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Abstract—Iterative learning control is a control design
method for high performance tracking applications. In this
paper a simple mechanism for accelerating the convergence of a
well-known Norm Optimal Iterative Learning Control (NOILC)
Algorithm is presented by modifying the reference signal each
iteration using the previously measured tracking error. The
change is equivalent to successive application of a gradient and
NOILC iteration. The change is interpreted in terms of the
spectrum of the error update operator and the annihilation
of spectral components of the error signal. Convergence of
the proposed algorithm is analysed rigorously and numerical
examples are given to demonstrate the effectiveness of the
proposed method.

I. INTRODUCTION

Iterative Learning Control (ILC) is now well established
as part of the control scene and many papers have been
published [1], [2] plus several texts [3]-[5]. The area of study
poses all of the challenges of Control Theory with the added
complication that the system to be controlled is required
to track a given reference (or demand) signal on a finite
time interval and the physical controlled process operates in
a repetitive manner. Typical applications examples include
robotic systems [6], chemical batch processing [7], [8] and
stroke rehabilitation [9]. The repetition (or iteration as it is
typically called) is both a complication and an opportunity.
It complicates the control design but also offers the oppor-
tunity to use measured input/output (and other) data from
previous iterations to improve performance. Performance
improvement is typically expressed in terms of reducing the
tracking error and has the ultimate objective of producing
higher accuracy than can be achieved by feedback control
alone. In a mathematical sense, the iterations/repetitions are
allowed to be infinite in number. In practice, iterations will
be finite in number and the control improvement process will
be terminated when the tracking accuracy has been reduced
to desired levels.

A number of design paradigms [10]-[25] have been sug-
gested and considerable insight has been obtained into the
nature of the control problem and performance limitations.
Issues of performance have focussed to a large degree on
the convergence of the iterative process. Clearly convergence
to a desired solution is part of the requirement but, as
each iteration is a physical process in the real world (often
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involving the organization of machines and operators), the
speed of this convergence is also important if time and cost
are to be within acceptable bounds. This paper focusses on
the use of the Norm Optimal Iterative Learning Control
(NOILC) algorithm proposed by Amann et al [16] and
brought together in the recent book by Owens [26] . This
class of algorithms constructs control inputs for each iteration
by minimizing a quadratic performance index. Further details
are provided in later sections but the essential properties of
NOILC for linear processes are that control improvements
are guaranteed theoretically from iteration to iteration but
that the rate of convergence depends upon the choice of
parameters in the index. For state space systems, the general
result is that fast convergence requires the use of high gain
state feedback. High gain may not be appropriate for many
applications and other mechanisms would be preferable.

In this paper, improved convergence rates are shown
to be possible without high gain control by retaining the
NOILC methodology but adding the simple mechanism of
changing the reference signal r from iteration to iteration in
a systematic manner. In mathematical terms, the reference
r is replaced in NOILC calculations by a sequence of
references {ry}r>0 where 71, denotes the reference signal
used on iteration k. The NOILC parameters can then be
chosen to avoid excessively high gains in an implementation
and the reference signals chosen to improve convergence
rates. The changes in the reference signals chosen are related
to the tracking error observed on the previous iteration in
a simple manner. The development in the paper initially
summarizes the basic ideas of NOILC using the operator
formulation used by Owens [26]. This has the advantage of
notational simplicity and generality as many types of linear
dynamics can be analysed and controlled. This is followed
by a discussion of the related Gradient ILC algorithm in the
form given by Owens [26]. It is noted that,

1) if the NOILC algorithm and the Gradient algorithm are
applied on alternate iterations, the basic convergence
properties of NOILC are still achieved

2) and that the two iterations can be combined to form a
new, simplified algorithm that takes the form of NOILC
with variable reference signals.

Not only is the algorithm more rapidly convergent than the
use of NOILC alone, the choice of a free parameter in
the new algorithm can be approached using the concept of
spectral annihilation introduced by Owens in [26]. For state
space systems, this offers the opportunity to focus improved
convergence rates into selected frequency bands.



The object used to provide the results is the operator
relating the error on successive iterations. More precisely,
it is the spectrum of this operator that reveals the link to
convergence rates. This opens up the possibility of more
complex updates for the reference signals constructed to
achieve number of objectives. The details of this process are
too complex and lengthy for this paper which concentrates
on providing the basic algorithm and demonstrating its
capabilities using numerical examples. More general results
and a characterization of the robustness of the scheme will
form the content of a future paper to be submitted to a
journal.

