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Abstract

We study pricing strategies of competing firms that sell heterogeneous products to con-
sumers in a social network. Goods are substitutes and there are network externalities between
neighboring consumers. We show that there exists a unique subgame perfect equilibrium
where, in the first stage, firms choose prices while, in the second stage, individuals consume
differentiated goods. In equilibrium, firms price discriminate based on the network posi-
tions and charge lower prices to more central consumers. We also show that, under some
conditions, firms’ equilibrium profits decrease when either the network becomes denser or
network effects increase. In contrast, consumers always benefit from being more connected
to each other because this increases their utilities and, at the same time, this lowers the prices
due to intensified competition between firms. We determine the optimal network structure
both for firms and consumers, and compare uniform pricing and discriminatory pricing from
the perspectives of firms and consumers.
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1 Introduction

The past decade has witnessed an emerging role of social networks in shaping individual choices.
Consumers now make consumption decisions largely based on whether their close friends, neigh-
bors, and celebrities also adopt the same products. In economic terminology, these social goods
provide network externalities to connected consumers.” Various sources of network externalities
have been documented in economics. For telecommunication devices, these externalities are gen-
erated via physical connections. For operating systems and software packages, the externalities
come from compatibility concerns. Network externalities may also arise because people want
to conform to the behavior of their peers. The successes of Facebook, Linkedin, Twitter, What-
sapp, WeChat and various online game producers have confirmed the high potential of market
profitability in the social networking business.

These social interactions create abundant opportunities for service providers and thereby
lead to intense competition among them. For instance, in the mobile and data services market,
consumers can choose among AT&T, Verizon, T-mobile, and other operators in the United States.
In the market for mobile messaging apps, Whatsapp, Line, and WeChat are fighting for market
shares. In such a scenario, consumers are confronted with various options to stay connected
with their friends, and service providers strive to induce the consumers to lean towards their
own products rather than their competitors” products.

To better understand these issues, we provide a framework that examines product compe-
tition between firms when products are differentiated and exhibit local network effects. Each
consumer has access to two products, which are offered by two firms. Within each product
there are local network externalities amongst the consumers in terms of their consumption util-
ities: a consumer pays more attention to her close friends” decisions than to others’ choices. As
in Ballester et al. (2006), we develop a model with strategic complementarities in consumption
choices so that more consumption from a consumer reinforces other consumers’ decisions to
consume the same good. In contrast, to capture the competition between firms, the products are
assumed to be substitutable.> The firms incur heterogeneous costs of serving different consumers
and are allowed to charge discriminatory prices to these consumers.

We show that there is a unique subgame perfect equilibrium where, first, firms choose the
prices of each good for each consumer, and, then, the individuals decide their consumption
levels of the two goods. We provide a full characterization of the equilibrium prices, which
can be decomposed into two parts. The first term corresponds to the monopoly price, which is
independent of the network configuration. The second term is proportional to the Katz-Bonacich
centrality measure of a consumer (Katz 1953; Bonacich 1987). Thus, contrary to the monopoly
case (Bloch and Quérou (2013)), the equilibrium prices exhibit strong network dependence where
more central consumers obtain a larger discount because of their impact in terms of consumption

"Network externalities exist if the value of a product increases when there are more users joining the network. Here,
we are focusing on local network externalities where the value of consuming a product for a given agent increases
when others directly connected to this agent consume this product.

?In the Online Appendix C.3, we also consider the case of complementary products.



on their neighbors.

In the real world, firms do price discriminate consumers based on their location or centrality
in their networks. This is often done through digital marketing, which is an important aspect of
firms’ strategy. A key aspect of digital marketing is influencer marketing.3 Firms are gathering
and using data on users’ social media activity (social media platforms such as Facebook, Twitter,
and Google+; and by consultancy firms such as Klout.com and Ammo Marketing)* to identify
influencers of a specific market segment and then orienting marketing activities around them.
After acquiring this information, firms do price discriminate consumers, offering discounts to
customers depending on their influence. For example, Microsoft, Sony and Samsung have in-
fluencer campaigns via Klout. In 2011, Microsoft increased its marketing efforts to promote the
Windows Phone 7.5 by working with Klout and offering a free phone to users who had a high
"Klout" score. More recently, highly influential Klout users received a free Sony NEX 3N camera
and Sony Action Cam.

There are many other examples of price discrimination based on the degree of influence of
consumers. For example, providing price discounts to communications between “friends and
family” members has become an increasingly popular practice in telecommunication industry.
A prominent example was MCI'’s Friends and Family Program, which offered price discounts
to long distance communications between consumers and their pre-selected friends and family
members. Sprint offered a similar plan that applied discounts automatically to those telephone
numbers connected most frequently with consumers during a billing period. Both examples can
be seen as price discrimination based on strength of callers’ social ties (Shi 2013).

Building upon the equilibrium price discrimination in this competitive setting, we also show
that increasing network externalities among consumers or having a denser network pushes the
equilibrium price downwards. Indeed, stronger network effects or a denser network influence
profits in two ways. On the one hand, they tend to increase firms’ profits because they enhance
demands due to higher utility externalities for consumers. On the other hand, they can lead to
price reductions because stronger network effects or denser networks lead to fiercer competition
between firms. The former effect is dominated by (dominates) the latter when products are close
substitutes (sufficiently differentiated). By contrast, a monopoly firm always obtains a higher
profit under the same circumstances. Therefore, competition can lead to substantially different
implications in terms of prices and profits.

We find that consumers always benefit from being more connected to each other because this
increases their consumption utilities and, at the same time, intensifies firms’ competition. This
suggests that the complete network maximizes consumer surplus. In contrast, firms may either

3Influencer marketing (also influence marketing) is a form of marketing in which the focus is placed on influential
people rather than the target market as a whole. It identifies the individuals that have influence over potential buyers,
and orients marketing activities around these influencers.

4For example, Klout.com provides social media analytics to firms to measure a user’s influence in her social net-
work (see Rao et al. (2015)). The service uses social network data (such as Twitter, Facebook, Google+, LinkedIn,
YouTube, Instagram, and Wikipedia) and assigns individuals a "Klout" score, which presumably reflects their influ-
ence.



prefer the complete network or the empty network, depending on the degree of product substi-
tution. Finally, we compare uniform pricing and discriminatory pricing from the perspectives of
firms and consumers. We show that when the network is not regular, firms obtain higher profits
under uniform pricing when the products are sufficiently differentiated. In contrast, consumers
are better off under uniform pricing than under discriminatory pricing when the products are
highly substitutable. We articulate how these contrasting preferences arise from the firms’ salient
incentives to compensate or discriminate against players that are more central.

The remainder of this paper unfolds as follows. Section 2 reviews some relevant literature.
Section 3 describes the model. Section 4 determines the equilibrium outcomes both in the second
stage (consumers’ consumption stage) and in the first stage (firms’ pricing strategies), derives
some comparative statics results on equilibrium prices and extends the model for the case when
consumers only consume one good in equilibrium. Section 5 determines the welfare of this econ-
omy both for consumers and firms and derive some comparative statics results. Section 6 gives
the optimal network structure for both consumers and firms, and examines the policy implication
of uniform pricing rule. Finally, Section 7 concludes. In the Appendix, we provide the proofs
of all our results in the main text. In the Online Appendix, we derive some matrix operations
and define the Katz-Bonacich centrality (Online Appendix A), deal with the single representa-
tive consumer case (Online Appendix B), provide additional results for the duopoly case (Online
Appendix C), illustrate our results for specific networks (Online Appendix D), characterize the
total welfare of the economy (Online Appendix E), and provide the proofs of all the results in
the Online Appendix (Online Appendix F).

2 Related literature

A large literature in economics has investigated the issue of network effects/externalities. The
classical papers primarily focus on the aggregate level of network externalities (e.g., Rohlfs (1974),
Katz and Shapiro (1985), Farrell and Saloner (1986)). Monopoly pricing of network goods is
modeled and analyzed in various papers such as Cabral et al. (1999), Dybvig and Spatt (1983),
and Ochs and Park (2010).5 The competitive pricing problem is mostly studied in the context
of two-sided networks in which players on one side care about the aggregate contributions of
those on the other side (see, e.g., Armstrong (2006), Caillaud and Jullien (2003), and Rochet and
Tirole (2006)). Using our terminology, this corresponds to the complete bipartite network case.
In contrast, we study local network effects and explicitly model the network structure among
players.®.

Ballester et al. (2006) provide a tractable approach to study network games with strategic
complementarities amongst players using linear-quadratic utility functions. They show that the
Nash equilibrium in effort is proportional to the “Katz-Bonacich centrality” of each agent. Two

5See Economides (1996) for an extensive survey of this literature.
6The economics of networks is a growing field. For recent overviews, see Jackson (2008), Ioannides (2012), Jackson
et al. (2017) and Jackson and Zenou (2015).



recent contributions by Bloch and Quérou (2013) and Candogan et al. (2012) incorporate the
pricing decisions into the framework of Ballester et al. (2006). They independently show that if
the monopoly firm can price discriminate among players and the network effects are symmetric
(undirected), the resulting optimal prices do not depend on the network structure. Fainmesser
and Galeotti (2016) use a somewhat different framework and consider the possibility that the firm
knows partial information about the players” in-degrees or/and out-degrees (i.e., how influential
they are or how significantly they are influenced by their neighbors). Allowing for third-degree
price discrimination, Fainmesser and Galeotti (2016) show that the optimal pricing depends on
the network configuration as well as the firm’s knowledge about it.”

Our work is related to Ballester et al. (2006). However, contrary to Ballester et al. (2006),
we introduce multiple products framework. As a result, the consumption game amongst players
is not only driven by network externalities but also by the interdependence between different
products. Few papers have analyzed monopoly pricing for products with network effects; these
include Hartline et al. (2008), Arthur et al. (2009), Bloch and Quérou (2013), Candogan et al.
(2012), and Fainmesser and Galeotti (2016).% As stated above, when there is only one firm in the
market, different researchers have shown that monopoly prices are network-independent but this
is a knife-edge result that heavily depends on the quadratic utility specification and on constant
marginal costs. When competition is introduced, as in our model, this is not anymore the case:
firms do price discriminate even with quadratic utility function and constant marginal costs. To
be more precise, we extend Bloch and Quérou (2013) and Candogan et al. (2012) by allowing price
competition between firms. We show that the competitive pricing strategies can in general exhibit
strong network dependence and the firms’ profitability can even be reduced when the network
becomes denser. When the products are independent, our model degenerates to the models of
Bloch and Quérou (2013) and Candogan et al. (2012). We show that the dependence of prices on
network structure would not arise in the monopoly case. While the network-dependent pricing
shares some similarities with that in Fainmesser and Galeotti (2016), the underlying drivers are
very different. Fainmesser and Galeotti (2016) show that, in directed networks, a monopoly
firm charge different prices to distinct consumers; thus, such price heterogeneity comes from
the heterogeneity in network effects. In contrast, in our model, the sole driver for network-
dependent pricing strategies is product competition. In addition, we study the welfare effects for
both consumers and firms and identify the optimal network structures.?

In a related paper, Aoyagi (2014) assumes that both products are incompatible and, therefore,

7There are papers that study pricing problems on social networks without the use of the linear-quadratic utility
framework. Leduc et al. (2017) and Lobel et al. (2016) study pricing policies that involve price discounts as well as
referral incentives. See also Shin (2017) for a related pricing problem and Bimpikis et al. (2016) and Grabisch et al.
(2018), who study the optimal targeted advertising strategies and highlight their dependence on the underlying social
network structure.

8See also Shi (2013), Deroian and Gannon (2006), Billand et al. (2014), Bloch (2016), Carroni and Righi (2015),
Currarini and Feri (2015), Belhaj and Deroian (2016), Bimpikis et al. (2015), Ushchev and Zenou (2015), Zhang and
Chen (2018), and Zhou and Chen (2017).

9In a recent paper, Fainmesser and Galeotti (2017) introduce competition with network effects but focus on the case
when the network is unobserved while, here, we focus on the importance of substitution between goods when the
network is perfectly observable.



each consumer only consumes at most one product from two firms. With this extreme form
of product substitution, the author focuses on the condition under which both firms charging
marginal costs is a subgame perfect equilibrium. He also illustrates how multiplicity of equilibria
in the consumption stage arises and provides some equilibrium selection criteria. In contrast, in
our paper, the consumption behavior is continuous and the Nash equilibrium in the consumption
stage is shown to be unique. Moreover, we allow for any degree of substitution (or complements)
between products, and generate closed-form expressions on players’ consumptions, equilibrium
prices, and firms’ profits. These analytical expressions allow us to conduct various comparative
statics results on the network structure, degree of substitution, and strength of network effects.

Banerji and Dutta (2009) also consider price competition in the presence of local network
effects. However, they focus on the uniform pricing case in which the firms cannot price discrim-
inate between players. Similar assumptions on the flat/uniform pricing are imposed in Arm-
strong (2006), Caillaud and Jullien (2003), and Rochet and Tirole (2006) as well. As in Aoyagi
(2014), they provide conditions under which either a firm monopolizes the market or the market
is completely segmented. Ambrus and Argenziano (2009) and Jullien (2011) discuss the pricing
competition among platforms in two-sided markets. Thus, the underlying network structure is
bipartite. Fazeli and Jadbabaie (2012) consider a similar problem. However, they assume that the
firms charge uniform pricing to the consumers. Moreover, in their model, each consumer has an
inelastic unit demand and decides the fraction of consumptions between the two products.

3 Model

Consider a duopoly model where two firms A and B sell products to n consumers, indexed by
i=1,2,---,n, who are embedded in a social network. Let N' = {1,2,--- ,n} denote the set of
consumers. The network with n players is described by the n x n adjacency matrix G = (gjj)
where g;; = 0 means that there is no link between i and j and g;; > 0 measures the intensity
of the link between i and j.'° We assume that there are no self loops, i.e. g; = 0 and that
gij = gjir i-e, G is symmetric. Each consumer consumes two products, A and B, which are
offered by firms A and B, and can be consumed in any nonnegative quantities. Firm A(B) is the
sole provider for product A(B); thus, each of them has full price discrimination power over their
products. However, the two products are interdependent and there are network externalities
between neighboring consumers.

°In most applications, G is the adjacency matrix of a network, and we abuse notation and let G denote both the
network and the adjacency matrix.



