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Abstract. In this paper we use the method of homogenization to derive a set of approximate4
equations which describe a nematic liquid crystal colloid in which the dopants are freely rotating5
metallic particles. Previously we have studied the approximate behavior of liquid crystals doped with6
particles under the assumption that these remain stationary [6]. This paper builds on [6] by extending7
the theory to include rotating particles. We find a set of governing equations for the nematic liquid8
crystal and for the dopant particles. Effective material parameters are given explicitly in terms of9
the microscopic particle-liquid crystal interaction parameters by a sequence of cell problems solved10
on the micro-scale. We validate our model by direct comparison to large scale numerical simulation11
and find excellent agreement for a variety of dopants shapes.12
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1. Introduction. Colloidal nematic systems consist of micro- to nanometer16

sized dopant particles suspended in a nematic liquid crystal. They have been studied17

either as models for self-assembly of two and three dimensional structures [30, 18, 12,18

41] or as a tool to enhance the liquid crystal linear [24] and nonlinear [22, 21, 48]19

properties. The particles disrupt the nematic alignment and cause elastic distortions20

whose nature depends on the strength of the anchoring of the liquid crystal molecules21

on the particle surface. In the strong anchoring limit defects can form near the par-22

ticles and are tethered to them. In these cases it is often the interaction of a small23

number of particles that is of interest [20, 17, 49]. Typical research topics include24

stability of different director configurations [46] and particle self-assembly through25

long range elastic interactions [3, 40].26

In this paper we are primarily interested in the weak anchoring regime, a regime27

characterized by low anchoring energy or small particle size. As a consequence, de-28

fects are not present [39]: the liquid crystal alignment is distorted by the presence of29

the particles, but the scalar order parameter remains approximately constant. Such30

colloidal suspension are optically homogeneous and, hence, of interest to devices and31

light-based applications. The net effect of the dopants is to alter the material prop-32

erties of the nematic resulting in a new composite material with enhanced interaction33

with externally applied electromagnetic fields [22]. In particular, gold nanoparticles34

suspended in liquid crystals [21], the main example used in this paper, lower their35

nematic–isotropic transition temperature [34], increase their switching speed [28], in-36

troduce tunability of their dielectric anisotropy [36] and increase considerably their37

thermal nonlinearity [32] which, in addition, can also be tuned using an external volt-38

age [25]. The general mechanism works as follows: firstly the liquid crystal favors39

a particular alignment on the dopants surface due to surface treatment. Secondly40

the dopants themselves interact with externally applied fields favoring a particular41

alignment. These two mechanisms in conjunction transfer the electromagnetic torque42

applied to the dopants to the nematic through the surface anchoring. This allows the43
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geometry and physical make up of the dopants to modulate the strength of the inter-44

action. In addition, dopants exclude volume from the system reducing the strength45

of the elastic interaction within the nematic.46

Mean field theories, such as those that describe ferromagnetic [10, 11] or ferroelec-47

tric [26, 42] colloidal suspensions, introduce an effective free energy. For example, the48

free energy proposed by Burylov and Raikher contains additional terms to describe (i)49

the interaction of the dopant with the applied magnetic field, (ii) a mixing entropy50

which allows for concentration gradients and (iii) the surface interaction between51

the nematic and dopant. However, the macroscopic parameters that control these52

interactions are not defined within the theory and must be determined separately.53

In this paper we use homogenization to derive an effective model of a nematic54

liquid crystal doped with perfectly conducting particles in the weak anchoring case,55

i.e. in the absence of defects. As mentioned previously, this case is of most interest56

for light-based applications, as the colloidal suspension is optically homogeneous. The57

model can be seen as an extension of that developed in [6] to incorporate rotating58

particles. In [6] the case of static inclusions that may be identified with dopant59

particles or a micro-structure is studied. In this paper we study a two-dimensional60

system of liquid crystal and dopant particles in which the dopant particles may freely61

rotate. Homogenization theory [33] is a set of tools for extracting the limiting behavior62

of a system in the limit of vanishing micro-structure. It is particularly suited for63

approximately periodic systems in which the period of the micro-structure is small64

in comparison to some characteristic macroscopic length. We treat the colloid as a65

system of periodic cells each containing one colloidal particle; the orientation of the66

particles is allowed to change between cells, i.e. the system is only locally periodic.67

There is a large literature on locally-periodic homogenization [1, 7, 8, 14, 27, 29, 35,68

43]. Here we follow in particular the approach by Richardson et al. [38] and Bruna and69

Chapman [9]. We obtain a set of stiff macroscopic equations using homogenization.70

To simplify the numerical verification we extract the slow time-scale dynamics that71

corresponds to the elastic reorientation of the nematic from our macroscopic model72

using the method outlined in [15].73

The final macroscopic equations we arrive at are given in section 3.5: they ap-74

proximate the behavior of the applied field, the particles and the nematic. These75

equations show that the mixture possesses different material parameters than the76

pure nematic, namely reduced elasticity and enhanced electrical susceptibility. In77

addition, the dopant particles are aligned by torques due to the nematic and electric78

field. As we do not allow the particles to move from a periodic lattice, we do not79

obtain a mixing entropy contribution. We also find no change to the scalar order80

parameter.81

Our model differs from those of Burylov [10], [11] and Shelestiuk [42] and Lopatina82

and Selinger [26] in two ways: first, we consider a different system, metallic particles83

with an externally applied electric field. This choice, however, is only a matter of84

algebraic and modeling convenience and we could relatively easily include other classes85

of particles. The bigger difference is that our model is based on a formal up-scaling86

approach from which we obtain a sequence of cell problems that capture the effects of87

different particle shapes in a single general picture. The result is that the macroscopic88

parameters are defined uniquely in terms of the microscopic properties of the dopant.89

The structure of the paper is as follows: in section 2 we derive the microscopic90

equations governing the nematic, particles, flow and applied field; in section 3 we91

derive the homogenized equations which approximate the macroscopic behavior of92

our system; in section 4 we validate our model against finite element simulations of a93
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Fig. 2.1. Schematic of a planar domain containing a liquid crystal doped with nanoparticles.
The left hand side represents the domain of the microscopic model, D̃ (rectangle minus the particles).
This microscopic domain is formed by a tessellation of perforated squares of size L̃y each with
one hole, corresponding to a particle; it is parameterized by (dimensional) coordinates x̃j , with

0 ≤ x̃j ≤ ˜̀
j , j = 1, 2. The right hand side is a generic cell domain Ω parameterized by (non-

dimensional) coordinates y, with 0 ≤ yj ≤ 1, j = 1, 2. Each cell domain has outer boundary ∂Ω̂
and contains a particle with boundary Γ and orientation parameterized by an angle ψ.

