The Yagita invariant of symplectic groups of large rank

Cornelia M. Busch* Ian J. Leary ${ }^{\dagger}$

April 25, 2019

Abstract

Fix a prime p, and let \mathcal{O} denote a subring of \mathbb{C} that is either integrally closed or contains a primitive p th root of 1 . We determine the Yagita invariant at the prime p for the symplectic group $\operatorname{Sp}(2 n, \mathcal{O})$ for all $n \geq p-1$.

1 Introduction

The Yagita invariant $p^{\circ}(G)$ of a discrete group G is an invariant that generalizes the period of the p-local Tate-Farrell cohomology of G, in the following sense: it is a numerical invariant defined for any G that is equal to the period when the p-local cohomology of G is periodic. Yagita considered finite groups [6], and Thomas extended the definition to groups of finite vcd [5]. In [3] the definition was extended to arbitrary groups and $p^{\circ}(G)$ was computed for $G=\operatorname{GL}(n, \mathcal{O})$ for \mathcal{O} any integrally closed subring of \mathbb{C} and for sufficiently large n (depending on \mathcal{O}).

In [2], one of us computed the Yagita invariant for $\operatorname{Sp}(2(p+1), \mathbb{Z})$. Computations from [3] were used to provide an upper bound and computations with finite subgroups and with mapping class groups were used to provide a lower bound [4]. The action of the mapping class group of a surface upon the first homology of the surface gives a natural symplectic representation of the mapping class group of a genus $p+1$ surface inside $\operatorname{Sp}(2(p+1), \mathbb{Z})$. In the current paper, we compute $p^{\circ}(\operatorname{Sp}(2 n, \mathcal{O}))$ for each $n \geq p-1$ for each \mathcal{O} for which $p^{\circ}(\mathrm{GL}(n, \mathcal{O}))$ was computed in [3]. By using a greater range of finite subgroups we avoid having to consider mapping class groups.

Throughout the paper, we fix a prime p. Before stating our main result we recall the definitions of the symplectic group $\operatorname{Sp}(2 n, R)$ over a ring R, and of the Yagita invariant

[^0]$p^{\circ}(G)$, which depends on the prime p as well as on the group G. The group $\operatorname{Sp}(2 n, R)$ is the collection of invertible $2 n \times 2 n$ matrices M over R such that
\[

M^{\mathrm{T}} J M=J, where J:=\left($$
\begin{array}{rr}
0 & I_{n} \\
-I_{n} & 0
\end{array}
$$\right) .
\]

Here M^{T} denotes the transpose of the matrix M, and as usual I_{n} denotes the $n \times n$ identity matrix. Equivalently $M \in \operatorname{Sp}(2 n, R)$ if M defines an isometry of the antisymmetric bilinear form on $R^{2 n}$ defined by $\langle x, y\rangle:=x^{\mathrm{T}} J y$. If C is cyclic of order p, then the group cohomology ring $H^{*}(C ; \mathbb{Z})$ has the form

$$
H^{*}(C ; \mathbb{Z}) \cong \mathbb{Z}[x] /(p x), \quad x \in H^{2}(C ; \mathbb{Z})
$$

If C is a cyclic subgroup of G of order p, define $n(C)$ a positive integer or infinity to be the supremum of the integers n such that the image of $H^{*}(G ; \mathbb{Z}) \rightarrow H^{*}(C ; \mathbb{Z})$ is contained in the subring $\mathbb{Z}\left[x^{n}\right]$. Now define

$$
p^{\circ}(G):=\operatorname{lcm}\{2 n(C): C \leq G,|C|=p\} .
$$

It is easy to see that if $H \leq G$ then $p^{\circ}(H)$ divides $p^{\circ}(G)$ [3, Prop. 1].

2 Results

In the following theorem statement and throughout the paper we let ζ_{p} be a primitive p th root of 1 in \mathbb{C} and we let \mathcal{O} denote a subring of \mathbb{C} with $F \subseteq \mathbb{C}$ as its field of fractions. We assume that either $\zeta_{p} \in \mathcal{O}$ or that \mathcal{O} is integrally closed in \mathbb{C}. We define $l:=\left|F\left[\zeta_{p}\right]: F\right|$, the degree of $F\left[\zeta_{p}\right]$ as an extension of F. For $t \in \mathbb{R}$ with $t \geq 1$, we define $\psi(t)$ to be the largest integer power of p less than or equal to t.

Theorem 1. With notation as above, for each $n \geq p-1$, the Yagita invariant $p^{\circ}(\operatorname{Sp}(2 n, \mathcal{O}))$ is equal to $2(p-1) \psi(2 n / l)$ for l even and equal to $2(p-1) \psi(n / l)$ for l odd.