Consumers’ utilities. Consumer i’s utility function can be expressed as follows:**

1
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This utility consists of three parts.
The first part of (1), altx? +aPxB — {3 (x1)2 + 3 (xB)? + Bx/1xB}, corresponds to consumer
i’s own consumption utility and is expressed as a cost-benefit function. Parameter a! measures

the intrinsic marginal utility of consumer i for product t = A, B. The quadratic terms capture the

B

decreasing marginal returns from consuming each product while the cross term Bx/'x? describes

the interconnection between products. While our analysis can be extended to general values of
B € (—1,1), we will restrict our discussions to the special case when B € [0,1) so that the goods
Bzui
ox{oxP
perfectly substitutable.’”> When B = 0, the two products are independent. As a result, § measures

A and B are substitutes, i.e. = —B < 0. When g is close to 1, the products are almost

the degree of substitution between the two goods or equivalently the degree of differentiation

between goods A and B. Indeed, the higher is B, the more substitutable the goods are and, thus,
the less differentiated they are.

The second part of (1), 6 1y gijxf'xf + 617 gijxf'xf,
within each product. The intensity of the network effects is captured by § > 0 since a higher
¢ indicates that a consumer’s utility depends more heavily on others’ consumption decisions.
When g;; > 0, which indicates that consumers i and j are neighbors, a higher consumption of
product t = A, B from consumer j increases by ¢ the marginal utility of consuming product

2,
axa;*g;;* = axPaxf

captures the network externalities

t = A, B for consumer i, i.e.

The third term in (1), — pzAxlA — p?xlB , is the total expenditure on both products for consumer
i, where p/! and p? are the prices charged by firms A and B to consumer i, respectively.

Firms’ profit functions. The marginal cost of producing product t = A, B for consumer i is

denoted by cf. Quite naturally, we assume that ad > CZA and a8 > cf, Vi. Given the prices

i i
pd = (pft,-- ,p) and pB = (p%, -, pB), the consumptions x* = (x{},--- ,x4) and xB =

"In this utility function, it is assumed that there is an outside good, which is the numeraire good, which price is
normalized to 1 so that there is a constant marginal utility to money. Indeed, denote by x? the level of consumption of
an outside good for consumer i and consider the utility function (1) without the last two terms and adding x?. Then,
the budget constraint for each consumer i can be written as: w = x¥ + pf‘ xlA + pBxB, where w is the (common) income
of each consumer. By plugging the value of xiO from the budget constraint into this utility function, we obtain (1). See
Online Appendix B.

2In the Online Appendix C.3, we deal with the case when § € (—1,0) so that the goods A and B are complements.

3Qur analysis requires § € (—1,1) because we need B to be, in absolute value, less than 1 (see Assumption 1).
Otherwise, u; is not concave in x;. The case of perfect substitutes (8 = 1) is of independent interest in the existing
literature (e.g., Ambrus and Argenziano (2009) and Banerji and Dutta (2009)). Incidentally, Aoyagi (2014) studies the
case of perfect substitutes in a somewhat different setup (each player makes a binary purchasing decision).



(xB,---,xB), and the marginal costs ¢ = (cf},---,c)" and ¢ = (cB,---,cB)/, the profit is

equal to: IT" = (p! — ¢!, x!) for firm t = A, B."4

Two benchmark models. Let us now discuss two benchmark models in the literature. The first
benchmark model is when § = 0 (no network effects) so that consumer i’s utility function reduces

to
1 1
up = afixf! +afx} - {Z(xf‘)z +5 ()" + 5x?x?} —pixf = pixd (2)

The above setup is commonly used in the industrial organization literature (Dixit 1979; Singh
and Vives 1984), especially in love-for-variety models of monopolistic competition with linear-
quadratic utility (see e.g. Ottaviano et al. (2002); Melitz (2003); Combes et al. (2008)), where B
serves as an (inverse) measure of product differentiation. Indeed, since the network linkages
disappear, the model degenerates to the case of n independent representative consumers and the
utility function corresponds to a standard linear-quadratic model with product differentiation for
the case of two goods and 7 consumers. As a result, the two firms engage in a price competition
to attract each representative consumer. In the Online Appendix B, we provide the detailed
derivations for a single representative consumer where the utility function is given by (2).

The second benchmark model is when B = 0 so that consumer i’s utility is now equal to
aa_ 1o ap ' A A _ A A B.B_ L. By - B.B _ B B
Ui =\ a; X _E(xi) +0) gixixf — pfaft b + qaPx; _E(xi) +0)_ gixix} —piap g
j=1 j=1

Because the two terms in brackets are totally separable, there is no interaction between the two
products. Consequently, each firm simply acts as a monopoly in her own market, and the model
degenerates to the single-product monopoly setting studied by Bloch and Quérou (2013) and
Candogan et al. (2012).

Assumptions. We now introduce some assumptions regarding the degree of activity interde-
pendence and the intensity of network effects.”> Denote by A;1(G) the largest eigenvalue of the
adjacency matrix G.

Assumption 1. 1 — |B| —0A1(G) > 0.

Assumption 1 guarantees the existence and uniqueness of equilibrium in the consumption
stage. When B = 0, this condition is equivalent to 6 < 1/A1(G), which is commonly assumed in
the network literature with a single activity (see e.g. Ballester et al. (2006) and Zhou and Chen

(2015)).

The next two assumptions concern the intrinsic marginal utilities and marginal costs. To
simplify exposition, in some parts of the paper, we will assume the following semi-symmetry
(SS) assumption:

Assumption 2. aZA =ab =a;,cf

_ B _ C
; f=c=c,1=12--,n

4The inner product of two vectors x = (x1,- -+ ,x,) and y = (y1,- -+ ,yn)’ in R" is denoted as (x,y) = ¥; x;y;.
5See Online Appendix A for all matrix and vector notations and some related definitions.



Assumption 2 is referred to as semi-symmetry (SS) since it implies that, for each consumer
i, the intrinsic marginal utilities and the marginal costs are the same between the two markets A
and B but it still keep the heterogeneity of 4; and c; between consumers.

: A _ B
Assumption 3. 4" = g,

P =ci=12-,n

This assumption is referred to as full symmetry (FS) because it implies that all consumers
are ex ante identical apart from their network positions.

Timing. The sequence of events is as follows. First, firms A and B determine simultaneously
the price vectors p# = (p1,---, py)" and p? = (p?,---,p})’. Second, after observing p* and
p®, each consumer i non-cooperatively chooses her consumption bundle x; = (x,x?) and this
choice is made simultaneously with all other consumers. The solution concept for this two-stage

game is subgame-perfect Nash equilibrium (SPNE). As usual, we solve the model backwards.

4 Equilibrium Analysis

By backward induction, we first derive the equilibrium outcomes amongst consumers in the
consumption stage. We then analyze the firms’ pricing strategies.

Consumption stage. We first take as given the price vectors p# and p? offered by firms A and B
and solve the consumers’ equilibrium consumptions. Define the following two n x n matrices:

M* := [(1+B)I, —0G]™}, and M~ := [(1 - B)I,, — 6G] L. (3)
For t = A,B, denote x' = (x!,---,x%) , a' = (a},---,d}) and p' = (p},---,pL)’. We have
the following theorem, which is directly adapted from Chen et al. (2017), after taking prices into
account:

Proposition 1. If Assumption 1 holds, then, for any prices p and p® charged by firms A and B, there
exists a unique equilibrium in the consumption stage characterized by:

A _ + a’+ab _ PA+PB — at—af _ PA*PB
xt =M 2 2 +M 2 2 @
xB = MT aA-Zi-aB . pAJerB Ve aA;aB B pA;PB . 4

Proposition 1 provides a clean characterization of the equilibrium outcomes and has some
intuitive interpretations. It characterizes the equilibrium of a quadratic game with two products
where the social network is explicitly modeled. We show that the average consumption across
the two goods taken by each player is determined by a social interaction matrix multiplied by
the average intrinsic marginal utilities minus average prices across the two goods while (half of) the
difference between consumptions in two goods is determined by another social-interaction matrix
times (half of) the difference in intrinsic marginal utilities minus difference in prices between the two
products.



Moreover, Proposition 1 leads to the following characterizations:

Xx=M"(a—p) andx=M" (a—p) (5)
where X := (x?+x%) /2,3 := (a? +aP) /2 and p := (p? + p®) /2 are the average consump-
tion, intrinsic marginal utilities and price, and X := (x* —x%)/2, 2 := (a? —a®) /2, and
p := (p"* —pP) /2 corresponds to half of the difference in consumptions, intrinsic marginal

utilities and prices. This shows that what determines the consumption of each good is the sum
and difference of the marginal utility of consumption and prices of each product multiplied by
two matrices MT and M™. These two matrices, which count the number of walks in G starting
from i and ending at j, where walks of length k are weighted by 6/ (1 + 8)'** and &%/ (1 — B)'*¥,
respectively (see (3)), are clearly related to the Katz-Bonacich centrality (which is defined in the
Online Appendix A). They appear with a decay factor that not only depends on J, the intensity
of network externalities between directly connected individuals, but also on p, the degree of
substitution between the two products.

Indeed, when the consumers make their consumption decisions, they take into account both
local network effects and the degree of substitution between the two products. Observe that we
have assumed here a linear-quadratic utility function for the consumers, which allows us to have
linear best responses and a clean characterization of the equilibrium consumptions. As shown
by Bramoullé et al. (2014), our equilibrium analysis and results on optimal pricing carry over to
a more general class of utility functions that induce linear best responses.

We can also obtain some comparative statics results. Since § > 0, MT < M™. Then, it is
straightforward to show that:

ox4 ox? Mt +M- oxPB oxB Mt -—M-
da’ Jop4 2 > 0, and da’ dop4 2 =0 (©)

Indeed, when p# (p?), the price of product A (B), increases, each consumer consumes less of
product A (B) and more of product B (A) (pure substitution effect). These comparative statics
formulas have implications for the equilibrium prices determined in the next subsection.

Let us now impose a symmetry condition to obtain a cleaner expression.

Corollary 1. Suppose that Assumptions 1 and 2 hold, which mean that a®* = a® = a. Suppose that both
firms charge the same prices, i.e., p** = p8 = p. Then, x* = x¥ = M*(a — p).

Pricing stage. In Proposition 1, for given prices, we characterized the equilibrium consumption
bundles for all consumers in the social network. In this section, we solve the first stage of the
game, i.e. the pricing decisions of both firms. For t = A, B, denote ¢! = (¢!, -+, ¢%)’. The profit
of each firm is given by: IT4(p) = (p? — ¢, x4 (p?, p?)) and I18(p) = (p® — &, xB(p4, pP)),
where x*(p?4, p?) and xB(p#, p?) are given in Proposition 1.

Theorem 1. Suppose Assumptions 1 and 2 hold. Then, there exists a unique interior equilibrium in the

10



pricing stage where both firms charge p** = p*B = p*, given by:

v = (*5°) - fle-pr 26 a-o, o)

First, observe that we use the semi-symmetry (SS) Assumption 2 in Theorem 1, which im-
plies that, for each consumer i, the intrinsic marginal utilities and the marginal costs are the same
between the two markets A and B but there is still heterogeneity of 4; and ¢; between consumers.
In Theorem C.2, which is stated in the Online Appendix C.4, we solve the general case when
Assumption 2 is relaxed so that the equilibrium prices are not the same anymore. We still obtain
a similar result since each price p* and p?* can be expressed as Katz-Bonacich centralities.

In the symmetric equilibrium characterized by Theorem 1, firm A (or B) has no incentive to
deviate from p*. In other words, the marginal benefit due to higher price-cost margins and the
marginal cost due to reduced demands must cancel out at the equilibrium, i.e.,

* * M* + M~ * *
M (a—p)8p) = (M ) ap -, ®
= =AxA

which holds for any price change Ap** € R". Equation (8) leads to the following equation:*®
sy _ 1 -
M (a—p*) = 5(M* + M )(p" — ), ©

which, after simplification, leads to (7) in Theorem 1.

Second, let us give some economic intuition of the equilibrium price vector p* given in The-
orem 1. This equilibrium price is made of two terms. The first one, (a + ¢) /2, is the monopoly
price, i.e. the equilibrium price when products are independent (8 = 0). Moreover, by Lemma
C.1 in Online Appendix C.2, it is also the collusive price (or the equilibrium price without com-
petition). The second term in () is due to competition. In particular, it is easily verified that

p -1 B 20
Ple-p)1, -2 —) = =2 a-—
where b(G, %, a — ¢) is the vector of Katz-Bonacich centralities (defined in the Online Appendix
A) for network G, where the discount factor is 26/ (2 — B) and the weight is a — c¢. Because
0 < B < 1, this term is always positive: with competition the business stealing effect always
drives prices downwards. More importantly, this term is consumer specific.'”

6Here we have implicitly used the fact that both M* and M~ are symmetric, which is indeed the case since G is
symmetric. When G is not symmetric, the equilibrium characterization for the consumption stage (i.e., Proposition 4)
still holds. Furthermore, we still have a unique equilibrium price in the first stage. The equilibrium pricing is pinned
down by equation (9), except that we need to put a transpose sign on the matrix (M™ + M™) in equation (9). The
expression for p* is thus slightly more complicated than the current form in (7).

7When the network effect ¢ is moderate, the second term in equation (10) is dominated by the first term (a +¢) /2,
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Finally, observe that in Corollary 1, we give the values of the consumption of each good
when Assumptions 1 and 2 hold. These values could be negative if the price of these goods were
too high. Since the price of each good is given in Theorem 1, let us verify that the equilibrium
consumptions are always strictly positive. Since, by Corollary 1, x* = x® = x = M*(a — p), we
need to show that: a > p, which, using (7), is equivalent to:

(a—c)+B[(2—PB)1,—20G] ' (a—c) >0

which is clearly always true. So, the consumption of the two goods will always be strictly positive
in equilibrium.

Implications in terms of price discrimination. Because different consumers obtain different
price adjustments, depending on 8, and G, in equilibrium, firms do exercise price discrimination.
Indeed, since the second term in (7) (see (10)) is proportional to the Katz-Bonacich centrality
measure of each consumer, the more central the consumers are in the network, the lower is the price
paid for consuming goods A and B. This is an interesting result, which shows that more central
consumers obtain a larger discount because of their impact in terms of consumption on their
neighbors. In other words, when firms have a precise information about “who influences whom”
in the network, they can set different prices to different consumers in order to enhance network
effects and earn larger profits. The most central agents receive each product at a lower price
while others, less central, are exploited by the firms and pay a higher price.