large but computationally feasible number of particles in a nematic liquid crystal. We94

discuss the model and possible future work in section 5 and finally present conclusions95

in section 6.96

2. Microscopic model. In this section we derive the microscopic equations97

governing the liquid crystal suspension that we are going to study in the following98

sections.99

2.1. Representing the system. Metallic dopant particles added to a nematic100

liquid crystal act to alter the elastic and dielectric properties of the nematic. To de-101

termine the governing equations for the nematic and dopant particles we use a free102

energy and dissipation principle (Rayleigh principle). We assume that the particles103

are sufficiently dispersed that we may approximate them as lying on a lattice. We104

consider a nematic liquid crystal in a two-dimensional planar geometry, confined to105

a microscopic domain D̃ given by the difference between the rectangle [0, ˜̀
1]× [0, ˜̀

2]106

and all the particles1. The microscopic domain is parameterized by dimensional co-107

ordinates x̃j , j = 1, 2 and depends on the size and orientation of the particles. The108

perfectly conductive particles have rotation but not translation freedom and are ar-109

rayed on a lattice (see left-hand side of figure 2.1). An electrostatic potential of given110

amplitude is applied to the liquid crystal to change its orientation. We assume that111

the alignment of the liquid crystal and the value of the electrostatic potential are as-112

signed on the outer boundary of the rectangle (blue line in figure 2.1). In particular,113

1Three domains are used in this paper: the microscopic domain D̃ is the domain of definition of
the microscopic model described in this section and is parameterized by the coordinates x̃. There is
also a non-dimensional version of this domain; it is indicated with the symbol D and is parameterized
by the coordinates x. The cell domain Ω corresponds to the square around a single particle and
is parameterized by the microscopic coordinates y (see section 3). The macroscopic domain DH

is the domain of definition of the homogenized equation (see table 2.1 and section 3.4.3) and is
parameterized by the coordinates x.
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in the numerical simulations we will assume that the system is periodic in the x̃1114

direction with period ˜̀
1 and the electrostatic potential and alignment of the liquid115

crystal are fixed on the top and bottom boundary. The restrictions to two dimensions116

is made for algebraic and computational simplicity. We discuss in the conclusions the117

work involved in extending the equations presented here to three dimensions. The118

total free energy of the system is119

(2.1) F̃tot =

∫
D̃

(
F̃B + F̃E

)
dS̃ +

∫
BD̃

F̃Sdl̃,120

with F̃S , F̃E F̃B the surface, electrostatic and bulk free energy densities respectively.121

The surface free energy is evaluated on the boundary BD̃ between the microscopic122

domain D̃ and all the particles (red curves in figure 2.1). We represent the orientation123

of the nematic using the Q-tensor [16]. Very roughly, a uniaxial liquid crystal is124

formed by cylindrically symmetric elongated molecules that have a non-zero average125

orientation, called the director. It is intuitive to represent the director using a unit126

vector d̂. However, this representation is mathematically inaccurate: the molecules127

and, hence, the director have inversion symmetry, i.e. d̂ and −d̂ correspond to the128

same liquid crystalline state. We are therefore required to represent the director129

using a tensor Q that is quadratic in d̂: the director is the eigenvector with largest130

eigenvalue. In general the Q-tensor is a 3 × 3 traceless symmetric matrix. However,131

in this paper we assume that the director is oriented within the (x̃1, x̃2)-plane. Hence132

we can describe the nematic liquid crystal using a two dimensional Q-tensor theory.133

For a nematic locally aligned with a director d̂, the Q̃-tensor is given by134

(2.2) Q̃ =
√

2S̃

(
d̂⊗ d̂− 1

2
I
)
,135

where S̃ the scalar order parameter and I is the 2 × 2 identity matrix. The scalar136

order parameter is a function of temperature that measures the degree of ordering: it137

is zero in the isotropic phase and unity in the fully nematic phase. The normalization138

in equation (2.2) is chosen so that Tr(Q̃2) = S̃2. Traceless symmetric 2 × 2 tensors139

forms a two-dimensional vector space. Following Gartland et al. [19], we expand the140

Q-tensor as Q̃ =
∑2
i=1 ãiT (i) where141

(2.3) T (1) =
1√
2

[
−1 0
0 1

]
, T (2) =

1√
2

[
0 1
1 0

]
,142

form a basis of the tensor space and ãi = Tr(Q̃T (i)) are the components of Q̃ on143

this basis. The dimensional bulk free energy density in the single elastic constant144

approximation is145

(2.4) F̃B =
L̃

2
‖∇̃ã‖2 +

1

2
A (T − T ∗) |ã|2 +

1

4
C|ã|4,146

where L̃ is the elastic constant, ã = [ã1 ã2]T is a vector formed from the components147

of the Q̃ tensor on the basis of traceless symmetric tensors T (i), i = 1, 2, A and148

C are thermotropic coefficients, T is the absolute temperature with T ∗ the critical149

temperature at which the isotropic phase becomes unstable. The dielectric energy150

density written in terms of the electric field Ẽ and relative dielectric tensor ε is given151

by152

(2.5) F̃E = −1

2
Ẽ · (ε0εẼ)153
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with154

(2.6) ε = εuI +
∆ε√

2
Q̃.155

Here ε0 is the permittivity of free space, εu ≡ (ε‖ + ε⊥)/2 and ∆ε ≡ ε‖ − ε⊥ are156

the uniform and anisotropic part of the dielectric permittivity in the fully nematic157

phase (S̃ = 1), with ε‖ and ε⊥ the corresponding extraordinary and ordinary dielectric158

permittivity, respectively. The surface energy density is given by159

(2.7) F̃S =
µ̃

2
|ã− ãS |2,160

where µ̃ is the anchoring energy surface density and ãS the preferred alignment on161

the particle surface. The dynamics are given by the dissipation function R̃ [44], the162

energy lost per unit volume and unit time due to viscous dissipation,163

(2.8) R̃ =
1

2
ζ1

∣∣∣̊ã∣∣∣2 +
ζ3
2
D̃ : D̃.164

Here165

(2.9) ˚̃a =
∂ã

∂t̃
+ ṽ · ∇̃ã− 2W̃ ã166

is the corotational derivative2 of Q̃ expressed in terms of the component vector ã, v167

is the fluid velocity,168

(2.10) W̃ij =
1

2
(ṽi,j − ṽj,i)169

is the vorticity,170

(2.11) D̃ij =
1

2
(ṽi,j + ṽj,i)171

is the symmetric part of the velocity gradient, ṽi,j = ∂ṽi
∂x̃j

, ζ3 (up to a factor of 1/2)172

is the isotropic part of the nematic viscosities and ζ1 ≡ γ1
2S̃2

with γ1 is the rotational173

viscosity. We use a simplified version of the dissipation function proposed by Sonnet174

et al. [44] and include only two terms in the dissipation: the rotational viscosity of175

the nematic, which sets the time scale of Q̃, and the isotropic viscosity, which sets the176

time scale of the particles. In general the details of the dynamic response of a liquid177

crystal system depend on a (system dependent) combination of viscosity coefficients.178

