The Yagita invariant of symplectic groups of large rank

Cornelia M. Busch* Ian J. Leary[†]

April 25, 2019

Abstract

Fix a prime p, and let \mathcal{O} denote a subring of \mathbb{C} that is either integrally closed or contains a primitive pth root of 1. We determine the Yagita invariant at the prime p for the symplectic group $\operatorname{Sp}(2n,\mathcal{O})$ for all $n \geq p-1$.

1 Introduction

The Yagita invariant $p^{\circ}(G)$ of a discrete group G is an invariant that generalizes the period of the p-local Tate-Farrell cohomology of G, in the following sense: it is a numerical invariant defined for any G that is equal to the period when the p-local cohomology of G is periodic. Yagita considered finite groups [6], and Thomas extended the definition to groups of finite vcd [5]. In [3] the definition was extended to arbitrary groups and $p^{\circ}(G)$ was computed for $G = GL(n, \mathcal{O})$ for \mathcal{O} any integrally closed subring of \mathbb{C} and for sufficiently large n (depending on \mathcal{O}).

In [2], one of us computed the Yagita invariant for $\operatorname{Sp}(2(p+1),\mathbb{Z})$. Computations from [3] were used to provide an upper bound and computations with finite subgroups and with mapping class groups were used to provide a lower bound [4]. The action of the mapping class group of a surface upon the first homology of the surface gives a natural symplectic representation of the mapping class group of a genus p+1 surface inside $\operatorname{Sp}(2(p+1),\mathbb{Z})$. In the current paper, we compute $p^{\circ}(\operatorname{Sp}(2n,\mathcal{O}))$ for each $n \geq p-1$ for each \mathcal{O} for which $p^{\circ}(\operatorname{GL}(n,\mathcal{O}))$ was computed in [3]. By using a greater range of finite subgroups we avoid having to consider mapping class groups.

Throughout the paper, we fix a prime p. Before stating our main result we recall the definitions of the symplectic group Sp(2n, R) over a ring R, and of the Yagita invariant

 $^{^*}$ The first author acknowledges support from ETH Zürich, which facilitated this work

 $^{^{\}dagger}$ The second author would like to thank the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the programme Non-positive Curvature, Group Actions and Cohomology, when work on this paper was undertaken. This work was supported by EPSRC grant no. EP/K032208/1 and by a grant from the Leverhulme Trust.

 $p^{\circ}(G)$, which depends on the prime p as well as on the group G. The group $\operatorname{Sp}(2n,R)$ is the collection of invertible $2n \times 2n$ matrices M over R such that

$$M^{\mathrm{T}}JM = J$$
, where $J := \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$.

Here M^{T} denotes the transpose of the matrix M, and as usual I_n denotes the $n \times n$ identity matrix. Equivalently $M \in \mathrm{Sp}(2n,R)$ if M defines an isometry of the antisymmetric bilinear form on R^{2n} defined by $\langle x,y \rangle := x^{\mathrm{T}}Jy$. If C is cyclic of order p, then the group cohomology ring $H^*(C;\mathbb{Z})$ has the form

$$H^*(C; \mathbb{Z}) \cong \mathbb{Z}[x]/(px), \quad x \in H^2(C; \mathbb{Z}).$$

If C is a cyclic subgroup of G of order p, define n(C) a positive integer or infinity to be the supremum of the integers n such that the image of $H^*(G; \mathbb{Z}) \to H^*(C; \mathbb{Z})$ is contained in the subring $\mathbb{Z}[x^n]$. Now define

$$p^{\circ}(G) := \text{lcm}\{2n(C) : C \le G, |C| = p\}.$$

It is easy to see that if $H \leq G$ then $p^{\circ}(H)$ divides $p^{\circ}(G)$ [3, Prop. 1].

2 Results

In the following theorem statement and throughout the paper we let ζ_p be a primitive pth root of 1 in \mathbb{C} and we let \mathcal{O} denote a subring of \mathbb{C} with $F \subseteq \mathbb{C}$ as its field of fractions. We assume that either $\zeta_p \in \mathcal{O}$ or that \mathcal{O} is integrally closed in \mathbb{C} . We define $l := |F[\zeta_p] : F|$, the degree of $F[\zeta_p]$ as an extension of F. For $t \in \mathbb{R}$ with $t \geq 1$, we define $\psi(t)$ to be the largest integer power of p less than or equal to t.