Monopoly versus duopoly pricing. Let us now give some intuition of why network effects mat-
ter only where there is competition between firms. In the monopoly case (without competition),
given a fixed price vector p, the demands are equal to: X" = M(a — p™), where M = [I — 6G] !
(Bloch and Quérou 2013; Candogan et al. 2012). Hence, the monopoly firm’s pricing problem is
maxpn (X", p™ — ¢). If p™* is the optimal monopoly price vector, then, after each price deviation,
p*™" will be equal to p*” — Ap*™. Thus, the marginal cost (lower margins) and marginal benefit
(demand enhancing effect) must exactly cancel each other, i.e.,

(M(a—p™),Ap™) = (MAp™,p™ — ), (11)
—x*m =Ax*m

which holds for any price changes Ap™". As a consequence,

M(a—p™) =M(p™ —c), (12)
which leads to the monopoly price:
o _ate
=

The price p*™" is independent of any network effect and, in particular, of the position of consumers
in the network. Indeed, when selling network goods to a group of consumers, a firm faces

and hence the equilibrium prices are positive. In the extreme case when § = 0, p* =[a(1 — B) + ] / (2 — B), which is
obviously positive.

12



two trade-offs when choosing optimal prices, regardless of whether there is competition or not.
On the one hand, more central players obtain more network externalities from their neighbors.
Hence, the firm has a strong incentive to charge a larger premium to these consumers in order to
capture the surplus associated with it. This is the usual logic of third-degree price discrimination.
On the other hand, the firm has an incentive to give these consumers larger discounts because
they generate large network externalities on their neighbors. This is the logic of internalization
of externalities in network games.

For a monopoly firm, these two forces exactly cancel each other out, and thus the firm
charges a price of (a + ¢) /2, which is independent of the network.™® This is clearly an artefact of
the linear demand structure. However, when competing with another firm, firm A’s incentives
to attract consumers towards her own products is stronger. Indeed, because the two goods are
substitute, more consumption of product A leads automatically to less consumption of product B.
This reduction is further reinforced by the complementarity effects within each product, which,
in turn, makes product A even more attractive.

Moreover, we can compare equations (9) and (12). We observe that the difference between
the monopoly and the competitive cases is purely driven by the difference between the matrices
M* and (M" 4+ M) /2, which matters only when products are not independent, i.e. when
B#0@G p=0M" =M =M). Infact, M~ = M" when B > 0. Thus, in (9), the right-hand
side is greater than the left-hand side when setting p* = p*” = (a+c) /2. Therefore, under
the symmetry price p* = (a+c) /2, firm A has a strict incentive to undercut her prices p4,
and so does firm B. Consequently, the symmetric equilibrium prices with competition must be
lower than p* = (a+ ¢) /2." The exact differences correspond to the adjustment term given by
(7) in Theorem 1. It is easily verified that, when either § or § increases, the adjustment term
increases and thus, with a higher degree of product substitution or stronger network effects, the
equilibrium prices decrease.

Collusive price. In the Online Appendix C.2, we analyze the case where the two firms determine
the prices p and p® jointly to maximize their total profits. This could be the case when two firms
merge into a single firm that controls both prices. We show that, again, the equilibrium prices
(collusive prices) do not depend on the network structure.

Complementary versus substitutable goods. In the Online Appendix C.3, we analyze the case
where the two goods are complement (B < 0) instead of substitute (8 > 0). In Proposition C.1, we
show that, when B < 0, the competitive prices p* now exhibit influence-based premium so that
more central consumers in the network are charged a higher price than less central consumers.
This is exactly the opposite result to that obtained in Theorem 1. This is because, when products
are complements, when the price of good A increases, then individuals will consume less of good
B while, when products are substitutes, they consume more of good B. Therefore, the slope of
the prices with respect to centrality is related to the nature of product interdependence. This

18Gee Bloch (2016) for further discussions regarding this network-independent result in the monopoly case.
9For complementary products (8 < 0), the incentive to undercut the price is reversed. As a consequence, the
equilibrium price is actually higher than p*™ = (a+c) /2.
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may be potentially empirically testable.
Special cases. We now apply Theorem 1 to the two benchmark cases presented in Section 3.

When § = 0 (no network effect), there is a unique equilibrium given by:

. (1-pla+c
P=

which is decreasing in B, and converges to the marginal cost ¢ (Bertrand prices) when B ap-
proaches 1.

The other special case (3 = 0) exhibits very peculiar properties. The equilibrium price is
characterized in the next Corollary.

Corollary 2. Suppose Assumptions 1 and 2 hold.

(i) When B = 0 (two independent networks), p* = p*™ = (a+ c) /2, which is independent of the
parameter & and the network matrix G.

(ii) For a fixed nonempty network G, if p* is independent of J, then it must be the case that p = 0.

(iii) For any pair of consumers i, j with g;; > 0, suppose 6 > 0 and consumer i's equilibrium price p; is
independent of aj or c;. Then it must be the case that g = 0.

Note that item (i) in Corollary 2 revisits the established results in the literature (Bloch and
Quérou (2013) and Candogan et al. (2012)), and we present it here for completeness. When
B = 0 (the two products are independent), each firm behaves as a monopolist in her own product
market. Therefore, the problem degenerates to the monopoly setup and the intensity of network
effects 6 has no impact on the optimal (equilibrium) prices. This result is very different to the
one obtained in Theorem 1 for the duopoly case where both the structure of the network and the
intensity of network effects matter in the price determination of the products. In other words,
the competition between firms make the impact of network effects on prices non negligible.

Corollary 2 also shows that this surprising result crucially depends on the product inde-
pendence assumption or the monopoly assumption. In the presence of product competition, the
network does matter. In addition, it also provides the identification result in the reverse direction.
Unless the products are independent (i.e., unless the two firms have no interactions), the equi-
librium prices must utilize the knowledge of the network structure. Taken together, Corollary
2 attempts to identify the boundary within which the insight of network-independent optimal
pricing applies.

Small network effects. In the Online Appendix C.1, we consider an asymptotic regime with
sufficiently small network effects, i.e., when ¢ is sufficiently small. Using Taylor expansions,
we obtain more transparent expressions of the equilibrium prices, which only uses information
about of the degrees of consumers.
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Comparative statics analysis on prices. Let us now derive some comparative statics results on
the equilibrium prices.

Definition 1. G’ > G if G’ contains G as a subgraph and there are additional links in G’ but not in G.
In that case, network G’ is denser than network G.

This provides an incomplete ordering of graphs and we can compare two graphs if the sets
of links are nested. Clearly A1 (G’) > A41(G) if G' > G.

Proposition 2. Suppose Assumptions 1 and 2 hold for both G and G'.

1. We have: 37 -
p; . p; . .
2, >0,Vi and —auj < QO wheni # j,
ap; .
i
20900,
and - -
P; . Pi .
< — << .
0 = 0, Vi and B = 0, Vi

2. If G’ = G, then p*(G') < p*(G).

The comparative statics results obtained in this proposition can be better understood using
the decomposition formula (7). Recall that

it 26
=" st (Ga g 9).

When a; increases, p;‘ is affected in two different ways. First, (aj + cj) /2 increases. Second,

the other term also increases since the weight of (a — ¢) in the Katz-Bonacich centrality measure

. apf . . dpf
raises. Thus aal,- > 0. By contrast, for consumer i # j, aaj_ < 0.

Similarly, when the cost ¢; for firm j increases, pj goes up. Furthermore, this cost increase
for consumer j also negatively affects all other consumers via their social interactions. Formally,
the Katz- Bonacich centrality b; not only depends on player i’s characteristic a; — c; but also on
all the other players’ characteristics. When c¢; goes up, all the bjs are reduced and, therefore, all
of the prices p; rise. For player i, the increment is stronger as the first term also becomes larger.

When two products become more substitutable (i.e., § increases), the firms are competing

more intensively in the pricing game: the coefficient 2(%/3) goes up as well as the decay factor

% in b; <G,%, (a— c)) Therefore, in equilibrium, both firms give more generous discounts to
players, which leads to uniformly lower prices. The same intuition applies for J, the intensity of
network effects. Finally, when the network becomes denser, b; (G,%, (a— c)) becomes higher

and thus prices decrease.
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In the Online Appendix D, we illustrate our main results about pricing with specific network
structures. In the Online Appendix D.1, we consider the case of a dyad (complete network with
two consumers); in the Online Appendix D.2, we consider the family of regular graphs such
as, for example, the circle; in the Online Appendix D.3, we study the complete bipartite graph.
For all these different graphs, we determine the equilibrium prices and derive some comparative
statics results. Finally, in the Online Appendix D.4, we illustrate the last result of Proposition
2 by showing that switching from a star network with three consumers to a complete network
with three consumers, the network becomes denser and the price of the latter network is lower
for all consumers compared to that of the former network.

Consuming one good only . Let us now develop an alternative model where each consumer finds
it optimal to consume one good only. The other components of this alternative model is similar
to our main model. There are two firms A and B producing two different goods competing for n
consumers located in the network G. Each player i € N/ makes a binary decision of whether or
not buying the good A or B, i.e. i7; € {A, B}. The utility of consumer i is given by:

v+ Y Sijl{y=ay — pi et ifngi=A

B B B : (13)
07 +0Y;&ijly=py —p; +€& ifni=B

ui(ni,n_;) =

where vi-‘ is the intrinsic valuation of each product k = A, B for each consumer i € N, pff is the
price charged by firm k to consumer i, 1y, _y; is the indicator function, and €f is the random
shocks. As above, § uniformly scales the network effects. This is alternative model using a
discrete choice approach, which generalizes Bloch and Quérou (2013) for the case of the choice
of two goods. Unlike our model above, each consumer consumes either product A or product B,
but not both.

B
i
t measures the degree of differentiation between the two products. The timing of the game is

For simplicity, we assume that /! — €? is uniformly distributed on the interval [—t, t].2° Here
the same as before. We focus on a symmetric setting with v/ = %, Vi. Also, for simplicity, we
normalize the marginal costs to be zero, i.e., c; = 0. Denote by d; the degree (i.e. number of links)
of consumer 1i.

Proposition 3. Assume that t — 6A1(G) > 0. Then, if the utility of consumers is given by (13), there
exists a unique subgame perfect Nash equilibrium where, in the first stage, both firms charge the same
prices p* = (p5,- -+, py) where p} =t — éd;, for each consumer i, and in the second state the equilibrium
market demand is equal to: 1,. Moreover, in equilibrium, each firm obtains a profit of Y nr 3 (t — 6d;).

We show that the demand function derived from our discrete choice model with the dif-
ference of shocks being uniformly distributed is basically the same as the one derived from our
benchmark model. As a result, the equilibrium prices derived from both models have the same
flavor in that firms discriminate consumers based on their position in the network. To be more
precise, in both models, the demand functions are both linear in prices, and the equilibrium

29This is equivalent to the Hotelling specification of product differentiation.
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prices are network dependent. The price discount in the discrete-choice model is much simpler
since it is negatively related to degree of each consumer while, in our benchmark model, it was
negatively related to Bonacich centrality of each consumer, which is approximately equal to the
consumer’s degree only when the network effects are very small (i.e. when ¢ close to 0).

Observe that, one limitation of the discrete-choice model, is that the total demand is always
equal to one, and the products are always assumed to be substitutable. On the contrary, in our
benchmark model, the total demand varies with price and the two products A and B can be
either substitutes (positive §) or complements (negative ). This generates different implications.
For example, it is easily checked that, when the network becomes denser, the equilibrium profit
under the discrete choice model always decreases since the equilibrium demand is fixed (31, by
Proposition 3) and equilibrium prices decrease. On the contrary, we show in Proposition 7 below,
that, in our benchmark model, the equilibrium profit could increase or decrease depending on
the value of B.

5 Welfare Analysis

In the Online Appendix E (Theorem E.1), we determine the equilibrium consumptions x*(G; B, 6),
the equilibrium profits IT*(G; B,6), the consumer surplus CS*(G;p,d) and the total welfare
TW*(G;B,9).

Comparative statics analysis: the consumers’ perspective. Define*’

L, — 0G]
[(1+ B)L, — 6G][(2 — B)IL, — 20G]

9P (G, 0) =

Proposition 4. Suppose Assumptions 1 and 2 hold. Then,

x"(G;B,8)  x*(G;B,0)

da dc

= ¢"*(G;B,6) = 0

X' (G;B,6) _ 99"*(G;B,9)

(a—c)

0B o
x* . EX ;

Furthermore, if G’ = G, then x*(G'; B,6) = x*(G; B, ).

21Note that X (G; B, §) should be interpreted as
[I, — 6G] x [(1+B)y —0G] L x [(2— B)I, — 20G] L.

Since the matrices [I, — G], [(1+ B)I, —6G]~! and [(2 — B)I, — 20G]~! commute, the order of multiplications does
not matter. Similar explanations for ¢°(G; B,d) (consumer surplus) and ¢*'T(G;B,d) (firm profit) below. Also, see
Remark 1 after Theorem E.1.
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To understand this result, observe that, in equilibrium,

x*=[1+p)L,—6G]"' (a—p") (14)

social multiplier price effect

Therefore, the impact of the parameters a, ¢, B, 6 and of the network structure G on the equilib-
rium consumption is determined through the social multiplier M+ = [(1+ B)I,, — §G] ! and the
price effect a — p*. For a and c, the results are straightforward since both a and ¢ only affect the
price effect. Let us analyze the effect of the other variables. When the products are more sub-
stitutable (i.e. B increases), on the one hand, the equilibrium price p* decreases (see Proposition
2), but, on the other hand, the social multiplier effect is smaller (paths are less discounted in the
network). Hence, the net effect is ambiguous and depends on the relative importance of these
two effects. However, when J, the importance of network effects, increases, the social multiplier
is higher, and, at the same time, the equilibrium price is lower due to intensified competition
(Proposition 2). This leads to an increase in consumption of the two goods. The same intuition
applies for the last result on denser networks.

The aggregate consumer surplus, determined in Theorem E.1 in the Online Appendix E, is
given by:
CS" = (1+p) 1 (x)* = 1+ p)(x",x) (15)

1
Therefore, for a fixed degree of substitution (B), the consumer surplus increases if and only
the equilibrium consumption goes up. Hence, the comparative statics results of the consumer
surplus are similar to that of x*, given in Proposition 4. More precisely, define

o I, — 6G] 2
9°(Gip,0) = L+ B) | (75 BTy = 6GI[2 - BT, — 26G)

We have the following result:

Corollary 3. In equilibrium, we find that:

9CS*(G;B,5)

. o = ((a—¢), %ﬁ;ﬁ,&)(a —¢)). In general, the sign of%g;ﬁ"s) is ambiguous.

o 257 GEI) _ ((a—), LCS&?;M) (a—c)). Moreover 252 ¢,

e IfG' = G, then CS*(G/; ,6) = CS*(G;B,9).

