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Abstract We identify a general, i.e. not necessarily denominator-separable Roesser model
from 2D discrete vector-geometric trajectories generated by a controllable, quarter-plane
causal system. Our procedure consists of two steps: the first one is the computation of state
trajectories from the factorization of constant matrices directly constructed from input-output
data. The second step is the computation of the state, output, and input matrices of a Roesser
model as solutions of a system of linear equations involving the given input-output data and
the computed state trajectories.

Keywords 2D systems - Roesser models - Bilinear difference forms

Mathematics Subject Classification 93A30 - 93B15 - 93B20 - 93B30 - 93C20

1 Introduction and problem statement
Discrete Roesser state-space models, introduced in Roesser (1975), are of the form
o | _ [An A |x n B "
02X2 A Ap | | X2 B,
y = [C] Cz] U4 Du ey
X2 ’

where x; (k1.kp) € R™ for all (k1,kp) € Z2, Ajj € Re>% g j = 1,2; utky, kp) € R™
and y(ki,k2) € RP for all (ki,k») € 7% and B := [B] B)]' € R®mi#mxm ¢ .—
[C) C2] € Re*(®1Fm2) D e RPX™ Such models are widely used to describe the class of
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quarter-plane causal 2D-systems, whose transfer function matrix consists of entries of the

form 2(1:22) _ Lizo ni(mz? with n,,(z1), dy (2 0, that satisfy the following properties:
d(z1,22) Z;l':odj(ll)zé m( l) n( l) 7+_ y g prop
l.m<n

2. deg(dy(z1) > deg(n;(z1)),i =0,...,m —1
3. deg(dy(z1)) = deg(di(z1)),i =0,...,n

In this paper we solve the following identification problem: we are given a finite set consisting

of N polynomial vector-geometric input-output trajectories w;:= z’] (7% — CMP =
1

1,..., N, generated by a system (1), whose value at (k1, kp) € 72 is

wi (k1. k) := Z Z wh kKPS =1 N 2)

J1=0 j>=0
_ 7 ,
wherew’jl‘j2 = |:y;“’”:| eC™P, j,=0,....L,,£=12and A;; € C,i =1,...,N,
JiJ2

j = 1,2. In the following we call (A1, A2;) € C? the frequency associated with the i-th
trajectory, i = 1, ..., N. Trajectories such as (2) arise from the response of the system (1)

with zero initial state to a polynomial-exponential input Z =0 Z ot jzkj lkj2 l]f‘ t)\

If L’1 = le =O0fori = 1,..., N, (in the following called the vector-exponential case)
the directions ﬁf) o and ié) o are related to each other by the value of the transfer function
H(zy, z2) of (1) at the point (A1 ;, A2;) € CZ: yoo = H(A, Az,)uoo,z =1,.

‘We want to find matrices A, B, C, D such that (1) holds for the data (2) and some assomated
state trajectories X; := [ﬁ;],l =1,..., N.Such quadruple (A, B, C, D) will be called an
unfalsified Roesser model for the data (2).

Roesser model system identification has been considered previously, see Cheng et al.
(2017), Farah et al. (2014), Ramos (1994), Ramos et al. (2011), Ramos and dos Santos
(2011), and Ramos and Mercere (2016, 2017a,b), and it has been applied in modelling the
spatial dynamics of deformable mirrors (see Voorsluys 2015), heat exchangers (see Farah
et al. 2016), batch processes controlled by iterative learning control (see Wei et al. 2015),
and in image processing (see Ramos and Mercere 2017b). Our approach to compute an
unfalsified model differs fundamentally from previous work. It is based on an idea pursued
in the 2D continuous-time case in Rapisarda and Antoulas (2016), and derived from the 1D
Loewner framework, see Antoulas and Rapisarda (2015) and Rapisarda and Antoulas (2015)
[and also Rapisarda and Schaft (2013) and Rapisarda and Trentelman (2011) for analogous
approaches to 1D identification based on the factorization of “energy” matrices]. Namely, we
use the data (2) to compute state trajectories corresponding to it, and subsequently we com-
pute a state representation for the data- and such state trajectories by solving linear equations
in the unknown matrices A, B, C, D. From a methodological point of view our two-stage
procedure is thus analogous to 2D subspace identification algorithms: first compute state
trajectories compatible with the data, then fit a state-space model to the input-output and
the computed state trajectories. However, our approach is essentially an application of the
consequences of duality, rather than shift-invariance as in subspace identification: in our pro-
cedure, state trajectories are computed by factorizing constant matrices built from the data
and its dual, rather than Hankel-type matrices consisting of shifts of the data in the two inde-
pendent variables. Such aspect makes our method conceptually simple, and it helps to reduce
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the amount of bookkeeping necessary for calculations. Moreover, approaching the problem
from a frequency-domain and a duality point of view allows us to avoid imposing restric-
tive assumptions on the data-generating system, such as the separability-in-the-denominator
property required by earlier work on 2D subspace identification such as Cheng et al. (2017),
Ramos (1994), Ramos et al. (2011) and Ramos and dos Santos (2011). We note that the recent
publication Ramos and Mercere (2017b), provides a subspace algorithm for the identification
of general, i.e. not necessarily separable-in-the-denominator, Roesser models.

The paper is structured as follows. In Sect. 2 we gather the necessary background material;
this section contains several original results in the theory of 2D bilinear- and quadratic
difference forms, a tool extensively used in our approach. In Sect. 3 we illustrate some
original results on duality of Roesser models, including a “pairing” result crucial for our
identification procedure. In Sect. 6 we illustrate our method for the identifying Roesser
models. Section 7 contains some concluding remarks.

