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Abstract We identify a general, i.e. not necessarily denominator-separable
Roesser model from 2D discrete vector-geometric trajectories generated by a
controllable, quarter-plane causal system. Our procedure consists of two steps:
the first one is the computation of state trajectories from the factorization of
constant matrices directly constructed from input-output data. The second
step is the computation of the state, output, and input matrices of a Roesser
model as solutions of a system of linear equations involving the given input-
output data and the computed state trajectories.
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1 Introduction and problem statement

Discrete Roesser state-space models, introduced in [30], are of the form[
σ1x1
σ2x2

]
=

[
A11 A12

A21 A22

] [
x1
x2

]
+

[
B1

B2

]
u

y =
[
C1 C2

] [x1
x2

]
+Du , (1)

where xi(k1.k2) ∈ Rni for all (k1, k2) ∈ Z2, Aij ∈ Rni×nj i, j = 1, 2; u(k1, k2) ∈
Rm and y(k1, k2) ∈ Rp for all (k1, k2) ∈ Z2; and B :=

[
B>1 B>2

]> ∈ R(n1+n2)×m,
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C :=
[
C1 C2

]
∈ Rp×(n1+n2),D ∈ Rp×m. Such models are widely used to describe

the class of quarter-plane causal 2D-systems, whose transfer function matrix

consists of entries of the form n(z1,z2)
d(z1,z2)

=
∑m

i=0 ni(z1)z
i
2∑n

j=0 dj(z1)z
j
2

with nm(z1), dn(z1) 6= 0,

that satisfy the following properties:

1. m ≤ n
2. deg(dn(z1) ≥ deg(ni(z1)), i = 0, . . . ,m− 1
3. deg(dn(z1)) ≥ deg(di(z1)), i = 0, . . . , n .

In this paper we solve the following identification problem: we are given a
finite set consisting of N polynomial vector-geometric input-output trajectories

wi:=

[
ui
yi

]
: Z2 → Cm+p, i = 1, . . . , N , generated by a system (1), whose value

at (k1, k2) ∈ Z2 is

wi(k1, k2) :=

Li
1∑

j1=0

Li
2∑

j2=0

wij1,j2k
j1
1 k

j2
2 λ

k1
1,iλ

k2
2,i , i = 1, . . . , N (2)

where wij1,j2 =

[
uij1,j2
yij1,j2

]
∈ Cm+p, j` = 0, . . . , Li`, ` = 1, 2 and λj,i ∈ C, i =

1, . . . , N , j = 1, 2. In the following we call (λ1,i, λ2,i) ∈ C2 the frequency
associated with the i-th trajectory, i = 1, . . . , N . Trajectories such as (2) arise
from the response of the system (1) with zero initial state to a polynomial-

exponential input
∑Li

1
j1=0

∑Li
2

j2=0 u
i
j1,j2k

j1
1 k

j2
2 λ

k1
1,iλ

k2
2,i. If Li1 = Li2 = 0 for i =

1, . . . , N , (in the following called the vector-exponential case) the directions
ui0,0 and yi0,0 are related to each other by the value of the transfer function

H(z1, z2) of (1) at the point (λ1,i, λ2,i) ∈ C2: yi0,0 = H(λ1,i, λ2,i)u
i
0,0, i =

1, . . . , N .
We want to find matrices A, B, C, D such that (1) holds for the data

(2) and some associated state trajectories x̂i :=

[
x̂i,1
x̂i,2

]
, i = 1, . . . , N . Such

quadruple (A,B,C,D) will be called an unfalsified Roesser model for the data
(2).

Roesser model system identification has been considered previously, see [2,
4,14,15,19,16,18,17], and it has been applied in modelling the spatial dynam-
ics of deformable mirrors (see [31]), heat exchangers (see [3]), batch processes
controlled by iterative learning control (see [32]), and in image processing (see
[18]). Our approach to compute an unfalsified model differs fundamentally
from previous work. It is based on an idea pursued in the 2D continuous-
time case in [22], and derived from the 1D Loewner framework, see [1,21]
(and also [24,25] for analogous approaches to 1D identification based on the
factorization of “energy” matrices). Namely, we use the data (2) to compute
state trajectories corresponding to it, and subsequently we compute a state
representation for the data- and such state trajectories by solving linear equa-
tions in the unknown matrices A, B, C, D. From a methodological point of
view our two-stage procedure is thus analogous to 2D subspace identification
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algorithms: first compute state trajectories compatible with the data, then fit
a state-space model to the input-output and the computed state trajectories.
However, our approach is essentially an application of the consequences of dual-
ity, rather than shift-invariance as in subspace identification: in our procedure,
state trajectories are computed by factorizing constant matrices built from the
data and its dual, rather than Hankel-type matrices consisting of shifts of the
data in the two independent variables. Such aspect makes our method concep-
tually simple, and it helps to reduce the amount of bookkeeping necessary for
calculations. Moreover, approaching the problem from a frequency-domain and
a duality point of view allows us to avoid imposing restrictive assumptions on
the data-generating system, such as the separability-in-the-denominator prop-
erty required by earlier work on 2D subspace identification such as [2,14,15,
19]. We note that the recent publication [18], provides a subspace algorithm for
the identification of general, i.e. not necessarily separable-in-the-denominator,
Roesser models.

The paper is structured as follows. In section 2 we gather the necessary
background material; this section contains several original results in the theory
of 2D bilinear- and quadratic difference forms, a tool extensively used in our
approach. In section 3 we illustrate some original results on duality of Roesser
models, including a “pairing” result crucial for our identification procedure. In
section 6 we illustrate our method for the identifying Roesser models. Section
7 contains some concluding remarks.

Notation We denote by Rm×n (respectively Cm×n) the set of allm×nmatrices
with entries in R (respectively C). C•×n denotes the set of matrices with n
columns and an unspecified (finite) number of rows. Given A ∈ Cm×n, we
denote by A∗ its conjugate transpose. If A has full column rank, we denote by
A† a left-inverse of A. If A, B are matrices with the same number of columns
(or linear maps acting on the same space), col(A,B) is the matrix (map)
obtained stacking A on top of B.

C[z−11 , z1, z
−1
2 , z2] is the ring of bivariate Laurent polynomials in the in-

determinates z1, z2 with complex coefficients, and Cm×n[z−11 , z1, z
−1
2 , z2] that

of m × n bivariate Laurent polynomial matrices. The ring of m × n Laurent
polynomial matrices with real coefficients in the indeterminates ζ1, ζ2, η1, η2
is denoted by Rm×n[ζ−11 , ζ1, ζ

−1
2 , ζ2, η

−1
1 , η1, η

−1
2 , η2].