II. UNDERLYING OPTIMIZATION ALGORITHMS
A. Models, Signals and Operators

The analysis aims to cover as many applications situations
as possible. This is achieved by following the original
methodology of Norm Optimal Iterative Learning Control
(NOILC) proposed in Amann et al [16] and used more
extensively in the text [26] by Owens. More precisely, the
plant dynamics is assumed to be linear and described by a
bounded linear operator G mapping a real Hilbert space U/
of input signals u € U/ into a real Hilbert space ) of output
signals y € ). The inner product in U/ (resp. )) is denoted
by (u,v)y (resp.{y,w)y). The in(}uced norms in U (respi )
are then given by [[ully = (u, u)g (resp. [lylly = (y,)3)-

The model equations are represented in the form

y=Gu-+d (1)

where d € ) represents the initial condition or similar effects
in the system dynamics. As noted in the text [26] by Owens,
the operator description covers many situations of practical
interest including linear continuous time state space models,
sampled data and multi-rate sampling systems and problems
where control signals have specific structure exemplified by
a requirement that it is continuous and piecewise linear
with discontinuities only allowed at specific time instants.
The inner products and norms are design variables that can
be chosen to reflect physical properties of the system, the
control objective and/or the performance of the iterative
algorithm to be used.

B. Iterative Learning Control (ILC)

Iterative Learning Control (ILC) considers a repetitive task
whose ultimate objective is to ensure that the output from the
system given by equation (1) tracks a given reference signal
r € Y arbitrarily accurately. Using the formal definition
in the text by Owens [26], an ILC algorithm considers an
infinite sequence of iterations labelled by the iteration index
k=0,1,2,3------ . The index with index & = 0 is the
zeroth iteration and is characterized by the choice of an
initial control wg, measurement of the corresponding output
yo and computation of the error signal ey = r — yg. For
future iterations, the algorithm uses measurement data from
iterations k' < k plus, possible, model-based calculations, to
construct an input uy4; for use on the next iteration k + 1.

The result of this input is the output yx; and tracking error
€k+1 =T — Yk+1-

The design issue for ILC is the computational nature of the
construction of wug1 and it is here that different approaches
can be taken. For the purposes of this paper, the major
requirement of the computation is that,

lim Jleg]ly = 0 2)
k—oo

which expresses the ideal outcome that the ultimate value of
the tracking error is zero. Convergence of the input sequence
{ur}x>0 is also desirable but plays little role in this paper
due to space limitations.

C. Norm Optimal Iterative Learning Control (NOILC)

Norm Optimal Iterative Learning Control (NOILC) [16],
[26] now has a number of interpretations and extensions. In
this paper we consider its basic and simplest form. More
precisely, given data (ug,y) on the k" iteration, NOILC
constructs the input uy1 to be used on iteration k + 1 by
minimizing the quadratic objective function

J(w) = [lell3 + € lu — Iz 3)

subject to the constraints given by the system dynamics (1).
If G is a state space model and ) and U are L1[0,T] spaces,
this problem is simply a linear quadratic optimal control
problem with a familiar Riccati-style solution.
Properties of the algorithm include the important conver-
gence properties listed below
1) the error sequence satisfies the update relationship
ex+1 = Legr , k > 0 where the operator L is given
by
L=(I+e2%GG")™! 4)

and G* is the adjoint operator of G,
2) the error signal norm sequence is monotonic in the sense
that

lexktilly <llexlly , k>0, (5)

3) and the error signal converges to the signal given as
the orthogonal projection of eg onto the subspace of )V
defined as the kernel of GG*.

The parameter €2 is a measure of the relative weight given to
the error and change in control signal. As €2 > 0 reduces, the
‘controller gain’ increases and any feedback implementation
is of a high gain form.

D. Gradient-based Iteration

NOILC can have a complex computational structure but
a simplification is possible using gradient ideas. Using the
approach of Owens in [26], a gradient algorithm uses the
update formula,

Upt1 = Up + Ber1G er , k>0, (6)

Here G* is the adjoint operator of G and fSx4+1 > 0 is a
scalar gain parameter (the step length in normal gradient
terminology). The error update equation in this case is

Cht1 = (I — ,Bk_;,_lGG*)ek , k>0. 7



The algorithm retains the monotonicity property if, for all
k>0,
0 < Brs1 <2[|G*|| 72 (8)

where ||G*| is the norm of the operator G* : Y — U. The
NOILC characterization of the limit also holds true in the
case of iteration independent gains.