By the main result of [3], the above is equivalent to the statement that $p^{\circ}(\operatorname{Sp}(2 n, \mathcal{O}))=$ $p^{\circ}(\operatorname{GL}(2 n, \mathcal{O}))$ when l is even and $p^{\circ}(\operatorname{Sp}(2 n, \mathcal{O}))=p^{\circ}(\operatorname{GL}(n, \mathcal{O}))$ when l is odd. By definition $\operatorname{Sp}(2 n, \mathcal{O})$ is a subgroup of $\operatorname{GL}(2 n, \mathcal{O})$ and there is an inclusion $\operatorname{GL}(n, \mathcal{O}) \rightarrow \operatorname{Sp}(2 n, \mathcal{O})$ defined by

$$
A \mapsto\left(\begin{array}{cc}
A & 0 \\
0 & \left(A^{\mathrm{T}}\right)^{-1}
\end{array}\right),
$$

and so for any $n, p^{\circ}(\mathrm{GL}(n, \mathcal{O}))$ divides $p^{\circ}(\operatorname{Sp}(2 n, \mathcal{O}))$, which in turn divides $p^{\circ}(\mathrm{GL}(2 n, \mathcal{O}))$.
Before we start, we recall two standard facts concerning symplectic matrices that will be used in the proof of Corollary 3: if M is in the symplectic group then $\operatorname{det}(M)=1$ and M is conjugate to the inverse of its transpose $\left(M^{-1}\right)^{\mathrm{T}}=\left(M^{\mathrm{T}}\right)^{-1}$. We shall use the notation \mathbb{F}_{p}^{\times} to denote the multiplicative group of units in the field \mathbb{F}_{p}.

Proposition 2. Let $f(X)$ be a polynomial over the field \mathbb{F}_{p} and suppose that 0 is not a root of f but that f factors as a product of linear polynomials over \mathbb{F}_{p}. If there is a polynomial g and an integer n so that $f(X)=g\left(X^{n}\right)$, then n has the form $n=m p^{q}$ for some m dividing $p-1$ and some integer $q \geq 0$. If p is odd and for each $i \in \mathbb{F}_{p}^{\times}$, the multiplicity of i as a root of f is equal to that of $-i$, then m is even.

Proof. The only part of this that is not contained in [3, Prop. 6] is the final statement. Since $(1-i X)(1+i X)=1-i^{2} X^{2}$ is a polynomial in X^{2}, the final statement follows. For the benefit of the reader, we sketch the rest of the proof. If $n=m p^{q}$ where p does not divide m, then $g\left(X^{n}\right)=g\left(X^{m}\right)^{p^{q}}$, so we may assume that $q=0$. If $g(Y)=0$ has roots y_{i}, then the roots of $g\left(X^{m}\right)=0$ are the roots of $y_{i}-X^{m}=0$. Since p does not divide m, these polynomials have no repeated roots; since their roots are assumed to lie in \mathbb{F}_{p} it is now easy to show that m divides $p-1$.

Corollary 3. With notation as in Theorem 1, let G be a subgroup of $\operatorname{Sp}(2 n, F)$. Then the Yagita invariant $p^{\circ}(G)$ divides the number given for $p^{\circ}(\operatorname{Sp}(2 n, \mathcal{O}))$ in the statement of Theorem 1.

