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Abstract. In this paper we use the method of homogenization to derive a set of approximate
equations which describe a nematic liquid crystal colloid in which the dopants are freely rotating
metallic particles. Previously we have studied the approximate behavior of liquid crystals doped with
particles under the assumption that these remain stationary [6]. This paper builds on [6] by extending
the theory to include rotating particles. We find a set of governing equations for the nematic liquid
crystal and for the dopant particles. Effective material parameters are given explicitly in terms of
the microscopic particle-liquid crystal interaction parameters by a sequence of cell problems solved
on the micro-scale. We validate our model by direct comparison to large scale numerical simulation
and find excellent agreement for a variety of dopants shapes.
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1. Introduction. Colloidal nematic systems consist of micro- to nanometer
sized dopant particles suspended in a nematic liquid crystal. They have been studied
either as models for self-assembly of two and three dimensional structures [30, 18, 12,
41] or as a tool to enhance the liquid crystal linear [24] and nonlinear [22, 21, 48]
properties. The particles disrupt the nematic alignment and cause elastic distortions
whose nature depends on the strength of the anchoring of the liquid crystal molecules
on the particle surface. In the strong anchoring limit defects can form near the par-
ticles and are tethered to them. In these cases it is often the interaction of a small
number of particles that is of interest [20, 17, 49]. Typical research topics include
stability of different director configurations [46] and particle self-assembly through
long range elastic interactions [3, 40].

In this paper we are primarily interested in the weak anchoring regime, a regime
characterized by low anchoring energy or small particle size. As a consequence, de-
fects are not present [39]: the liquid crystal alignment is distorted by the presence of
the particles, but the scalar order parameter remains approximately constant. Such
colloidal suspension are optically homogeneous and, hence, of interest to devices and
light-based applications. The net effect of the dopants is to alter the material prop-
erties of the nematic resulting in a new composite material with enhanced interaction
with externally applied electromagnetic fields [22]. In particular, gold nanoparticles
suspended in liquid crystals [21], the main example used in this paper, lower their
nematic—isotropic transition temperature [34], increase their switching speed [28], in-
troduce tunability of their dielectric anisotropy [36] and increase considerably their
thermal nonlinearity [32] which, in addition, can also be tuned using an external volt-
age [25]. The general mechanism works as follows: firstly the liquid crystal favors
a particular alignment on the dopants surface due to surface treatment. Secondly
the dopants themselves interact with externally applied fields favoring a particular
alignment. These two mechanisms in conjunction transfer the electromagnetic torque
applied to the dopants to the nematic through the surface anchoring. This allows the
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geometry and physical make up of the dopants to modulate the strength of the inter-
action. In addition, dopants exclude volume from the system reducing the strength
of the elastic interaction within the nematic.

Mean field theories, such as those that describe ferromagnetic [10, 11] or ferroelec-
tric [26, 42] colloidal suspensions, introduce an effective free energy. For example, the
free energy proposed by Burylov and Raikher contains additional terms to describe ()
the interaction of the dopant with the applied magnetic field, (i4) a mixing entropy
which allows for concentration gradients and (iii) the surface interaction between
the nematic and dopant. However, the macroscopic parameters that control these
interactions are not defined within the theory and must be determined separately.

In this paper we use homogenization to derive an effective model of a nematic
liquid crystal doped with perfectly conducting particles in the weak anchoring case,
i.e. in the absence of defects. As mentioned previously, this case is of most interest
for light-based applications, as the colloidal suspension is optically homogeneous. The
model can be seen as an extension of that developed in [6] to incorporate rotating
particles. In [6] the case of static inclusions that may be identified with dopant
particles or a micro-structure is studied. In this paper we study a two-dimensional
system of liquid crystal and dopant particles in which the dopant particles may freely
rotate. Homogenization theory [33] is a set of tools for extracting the limiting behavior
of a system in the limit of vanishing micro-structure. It is particularly suited for
approximately periodic systems in which the period of the micro-structure is small
in comparison to some characteristic macroscopic length. We treat the colloid as a
system of periodic cells each containing one colloidal particle; the orientation of the
particles is allowed to change between cells, i.e. the system is only locally periodic.
There is a large literature on locally-periodic homogenization [1, 7, 8, 14, 27, 29, 35,
43]. Here we follow in particular the approach by Richardson et al. [38] and Bruna and
Chapman [9]. We obtain a set of stiff macroscopic equations using homogenization.
To simplify the numerical verification we extract the slow time-scale dynamics that
corresponds to the elastic reorientation of the nematic from our macroscopic model
using the method outlined in [15].

The final macroscopic equations we arrive at are given in section 3.5: they ap-
proximate the behavior of the applied field, the particles and the nematic. These
equations show that the mixture possesses different material parameters than the
pure nematic, namely reduced elasticity and enhanced electrical susceptibility. In
addition, the dopant particles are aligned by torques due to the nematic and electric
field. As we do not allow the particles to move from a periodic lattice, we do not
obtain a mixing entropy contribution. We also find no change to the scalar order
parameter.

Our model differs from those of Burylov [10], [11] and Shelestiuk [42] and Lopatina
and Selinger [26] in two ways: first, we consider a different system, metallic particles
with an externally applied electric field. This choice, however, is only a matter of
algebraic and modeling convenience and we could relatively easily include other classes
of particles. The bigger difference is that our model is based on a formal up-scaling
approach from which we obtain a sequence of cell problems that capture the effects of
different particle shapes in a single general picture. The result is that the macroscopic
parameters are defined uniquely in terms of the microscopic properties of the dopant.

The structure of the paper is as follows: in section 2 we derive the microscopic
equations governing the nematic, particles, flow and applied field; in section 3 we
derive the homogenized equations which approximate the macroscopic behavior of
our system; in section 4 we validate our model against finite element simulations of a
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Fia. 2.1. Schematic of a planar domain containing a liquid crystal doped with nanoparticles.
The left hand side represents the domain of the microscopic model, D (rectangle minus the particles).
This microscopic domain is formed by a tessellation of perforated squares of size I:y each with
one hole, corresponding to a particle; it is parameterized by (dimensional) coordinates Zj;, with
0< z; < Zj, j = 1,2. The right hand side is a generic cell domain Q parameterized by (non-

dimensional) coordinates y, with 0 < y; < 1, j = 1,2. Each cell domain has outer boundary o
and contains a particle with boundary I' and orientation parameterized by an angle 1.

large but computationally feasible number of particles in a nematic liquid crystal. We
discuss the model and possible future work in section 5 and finally present conclusions
in section 6.

2. Microscopic model. In this section we derive the microscopic equations
governing the liquid crystal suspension that we are going to study in the following
sections.