Notation We denote by R"*" (respectively C™*™) the set of all m x n matrices with entries
in R (respectively C). C**" denotes the set of matrices with n columns and an unspecified
(finite) number of rows. Given A € C"*", we denote by A* its conjugate transpose. If A has
full column rank, we denote by A" a left-inverse of A. If A, B are matrices with the same
number of columns (or linear maps acting on the same space), col(A, B) is the matrix (map)
obtained stacking A on top of B.

(C[zl_1 22152y 1, 7] is the ring of bivariate Laurent polynomials in the indeterminates z7,
zp with complex coefficients, and C"*" [zfl, 21,25 ! zo] that of m x n bivariate Laurent
polynomial matrices. The ring of m x n Laurent polynomial matrices with real coefficients
in the indeterminates {1, {2, 11, 12 is denoted by ]R’"X”[gl_l, 1, 42—1’ &, 771_1, ni, r]z_], n].

We denote by (CW)ZZ the set {w /A (C‘"’} consisting of all sequences of Z? taking
their values in C¥, and by £, (Z2, C") the set of square-summable sequences in ((CW)ZZ. The
notation (-, -) appended to a symbol (e.g. u) is used to denote a trajectory u : Z> — C". With
slight abuse of notation, given A € C we denote by exp, the geometric series whose value at
k € Zis exp; (k) := Ak,

We define vec as the linear map defined by vec : R”*" — R™"

vee ([aiicy et ) = lan @i o amam]
and mat as the linear map defined by mat : R™* — R”*" and

mat ([a11 R S T R7 % BN amn]—r) = [ai_/]izl .... m =1,
2 Background material
2.1 Controllable 2D behaviors
Define the shift operator o1 by

o+ (€)= (€)”
@ w)(ki, ko) == wlki + L k) (ki ko) € Z*,

and define o7 analogously. The reverse shift operators crfl : ((C‘“’)Z2 — ((CW)ZZ, i=1,2,

are defined in the obvious way.
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A subspace B of (C¥)%" is called a 2D linear behavior if it is the solution set of a system
of linear, constant-coefficient partial difference equations in two independent variables, i.e.

B = lw € ((CW)Z2 s.t. R (afl,al,agl,az) w= O] 3)

where R is a Laurent polynomial matrix in the indeterminates z;, i = 1,2. We call (3) a
kernel representation of 98, and we denote the set consisting of all 2D linear behaviors with
w external variables with LY.

In this paper we follow the behavioral- and algebraic terminology of Rocha (1990) and
Rocha and Willems (1991) [see also Rocha and Zerz (2005) for refinements of such behavioral
concepts and for the corresponding algebraic characterizations]. A g x w Laurent polynomial
matrix R in the indeterminates z1, zo is called left prime if the existence of some D, R’ €
R'X’[zl_l, Z1, 22_1 , z2] for which equality R = DR’ holds implies that D is unimodular. The
property of right-primeness is defined analogously. The following is a characterization of
controllable behaviors [see p. 414 of Rocha and Willems (1991) for the definition].

Proposition 1 The following statements are equivalent:

1. B € LY is controllable;

2. B is the closure of B N {» (Zz, RW) in the topology of pointwise convergence;
3. 3geN Re Rgxw[zfl, zl,zgl,zz] left prime such that 6 = ker R(oy, 02);
4. 31eN M e ]RWXl[zl_l, Z1, zz_l, z2] right prime such that

2
B = {w s.t. there exists £ € ((CW)Z st w=M (ofl, o1, o;l, 02) E} 4)
Proof See Theorem 1 p. 415 of Rocha and Willems (1991). O

It follows from Proposition 2 of Rocha and Willems (1991) that a controllable behavior
is uniquely identified by its transfer function [see p. 415 of Rocha and Willems (1991) for
the definition]. Controllability is crucial for the definition of the dual of a £%-behavior, as
defined in the next section.

2.2 Dual discrete 2D behaviors

Let 8 € L7 be a controllable 2D system, and let J = J T e RV satisfy J2 = I,,. Define
the J-dual of 9B as the set B/ consisting of all trajectories w’ : Z> — R" such that for all
w e BN L(Z> RY) and w’' € B/ N £r(Z*, RY) the following equality holds:

“+00 “+00
Yo > wkik) Twki k) =0.
k1=—00 kp=—00

The definition of orthogonality on the complexification of *B is straightforward by substituting
w'(ky, ky) T with w’(ky, k2)* in the previous equation. 8L is also a controllable 2D linear
behavior, and its image- and kernel representations are related to those of B as stated in the
following result.

Proposition2 Let B € LY, B = ker R(oj,00) = im M(oy,02) with R €
R‘XW[ZI_I, 21, 22_1, z2] left-prime, M € RWX‘[ZI_I, 71, zz_l, 22 right-prime. Then B/ is
controllable and

B =ker M(o; ' o, )T =im JR[ oy HT . )
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Proof We first prove the first equality in (5). Without loss of generality (if necessary,
changing the latent variable £ of the image representation by postmultiplication of M by
a suitable unimodular matrix) we can assume that M is polynomial, i.e. M(z1,22) =
Zf\:l:o Zgio M;, ;2" 2. Now consider the following chain of equalities:

+00
= Y. Z w' (ki k2) T Tw ki, ko)

ki=—00 kp=—00

+00 +00

Y Wk k)T (M(o1,02)0) (k1. ko)

ki=—00 kp=—00

+o0o N1 Ny

=y Z w (ki k) T Y My iy ko i) |
ki=—00 kp=—00 i1=0i=0

where in the last equality we have used M (z1, z2) = Z” Y le o Mi,, ,zz] ?. Now define
k;. :=kj+1ij,j=1,2, and observe that k; — £o00 if and only 1fk] — o0, j=1,2.
With such positions, we can write the last displayed expression as