We denote by (Cw)
Z2

the set
{
w : Z2 → Cw

}
consisting of all sequences of

Z2 taking their values in Cw, and by `2(Z2,Cw) the set of square-summable

sequences in (Cw)
Z2

. The notation (·, ·) appended to a symbol (e.g. u) is used
to denote a trajectory u : Z2 → Cu. With slight abuse of notation, given λ ∈ C
we denote by expλ the geometric series whose value at k ∈ Z is expλ(k) := λk.

We define vec as the linear map defined by vec : Rm×n → Rmn

vec(
[
aij
]
i=1,...,m,j=1,...,n

) :=
[
a11 . . . a1n . . . am1 . . . amn

]>
,

and mat as the linear map defined by mat : Rmn → Rm×n and

mat(
[
a11 . . . a1n . . . am1 . . . amn

]>
) :=

[
aij
]
i=1,...,m,j=1,...,n

.
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2 Background material

2.1 Controllable 2D behaviors

Define the shift operator σ1 by

σ1 : (Cw)
Z2

→ (Cw)
Z2

(σ1w)(k1, k2) := w(k1 + 1, k2) (k1, k2) ∈ Z2 ,

and define σ2 analogously. The reverse shift operators σ−1i : (Cw)
Z2

→ (Cw)
Z2

,
i = 1, 2, are defined in the obvious way.

A subspace B of (Cw)
Z2

is called a 2D linear behavior if it is the solution
set of a system of linear, constant-coefficient partial difference equations in
two independent variables, i.e.

B =
{
w ∈ (Cw)

Z2

s.t. R
(
σ−11 , σ1, σ

−1
2 , σ2

)
w = 0

}
(3)

where R is a Laurent polynomial matrix in the indeterminates zi, i = 1, 2. We
call (3) a kernel representation of B, and we denote the set consisting of all
2D linear behaviors with w external variables with Lw2.

In this paper we follow the behavioral- and algebraic terminology of [27,
28] (see also [29] for refinements of such behavioral concepts and for the cor-
responding algebraic characterizations). A g × w Laurent polynomial matrix
R in the indeterminates z1, z2 is called left prime if the existence of some
D,R′ ∈ R•×•[z−11 , z1, z

−1
2 , z2] for which equality R = DR′ holds implies that

D is unimodular. The property of right-primeness is defined analogously. The
following is a characterization of controllable behaviors (see p. 414 of [28] for
the definition).

Proposition 1 The following statements are equivalent:

1. B ∈ Lw2 is controllable;
2. B is the closure of B ∩ `2

(
Z2,Rw

)
in the topology of pointwise convergence;

3. ∃ g ∈ N, R ∈ Rg×w[z−11 , z1, z
−1
2 , z2] left prime such that B = ker R(σ1, σ2);

4. ∃ l ∈ N, M ∈ Rw×l[z−11 , z1, z
−1
2 , z2] right prime such that

B =
{
w s.t. there exists ` ∈ (Cw)

Z2

s.t. w = M
(
σ−11 , σ1, σ

−1
2 , σ2

)
`
}

(4)

Proof See Th. 1 p. 415 of [28]. �

It follows from Prop. 2 of [28] that a controllable behavior is uniquely identified
by its transfer function (see p. 415 of [28] for the definition). Controllability is
crucial for the definition of the dual of a Lw2-behavior, as defined in the next
section.
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2.2 Dual discrete 2D behaviors

Let B ∈ Lw2 be a controllable 2D system, and let J = J> ∈ Rw×w satisfy
J2 = Iw. Define the J-dual of B as the set B⊥J consisting of all trajectories
w′ : Z2 → Rw such that for all w ∈ B ∩ `2(Z2,Rw) and w′ ∈ B⊥J ∩ `2(Z2,Rw)
the following equality holds:

+∞∑
k1=−∞

+∞∑
k2=−∞

w′(k1, k2)>Jw(k1, k2) = 0 .

The definition of orthogonality on the complexification of B is straightforward
by substituting w′(k1, k2)> with w′(k1, k2)∗ in the previous equation. B⊥J is
also a controllable 2D linear behavior, and its image- and kernel representa-
tions are related to those of B as stated in the following result.

Proposition 2 Let B ∈ Lw2, B = ker R(σ1, σ2) = im M(σ1, σ2) with R ∈
R•×w[z−11 , z1, z

−1
2 , z2] left-prime, M ∈ Rw×•[z−11 , z1, z

−1
2 , z2] right-prime. Then

B⊥J is controllable and

B⊥J = ker M(σ−11 , σ−12 )>J = im JR(σ−11 , σ−12 )> . (5)

Proof We first prove the first equality in (5). Without loss of generality (if
necessary, changing the latent variable ` of the image representation by post-
multiplication of M by a suitable unimodular matrix) we can assume that

M is polynomial, i.e. M(z1, z2) =
∑N1

i1=0

∑N2

i2=0Mi1,i2z
i1
1 z

i2
2 . Now consider the

following chain of equalities:

0 =

+∞∑
k1=−∞

+∞∑
k2=−∞

w′(k1, k2)>Jw(k1, k2)

=

+∞∑
k1=−∞

+∞∑
k2=−∞

w′(k1, k2)>J (M(σ1, σ2)`) (k1, k2)

=

+∞∑
k1=−∞

+∞∑
k2=−∞

w′(k1, k2)>J

(
N1∑
i1=0

N2∑
i2=0

Mi1,i2`(k1 + i1, k2 + i2)

)
,

where in the last equality we have used M(z1, z2) =
∑N1

i1=0

∑N2

i2=0Mi1,i2z
i1
1 z

i2
2 .

Now define k′j := kj + ij , j = 1, 2, and observe that kj → ±∞ if and only if
k′j → ±∞, j = 1, 2.

With such positions, we can write the last displayed expression as

0 =

+∞∑
k′1=−∞

+∞∑
k′2=−∞

(
N1∑
i1=0

N2∑
i2=0

w′(k′1 − i1, k′2 − i2)>JMi1,i2`(k
′
1, k
′
2)

)
.
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In turn the last expression can be rewritten as

0 =

+∞∑
k′1=−∞

+∞∑
k′2=−∞

(
N1∑
i1=0

N2∑
i2=0

w′(k′1 − i1, k′2 − i2)>JMi1,i2

)
︸ ︷︷ ︸

=(M(σ−1
1 ,σ−1

2 )>Jw′)(k′1,k′2)

`(k′1, k
′
2) .

Now use the arbitrariness of `(·, ·) to conclude that

N1∑
i1=0

N2∑
i2=0

w′(k′1 − i1, k′2 − i2)>JMi1,i2 = 0 ,

for all (k′1, k
′
2) ∈ Z2. This proves that B⊥J = ker M(σ−11 , σ−12 )>J . Right-

primeness of M(z1, z2) and J2 = Iw imply left-primeness of M(z1, z2)>J ; this
yields controllability of B⊥J .