2.1. Representing the system. Metallic dopant particles added to a nematic
liquid crystal act to alter the elastic and dielectric properties of the nematic. To de-
termine the governing equations for the nematic and dopant particles we use a free
energy and dissipation principle (Rayleigh principle). We assume that the particles
are sufficiently dispersed that we may approximate them as lying on a lattice. We
consider a nematic liquid crystal in a two-dimensional planar geometry, confined to
a microscopic domain D given by the difference between the rectangle [0, ;] x [0, £5]
and all the particles'. The microscopic domain is parameterized by dimensional co-
ordinates z;, j = 1,2 and depends on the size and orientation of the particles. The
perfectly conductive particles have rotation but not translation freedom and are ar-
rayed on a lattice (see left-hand side of figure 2.1). An electrostatic potential of given
amplitude is applied to the liquid crystal to change its orientation. We assume that
the alignment of the liquid crystal and the value of the electrostatic potential are as-
signed on the outer boundary of the rectangle (blue line in figure 2.1). In particular,

IThree domains are used in this paper: the microscopic domain D is the domain of definition of
the microscopic model described in this section and is parameterized by the coordinates . There is
also a non-dimensional version of this domain; it is indicated with the symbol D and is parameterized
by the coordinates @. The cell domain Q corresponds to the square around a single particle and
is parameterized by the microscopic coordinates y (see section 3). The macroscopic domain Dg
is the domain of definition of the homogenized equation (see table 2.1 and section 3.4.3) and is
parameterized by the coordinates .
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4 T.P. BENNETT, G. D’ALESSANDRO AND K.R. DALY

in the numerical simulations we will assume that the system is periodic in the Z;
direction with period (1 and the electrostatic potential and alignment of the liquid
crystal are fixed on the top and bottom boundary. The restrictions to two dimensions
is made for algebraic and computational simplicity. We discuss in the conclusions the
work involved in extending the equations presented here to three dimensions. The
total free energy of the system is

(2.1) Frop = / (Fo+ Fp)aS+ | Fdl,
D Bg

with Fg, Fr Fp the surface, electrostatic and bulk free energy densities respectively.
The surface free energy is evaluated on the boundary By between the microscopic
domain D and all the particles (red curves in figure 2.1). We represent the orientation
of the nematic using the Q-tensor [16]. Very roughly, a uniaxial liquid crystal is
formed by cylindrically symmetric elongated molecules that have a non-zero average
orientation, called the director. It is intuitive to represent the director using a unit
vector d. However, this representation is mathematically inaccurate: the molecules
and, hence, the director have inversion symmetry, i.e. d and —d correspond to the
same liquid crystalline state. We are therefore required to represent the director
using a tensor Q that is quadratic in d: the director is the eigenvector with largest
eigenvalue. In general the O-tensor is a 3 x 3 traceless symmetric matrix. However,
in this paper we assume that the director is oriented within the (%, Z3)-plane. Hence
we can describe the nematic liquid crystal using a two dimensional Q-tensor theory.
For a nematic locally aligned with a director &, the O-tensor is given by

(2.2) Q=28 <&®&—;I),

where S the scalar order parameter and Z is the 2 x 2 identity matrix. The scalar
order parameter is a function of temperature that measures the degree of ordering: it
is zero in the isotropic phase and unity in the fully nematic phase. The normalization
in equation (2.2) is chosen so that Tr(Q2) = §2. Traceless symmetric 2 x 2 tensors
forms a two-dimensional vector space. Following Gartland et al. [19], we expand the
Q-tensor as @ = 37| 4,7 where

1 |-1 0 170 1
O N— T@ = —_
(23) \@[0 1]’ ﬁ{l O]’

form a basis of the tensor space and @; = Tr(Q7®) are the components of Q on
this basis. The dimensional bulk free energy density in the single elastic constant
approximation is

- L - 1 ~ 1,
(2.4) Fp = §||Va||2 + 5A(T —T%al® + 10|a|47

where L is the elastic constant, @ = [a; ELQ}T is a vector formed from the components
of the Q tensor on the basis of traceless symmetric tensors 7(),i = 1,2, A and
C are thermotropic coefficients, T is the absolute temperature with 7% the critical
temperature at which the isotropic phase becomes unstable. The dielectric energy
density written in terms of the electric field E and relative dielectric tensor e is given
by

(2.5) Fr = —%E. (eoeE)
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MULTISCALE MODELS OF METALLIC PARTICLES IN NEMATIC LIQUID CRYSTALS 5

with

A€ ~
Nehs

Here ¢ is the permittivity of free space, ¢, = (e +¢€1)/2 and Ae = ¢ — €, are
the uniform and anisotropic part of the dielectric permittivity in the fully nematic

phase (S = 1), with ¢ and e the corresponding extraordinary and ordinary dielectric
permittivity, respectively. The surface energy density is given by

(2.6) e=¢e,T+

(2.7) Fs = ~la —as|?

N =2

where i is the anchoring energy surface density and as the preferred alignment on
the particle surface. The dynamics are given by the dissipation function R [44], the
energy lost per unit volume and unit time due to viscous dissipation,

1 (.2 o
(2.8) R=1telal + &5 p.
2 2
Here
o oa - -
(2.9) a=8—§+@-va—2wa

is the corotational derivative? of Q expressed in terms of the component vector a, v
is the fluid velocity,

~ 1 . B
(2.10) Wij =5 (0ij — Vj.4)
is the vorticity,

~ 1 . _
(2.11) Dij =5 (Vi + V5.4)

is the symmetric part of the velocity gradient, ¥; ; = 27?’;, (s (up to a factor of 1/2)
is the isotropic part of the nematic viscosities and {; = 21/:;112 with 77 is the rotational
viscosity. We use a simplified version of the dissipation function proposed by Sonnet
et al. [44] and include only two terms in the dissipation: the rotational viscosity of
the nematic, which sets the time scale of Q, and the isotropic viscosity, which sets the
time scale of the particles. In general the details of the dynamic response of a liquid
crystal system depend on a (system dependent) combination of viscosity coefficients.
However, out of all of these viscosities, the rotational viscosity always plays a large role
in setting the time-scale on which the liquid crystal reorients. Similarly, the drag on
the colloidal particles will in general depend on a complicated combination of viscosity
coeflicients determined by the local orientation of the nematic, velocity and velocity
gradient. However, the isotropic viscosity always plays a large role in determining the
viscous stress on the particles. Including these two terms in the dissipation therefore
represents the simplest model which posses the correct symmetries and likely captures
the main aspects of the dynamic response of the system. In general we expect that
this approximation will be valid for slowly evolving systems.

2The corotational derivative describes how the director changes in a frame that rotates with the
fluid element [44, 45]
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6 T.P. BENNETT, G. D’ALESSANDRO AND K.R. DALY

In addition to neglecting the coupling of the flow to the O-tensor, we also neglect
the inertia of the fluid. This is a standard assumption when analyzing liquid crystal
devices. In our system we can justify this approximation because requiring that the
Reynolds number is small,

2p||0:
_ 2ol
G

with p the density of the nematic and /5 the characteristic size of the system, gives
|o] <102 ms™!, a condition that is easily satisfied in most liquid crystal devices.

Finally, to obtain the torque on the dopants caused by fluid flow and the electric
field we use the viscous and Maxwell stress tensors. The first is [44],

(2.12) Re

(2.13) TWN) = 7 — LVa-Va+¢ [(W&) : (88? + - 6&) W+ 2W|a|2] + D,

where p is the pressure and

0 -1
(2.14) W = [1 0 ] .
The Maxwell stress tensor is
- - - 1/~ -
(2.15) T —EeD - (E-D) T,

where D = ¢yeE is the electric displacement field.