+00 N1 N2
Z Z DO Wk — vk —in) T T My, i, LK KD)

=—00ky=—00 \i1=0i2=0

In turn the last expression can be rewritten as

+00 N1 M
= > Z DO Wk —inky — i) I My KT KS)
klz—ookzz—oo i1=01i,=0

=(M(al“,a2‘1)TJw’)(k;,k§)
Now use the arbitrariness of £(-, -) to conclude that

N1 N>

DY W =ik —in) IM;y i, =0,

i1=0i,=0

for all (k' ké) € Z2. This proves that BL/ = ker M(crl_] , O'Z_I)TJ. Right-primeness of
M(z1,22) and J? = I, imply left-primeness of M (z1, 20) T J; this yields controllability of
By

The second equality follows from RM = 0, J 2= I,;, and standard results in behavioral
system theory (see Rocha 1990).

O
In the rest of this paper we assume that m = p, and we denote by J the matrix
)= [O I } . ©
Ip Op Xm

We also assume that the external variable of B is partitioned as w = col(u, y) with u
a m-dimensional input variable, and y a p-dimensional output variable. It is a matter of
straightforward verification to check that Proposition 2 implies the following result.
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Corollary 1 Assume that B € LY is controllable, and let J = J T be such that J* = I,.
Denote the transfer function of B by H (z1, z2) and the transfer function of 87 by H' (z1, z2).
Then H'(z1,22) = —H(z ' 5o DT

We conclude this section showing how to compute trajectories of the dual system from
those of the primal one with the mirroring technique [see also Kaneko and Rapisarda (2003),
Kaneko and Rapisarda (2007) and Rapisarda and Willems (1997) for the use of such idea in
the 1D case]. Given the importance of dual trajectories in our identification procedure, such
technique is crucial to our approach.

Proposition 3 Let B € L5 be controllable, and J = J T e R pe such that J* = I,.
Letw € C, and denote by w(-, -) € B a trajectory whose value at (ky, kp) is wA kR,
Assume that v € CV satisfies v:w = 0. Then the trajectory v(-, -) whose value at (ky, kp) is

k k
Jﬁ(/\%) 1 (%) ’ belongs to B .

1

Proof Let M € R"*™[z1,z2] and R € RP*V[z1, z»] with w = p + m induce an image,
respectively kernel representation of 8. Since R(z1, 22) M (21, 22) = Opxm, forall (A1, A2) €
C? it holds that im M (A, M) = (im JR(Ap, Az)*)l, with orthogonality in the Euclidean
sense in C". It follows that

(LN (1Y . 11\ 1
Jv()&f) <F> € im JR(O’l , 0, ) =B/ .
This concludes the proof. O

Example 1 We show how the result of Proposition 3 can be constructively used for computing
trajectories of the dual system from trajectories of the primal one. Consider the case

10 Iy
refon].
Partition w as w =: [ﬂ asin (2) and let w(ky, k2) = [;] Kok for some 7, y € C™and

A1, Ao € C. Tt follows from Proposition 3 that the trajectory w’ whose value at (ki, k) is
v k k
defined by w’(k1, kp) := |: Y i| ( 1 ) 1( 1 ) ’ belongs to the dual system. Thus in the case

—u | \A A

of J = |:10 I(I)n] dual trajectories can be computed from primal ones by inspection. O
m

2.3 2D bilinear- and quadratic difference forms

Bilinear- and quadratic difference forms (BdF and QdF in the following) have been used in
the analysis of stability of 2D discrete systems in Kojima et al. (2007, 2011), Napp-Avelli
etal. (2011a,b) and Rapisarda and Rocha (2012). We briefly review them here, and introduce
some novel results.

To simplify the notation for elements of the ring

R e e et oony ! mny ol

we define multi-indices j := (ji, j2),1:= (i1,i2) € 72, and the notation ¢ := (1, £) and
n := (n1, n2). Every element of the ring can be written in the form

) = by,
ij
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where @;j € RY>*"2 i, j € 72 only a finite number of nonzero such matrices is present in
the expression for @ (¢, n). We associate with @ (¢, n) a bilinear difference form L¢ defined
by
2 2
Lo : (R")" x (R™)" - ®)Z
Lo (wi, wo)(ki, ko) := ) (O'iwl) (ki, k2) T @i (ij2> (k1. k2)
ij

where olw; = 0{102i2w1 and olw, = O'ljl szzwz. The definition of the BAF Lg on the
complexification of ‘B is straightforward.
If w; = wp = wthen @ (¢, n) also induces a quadratic difference form Q¢ defined by

001 (R — ®)7
Qo ()i ko) = Y (ohw) ki, k) "y (o) (ki ko)

ij
Without loss of generality when dealing with QdFs we can assume that @; j = d>jTi for all i

and j, i.e. that @(z, n) = @ (n, )| is symmetric.
The increment in the first direction of a BAF L is defined by

(ViLe) (w1, wa)(k1, k2) := Lo (w1, wa)(k1 + 1, ko) — Lo (w1, wa)(k1, k2) ,  (7)

forall (k, ko) € Z2.The increment of L in the second direction is defined analogously. Such
increments are themselves BdFs; it follows straightforwardly from the definition that their
four-variable representations, denoted with the same symbols with slight abuse of notation,
are respectively

VL), m) = am@ (&, n) — P&, n)
(MaLo)(&,n) = oomP &, n) — P, n) .