The second equality follows from RM = 0, J2 = Iw, and standard results
in behavioral system theory (see [27]). �

In the rest of this paper we assume that m = p, and we denote by J the
matrix

J :=

[
0m×p Im
Ip 0p×m

]
. (6)

We also assume that the external variable of B is partitioned as w = col(u, y)
with u a m-dimensional input variable, and y a p-dimensional output variable.
It is a matter of straightforward verification to check that Prop. 2 implies the
following result.

Corollary 1 Assume that B ∈ Lw2 is controllable, and let J = J> be such
that J2 = Iw. Denote the transfer function of B by H(z1, z2) and the transfer
function of B⊥J by H ′(z1, z2). Then H ′(z1, z2) = −H(z−11 , z−12 )>.

We conclude this section showing how to compute trajectories of the dual
system from those of the primal one with the mirroring technique (see also [6,
7,26] for the use of such idea in the 1D case). Given the importance of dual
trajectories in our identification procedure, such technique is crucial to our
approach.

Proposition 3 Let B ∈ Lw2 be controllable, and J = J> ∈ Rw×w be such that
J2 = Iw. Let w ∈ Cw, and denote by w(·, ·) ∈ B a trajectory whose value
at (k1, k2) is wλ1

k1λ2
k2 . Assume that v ∈ Cw satisfies v∗w = 0. Then the

trajectory v(·, ·) whose value at (k1, k2) is Jv
(

1
λ∗1

)k1 (
1
λ∗2

)k2
belongs to B⊥J .

Proof Let M ∈ Rw×m[z1, z2] and R ∈ Rp×w[z1, z2] with w = p + m induce
an image, respectively kernel representation of B. Since R(z1, z2)M(z1, z2) =
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0p×m, for all (λ1, λ2) ∈ C2 it holds that im M(λ1, λ2) = (im JR(λ1, λ2)∗)
⊥

,
with orthogonality in the Euclidean sense in Cw. It follows that

Jv

(
1

λ∗1

)·(
1

λ∗2

)·
∈ im JR

(
σ−11 , σ−12

)>
= B⊥J .

This concludes the proof. �

Example 1 We show how the result of Prop. 3 can be constructively used for
computing trajectories of the dual system from trajectories of the primal one.
Consider the case

J :=

[
0 Im
Im 0

]
.

Partition w as w =:

[
u
y

]
as in (2) and let w(k1, k2) =

[
u
y

]
λ1
k1λ2

k2 for some

u, y ∈ Cm and λ1, λ2 ∈ C. It follows from Prop. 3 that the trajectory w′ whose

value at (k1, k2) is defined by w′(k1, k2) :=

[
y
−u

](
1
λ∗1

)k1(
1
λ∗2

)k2
belongs to

the dual system. Thus in the case of J =

[
0 Im
Im 0

]
dual trajectories can be

computed from primal ones by inspection. �

2.3 2D bilinear- and quadratic difference forms

Bilinear- and quadratic difference forms (BdF and QdF in the following) have
been used in the analysis of stability of 2D discrete systems in [9–12,23]. We
briefly review them here, and introduce some novel results.

To simplify the notation for elements of the ring

Rw1×w2 [ζ−11 , ζ1, ζ
−1
2 , ζ2, η

−1
1 , η1, η

−1
2 , η2] ,

we define multi-indices j := (j1, j2), i := (i1, i2) ∈ Z2, and the notation ζ :=
(ζ1, ζ2) and η := (η1, η2). Every element of the ring can be written in the form

Φ(ζ, η) =
∑
i,j

ζiΦi,jη
j ,

where Φi,j ∈ Rw1×w2 , i, j ∈ Z2; only a finite number of nonzero such matrices
is present in the expression for Φ(ζ, η). We associate with Φ(ζ, η) a bilinear
difference form LΦ defined by

LΦ : (Rw1)
Z2

× (Rw2)
Z2

→ (R)
Z2

LΦ(w1, w2)(k1, k2) :=
∑
i,j

(
σiw1

)
(k1, k2)>Φi,j

(
σjw2

)
(k1, k2) ,
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where σiw1 := σi11 σ
i2
2 w1 and σjw2 := σj11 σ

j2
2 w2. The definition of the BdF LΦ

on the complexification of B is straightforward.
If w1 = w2 = w then Φ(ζ, η) also induces a quadratic difference form QΦ

defined by

QΦ : (Rw)
Z2

→ (R)
Z2

QΦ(w)(k1, k2) :=
∑
i,j

(
σiw

)
(k1, k2)>Φi,j

(
σjw

)
(k1, k2) .

Without loss of generality when dealing with QdFs we can assume that Φi,j =
Φ>j,i for all i and j, i.e. that Φ(ζ, η) = Φ(η, ζ)> is symmetric.

The increment in the first direction of a BdF LΦ is defined by

(∇1LΦ) (w1, w2)(k1, k2) := LΦ(w1, w2)(k1 + 1, k2)− LΦ(w1, w2)(k1, k2) , (7)

for all (k1, k2) ∈ Z2. The increment of LΦ in the second direction is defined
analogously. Such increments are themselves BdFs; it follows straightforwardly
from the definition that their four-variable representations, denoted with the
same symbols with slight abuse of notation, are respectively

(∇1LΦ)(ζ, η) = ζ1η1Φ(ζ, η)− Φ(ζ, η)

(∇2LΦ)(ζ, η) = ζ2η2Φ(ζ, η)− Φ(ζ, η) .

Given BdFs LΦi
, i = 1, 2, acting on (Rw1)

Z2

× (Rw2)
Z2

, the vector of BdFs
(“v-BdFs” in the following) LΦ := col(LΦ1

, LΦ2
) is defined by

LΦ : (Rw1)
Z2

× (Rw2)
Z2

→ (R)
Z2

× (R)
Z2

LΦ(w1, w2) := col(LΦ1
(w1, w2), LΦ2

(w1, w2)) .

The discrete divergence of a v-BdFs LΦ := col(LΦ1
, LΦ2

) is the BdF defined
by

∇LΦ : (Rw1)
Z2

× (Rw2)
Z2

→ (R)
Z2

∇LΦ(w1, w2) := ∇1LΦ1
(w1, w2) +∇2LΦ2

(w1, w2) . (8)

From the definition it follows that the four-variable polynomial representation
of the discrete divergence of LΦ is

(∇LΦ) (ζ, η) = (ζ1η1 − 1)Φ1(ζ, η) + (ζ2η2 − 1)Φ2(ζ, η) . (9)

Define the following map:

∂ : Rw1×w2 [ζ−11 , ζ1, ζ
−1
2 , ζ2, η

−1
1 , η1, η

−1
2 , η2]→ Rw1×w2 [z−11 , z1, z

−1
2 , z2]

∂ (Φ(ζ, η)) := Φ(z−11 , z−12 , z1, z2) .