2.2. Nondimensionalization. Before we derive the microscopic model from the
free energies and dissipation function defined in the previous section, we must first
nondimensionalize equations (2.4), (2.5), (2.7) and (2.8). All the scaling coefficients
and scaled parameters are listed in table 2.1. Some typical values are listed in table 2.2.
Note that £2 and, hence, x, are very small. We will make use of this property in
sections 3.3 and 3.5 to simplify the macroscopic equations. The bulk and surface
nondimensional free energy densities and the total free energy are given by

(2.16a) F =§||VaH2— 1|a\2—i-1|a,|4
. B 2 9 4 9
(2.16b) Fe =—xulEI> = xaa - €,
(2.16¢) Fs =§|GS —af?,
(2.16d) Fiop = / FundS+ [ Fsd,

D Bp

where D is the nondimensional microscopic domain, given by the difference between
the rectangle Dy = [0, ¢] x [0, 1] and all the particles, Bp is its boundary with all the
particles and the total bulk free energy density is

(2.17) Fiot = FB+FE.-

We have defined a traceless electric tensor by analogy to (2.2),

(219 e-vi(BoB-1BP),
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Order parameter scaling factor

So = [A(T* —T)/C]"/2

Director tensor and components

(Q,a) = So(Q,a)

Total bulk free energy density

Fiot = CS§Fion

Macroscopic spatial coordinates

:f}:fgw

Aspect ratio of the microscopic domain

0 =101/l

Nondimensional macroscopic domain

Dy = [0, x [0, 1]

Voltage scaling factor

‘70 = [4[~/S()/60}1/2

Electric field

E = (Vo/5)E

Elastic constant

& =L/(i3CSY)

Isotropic dielectric permittivity

Xu = 26463 /50

Electric coupling coefficient

Xa = Aeﬁg

Anchoring strength

B = fily2/L

Reduced viscosity

¢ =¢3/(GS3)

Time scaling factor

T=G/(CS)

Dissipation function R=RCSY/T
Time t=rt
Pressure p=CS3p
Velocity v = (ly/T)v
Velocity gradient & vorticity (D,W) = (D,W)/r
Anchoring to elastic energy ratio Wy = [LZQ /L
Reduced dielectric tensor E=¢/ey

Dielectric anisotropy coefficient

a = AeSy/(V2€,)

TABLE 2.1

Scaled variables and parameters, and scaling coefficients needed for the nondimensionalization
of the colloidal nematic equations (see section 2.2). The unscaled variables are identified by a
superscript .

T-T*=-10 K A=013-10JK 'm=3 | ¢ =3.9-10% JK 'm—3
L=10""N ¢1 =280 mPa s C3 =220 mPa s
ly=32-10"%m e =20 €L =5

So ~ 0.6 £ ~1078 [Xus Xa] =~ [1076,1077)
f=10""t010"°Jm™2 | W4 ~ 0.1to10 B~3-107%t03-10""

TABLE 2.2
Typical parameter values (based on those for 5CB reported in[}]). These are used in section 3.5
to justify the multiscale analysis and in the numerical simulations in section 4.
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8 T.P. BENNETT, G. D’ALESSANDRO AND K.R. DALY

such that Tr(£2?) = |E|?. The vector e that appears equation (2.16b) is formed by its
components on the basis (2.3).
The nondimensional dissipation function is given by

1 1
(2.19) R= 5|&|2 + 5(’17 : D,

where all the scaled variables are defined in table 2.1. The corotational derivative a is
defined by equation (2.9) with the dimensional variables replaced by the corresponding
nondimensional versions:

da

(2.20) a= I +v-Va-—-2Wa.

The Maxwell (2.15) and viscous (2.13) stress tensors become

(2.21a) TM =y, |E® D - %(E : D)I} ,

9]
(221b) TW) = —pI —&fVa - Va+ (Wa) (52 tv- V“) W +2Wlal? +'D.
The nondimensional electric displacement field D is related to the nondimensional
electric field by

(2.22) D =¢E,

with € the reduced dielectric permittivity tensor, € = €,¢.

Having expressed all the free energies and stress tensors in nondimensional form,
we are now in position to derive the equations governing the nematic liquid crystal,
fluid flow, dopants and applied potential.

2.3. The nematic equations. The equations governing the nematic liquid crys-
tal dynamics are given by,

OR OFtot  OFot

oa  © 0Va  Oa

(2.23)

in the bulk and

~ a-7:tot o a]:S
(2:24) " Ve - da

on Bp, with nn the outward unit normal from D.

Substituting the total nondimensional free energy density from (2.16) and the
dissipation function from equation (2.19) into (2.23) and (2.24) we find the nematic
is governed by

(2.25a) a=¢Via+ x.e+a—alal? x €D,

(2.25b) n-Va=Wy(as—a), x € Bp,

(2.25¢) a=b(x), x € Op,

where Wy = E% = ﬂgz and b(x) is the prescribed alignment on Op, the outer boundary
0
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MULTISCALE MODELS OF METALLIC PARTICLES IN NEMATIC LIQUID CRYSTALS 9

2.4. The particle equations. To determine the governing equations for the
particles we balance the torques due to the fluid flow, nematic liquid crystal and
electric fields. These torques can each be determined using the appropriate stress
tensor or the free energy and dissipation function. We use the latter to derive the
nematic torques and the former to determine the electrostatic contribution.

The torque on a particle due to elastic distortions and surface orientations is equal
to minus the derivative of the nematic elastic and surface free energy density with
respect to particle orientation,

N = — 5 271 2 } 4 . %
Py = /Fm<2||Va|| slal + 7lal') (- 52 ) dia

0 2/ Org
(2.26) —Aw[ﬁ(ag—a)~;j—&—?(z)(n-(;;b)as—az
+ﬁ% (ﬁ.%z’) |ag—a2} dl,

where dl,, is the line element in the x coordinates, 1 is the particle alignment angle,
T’z is the boundary of an individual particle parameterized using the x-coordinates
and we have used Reynolds transport theorem (see section SM1 of the Supplementary
material). Here r,, is the position vector on the particle boundary with respect to a
given origin in the  coordinate system and k4 is its curvature,

-3
ory, 0%ry

BT

ory

To compute the torque due to the electric field we use the Maxwell stress ten-
sor (2.21a). The x3 component of the torque is

(2.28) TH = — / T Lk Pm T dly,

where we sum over repeated indices with the indices ranging from 1 to 2. Here
Tol = [—x9,21])7

The torque or drag due to fluid flow sets the time-scale of the particle motion. In
nondimensional units the flow velocity v is governed by the divergence of the stress
tensor [44]

!/
(2.29a) %VQv =Vp+&V-(Va-Va) - WV (aWa), zeD,
(2.29b) V.v=0, z €D,
0
(2.29¢) v = %rml, x € Bp,
(2.29d) v =0, x € Op.

We can now compute the drag on the particle from the dynamic stress tensor. Fol-
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10 T.P. BENNETT, G. D’ALESSANDRO AND K.R. DALY

lowing the same method as for the Maxwell stress we find two contributions,

(T'U)3 = - / TmlkﬁmT;n]Z)dlm

=— / ro1 - (—pn+('Dn)

(2.30) - /: {rm ‘N {(Way (Z‘t’ +v- Vaﬂ +2lal*rz, - (Wﬁ)} dlg.

Summarizing, the particle dynamics are governed by
(2.31)
/ Tz (—pn+ ('Dn) dl,
T

b [ Aracoafova) (5240 va) |+ afras v far =
T

_ ﬁ 2_1 2 1 4 A.%
[ (S1var = g+ Jialt) (a5 at.

8&5 ,82 “ 8rw 2
[ e G+ g (5 tas

Bra (o OTa) o
+2 (n aw>|a5 al”| dig

- / ey T dly.
Iz

2.5. The potential equations. The electric potential is governed by Maxwell’s
equation for the electric displacement field. We assume that there are no free charges
in the system and impose a floating potential condition on the surface of the inclusions.
In nondimensional form the equations governing the electric potential ¢ are

(2.32a) V- (Z+aQ)Ve] =0, zeD,

(2.32b) t-Vo=0, x € Bp,

(2.32¢) /F A - [(T + Q) V4] diy = 0,

(2.32d) ¢(;) = o(x), z € Op,

where % is the vector tangent to the particle, E = —V¢, a = A S0 g O(x) is a

€u /2
prescribed potential on the outer surface of the microscopic domain. Equation (2.32a)

is the first Maxwell equation for the (nondimensional) displacement field D, defined
in equation (2.22). Equation (2.32b) is the statement that the potential is constant
on each particle (although it may vary from particle to particle). Equation (2.32c)
requires that the total charge on each particle is zero. As the particles are metallic
the local charge density is D -n; the integral of this quantity on the particle boundary
I', must be zero for the particle to be neutral.