Given BdFs Lg,, i = 1,2, acting on (R™ )Zz X (]RWZ)ZZ, the vector of BdFs (“v-BdFs” in
the following) Le := col(Lg,, Lg,) is defined by
2 2
Lo : (R x (R)" > ®)F x R
Lo (w1, wp) := col(Lg, (w1, w2), Lo, (w1, wy)) .
The discrete divergence of a v-BdFs Lg := col(Lg,, Lg,) is the BdF defined by
2 2
Vie : (RM)” x (R™) — ®)
VLg(wy, w2) := ViLe, (wi, w2) + VoLe, (wy, wa) . 8)

From the definition it follows that the four-variable polynomial representation of the discrete
divergence of L is

(VLe) (¢, m) = (Gim — D) @18, n) + (L2m2 — 1) P2(8, ) . (C))

Define the following map:

R e s ooyt ml = R 20 7y, 25 2]

I@E, M) =P 2 2, 2)
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It is straightforward to verify that if (9) holds, then 9 (@ (¢, 7)) = Oy xw,. The following
result states that also the converse holds.

Proposition 4 Let @ € R[{‘fl, 1, C{l, &2, Ufl, ni, ﬂ{l, n2]. The following statements are
equivalent:

L. 3(D(Z,m) = Owy s
2. There exists a v-BdF's col(¥1, ¥,) such that ® (¢, n) = V¥ (¢, n);
3 3 o Qaw)(ki, k) = 0 for all w € €,(Z2, RY).

kij=—00 kp=—00

Proof See Proposition 1 p. 1524 of Kojima and Kaneko (2014). O

The following result states that there are nonzero v-BdFs whose divergence is zero; this
is well-known in the continuous case, even considering non-constant fields.

Proposition 5 Let ¥; € RWXW[CI_I, 1, 52_17 &, 771_1, N1, 7}2_], 21, i = 1, 2. The following
three statements are equivalent:

1.V COl(Lq/I, Llpz) =0y

2. (Gim — DI, m) + (Lo — D¥2(8, ) = 0;
3. There exists ¥ € RWXW[CfI, &1, ({1, &, ﬂfl, n, n;l, n2] such that

lpl(;7 77) = (;2772 - 1)W(C7 77)
V(g m) = —&im — DY, ) .

Proof The equivalence of statements (1) and (2) follows from the relation (9) between the
discrete divergence and its four-variable polynomial representation. The implication (3) =—>
(2) follows from straightforward verification.

To prove the implication (2) = (3) observe first thatif (¢ — D¥1(¢, n) = — (&2 —
YL (¢, n), then ¥ (¢, n) isdivisible by ({212 — 1), and W5 (¢, n) by (¢111 —1). Consequently,
there exist llfjf(g', m, j = 1,2 such that ¥; (¢, n) = (&ini — I)W;(g“, n,i,j=1,2,i #j.
Statement (3) follows readily from such equality. O

3 Dual Roesser representations and pairing

To the best of the author’s knowledge and despite the popularity of Roesser models, what
the dual system is of one admitting such a representation, and whether such dual system
admits a Roesser representation itself, have not been investigated before. In this section we
prove some statements related to such issues, which moreover are crucial for our system
identification approach. Foremost among them is a “pairing” result, showing how bilinear
forms on the external variables of the primal and the dual system are related to bilinear forms
on the state variables of the two systems.
We associate to (1) a “backward” Roesser model described by the equations

—1= ~ T
0’1 X1 _ AT X1 Cl /
rrn] = [e] [

Y =—[B] B]] Bﬂ -DpTu . (10)

We call (10) a representation of the dual system to (1), for reasons given in Prop.s 6 and 7
below.

In the following result we show that the transfer function of the dual system (10) is related
to that of (1) by a straightforward transformation.
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Proposition 6 Define

~1
2l — A —Ap } |:B]

HGi,2) = [Cl CZ] [ —Ay 2l — Axn B>

] +D;
then the transfer function of the dual system (10) is —H(zl_l, zz_l)T.

Proof Taking the two-variable z-transform of (10) yields the following expression for the
transfer function from u’ to y’:

—1 T T “lreT
U e e e I A
—Ap 2 Iy — Ay G

from which the claim follows.

]

Define J by (6); the result of Prop. 6, the fact that the transfer function uniquely defines

a controllable system, and Corollary 1 imply that (10) is a state representation of the J-dual

behavior of the external behavior of (1). In the following we find it easier to use a different

hybrid representation of such dual, that obtained from (10) defining the latent variables
X! = cri_]il-, i = 1, 2; then the equations (11) can be rewritten as

>
/ / T

x| T |ox C, ,

] =[]+ (6

Y =—[B/ B]] o151 | _ pTy (11)
122 oyx) .

In the following pairing result we describe a relation between the bilinear form induced
by —J on B x B and a discrete divergence on the field generated by the inner product of
the state variable x of (1) and the latent variable x’ of (11).

Proposition 7 Consider the latent variable representations (1) of B and (11) of B/ . Then
for all col(u, y, x) satisfying (1) and col(u’, y', x') satisfying (11) the following equation
holds:

u/
[u” T (=D [y] =—ylu' —uy
= (o1x1) " (o1x]) — x| x] + (o2x2) T (o2x3) — X, X}
= Vol <x1Txi,x;xé) . (12)

Proof 1t is a matter of straightforward verification to check that the following chain of
equalities holds:

T Ty = — (XTCT n MTDT) W —uT (_BT [leq _ DTu/)
02X}
/
=—x' (CTu’) + (uTBT) I:Glx}:l
02x}
T ([ T [o1x! o1x] X1 T o1x’
=—x H—-A )+ —A o
x5 02X} 02X2 X2 02X}
The claim follows. O
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We can reformulate the result of Proposition 7 saying that the bilinear form induced by
— J on the external trajectories of the primal and the dual system is the divergence of the
field induced by the inner products on the first and second state components of the primal
and the dual system. Such relation is of paramount importance for our system identification
procedure.