It is straightforward to verify that if (9) holds, then ∂ (Φ(ζ, η)) = 0w1×w2 . The
following result states that also the converse holds.
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Proposition 4 Let Φ ∈ R[ζ−11 , ζ1, ζ
−1
2 , ζ2, η

−1
1 , η1, η

−1
2 , η2]. The following state-

ments are equivalent:

1. ∂ (Φ(ζ, η)) = 0w1×w2 ;

2. There exists a v-BdFs col(Ψ1, Ψ2) such that Φ(ζ, η) = ∇Ψ(ζ, η);

3.
∑+∞
k1=−∞

∑+∞
k2=−∞QΦ(w)(k1, k2) = 0 for all w ∈ `2(Z2,Rw).

Proof See Prop. 1 p. 1524 of [8]. �

The following result states that there are nonzero v-BdFs whose divergence
is zero; this is well-known in the continuous case, even considering non-constant
fields.

Proposition 5 Let Ψi ∈ Rw×w[ζ−11 , ζ1, ζ
−1
2 , ζ2, η

−1
1 , η1, η

−1
2 , η2], i = 1, 2. The

following three statements are equivalent:

1. ∇ col(LΨ1
, LΨ2

) = 0;
2. (ζ1η1 − 1)Ψ1(ζ, η) + (ζ2η2 − 1)Ψ2(ζ, η) = 0;
3. There exists Ψ ∈ Rw×w[ζ−11 , ζ1, ζ

−1
2 , ζ2, η

−1
1 , η1, η

−1
2 , η2] such that

Ψ1(ζ, η) = (ζ2η2 − 1)Ψ(ζ, η)

Ψ2(ζ, η) = −(ζ1η1 − 1)Ψ(ζ, η) .

Proof The equivalence of statements 1) and 2) follows from the relation (9) be-
tween the discrete divergence and its four-variable polynomial representation.
The implication 3) =⇒ 2) follows from straightforward verification.

To prove the implication 2) =⇒ 3) observe first that if (ζ1η1−1)Ψ1(ζ, η) =
−(ζ2η2 − 1)Ψ2(ζ, η), then Ψ1(ζ, η) is divisible by (ζ2η2 − 1), and Ψ2(ζ, η) by
(ζ1η1 − 1). Consequently, there exist Ψ ′j(ζ, η), j = 1, 2 such that Ψj(ζ, η) =
(ζiηi − 1)Ψ ′j(ζ, η), i, j = 1, 2, i 6= j. Statement 3) follows readily from such
equality. �

3 Dual Roesser representations and pairing

To the best of the author’s knowledge and despite the popularity of Roesser
models, what the dual system is of one admitting such a representation, and
whether such dual system admits a Roesser representation itself, have not
been investigated before. In this section we prove some statements related to
such issues, which moreover are crucial for our system identification approach.
Foremost among them is a “pairing” result, showing how bilinear forms on
the external variables of the primal and the dual system are related to bilinear
forms on the state variables of the two systems.

We associate to (1) a “backward” Roesser model described by the equations[
σ−11 x̃1
σ−12 x̃2

]
= A>

[
x̃1
x̃2

]
+

[
C>1
C>2

]
u′

y′ = −
[
B>1 B>2

] [x̃1
x̃2

]
−D>u′ . (10)
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We call (10) a representation of the dual system to (1), for reasons given in
Prop.s 6 and 7 below.

In the following result we show that the transfer function of the dual system
(10) is related to that of (1) by a straightforward transformation.

Proposition 6 Define

H(z1, z2) :=
[
C1 C2

] [z1In1
−A11 −A12

−A21 z2In2 −A22

]−1 [
B1

B2

]
+D ;

then the transfer function of the dual system (10) is −H(z−11 , z−12 )>.

Proof Taking the two-variable z-transform of (10) yields the following expres-
sion for the transfer function from u′ to y′:

−
[
B>1 B>2

] [z−11 In1
−A>11 −A>21

−A>12 z−12 In2
−A>22

]−1 [
C>1
C>2

]
−D> ,

from which the claim follows. �

Define J by (6); the result of Prop. 6, the fact that the transfer function
uniquely defines a controllable system, and Cor. 1 imply that (10) is a state
representation of the J-dual behavior of the external behavior of (1). In the
following we find it easier to use a different hybrid representation of such dual,
that obtained from (10) defining the latent variables x′i := σ−1i x̃i, i = 1, 2;
then the equations (11) can be rewritten as[

x′1
x′2

]
= A>

[
σ1x
′
1

σ2x
′
2

]
+

[
C>1
C>2

]
u′

y′ = −
[
B>1 B>2

] [σ1x′1
σ2x
′
2

]
−D>u′ . (11)

In the following pairing result we describe a relation between the bilinear
form induced by −J on B×B⊥J and a discrete divergence on the field gener-
ated by the inner product of the state variable x of (1) and the latent variable
x′ of (11).

Proposition 7 Consider the latent variable representations (1) of B and (11)
of B⊥J . Then for all col(u, y, x) satisfying (1) and col(u′, y′, x′) satisfying (11)
the following equation holds:

[
u> y>

]
(−J)

[
u′

y′

]
= −y>u′ − u>y′

= (σ1x1)
>

(σ1x
′
1)− x>1 x′1 + (σ2x2)

>
(σ2x

′
2)− x>2 x′2

= ∇ col
(
x>1 x

′
1, x
>
2 x
′
2

)
. (12)
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Proof It is a matter of straightforward verification to check that the following
chain of equalities holds:

−y>u′ − u>y′ = −
(
x>C> + u>D>

)
u′ − u>

(
−B>

[
σ1x
′
1

σ2x
′
2

]
−D>u′

)
= −x>

(
C>u′

)
+
(
u>B>

) [σ1x′1
σ2x
′
2

]
= −x>

([
x′1
x′2

]
−A>

[
σ1x
′
1

σ2x
′
2

])
+

([
σ1x1
σ2x2

]
−A

[
x1
x2

])> [
σ1x
′
1

σ2x
′
2

]
.

The claim follows. �

We can reformulate the result of Prop. 7 saying that the bilinear form
induced by −J on the external trajectories of the primal and the dual system
is the divergence of the field induced by the inner products on the first and
second state components of the primal and the dual system. Such relation is
of paramount importance for our system identification procedure.