Theorem 1. With notation as above, for each $n \ge p-1$, the Yagita invariant $p^{\circ}(\operatorname{Sp}(2n, \mathcal{O}))$ is equal to $2(p-1)\psi(2n/l)$ for l even and equal to $2(p-1)\psi(n/l)$ for l odd.

By the main result of [3], the above is equivalent to the statement that $p^{\circ}(\operatorname{Sp}(2n, \mathcal{O})) = p^{\circ}(\operatorname{GL}(2n, \mathcal{O}))$ when l is even and $p^{\circ}(\operatorname{Sp}(2n, \mathcal{O})) = p^{\circ}(\operatorname{GL}(n, \mathcal{O}))$ when l is odd. By definition $\operatorname{Sp}(2n, \mathcal{O})$ is a subgroup of $\operatorname{GL}(2n, \mathcal{O})$ and there is an inclusion $\operatorname{GL}(n, \mathcal{O}) \to \operatorname{Sp}(2n, \mathcal{O})$ defined by

$$A \mapsto \begin{pmatrix} A & 0 \\ 0 & (A^{\mathrm{T}})^{-1} \end{pmatrix},$$

and so for any n, $p^{\circ}(GL(n, \mathcal{O}))$ divides $p^{\circ}(Sp(2n, \mathcal{O}))$, which in turn divides $p^{\circ}(GL(2n, \mathcal{O}))$. Before we start, we recall two standard facts concerning symplectic matrices that will be used in the proof of Corollary 3: if M is in the symplectic group then $\det(M) = 1$ and M is conjugate to the inverse of its transpose $(M^{-1})^{\mathrm{T}} = (M^{\mathrm{T}})^{-1}$. We shall use the notation \mathbb{F}_p^{\times} to denote the multiplicative group of units in the field \mathbb{F}_p . **Proposition 2.** Let f(X) be a polynomial over the field \mathbb{F}_p and suppose that 0 is not a root of f but that f factors as a product of linear polynomials over \mathbb{F}_p . If there is a polynomial g and an integer n so that $f(X) = g(X^n)$, then n has the form $n = mp^q$ for some m dividing p-1 and some integer $q \geq 0$. If p is odd and for each $i \in \mathbb{F}_p^{\times}$, the multiplicity of i as a root of f is equal to that of -i, then m is even.

Proof. The only part of this that is not contained in [3, Prop. 6] is the final statement. Since $(1-iX)(1+iX)=1-i^2X^2$ is a polynomial in X^2 , the final statement follows. For the benefit of the reader, we sketch the rest of the proof. If $n=mp^q$ where p does not divide m, then $g(X^n)=g(X^m)^{p^q}$, so we may assume that q=0. If g(Y)=0 has roots y_i , then the roots of $g(X^m)=0$ are the roots of $y_i-X^m=0$. Since p does not divide m, these polynomials have no repeated roots; since their roots are assumed to lie in \mathbb{F}_p it is now easy to show that m divides p-1.

Corollary 3. With notation as in Theorem 1, let G be a subgroup of Sp(2n, F). Then the Yagita invariant $p^{\circ}(G)$ divides the number given for $p^{\circ}(Sp(2n, \mathcal{O}))$ in the statement of Theorem 1.