2.6. Summary of the microscopic model. Equations (2.25), (2.29), (2.31)
and (2.32) govern the nematic, fluid flow, particles and electric field in our system. We
have assumed that the particles are fixed in position but are allowed to rotate freely,
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340
341
342
343
344

MULTISCALE MODELS OF METALLIC PARTICLES IN NEMATIC LIQUID CRYSTALS 11

thus neglecting any effect due to concentration gradients. The particles themselves
are treated as ideal conductors and we use a continuum model for the nematic which
bounds the minimum particle size that we may consider. Additionally by decoupling
the nematic from the fluid flow we have included only limited, but realistic, dynamics.
We perform a multiple scale analysis of these equations and by using a level set
representation of the particles we derive homogenized equations. Following this we
use a second method of multiple scales to extract the slow dynamics of the nematic.

3. Homogenization.

3.1. Introduction. As shown in figure 2.1 the microscopic domain D of the
liquid crystal is formed by a tessellation of perforated squares of size f/y To perform
asymptotic homogenization we assume that f/y < 0l and that the system is locally
periodic, i.e. the director alignment, electrostatic potential and particle angle changes

only a scale much longer than L,. We consider each perforated square as a unit cell
Q). We introduce a small parameter n = %, the ratio of the size of a unit cell (typical
inter—particle spacing) Ey to the size of the full system f,. This small parameter
allows us to define a second coordinate in our system y = % which is defined within
a unit cell only (see right hand side of figure 2.1). The unit cell has y coordinates
0<y,; <1, with j =1,2. We call the generic unit cell the cell domain and we refer
to it with the symbol Q. Its boundary is formed of two parts (see right hand side of
figure 2.1): T is the boundary with the particle in the y coordinate system (as opposed
to 'y, which represents the same curve, but parameterized by the x-coordinates); BIY)
is the boundary shared with the neighboring unit cells. Finally, each unit cell
and, hence, particle angle 1) and boundary I' can in principle be identified by the
coordinate of the cell center. In the homogenization limit n — 0 the cell structure
becomes a continuous and the particle angle becomes a field ¥ (x) that parametrizes
the boundary I' and cell domain Q.

We seek governing equations in the limit as 1 tends to zero. For a problem
involving a generic field w this is achieved by postulating that all fields are functions of
both the macroscopic and microscopic coordinate, u = u(x,y). Next we make a series
expansion in integer powers of the small parameter 1, u = ug + nu; + n?us + O(n?).
We also use the chain rule to expand the gradient operator

1
(3.1) V= Vet Vy,

capturing rapid variations on the small scale. By substituting the expansion of u
into the equations governing v and expanding in powers of 7 we obtain a sequence of
equations for ug, u; and ug in terms of the independent variables  and y. Our aim is
now to eliminate the y-dependence from these equations leaving a set of macroscopic
equations that depend only on the x variable. The key observations which allow us to
proceed are that the geometry is locally periodic and that any variations on the x scale
are small on the y-scale and can, hence, be considered as a perturbation. At first order
we generally obtain that ug varies only on the macro-scale. The parameters in the
macroscopic equations are determined at next order by a series of cell problems which
depend on the microscale geometry. Finally, by expanding to the following order
and by enforcing solvability conditions, we obtain the macroscopic (homogenized)
equations which governs ug(x).

Before applying the homogenization method outlined above to the microscopic
model derived in section 2 we make two observations.
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The first is that in our system we have two small parameters, 7 and &2 (see
table 2.2) and we consider the limit that both of these parameters tend to zero. In
the case of the liquid crystal, both of these limits are non—trivial: we will first deal
with the case n — 0 (section 3.4) and consider the second limit in section 3.5. In
the case of the velocity equations the limit €2 — 0 is regular and trivial. The correct
procedure is to first to derive a set of macroscopic equations for the velocity and then
consider €2 — 0 in all equations. However, in the interest of readability and in order
to reduce the number of terms carried forward at each term of the expansion, we take
the limit €2 — 0 immediately (section 3.3), at the cost of a minor lack of formal rigor
when mixing the expansion for the velocity and the alignment, as in equation (3.53).

The second observation concerns the scaling of the surface energy with 7. As the
size of the particles varies linearly with 7, to avoid the surface term dominating the
total free energy we postulate that the anchoring energy density scales linearly with 7,
ie. i = O(n). Asa consequence we write § = n; and Wy = an(ll). A rough physical
interpretation of this condition is that we have weak anchoring on the particle surface.
More precisely in the limit 7 — 0 the total boundary area between nematic and dopant
diverges. As a result, unless we postulate a decrease in the anchoring energy density,
we find that the surface anchoring dominates the particle dynamics. This limit is
roughly physically equivalent to maintaining a constant volume of surfactant as the
number of particles diverges. This way even though the total interaction area increases
the surface energy density decreases. In any real application of the theory developed
here 7 is small but non-zero. The equations derived here are valid for small 7 provided
that the total surface energy density is of the order of the bulk energy or smaller and
that the anchoring on each individual particle is weak enough not to induce defects.

In order to represent arbitrary particles undergoing rotational motion correctly
within the homogenization scheme we use the level set method [5, 14, 38, 29, 9] to
compute the expansion of the unit normal vector and the value of the term n - %ﬁ
in equation (2.31). We express the location of the particle surface as a level set
xLs(W(x),y) = 0 so that now the position vector of the particle boundary is a function
of both & and vy, r(z,y), and so are its perpendicular 7, = [~73,71]7, the particle
boundary I' and the cell domain 2. The expansion of the unit normal is given by

VaXxrs + %VyXLS

o "= [Vaxrs + 3 Vyxrs| = fo i + O
where

N VyXxrs
(3.3a) Ry = m7
(3.3b) = YaXrs o 70 Vaxrs

[Vyxes| IVyxrs|

There is a corresponding expansion for the tangent vector ¢ = [~ng,n1]T:
(3.4) t=1to+nts,

where t; = [—néj)mgj)]T, with n; = [ngj),ngj)]T.
We now determine the “speed” of the boundary i.e. 377/:' As mentioned in sec-
tion 2.4, r is the position vector of a point on the surface of a given particle. In the

context of homogenization, 7 is a rapidly varying quantity and hence a function of
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the y coordinates. We can therefore use the implicit function theorem on the level
set definition of the particle boundary to obtain

or; oxLs <3XLS ) !