However, out of all of these viscosities, the rotational viscosity always plays a large role179

in setting the time-scale on which the liquid crystal reorients. Similarly, the drag on180

the colloidal particles will in general depend on a complicated combination of viscosity181

coefficients determined by the local orientation of the nematic, velocity and velocity182

gradient. However, the isotropic viscosity always plays a large role in determining the183

viscous stress on the particles. Including these two terms in the dissipation therefore184

represents the simplest model which posses the correct symmetries and likely captures185

the main aspects of the dynamic response of the system. In general we expect that186

this approximation will be valid for slowly evolving systems.187

2The corotational derivative describes how the director changes in a frame that rotates with the
fluid element [44, 45]
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In addition to neglecting the coupling of the flow to the Q-tensor, we also neglect188

the inertia of the fluid. This is a standard assumption when analyzing liquid crystal189

devices. In our system we can justify this approximation because requiring that the190

Reynolds number is small,191

(2.12) Re =
2ρ|ṽ|˜̀2
ζ3

� 1.192

with ρ the density of the nematic and ˜̀
2 the characteristic size of the system, gives193

|ṽ| . 102 ms−1, a condition that is easily satisfied in most liquid crystal devices.194

Finally, to obtain the torque on the dopants caused by fluid flow and the electric195

field we use the viscous and Maxwell stress tensors. The first is [44],196

(2.13) T̃ (N) = −p̃I − L̃∇̃ã · ∇̃ã + ζ1

[
(Wã) ·

(
∂ã

∂t̃
+ ṽ · ∇̃ã

)
W + 2W̃ |ã|2

]
+ ζ3D̃,197

where p̃ is the pressure and198

(2.14) W =

[
0 −1
1 0

]
.199

The Maxwell stress tensor is200

(2.15) T̃ (M) = Ẽ ⊗ D̃ − 1

2

(
Ẽ · D̃

)
I,201

where D̃ = ε0εẼ is the electric displacement field.202

2.2. Nondimensionalization. Before we derive the microscopic model from the203

free energies and dissipation function defined in the previous section, we must first204

nondimensionalize equations (2.4), (2.5), (2.7) and (2.8). All the scaling coefficients205

and scaled parameters are listed in table 2.1. Some typical values are listed in table 2.2.206

Note that ξ2
0 and, hence, χa are very small. We will make use of this property in207

sections 3.3 and 3.5 to simplify the macroscopic equations. The bulk and surface208

nondimensional free energy densities and the total free energy are given by209

FB =
ξ2
0

2
‖∇a‖2 − 1

2
|a|2 +

1

4
|a|4,(2.16a)210

FE =− χu|E|2 − χaa · e,(2.16b)211

FS =
β

2
|aS − a|2,(2.16c)212

Ftot =

∫
D

Ftot dS +

∫
BD

FS dl,(2.16d)213

214

where D is the nondimensional microscopic domain, given by the difference between215

the rectangle DH = [0, `]× [0, 1] and all the particles, BD is its boundary with all the216

particles and the total bulk free energy density is217

(2.17) Ftot = FB + FE .218

We have defined a traceless electric tensor by analogy to (2.2),219

(2.18) E =
√

2

(
E ⊗E − 1

2
I|E|2

)
,220
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Order parameter scaling factor S0 = [A(T ∗ − T )/C]1/2

Director tensor and components (Q̃, ã) = S0(Q,a)

Total bulk free energy density F̃tot = CS4
0Ftot

Macroscopic spatial coordinates x̃ = ˜̀
2x

Aspect ratio of the microscopic domain ` = ˜̀
1/˜̀

2

Nondimensional macroscopic domain DH = [0, `]× [0, 1]

Voltage scaling factor Ṽ0 = [4L̃S0/ε0]1/2

Electric field Ẽ = (Ṽ0/˜̀
2)E

Elastic constant ξ2
0 = L̃/(˜̀2

2CS
2
0)

Isotropic dielectric permittivity χu = 2εuξ
2
0/S0

Electric coupling coefficient χa = ∆εξ2
0

Anchoring strength β = µ̃˜̀
2ξ

2
0/L̃

Reduced viscosity ζ ′ = ζ3/(ζ1S
2
0)

Time scaling factor τ = ζ1/(CS
2
0)

Dissipation function R̃ = RCS4
0/τ

Time t̃ = τt

Pressure p̃ = CS2
0p

Velocity ṽ = (˜̀
2/τ)v

Velocity gradient & vorticity (D̃, W̃ ) = (D,W )/τ

Anchoring to elastic energy ratio WA = µ̃˜̀
2/L̃

Reduced dielectric tensor ε̂ = ε/εu

Dielectric anisotropy coefficient α = ∆εS0/(
√

2εu)
Table 2.1

Scaled variables and parameters, and scaling coefficients needed for the nondimensionalization
of the colloidal nematic equations (see section 2.2). The unscaled variables are identified by a
superscript .̃

T − T ∗ = −10 K A = 0.13 · 106 JK−1m−3 C = 3.9 · 106 JK−1m−3

L̃ = 10−11 N ζ1 = 280 mPa s ζ3 = 220 mPa s

˜̀
2 = 32 · 10−6 m ε‖ = 20 ε⊥ = 5

S0 ≈ 0.6 ξ2
0 ≈ 10−8 [χu, χa] ≈ [10−6, 10−7]

µ̃ = 10−7 to 10−5Jm−2 WA ≈ 0.1 to 10 β ≈ 3 · 10−9 to 3 · 10−7

Table 2.2
Typical parameter values (based on those for 5CB reported in[4]). These are used in section 3.5

to justify the multiscale analysis and in the numerical simulations in section 4.
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such that Tr(E2) = |E|2. The vector e that appears equation (2.16b) is formed by its221

components on the basis (2.3).222

The nondimensional dissipation function is given by223

(2.19) R =
1

2
|̊a|2 +

1

2
ζ ′D : D,224

where all the scaled variables are defined in table 2.1. The corotational derivative å is225

defined by equation (2.9) with the dimensional variables replaced by the corresponding226

nondimensional versions:227

(2.20) å =
∂a

∂t
+ v ·∇a− 2Wa.228

The Maxwell (2.15) and viscous (2.13) stress tensors become229

T (M) = χu

[
E ⊗D − 1

2
(E ·D)I

]
,(2.21a)