Proof. As in [3, Cor. 7], for each $C \leq G$ of order p, we use the total Chern class to give an upper bound for the number n(C) occurring in the definition of $p^{\circ}(G)$. If C is cyclic of order p, then C has p distinct irreducible complex representations, each 1-dimensional. If we write $H^*(C;\mathbb{Z}) = \mathbb{Z}[x]/(px)$, then the total Chern classes of these representations are 1+ix for each $i \in \mathbb{F}_p$, where i = 0 corresponds to the trivial representation. The total Chern class of a direct sum of representations is the product of the total Chern classes, and so when viewed as a polynomial in $\mathbb{F}_p[x] = H^*(C; \mathbb{Z}) \otimes \mathbb{F}_p$, the total Chern class of any faithful representation $\rho: C \to \mathrm{GL}(2n,\mathbb{C})$ is a non-constant polynomial of degree at most 2n all of whose roots lie in \mathbb{F}_p^{\times} . Now let F be a subfield of \mathbb{C} with $l = |F[\zeta_p]: F|$ as in the statement. The group C has (p-1)/l non-trivial irreducible representations over F, each of dimension l, and the total Chern classes of these representations have the form $1-ix^l$, where i ranges over the (p-1)/ldistinct lth roots of unity in \mathbb{F}_p . In particular, the total Chern class of any representation $\rho: C \to \mathrm{GL}(2n, F) \leq \mathrm{GL}(2n, \mathbb{C})$ is a polynomial in x^l whose x-degree is at most 2n. If ρ has image contained in $\operatorname{Sp}(2n,\mathbb{C})$, then it factors as $\rho = \iota \circ \widetilde{\rho}$ with $\widetilde{\rho}: C \to \operatorname{Sp}(2n,\mathbb{C})$ and ι is the inclusion of $\mathrm{Sp}(2n,\mathbb{C})$ in $\mathrm{GL}(2n,\mathbb{C})$. In this case the matrix representing a generator for C is conjugate to the transpose of its own inverse; in particular it follows that the multiplicities of the irreducible complex representations of C with total Chern classes 1+ix and 1-ix must be equal for each i. Hence in this case, if p is odd, the total Chern class of the representation $\rho = \iota \circ \widetilde{\rho}$ is a polynomial in x^2 . If p = 2 (which implies that l = 1) then the total Chern class of any representation $\rho: C \to \mathrm{GL}(2n,\mathbb{C})$ has the form $(1+x)^i$, where i is equal to the number of non-trivial irreducible summands. Since $\mathrm{Sp}(2n,\mathbb{C}) \leq \mathrm{SL}(2n,\mathbb{C})$ it follows that for symplectic representations i must be even, and so, for p=2 the total Chern class is a polynomial in x^2 .

In summary, let $\tilde{\rho}$ be a faithful representation of C in $\operatorname{Sp}(2n, F)$. In the case when l is odd, then the total Chern class of $\tilde{\rho}$ is a non-constant polynomial $\tilde{f}(y) = f(x)$ in $y = x^{2l}$ such that f(x) has degree at most 2n, $\tilde{f}(y)$ has degree at most n/l, and all roots of f, \tilde{f} lie

in \mathbb{F}_p^{\times} . In the case when l is even, the total Chern class of ρ is a non-constant polynomial $\tilde{f}(y) = f(x)$ in $y = x^l$ such that f(x) has degree at most 2n, $\tilde{f}(y)$ has degree at most 2n/l, and all roots of both lie in \mathbb{F}_p^{\times} . By Proposition 2, it follows that each n(C) is a factor of the number given for $p^{\circ}(\operatorname{Sp}(2n, \mathcal{O}))$, and hence the claim.

Lemma 4. Let $H \leq G$ with |G:H| = m, and let ρ be a symplectic representation of H on $V = \mathcal{O}^{2n}$. The induced representation $\operatorname{Ind}_H^G(\rho)$ is a symplectic representation of G on $W := \mathcal{O}G \otimes_{\mathcal{O}H} V \cong \mathcal{O}^{2mn}$.

Proof. Let $e_1, \ldots, e_n, f_1, \ldots, f_n$ be the standard basis for $V = \mathcal{O}^{2n}$, so that the bilinear form $\langle v, w \rangle := v^T J w$ on V is given by

$$\langle e_i, e_j \rangle = 0 = \langle f_i, f_j \rangle, \quad \langle e_i, f_j \rangle = -\langle f_i, e_j \rangle = \delta_{ij}.$$

The representation ρ is symplectic if and only if each $\rho(h)$ preserves this bilinear form.