For example, as shown in (14), the network connectivity affects the consumer surplus through
two different channels. The first channel is directly tied to the functional form that displays
strategic complementarities and positive externalities. Given this functional form, players tend
to consume more in a more connected network, holding prices fixed. The second channel oper-
ates through strategic effects, which only exist because of firms’ competition. In a competitive
environment, both firms reduce prices more aggressively in a denser network and this enhances
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consumer demands. Since both effects move in the same direction, the consumer surplus always
increases with network connectivity. The same result holds under the monopoly case, though
the second channel does not exist. We can follow the same argument to examine the comparative
statics for f and a4 and link them to the two aforementioned effects.

Comparative statics analysis: the firms’ perspective. Let us first study the impact of f and J on
the equilibrium profit IT*(G; B, 9).

Define:
I, — 6G][(1 — B)In — 6G]

9" (G;B,0) = [(1+ B)L, — 0G][(2 = B)I — 20G]?

We have the following result:

Proposition 5. Suppose Assumptions 1 and 2 hold. Then,

* . PT .
oI*(G; B, 6) = <(a—c),a¢(G"B'5)(a—C)> <0,

)P 9p
oII*(G;B,9) 09’1 (G;B,9)
36 _<(a_c)’ 95 (a_c)>’

To understand this result, observe that the equilibrium profit can be written as follows:

=x*

W= (- [0+pL -G a-p) )

N

price-cost margin social multiplier effective marginal utility

As a result, when products are more substitutable (i.e. p increases), the equilibrium price p*
becomes lower because of fiercer competition (Proposition 2). Therefore, p* — ¢ decreases while
a—p
effects, captured by M, are smaller. It turns out that the negative effects dominate the positive
one and thus the total effect of B on equilibrium profits is negative. By the same logic, increasing
6 will affect the equilibrium profit through the same three effects identified above but in the

* increases. Furthermore, paths are discounted at a lower rate and the social multiplier

opposite way. Indeed a higher ¢ leads to a higher p* and stronger social multiplier effects. The
net effect cannot, however, be signed.**

Since, in Proposition 5, we could not sign the impact of § on equilibrium profit IT*, in
order to obtain more intuition, let us now consider regular graphs.?> Indeed, suppose that the
adjacency matrix G is regular with degree d, i.e,, G1, = d1,, and assume, for simplicity, that
a; = 1 and Ci = O, Vi.

Proposition 6. Suppose Assumptions 1 and 3 hold and consider reqular networks of degree d. Then,

22Since the total welfare consists of two parts, that is consumer surplus and profit, the comparative statics results
for total welfare directly follow from those of the consumer surplus and of the firm’s profit. Hence, we omit them for
conciseness.

?3In graph theory, a regular graph is a graph where each node or vertex has the same number of neighbors, i.e.
every node has the same degree or valency.

19



1. the equilibrium profit is always decreasing in p:

oIT*(G; B, 9)
9P

< 0.

2. Moreover, the profit is increasing in 6 or d if and only if B is below a cutoff. Specifically, we have

I1"(G; B,9)
06

IT"(G; B, 9)

>
>0& 5

>0« B <p(1-4do),
where B* ~ 0.596 is the unique real root of B° + 3 — 2.%4

Let us better understand the impact of § (or d the number of links of each consumer) on the
equilibrium profit. First, for a fixed price vector, increasing J (or d) leads to a higher intensity of
the network effects because paths are discounted at a higher rate and, as a result, the consumers
consume more since they are more influenced by their neighbors. This has a positive effect on
profits. Second, increasing J (or d) leads to a fiercer price competition and thus lower prices,
which reduces the firms’” profits. In Proposition 6, we show that the net effect depends on the
value of B, the degree of substitution between products, J, the intensity of network effects and d,
the degree of each consumer. If 6 and 4 are fixed, then when products are sufficiently highly (not
too) differentiated so that 8 is small (high) enough, the network effect dominates (is dominated
by) the price effect and J has a positive (negative) impact on equilibrium profits.

Observe that, for a monopoly firm, the price effect disappears because p” = (a+c) /2,
which does not vary with d. As a result, when = 0 (monopoly case), the condition g < f*(1 —
dd) is trivially satisfied for any J. Therefore, increasing ¢ is always beneficial for a monopoly
firm, but it could be detrimental in the presence of product competition.

We can summarize our findings as follows:
Observation 1. Suppose Assumptions 1 and 3 hold and consider regular networks of degree d:
1. When B = 0 (which is equivalent to the monopoly case), increasing J or increasing d always benefits
the firms in terms of profits.
2. Consider the duopoly case (i.e. B > 0):

2a. When 0 < B < B*(1 —d0), increasing & or d improves firms’ profits.
2b When B > B*(1 — dJ), increasing ¢ or d reduces firms” profits.

Let us provide some graphic illustrations of these results. For d = 2, in Figure 1, we plot the
range for which IT* is increasing or decreasing in é. In Figure 1, the horizontal axis corresponds

24The cubic polynomial g% 4 28 — 2 is strictly increasing in f and it has a unique real root given by f* = v/1 + /2 —

ﬁ ~ 0.596.
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to B, while the vertical axis corresponds to 6. Moreover, the dark region is when %%;5/5) >0
dIT*(G;B,9)
90

while the light region is when < 0. We see that an increase in f (horizontal axis) and/or

J (vertical axis) can indeed lead to a decrease in equilibrium profits.

O profit K_4 higher
O profit O_4 higher

o.00) o000

Figure 1: The sign of oII*(G;B,5)/dd for a Figure 2: Comparing profits between K
regular graph with d = 2: positive on the and Oy. dark area: profit of Ky higher; light
dark area, negative on the light area. area: profit of Oy4 higher.

Impact of network density on equilibrium profits. Let us go back to general networks so that G
denotes any network structure. As above (Definition 1), define a denser network G’ as G’ > G if
G’ contains G as a subgraph. We will show that the sign of IT*(G’; B,6) — IT*(G; B, 9) is generally
ambiguous. Let

D' = {(8,6)0<p<1,6>0,1—|p|— |6]As(G) > 0}

be the feasible domain for the parameter (8,4) under G'.

Proposition 7. Suppose Assumptions 1 and 2 hold. Suppose also that G' = G. Then,

1. There exists a nonempty open subset ©1 of D' such that for any parameters (B, ) in this open set,
the equilibrium profit under G' is higher than that under G:

IT*(G'; 8,8) > I*(G; B,5), V(B,5) € Oy.

2. There exists a nonempty open subset @, of D’ such that for any parameters (B, ) in this open set,
the equilibrium profit under G’ is lower than that under G:

IT*(G;B,6) <II*(G; B,6), V(B,6) € O,.
The key message of Proposition 7 is that the equilibrium profit IT*(G; B, ) is very sensi-
tive to the parameters of the model, in particular, B, the degree of substitution between the

two products. In the proof of Proposition 7, we show that, for small values of J, the sign of
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IT*(G’; B,8) — II*(G; B, ) is determined by whether § is lower or greater than p* ~ 0.596. If,
for example, we pick a value of B = B1 (B = B2) such that f; < 0.596 (B2 > 0.596), then
we can always find a 6 > 0 but small enough so that IT*(G’;8,6) > II*(G;B,9), Y(B1,9)
(IT*(G’; B,9) < IT*(G; B,6), VY(B2,6)). By continuity, we obtain the result of Proposition 7.25

Let us illustrate the impact of network density on equilibrium profits using reqular graphs.
Let us compare the circle network Oy4 and the complete network K4 with four agents. Both are
regular graphs with 4 consumers but they differ in their degrees since, for the circle network,
the degree is two while, for the complete graph, it is three. The complete network Ky is clearly
denser than the circle network Oy (K4 > Oy). This implies that the equilibrium price for the circle
network is higher than for the complete network, i.e. p*(Kg;B,6) = p*(O4; B, ) (Proposition 2).
On the other hand, as shown in Proposition 7, the impact on equilibrium profit is unclear. In
Figure 2, we determine the profit difference between the complete network and the star with
four consumers, i.e. IT*(Ky4; B,6) — IT*(O4; B, 6), for different values of B (horizontal axis) and &
(vertical axis). In particular, the dark region is when IT*(Kg4; B,6) > IT*(Oy; B,6) while the light
region is when IT*(Ky; 8,0) < IT*(Oy; B,6). We can see that the profit of firms is higher in K4
compared to O4 only when the parameter 8 is below a certain cut-off curve of §. In particular,
for very small values of B, the profits in the complete network K4 are always higher than in the
circle network Oy for almost all 4 > 0 in the feasible domain.

6 Policy implications

Optimal network structure. Let us now examine what is the optimal network structure for
consumers and for firms.?® Let us fix the network size (n nodes) and let us allow for arbitrary
number links between each pair of nodes. The set of possible network structures is denoted as
Gn. Let E, denote the empty network without any link, and K;, denote the complete network.
Formally, we define

G*¢5(8,8) : = CS*(G;B,4),
(B,9) arg max (G;B,9)

G(B,6) : =arg max IT*(G; B, 9)
as the optimal network structure from the perspectives of consumers and firms, respectively.
On the consumers’ side, the ranking is very clear. Because Proposition 4 implies that a denser
network generates lower prices, larger consumption and thus bigger consumer surplus, we obtain
the following straightforward result.

25Similarly, one can show that, for a fixed graph G, there exists a nonempty subset @)1 of D such that IT* is increasing
in 6 in this open set ©1, while there exists another nonempty subset ©, of D such that IT* is decreasing in ¢ in this
open set @)2.

26Very few papers have examined optimal network design in network games. Exceptions include Hiller (2017),
Konig et al. (2016) and Belhaj et al. (2016).
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Theorem 2. Suppose Assumptions 1 and 2 hold.?7 Then, every consumers prefers the complete network
over any other network, moreover,

G**(B,6) = Ku, V(B,9)

Theorem 2 shows that consumers always benefit from being more connected to each other,
i.e. the consumers’ surplus is the largest in the complete network. This arises from two reasons.
First, there is a direct effect since, other things being equal, consumers obtain higher consumption
utilities from having more friends. Second, there is an indirect effect, which is more subtle. When
consumers become more connected, the competition between firms intensifies. This reduces
firms” equilibrium prices and leads to more surplus to consumers.

On the firms’ side, the preference over G, actually varies with the parameters  and J as we
have seen in Corollary 5.

Theorem 3. Suppose Assumptions 1 and 2 hold. Then, there exists a positive number 6 > 0 such that,
forany § < 6,

1. if B < B* = 0.596, the complete network is the optimal network structure for firms, i.e., G*'1(B,6) =
K.

2. if B> B* ~ 0.596, the empty network is the optimal network structure for firms, i.e., G'''(B,5) =
En.

Theorem 3 gives a clear-cut prediction on the optimal network structure for firms and shows
that it critically depends on the level of product substitution g between products and is indepen-
dent of the consumers’ intrinsic utility (2) and the firms” marginal cost (c). The intuition of this
result is similar to that of the consumer surplus. A denser network is good for firms since it
implies more consumption of both goods for the consumers. However, if the products are more
substitutable (i.e. § is higher), competition becomes fiercer. This reduces each firm’s profitability
when consumers become more connected and explains why the firms prefer the empty network
when > B*. In contrast, where products are less substitutable (i.e. B is lower), the firms benefit
from higher consumption utilities since their products become more attractive and this makes
the complete network desirable. In terms of total welfare, defined as the sum of CS* and IT*, we
deduce that, when B < B*, K, is the optimal network structure but, when g > p*, the optimal
network is undetermined.

In fact, the results of Theorems 2 and 3 could be used in order to analyze the equilibrium
of a game where firms endogenously chose to allow consumers to form links or to subsidize the
formation of social links. Indeed, consider a three-stage game where, in the first stage, consumers
form links while the second (price determination) and third stage (consumption decisions) are
as before. For network formation (first stage), consider the standard concept of pairwise stability

27For the complete network, Assumptions 1 reduces to 1 — || —d(n —1) > 0.

23



for equilibrium networks (Jackson and Wolinsky (1996)) and add a cost of forming a link. Then
Theorems 2 and 3 show that, when the degree of substitution between the two products is not
too high (i.e. B < 0.596), then the optimal structure for both firms and consumers is the complete
network. As a result, in that case, firms have as strong incentive to subsidize link formation
(the consumer’s cost of forming links) up to the point where the marginal cost of link equals
the marginal gain in profit from having a denser network. On the contrary, if the degree of
substitution between the two products is high enough (i.e. B > 0.596), firms will impose a
sufficiently high tax on link formation so that no consumer has an incentive to form a link since
the empty network is the optimal structure for the firms.

Another way to understand the results of Theorems 2 and 3 is to assume that the network
is given and that firms can decide whether or not they want to subsidize the weights g;; > 0 of
the links between all consumers i and j.?® Start with any network structure. Then, for small S,
i.e. B < 0.596, (the products are less substitutable), the firms always have incentives to subsidize
gij because they want consumers to interact more with each other since this leads to higher
consumption. However, when  becomes higher (f > 0.596), competition becomes fiercer and
firms want consumers to interact less so that have no incentives to subsidize the weights of the
links between consumers.

Uniform prices versus third-degree price discrimination. Suppose that there is a ban on third
degree price discrimination so that all firms set the same price, regardless on consumers’ po-
sition in the network. To see how this restriction affects the analysis, note that in a symmetric
equilibrium with uniform prices, both firms choose p*4 = p*? = p“1,. Thus, the induced con-
sumptions are x* = x¥ = x* = M*(a — p"1,) by Corollary 1, and, accordingly, the profits are
14 =118 = (x*,p"1, — ¢). Since uniform pricing limits firms’ best response to competitor’s
prices, hence affect the equilibrium prices and firm profits. The equilibrium under uniform
pricing scheme is present in the following result.