4 The data matrix and the 2D Stein matrix equation

In the following we assume that besides the primal data (2), also a set of dual trajectories
whose value at (k, k») € Z2 is

L/i L/i
N i ok
/ — J1 25t 1,k
wiki ko) ==Y Y kK w s (13)
J1=0 j2=0
i T . 5 .
wherew’jl’j2 = 7/{"/2 eCP™ j,=0,....,L/,¢=12and pj; €C,i =1,...,N,
JisJ2

Jj = 1,2. Recall from Proposition 3 that such trajectories can also be computed from tra-
jectories obtained from experiments conducted on the primal system, and consequently such
assumption is not restrictive for practical purposes.

In the rest of the paper we only consider the case of primal and dual data with multiplicity
one, i.e. L; =1= L;l j=12,i=1,...,N in (2), and vector-geometric trajectories
WieXPyy ;€XPuy,;» Wi €XpPy, , €Xpy, ,» i = 1,..., N; in such case the value of the primal and
dual trajectories at (k, k2) is

wj(ki, ka) = Wj 5% and wy (ki ko) = Wi A%, (14)

In order to compute real models (1), (10), we will also assume that the data sets D’ :=
{wlf},':L“_,N and © := {w;};=1,.. ~ are closed under conjugation, i.e. that

— —%

wW; eXp;, . eXp;, . € D = w; eXpy: eXpys € 2
—/ ’ —/% 4
W;expy, €Xpu,; € D' == w; expyy expuy, € .

Such assumption can be made without loss of generality, since it is always possible to close
D and ©’ by adding conjugate trajectories, if necessary.

The following result [that uses the definition of observability on p. 6 of Roesser (1975)]
implies that if the external trajectories are vector-geometric, also the corresponding state
trajectories of the primal system are vector-geometric.

Proposition 8 Let col(x, u, y) satisfy (1). Assume that u = u exp,, exp,, and y =
Y exp,, exp,, for some u € C" and'y € CP, respectively, and some A; € C, i = 1,2
Assume that the representation (1) is observable. Then there exists a uniqgue X € C™+m2
such that the state trajectory corresponding to u and y is x = X €Xp;, €Xp,,.

Proof The fact that the state trajectory x is vector-geometric follows in a straightforward
way from the second equation in (1) and the fact that # and y) are vector-geometric and
associated with the same 2D frequency (11, A2). The uniqueness of the state trajectory, and
consequently of the state direction x, follows from the observability of (1). O
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A result analogous to Proposition 8 also holds true for the dual system represented by (10)
and equivalently by (11); we will not state it explicitly here.

We associate to the dual and primal vector-geometric sequences w; C)wiC, o), i, j =
1, ..., N the data matrix D defined by:

—/ — % — —
p::[z,l--%;v] J[zl---ZN]. ()
Vi - Yy Vi --- YN
In the following result we make explicit the connection between D and the state trajectories
corresponding to the data wlf(~, D, wiC, ), i, j=1,...,N.

Proposition 9 Let (1) be a state representation of *B, and let (11) be a representation of its
dual; assume that such representations are observable. Denote the unique state trajectories
corresponding to w) and w; by x| and x;, respectively, and the associated state directions
— _
- X _ X .. .
by x:» = I:Yi’li| and X j =: |:YJ71:|’ i,j=1,...,N. Define for k = 1, 2 the matrices
i2 J2

X = [ka ...x;\,,k] € CxN
Xk = [xlyk xN,k] (S (anXN

Sk = X]/{TXk e CNVxN

My = diag (pxi);_y 5 € CN*N
Ay = diag (Mei),_, € CVN (16)
The following equation holds:
D=MT§1A1—§1+M§§2A2—§2. (17)

Proof The claim follows in a straightforward way by applying the pairing equation (12) to
the vector-geometric data wl/., w; and the associated state trajectories x[ LX) O

By analogy with the classical matrix equation X — MX' A = Q where M, A and Q are
given and the unknown is the matrix X, we call (17) the 2D Stein matrix equation, and for
future reference we rewrite it as

Q=M{SiA =S +M;854A, -8, (18)

where Si are the unknowns, k = 1, 2. Such equation is of paramount importance in our
approach to 2D system identification: from it we compute admissible state trajectories asso-
ciate with the input-output data, and also the state equations corresponding to such variables.

The solutions of the linear matrix equation (18) can be parametrized in a straightforward
way, as we now show. We first show how to compute one pair of solutions, and then consider
the homogeneous matrix equation associated with (18).

Using analogous arguments to those available in the theory of matrix Sylvester equations
(see e.g. Peeters and Rapisarda 2006) it can be shown that if Af{u{( #*1,i,j=1,...,N,
k = 1, 2, then for every choice of the right-hand side Q' there exist unique solutions X to
the k-th 1D matrix Stein equation

X—MixA =0, (19)
k=121 Q = %Q and if Sy solves the 1D Stein equation (19), k = 1, 2, then summing

up the two 1D Stein equations it follows that the pair (S, S2) solves the 2D Stein equation
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(18). From such discussion it follows that under the assumption kfc,u,{ #1,i,j=1,..., N,
k = 1,2, one can compute a particular solution of the 2D matrix Stein equation directly
from two 1D Stein equations. In many cases (e.g. in experimental setting where the inputs

can be arbitrarily chosen and the system can be started at rest), the frequencies A’ , ,ui can be
freely chosen from the experimental data, and the assumption )\}; ui *1,i,j=1,...,N,
k =1, 2 is not particularly restrictive. We will assume it is valid for the rest of the paper.
We now study the homogeneous 2D Stein matrix equation:
0=M{S|AI -8+ M;S A -8, (20)

A parametrization of all solution pairs (S}, S3) to such equation is straightforward to derive
from the following result, whose proof is omitted.