T (N) = −pI − ξ2
0∇a ·∇a + (Wa) ·

(
∂a

∂t
+ v ·∇a

)
W + 2W |a|2 + ζ ′D.(2.21b)230

231

The nondimensional electric displacement field D is related to the nondimensional232

electric field by233

(2.22) D = ε̂E,234

with ε̂ the reduced dielectric permittivity tensor, ε = εuε̂.235

Having expressed all the free energies and stress tensors in nondimensional form,236

we are now in position to derive the equations governing the nematic liquid crystal,237

fluid flow, dopants and applied potential.238

2.3. The nematic equations. The equations governing the nematic liquid crys-239

tal dynamics are given by,240

(2.23)
∂R

∂å
= ∇ · ∂Ftot

∂∇a
− ∂Ftot

∂a
241

in the bulk and242

(2.24) n̂ · ∂Ftot

∂∇a
= −∂FS

∂a
243

on BD, with n̂ the outward unit normal from D.244

Substituting the total nondimensional free energy density from (2.16) and the245

dissipation function from equation (2.19) into (2.23) and (2.24) we find the nematic246

is governed by247

å = ξ2
0∇2a + χae + a− a|a|2, x ∈ D,(2.25a)248

n̂ ·∇a = WA (aS − a) , x ∈ BD,(2.25b)249

a = b(x), x ∈ OD,(2.25c)250251

whereWA ≡ β
ξ20

= µ̃˜̀
2

L̃
and b(x) is the prescribed alignment onOD, the outer boundary252

of D.253
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2.4. The particle equations. To determine the governing equations for the254

particles we balance the torques due to the fluid flow, nematic liquid crystal and255

electric fields. These torques can each be determined using the appropriate stress256

tensor or the free energy and dissipation function. We use the latter to derive the257

nematic torques and the former to determine the electrostatic contribution.258

The torque on a particle due to elastic distortions and surface orientations is equal259

to minus the derivative of the nematic elastic and surface free energy density with260

respect to particle orientation,261

τ̃N =−
∫

Γx

(
ξ2
0

2
‖∇a‖2 − 1

2
|a|2 +

1

4
|a|4

)(
n̂ · ∂rx

∂ψ

)
dlx

−
∫

Γx

[
β (aS − a) · ∂aS

∂ψ
+
β2

ξ2
0

(
n̂ · ∂rx

∂ψ

)
|aS − a|2

+
βκx

2

(
n̂ · ∂rx

∂ψ

)
|aS − a|2

]
dlx,

(2.26)262

where dlx is the line element in the x coordinates, ψ is the particle alignment angle,263

Γx is the boundary of an individual particle parameterized using the x-coordinates264

and we have used Reynolds transport theorem (see section SM1 of the Supplementary265

material). Here rx is the position vector on the particle boundary with respect to a266

given origin in the x coordinate system and κx is its curvature,267

(2.27) κx =

∣∣∣∣∂rx∂ψ
× ∂2rx

∂ψ2

∣∣∣∣ . ∣∣∣∣∂rx∂ψ

∣∣∣∣−3

268

To compute the torque due to the electric field we use the Maxwell stress ten-269

sor (2.21a). The x3 component of the torque is270

(2.28) τE = −
∫

Γx

rx⊥kn̂mT
(M)
km dlx,271

where we sum over repeated indices with the indices ranging from 1 to 2. Here272

rx⊥ = [−x2, x1]T .273

The torque or drag due to fluid flow sets the time-scale of the particle motion. In274

nondimensional units the flow velocity v is governed by the divergence of the stress275

tensor [44]276

ζ ′

2
∇2v = ∇p+ ξ2

0∇ · (∇a ·∇a)−W∇(aWå), x ∈ D,(2.29a)

∇ · v = 0, x ∈ D,(2.29b)277

v =
∂ψ

∂t
rx⊥, x ∈ BD,(2.29c)278

v = 0, x ∈ OD.(2.29d)279280

We can now compute the drag on the particle from the dynamic stress tensor. Fol-281
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lowing the same method as for the Maxwell stress we find two contributions,282

(τv)3 =−
∫

Γx

rx⊥kn̂mT
(N)
mk dlx283

=−
∫

Γx

rx⊥ · (−pn̂ + ζ ′Dn̂)284

−
∫

Γx

{
rx⊥ · n̂

[
(Wa) ·

(
∂a

∂t
+ v ·∇a

)]
+ 2|a|2rx⊥ · (W n̂)

}
dlx.(2.30)285

286

Summarizing, the particle dynamics are governed by287

∫
Γx

rx⊥· (−pn̂ + ζ ′Dn̂) dlx

+

∫
Γx

{
rx⊥ · n̂

[
(Wa) ·

(
∂a

∂t
+ v ·∇a

)]
+ 2|a|2rx⊥ · (W n̂)

}
dlx =

−
∫

Γx

(
ξ2
0

2
‖∇a‖2 − 1

2
|a|2 +

1

4
|a|4

)(
n̂ · ∂rx

∂ψ

)
dlx

−
∫

Γx

[
β (aS − a) · ∂aS

∂ψ
+
β2

ξ2
0

(
n̂ · ∂rx

∂ψ

)
|aS − a|2

+
βκx

2

(
n̂ · ∂rx

∂ψ

)
|aS − a|2

]
dlx

−
∫

Γx

r⊥kn̂lT
(M)
lk dlx.