Theorem 4. Suppose that Assumptions 1 and 2 hold and that both firms are restricted to charge uniform
prices to all consumers. Then, there exists a unique equilibrium in the pricing stage where both firms
charge p"1,, where

. <1n, <M+a + Mc>>
" ()

(1,,[(1+ )L, — 6G] 1 (2a+ ¢)) + (1,,, [(1 — B)L, — 6G] ¢)
(1,,3[(1 + B)I, — 6G]~11,,) + (1, [(1 — B)L, — 6G]~11,,)

The derivation of this theorem is similar to that of Theorem 1. We observe that unless cer-
tain strong assumptions on network G are satisfied, the symmetric discriminatory price vectors
derived in Theorem 1 and the uniform price vector derived in Theorem 4 are different. There-

20ur main results easily carry over to the case with a weighted network matrix where gij takes nonnegative real
values, not just {0,1}.
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fore, the competitive firms do exercise their price discrimination power at very refined levels.
Interestingly, p* can be understood as an average over the prices that would prevail under price
discrimination since, in the latter case, different consumers obtain different prices depending on
their position in the network.”® More importantly, even if the firms are restricted to charge uni-
form prices, the matrix decomposition of demand functions (via M™ and M~ in (4)) still plays
a crucial role in the market equilibrium. In other words, the network structure matters even
though consumers are all charged the same price.

Let us now compare the welfare (both in terms of consumer surplus and firms’ profits)
between the uniform and the discrimination price model. For simplicity, and without loss of
generality, we assume that a; = 1,¢; = 0, for all i. Denote by

Al =TII* — IT* and ACS = CS* — CS*

the difference in total profit and consumer surplus, respectively, between the uniform and the
discrimination price model.

Proposition 8. Suppose that Assumptions 1 and 2 hold.

1. If G is a regular network, or p = 0, or & = 0, then the total welfare (i.e. the sum of the equilibrium
profits and consumer surplus) is the same under uniform and discriminatory pricing.

2. If G is not a regular network and p # 0 and 6 # 0, then, for low enough &, there exist two positive
thresholds B(8) and B(6) such that

AITZ0 < B = B(o)

and
> >
ACS Z0 <= B = B(9).

This interesting result shows that, when the network is not regular, and network effects are
small (low J), then B has to be small enough for the firms” profit to be higher under uniform
pricing while B has to be large enough for the consumer surplus to be higher under uniform
pricing. To interpret this result, we first note that in equilibrium consumer surplus can be ex-
pressed as (1 + B) times the sum of the square terms of their equilibrium consumptions (see (15)).
Therefore, the more disperse the consumptions are, the higher consumer surplus is generated.
Under uniform pricing, the firms are restricted to offer the same prices for all consumers, and
more central players tend to consume more. By contrast, in the discriminatory pricing regime the
firms can charge charge a lower price to more central players; this further enlarges the consump-
tion discrepancy between more and less central players. Thus, uniform pricing tends to reduce
the consumption variation and hurts consumer surplus. This, however, is only half of the story.

290bserve in Figure 5, the uniform price curve lies between the prices for the center (below) and the periphery
nodes (above).
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Uniform pricing also restricts firms” ability to conduct discrimination and extract revenue from
heterogeneous consumers.

The above two conflicting forces collectively give rise to the findings in Proposition 8. Recall
that the higher is B, the more the products are substitutable (i.e. the less differentiated they are),
and, thus, the higher is the competition between the two firms. As a result, an increase of p
leads to a lower price on average, and enlarges the consumption variation among more and less
central players. When S is low, there is less competition to attract consumers. Since the network
effects are small (i.e. small §), firms prefers uniform pricing because what they lose on the
central consumers is not enough compensated by what they gain on the less central consumers.
Obviously, this is the reverse for the consumers who prefer the discriminatory pricing regime
when B is small. On the contrary, when f is high enough, competition becomes fiercer and firms
obtain higher profits under discriminatory pricing policy.

We hereby provide some simple numerical simulations that confirm this intuition even when
¢ has higher values. Consider the star network with one center and two periphery nodes. In
Figure 3, we study an increase in § on AII (left panel) and on ACS (right panel) for 6 = 0.1
(dashed curve) and § = 0.2 (solid curve). Even when § > 0, we still obtain results similar to that
of Proposition 8. Indeed, we see that, for AIT (left panel), the sign is positive (i.e. IT* > IT*) for
small B and negative (i.e. IT* < IT*) for large B. Moreover, the cutoff value of B is decreasing in
6. For ACS, we obtain the reverse results as stated in Proposition 8.
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Figure 3: x-axis is f; y-axis, left figure is AIl, while right figure is ACS; dashed line is for § = 0.1,
solid line is for 6 = 0.2.

In Figure 4, in the plan (B,J), we plot the regions where AII is positive (darker area) or
negative (lighter area) in the left panel and the regions where ACS is positive (darker area)
or negative (lighter area) in the right panel. We see that, when B is small, the uniform price
is preferred (i.e. IT" > II*), even when ¢ is relatively high. However, when B is large enough
(above 0.5) so that competition becomes very fierce, then firms are better off under discriminatory
pricing even when J is close to zero. For the consumer surplus (right panel of Figure 4), the
pattern is reversed.

Finally, in Figure 5, in the plane (B, price), we plot three curves where the uniform price
curve lies between the prices for the center (below) and the periphery nodes (above). The left
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Figure 4: x-axis is f8; y-axis is d. Sign of AIT (left panel) and ACS (right panel), the sign is positive
on the dark area, negative on the light area.

panel considers a § = 0.1 while, in the right panel, § = 0.2. We see that the difference in prices
between the different schemes increases for larger p or larger 4. In particular, when f increases,
so that competition becomes fiercer, there are larger differences between the price charged to the
periphery consumers and the one charged to the central consumer. These differences are even
bigger when ¢ is higher because the central agent generates even more externalities to the two
periphery consumers and thus deserves a higher discount.

price price
05|

01 02 03 04 05 06 01 02 03 04 0s 06

Figure 5: x-axis is B; y-axis is price. Left figure: 6 = 0.1, right figure § = 0.2; Dotted line: price
of periphery node; Dashed line: price of center node; Solid line: uniform price.

7 Conclusion

In this paper, we consider a duopoly setting in which two firms sell two interdependent products
to the consumers in a social network. Consumers are endowed with heterogeneous intrinsic val-
uations for the products and firms bear different production costs. Moreover, there are network

externalities (strategic complementarities) amongst the consumers in terms of their consumption
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utilities. We provide a full characterization of the equilibrium prices and provide conditions un-
der which the subgame perfect Nash equilibrium exists and is unique. Contrary to the monopoly
case, we show that the equilibrium prices exhibit strong network dependence, which implies that
the knowledge of the network structure is crucial for profit maximization. We provide some ex-
amples of networks that illustrate how the competitive prices depend on the consumers’ relative
positions. We also show that when the firms sell substitutable products, enhancing network ex-
ternalities among consumers pushes the equilibrium price downwards. Moreover, we show that
tirms” equilibrium profits can be reduced when either the network becomes denser or the net-
work effect is strengthened. Therefore, competition can lead to important distinct implications
of the pricing strategies as well as of the firms’ profitability.

We also investigate the welfare implications of our model. We find that consumers always
benefit from being more connected to each other because this increases their consumption utili-
ties and, at the same time, intensifies firms” competition. This suggests that the complete network
maximizes consumer welfare. In contrast, firms may either prefer the complete network or the
empty network, depending on the degree of product substitution. Finally, we compare uniform
pricing and discriminatory pricing. We show that when the network is not regular, firms obtain
higher profits under uniform pricing when the products are sufficiently differentiated. In con-
trast, consumers are better off under uniform pricing than under discriminatory pricing when
the products are highly substitutable.

In this paper, we adopt the linear quadratic payoffs to deliver clean and intuitive results. As
demonstrated by Bramoullé et al. (2014), the crucial assumption to facilitate such analysis is that
players” best responses are linear. Therefore, the payoff functions can be generalized following
their approach. However, going beyond the family of linear best responses, only qualitative re-
sults may be more likely to survive. For example, we anticipate that the network structure still
affects the equilibrium outcomes, though we do not expect to obtain the clean characterization
shown in Theorem 1. Furthermore, it is unlikely to establish linear relationships between equi-
librium prices and centrality of players, even though we conjecture that more central players are
likely to receive larger discounts. For the welfare analysis on the network structure, we expect
that consumers would still prefer denser networks due to lower prices and larger network ex-
ternalities. For firms, they will still face the fundamental trade-off between the negative effect
through intensified price competition and the positive demand enhancing effect through larger
network effects. That being said, thorough investigations are required to advance our knowledge
towards more general payoff functions.

In our setup, the firms are restricted to set per unit charges. Allowing for two-part tariffs
significantly change the strategy space of the firms. In general, the results can be quite differ-
ent because both firms know that the players are located in heterogeneous network positions.
Thus, even if the firms are not allowed to set discriminatory prices for different players, with
two-part tariffs, second-degree discrimination is inevitable. Second-degree price discrimination
occurs here because players in different network positions derive different consumption utilities
from the same consumption level. The nonlinear pricing literature has already identified the
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substantial difficulties when competing firms (sellers) attempt to price discriminate players that
have heterogeneous willingness to pay in a vertically differentiated setup (e.g., Armstrong and
Vickers (2010)). We expect that the analysis will be more involved here because the network
structure is explicitly taken into account. This deserves a separate study that we leave for future
research.
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Appendix: Proofs for the results in the main text

Proof of Proposition 1: The first-order conditions are given by:

1 ‘B x;A _ IZZA — Pf‘ —+ 52;1:1 gl’]‘X]A . (16)
B 1] |xF af — pP + 0L 8ifx}

X
Taking the sum of first-order conditions in (16) yields:

(xf+2B) (et +af)  (pr4pP) & ()

which can be expressed in matrix form:

(x4 +xB)  (at+aP) (pA+pP) (x4 +xB)
(4P =~ G

Therefore, we obtain

x4+ xB - ad + ab A4 B
W) — [+ p - oa) 1[( . )—(p = )} (17)
On the other hand, taking the difference in (16) yields:
( —xf) _ (af—af)  (pf—pP) | on (&)
e S H];g”z
A =P (@t -a%)  (pt-pf) (x* —x")
= (1-p) 5 = 5 5 +0G 7
Therefore,
(XA o XB) - B B 3 aA o aB B pA . PB
= [(1-PB)L, — oG] 5 — )| (18)

Combing equations (17) and (18), we obtain (4). Finally, Assumption 1 guarantees that the two
matrices: [(1+ B)I, —dG] and [(1 — B)I, — 6G| are positive definite, hence invertible (i.e. non-
singular). O

Proof of Corollary 1: When a# = a? = a and p# = p® = p, by (4) we have:

A B A B A _ 4B A _ B
A M+{a +a° pi+p }+M{a a® p p}

2 2 2 2

=0 as a4=aP, and pA=p?B
= M'(a—p).

By the same logic, x® = M*(a — p). ]
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Proof of Theorem 1: First, we derive the best-reply function from each firm’s perspective.

Best response pricing. Suppose the price of the second firm p® is fixed and we are interested
in firm A’s best response. We have seen that the profit of each firm is given by: IT4(p) =
(p" — A, xA(p4,pP)) and 118 (p) = (pP — ¢, xB(p4, p?)). Then, by using the demand functions
x4 and x? given in Proposition 1, the profit of firms A and B can be expressed as:

1 (p) = <pA —c, <M+;M> (aA - pA) + (M+;M> (aB - pB>> (19)

+ _ M- + -
() = (pt -, (M @ e (N )@ -ph) e
The first-order condition is given by:

(42 g (552 (252

or equivalently

and

Mt +M7)(a? + ¢ —2p?) = —-(MT — M) (a® - p?P).

Therefore, the best response for firm A is equal to:

BR () = (1) + M M) MM )

In a similar way, we can obtain the best response for firm B. We obtain:

BRB(pA) _ (a3_2|_c3> L %(MJF —|—M7)71(M+ - Mf)(aB —PB)

It is easily verified that both best-reply functions are monotone, i.e. BR®(p#) is increasing in p*

and BRA (p?) is increasing in p?.
p gmp

Second order condition. From (19), we note that firm A’s profit function is strictly concave
in p4, as the Hessian matrix aa(QHA/;Z = —(M™" +M7)/2 is negative definite as both matrices M
P
and M~ are positive definite by Assumption 1. So the second-order condition indeed holds.

Equilibrium prices. To determine the equilibrium prices, we need to solve these two best-

reply functions simultaneously, that is:
Ay LA —\ — —
pA= BRA(P®) = (4) + J(M* + M) UMY - M) (a® - pP)
B B —\— —
pB = BRP(p4) = (2t )—|—%(M+—|— M)~ H(M*+ — M~ )(aP — pB)

Using the semi-symmetry (SS) assumption given by Assumption 2, i.e. a? = a? = a and
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¢ = ? = ¢, we easily obtain the symmetric equilibrium p*4 = p*® = p*, given by:

P () M M) M M)

e2pf=atct+ M +M ) I(MT—M")(a—p*)
s (P - =(a-p)+M"+M) ' (M" -M")(a—p")
&M +M)(p'—¢)=M"+M ) (a-p")+(M"—M")(a—p’)
& (M"+M7)(p"—¢c)=2M" (a—p)

M (a—p")=5(M"+M")(p"—¢)

N =

which is equation (9). Moreover, we have:

—_

M* (a—p*) = 5(M* + M) (p" —¢)

&2MTa—-2MTp = (MY + M7 )p* — (MT +M")c
Sp'=03BMT+M ) 2MTa+ (M +M )c|
We then have:
p* = (BM"+M ) '[2Mta+ (Mt +M )]
[(2 - B)L, —26G] ' {((1 = B)I, — 6G)a + (I, — 6G)c}
= ¢+ [(2- )L —26G] '[(1 - ), — 6G](a - c)
- (a;“’> — g[(z— B, —20G] H(a—c).

which is equation (7). Last, this equilibrium is unique because Theorem 1 is just a special case of
Theorem C.2, which is stated in Appendix C.4 and where the proof of Theorem C.2 is given in
Appendix F. O

Proof of Corollary 2: Recall that, by (7)

p =27~ Lle-p 26 @ o).

When 6 = 0 (no network effect),

P = a0 -

2 22-p)

When B = 0 (two independent networks),

(I1-Bla+c
2—-8 ’
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which clearly is independent of parameter § and network G.

For the second part, first observe that

oIt _ p
Wb:o = —mc(a —c).

If p* is independent of 6, —ﬁG(a —¢) = 0. This holds only if 8 = 0, as G(a — ¢) is a nonzero
vector. Notice that if G is an empty network, p* obviously does not depend on é.