4 The data matrix and the 2D Stein matrix equation

In the following we assume that besides the primal data (2), also a set of dual
trajectories whose value at (k1, k2) ∈ Z2 is

w′i(k1, k2) :=

L′i1∑
j1=0

L′i2∑
j2=0

kj11 k
j2
2 w
′i
j1,j2µ

k1
1,iµ

k2
2,i . (13)

where wij1,j2 =

[
u′
i

j1,j2

y′
i

j1,j2

]
∈ Cp+m, j` = 0, . . . , L

′i
` , ` = 1, 2 and µj,i ∈ C,

i = 1, . . . , N , j = 1, 2. Recall from Prop. 3 that such trajectories can also
be computed from trajectories obtained from experiments conducted on the
primal system, and consequently such assumption is not restrictive for practi-
cal purposes.

In the rest of the paper we only consider the case of primal and dual data
with multiplicity one, i.e. Lij = 1 = L′ij , j = 1, 2, i = 1, . . . , N in (2), and
vector-geometric trajectories w′iexpµ1,iexpµ2,i , wi expλ1,i

expλ2,i
, i = 1, . . . , N ;

in such case the value of the primal and dual trajectories at (k1, k2) is

w′i(k1, k2) = w′iµ
k1
1,iµ

k2
2,i and wi(k1, k2) = wiλ

k1
1,iλ

k2
2,i . (14)

In order to compute real models (1), (10), we will also assume that the data
sets D′ := {w′i}i=1,...,N and D := {wi}i=1,...,N are closed under conjugation,
i.e. that

wi expλ1,i
expλ2,i

∈ D =⇒ w∗i expλ∗1,i expλ∗2,i ∈ D

w′iexpµ1,i
expµ2,i

∈ D′ =⇒ w′∗i expµ∗1,iexpµ∗2,i ∈ D′ .
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Such assumption can be made without loss of generality, since it is always
possible to close D and D′ by adding conjugate trajectories, if necessary.

The following result (that uses the definition of observability on p. 6 of
[30]) implies that if the external trajectories are vector-geometric, also the
corresponding state trajectories of the primal system are vector-geometric.

Proposition 8 Let col(x, u, y) satisfy (1). Assume that u = u expλ1
expλ2

and y = y expλ1
expλ2

for some u ∈ Cm and y ∈ Cp, respectively, and some
λi ∈ C, i = 1, 2. Assume that the representation (1) is observable. Then there
exists a unique x ∈ Cn1+n2 such that the state trajectory corresponding to u
and y is x = x expλ1

expλ2
.

Proof The fact that the state trajectory x is vector-geometric follows in a
straightforward way from the second equation in (1) and the fact that u and
y) are vector-geometric and associated with the same 2D frequency (λ1, λ2).
The uniqueness of the state trajectory, and consequently of the state direction
x, follows from the observability of (1). �

A result analogous to Prop. 8 also holds true for the dual system repre-
sented by (10) and equivalently by (11); we will not state it explicitly here.

We associate to the dual and primal vector-geometric sequences w′i(·, ·),
wj(·, ·), i, j = 1, . . . , N the data matrix D defined by:

D :=

[
u′1 . . . u

′
N

y′1 . . . y
′
N

]∗
J

[
u1 . . . uN
y1 . . . yN

]
. (15)

In the following result we make explicit the connection between D and the
state trajectories corresponding to the data w′i(·, ·), wj(·, ·), i, j = 1, . . . , N .

Proposition 9 Let (1) be a state representation of B, and let (11) be a repre-
sentation of its dual; assume that such representations are observable. Denote
the unique state trajectories corresponding to w′i and wj by x′i and xj, respec-

tively, and the associated state directions by x′i =:

[
x′i,1
x′i,2

]
and xj =:

[
xj,1
xj,2

]
,

i, j = 1, . . . , N . Define for k = 1, 2 the matrices

X ′k :=
[
x′1,k . . . x

′
N,k

]
∈ Cnk×N

Xk :=
[
x1,k . . . xN,k

]
∈ Cnk×N

Sk := X ′>k Xk ∈ CN×N

Mk := diag (µk,i)i=1,...,N ∈ CN×N

Λk := diag (λk,i)i=1,...,N ∈ CN×N . (16)

The following equation holds:

D = M∗1S1Λ1 − S1 +M∗2S2Λ2 − S2 . (17)
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Proof The claim follows in a straightforward way by applying the pairing
equation (12) to the vector-geometric data w′i, wj and the associated state
trajectories x′i, xj . �

By analogy with the classical matrix equation X −MXΛ = Q where M , Λ
and Q are given and the unknown is the matrix X , we call (17) the 2D Stein
matrix equation, and for future reference we rewrite it as

Q = M∗1S1Λ1 − S1 +M∗2S2Λ2 − S2 , (18)

where Sk are the unknowns, k = 1, 2. Such equation is of paramount im-
portance in our approach to 2D system identification: from it we compute
admissible state trajectories associate with the input-output data, and also
the state equations corresponding to such variables.

The solutions of the linear matrix equation (18) can be parametrized in a
straightforward way, as we now show. We first show how to compute one pair
of solutions, and then consider the homogeneous matrix equation associated
with (18).

Using analogous arguments to those available in the theory of matrix
Sylvester equations (see e.g. [13]) it can be shown that if λikµ

j
k 6= 1, i, j =

1, . . . , N , k = 1, 2, then for every choice of the right-hand side Q′ there exist
unique solutions X k to the k-th 1D matrix Stein equation

X −M∗kXΛk = Q′ , (19)

k = 1, 2. If Q′ = 1
2Q and if Sk solves the 1D Stein equation (19), k = 1, 2, then

summing up the two 1D Stein equations it follows that the pair (S1,S2) solves
the 2D Stein equation (18). From such discussion it follows that under the
assumption λikµ

j
k 6= 1, i, j = 1, . . . , N , k = 1, 2, one can compute a particular

solution of the 2D matrix Stein equation directly from two 1D Stein equations.
In many cases (e.g. in experimental setting where the inputs can be arbitrarily
chosen and the system can be started at rest), the frequencies λik, µjk can be

freely chosen from the experimental data, and the assumption λikµ
j
k 6= 1,

i, j = 1, . . . , N , k = 1, 2 is not particularly restrictive. We will assume it is
valid for the rest of the paper.

We now study the homogeneous 2D Stein matrix equation:

0 = M∗1S ′1Λ1 − S ′1 +M∗2S ′2Λ2 − S ′2 , (20)

A parametrization of all solution pairs (S ′1,S ′2) to such equation is straightfor-
ward to derive from the following result, whose proof is omitted.