(3.5) o~ o0 oy

By utilizing the following symmetry of xrs in its two arguments

(3.6) x1s(0, R (¥(x))y) = xrs(¥(z), y)

and using the chain rule we find

OxLs
(3.7) gy~ el Vyxrs-
Hence
or
3.8 — Ny =Tgxy - Ny.
( ) aw 0 xl 0
3.2. Scaling of equations. As the size of the particles decreases so does the
magnitude of the torques on the particles. To make the analysis as transparent as

possible we make the 7 dependence of the terms in (2.31) explicit. This amounts
to mapping the domain of integration from a domain with linear dimensions that
scale with n to a fixed cell domain of size one. As a consequence, the line element

and position vector on the particle both scale linearly with 7, surface elements scale

with 12 and the curvature scales as % We define dl = dl,/n the line element in

the y coordinate and k = nk, the scaled curvature. With these scalings the particle
governing equation [cfr. (2.31)] is

nz/m.(—pﬁﬂ’pﬁ) dl
r
9 R da 9 .
+n ri-n|(Wa)- E—i—v-Va +2lalr, - (Wn)p d
r
2
— 2 [ (% valrz - tia2+ Lat) (.28
o [ (S1val - Jiap + flart) (257 )
—77251/ [(as—a)-asmﬂf;(ﬁﬂu)las—ag
r
Ke . 9
+7(n~7¢)\a57a| dl
—ngxu/n (R Tar) dl,
r

where as; = —2Wag. The fluid flow obeys [cfr. (2.29)]

(3.10a) %v% =Vp+£V - (Va-Va) - WV (aWa), x €D,
(3.10b) V.v=0, z €D,
(3.10c) v= n%—qi}rl, x € Bp,
(3.10d) v =0, z € Op.
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14 T.P. BENNETT, G. D’ALESSANDRO AND K.R. DALY

while the nematic dynamics is determined by [cfr. (2.25)]

(3.11a) a=&Via+ x.e +a—alal? x €D,
(3.11b) f-Va=nWP (as—a), x € Bp,
(3.11¢) a = b(x), z € Op.

The equation governing the electrostatic potential (2.32) is unchanged.

At this point there are two possible approaches we could follow in order to derive
the appropriate homogenized equations. The first is the method of formal asymp-
totic expansions, see for example [33]. The second is the two-scale convergence
method [31, 2]. Whilst the latter is mathematically rigorous, the former is based
around a regular asymptotic expansion which has the advantage of increasing the
clarity of the derivation. Hence, in this work, we will derive the homogenized equa-
tions using the formal asymptotic expansion method. This consists in expanding all
equations and collecting terms at each order. In order to make the derivation of the
macroscopic equations clearer, here we follow a slightly different approach: we first
solve the drag equation to eliminate the fluid velocity and then analyze the particle—
liquid crystal equations. Solving the drag equations will allow us to show that the
fluid velocity effectively decouples from the director alignment. We will carry out this
step in the next subsection and then move on to homogenize the remaining equations.

3.3. Expanding the drag. As mentioned in section 3.1, in this paper we take
a double limit of the microscopic equations, namely 7 — 0 and &2 — 0. In the case
of the velocity equations the latter limit is regular and we take it immediately, thus
reducing equations (3.10) to

!

(3.12a) EV% = Vp— WV (aWa), z €D,
(3.12b) V.-v=0, z €D,
(3.12¢) v = 77%717 x € Bp,
(3.12d) v =0, z € Op.

We note that, by assumption, the fluid flow is coupled only to the particle orientation.
Dealing with the fluid flow will then allow us to simplify (3.9) and determine an
explicit set of equations for the particle motion. We make the usual expansions of the
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gradient (3.1), the Laplacian and fields,

2 1
(3.13a) Vi=V2 + ;Vm Vg + ;pr
(3.13b) v = vo + nv, + NV,
1
(3.13c) D= ED(_D + DO 4y,
1
(3.13d) W==-wb 4w 4w,
n
-1oe P =PpoTnp1LT1 P2
(3.130) +npy 4P
(313f) a = ag —|— 770'1 + n2a27
(3.13g) ¢ = do + o1 + 1’92,
1 1
(3.13h) e=—e s+ —e_1+ep,
n n
(3.131) Q=00 4,0 4 n20?),

W) and D*), k= —1,0,1,..., are defined by equations (2.10-2.11) respectively in
terms of the derivatives of the expansion of the velocity v. For example,

(=1) 1 avm avoj
14 (=1 _ = _ _
(3.14) Wi =3 (5 -52)

o) = Z?:l agk)T(i), with a, = (agk)7aék)), k = 0,1,2. The expansion for the
electric field tensor components e in equation (3.13h) is obtained by substituting
equations (3.1) and (3.13g) together with the relation E = —V¢ in equation (2.18)
and projecting on the basis (2.3) of traceless symmetric tensors. For example, the
k-th component of e_5 is

el(c_Q) =2Tr [(Vy¢0 ® Vygo — ;I|Vy¢02) T(k)}
(3.15)

=V2Tr [(quso ® Vy0) TW] .

Substituting equations (3.13) into Stokes’ equation (3.12) we obtain a sequence
of problems at different orders in 7. Solving these in ascending powers of n we will
derive the cell problem for the fluid flow and use the result to simplify the drag term,
i.e. the first integral on the left-hand side of equation (3.9), namely

(3.16) F= / r1 - (—ph+'Dn) dl.
r

3.3.1. Leading order. We will show in section 3.4.1 that the leading order term
of the director field components, ag, is a function of the macroscopic variables only,
ag(x,t). Therefore, the leading order expansion of the fluid equation (3.15) is

(3.17a) Vivg =0, yeQ,
(3.17b) Vy - v9=0, y €,
(3.17¢) vg = 0, yel.

This manuscript is for review purposes only.



181
482
483
484
485

186

487

488

489
490

491
492
493

494

16 T.P. BENNETT, G. D’ALESSANDRO AND K.R. DALY

subject to a periodic boundary condition on 92, the outer cell walls. In the derivation
of equation (3.17a) we have used the incompressibility condition (3.17b), the defini-
tion (2.20) of corotational derivative and the fact that ag does not depend on y to
simplify the term WV ,(agWWay) in the lowest order expansion of equation (3.12a) to
Vi'uo. Equations (3.17) have solution vy = 0. Hence, D(—1) = 0.

3.3.2. First order. At this order the fluid obeys

!
(3.18a) EV?”UI = Vypo + 2V, - WO ag)?, y e,
(3.18b) Vy-v1 =0, yeQ,
0
(3.18¢) v = 6—1511, yerT,

subject to periodic boundary conditions on BQj. As the fluid is driven by the particle
rotation through the boundary condition (3.18¢), we make the ansatz v; = uy %—f and
Po = Po%—f, where both Py and w; depend on y. The system of equations for u; is

!
(319&) |:é + |a0|2:| viul = Vy-POa Yy e Q,
(3.19b) Vy-u; =0, y €,
(3.19¢) U =7, yel.

Equations (3.19) are the cell problem for u; and can be solved numerically. It should
be noted that, in the absence of defects, |ag|? is constant with respect to y. Hence,
its effect is just to scale locally the viscosity. The order ° term of the symmetric part
of the velocity gradient is given by

1
(3.20) DO = 3 [Vyv1+ (V)]

and the Stokes’ drag component of the net drag on a particle, equation (3.16), can be
expanded as

)
(3.21) / L (g’pwmo - ﬁop()) dl = aif / - (4’73(0)%0 - ﬁOPo) dl+ O(1).
T T

where
1
(3.22) DO — 3 [Vyur + (Vyup)'].

Using equation (3.21) we simplify the particle equation (3.9) to

G+ [{realova) (e +o-va) |+ 2apr - ova} a-

2 1 1 .0
3.23

L, K,
7ﬂ1/ [(agfa)~a5l+772W(n.7l)|a5fa|2+§(n.11)|agfa|2} dl
T

7Xu/’f‘L'(’fL~TM)dl,
r
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where the time constant in equation (3.23) is given by
(3.24) Kl = / .- (C’D(O)’ﬂo —ﬁ,oPo) dl.
r

As we are only interested in the leading order time dynamics of ¥ we do not consider
higher order terms in the expansion of the drag equations. We will complete the
expansion of equation (3.23) at the end of the next section, once we have completed
the expansion of the director and electric fields.