(2.31)

288

2.5. The potential equations. The electric potential is governed by Maxwell’s289

equation for the electric displacement field. We assume that there are no free charges290

in the system and impose a floating potential condition on the surface of the inclusions.291

In nondimensional form the equations governing the electric potential φ are292

∇ · [(I + αQ)∇φ] = 0, x ∈ D,(2.32a)

t̂ ·∇φ = 0, x ∈ BD,(2.32b)293 ∫
Γx

n̂ · [(I + αQ)∇φ] dlx = 0,(2.32c)294

φ(x) = Φ(x), x ∈ OD,(2.32d)295296

where t̂ is the vector tangent to the particle, E = −∇φ, α = ∆ε
εu

S0√
2

and Φ(x) is a297

prescribed potential on the outer surface of the microscopic domain. Equation (2.32a)298

is the first Maxwell equation for the (nondimensional) displacement field D, defined299

in equation (2.22). Equation (2.32b) is the statement that the potential is constant300

on each particle (although it may vary from particle to particle). Equation (2.32c)301

requires that the total charge on each particle is zero. As the particles are metallic302

the local charge density is D · n̂; the integral of this quantity on the particle boundary303

Γx must be zero for the particle to be neutral.304

2.6. Summary of the microscopic model. Equations (2.25), (2.29), (2.31)305

and (2.32) govern the nematic, fluid flow, particles and electric field in our system. We306

have assumed that the particles are fixed in position but are allowed to rotate freely,307
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thus neglecting any effect due to concentration gradients. The particles themselves308

are treated as ideal conductors and we use a continuum model for the nematic which309

bounds the minimum particle size that we may consider. Additionally by decoupling310

the nematic from the fluid flow we have included only limited, but realistic, dynamics.311

We perform a multiple scale analysis of these equations and by using a level set312

representation of the particles we derive homogenized equations. Following this we313

use a second method of multiple scales to extract the slow dynamics of the nematic.314

3. Homogenization.315

3.1. Introduction. As shown in figure 2.1 the microscopic domain D of the316

liquid crystal is formed by a tessellation of perforated squares of size L̃y. To perform317

asymptotic homogenization we assume that L̃y � ˜̀
2 and that the system is locally318

periodic, i.e. the director alignment, electrostatic potential and particle angle changes319

only a scale much longer than L̃y. We consider each perforated square as a unit cell320

Ω. We introduce a small parameter η =
L̃y

˜̀
2

, the ratio of the size of a unit cell (typical321

inter–particle spacing) L̃y to the size of the full system ˜̀
2. This small parameter322

allows us to define a second coordinate in our system y = x
η which is defined within323

a unit cell only (see right hand side of figure 2.1). The unit cell has y coordinates324

0 ≤ yj ≤ 1, with j = 1, 2. We call the generic unit cell the cell domain and we refer325

to it with the symbol Ω. Its boundary is formed of two parts (see right hand side of326

figure 2.1): Γ is the boundary with the particle in the y coordinate system (as opposed327

to Γx, which represents the same curve, but parameterized by the x-coordinates); ∂Ω̂328

is the boundary shared with the neighboring unit cells. Finally, each unit cell Ω329

and, hence, particle angle ψ and boundary Γ can in principle be identified by the x330

coordinate of the cell center. In the homogenization limit η → 0 the cell structure331

becomes a continuous and the particle angle becomes a field ψ(x) that parametrizes332

the boundary Γ and cell domain Ω.333

We seek governing equations in the limit as η tends to zero. For a problem334

involving a generic field u this is achieved by postulating that all fields are functions of335

both the macroscopic and microscopic coordinate, u = u(x,y). Next we make a series336

expansion in integer powers of the small parameter η, u = u0 + ηu1 + η2u2 + O(η3).337

We also use the chain rule to expand the gradient operator338

(3.1) ∇ = ∇x +
1

η
∇y,339

capturing rapid variations on the small scale. By substituting the expansion of u340

into the equations governing u and expanding in powers of η we obtain a sequence of341

equations for u0, u1 and u2 in terms of the independent variables x and y. Our aim is342

now to eliminate the y-dependence from these equations leaving a set of macroscopic343

equations that depend only on the x variable. The key observations which allow us to344

proceed are that the geometry is locally periodic and that any variations on the x scale345

are small on the y-scale and can, hence, be considered as a perturbation. At first order346

we generally obtain that u0 varies only on the macro-scale. The parameters in the347

macroscopic equations are determined at next order by a series of cell problems which348

depend on the microscale geometry. Finally, by expanding to the following order349

and by enforcing solvability conditions, we obtain the macroscopic (homogenized)350

equations which governs u0(x).351

Before applying the homogenization method outlined above to the microscopic352

model derived in section 2 we make two observations.353
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12 T.P. BENNETT, G. D’ALESSANDRO AND K.R. DALY

The first is that in our system we have two small parameters, η and ξ2
0 (see354

table 2.2) and we consider the limit that both of these parameters tend to zero. In355

the case of the liquid crystal, both of these limits are non–trivial: we will first deal356

with the case η → 0 (section 3.4) and consider the second limit in section 3.5. In357

the case of the velocity equations the limit ξ2
0 → 0 is regular and trivial. The correct358

procedure is to first to derive a set of macroscopic equations for the velocity and then359

consider ξ2
0 → 0 in all equations. However, in the interest of readability and in order360

to reduce the number of terms carried forward at each term of the expansion, we take361

the limit ξ2
0 → 0 immediately (section 3.3), at the cost of a minor lack of formal rigor362

when mixing the expansion for the velocity and the alignment, as in equation (3.53).363

The second observation concerns the scaling of the surface energy with η. As the364

size of the particles varies linearly with η, to avoid the surface term dominating the365

total free energy we postulate that the anchoring energy density scales linearly with η,366

i.e. µ̃ = O(η). As a consequence we write β = ηβ1 and WA = ηW
(1)
A . A rough physical367

interpretation of this condition is that we have weak anchoring on the particle surface.368

More precisely in the limit η → 0 the total boundary area between nematic and dopant369

diverges. As a result, unless we postulate a decrease in the anchoring energy density,370

we find that the surface anchoring dominates the particle dynamics. This limit is371

roughly physically equivalent to maintaining a constant volume of surfactant as the372

number of particles diverges. This way even though the total interaction area increases373

the surface energy density decreases. In any real application of the theory developed374

here η is small but non-zero. The equations derived here are valid for small η provided375

that the total surface energy density is of the order of the bulk energy or smaller and376

that the anchoring on each individual particle is weak enough not to induce defects.377

In order to represent arbitrary particles undergoing rotational motion correctly378

within the homogenization scheme we use the level set method [5, 14, 38, 29, 9] to379

compute the expansion of the unit normal vector and the value of the term n̂ · ∂rx

∂ψ380

in equation (2.31). We express the location of the particle surface as a level set381

χLS(ψ(x),y) = 0 so that now the position vector of the particle boundary is a function382

of both x and y, r(x,y), and so are its perpendicular r⊥ = [−r2, r1]T , the particle383

boundary Γ and the cell domain Ω. The expansion of the unit normal is given by384