Proof. As in [3, Cor. 7], for each $C \leq G$ of order p, we use the total Chern class to give an upper bound for the number $n(C)$ occurring in the definition of $p^{\circ}(G)$. If C is cyclic of order p, then C has p distinct irreducible complex representations, each 1-dimensional. If we write $H^{*}(C ; \mathbb{Z})=\mathbb{Z}[x] /(p x)$, then the total Chern classes of these representations are $1+i x$ for each $i \in \mathbb{F}_{p}$, where $i=0$ corresponds to the trivial representation. The total Chern class of a direct sum of representations is the product of the total Chern classes, and so when viewed as a polynomial in $\mathbb{F}_{p}[x]=H^{*}(C ; \mathbb{Z}) \otimes \mathbb{F}_{p}$, the total Chern class of any faithful representation $\rho: C \rightarrow \mathrm{GL}(2 n, \mathbb{C})$ is a non-constant polynomial of degree at most $2 n$ all of whose roots lie in \mathbb{F}_{p}^{\times}. Now let F be a subfield of \mathbb{C} with $l=\left|F\left[\zeta_{p}\right]: F\right|$ as in the statement. The group C has $(p-1) / l$ non-trivial irreducible representations over F, each of dimension l, and the total Chern classes of these representations have the form $1-i x^{l}$, where i ranges over the $(p-1) / l$ distinct l th roots of unity in \mathbb{F}_{p}. In particular, the total Chern class of any representation $\rho: C \rightarrow \mathrm{GL}(2 n, F) \leq \mathrm{GL}(2 n, \mathbb{C})$ is a polynomial in x^{l} whose x-degree is at most $2 n$. If ρ has image contained in $\operatorname{Sp}(2 n, \mathbb{C})$, then it factors as $\rho=\iota \circ \widetilde{\rho}$ with $\widetilde{\rho}: C \rightarrow \operatorname{Sp}(2 n, \mathbb{C})$ and ι is the inclusion of $\operatorname{Sp}(2 n, \mathbb{C})$ in $\operatorname{GL}(2 n, \mathbb{C})$. In this case the matrix representing a generator for C is conjugate to the transpose of its own inverse; in particular it follows that the multiplicities of the irreducible complex representations of C with total Chern classes $1+i x$ and $1-i x$ must be equal for each i. Hence in this case, if p is odd, the total Chern class of the representation $\rho=\iota \circ \widetilde{\rho}$ is a polynomial in x^{2}. If $p=2$ (which implies that $l=1$) then the total Chern class of any representation $\rho: C \rightarrow \mathrm{GL}(2 n, \mathbb{C})$ has the form $(1+x)^{i}$, where i is equal to the number of non-trivial irreducible summands. Since $\operatorname{Sp}(2 n, \mathbb{C}) \leq \operatorname{SL}(2 n, \mathbb{C})$ it follows that for symplectic representations i must be even, and so, for $p=2$ the total Chern class is a polynomial in x^{2}.

In summary, let $\widetilde{\rho}$ be a faithful representation of C in $\operatorname{Sp}(2 n, F)$. In the case when l is odd, then the total Chern class of $\widetilde{\rho}$ is a non-constant polynomial $\tilde{f}(y)=f(x)$ in $y=x^{2 l}$ such that $f(x)$ has degree at most $2 n, \tilde{f}(y)$ has degree at most n / l, and all roots of f, \tilde{f} lie
in \mathbb{F}_{p}^{\times}. In the case when l is even, the total Chern class of ρ is a non-constant polynomial $\tilde{f}(y)=f(x)$ in $y=x^{l}$ such that $f(x)$ has degree at most $2 n, \tilde{f}(y)$ has degree at most $2 n / l$, and all roots of both lie in \mathbb{F}_{p}^{\times}. By Proposition 2, it follows that each $n(C)$ is a factor of the number given for $p^{\circ}(\operatorname{Sp}(2 n, \mathcal{O}))$, and hence the claim.

Lemma 4. Let $H \leq G$ with $|G: H|=m$, and let ρ be a symplectic representation of H on $V=\mathcal{O}^{2 n}$. The induced representation $\operatorname{Ind}_{H}^{G}(\rho)$ is a symplectic representation of G on $W:=\mathcal{O} G \otimes_{\mathcal{O} H} V \cong \mathcal{O}^{2 m n}$.

Proof. Let $e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}$ be the standard basis for $V=\mathcal{O}^{2 n}$, so that the bilinear form $\langle v, w\rangle:=v^{\mathrm{T}} J w$ on V is given by

$$
\left\langle e_{i}, e_{j}\right\rangle=0=\left\langle f_{i}, f_{j}\right\rangle, \quad\left\langle e_{i}, f_{j}\right\rangle=-\left\langle f_{i}, e_{j}\right\rangle=\delta_{i j} .
$$

The representation ρ is symplectic if and only if each $\rho(h)$ preserves this bilinear form.
Let t_{1}, \ldots, t_{m} be a left transversal to H in G, so that $\mathcal{O} G=\oplus_{i=1}^{m} t_{i} \mathcal{O} H$ as right $\mathcal{O} H$ modules. Define a bilinear form \langle,\rangle_{W} on W by

$$
\left\langle\sum_{i=1}^{m} t_{i} \otimes v^{i}, \sum_{i=1}^{m} t_{i} \otimes w^{i}\right\rangle_{W}:=\sum_{i=1}^{m}\left\langle v^{i}, w^{i}\right\rangle .
$$