Proposition 10 Denote the (k, j)-th entry of S ′i in (20) by S ′i(k, j), i = 1, 2,

k, j = 1, . . . , N . Assume that λjiµ
k
i 6= 1, k, j = 1, . . . , N , i = 1, 2. The following

statements are equivalent:

1. The pair (S ′1,S ′2) is a solution of (20);
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2. The following equality holds:

S ′1(k, j)
(
λj1µ

k∗
1 − 1

)
+ S ′2(k, j)

(
λj2µ

k∗
2 − 1

)
= 0 ,

k, j = 1, . . . , N ;
3. The following equality holds:

S ′1(k, j) = −S ′2(k, j)
λj2µ

k∗
2 − 1

λj1µ
k∗
1 − 1

, (21)

k, j = 1, . . . , N .

On the basis of the result of Prop. 10, we characterize all solutions to (18)
as follows.

Corollary 2 Assume that λjiµ
k
i 6= 1, k, j = 1, . . . , N , i = 1, 2. Denote by

Si the unique solution to (19) when Q′ = 1
2Q, M = Mi, Λ = Λi, i = 1, 2.

Then (S1,S2) is a solution of (18) if and only if there exist S ′2(k, j) ∈ R,
k, j = 1, . . . , N , such that

S1(k, j) = S1(k, j)− S ′2(k, j)
λj2µ

k∗
2 − 1

λj1µ
k∗
1 − 1

S2(k, j) = S2(k, j) + S ′2(k, j) , (22)

k, j = 1, . . . , N .

5 Computation of state trajectories

We can restate the result of Prop. 9 by saying that the matrices Sk, k = 1, 2
defined in (16) are solutions of the 2D Stein matrix equation

D = M∗1S1Λ1 − S1 +M∗2S2Λ2 − S2 , (23)

with Mk, Λk ∈ CN×N , k = 1, 2 defined by (16), D ∈ CN×N by (15), and
Sk ∈ CN×N , k = 1, 2 being the unknown matrices. Based on such observation,
for pedagogical reasons we propose the following preliminary version of a 2D
identification procedure, which we refine in the rest of this section and in sect.
6.

Algorithm 1
Input: Primal and dual data as in (14)
Output: An unfalsified Roesser model for the data.

Step 1: Construct the matrix D defined by (15) from the data (14).
Step 2: Compute a pair (S1,S2) of solutions to the matrix equation (23).
Step 3: Perform a rank-revealing factorization of Sk = F ′>k Fk, i.e.

rank(Sk) = rank(Fk) = rank(F ′k) , k = 1, 2 .
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Step 4: Define

Y :=
[
y1 . . . yN

]
∈ Cp×N

U :=
[
u1 . . . uN

]
∈ Cm×N , (24)

and solve for Aij , Bi, Ci, i, j = 1, 2 and D inF1Λ1

F2Λ2

Y

 =

A11 A12 B1

A21 A22 B2

C1 C2 D

F1

F2

U

 . (25)

Step 5: Return A, B, C, D.

We now discuss several issues related to such procedure.

Identifiability: Recall from Prop. 5 that Sk, k = 1, 2 defined in (16) are not the
only solutions of 2D matrix Stein equation (23): if S ′k, k = 1, 2 satisfy the
homogeneous 2D Stein matrix equation (20), then also Sk+S ′k, k = 1, 2 are
solutions of (23). The converse also holds: since the matrix equation (23) is
linear, it follows that every solution pair to it can be written as Sk+S ′k for
some pair (S ′1,S ′2) solving (20) and Sk defined in (16). Such non-unicity of
the solutions to (23) is an unavoidable consequence of the non-invertibility
of the divergence operator, or equivalently the existence of nonzero solution
pairs to (20). Consequently, identifiability is not a well-posed question in
the identification approach sketched in Algorithm 1.

Complexity: Another issue arising from the non-unicity of the solutions to
(23) is the fact that Algorithm 1 may compute models having larger state
dimension than that of the generating system. Note that the sum of the
ranks of Sk, k = 1, 2 coming from a generic solution pair computed in Step
2 will generically be N + N , and consequently presumably higher than
the minimal state dimension of a Roesser model of the data-generating
system. Thus generically the Roesser model computed in Step 4 would be
high-dimensional and impractical for use e.g. in simulation, control, and
so forth. In section 5.1 we illustrate a procedure using rank-minimization
to compute a minimal complexity model; see also Remark 1 where an
alternative approach using Gröbner basis computation is sketched.

Computation of A, B, C, D: Finally, sufficient conditions must be established
guaranteeing that solutions A, B, C, D exist to the system of linear equa-
tions (25).

The rest of this section is devoted to modifying Algorithm 1 to address
the complexity issue; the solvability of the system of linear equations (25) is
considered in section 6. We will show that with small modifications our data
matrix-based approach to Roesser model identification offers the opportunity
to address in a conceptually simple way the problem of deriving a minimal-
complexity unfalsified Roesser model.
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5.1 Computation of minimal complexity state trajectories

We define the complexity of a model (1) as the dimension n1 + n2 of the
state variable. Given a controllable, quarter-plane causal behavior B ∈ Lw2, we
define its minimal complexity to be the minimal dimension of the state variable
among all possible Roesser representations of B. Thus every B ∈ Lw2 can be
mapped to point lying on a line n1 +n2 = c in N×N, where c is its complexity,
see Fig. 1. Note that complexity of a given model obtained in our framework is

n1

n2

Complexity	3	line

Fig. 1 A constant complexity line in the (n1, n2)-space

related to the total rank rank(S1) + rank(S2) of the particular solution to (23)
chosen to perform the rank-revealing factorization in Step 3 of Algorithm 1.
Assuming the data to be sufficiently informative about the system dynamics,
such total rank ranges between the complexity n of the actual data-generating
system, and 2N , see the previous discussion on complexity. In the light of the
characterization (22) in Cor. 2, the problem of computing a minimal total rank
solution to (23) can be formulated as a rank minimization problem (see [5]), as
we presently show. In order to do this, we need to state a preliminary result.

Proposition 11 Define bk,j :=
λj
2µ

k∗
2 −1

λj
1µ

k∗
1 −1

, k, j = 1, . . . , N , and

B := diag(b11, . . . , b1N , . . . , bN1, . . . , bNN ) .

Moreover, define the map

f : RN×N → RN×N

f(X) := mat(−B vec(X)) .