(3.2) n̂ =
∇xχLS + 1

η∇yχLS

|∇xχLS + 1
η∇yχLS |

= n̂0 + ηn̂1 +O(η2)385

where386

n̂0 =
∇yχLS
|∇yχLS |

,(3.3a)387

n̂1 =
∇xχLS
|∇yχLS |

− n̂0
n̂0 ·∇xχLS
|∇yχLS |

.(3.3b)388
389

There is a corresponding expansion for the tangent vector t̂ ≡ [−n2, n1]T :390

(3.4) t̂ = t0 + ηt1,391

where tj = [−n(j)
2 , n

(j)
1 ]T , with nj = [n

(j)
1 , n

(j)
2 ]T .392

We now determine the “speed” of the boundary i.e. ∂r
∂ψ . As mentioned in sec-393

tion 2.4, r is the position vector of a point on the surface of a given particle. In the394

context of homogenization, r is a rapidly varying quantity and hence a function of395
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the y coordinates. We can therefore use the implicit function theorem on the level396

set definition of the particle boundary to obtain397

(3.5)
∂ri
∂ψ

= −∂χLS
∂ψ

(
∂χLS
∂yi

)−1

.398

By utilizing the following symmetry of χLS in its two arguments399

(3.6) χLS(0, RT (ψ(x))y) = χLS(ψ(x),y)400

and using the chain rule we find401

(3.7)
∂χLS
∂ψ

= −rx⊥ ·∇yχLS .402

Hence403

(3.8)
∂r

∂ψ
· n̂0 = rx⊥ · n̂0.404

3.2. Scaling of equations. As the size of the particles decreases so does the405

magnitude of the torques on the particles. To make the analysis as transparent as406

possible we make the η dependence of the terms in (2.31) explicit. This amounts407

to mapping the domain of integration from a domain with linear dimensions that408

scale with η to a fixed cell domain of size one. As a consequence, the line element409

and position vector on the particle both scale linearly with η, surface elements scale410

with η2 and the curvature scales as 1
η . We define dl = dlx/η the line element in411

the y coordinate and κ = ηκx the scaled curvature. With these scalings the particle412

governing equation [cfr. (2.31)] is413

η2

∫
Γ

r⊥ · (−pn̂ + ζ ′Dn̂) dl

+ η2

∫
Γ

{
r⊥ · n̂

[
(Wa) ·

(
∂a

∂t
+ v ·∇a

)]
+ 2|a|2r⊥ · (W n̂)

}
dl

= −η2

∫
Γ

(
ξ2
0

2
‖∇a‖2 − 1

2
|a|2 +

1

4
|a|4

)(
n̂ · ∂r

∂ψ

)
dl

− η2β1

∫
Γ

[
(aS − a) · aS⊥ + η2 β1

ξ2
0

(n̂ · r⊥)|aS − a|2

+
κx
2

(n̂ · r⊥)|aS − a|2
]
dl

− η2χu

∫
Γ

r⊥ · (n̂ · TM ) dl,

(3.9)414

where aS⊥ = −2WaS . The fluid flow obeys [cfr. (2.29)]415

ζ ′

2
∇2v = ∇p+ ξ2

0∇ · (∇a ·∇a)−W∇(aWå), x ∈ D,(3.10a)

∇ · v = 0, x ∈ D,(3.10b)416

v = η
∂ψ

∂t
r⊥, x ∈ BD,(3.10c)417

v = 0, x ∈ OD.(3.10d)418419
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while the nematic dynamics is determined by [cfr. (2.25)]420

å = ξ2
0∇2a + χae + a− a|a|2 x ∈ D,(3.11a)

n̂ ·∇a = ηW
(1)
A (aS − a) , x ∈ BD,(3.11b)421

a = b(x), x ∈ OD.(3.11c)422423

The equation governing the electrostatic potential (2.32) is unchanged.424

At this point there are two possible approaches we could follow in order to derive425

the appropriate homogenized equations. The first is the method of formal asymp-426

totic expansions, see for example [33]. The second is the two-scale convergence427

method [31, 2]. Whilst the latter is mathematically rigorous, the former is based428

around a regular asymptotic expansion which has the advantage of increasing the429

clarity of the derivation. Hence, in this work, we will derive the homogenized equa-430

tions using the formal asymptotic expansion method. This consists in expanding all431

equations and collecting terms at each order. In order to make the derivation of the432

macroscopic equations clearer, here we follow a slightly different approach: we first433

solve the drag equation to eliminate the fluid velocity and then analyze the particle–434

liquid crystal equations. Solving the drag equations will allow us to show that the435

fluid velocity effectively decouples from the director alignment. We will carry out this436

step in the next subsection and then move on to homogenize the remaining equations.437

3.3. Expanding the drag. As mentioned in section 3.1, in this paper we take438

a double limit of the microscopic equations, namely η → 0 and ξ2
0 → 0. In the case439

of the velocity equations the latter limit is regular and we take it immediately, thus440

reducing equations (3.10) to441

ζ ′

2
∇2v = ∇p−W∇(aWå), x ∈ D,(3.12a)442

∇ · v = 0, x ∈ D,(3.12b)

v = η
∂ψ

∂t
r⊥, x ∈ BD,(3.12c)443

v = 0, x ∈ OD.(3.12d)444445

We note that, by assumption, the fluid flow is coupled only to the particle orientation.446

Dealing with the fluid flow will then allow us to simplify (3.9) and determine an447

explicit set of equations for the particle motion. We make the usual expansions of the448
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gradient (3.1), the Laplacian and fields,449

∇2 = ∇2
x +

2

η
∇x ·∇y +

1

η2
∇2

y,(3.13a)450

v = v0 + ηv1 + η2v2,(3.13b)451

D =
1

η
D(−1) +D(0) + ηD(1),(3.13c)452

W =
1

η
W (−1) +W (0) + ηW (1),(3.13d)453

p = p0 + ηp1 + η2p2,(3.13e)454

a = a0 + ηa1 + η2a2,(3.13f)455

φ = φ0 + ηφ1 + η2φ2,(3.13g)456

e =
1

η2
e−2 +

1

η
e−1 + e0,(3.13h)457

Q = Q(0) + ηQ(1) + η2Q(2).(3.13i)458459

W (k) and D(k), k = −1, 0, 1, . . ., are defined by equations (2.10-2.11) respectively in460

terms of the derivatives of the expansion of the velocity v. For example,461

(3.14) W
(−1)
ij =

1

2

(
∂v0i

∂yj
− ∂v0j

∂yi

)
.462

Q(k) =
∑2
i=1 a

(k)
i T (i), with ak = (a

(k)
1 , a

(k)
2 ), k = 0, 1, 2. The expansion for the463

electric field tensor components e in equation (3.13h) is obtained by substituting464

equations (3.1) and (3.13g) together with the relation E = −∇φ in equation (2.18)465

and projecting on the basis (2.3) of traceless symmetric tensors. For example, the466

k-th component of e−2 is467

e
(−2)
k =

√
2Tr

[(
∇yφ0 ⊗∇yφ0 −

1

2
I |∇yφ0|2

)
T (k)

]
=
√

2Tr
[
(∇yφ0 ⊗∇yφ0) T (k)

]
.