3.4. Nematic dynamics and the electric field. Having obtain a simplified
equation for the particles (3.23), we now proceed to homogenize equations (2.32) and
(3.11). As in the previous section, we expand derivatives and all the fields, equations
(3.1) and (3.13).

3.4.1. Leading order. At leading order the nematic equations (3.11) are
(3.25a) ngiao + xa€—2 =0, y e,
(325b) ng - Vyao =0, yel,

subject to periodic boundary conditions on the outer boundaries of the unit cell.
Similarly, the leading order expansion of Maxwell’s equation for the electric potential
is

(3.26a) vy [(T+0Q) Vy60| =0, yeQ,
(3.26Db) ty- Vyoo =0, yel,
(3.26¢) / [(I+ aQ(O)> Vy¢>0} hgdl =0,

T

with periodic boundary conditions on 9. The solution of equations (3.25, 3.26) is
ag = ao(x) and ¢g = ¢o(x).
3.4.2. First order correction. At order O(n) we find that for each cell

(3.27a) §Viar =0, y € Q,
(327b) g - Vyal + 1o - Vyag =0, yel.

No e_; term is present in equation (3.27a) because the electric field tensor £, defined
in equation (2.18), is quadratic in the gradient of the potential and Vy¢o = O.
Equation (3.27) is equivalent to the standard order one problem for diffusion of solutes
in porous media [23], hence solvability is guaranteed. As the & dependence in this
equation is only through a single term in the boundary condition (3.27b), we can scale
it out by writing the solution as a1 = ng—g‘:. Substituting into equations (3.27) we

obtain the cell problem for yi, k = 1,2,
(3.28a) Vixe =0, y e Q,
(328b) ng - Vka = —nyg - ey, yel.

Here éy, is the k-th coordinate unit vector. These equations (with periodic boundary
conditions) define xj up to a constant (with respect to y). Hence we can write

da
(3.29) a; = Xka—x: + a1 (),
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where @;(x) is undetermined at this order and will not be needed in the derivation
of the macroscopic equations.
The first order terms of the expansion of Maxwell’s equation are

(3.30a) v, [(I+ aQ(O)) vy(;sl} —0, yeQ,
(3.30D) to - (Vago+ Vyo1) =0, yel,
(3.30¢) /F {ﬁo : <I+ aQ(O)) (Vyor1 + devo)} dl = 0.

Here Q© is the order O(n°) part of the O-tensor and has component vector aj.
This equation satisfies a solvability condition. An easy way to check this is to in-
tegrate (3.30a) over Q and use the divergence theorem and condition (3.30c). The
cell problem for the electric field is derived by making the ansatz, similar to equa-
tion (3.29),

(3.31) ZRkwy%+¢l( )-

By substituting this ansatz into equations (3.30) we find

>R
0\ _Z %
(3.32a) (6nm - aQnm) Doy y e,
(3.32b) (to - Vy) Ry = —to - &, yel,
(3.32¢) / fo - (I n aQ<0>) YV, Ri(y)dl = 0,
r

which must be solved numerically for varying particle orientations and realizations of

00,

3.4.3. Homogenization. At order O(n°) the nematic equations give

(3.33&)
ag = fg (Viao + 2V, - Vyal + Viag) +ag — a0|a0|2 + Xa€0, y € Q,

(3.33b)
no - (Vyas +Vzai) +n1- (Veag+ni - Vyar) = WS) (as —ag), yeT.

Once again we have to impose that this equation is solvable. As in the case of

equation (3.30) we integrate (3.33a) over 2, and apply the divergence theorem and
the boundary condition (3.33b). We find that equation (3.33) is solvable if

aao (0) -
|Q/( —2W aop dsS =

(334) /V V a0 +V al)d5’+a0—a0|a0|

]

— b1 7 &8 '
+Xa|Q|/Q€0dS+ |Q|/F(as ao) dl |Q|/rn1 (Veaog + Vyay)dl
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where |Q| is the area of © and W(® is the order zero term of the vorticity expan-
sion, (3.13d). We now simplify the left hand-side of equation (3.34). Using equa-
tions (3.19) and the divergence theorem we find

L [ (290 o _da0 20y
(3.35) Q|/Q<8t 2W%ay | dS = a0l 5¢ 0L

Next we use the transport theorem on the first integral on the right hand side

V- / (Vwao + Vyal) ds = Ve- (Vwao + Vyal) ds
Q

(3.36) @

+ / (Vaao + Vyar) - (Var - o) dl,
r

and we use the level set representation to write

VmXLS

3.37 Vaer Mg = —>—"—.
(3:37) °= T Vyxs]

Hence,

/ Ve (Vzag+Vya) dS=V,- / (Vzao+ Vyay) dS
Q Q

(3.38)
V:r,XLS
+/ Vzeag+Vya) ————dl.
. v 9, xus]
In addition, using boundary condition (3.27b) we see that on I"
_ VmXLS
(339) ni - (Vmao + Vyal) = — (Vmao + VyG,l) .
[Vyxesll

Substituting equations (3.38), (3.39) into (3.34) we obtain the macroscopic equation
for the liquid crystal alignment:

da 2 0
87; _ maqfal :gng -KVgzag+ag — aO‘a'0|2
(3.40) |Qp A
+Xa[eM<1+2 2 >+P}+ as — ao) dl,
o O] Jrn %)

where (2, is the domain of a nanoparticle. This equation is valid for all x € Dy =
[0,¢] x [0,1], and we no longer need to consider the perforated microscopic domain
D. We call Dy the macroscopic domain. The boundary conditions are given by
equation (3.11c) written for ag,

(3.41) ag = b(x), xz € Op.

The new elasticity term is given by

1 X
3.42 Kii = — 8ii + J)ds,
(342 ] Q@(ﬂ oy

the macroscopic electric field ep; has components given by

(3.43) M = \/aTy [(vm0 ® Vo) ’r(i)} :
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and the polarization components are
1 _
(3.44) Pi= g / Tr (ﬁvyRk ® VleqSO,qubo,lT(’)) ds.
Q

The derivation of these last two terms is detailed in section SM2 of the Supplementary
Material. Equation (3.40) is one of the key results of this paper and each of its terms
gives insight to the physics of the colloidal suspension. However, we defer a discussion
of their meaning to section 3.5 where we use the difference in scale between the various
terms to simplify this equation further. Instead, now we derive the second macroscopic
equation, namely that for the electrostatic field. At this order Maxwell’s equation for
the electric potential and its boundary condition are

Vy (T4 aQ)(Vyds + Vadi) + aQ1(Vyd1 + Vado)],

(3.45a) zel
+ Vo [(Z+aQ)(Vady + Vysér1)] =0,

/Fﬁo : KI + aQ<°>) (Vyo2 + Vi) + Q1 (Vydr + quso)} dl
(3.45b) +/Fno-(y-vm) [(I+ag(0>) (vw¢0+vy¢1)] dl

+/Fn1~ [(I—i—aQ(O)) (Vm¢o+vy¢1)} dl = 0,

where the second integral in the expansion (3.45b) of the boundary condition (3.30c)
is due to the non-local nature of the integral constraint [13]. We have not written
the expansion of the boundary condition (3.30b) because it is not needed for the
derivation of the macroscopic equation for the potential. To impose the solvability
condition we need to follow steps very similar to those leading from equation (3.33)
to equation (3.40). Briefly, we integrate equation (3.45a) over (2, use the divergence
theorem, apply the boundary condition (3.45b), the Reynolds transport theorem and
some lengthy algebra based on equations (3.36)-(3.39), to obtain a macroscopic equa-
tion for the potential,

(3.46a) V- [KVzdo] =0, x € Dy,
(3.46D) ¢po(xz) = (), z € Op,
where

(3.47) Ky = 6;; + Q) + /8Q ying - (I + aQ<°>) VoR;dl.
At leading order the electric field is

(3.48) Eqg=—-Vapo— Vyo1.