Note 1: If G is a matrix, with singular values 0 < --- <
02 < o? then its norm is the largest singular value o?. If
G is a single-input, single-output (SISO) discrete state space
model characterized by matrices A, B,C' and time series of
length N +1 and ) and U/ are the Hilbert spaces RV ! with
inner products

(y,w)y = QyTw, (u,v)y = Ru'v 9)

where () and R are strictly positive scalars, then an upper
bound for the norm is obtained from the inequality [26]

IGI* = lI6*[1* < sup RTIQIG(»)? (10)
z|=1
where G(z) is the transfer function of the system. More

general, multi-input,multi-output (MIMO) expressions can
be found in [26].

III. ERROR CORRECTED REFERENCES AND
ACCELERATION OF NOILC

A. An Error Corrected Reference Algorithm

NOILC and Gradient methods are related and, in principle,
the choice of algorithm can change from iteration to iteration.
For example, if iteration one is a gradient iteration and
iteration two is a NOILC iteration, the following error update
equation and monotonicity property follows from (4) and (7)

e2=L(I = p1GG")eo , le2lly <leolly - (1D

The corresponding input equations are

Uy = Ug + ﬁlG*eo 5 Ug = U1 + 672G*62 . (12)

The crucial observation is that the two input equations can
be combined to give

uy = ug + € 2G*(e2Breg + e2) . (13)

This demonstrates that

Theorem 1: A gradient iteration followed by a NOILC
iteration can be combined as one NOILC iteration with the
reference signal r replaced by r + €231 eq.

The same argument can be applied to future pairs of

iterations and proves the following result. Note the change in
indexing used to reflect the combined gradient and NOILC
iterations.
An Error Corrected Reference Algorithm: Let r be the
reference signal that is to be tracked. In addition, choose
{Brk+1}tr>0 to be an infinite sequence of scalar gains in
the range defined by (8) and define the sequence of error
corrected reference signals

Toe1 =7+ EPrrrer , k>0, (14)

with

ek =T =Yk , k=0. 5)

Consider the error corrected reference NOILC algorithm

defined by the iterations and computations described below

starting with index k = 0:

Step 1 Given the data uy,yx, ex, compute 7,41 and con-
struct the form of the input w1 by minimizing the
performance index

Te1(u) = [[reer = yll3 + llu —willz  (16)

subject to the constraint of the plant dynamics (1).
Note that Ji; is a modified form of the original
NOILC performance index (3) with r replaced by
Tk+1-
Step 2 Use this information to obtain the plant output y1
and construct the new data set Ug41, Yk+1, €k+1-
Step 3 Replace k£ by k + 1 and return to Step 1.

Theorem 2 (Convergence Properties): Under these condi-
tions defined above, the algorithm generates a sequence
of tracking errors {ej}r>o that satisfies the monotonicity
property (5) of NOILC. In more detail,

1) The error evolution is described by the relationship

ek+1 = Lyt1ex ,  Lgy1 = LI — Br1GG™), (17)

for all £ > 0. Each Ly, is self adjoint and satisfies
the inequality, for some pg41 > 0,

—(1=pr41) L < Lp1 LT (18)

2) If Bx+1 = B is iteration independent, then the error
sequence converges in norm to the orthogonal projection
of eg onto the kernel of GG*. In addition,

a) If ker[GG*] = {0}, then

lim ||6k||y =0. (19)
k—o0

b) If eq is in the range of (I — Ly), then
> lexll3y < oo (20)

k>0

The range of (I — Lq) is exactly the range of GG*.

3) Similar convergence properties hold if, in addition, the

gains [ satisfy a stronger condition of the form, for
some scalar 62 > 0,

62 < Brir <20 =H|G*2, k>0. (2D
Proof: The monotonicity property and the error evolution
follow from the analysis preceding the theorem. L is self-
adjoint as it is a function of the self-adjoint operator GG*.
The existence of uy1 is a consequence of the properties
0 < L = L* < I and the gain range (8). If 851 is iteration
independent, the existence and properties of the limit error
then follow directly from Theorem 5.9 in the text by Owens
[26]. The general case when [y is iteration dependent is
more complex and will be published separately. The simplest
case is when (1 varies but is iteration independent for
iterations with index k > k’. For example, if ey is in the



range of GG*, all the following e, lie in that subspace and,
by considering the partial sequence {ey } 5>k, it follows that
the summability condition (20) must hold and hence that
the error convergence (19) also holds. This ends the proof
presented in this paper.

Note that the preceding discussion ensures that the new
algorithm produces greater reductions in error norm each
iteration than a pure NOILC algorithm. This observation
is further supported by the operator ordering (18) and the
consequent product ordering

Y _oLjyy <Lt <I, k>0. (22)

The nature of this convergence and its dependence on gain
parameters is discussed in the next subsection in terms of
the spectrum of the L.