To see that this bilinear form is preserved by the $\mathcal{O} G$-action on W, fix $g \in G$ and define a permutation π of $\{1, \ldots, m\}$ and elements $h_{1}, \ldots, h_{m} \in H$ by the equations $g t_{i}=t_{\pi(i)} h_{i}$. Now for each i, j with $1 \leq i, j \leq m$

$$
\begin{aligned}
\left\langle\operatorname{Ind}(\rho(g)) t_{i} \otimes v, \operatorname{Ind}(\rho(g)) t_{j} \otimes w\right\rangle_{W} & =\left\langle t_{\pi(i)} \otimes \rho\left(h_{i}\right) v, t_{\pi(j)} \otimes \rho\left(h_{j}\right) w\right\rangle_{W} \\
& =\delta_{\pi(i) \pi(j)}\left\langle\rho\left(h_{i}\right) v, \rho\left(h_{j}\right) w\right\rangle \\
& =\delta_{i j}\left\langle\rho\left(h_{i}\right) v, \rho\left(h_{i}\right) w\right\rangle \\
& =\delta_{i j}\langle v, w\rangle \\
& =\left\langle t_{i} \otimes v, t_{j} \otimes w\right\rangle_{W} .
\end{aligned}
$$

To see that \langle,\rangle_{W} is symplectic, define basis elements $E_{1}, \ldots, E_{m n}, F_{1}, \ldots, F_{m n}$ for W by the equations

$$
E_{n(i-1)+j}:=t_{i} \otimes e_{j}, \quad \text { and } F_{n(i-1)+j}:=t_{i} \otimes f_{j}, \quad \text { for } 1 \leq i \leq m, 1 \leq j \leq n .
$$

It is easily checked that for $1 \leq i, j \leq m n$

$$
\left\langle E_{i}, E_{j}\right\rangle_{W}=0=\left\langle F_{i}, F_{j}\right\rangle_{W}, \quad\left\langle E_{i}, F_{j}\right\rangle_{W}=-\left\langle F_{i}, E_{j}\right\rangle_{W}=\delta_{i j},
$$

and so with respect to this basis for W, the bilinear form \langle,\rangle_{W} is the standard symplectic form.

Proposition 5. With notation as in Theorem 1, the Yagita invariant $p^{\circ}(\operatorname{Sp}(2 n, \mathcal{O}))$ is divisible by the number given in the statement of Theorem 1.

Proof. To give lower bounds for $p^{\circ}(\operatorname{Sp}(2 n, \mathcal{O}))$ we use finite subgroups. Firstly, consider the semidirect product $H=C_{p} \rtimes C_{p-1}$, where C_{p-1} acts faithfully on C_{p}; equivalently this is the group of affine transformations of the line over \mathbb{F}_{p}. It is well known that the image of $H^{*}(G ; \mathbb{Z})$ inside $H^{*}\left(C_{p} ; \mathbb{Z}\right) \cong \mathbb{Z}[x] /(p x)$ is the subring generated by x^{p-1}. It follows that $2(p-1)$ divides $p^{\circ}(G)$ for any G containing H as a subgroup. The group H has a faithful permutation action on p points, and hence a faithful representation in $\operatorname{GL}(p-1, \mathbb{Z})$, where \mathbb{Z}^{p-1} is identified with the kernel of the H-equivariant map $\mathbb{Z}\{1, \ldots, p\} \rightarrow \mathbb{Z}$. Since $\operatorname{GL}(p-1, \mathbb{Z})$ embeds in $\operatorname{Sp}(2(p-1), \mathbb{Z})$ we deduce that H embeds in $\operatorname{Sp}(2 n, \mathcal{O})$ for each \mathcal{O} and for each $n \geq p-1$.

To give a lower bound for the p-part of $p^{\circ}(\operatorname{Sp}(2 n, \mathcal{O}))$ we use the extraspecial p-groups. For p odd, let $E(p, 1)$ be the non-abelian p-group of order p^{3} and exponent p, and let $E(2,1)$ be the dihedral group of order 8. (Equivalently in each case $E(p, 1)$ is the Sylow p-subgroup of $\operatorname{GL}\left(3, \mathbb{F}_{p}\right)$.) For $m \geq 2$, let $E(p, m)$ denote the central product of m copies of $E(p, 1)$, so that $E(p, m)$ is one of the two extraspecial groups of order $p^{2 m+1}$. Yagita showed that $p^{\circ}(E(p, m))=2 p^{m}$ for each m and $p[6]$. The centre and commutator subgroup of $E(p, m)$ are equal and have order p, and the abelianization of $E(p, m)$ is isomorphic to $C_{p}^{2 m}$. The irreducible complex representations of $E(p, m)$ are well understood: there are $p^{2 m}$ distinct 1-dimensional irreducibles, each of which restricts to the centre as the trivial representation, and there are $p-1$ faithful representations of dimension p^{m}, each of which restricts to the centre as the sum of p^{m} copies of a single (non-trivial) irreducible representation of C_{p}. The group $G=E(p, m)$ contains a subgroup H isomorphic to C_{p}^{m+1}, and each of its faithful p^{m} dimensional representations can be obtained by inducing up a 1-dimensional representation $H \rightarrow C_{p} \rightarrow \mathrm{GL}(1, \mathbb{C})$.