For the third part,
Ipi B 25
= = — 7 M;ii(G, /).
da; 22-8) T 2-8
Since g;; > 0,6 > 0, we have m;;(G, %) > 0 as well. As a result, if p; is independent of a;, B
must be zero. Similar arguments can be used for the case when p; is independent of c;. O

Proof of Proposition 2: The proof is composed of four parts.

Part 1:
By (7), p
«+_atc p
P="2" 73
Differentiating with respect to a yields

[(2—B)L, —26G] ' (a—c).

" _ 1 B aq oasal Ly P 20
9a 21,1 2[(2 B)l, —26G] " = 21" 2(2—,3)M<G’2—5>'
Hox
The above equation implies that
op; 11, B 26
l O = zidyin — =——m;i(G, 7/
da; i 2= T 22— B) i( 2—;3)

% - 2(2'3_‘3)mii(G/ %) i= j}
_z(zﬁ,ﬁ)mij(cr %) i 7é]

The off-diagonal entries are negative, i.e., %’Z < 0if i # j, and the diagonal entry Q) =

Z(Z‘%ﬁ)mﬁ(G, %) < 1/2 for any i.

Recall that the eigenvalues of matrix Q! are

1 B _ 1-B-0X(G)
2 2(2-B-26M(G))  (2—B—20A:(G))’

NI—

where A;(G),i =1,2,--- ,n are eigenvalues of G. By Assumption 1,

(1—B—6Ai(G)) >0, and (2— B—26A;(G)) = B+2(1 — B — 5Ai(G)) > 0, for all i.
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As a consequence, all the eigenvalues of matrix Q! are positive. Therefore Q! is a positive

definite matrix, and all the diagonal entries are strictly positive, i.e., a Z =Ql >0.

Thus, we have

26
g €0172) (22)

Moreover for i # j, by positive definiteness of Q' |} < /Q};Q); < v/1/2-1/2 = 1/2. There-
fore,

op; 1 B 3
91 ;= 57 mmu(c

aa;;] =0 =~y gyl© 52 p) € (-1/2,0), =
fori #j.
Part 2:
By (7), we have
P’ = anrc - §[<2—5)In ~26G] "} (a— o).

Differentiating with respect to ¢ yields

ogp- _ 1. B 41 B 26
o =5t s [(2 — B)I, — 20G] 1_§1n+ 22— ’B)M(G /3)‘

102

Component-wise, we can rewrite the above as:

o p 2
! OF = 1d = m; —_—
a — e T o gl © g —p)
_ %+2(ﬁﬁ)mzz<G/2?jﬁ) i=7j
z(zfi/;)ml](cf 220/5) i #;

Clearly, every entry of Q? is positive. More specifically, for i = j,

p*
ﬂ:QZ.—lJr P m”(G 20 ) =1-0kc (1/2,1),

d; " 2(2-p) —B
by (22). For i # j, we obtain
wp; 2 p B 20 1
acj = 2(2 - ﬁ)m”(G’ 2— 5) =~ € (0172),
by (23).
Part 3:
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Differentiating with respect to J in (7), we obtain

ap*__
20

B[(2 — B)I, —26G] >G(a—c).

Recall that B > 0, [(2 — B)I, —20G]"! = 0,G = 0,(a— c) = 0. Therefore, aa%* <0, ie., aa’isl% <0
for any i.

Differentiating with respect to J in (7) yields

ap*__l
B 2

(2 By —20G] H(a— )~ E[2— p)1, ~ 26G] *(a <),

Clearly aa% = 0 because g > 0, [(2 — B)I, —25G] ! = 0,[(2—B)I, —25G] 2= 0,(a—c) = 0.
Part 4:
Since G’ = G, we have
[(2—B)L, —20G/] ' = [(2 — B)I, —20G] !
= [(2-B)1,—26G']126 (G' — G)[(2 — B)I, —20G] !
———

=0
= 0.

As a consequence, by (7),

p(E)-p(6) = {255 -Ble-pn 261 a9} - {27 - e - p - 26 a0}

_ —g (2= B)I, =26 G| — [(2 = B)T, — 26G] (a—c) < 0.

=0

In other words, p*(G’) < p*(G). O

Proof of Proposition 3: Given the prices p = (p*,p?), we let D¥(p) = E[14,,—4;] denote con-
sumer i’s probability of buying product k = A, B. Then

Di(p) = Pr(v]'+0) g;Dj'(p) — pi* +ef = v} +8)_gyD(p) — pi +€7)
) ]
= Pr(ef —ef > —((of' + 6} gD (p) — pi") — (07 + 8 )_giD} (p) — p7)))
] )

1 (o +0%;8D(p) — pf') — (of + 0L 8D (p) — pf)

2 2t

B

where in the last step we use the fact that €! — €? is uniformly distributed on the interval [—t, ],
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and v/ = 8. Note that D/(p) + D?(p) = 1 by full market coverage. So, in matrix term, we have

1 1
D4 = STt E[éG(ZDA —1,) — p? + p?
o 1 51
A_ -~ v -1 -/ A B
D% = 1L+ [I- Gl o (—=p" +p°). (24)
Similarly, we have
1 ) 1
B _ ~ o v 1~ A B
D’ =21, I tG] 2t( p” +p°)

The profit of firm A is given by

1 5.1
nt = (D4 p") = (G1u+[1— S GI7' (—p" +p), p%).

Since t — 6A1(G) > 0, the matrix [I — 2G] ™! is positive definite, hence the profit 77 is strictly
concave in pA. The FOCs are both necessary and sufficient for profit maximization, therefore we
have

aDA), A_o,

DA+(8P7 p

Similar expression is obtained for firm B. After plugging the expressions of D# and D2, we solve
these simultaneous equations and obtain that the equilibrium price vectors are

p = pP* =11, — 6G'1,. (25)

In other words, the price charged to each consumer i is equal to: p; = t — éd;. Moreover, the

equilibrium demand vectors are D4* = DB* = 11,,. Proposition 3 follows directly. O

Proof of Proposition 4: By Theorem E.1, we have x*(G; g, 5) := ¢**(G; B,6)(a — c). Therefore,

ox*(G;B,0)  ox*(G;B,9) .
da - Jc N (PEX(G, pro) = 0.

Similarly, by direct differentiation, we have

ox*(G; B,0)  9¢FX(G;B,6)
B 9p

(a—c).

and X (G;B,8)  9pFX(G;B,0)
x*(G;B,6) ;B
Y TR

Moreover - (aGJ;ﬁ ) > 0.
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Note that

x*(G;B,0) = [(1+ B)L, — 6G] <ajc + B2 p)1,—206) (a- c)) .

Since both terms [(1 + B)I, — 6G] ! and [(2 — B)I,, — 26G] ! are increasing in § and G, x*(G; B, 6)
is increasing in 4 and G. O

Proof of Corollary 3: These results just follow from direct differentiations with respect to the pa-
rameters 8,6 and the fact that CS*(G; B, ) is monotone in equilibrium consumption x*(G; B, ).
O

Proof of Proposition 5: These results just follow from direct differentiations with respect to the
parameters 8, 6. Moreover,

apPT —2(1 - 6z2) 1—06z 3
op _(1+5—5z)2(2—5—252)3{(5_ 2 )2+4(1_‘Sz)2)}

It is easy to check that qul;;(z) l.=a;(6) < 0, where A;(G) is the eigenvalue value of G. Hence,

9" (i) 4 tive definite matrix; tly, the si
=—p "~ Is a negative definite matrix; consequently, the sign

oIT*(G; B, 9) 29" (G; B, 0)
ap ’ 9B

is negative. The sign of IT*(G’; B,8) — IT*(G; B, 6) in general is ambiguous by Proposition 7. O

=({(a—0) (a—0))

Proof of Proposition 6: By Theorem E.1, the equilibrium firm profit is given by:

(1—6d)(1— B —od)
(1+p—od)(2— p—26d)%

" (d; B,0) = n¢?T(d; B,6) = n

It is easily verified that:

AT (d;p,0) _ 201-d0) [(1-do)— (1-do)p+p] _
B T 2-p_20d)P(1+p_od)p <

since (1 — do) — (1 —dé)p + B2 = (1 —ds — £)2 + 32 > 0. On the other hand,

oI (d;p,6) _ A [p°+3(1—d0)’p—2(1—do)’]
T T 2B 2041+ B—od)?

Note that g%+ 3(1 — dé)?8 — 2(1 — dé)® > 0 if and only if B > B*(1 — dJ), where B* ~ 0.596072 is
the unique real root of % + 38 — 2. Therefore,

oIT*(d; B, 6)

55 > 0 if and only if B < B*(1 — dJ).
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Next, we investigate the impact of the degree d on the equilibrium profit. Intuitively, this should
be the same as increasing J since:

AIT* (d; B, 0)
ad

»—6(B3+3(1—dé)?p—2(1—ds)3)

=m0 = s 2sap( 1 p—od)

We observe that, when 6 > 0,

Therefore, the sign of JIT* /dd could be positive or negative, depending on the parameters. 0

Proof of Proposition 7: First we have the following Taylor expansion for ¢P'T for small 6:

(1-8) 2-38—p%)

Hence, by (E.1) in Theroem E.1, we obtain

¢" (2, B,6) = (

_ _ _Rr3
9"1(Gi,0) = 5 +([15>(2ﬁ1 ﬁ)21n+5<1(i ﬁff(z _’85)>3G+(’)(52).

As a consequence, we have the following Taylor expansion for the equilibrium profit for small ¢:
" = ((a-c),¢"(Gpd)(a—0)) (26)

— _ _p3
= e e e o gl s la- .G+ 0

Now we proceed to establish the statement of the proposition. From the above Taylor ex-
pansions, we find that

/ _ (2_3ﬁ _183) /
I(G') - II(G) = AT BrE- ﬁ)3<(a —0),(G'=G)(a—<)) +O(8).
Observe that ((a—c¢),(G' —G)(a—c)) > 0 as G’ > G by assumption. The cubic polynomial

2 — 3B — B is decreasing in § and it has a unique real root at §* = /1 + /2 — 3\/117 ~ 0.596072.
+

Therefore, 2 — 38 — B> > 0 if and only if B < B*. This cutoff value B* determines the sign of aa—l}
around ¢ = 0. In other words, for a fixed § > 0, the sign of II(G’) — I1(G) is solely determined
by the sign of sign{p* — B} for § > 0 but close to 0.

Now suppose that we pick any number, say ;1 = 0.4 < B*. In this case, we can find a
61 > 0 small enough such that II(G’) — II(G)|g, 5,) > 0. Similarly, if we pick another number,
say B2 = 0.7 > B*, we can find &, small enough such that TI(G’) — II(G)|g, 5,) > 0. The rest just
follows from the continuity argument. O
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Proof of Theorem 3: By equation (26), we have

. (1-8) (2-38-p%) 2
IT" = a—c),(a—c))+9 a—c¢),G(a—c))+O().
dipe a9 G- o P (@ 0.6a - 0) + o)
Since there are only a finite number of networks with n nodes, there exists a small number 5
such that for § < §, the leading term of IT* is determined by sign of 2 — 38 — % and the number
((a—c),G(a—c)). Hence,

sign {I1*(G'; ,6) — IT*(G; B,6) } = sign{p* — B}, whenever G’ - G.

O

Proof of Theorem 4: Let p*4 = p* = p"1, be the unique symmetry uniform price. Now
suppose firm A unilaterally deviates and decreases his price by Ap*4 = Ap1,, (lowers the price
by Ap# for every consumer), i.e.,, p** becomes equal to p* — Ap*. It has two effects. On one
hand, the price margins per unit are lower. This gives rise to the total marginal loss

~ (x5, Ap™) = (M (a — p"1,), Ap**) = (M T (a — p"1,,), Ap”1,).

On the other hand, there is marginal benefit due to demand enhancing, which is ~ <AxA, p*l, —
¢). The change in consumption for A due to lower p*4 is Ax* = w Ap*t = WA;?ALI.
In equilibrium both effects must cancel out, i.e.,

+ —
(M*(a—p"1,),Ap% 1,) = <WApAln,p“1n —¢), forany Ap? €R.
As a consequence,
M* + M~
(M*(a—p"1y),1,) = <f1n,p”1n —c).
Plugging in M and M~ and simplifying yields the theorem. O

Proof of Proposition 8: The first part of the proposition is obvious since when either G is a
regular network, or B = 0, or § = 0, the equilibrium price in Theorem 1 is actually the same
for every player and is equal to the uniform price. As a result, the firms’ profit and consumer
surplus are the same under both price regimes.

Let us now focus on the second part of the proposition where G is not a regular network,
and  # 0, and 6 # 0. For that, assume that J is close to zero so that it is sufficient to prove the
result for Taylor expansion expressions of AIl and ACS. We expand the profit and surplus under
two the pricing schemes up to the second order terms of §, and evaluate the difference.

First we consider the case with discriminatory pricing. Recall that the equilibrium pricing is
given by Theorem 1 and the welfare results are shown in Theorem E.1 in Appendix E. To derive
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the Taylor expansion, we first note that:

_ 1 e 52G?

Mt =[(1+B)1-6G] ! = (1+ﬁ)[l+ A+ p) + (1+ﬁ)2+0(‘53)]
202

M~ =[1-B1-6G] = (1i5) [T+ (1‘5_Gﬁ) + (1‘5_Gﬁ)2 +0(82)]

Since we assume that ¢ = 0,a = 1,, by Theorem 1, we have:

= () -fle-pr -6 a-o

1— oG 286%2G2
N [2 - 21 N (2/3— B? (zﬁ— e o) 7

The equilibrium demand is given by: x* = M*(a — p*). Using (27), we can compute the Taylor

expansions for consumer surplus and firm profit as follows:

CS* = (14B)x"x’) = (14 B)(M'(a—p*),M*(a—p"))
_ n I 2(1+ B)? (12 + 16p8% +28° + B*)
= eopra+p T eoparp Mt T 2o prat pe
T = (x',(p" — ) = (M*(a—p°), (p" — ©))
3 3 4
z 2736 P g4 22646 P )52Ad2] +0(8%)

= zprap NPT e s @~ BR(+ P2

where Adl = %Zdi and Ad2 = %Zdiz.