B. Spectral Properties of the Convergence

Just as the eigenvalues of a matrix M govern the behaviour
of an iteration zr11 = Mz, k > 0, the properties of
the algorithm presented in this paper are related to spectral
properties of the operators {Lj11}x>0. Using the notation
spec|T'] to denote the set of spectral values of an operator
I': Y — ), then the spectrum of Ly is obtained from the
Spectral Mapping Theorem to be exactly

{ 1 = Brt1m

1+e2pn
Consider the simplest case when all spectral values are
eigenvalues and that {n;},>1 and {v;};>1 are the eigenval-
ues and orthonormal eigenvectors of GG*. Then Ly has
eigenvectors {v;};>1 and

spec[Lg+1] = . n € spec|GGT]}  (23)

1 — Brsany ’
Lk+1”[}j = ml}] s J Z 1 . (24)
The range of eigenvalues is given by
0<n; <[C|? (25)

and, if the eigenvalues are ordered 77 > 12 > n3 > -- -, the
largest eigenvalue 7; = ||G*||%. In particular this means that
(8) is just

0< Bry1 < 207"

This characterization throws considerable light on the choice
of gains fiy1. Any gain in the range defined by (8) can be
used and any gain in that range has an effect on the spectrum
of Lj4;. In particular, in the absence of modelling error,

(26)

1) if Bpy1 = 77]71, the contribution of the eigenvector v; to
the error response is annihilated and remains zero for
the remaining iterations. In addition, the contribution
of all eigenvectors with eigenvalues close to 7; are
substantially reduced and continue to reduce as the
iterations progress.

2) If, in addition, n; > %771, the annihilation process is
accompanied by an overall reduction in error norm.

This discussion shows that systematic and rapid reductions
of the spectral content is possible whilst simultaneously
reducing the error norm, the only constraint being that this

is only true for that part of the spectrum defined by the
inequality

IG*|? <n<|GH*. 27)

1

5
This is a spectral equivalent of a bandwidth condition as
low eigenvalues 1; < 1, are associated with, amongst other
things, high frequency behaviours. This is quantified more
precisely in Owens [26] for discrete state space systems. The
details are omitted for brevity.

In practice, the eigenstructure of GG* will not be known.
Despite this fact, the functional dependence of the spectrum
of Lj41 on that of GG™* can be used to suggest parameter
choices. For example, if the initial error ey has the form

eo = Z a;vj (28)
7=>0

NOILC iterations produce errors that can be written in the

form X
1
R e

Jj=0

(29)

which shows that the contribution of each and every
eigenvalue/eigenvector reduces geometrically as iterations
progress. In contrast,
1) the choice of i1 = ||G*||~2 = n; ' for all iterations
(the largest eigenvalue), then

- \"
_ - — '
=2 ‘”U’<1+e-2m> ’

Jj=0

(30)

indicating the immediate elimination of vq, very rapid
reductions of the contributions of the very largest eigen-
values (close to 7;) and improved reductions in small
eigenvalues when compared with NOILC (obtained by
setting Bg41 = 0).

Note 2: For SISO discrete state space systems, (10)
indicates that the choice of Sr41 = 71y ! will tend
to eliminate frequencies close to that generating the
maximum gain which will be the DC component or a
resonance!

2) Suppose that the interval defined by (27) is divided up
into M > 1 equally separated points {p;}1<;<a and
that, with some ordering, the gains are chosen using
Brt1 = py ', then

1—np, " ’
erip1 = aju IIk_, (_‘1> . (31)
J;J T\
This shows that the eigenvectors corresponding to all
eigenvalues in the range (27) are almost annihilated in
the chosen set of M ILC iterations.
Note 3: For SISO discrete state space systems, (10)
indicates that this procedure will tend to eliminate
frequencies in a (possibly wide) range around the DC
or resonant frequency.
The potential of the acceleration mechanism is suggested
by the above although more research is needed to improve
the choice and assess the affect on other issues such as



robustness. Some numerical examples are given in the next
section.