According to Bürgisser, C_{p} embeds in $\operatorname{Sp}(2 l, \mathcal{O})$ (resp. in $\operatorname{Sp}(l, \mathcal{O})$ when l is even) provided that \mathcal{O} is integrally closed in $\mathbb{C}[1]$. Here as usual, $l:=\left|F\left[\zeta_{p}\right], F\right|$ and F is the field of fractions of \mathcal{O}. If instead $\zeta_{p} \in \mathcal{O}$, then $l=1$ and clearly C_{p} embeds in $\operatorname{GL}(1, \mathcal{O})$ and hence also in $\operatorname{Sp}(2, \mathcal{O})=\operatorname{Sp}(2 l, \mathcal{O})$. Taking this embedding of C_{p} and composing it with any homomorphism $H \rightarrow C_{p}$ we get a symplectic representation ρ of H on $\mathcal{O}^{2 l}$ for any l (resp. on \mathcal{O}^{l} for l even). For a suitable homomorphism we know that $\operatorname{Ind}_{H}^{G}(\rho)$ is a faithful representation of G on $\mathcal{O}^{2 l p^{m}}$ (resp. on $\mathcal{O}^{l p^{m}}$ for l even) and by Lemma 4 we see that $\operatorname{Ind}_{H}^{G}(\rho)$ is symplectic. Hence we see that $E(m, p)$ embeds as a subgroup of $\operatorname{Sp}\left(2 l p^{m}, \mathcal{O}\right)$ for any l and as a subgroup of $\operatorname{Sp}\left(l p^{m}, \mathcal{O}\right)$ in the case when l is even. Since $p^{\circ}(E(m, p))=2 p^{m}$, this shows that $2 p^{m}$ divides $p^{\circ}\left(\operatorname{Sp}\left(2 l p^{m}, \mathcal{O}\right)\right)$ always and that $2 p^{m}$ divides $p^{\circ}\left(\operatorname{Sp}\left(l p^{m}, \mathcal{O}\right)\right)$ in the case when l is even.

Corollary 3 and Proposition 5 together complete the proof of Theorem 1.
We finish by pointing out that we have not computed $p^{\circ}(\operatorname{Sp}(2 n, \mathcal{O}))$ for general \mathcal{O} when $n<p-1$; to do this one would have to know which metacyclic groups $C_{p} \rtimes C_{k}$ with k coprime to p admit low-dimensional symplectic representations.

References

[1] B. Bürgisser, Elements of finite order in symplectic groups. Arch. Math. (Basel) 39 (1982), no. 6, 501-509.
[2] C. M. Busch, The Yagita invariant of some symplectic groups. Mediterr. J. Math. 10 (2013), no. 1, 137-146.
[3] H. H. Glover, I. J. Leary, and C. B. Thomas, The Yagita Invariant of general linear groups. Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guíxols, 1994), Progr. Math. 136 (1996), 185-192.
[4] H. H. Glover, G. Mislin, and Y. Xia, On the Yagita invariant of mapping class groups. Topology 33 (1994), no. 3, 557-574.
[5] C. B. Thomas, Free actions by p-groups on products of spheres and Yagita's invariant $p o(G)$. Transformation groups (Osaka, 1987), Lecture Notes in Math. 1375 (1989), 326-338.
[6] N. Yagita, On the dimension of spheres whose product admits a free action by a nonabelian group. Quart. J. Math. Oxford Ser. (2) 36 (1985), no. 141, 117-127.

Authors' addresses:

cornelia.busch@math.ethz.ch
Department of Mathematics
ETH Zürich
Rämistrasse 101
8092 Zürich
Switzerland
i.j.leary@soton.ac.uk

School of Mathematical Sciences
University of Southampton
Southampton
SO17 1BJ
United Kingdom

[^0]: *The first author acknowledges support from ETH Zürich, which facilitated this work
 ${ }^{\dagger}$ The second author would like to thank the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the programme Non-positive Curvature, Group Actions and Cohomology, when work on this paper was undertaken. This work was supported by EPSRC grant no. EP/K032208/1 and by a grant from the Leverhulme Trust.