Let t_1, \ldots, t_m be a left transversal to H in G, so that $\mathcal{O}G = \bigoplus_{i=1}^m t_i \mathcal{O}H$ as right $\mathcal{O}H$ modules. Define a bilinear form $\langle \ , \ \rangle_W$ on W by

$$\left\langle \sum_{i=1}^m t_i \otimes v^i, \sum_{i=1}^m t_i \otimes w^i \right\rangle_W := \sum_{i=1}^m \langle v^i, w^i \rangle.$$

To see that this bilinear form is preserved by the $\mathcal{O}G$ -action on W, fix $g \in G$ and define a permutation π of $\{1, \ldots, m\}$ and elements $h_1, \ldots, h_m \in H$ by the equations $gt_i = t_{\pi(i)}h_i$. Now for each i, j with $1 \leq i, j \leq m$

$$\langle \operatorname{Ind}(\rho(g))t_{i} \otimes v, \operatorname{Ind}(\rho(g))t_{j} \otimes w \rangle_{W} = \langle t_{\pi(i)} \otimes \rho(h_{i})v, t_{\pi(j)} \otimes \rho(h_{j})w \rangle_{W}$$

$$= \delta_{\pi(i)\pi(j)} \langle \rho(h_{i})v, \rho(h_{j})w \rangle$$

$$= \delta_{ij} \langle \rho(h_{i})v, \rho(h_{i})w \rangle$$

$$= \delta_{ij} \langle v, w \rangle$$

$$= \langle t_{i} \otimes v, t_{j} \otimes w \rangle_{W}.$$

To see that \langle , \rangle_W is symplectic, define basis elements $E_1, \ldots, E_{mn}, F_1, \ldots, F_{mn}$ for W by the equations

$$E_{n(i-1)+j} := t_i \otimes e_j$$
, and $F_{n(i-1)+j} := t_i \otimes f_j$, for $1 \le i \le m$, $1 \le j \le n$.

It is easily checked that for $1 \le i, j \le mn$

$$\langle E_i, E_j \rangle_W = 0 = \langle F_i, F_j \rangle_W, \quad \langle E_i, F_j \rangle_W = -\langle F_i, E_j \rangle_W = \delta_{ij}$$

and so with respect to this basis for W, the bilinear form \langle , \rangle_W is the standard symplectic form.

Proposition 5. With notation as in Theorem 1, the Yagita invariant $p^{\circ}(\operatorname{Sp}(2n, \mathcal{O}))$ is divisible by the number given in the statement of Theorem 1.

Proof. To give lower bounds for $p^{\circ}(\operatorname{Sp}(2n,\mathcal{O}))$ we use finite subgroups. Firstly, consider the semidirect product $H = C_p \rtimes C_{p-1}$, where C_{p-1} acts faithfully on C_p ; equivalently this is the group of affine transformations of the line over \mathbb{F}_p . It is well known that the image of $H^*(G;\mathbb{Z})$ inside $H^*(C_p;\mathbb{Z}) \cong \mathbb{Z}[x]/(px)$ is the subring generated by x^{p-1} . It follows that 2(p-1) divides $p^{\circ}(G)$ for any G containing H as a subgroup. The group H has a faithful permutation action on p points, and hence a faithful representation in $\operatorname{GL}(p-1,\mathbb{Z})$, where \mathbb{Z}^{p-1} is identified with the kernel of the H-equivariant map $\mathbb{Z}\{1,\ldots,p\} \to \mathbb{Z}$. Since $\operatorname{GL}(p-1,\mathbb{Z})$ embeds in $\operatorname{Sp}(2(p-1),\mathbb{Z})$ we deduce that H embeds in $\operatorname{Sp}(2n,\mathcal{O})$ for each \mathcal{O} and for each $n \geq p-1$.

To give a lower bound for the p-part of $p^{\circ}(\operatorname{Sp}(2n,\mathcal{O}))$ we use the extraspecial p-groups. For p odd, let E(p,1) be the non-abelian p-group of order p^3 and exponent p, and let E(2,1) be the dihedral group of order 8. (Equivalently in each case E(p,1) is the Sylow p-subgroup of $\operatorname{GL}(3,\mathbb{F}_p)$.) For $m\geq 2$, let E(p,m) denote the central product of m copies of E(p,1), so that E(p,m) is one of the two extraspecial groups of order p^{2m+1} . Yagita showed that $p^{\circ}(E(p,m))=2p^m$ for each m and p [6]. The centre and commutator subgroup of E(p,m) are equal and have order p, and the abelianization of E(p,m) is isomorphic to C_p^{2m} . The irreducible complex representations of E(p,m) are well understood: there are p^{2m} distinct 1-dimensional irreducibles, each of which restricts to the centre as the trivial representation, and there are p-1 faithful representations of dimension p^m , each of which restricts to the centre as the sum of p^m copies of a single (non-trivial) irreducible representation of C_p . The group G=E(p,m) contains a subgroup H isomorphic to C_p^{m+1} , and each of its faithful p^m -dimensional representations can be obtained by inducing up a 1-dimensional representation $H \to C_p \to \operatorname{GL}(1,\mathbb{C})$.