(3.15)468

Substituting equations (3.13) into Stokes’ equation (3.12) we obtain a sequence469

of problems at different orders in η. Solving these in ascending powers of η we will470

derive the cell problem for the fluid flow and use the result to simplify the drag term,471

i.e. the first integral on the left-hand side of equation (3.9), namely472

(3.16) F =

∫
Γ

r⊥ · (−pn̂ + ζ ′Dn̂) dl.473

3.3.1. Leading order. We will show in section 3.4.1 that the leading order term474

of the director field components, a0, is a function of the macroscopic variables only,475

a0(x, t). Therefore, the leading order expansion of the fluid equation (3.15) is476

∇2
yv0 = 0, y ∈ Ω,(3.17a)477

∇y · v0 = 0, y ∈ Ω,(3.17b)478

v0 = 0, y ∈ Γ.(3.17c)479480
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subject to a periodic boundary condition on ∂Ω̂, the outer cell walls. In the derivation481

of equation (3.17a) we have used the incompressibility condition (3.17b), the defini-482

tion (2.20) of corotational derivative and the fact that a0 does not depend on y to483

simplify the term W∇y(a0Wå0) in the lowest order expansion of equation (3.12a) to484

∇2
yv0. Equations (3.17) have solution v0 = 0. Hence, D(−1) = 0.485

3.3.2. First order. At this order the fluid obeys486

ζ ′

2
∇2

yv1 = ∇yp0 + 2∇y ·W (0)|a0|2, y ∈ Ω,(3.18a)487

∇y · v1 = 0, y ∈ Ω,(3.18b)488

v1 =
∂ψ

∂t
r⊥, y ∈ Γ,(3.18c)489

490

subject to periodic boundary conditions on ∂Ω̂j . As the fluid is driven by the particle491

rotation through the boundary condition (3.18c), we make the ansatz v1 = u1
∂ψ
∂t and492

p0 = P0
∂ψ
∂t , where both P0 and u1 depend on y. The system of equations for u1 is493 [

ζ ′

2
+ |a0|2

]
∇2

yu1 = ∇yP0, y ∈ Ω,(3.19a)494

∇y · u1 = 0, y ∈ Ω,(3.19b)495

u1 = r⊥, y ∈ Γ.(3.19c)496497

Equations (3.19) are the cell problem for u1 and can be solved numerically. It should498

be noted that, in the absence of defects, |a0|2 is constant with respect to y. Hence,499

its effect is just to scale locally the viscosity. The order η0 term of the symmetric part500

of the velocity gradient is given by501

(3.20) D(0) =
1

2

[
∇yv1 + (∇yv1)T

]
.502

and the Stokes’ drag component of the net drag on a particle, equation (3.16), can be503

expanded as504

(3.21)

∫
Γ

r⊥ ·
(
ζ ′D(0)n̂0 − n̂0p0

)
dl =

∂ψ

∂t

∫
Γ

r⊥ ·
(
ζ ′D(0)′n̂0 − n̂0P0

)
dl +O(η).505

where506

(3.22) D(0)′ =
1

2

[
∇yu1 + (∇yu1)T

]
.507

Using equation (3.21) we simplify the particle equation (3.9) to508

κ′0
∂ψ

∂t
+

∫
Γ

{
r⊥ · n̂

[
(Wa) ·

(
∂a

∂t
+ v ·∇a

)]
+ 2|a|2r⊥ · (W n̂)

}
dl =

−
∫

Γ

(
ξ2
0

2
‖∇a‖2 − 1

2
|a|2 +

1

4
|a|4

)(
n̂ · ∂r

∂ψ

)
dl

− β1

∫
Γ

[
(aS − a) · aS⊥ + η2W (n̂ · r⊥)|aS − a|2 +

κ

2
(n̂ · r⊥)|aS − a|2

]
dl

− χu
∫

Γ

r⊥ · (n̂ · TM ) dl,

(3.23)509
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where the time constant in equation (3.23) is given by510

(3.24) κ′0 =

∫
Γ

r⊥ ·
(
ζ ′D(0)′n̂0 − n̂0P0

)
dl.511

As we are only interested in the leading order time dynamics of ψ we do not consider512

higher order terms in the expansion of the drag equations. We will complete the513

expansion of equation (3.23) at the end of the next section, once we have completed514

the expansion of the director and electric fields.515

3.4. Nematic dynamics and the electric field. Having obtain a simplified516

equation for the particles (3.23), we now proceed to homogenize equations (2.32) and517

(3.11). As in the previous section, we expand derivatives and all the fields, equations518

(3.1) and (3.13).519

3.4.1. Leading order. At leading order the nematic equations (3.11) are520

ξ2
0∇2

ya0 + χae−2 = 0, y ∈ Ω,(3.25a)

n̂0 ·∇ya0 = 0, y ∈ Γ,(3.25b)521522

subject to periodic boundary conditions on the outer boundaries of the unit cell.523

Similarly, the leading order expansion of Maxwell’s equation for the electric potential524

is525

∇y ·
[(
I + αQ(0)

)
∇yφ0

]
= 0, y ∈ Ω,(3.26a)526

t0 ·∇yφ0 = 0, y ∈ Γ,(3.26b)527 ∫
Γ

[(
I + αQ(0)

)
∇yφ0

]
· n̂0 dl = 0,(3.26c)528

529

with periodic boundary conditions on ∂Ω̂. The solution of equations (3.25, 3.26) is530

a0 = a0(x) and φ0 = φ0(x).531

3.4.2. First order correction. At order O(η) we find that for each cell532

ξ2
0∇2

ya1 = 0, y ∈ Ω,(3.27a)533

n̂0 ·∇ya1 + n̂0 ·∇xa0 = 0, y ∈ Γ.(3.27b)534535

No e−1 term is present in equation (3.27a) because the electric field tensor E , defined536

in equation (2.18), is quadratic in the gradient of the potential and ∇yφ0 = 0.537