Proposition 10 Denote the (k, j)-th entry of S; in (20) by Si(k,j), i = 1,2, k,j =

1,..., N. Assume that k{u;‘ * 1, k,j=1,...,N, i = 1,2. The following statements
are equivalent:

1. The pair (S}, 8}) is a solution of (20);
2. The following equality holds:

(e ) (ks = 1) + 83k, ) (M= 1) =0,

k,j=1,...,N;
3. The following equality holds:
ik, j) = =Sk, )= @1
Ayt —1

k,j=1,...,N.
On the basis of the result of Proposition 10, we characterize all solutions to (18) as follows.

1,...,N, i = 1,2. Denote by S; the unique
i1 =1,2. Then (S1, 8?) is a solution of
1,..., N, such that

Corollary 2 Assume that Aij uf #1,k,j=
solution to (19) when Q' = %Q, M= M; A=
(18) if and only if there exist Sy(k, j) € R, k, j
= Mk -1
Sik. j) = Si(k, j) = Syk, j)—5———

Auyt =1
Sa(k, j) = Sa(k, j) + Sy(k, j) (22)

5 Computation of state trajectories
We can restate the result of Proposition 9 by saying that the matrices Si, k = 1, 2 defined in
(16) are solutions of the 2D Stein matrix equation

D=M{S1A1 =81+ M;S A -8, (23)

with My, Ay € CN*N &k = 1,2 defined by (16), D € C¥*N by (15), and Sy € CV*N,
k = 1, 2 being the unknown matrices. Based on such observation, for pedagogical reasons
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we propose the following preliminary version of a 2D identification procedure, which we
refine in the rest of this section and in sect. 6.

Algorithm 1

Input: Primal and dual data as in (14)
Output: An unfalsified Roesser model for the data.
Step 1: Construct the matrix D defined by (15) from the data (14).
Step 2: Compute a pair (S1, Sz) of solutions to the matrix equation (23).
Step 3: Perform a rank-revealing factorization of Sy = F; IQT Fy,ie.

rank(S) = rank (Fy) = rank(Fy) , k =1,2.
Step 4: Define
Y=y, ... 5] e CON
U:=[uy...uy] e N, (24)
and solve for A;;, B;, C;,i,j =1,2and D in

Fi Ay Ay A By | | Fy
Ay | =|An A By | | P2 | . (25)
Y Cy, C, D U

Step 5: Return A, B, C, D.
We now discuss several issues related to such procedure.

Identifiability: Recall from Proposition 5 that Sk, k = 1, 2 defined in (16) are not the only
solutions of 2D matrix Stein equation (23): if S, k = 1, 2 satisfy the homogeneous 2D
Stein matrix equation (20), then also Sy + S,i, k = 1, 2 are solutions of (23). The converse
also holds: since the matrix equation (23) is linear, it follows that every solution pair to it
can be written as Sy + S, for some pair (S, S) solving (20) and Sy defined in (16). Such
non-unicity of the solutions to (23) is an unavoidable consequence of the non-invertibility
of the divergence operator, or equivalently the existence of nonzero solution pairs to (20).
Consequently, identifiability is not a well-posed question in the identification approach
sketched in Algorithm 1.

Complexity: Another issue arising from the non-unicity of the solutions to (23) is the fact
that Algorithm 1 may compute models having larger state dimension than that of the
generating system. Note that the sum of the ranks of S, k = 1, 2 coming from a generic
solution pair computed in Step 2 will generically be N + N, and consequently presumably
higher than the minimal state dimension of a Roesser model of the data-generating system.
Thus generically the Roesser model computed in Step 4 would be high-dimensional and
impractical for use e.g. in simulation, control, and so forth. In Sect. 5.1 we illustrate a
procedure using rank-minimization to compute a minimal complexity model; see also
Remark 1 where an alternative approach using Grobner basis computation is sketched.

Computation of A, B, C, D: Finally, sufficient conditions must be established guaranteeing
that solutions A, B, C, D exist to the system of linear equations (25).

The rest of this section is devoted to modifying Algorithm 1 to address the complexity
issue; the solvability of the system of linear equations (25) is considered in Sect. 6. We
will show that with small modifications our data matrix-based approach to Roesser model
identification offers the opportunity to address in a conceptually simple way the problem of
deriving a minimal-complexity unfalsified Roesser model.
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Fig. 1 A constant complexity A
line in the (n1, ny)-space
n,
4 L] L . . .
KS Complexity 3 line
1 > ;____:________—-——/
N
- ° \\ L]
S
N >

5.1 Computation of minimal complexity state trajectories

We define the complexity of a model (1) as the dimension nj 4+ n; of the state variable. Given
a controllable, quarter-plane causal behavior 8 € LY, we define its minimal complexity to be
the minimal dimension of the state variable among all possible Roesser representations of 8.
Thus every B € L7 can be mapped to point lying on alinen; +ny = ¢ in N x N, where c is
its complexity, see Fig. 1. Note that complexity of a given model obtained in our framework
is related to the total rank rank(Sy) + rank(S») of the particular solution to (23) chosen
to perform the rank-revealing factorization in Step 3 of Algorithm 1. Assuming the data to
be sufficiently informative about the system dynamics, such total rank ranges between the
complexity n of the actual data-generating system, and 2N, see the previous discussion on
complexity. In the light of the characterization (22) in Corollary 2, the problem of computing
a minimal total rank solution to (23) can be formulated as a rank minimization problem (see
Fazel et al. 2004), as we presently show. In order to do this, we need to state a preliminary
result.