As the last step in deriving a set of macroscopic equations, we simplify the particle
equation (3.23). Using ag = ag(x,t) and ¢g = ¢o(x,t) we expand (3.23) to lowest
order in 7, namely 1°, and simplify the equation governing the particle dynamics
considerably. The first term on the right hand side of equation (3.23) is the bulk
elastic screening torque (see end of section 3.5 for a discussion of the physical meaning
of this and the following torques). This becomes

1 1 R
(3.49) 75 = —53/ {2|Vya1|2+2|Vwao|2+Vwao :Vyai| (o -ry) dl+0O(n).
r
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The second term is the surface torque

(3.50) rs = Bray - /F (A -7 )T — 2W] ag dl + O(1).

The last term is the electric torque

(3.51) T / ri - (0 T di 4 O(),

where the first non-zero contribution from the Maxwell stress tensor is given by
(3.52) 7™M = By ® Dy — %(E0 - Dy)T.

Here Ejy is defined in equation (3.48) and Dy = (Z + aQ©)Ey. They are the first
non-zero contributions to the electric and displacement fields. Finally, we simplify
the dynamic component of the viscous drag, the second term on the left hand side of
equation (3.23). We expand it in powers of 7, and use vg = 0, ag = ao(x,t) and the
cell problem (3.19), to write it as

/ {TJ_ N |:(WCLO) . (8801;0 + vg - VCL()):l + 2|a0|2m_ . (W(O)’flo)} dl =
r

0 R
2%/1171 (WO h4) dl .

where we have used the symbol 1y to indicate the particle angle determined at this
order in the expansion. W) is the scaled vorticity, defined as [cfr. (3.13d)]

(3.53)
2|ao|

1
(3.54) wOr = 3 [Vyur = (Vyur)'].
Hence, the final form of the particle equation is
0
(355) KO% = _536 : (Vwao ' V:ca0) - /qu(’{) cag — XuPimlkﬁglO)d)O,m(bO,kv

where

1 R
(3.56a) B;; =/ 5 (Xig + XG0 + XiwXg) (rL - 7o) dl,
T
OR OR; .
(3.56b)  Pimuk =/ (5kl + l) (5im + > (ro-no)d,
T

ayk: aym
(3.56¢) V=740,

(3.56d) g™ —— / [5(R0 - 71 )T — 2W] as dI,
T

(3.56e) Ko = /F [m : (C’D(O)’ﬁo —ﬁOPo)} dl + 2|a|? /F ry - (W@)’ﬁo) dl.

To summarize, equations (3.40), (3.46) and (3.55) capture the macroscopic behavior
of the system. Their coefficients are the key link between microscopic and macroscopic
physics of the suspension. Normally, the homogenization procedure would stop here.
However, in the specific case of liquid crystals a further simplification is possible,
namely we can apply a second multiple scale expansion, this time in the time domain,
to obtain a final set of macroscopic equations. We do this in the following section and
then proceed to discuss in detail the physical meaning of the various terms in these
equations.
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3.5. Multiple time scale analysis. Looking at equations (3.40) and (3.55) we
notice that 2, x, and B; are extremely small parameters ~ O(1077), see table 2.2.
Away from defects the elastic and particle driving terms are small in comparison to
the thermotropic terms. As a results when equations (3.40) and (3.55) are integrated
to equilibrium, the dynamics in the absence of defects roughly correspond to a rapid
equilibration of the scalar order parameter followed by a slow elastic reorientation.
We now follow the method of [15] and use multiple scale analysis to obtain equations
governing the slow elastic reorientation.

The slow reorientation dynamics are driven by terms of the order £2. We simplify
equations (3.40) by expanding in terms of 7y, = &3 and express B = nMB, Xa =
NM Xas Xu = NMmXy and % = WM%- We assume that all dynamics on a faster time-
scale than £ have reached equilibrium. Equation (3.55) is driven solely by terms of
order nyy, its dynamics are confined solely to the slow elastic time-scale . The first
order part of equation (3.40) is

(357) ap — a0|a0|2 = 0,
which defines an invariant manifold
(358) ‘Cl,()|2 =1.

At next order we find

Oy
Vz -ICVmaO—HZa [GM <1+2| |QT> +p:|
(3.59)
_ 8a0 2 8’(/10

i 19 ai

+£/(a5—a0)dl a; =4ag(ag-aq).
€2 Jr

To obtain the time and space dependence of ay we require that (3.59) posses a solution
for any a. The solvability condition is that the left hand-side of (3.59) is orthogonal
to a; = Way: this ensures that both the left and right hand-side of (3.59) are in the
direction of ag. Applying the solvability condition and re-expressing the result on the
rapid time-scale we find

8a0 2 8’(/)0 2
.60a,
+ Xa [eM (1+2Q“p|) +p} ~cu+ﬂ (/ asdl) ‘al,
€2 12 \Jr
da
(3.60b)  aq- aTO =0.

These equations are valid for & € Dy and have boundary conditions (3.41). Equa-
tion (3.60a) is the solvability condition, while equation (3.60b) is obtained by differ-
entiating (3.58). Together they define the dynamics of the nematic along the manifold
of uniaxial Q-tensors with scalar order parameter given by (3.57).

Equation (3.46), (3.55) and (3.60) are the final macroscopic equations for a two-
dimensional suspension of freely rotating metallic particles in a nematic liquid crystal
in the absence of defects.

The torque the particle experiences due to the elastic free energy is captured by
Bi; in equation (3.55) and represents a screening effect. This term tends to align
a particle so that it screens opposing boundary conditions. The surface interaction
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with the nematic is captured by q(*) in equation (3.55) and favors aligning the particle
easy axis with the macroscopic director. Its coefficient is the scaled anchoring energy
coefficient (87 rather than the unscaled value (: this is to reflect that the alignment
equation is valid only in the weak anchoring limit discussed in section 3.1. The
interaction with the electric field is determined by both the local field and the local
alignment of the nematic. The term containing Pj,,;; in equation (3.55) describes this
coupling.

The terms in (3.60) offer a similar interpretation. In place of the screening effect
we have an excluded volume effect given by . The surface interaction takes a slightly
different form but still favors aligning the nematic with the local particle easy axis.
The interaction with the electric field is split into two parts, the macroscopic field ey,
and the polarization p. The macroscopic field coupling is increased due to the volume
occupied by metallic particles: the field is only non-zero outside the particles, but the
total change in potential due to an externally driven field remains constant regardless
of the presence of metallic particles. The polarization captures the additional field
due to induced surface charges on the dopant particles.

4. Numerical validation. To check the accuracy of the macroscopic model
derived in the previous section, we compare its predictions with numerical simula-
tions of realistic, but numerically manageable, colloidal suspensions. This requires
us to tackle two independent issues: the first is the integration of the cell problems,
equations (3.19), (3.28) and (3.32), that define the parameters that appear in the
macroscopic equations. Once these are known, the integration of the macroscopic
equations (3.46), (3.55) and (3.60) is relatively trivial. The second is the integration
of the microscopic equations (2.25), (2.29), (2.31) and (2.32). We discuss these two
issues in turn and then compare the results of the two sets of simulations.