The subset C of R2N×2N defined by

C :=

{[
S1 + f(S ′2) 0N×N

0N×N S2 + S ′′2

]
s.t. S ′′2 ,S ′2 ∈ RN×N

}
,

is convex.
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Proof Let α ∈ R, 0 ≤ α ≤ 1; the claim follows in a straightforward way from
the equality

f(αS ′2 + (1− α)S ′′2 ) = αf(S ′2) + (1− α)f(S ′′2 ) ,

which we now prove. The following chain of equalities is a direct consequence
of the definition of f and the linearity of the mat and vec maps:

f(αS ′2 + (1− α)S ′′2 ) = mat(−B vec(αS ′2 + (1− α)S ′′2 ))

= mat(−Bα vec(S ′2)−B(1− α) vec(S ′′2 ))

= αmat(−B vec(S ′2)) + (1− α) mat(−B vec(S ′′2 ))

= αf(S ′2) + (1− α)f(S ′′2 ) ,

as was to be proved.
From such equality it follows that the set{[

f(S ′2) 0N×N
0N×N S ′′2

]
s.t. S ′′2 ,S ′2 ∈ RN×N

}
,

is convex, from which the claim follows directly. �

It follows from Prop. 11 that the optimization problem defined by

min rank

([
S1 0
0 S2

])
s.t.

[
S1 0
0 S2

]
∈ C ; (26)

is in the standard form of a rank minimization problem

min rank(X)

s.t. X ∈ C ,

where C is a convex set, and can be solved by several algorithms implemented
on standard platforms. It goes beyond the scope of the present paper to enter
into details about which algorithms to use in order to solve (26), and to dis-
cuss important issues such as their numerical accuracy and complexity. The
interested reader is referred to the growing literature on the subject.

We can now refine Algorithm 1 as follows.

Algorithm 2
Input: Primal and dual data as in (14)
Output: A minimal complexity unfalsified Roesser model for the data.

Step 1: Construct the matrix D defined by (15) from the data (14).
Step 2: Define C as in Prop. 11, and solve the optimization problem (26).
Step 3: Perform a rank-revealing factorization of Sk = F ′>k Fk, i.e.

rank(Sk) = rank(Fk) = rank(F ′k) , k = 1, 2 .
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Step 4: Define

Y :=
[
y1 . . . yN

]
∈ Cp×N

U :=
[
u1 . . . uN

]
∈ Cm×N , (27)

and solve for Aij , Bi, Ci, i, j = 1, 2 and D inF1Λ1

F2Λ2

Y

 =

A11 A12 B1

A21 A22 B2

C1 C2 D

F1

F2

U

 . (28)

Step 5: Return A, B, C, D.

Remark 1 In [20] a Gröbner basis approach to solve the rank minimization
problem (26) is illustrated. Such approach uses a parametrization similar to
that of Prop. 10 in order to transform the problem of finding fixed-rank matri-
ces solving the 2D Sylvester equation (the continuous counterpart of the Stein
equation) into a polynomial algebraic problem. In order to compute a minimal
complexity Roesser model for the data, beginning with c = 1 we check whether
there exist solution pairs (S1,S2) to (23) such that rank(Sk) = nk, k = 1, 2
and n1 +n2 = c. If no such solution pair exists, we increment c by 1 and repeat
the check. Note that working under the assumption λikµ

j
k 6= 1, i, j = 1, . . . , N ,

k = 1, 2, equation (23) is solved by (S1,S2), where Si, i = 1, 2, are the unique
solution to (19) when Q = 1

2D, M = Mi, Λ = Λi, i = 1, 2. Consequently, such
search ends after at most N steps.

The largest part of the computational effort of such approach is due to
the complexity of Gröbner basis calculations, which becomes especially heavy
for problems involving more than ten data trajectories. However, such ap-
proach has the advantage that a parametrization of all solutions to (23)
with a given total rank is obtained; a numerical approach based on rank-
minimization algorithms only produces one solution among many. Conse-
quently, such parametrization opens up the possibility of exploring the space of
unfalsified models of given complexity, with potential application to 2D data-
driven model order reduction (see [24,25] for the 1D case). Such procedure
also shares with the one sketched in Algorithm 2 a conceptually appealing
simplicity that avoids some difficulties inherent in other approaches based on
shift-invariance. �

6 Identification of Roesser models

To set up a system of linear equations (25), (28) we resort once more to the
2D Stein equation (23). Define, analogously with (24), (27), the input-output
matrices of the dual data by

Y ′ :=
[
y′1 . . . y

′
N

]
∈ Cp×N

U ′ :=
[
u′1 . . . u

′
N

]
∈ Cm×N , (29)
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and assume that rank-revealing factorizations Sk = F ′>k Fk, k = 1, 2 have been
computed. Now rewrite (23) as:[

M∗1F
′∗
1 M∗2F

′∗
2

] [F1Λ1

F2Λ2

]
=
[
Y ′∗ U ′∗

] [U
Y

]
+
[
F ′∗1 F ′∗2

] [F1

F2

]
. (30)

Denote the j-th column of Fk by fk,j , j = 1, . . . , N , k = 1, 2. Observe that the
columns of the matrix col(F1, F2) are the values at (0, 0) of the 2D-geometric
sequence col(f1,jexpλ1

expλ2
, f2,jexpλ1

expλ2
), and those of col(F1Λ1, F2Λ2)

are the values at (0, 0) of the shifted 2D-geometric sequence

col(σ1 col(f1,jexpλ1
expλ2

, σ2f2,jexpλ1
expλ2

.

The idea underlying our computation of an unfalsified model is to left-invert[
M∗1F

′∗
1 M∗2F

′∗
2

]
so as to obtain directly from (30) an unfalsified Roesser

model.
The following result gives sufficient conditions so that a left inverse[

M∗1F
′∗
1 M∗2F

′∗
2

]†
of
[
M∗1F

′∗
1 M∗2F

′∗
2

]
exists so that a Roesser model can be computed from (30).

Proposition 12 Let B,B⊥ ∈ Lw2 be controllable. Let data (14) be given and
define D by (15), Λi,Mi, i = 1, 2 by (16), U , Y by (24), and U ′, Y ′ by (29).

Let S1,S2 ∈ RN×N solve (23), and let Si = F ′∗i Fi, i = 1, 2 be rank-revealing
factorizations. Assume that:

1. im M∗1F
′∗
1 ∩ im M∗2F

′∗
2 = {0};

2. im
[
M∗1F

′∗
1 M∗2F

′∗
2

]
∩ im U ′∗ = {0} ,

3. im Y ′∗ ∩ im U ′∗ = {0}.

There exist a left inverse K :=
[
M∗1F

′∗
1 M∗2F

′∗
2

]†
of
[
M∗1F

′∗
1 M∗2F

′∗
2

]
and G ∈

Cp×N such that

KU ′∗ = 0(n1+n2)×p and G
[
Y ′∗ U ′∗

]
=
[
0p×m Ip

]
. (31)

Let K, G satisfy (31), and define

A := K
[
F ′∗1 F ′∗2

]
, B := KY ′∗

C := G
([
M∗1F

′∗
1 M∗2F

′∗
2

]
K − IN

) [
F ′∗1 F ′∗2

]
D := GKY ′∗ . (32)

Then A, B, C, D define an unfalsified Roesser model for the data.