Aé ué* -1
)L{ ;/.lf*—l ’

Proposition 11 Define by ; := k,j=1,...,N, and

B :=diag(by1,...,biN, .. bN1, ..., DNN) .
Moreover, define the map
fRNXN _ RNxN
f(X) := mat(—Bvec(X)) .
The subset € of R2N*2N defined by

o g1 + f(Sé) 0N><N "ol NxN

is convex.
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Proof Leta € R, 0 < o < 1; the claim follows in a straightforward way from the equality
f@Sy+ (1 -a)s)) =af(Sy) + (1 —a) f(S3)

which we now prove. The following chain of equalities is a direct consequence of the defi-
nition of f and the linearity of the mat and vec maps:

f@S,+ (1 —a)S)) = mat(—B vec(aS; + (1 — a)S5))
= mat(— Ba vec(S}) — B(1 — &) vec(S5))
= o mat(— B vec(S})) + (1 — o) mat(— B vec(S5))
=af (S + 1 -a)f(Sy),

as was to be proved.
From such equality it follows that the set

/
H:(J;(SZ) 01‘\;>/</Ni| St S”,Sé c RNXN} ,
NxN 2

is convex, from which the claim follows directly. O

It follows from Proposition 11 that the optimization problem defined by

. S 0
min rank <[0 82:|>

S1 0 )
. [ ’ 82] ce; 6)
is in the standard form of a rank minimization problem
min rank (X)
st. X eC,

where C is a convex set, and can be solved by several algorithms implemented on standard
platforms. It goes beyond the scope of the present paper to enter into details about which
algorithms to use in order to solve (26), and to discuss important issues such as their numerical
accuracy and complexity. The interested reader is referred to the growing literature on the
subject.

We can now refine Algorithm 1 as follows.

Algorithm 2

Input: Primal and dual data as in (14)
Output: A minimal complexity unfalsified Roesser model for the data.
Step 1: Construct the matrix D defined by (15) from the data (14).
Step 2: Define € as in Proposition 11, and solve the optimization problem (26).
Step 3: Perform a rank-revealing factorization of Sy = F; IQT Fy,ie.

rank(Sy) = rank(Fy) = rank(F,é) ,k=1,2.
Step 4: Define
Y =[5 ... 5] e CON
U:=[u)...uy] e CN, (27)
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and solve for A;;, B;, C;,i, j =1,2and D in

Fi Ay AnAp By || I
Ay | = A0 A By | | F2 | . (28)
Y Cy, C, D U

Step 5: Return A, B, C, D.

Remark 1 InRapisarda (2017) a Grobner basis approach to solve the rank minimization prob-
lem (26) is illustrated. Such approach uses a parametrization similar to that of Proposition 10
in order to transform the problem of finding fixed-rank matrices solving the 2D Sylvester
equation (the continuous counterpart of the Stein equation) into a polynomial algebraic prob-
lem. In order to compute a minimal complexity Roesser model for the data, beginning with
¢ = 1 we check whether there exist solution pairs (S1, Sz) to (23) such that rank(S;) = ng,
k = 1,2 and n; + ny = c. If no such solution pair exists, we increment ¢ by 1 and repeat
the check. Note that working under the assumption )»;(Mli #1,i,j=1,...,N, k= 1,2,
equation (23) is solved by (S, S»), where S;, i = 1, 2, are the unique solution to (19) when
Q= %D, M = M;, A = A;,i =1, 2. Consequently, such search ends after at most N steps.
The largest part of the computational effort of such approach is due to the complexity of
Grobner basis calculations, which becomes especially heavy for problems involving more
than ten data trajectories. However, such approach has the advantage that a parametrization
of all solutions to (23) with a given total rank is obtained; a numerical approach based
on rank-minimization algorithms only produces one solution among many. Consequently,
such parametrization opens up the possibility of exploring the space of unfalsified models
of given complexity, with potential application to 2D data-driven model order reduction
[see Rapisarda and Schaft (2013) and Rapisarda and Trentelman (2011) for the 1D case].
Such procedure also shares with the one sketched in Algorithm 2 a conceptually appealing
simplicity that avoids some difficulties inherent in other approaches based on shift-invariance.
O

6 Identification of Roesser models

To set up a system of linear equations (25), (28) we resort once more to the 2D Stein equation
(23). Define, analogously with (24), (27), the input-output matrices of the dual data by

Y =3 ... Vy] e CO¥

U = [u) ... uy] e C™N, (29)

and assume that rank-revealing factorizations Sy = F, ,éT Fi, k = 1, 2 have been computed.
Now rewrite (23) as:

FiA U w1 [F
[M}F MjFy] [F;Aj = [y v~ [Y} + [F{* Fy) [Fﬂ . (30)

Denote the j-th column of Fy by fy;, j = 1,...,N, k = 1,2. Observe that the
columns of the matrix col(Fy, F,) are the values at (0, 0) of the 2D-geometric sequence
col(f1,jexp,, €Xpy,, J2./€XP;, €XP;,), and those of col(F1 A}, F» Ay) are the values at (0, 0)
of the shifted 2D-geometric sequence

col(a col(f1,j€Xp;, €Xp,,, 02 /2, j€Xp,, €Xpy, -
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The idea underlying our computation of an unfalsified model is to left-invert [ M} F{* M3 F}*]
so as to obtain directly from (30) an unfalsified Roesser model.
The following result gives sufficient conditions so that a left inverse

(w7 i M3
of [M FF M3 Fz’*] exists so that a Roesser model can be computed from (30).
Proposition 12 Let B, B+ ¢ LY be controllable. Let data (14) be given and define D by
(15), Aj, M, i = 1,2 by (16), U, Y by (24), and U’, Y’ by (29).