To use the macroscopic equations (3.46), (3.55), and (3.60) we must first solve
the set of cell problems (3.19), (3.28) and (3.32) to obtain the effective material pa-
rameters. This can be accomplished using the finite element package COMSOL mul-
tiphysics (see section SM3 of the Supplementary materials for details). To integrate
the macroscopic equations we use a spectral collocation method [47] to discretize in
space and the MATLAB variable order solver odel5s, which uses implicit numerical
differentiation, to integrate in time.

The macroscopic equations (3.46), (3.55), and (3.60) can be integrated with rel-
ative ease numerically in arbitrarily large macroscopic domains. However, for com-
parison with the microscopic equations (2.25), (2.29), (2.31), and (2.32) we select a
one dimensional macroscopic domain, with 0 < zo < 1. This is equivalent to a liquid
crystal cell with flat surfaces at x5 = {0,1} and uniform alignment conditions there.
A potential difference V' is applied between zo = 0 and 2o = 1. The equivalent mi-
croscopic system is a stack of up to 64 unit cells, each containing one particle, that
is solved using a finite element method. The number of particles is large enough to
make the model realistic, but small enough that the integration of the microscopic
equations takes no more than a few hours on a high spec PC (as opposed to a few
seconds for the macroscopic equations).

The microscopic equations (2.25), (2.29), (2.31), and (2.32) are solved in a mi-
croscopic domain consisting of a 1 x N array of unit cells each containing a single
identical particle. Within each cell the particle is free to rotate and equations (2.25),
(2.29), (2.31) and (2.32) are solved throughout the whole system. The long sides of
the array are subject to periodic boundary conditions while the ends are subject to
appropriate Dirichlet conditions. In all cases we assume zero pre-tilt and constant
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Fi1G. 4.1. Director (left) and particle (right) angle as a function of distance into the cell for
different values of the wvoltage applied to the cell. The solid lines are the solutions of the homoge-
nized/macroscopic equations, while the colored points and circles are solutions of the microscopic
equations computed using Comsol with N = 64 particles. Elliptic particles with semi-azes 0.1 and
0.23, the angle v is formed by the semi-major axis and the x1-axis and the anchoring energy is
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F1G. 4.2. Director (top) and particle (bottom) angle as a function of distance into the cell at
V =3 for i =107% Jm=2 (left) and ji = 3.1-10~% Jm=2 (right). In all plots the red solid lines are
the result of the homogenized/macroscopic equations, while the blue dashed lines and crosses are the
solutions of the microscopic equations for N = 32 elliptic particles of the same size as in figure /. 1.
In the stronger anchoring case (left column) the particles are slaved to the director field and 6 and
v have the same profile. In the weaker anchoring case (right column) the particles partially detach
from the liquid crystal and align with the electric field. The black dashed line in the top two graphs
is the director angle in the case of a pure liquid crystal.

potential across the ends of the stack. Equation (2.25) is implemented as a general
form PDE, the electrostatics package is used to compute the electric field, the particles
motion is included as a set of global ODEs.

A comparison between the homogenized equations and the large-scale finite ele-
ment simulations is shown in figure 4.1 for a range of voltages V = 2 to V = 5 applied
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to a suspension of elliptical particles. For each voltage 64 particles were used in the
microscopic simulations. There is excellent agreement at all voltages.

Figure 4.2 illustrates the effect of the anchoring energy on the alignment of the
liquid crystal (top graphs) and of the particles (bottom graphs) in response to an elec-
tric field parallel to the x5 axis. The red lines represent the results of the macroscopic
model, while the blue dashed lines and crosses are the solution of the microscopic
equations with N = 32 elliptic particles of the same size as in figure 4.1. This figure
shows once again that the agreement between microscopic and macroscopic models is
remarkably good, even at relatively large values of n: the microscopic model simulated
in this figure has N = 32 particles which corresponds to n = 1/32. The figure also
illustrates very clearly the effect of microscopic parameters on the system behavior:
for stronger anchoring (left column) the liquid crystal and the particles are slaved to
each other and 6(z2) and ¥ (x2) have the same profile. For weaker anchoring (right
column) the particles are approximately parallel to the electric field ¢ &~ m/2 across
the entire cell, while the director profile is still far from saturation: the particles are in-
fluenced more by the applied field and screening effects, both of which favor ¢ = 7/2,
than by the surface anchoring. For comparison, the black dashed lines in the top
panels of figure 4.2 are the alignment of the liquid crystal in the absence of particles:
the amplitude of the director deflection is much smaller, indicating clearly how the
particles amplify the response of the liquid crystal to external fields. Finally, we have
checked that the particle symmetry does not affect the quality of the approximation
(see section SM4 of the Supplementary material).

5. Discussion. In this paper we studied the alignment of a nematic liquid crystal
containing freely rotating metallic particles using the method of asymptotic homoge-
nization. We have derived a set of macroscopic equations that include the shape and
composition of the dopant particles directly. We have shown that the model developed
here agrees well with large-scale numerical simulations. The main difference between
the theory developed here and that developed previously [6] is the presence of particle
dynamics. We find that the particles are aligned by elastic screening interactions with
the liquid crystal, surface anchoring effects and a direct interaction with the electric
field. As in previous work [6] the key advantage of using homogenization is the ability
to link the macroscopic quantities such as susceptibilities, to the micro-structure of
the problem.

The main assumption we have made in deriving our model is that a separation
of scales exists between the inter-particle spacing and the macroscopic size of the
system. This is a valid assumption for low concentration colloids that are typically
studied experimentally. One consequence of this assumption is that the alignment
cannot vary significantly within the neighborhood of a particle. This precludes the
study of defects. In addition we have assumed that the anchoring energy density is
scaled with the concentration of particles in the system. This has some impact on the
range of systems that may be modeled. Our model is certainly valid for anchoring
energies of the order of 1076 Jm~=2 (see figure 4.2). Preliminary work has shown that
if the weak anchoring constraint is dropped we obtain both an additional set of cell
problems which couple the elastic and surface interactions and terms quadratic in the
anchoring strength fi in the macroscopic equations. This will be explored further in
future work.

Future work may explore extending this theory to the three dimensional case,
incorporating fluid flow more completely and allowing for more general particle mo-
tion. The extension to three dimensions does not introduce any new physics to this
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problem, but requires considerably longer algebra as the Q-tensor has 5 independent
components and the particle orientation is described by two angles. Moreover, the
computational time needed to solve the cell problems and verify the model against
large-scale numerical simulations will increase significantly. Incorporating the full dis-
sipation function derived by Sonnet et al. [44] would couple the particle and nematic
dynamics leading to a more complicated model. It may be possible to incorporate
translating particles using the method employed by Richardson and Chapman [37].
This method involves making a change of coordinates that maps a seemingly non-
periodic problem into a periodic problem in general curvilinear coordinates. Treating
moving particles in this way may allow the particles to move away from the lattice
configuration we are currently confined to.

In principle it may be possible to extend this work to the strong anchoring case.
As strong anchoring is essential for self-assembly this is certainly a problem well worth
studying. However, it is non-trivial and would require a considerable recasting of the
homogenization procedure: one of the key consequences of the weak anchoring limit
is that the lowest order director field ag is a function of the macroscopic coordinates
only. This would be no longer the case if defects were present.

6. Conclusions. Despite a number of assumptions, the theory developed in this
paper represents an important step forward in modeling the interactions of a liquid
crystal with small particles. The use of homogenization ties the average properties
of the liquid crystal to the dopant material properties, size, density and shape. This
approach opens up the possibility of using optimization to design particles for a specific
application without the need for large scale simulation and lays the groundwork for
future model development.
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