x,«) +0,(1) -5 13

i=1 i=1

2——1I
(B5)

Appendix C: Sketch of the proof of Equation (28)

Under the assumptions of the theorem, convergence of ; to 7; is verified by using stan-
dard Taylor linearisation techniques. For the asymptotic distribution of the test statistic, let

n; =X B, 1%} Bz, ¢
Q(T) = Z?:lZi#lp(yT) S(T) = {FZI 13‘(1 (yT)}j:;H(t) =

T B,
diag n‘—jZQ 2p (M)} andn = (ny,...,ng)7. Let Ag = diagf{a,} and By =

i=l1 Brf» o
diag{b;} with
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2
Pp (i —xG;Bs, 2 r 9B+
aj=E |:8_r]2 ( pu : |o.5 =0 "EY; E\x;; 311_] |0.5

2 2
dp yif—XiTjﬂf_' 22 ind
bj = E[g ( —— | los | =0T EV;E| X afj/ los ] -

Under Hj, a mean value expansion yields

0 =s(z) =5s(0.5) + v/n-(z —0.5) + 0,(1),

d
implying «/n- (£ —0.5) — N(0,A;'BoA; '), asn; — 400, j = 1,...,d, where - denotes
the Hadamard product.
Then,

0(0.5)— 0(3) = %(f — 057 H(>#)(E —0.5)

= JIVA- (& 09T Aglv - (2~ 0.5)] + 0, (1)

where 7 is a value between 7 and 0.5. Hence,

LBV . e a1 .
2[0005) = QD)5 = [Vn- (F — 09 [A7'BoAy '] [V- (Z —0.5)] +0,(1).
ij
Intuitively, for reasons of symmetry, if 7; = 0.5 for j = 1,...,d — 1, also 7y = 0.5 (as

the global minimiser is T = 0.5). The same relationship needs to hold for the corresponding
egtimators 7;’s. So the previous expression may be reparametrised leading to a Xfi—l asymptotic
distribution.
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