52Ad2} + 0(8°) (28)

Next we consider the uniform pricing. Since we assume that ¢ = 0,a = 1,, by Theorem 4,
the uniform price is given by:

L Gufeereg) (e
<1n, (M+1n + MEM 1n)> <1n, (M+1n MM 1n)>

Let x* = M™(a — p"1,) denote the equilibrium demand under uniform pricing. We can
simplify the consumer surplus and write it as follows:

Cs" = (1+B)(",x") = (1+p)(M"(a—p"l,),M"(a—p"ly))

_ n 1+ 2(1+ B)?
2-pP0+p)"  2-pO+p)

N (12 —16B +19p% — 7B83) Ad2 + (4B — 38> — 7B% — p* — B°)(Ad1)?

(2-pB)*(1+p)*(1—-p)

where in the last step we use the Taylor expansions of M™ and M~ to simplify p*. As a result,

6Ad1

0%+ 0(6%) (29)
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the difference in consumer surplus between the two pricing regimes is equal to:

np(—4+7p+B°)
(1-p)(1+pB)*(2~-p)*

where Var(d) = Ad2 — (Ad1)? = (1 ©d?) — (1xd;)* > 0.

ACS = CS* — CS* = Var(d) 5%+ O(8%). (30)

In a similar way, we can compute the profit under uniform pricing I'* = (x*, (p"1, — ¢c))
and the difference in profits between the two price regimes is given by:3°

201 _
AIT = IT* — IT* = Var(d) (1”_5[3(21) a 2_5;)452 +0(8°). (31)

Clearly, when the variance of the degrees in the network is equal to zero, i.e., Var(d) = 0, so that
d; = d for every i, the network G is regular and AIl = ACS =0

Assume Var(d) > 0 (equivalently G is not regular). From these two expressions (30) and
(31), when ¢ is close to zero, then
1
> <

and
> >
ACSZ 0 < p=0.548

Indeed, to obtain the second result, it suffices to observe that —4 + 7B + 2 is strictly increasing
in B and 0.548 is the unit real root of —4 + 78 + B°. By continuity, these two results have to be
true for values of J that are small but greater than zero. O

3°Details about intemediate steps are available upon request.
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Online Appendix
Competitive Pricing Strategies in Social Networks

By Ying-Ju Chen', Yves Zenou® and Junjie Zhou3

March 12, 2018

In this Online Appendix, we derive some matrix operations and define the Katz-Bonacich
centrality (Appendix A), deal with the single representative consumer case (Appendix B), provide
additional results for the duopoly case (Appendix C), illustrate our results for specific networks
(Appendix D), characterize the total welfare of the economy (Appendix E) and provide the proofs
of all the results in this Appendix (Appendix F).

A Matrix notation and Katz-Bonacich centrality

Matrix notation. Let us have some notation for the matrices and vectors in general. In this paper,
Ij is the k x k identity matrix, J,, is the p x g matrix with 1’s, and 1, = J;;; is a column vector
with 1s:
1 -+ 0 1 - 1 1
Ik: '.' , ]pq: ' '.' ' 1171:

0 -1 kxk 11 pxq 1 nx1

The inner product of two vectors x = (x1,---,x,) and y = (y1,---,¥») in R" is denoted as
(x,y) = Y;xiyi. We use 0 to denote the zero matrix with suitable dimensions. For any two
matrices H and D, H = (=)D if component-wise h;; < (>)d;; for all i,j, where {hy1, ..., hyun}’s
and {di1, ..., dmn}’s are the components of H and D, respectively. Consequently, H is a positive
matrix if H = 0. H’ represents the transpose of a matrix H. A square symmetric matrix H is
called positive definite if all of its eigenvalues are strictly positive.

Katz-Bonacich centrality. Let us define the Katz-Bonacich centrality. Denote by A;(G) the
spectral radius of matrix G. Since G is a nonnegative matrix, by the Perron-Frobenius Theorem
it is also equal to its largest eigenvalue.

Definition A.1. Assume 0 < § < 1/A1(G). Then, for any vector a = (ay,--- ,a,) € R", the Katz-
Bonacich centrality vector with weight a is defined as:

b(G,d,a) := M(G,d)a, (A1)

'School of Business and Management & School of Engineering, The Hong Kong University of Science and Tech-
nology; e-mail: imchen@ust.hk.

?Department of Economics, Monash University, IFN and CEPR. Email: yves.zenou@monash.edu.

3Department of Economics, National University of Singapore; e-mail: zhoujjo3oo1@gmail.com.



where
M(G,d) = [1-6G] ' =1+ ) s*Gr. (A.2)
k>1

Let b;(G, 6, a) be the ith entry of b(G, 6, a). Let m;;(G,d) be the ij entry of M(G, d). Then,

bl‘(G, (5, a) = Zml](G, (5)(11
j

B Single representative consumer case

In this appendix, we consider the case without the network effects. We investigate this benchmark
using the single representative consumer setup (n = 1). The consumer’s utility function is:

1
u(x?,xB) + 1= atx? +aBxP - (E(XA)z + (xB)? + BxAxB) + 1. (B.1)

Here I is the composite good (i.e., it serves as the numeraire). The parameter B satisfies || < 1.

Given this utility function, the consumer’s problem is

max {U(xA,xB,I)] st. pAad +pPaB 4T < w},

{xA,xB,I}

or equivalently,

max { (2% = p)rt (a8 = p0 - GO+ (0 4 priad) ).

{xA, 2P}

Let

The first-order conditions can be written as
aA_pA XA aA_pA 1 1 -p aA_pA
—y! = . .
[ » OF | B aB — pP 1-p2 |- 1 ab — pb (B.2)

aP — pP
These are the demand functions for the differentiated Bertrand competition model.

A
B

X
X

=Y

Monopoly setup. In this case, a monopoly firm sells both products. Let ¢ and c? be the marginal
costs of products A and B. The monopoly firm’s objective is

1 1 -B aA—pA
A__ A B __ .B
i 1P C}l—ﬁz [—ﬁ 1” '



Let p*, p? be the solutions. The first-order conditions for the joint maximization lead to
1 1 —B| |at+cA—2p4| |0
1-pB|—p 1| |aB+cB—2p8| O]
Since ¥~! is invertible, we have
AL A _9pA A atgch
a’ +c 2;_9 _ 10 — Ii e (B.3)
aB + CB o zpB 0 PB a erc

Duopoly setup. Now suppose that the two prices are controlled by two different firms. Let

T = (b= et = (= e (et ) = Bl - )
At ) = (= et = (- ) (@~ ph) — et = )

The first-order conditions for the Nash equilibrium are:

o (p, p®)

A =0 — (- -l =) = ()
B(,A ,,B
TEA) 0, = () - plat ) = (- ).

att + ¢4 — BaP

aB 4P — Bat | Therefore, the equilibrium

_ A
In matrix forms, we obtain that: [_25 2‘3 ] [P B] -

prices are
p*A B 2 _:B B
i B

When a? = a? = a, ¢ = B = ¢, the duopoly prices are[

2(a? + A — BaP) + B(a® + B — pat)
2(aB 4+ B — Bat) + B(a? +cA — BaP) |
(B.4)

1
at+cA—pa| 1
ab + cB — Ba? 4—p?

*A

(1-B)a+c
p*B [

(1_2l;)lZ+C] . When

B > 0, for substitute products, the duopoly price (1—2/51);% is lower than the monopoly price @

When B < 0, for complements products, the duopoly price % is actually higher than the

monopoly price @ This results have obvious counter-parts for [ > 2 products.

C Additional results under duopoly competition

This section collects some auxiliary results that are not reported in the main text.



C.1  Equilibrium prices when network effects are small

Here, we consider an asymptotic regime with sufficiently small network effects, i.e., when J is
sufficiently small. Using Taylor expansions, we can obtain more transparent expressions of the
equilibrium prices.

Theorem C.1. Suppose Assumptions 1 and 2 hold. When ¢ is sufficiently small, the equilibrium price p*
is equal to:

pr = U1 —25_)2“ -3 fﬁﬁ)zc(a—c) +0(8). (C.1)

In other words, for each consumer i,

piA = sz = (1 _2,3_)524‘ “_ 2 ,B 2 281] + O<52)

Furthermore, if we assume that a; = a,c; = c for all i (i.e. Assumption 3 holds), then

pfl:pZB:(l—z‘[i)IQB—{—C_é(i( ﬁ))d+o(52) (C.2)

where d; = Y; gij is the degree of consumer i.

When ¢ is small, we obtain an intuitive pricing rule based on the degree of each consumer.
In equation (C.2), a consumer with a higher degree will always be charged a lower price. In this respect,
the firms compensate consumers that are well-connected because their consumptions will boost
other consumers’ willingness to pay. Again this result has no counterpart in the monopoly
case. More generally, this means that firms, when setting their price, do not need to know the
whole network but, as in Fainmesser and Galeotti (2016), only need to know the degree of each
consumer.

C.2 Collusive pricing and merger analysis

Previously we study the competitive pricing between firms. Now we analyze the case where
the two firms determine the prices p# and p® jointly to maximize their total profits. This could
be the case when two firms merge into a single firm that controls both p# and p®. In such a
benchmark, the optimal collusive prices solve

max, {HA(p) +H3(p)}~

Let p*, p® be the solutions of this program.

Lemma C.1. Suppose that the two firms jointly determine their prices. If Assumption 1 holds, the



corresponding collusive prices are given by

4 at4d 5 aP+cb

2 + P 2

Lemma C.1 shows that the collusive price for a consumer i = 1,...,n only depends on this
consumer’s marginal utility and the marginal cost of product . It is, however, independent of the
network structure G, the strength of network effect §, and the degree of substitution § between

the two products. Moreover, if both firms are symmetric (i.e., Assumption 2 holds), then the
atc

7.
two-product case shares some similarity with the outcomes in the monopoly setting studied by
Bloch and Quérou (2013) and Candogan et al. (2012), which have only one product. It also gives

us a useful benchmark for the equilibrium prices with competition.

collusive prices are also symmetric, and p4 = p® = This network-independent result in the

C.3 Complementary goods

Under Assumption 1, the mathematical formulas for equilibrium analysis carry over line to line
for complementary goods (8 < 0). However, some of the signs of comparative statics are reversed
due to different interdependent pattern between two goods. For example, when < 0, we still

have
oxB _axB Mt -M"
dadA  opA 2
but the sign is different:
B B
oo
da“ apA —

since B < 0 implies that MT > M~. In other words, when two goods A and B are complements,
then if the price of good A rises, each consumer will consume less of product B. When product
A becomes more attractive, the consumption for good B also rises. Clearly, these predictions are
in contrast with the substitutable case (8 < 0).

Another difference is the price implication. The second term in the price p* in Theorem 1 is
now positive as < 0. Therefore, each consumer need to pay a price premium, on top of F<.
The proof is omitted.

Proposition C.1. The competitive prices p* characterized by Theorem 1 exhibit influence-based discount
when goods are substitutable (i.e. the more central the consumers are in the network, the lower is their price
paid for consuming goods A and B) but exhibit influence-based premium when goods are complements (i.e.
the more central the consumers are in the network, the higher is their price paid for consuming goods A
and B).

Potentially this proposition has some empirical implications. Specifically, it ties the product
characteristics with the firms’ competitive pricing strategies. One might use consumer surveys
to identify whether the products are substitutable or complementary separately, and then draw



the connection between consumer survey results and the observable price quotes.

C.4 Asymmetric firms

So far, we have assumed that each consumer has the same intrinsic marginal utility for different
products. This assumption implies that the equilibrium prices for different products are also the
same for a fixed consumer. In this subsection, we remove this symmetry assumption and solve
for equilibrium prices with heterogeneous intrinsic marginal utilities and marginal costs. For
simplicity, we concentrate on the duopoly case. We have the following result:

Theorem C.2. Suppose that Assumption 1 holds. Then, for any a?,aP and ¢4, cB, there exists a unique
equilibrium in prices (p2,pP) that satisfies:

=t (6 - ) s 8 (5 )
0 -5t (o2 (452 - 249)) e (0.2 (552 - 59)).
3

We see that the equilibrium prices depend of the average marginal willingness to pay for the
products and on the position of the consumers in the network as captured by their Katz-Bonacich
centralities. From Theorem C.2, we can express the price differential as follows:

f)A_f)B_l aA_aB+CA_CB N ‘B (e 25 aA—aB_cA—cB
2 2 2 2 22+ B) 248\ 2 2 ‘

The above equation leads to an intriguing implication. Suppose that for all i, af! > a%, ¢/ = ¢5,

so product A is more “attractive ” than product B, then firm A charges higher prices than firm
B due to its competitive advantage. Moreover, these price differentials are amplified when the
network grows.

D Some specific networks

Let us now illustrate our main results regarding equilibrium prices and their properties for some
specific network structures. We will first illustrate the results obtained in Theorem 1 where
we showed that price competition between two firms leads to the fact that, in equilibrium, the
structure of the network and the intensity of network effects matter in the price determination of
the goods. We will then illustrate the comparative statics results of Proposition 2, especially the
impact on the density of the network on equilibrium prices. In all of the examples in this section,
we assume that Assumptions 1 and 2 hold, and thus we can apply Theorem 1 to compute the
equilibrium prices. In some cases, we will impose a stronger condition by replacing Assumption
2 with Assumption 3.



D.1 The dyad: complete graph with 2 nodes (K3)

Let us start with the simplest possible network, the dyad (denoted by K3), which is the complete
graph with only 2 consumers. It is displayed in Figure D.1

1 2

Figure D.1: The dyad

As stated above, we adopt Assumption 2 so that, fori =1, 2, alA = aZB = g; and ciA = clB = ;.

Using Theorem 1, we obtain the following equilibrium prices (p* = pB* = p; and ps* = pb* =
po):t

(2 g4l = [ p7 a0 |1
2
(1-p)2—p)—26 —op
—op (1-p)(2—p)— 24

a
ap

+

(2 - B) — 242 5B o1
5B 2-PB) =282 ||

For the dyad, the network only plays a little role and thus firms do not discriminate consumers
according to their location in the network. It is easily verified that, when the marginal cost c;
for serving consumer 1 increases, equilibrium prices for both consumers increase (dpj/dc; > 0
and dpj; /dc; > 0). By contrast, when a;, the marginal intrinsic value of consumer 1 increases, the
equilibrium price for consumer 1 increases, but the price for consumer 2 decreases (dpj /da; > 0
and dp3/da; < 0). Moreover, when a; = a; = a,c1 = ¢ = ¢, we obtain:

pi=pi= (1_52__,/_3)2&([51—5)9

Let us now present some numerical examples of this model min Table D.1. As can be seen, even
for this very simple network, the comparative statics results are not trivial. We start with the
first row when the parameters are: a1 = 3,40 =4, ¢c1 =c; =1, p = 04 and § = 0.2. Then,
when we increase a; by 1 (second row), pj increases by 22.5 percent but p; decreases by only 1.6
percent. In other words, the effect of an increase of the marginal intrinsic value of consumer 1
has different impact on prices.