According to Bürgisser, C_p embeds in $\operatorname{Sp}(2l,\mathcal{O})$ (resp. in $\operatorname{Sp}(l,\mathcal{O})$ when l is even) provided that \mathcal{O} is integrally closed in \mathbb{C} [1]. Here as usual, $l := |F[\zeta_p], F|$ and F is the field of fractions of \mathcal{O} . If instead $\zeta_p \in \mathcal{O}$, then l = 1 and clearly C_p embeds in $\operatorname{GL}(1,\mathcal{O})$ and hence also in $\operatorname{Sp}(2,\mathcal{O}) = \operatorname{Sp}(2l,\mathcal{O})$. Taking this embedding of C_p and composing it with any homomorphism $H \to C_p$ we get a symplectic representation ρ of H on \mathcal{O}^{2l} for any l (resp. on \mathcal{O}^l for l even). For a suitable homomorphism we know that $\operatorname{Ind}_H^G(\rho)$ is a faithful representation of G on \mathcal{O}^{2lp^m} (resp. on \mathcal{O}^{lp^m} for l even) and by Lemma 4 we see that $\operatorname{Ind}_H^G(\rho)$ is symplectic. Hence we see that E(m,p) embeds as a subgroup of $\operatorname{Sp}(2lp^m,\mathcal{O})$ for any l and as a subgroup of $\operatorname{Sp}(lp^m,\mathcal{O})$ in the case when l is even. Since $p^{\circ}(E(m,p)) = 2p^m$, this shows that $2p^m$ divides $p^{\circ}(\operatorname{Sp}(2lp^m,\mathcal{O}))$ always and that $2p^m$ divides $p^{\circ}(\operatorname{Sp}(lp^m,\mathcal{O}))$ in the case when l is even.

Corollary 3 and Proposition 5 together complete the proof of Theorem 1.

We finish by pointing out that we have not computed $p^{\circ}(\operatorname{Sp}(2n, \mathcal{O}))$ for general \mathcal{O} when n < p-1; to do this one would have to know which metacyclic groups $C_p \rtimes C_k$ with k coprime to p admit low-dimensional symplectic representations.

References

- [1] B. Bürgisser, Elements of finite order in symplectic groups. Arch. Math. (Basel) **39** (1982), no. 6, 501–509.
- [2] C. M. Busch, The Yagita invariant of some symplectic groups. Mediterr. J. Math. 10 (2013), no. 1, 137–146.
- [3] H. H. Glover, I. J. Leary, and C. B. Thomas, *The Yagita Invariant of general linear groups*. Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guíxols, 1994), Progr. Math. **136** (1996), 185–192.
- [4] H. H. Glover, G. Mislin, and Y. Xia, On the Yagita invariant of mapping class groups. Topology **33** (1994), no. 3, 557–574.
- [5] C. B. Thomas, Free actions by p-groups on products of spheres and Yagita's invariant po(G). Transformation groups (Osaka, 1987), Lecture Notes in Math. 1375 (1989), 326–338.
- [6] N. Yagita, On the dimension of spheres whose product admits a free action by a non-abelian group. Quart. J. Math. Oxford Ser. (2) **36** (1985), no. 141, 117–127.

Authors' addresses:

cornelia.busch@math.ethz.ch

Department of Mathematics

ETH Zürich

Rämistrasse 101

8092 Zürich

Switzerland

i.j.leary@soton.ac.uk

School of Mathematical Sciences

University of Southampton

Southampton

SO17 1BJ

United Kingdom