IV. NUMERICAL EXAMPLES
A. Annihilating a Single Frequency/Spectral Value

In [26], it is shown that, for a discrete SISO state space
system (A, B, C) operating on an interval t = 0,1,2,--- | N
with transfer function G(z) and a suitable choice of sinu-
soidal vector a(z) = {1, z,22,--- , 2™}, the relation

(GG* — R7'Q|G(2)’I) a(z) = 0, (32)

with good accuracy if control in on a long enough in-
terval. The interpretation of this is that «(z) is an ap-
proximate eigenvector of GG* with approximate eigenvalue
R7'Q|G(z)|. This suggests that the choice of

-1 -2

B = RQ™|G(z)]
will almost annihilate an initial error (z) in one iteration. To
illustrate this idea, consider the linear SISO discrete system
with transfer function

0.7
Gle) = =gz

(33)

sup |G(z)| =2.333 .
|z|=1

(34)

Zero initial conditions are assumed and a reference signal
defined by the oscillating time series

™

r={r(t)}o<t<n , 7(t) = sin( 275) =Im [zt} , (35

with a frequency z = ¢. The time interval chosen has length
N = 200.

Using discrete optimal ILC with weights ) = R =1
in the performance index avoids high gain feedback. Ap-
proximate annihilation of the single frequency reference is
approached by using (33) to choose Bx11 = 3 ~ |G(i)| 2.
The algorithm is initiated with vy = 0. The first iteration
gives the error norm

leoll = [I7]| = 10 , [le1]| = 0.6328. (36)

The substantial reduction in error provides a simple illustra-
tion of the approximate annihilation properties of the new
algorithm. The gain used does not satisfy (8) and is not
necessarily an acceptable choice for further iterations.

B. Annihilating a Frequency/Spectral Band

Reference signals, in most cases, contain a wide band of
frequencies and plant dynamics are more complex. A simple
illustration of possible approaches to such cases is the choice

£
© 0.64
(z—0.2)2

with zero initial conditions and a reference signal (shown in
Fig 1)

G(z) = (37)

(38)

Again take Q = R =1 and N = 200. Then (10) suggests
that ||G*||? &~ 1. Taking the initial control uo = 0, the results
obtained from the use of NOILC are shown in the plot of
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Fig. 1. The reference signal r(t)
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algorithm

Tracking error norm convergence for NOILC and the proposed

the evolution of the error norm in Fig 2. Acceleration of the
algorithm is now approached using two approaches:

1) Approach One: Take §ry1 = [ to be iteration inde-
pendent and let § = 1 to approximately annihilate the
contribution of the eigenvectors corresponding to the
largest eigenvalues of GG*. Alternatively, using (32),
the choice will approximately annihilate the DC and low
frequency bandwidth content of the error. The results
for this error corrected algorithm are given in Fig 2
together with the NOILC result. The improvements in
rate of convergence are clear and, given the simplicity
of the error correction mechanism, well worth the use
of the modification.

2) Approach Two: By letting the gains vary from iteration
to iteration, different frequency contributions can be
approximately annihilated. The constraint of (27) is
taken to ensure that overall error reduction is guaranteed
as the iterations progress. This means that we must



focus on the frequencies where

05 <|G(2)*<1. (39)
The values of these frequencies are not required for the
choice of (j1. All that is needed is to choose [;+1 €
[1,2]. To illustrate the possibilities, the choices are made
to ‘cover’ this interval, for example,

b1 =10, B2 =05, f3=0.75, B4 =0.6, B5 =09

(40)
and fBr41 = 1 thereafter. The resulting algorithm
behaviour is shown in Fig 2 including the basic NOILC
behaviour. Again, the simple error corrected reference
mechanism has accelerated the algorithm producing
rapid reductions in error norm.

The examples provide evidence that the acceleration pro-
duced by the error correction mechanism, in the absence of
modelling errors, can be substantial.

V. CONCLUSIONS

The paper has shown that a combination of NOILC
and Gradient ILC yields a modified NOILC algorithm that
can achieve rapid convergence rates without the need for
‘high gain’ solutions (represented by the situation when ¢>
becomes very small). The mechanism is simple and easy to
implement and consists of a process of modifying the ref-
erence signal from iteration to iteration using the previously
observed tracking error. The abstract nature of the approach
chosen is that used by Owens [26] and shows that the ideas
are quite general applying to a range of NOILC applications
including continuous and discrete state space systems and the
more general ‘multi-task’ problems introduced by Owens in
[26].

In the simple form presented, a parameter SB;+1 > 0 is
chosen on iteration k + 1. It is generated from gradient
considerations but choosing values can be, more usefully,
related to the idea of annihilating the contribution of selected
parts of the spectrum of GG* to the tracking error. For
state space systems, this choice can be linked to the removal
of frequency components from the error. Simple examples
presented here verify the basic ideas and demonstrate the
potential benefits of careful parameter selection. The ex-
amples are encouraging but future papers will address in
more detail the design issues of parameter choice, the link
to the form of plant dynamics and the observed retention of
robustness (observed in simulations) using concepts similar
to the robustness analysis of both Gradient ILC and NOILC
provided in [26].
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