Next, suppose that we increase c; by 1 (third row). In this case, both prices increase, but pj
increases by only 2.1 percent while p; increase by 31.2 percent. When B increases or J increases
(columns four and five, respectively), both prices decrease. These signs and percentage changes
of prices are consistent with Proposition 2. All these results depend on the value of the degree
of substitution (or degree of product differentiation) B between the two goods and that of the
network externalities J.

+We assume that Assumption 1 holds, thatis 1 —p —J > 0.



(a1,82) | (c1,e2) | B | 0 (p1,p3)
(1,1) | 0.4 | 0.2 | (1.633, 2.033)
(1,1) | 0.4 | 0.2 | (2.000, 2.000)
(1,2) | 0.4 | 0.2 | (1.667, 2.667)
( (
( (

1,1) | 05 | 0.2 | (1.498, 1.866)
1,1) | 04 | 0.3 | (1.545, 1.955)

Table D.1: Equilibrium prices for different parameters for the dyad network. The underlined
parameters in bold denote changes compared with the case on the first row.

D.2  Regular graphs

We now consider the family of regular graphs. A network G is regular of degree d if each node
has exactly d neighbors,® i.e., G1, = d1,. Figure D.2 displays an example of a regular graph of
degree 2. For simplicity, we adopt here Assumption 3, ie., a; =a; =a,c; = ¢; = c.

4 3

Figure D.2: A circle of four nodes Oy, which is also a regular graph of degree 2.

By Theorem 1, we obtain the following equilibrium prices for an regular graph of degree d:°

—dé —

By differentiating this equation, we obtain a{_)%* >0, % > 0. Moreover,

*

dp
B

When > 0 and 6 > 0, the equilibrium price p* is decreasing in J, B, and the degree d. As
above, these results are due to intensified competition between the two products when each of
these parameters increases. In particular, our last result says that the more connected consumers
are (e.g. by having a denser network), the lower is the price paid for consuming the two goods.

. |l . 2
<0, 51gn{ % } = —sign{B}, 51gn{ 5 } = —sign{Bd}.

5The dyad network studied above is clearly a regular network of degree d = 1.
6We assume that Assumption 1 holds, thatis 1 — g — 26 > 0.



D.3 The complete bipartite graph K,

Let us finally consider the complete bipartite graph, which is commonly used to model two-sided
markets (see e.g. Ambrus and Argenziano (2009) and Jullien (2011)). In a complete bipartite
graph K,,;, there are two disjoint groups M and Q such that any node in M is connected to any
node in Q. Let m = |M| and q = |Q|. Then, the network size satisfies n = m + q. The adjacency
1 ... 1

0 qu

matrix of a complete bipartite graph is given by: G = ] 0
gm

] where J;,, = .o

1 .- 1 s
Figures D.3 and D.4 display two examples of bipartite networks for m = 1,4 = 5 (Figure D.3)
and m = 2,q = 3 (Figure D.4).

center

Figure D.3: A bipartite graph for K5 Figure D.4: A bipartite graph for Kp;.
For K, the adjacency matrix is

0 Jpg
G =
5]

and

45 26(2
2_p,—2q =+ BT e L = =
" - (2-B) ”(27/5] 1 _;_L]] '
(2—B)2—46%pg’ 9P 9" (2—p)2—46%qp’ 91

Using (7), we obtain

o (—pate_ B 250y 02— Bpm| (o).
2-F 2P Br %) [s2—B)ly 262Ny

Moreover, under Assumption 3 (a; = a,c; = c), this can be further simplified to:

o (=Pate, pla—c) (26%pq +5(2 - ﬁ)q)lp]

2-p (2—-p)((2—B)* —45%p) [(2521%7 +6(2—-B)p)1g|




Therefore, the equilibrium prices can be expressed as:

P* _ <1_:B>a+c . 5 252q1mm (5(2_:8)qu
Z_ﬁ (2_:8)«2_5)2 _4‘52"77”) 5(2_,8)101771 252?]1711

(a—c). (D.2)

Let us interpret equation (D.2). Consider two consumers ij,i; in one group of the bipartite
graph. We find that p; > p; if and only if 4;, > a;,. Thus, within each group, the consumer
with a higher intrinsic valuation of the good will be charged a higher price. However, there is
no clear comparison for the prices across different groups. Moreover, under Assumption 3 (i.e.
a; = a,c¢; = ¢), the equilibrium prices can be written as (D.2). Therefore, in equilibrium, there are
only two equilibrium prices, one for group M (denoted by p},), the other for group Q (denoted

by pg) where
% (a—c)(26°mq+6(2—B)q)
[pM] _ 1 (1 - IB)a +c— ﬁ (27‘32)22452{1"1 ﬁ 1 '
p*Q 2- ﬁ (1 - ,B)El +c— ﬁ(aic(l_(f(;;;;zz;&z(;,;ﬂ)m)

As a result, the price difference between group P and Q is equal to:

* x ﬁé(Z—ﬁ)(a—c)
PP = )@ gy aotqm) |

(D.3)

m—q).
Thus, we obtain that
pm > pp if and only if [M| =m > [Q| = g.

Applying this result to the star network (where m = 1), we conclude that the consumer located
in the center is charged with a lower price than the consumers located at the periphery.

D.4 Star versus complete networks

Consider the following two networks and let us analyze the impact of the network structure
(density) on equilibrium prices. It can be seen that adding one link between nodes 2 and 3 in the
star network Kj, in Figure D.5 leads to the complete network K3 in Figure D.6.

1 1

Figure D.5: star Kjp Figure D.6: K3z

Using Proposition 2, the equilibrium price for every consumer in the complete network K3
is lower than in the star network Ky, for any parameter value. This is because the network K3

10



is denser than the network Kj,. This can be seen by comparing the second and third columns
in Table D.2 where we have calculated the equilibrium prices for these two networks for specific
parameter values.

network K1, K3
(ay,a2,a3) | pi  p5  ps | PL P3P
(3,3,3) 1.764 1.790 1.790 | 1.754 1.754 1.754
(4,3,3) 2172 1777 1777 | 2.162 1.739 1.739
(3,4,3) 1.751 2.200 1.788 | 1.739 2.162 1.739
(3.03,3.01,3) | 1.776 1.794 1.790 | 1.766 1.758 1.753

Table D.2: Equilibrium prices for two different networks. The parameters are ¢; = 1,i = 1,2,3,
p=03and § =0.12.

Furthermore, for the complete network K3, the network position of every node is the same
and, thus, a higher marginal utility 4; means a higher price p; (see third row in Table D.2). For
the star network Ky, when all consumers have the same a, the consumer with higher (Katz-
Bonacich) centrality will have a lower price. Indeed, the price for the center consumer 1 in Ky is
p; = 1.764, which is lower than p3 = p; = 1.790. In the last row of Table D.2, consumer 1 has the
largest marginal utility of consuming the product. When the network is the star Ky, her price
is the lowest. However, when consumers 2 and 3 form a link, i.e., when the network becomes
complete, it will then be consumer 1 who will experience the highest price. This is because, in
the star network, the central position of individual 1 “compensates” for her strong willingness to
pay for the product. This is clearly not anymore the case in the complete network where 1 has
no positional advantage and thus does not generate more network externalities than the other
consumers. This highlights the key trade off that firms face when deciding on their prices. They
have some monopoly power over consumers who have a strong preference for consuming the
good but they also need to take into account how much network externalities each consumer
generates, which is captured by the individual’s network centrality.

E Welfare characterization

In this section, we determine the firms’ equilibrium profits and consumer welfare. Let us define
the following rational functions of z:
1-9z
EX(.,. - E.
$7(zp.0) (1+pB—02)(2— p—20z)’ (E-1)
PT(,. . _ (=) —p—52)
PERY) = A ez po 2

11



1—46z 2
I°@60) =P | e | -

o™ (z8,0) : =¢(z) +2¢9" (2).

Theorem E.1. Suppose Assumptions 1 and 2 hold. Then, the equilibrium consumption for each product
is given by:

x'(G; B,8) = ¢"(G; p,0)(a—c)
while each firm’s equilibrium profit is equal to:

IT'(G; B,6) == ((a—«¢),¢""(G; B, 8)(a—c)).

Furthermore, the total consumer surplus is equal to:

CS*(G;B,0) := ((a—¢),¢=°(G;B,0)(a—c)).
while the total welfare, defined as the sum of the consumer surplus and the equilibrium profit, is given by:
TW*(G;5,0) := ((a— <), ¢ (G;B,6)(a - )).
Remark 1. Note that $*%(G; B, ) should be interpreted as
[1, —6G] x [(1+ B)I, — 6G] ! x [(2 — B)I, —26G] L.

using equation (E.1). Since the matrices [I, — 6G], [(1 + B)I, — 6G] ! and [(2 — B)I, — 256G]~! com-
mute, the order of multiplications does not matter. Similar explanations for ¢*'7(G;B,6),¢“°(G;B,6)
and ¢™ (G; B, d) in Theorem E.1.

F Proofs for the results in the online Appendix

Proof of Theorem C.1: By (7), we obtain

p =1Ll p 260

For small §, the inverse matrix can be expanded as follows:

1 20

_ _ -1 _ _
(2 — )L, — 26G] 2_5[1n =5

G| '= I, +
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Hence,

_atc B 1 26
- 2 _2(2—/3“(2—5)2

_ (-Ppa+tc —B a—c 2
- ofare +5<(2_ﬁ)2c( ))+0(5).

Specifically, for each consumer i, we have

a_p_(A—=Plaitc
pi =pPi = 2_‘3 2 ‘BZZgl]

*

G+ (’)((52)) (a—c¢)

)+ O(82).

When a; = a,¢; = c for all i, we can simplify the above term further:

ph=pp =1 _zli)?c - 5([;( BE Vi + 0(&)

Proof of Lemma C.1: We can express the joint profit as

(pt )+ 7B (ptpf) = [pA -t pP oo [xB(pA o?)

The corresponding first-order conditions are

[M++M— M+;M'] [aA—pA] ~ [M%M‘ MEM_]/ [PA—CA] _o. (E.1)

2
+IM- +iM- ~ +IM- +iM- _
M 2M M JZrM aB_pB M 2M M qZLM pB—CB

M*t+M~- M'-M-

. . 2 2
Notice that matrix !M+_M_ M+ M-
2 2

] is symmetric. As a result, (F.1) can be simplified to

at+ct—2pt| |0
af+cB—2p% |  lo|”

Mf+M~- MF-M-

[M++M— M+—M‘]
2

2
Mt-M~- M'+M—
2 2

Recall that the eigenvalues of |+ 2 M- Mt «%M* are Afﬁ),i = 1,---,n, which are positive by
2 2

Assumption 1. Hence, it is an invertible matrix. This then leads to:

ad £ A — sz 0 I—)A aAercA

ab+cB—2pB | o] T [pE| T et |
2
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The result just follows. O

Proof of Theorem C.2: In equilibrium, the following must hold:

oIt4 oI1B
8P7|p,q: f)A = O,and

apﬁhB:pB -

(Since second order conditions hold, these conditions are both necessary and sufficient to de-
termine the equilibrium prices.) From (19) and (20), these first-order conditions can be written

as
+aiM- n M- n + n
{M —EM (aA —pA) + M 2M (aB —pB) _ M +M (P A)
M- n + - n + n
M 2M (aA —pA) + M ;M (aB —pB) - M +M (P B)
In matrix form, we have
Mt+M~- M*-M- A aA M*+M- AA A
M+—£M‘ Mt IM- aB _ pB = : M+0M— pB - CB : (E2)
> - a’ —p 0 MM PP —c

Taking the summation in (F.2) yields

M™ +M™
M*(a% +af — pA — pP) = + pA 4 pB — A

Therefore,
pA+pP=(BM" + M) {2M+(aA +alf)+ (MT+M7)(c* + cB)} .

Plugging in M* = [(1+ B)I, — 6G]~!, M~ = [(1 — B)I, — 6G] !, and simplifying it, we obtain
that

e o e R e e A e )
RS B, (G 26 (aA+aB _CA+CB>>‘
2 22— B) 2-p U 2 2
Similarly, taking the difference in (F.2) yields
M@t - af - piy pfy = MM pr oo,

and therefore
pA— pP = (BM~ +M*)~! {2M—(aA —aP)+ (M + M) (A - CB)} .

Plugging in M* = [(1+ B)I, —6G]™!, M~ = [(1— B)I, — 0G| ! and simplifying it, the above

14



equation can be rewritten as

BT~ epn e[ pL -5 ©)

B aAEaB CAECB N 5 (G 25 aA o aB B CA _ CB
B 2 2(2+B) "2+ p 2 2 '

Combing results in (F.3) and (F.4) yields

PP =5 b (G (M5 - 5)) —adpb (6 (M2 - 29))

(E5)

B = ¢, we must have p = p® by

B

Note that for the special case with a? = a? = aand ¢4 = ¢

(E.4). Therefore, the equilibrium price is symmetric. Moreover, this common price vector equals

atc B

(2~ BT —26G) 7 [((1 - H)L, —6G)a + (1, —6G)e] = 27~ Bl2 — p)1, — 26G] (a )

by (F.3), which is consistent with Theorem 1. Hence, we obtain the result in the theorem. O

Proof of Theorem E.1: For the first result, note that x*(G;p,6) = M*(a — p*) by Corollary 1.
Plugging this formula for p* in Theorem 1 and simplifying it yield the result. The second result
follows from the fact IT*(G; B,) = (p* — ¢,x*) and by straightforward calculation.

For the third result, we first compute the equilibrium payoff for player i as follows:

% 1 1
; —n&}axa(xiAerlB)—{2(x{4)2+2(x13)2+ﬁxi }+5Zgl]x X +(52g1]x xf —pitaft — pPaf

xA,xB

Uu;

We can then plug into this expression the equilibrium prices p/ = p#

& = pi. Then, we use the
tirst-order conditions in equilibrium to obtain:

= (1+B)(x)> (F.6)

The total consumer surplus is then given by:
CS(G Zu —Zl+l3)( 2= (1+p)(x"x).

The rest just follows from using the expressions of x*(G; 8, ) given in the theorem. To obtain the
equilibrium total welfare TW* (G; 8, ), we just need to add the consumer surplus and the profit.
i
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