Proof From assumption 1) it follows that
[
M∗1F

′∗
1 M∗2F

′∗
2

]
admits a left in-

verse. From assumption 2) conclude that such a left-inverse can be chosen
satisfying the first equation in (31). Now multiply both sides of (30) by such
left-inverse to conclude that[

F1Λ1

F2Λ2

]
= A

[
F1

F2

]
+BU , (33)
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where A and B are defined by the first two equations in (32).
Now use assumption 3) to conclude that a matrix G exists such that the

second equation in (31) holds. Multiply both sides of (30) by such G and
rearrange the terms also using equation (33), to conclude that

Y = C

[
F1

F2

]
+DU , (34)

where C and D are defined by the last two equations in (32).
The fact that A, B, C and D define an unfalsified model for the primal

data follows from (33) and (34) defining

col(x1,j , x2,j) := col(f1,j , f2,j) expλ1,j
expλ2,j

,

to be the state trajectory corresponding to the j-th input-output data, j =
1, . . . , N . This concludes the proof of the Theorem. �

Remark 2 The sufficient conditions stated in Prop. 12 fall short of being com-
pletely satisfactory, since they involve the matrices arising from the factor-
izations of Sk rather than the matrices Sk, k = 1, 2, themselves, or in the
best case, the input-output data itself. We also do not make any claim about
the conservativeness of such sufficient conditions. The issue of deriving tighter
conditions expressed only in terms of the input-output data is a pressing issue
for further research. �

7 Conclusions

We have presented a novel approach to the identification of unfalsified Roesser
discrete models from vector-geometric data, based on the idea of first comput-
ing state trajectories compatible with the given input-output trajectories, and
secondly using such trajectories together with the data in order to compute
the A, B, C, D matrices of the Roesser equations. Our procedure is based on
new results concerning duality of such models (sect. 3) and on a parametriza-
tion of the solutions to the 2D Stein matrix equation (sect. 4). Such results
lead to an algorithm for the computation of state trajectories (sect. 5), which
can be refined in a straightforward way to one for the computation of minimal
complexity ones (sect. 5.1). The 2D Stein equation is exploited once again in
order to find an unfalsified model for the input-output data and the computed
state matrices (see sect. 6).

In several preceding publications concerned with linear time-invariant sys-
tems, the author and his collaborators put forward an “energy”-based ap-
proach to identification. Given the abundance of powerful methods to solve
system identification problems for such class of systems, it can be argued that
such results amounted to a relatively minor contribution. The author hopes
that the application of such ideas to 2D systems as in [22] and in the present
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paper, may shift the balance of judgment more in his favour. The ideas under-
lying the approach presented here and in the germane publication [22] can be
applied to a wider class of systems, and to more general classes of data than
vector-geometric or exponential ones. Their potential lies in the generality of
the idea of duality, which we believe can be used to overcome the difficulties
(e.g. of bookkeeping) inherent in applying shift-invariance techniques to mul-
tidimensional systems, or to bypass them altogether for system classes where
such property is not satisfied (e.g. 1D time-varying and nonlinear systems, for
which promising results are being obtained as we write).

Limiting ourselves to the class of multidimensional systems considered in
this paper, three areas of research are currently being investigated. Firstly,
we need to generalize our approach to the case of data other than vector-
geometric through the use of compact-support trajectories and infinite series
involving their shifts (as in the 1D case, see [25]). Secondly, we want to identify
other classes of 2D systems than the Roesser one, amenable to be identified
with duality ideas. The main issue to be addressed is to determine classes of
systems admit a “pairing relation” with their dual, which can be expressed
as the divergence of a field involving the state trajectories, and if possible
algebraically characterize such property. Moreover, it is important to ascertain
whether such divergence is amenable to a computationally straightforward
treatment; for example, in Rem. 8 p. 2751 of [22] it has been shown that
(continuous-time) Fornasini-Marchesini models have been shown to admit a
pairing relation, but one which does not seem to be conducive to a direct
exploitation to derive from it state trajectories. Finally, we plan to investigate
whether duality relations can be used to compute minimal Roesser model from
non-minimal ones, and in the problem of state-space realisation from transfer
functions.

Acknowledgements No new data were created during this study.
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20. Rapisarda, P.: A Gröbner basis approach to solve a rank minimization problem arising
in 2d-identification. In: Proc. 20th IFAC World Congress (2017)

21. Rapisarda, P., Antoulas, A.: A duality perspective on Loewner interpolation. In: Proc.
56th IEEE Conference on Decision and Control (CDC), pp. 2096–2100 (2015)

22. Rapisarda, P., Antoulas, A.C.: State-space modeling of two-dimensional vector-
exponential trajectories. SIAM Journal on Control and Optimization 54(5), 2734–2753
(2016)

23. Rapisarda, P., Rocha, P.: Lyapunov functions for time-relevant 2D systems, with appli-
cation to first-orthant stable systems. Automatica 48(9), 1998–2006 (2012)

24. Rapisarda, P., van der Schaft, A.: Identification and data-driven reduced-order modeling
for linear conservative port- and self-adjoint Hamiltonian systems. Proc. IEEE Conf.
Decis. Contr., Firenze, Italy (2013)

25. Rapisarda, P., Trentelman, H.: Identification and data-driven model reduction of state-
space representations of lossless and dissipative systems from noise-free data. Automat-
ica 47(8), 1721–1728 (2011)

26. Rapisarda, P., Willems, J.: The subspace Nevanlinna interpolation problem and the
most powerful unfalsified model. Systems & control letters 32(5), 291–300 (1997)

27. Rocha, P.: Structure and Representation of 2-D Systems. Ph.D. thesis, Rijksuniversiteit
Groningen (1990)

28. Rocha, P., Willems, J.: Controllability of 2-D systems. IEEE Trans. Aut. Contr. 36(4),
413–423 (1991)

29. Rocha, P., Zerz, E.: Strong controllability and extendibility of discrete multidimensional
behaviors. Systems & Control Letters 54(4), 375 – 380 (2005)

30. Roesser, R.: A discrete state-space model for linear image processing. IEEE Trans. Aut.
Contr. 20(1), 1–10 (1975)



Discrete Roesser state models from 2D frequency data 23

31. Voorsluys, M.: Subspace identification of Roesser models for large-scale adaptive optics.
Master’s thesis, TU Delft, the Netherlands (2015)

32. Wei, S., Cheng, J., Wang, Y.: Data-driven two-dimensional LQG benchmark based
performance assessment for batch processes under ILC. IFAC-PapersOnLine 48(8),
291 – 296 (2015). 9th IFAC Symposium on Advanced Control of Chemical Processes
ADCHEM 2015