Let 81, Sy € RVXN solve (23), and let S; = FI*F;, i = 1,2 be rank-revealing factoriza-
tions. Assume that:

1. im MFF[ Nim MEF} = {0

2. im [M{F* M3F]Nnim U™ = {0},

3. im Y*Nim U™ = {0}.

There exist a left inverse K = [M} F* M;‘Fz”"]Jr of [M{F[* M}F}*] and G € CP*N such
that

KU"™ = 0(n,4ny)xp and G [Y* U*] = [Opxn Ip] - (31
Let K, G satisfy (31), and define
A:=K|[F* F}] , B:=KY"*
C 1= G (M7 Fy M3FF]K — 1) [ 7]
D :=GKY"™. (32)
Then A, B, C, D define an unfalsified Roesser model for the data.
Proof From assumption (1) it follows that [M Y M3 Fz’*] admits a left inverse. From

assumption (2) conclude that such a left-inverse can be chosen satisfying the first equation
in (31). Now multiply both sides of (30) by such left-inverse to conclude that

AL R
] a1 0, o

where A and B are defined by the first two equations in (32).

Now use assumption (3) to conclude that a matrix G exists such that the second equation in
(31) holds. Multiply both sides of (30) by such G and rearrange the terms also using equation
(33), to conclude that

Y:C[Fl]—i—DU, (34)
F

where C and D are defined by the last two equations in (32).
The fact that A, B, C and D define an unfalsified model for the primal data follows from
(33) and (34) defining

col(xy,j, x2,j) 1= col(f1,j. f2.j) eXpy, ; €xp;, ; »

to be the state trajectory corresponding to the j-th input-output data, j = 1, ..., N. This
concludes the proof of the Theorem. O
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Remark 2 The sufficient conditions stated in Proposition 12 fall short of being completely
satisfactory, since they involve the matrices arising from the factorizations of Sy rather than
the matrices S, k = 1, 2, themselves, or in the best case, the input-output data itself. We also
do not make any claim about the conservativeness of such sufficient conditions. The issue
of deriving tighter conditions expressed only in terms of the input-output data is a pressing
issue for further research. O

7 Conclusions

We have presented a novel approach to the identification of unfalsified Roesser discrete
models from vector-geometric data, based on the idea of first computing state trajectories
compatible with the given input-output trajectories, and secondly using such trajectories
together with the data in order to compute the A, B, C, D matrices of the Roesser equations.
Our procedure is based on new results concerning duality of such models (Sect. 3) and on a
parametrization of the solutions to the 2D Stein matrix equation (Sect. 4). Such results lead
to an algorithm for the computation of state trajectories (Sect. 5), which can be refined in
a straightforward way to one for the computation of minimal complexity ones (Sect. 5.1).
The 2D Stein equation is exploited once again in order to find an unfalsified model for the
input-output data and the computed state matrices (see Sect. 6).

In several preceding publications concerned with linear time-invariant systems, the author
and his collaborators put forward an “energy”’-based approach to identification. Given the
abundance of powerful methods to solve system identification problems for such class of
systems, it can be argued that such results amounted to a relatively minor contribution. The
author hopes that the application of such ideas to 2D systems as in Rapisarda and Antoulas
(2016) and in the present paper, may shift the balance of judgment more in his favour. The
ideas underlying the approach presented here and in the germane publication Rapisarda and
Antoulas (2016) can be applied to a wider class of systems, and to more general classes of data
than vector-geometric or exponential ones. Their potential lies in the generality of the idea
of duality, which we believe can be used to overcome the difficulties (e.g. of bookkeeping)
inherent in applying shift-invariance techniques to multidimensional systems, or to bypass
them altogether for system classes where such property is not satisfied (e.g. 1D time-varying
and nonlinear systems, for which promising results are being obtained as we write).

Limiting ourselves to the class of multidimensional systems considered in this paper, three
areas of research are currently being investigated. Firstly, we need to generalize our approach
to the case of data other than vector-geometric through the use of compact-support trajectories
and infinite series involving their shifts [as in the 1D case, see Rapisarda and Trentelman
(2011)]. Secondly, we want to identify other classes of 2D systems than the Roesser one,
amenable to be identified with duality ideas. The main issue to be addressed is to determine
classes of systems admit a “pairing relation” with their dual, which can be expressed as the
divergence of a field involving the state trajectories, and if possible algebraically characterize
such property. Moreover, it is important to ascertain whether such divergence is amenable to
a computationally straightforward treatment; for example, in Rem. 8 p. 2751 of Rapisarda
and Antoulas (2016) it has been shown that (continuous-time) Fornasini-Marchesini models
have been shown to admit a pairing relation, but one which does not seem to be conducive to
adirect exploitation to derive from it state trajectories. Finally, we plan to investigate whether
duality relations can be used to compute minimal Roesser model from non-minimal ones,
and in the problem of state-space realisation from transfer functions.
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