Equation (3.27) is equivalent to the standard order one problem for diffusion of solutes538

in porous media [23], hence solvability is guaranteed. As the x dependence in this539

equation is only through a single term in the boundary condition (3.27b), we can scale540

it out by writing the solution as a1 = χk
∂a0

∂xk
. Substituting into equations (3.27) we541

obtain the cell problem for χk, k = 1, 2,542

∇2
yχk = 0, y ∈ Ω,(3.28a)543

n̂0 ·∇yχk = −n̂0 · êk, y ∈ Γ.(3.28b)544545

Here êk is the k-th coordinate unit vector. These equations (with periodic boundary546

conditions) define χk up to a constant (with respect to y). Hence we can write547

(3.29) a1 = χk
∂a0

∂xk
+ a1(x),548
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where a1(x) is undetermined at this order and will not be needed in the derivation549

of the macroscopic equations.550

The first order terms of the expansion of Maxwell’s equation are551

∇y ·
[(
I + αQ(0)

)
∇yφ1

]
= 0, y ∈ Ω,(3.30a)552

t0 · (∇xφ0 + ∇yφ1) = 0, y ∈ Γ,(3.30b)553 ∫
Γ

[
n̂0 ·

(
I + αQ(0)

)
(∇yφ1 + ∇xφ0)

]
dl = 0.(3.30c)554

555

Here Q(0) is the order O(η0) part of the Q-tensor and has component vector a0.556

This equation satisfies a solvability condition. An easy way to check this is to in-557

tegrate (3.30a) over Ω and use the divergence theorem and condition (3.30c). The558

cell problem for the electric field is derived by making the ansatz, similar to equa-559

tion (3.29),560

(3.31) φ1 =

2∑
k=1

Rk(x,y)
∂φ0

∂xk
+ φ̄1(x).561

By substituting this ansatz into equations (3.30) we find562

(
δnm + αQ(0)

nm

) ∂2Rk
∂yn∂ym

= 0, y ∈ Ω,(3.32a)563

(t0 ·∇y)Rk = −t0 · êk, y ∈ Γ,(3.32b)564 ∫
Γ

n̂0 ·
(
I + αQ(0)

)
∇yRk(y) dl = 0,(3.32c)565

566

which must be solved numerically for varying particle orientations and realizations of567

Q(0).568

3.4.3. Homogenization. At order O(η0) the nematic equations give569

å0 = ξ2
0

(
∇2

xa0 + 2∇x ·∇ya1 +∇2
ya2

)
+ a0 − a0|a0|2 + χae0, y ∈ Ω,

(3.33a)

n̂0 · (∇ya2 + ∇xa1) + n1 · (∇xa0 + n1 ·∇ya1) = W
(1)
A (aS − a0) , y ∈ Γ.

(3.33b)

570571

Once again we have to impose that this equation is solvable. As in the case of572

equation (3.30) we integrate (3.33a) over Ω, and apply the divergence theorem and573

the boundary condition (3.33b). We find that equation (3.33) is solvable if574

1

|Ω|

∫
Ω

(
∂a0

∂t
− 2W (0)a0

)
dS =

ξ2
0

|Ω|

∫
Ω

∇x · (∇xa0 + ∇ya1) dS + a0 − a0|a0|2

+ χa
1

|Ω|

∫
Ω

e0 dS +
β1

|Ω|

∫
Γ

(aS − a0) dl − ξ2
0

|Ω|

∫
Γ

n1 · (∇xa0 + ∇ya1) dl,

(3.34)575
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where |Ω| is the area of Ω and W (0) is the order zero term of the vorticity expan-576

sion, (3.13d). We now simplify the left hand-side of equation (3.34). Using equa-577

tions (3.19) and the divergence theorem we find578

(3.35)
1

|Ω|

∫
Ω

(
∂a0

∂t
− 2W (0)a0

)
dS =

∂a0

∂t
− 2

|Ω|
∂ψ

∂t
a⊥.579

Next we use the transport theorem on the first integral on the right hand side580

∇x ·
∫

Ω

(∇xa0 + ∇ya1) dS =

∫
Ω

∇x · (∇xa0 + ∇ya1) dS

+

∫
Γ

(∇xa0 + ∇ya1) · (∇xr · n̂0) dl,

(3.36)581

and we use the level set representation to write582

(3.37) ∇xr · n̂0 = − ∇xχLS
‖∇yχLS‖

.583

Hence,584 ∫
Ω

∇x · (∇xa0 + ∇ya1) dS =∇x ·
∫

Ω

(∇xa0 + ∇ya1) dS

+

∫
Γ

(∇xa0 + ∇ya1) · ∇xχLS
‖∇yχLS‖

dl .

(3.38)585

In addition, using boundary condition (3.27b) we see that on Γ586

(3.39) n1 · (∇xa0 + ∇ya1) =
∇xχLS
‖∇yχLS‖

· (∇xa0 + ∇ya1) .587

Substituting equations (3.38), (3.39) into (3.34) we obtain the macroscopic equation588

for the liquid crystal alignment:589

∂a0

∂t
− 2

|Ω|
∂ψ

∂t
a⊥ = ξ2

0∇x · K∇xa0 + a0 − a0|a0|2

+ χa

[
eM

(
1 + 2

|Ωnp|
|Ω|

)
+ p

]
+
β1

|Ω|

∫
Γ(x)

(aS − a0) dl ,

(3.40)590

where Ωnp is the domain of a nanoparticle. This equation is valid for all x ∈ DH =591

[0, `] × [0, 1], and we no longer need to consider the perforated microscopic domain592

D. We call DH the macroscopic domain. The boundary conditions are given by593

equation (3.11c) written for a0,594

(3.41) a0 = b(x), x ∈ OD.595

The new elasticity term is given by596

(3.42) Kij =
1

|Ω|

∫
Ω(x)

(
δij +

∂χj
∂yi

)
dS,597

the macroscopic electric field eM has components given by598

(3.43) e
(M)
i =

√
2Tr

[
(∇xφ0 ⊗∇xφ0) T (i)

]
,599
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and the polarization components are600

(3.44) pi =
1

|Ω|

∫
Ω

Tr
(√

2∇yRk ⊗∇yRlφ0,kφ0,lT (i)
)
dS.601

The derivation of these last two terms is detailed in section SM2 of the Supplementary602

Material. Equation (3.40) is one of the key results of this paper and each of its terms603

gives insight to the physics of the colloidal suspension. However, we defer a discussion604

of their meaning to section 3.5 where we use the difference in scale between the various605

terms to simplify this equation further. Instead, now we derive the second macroscopic606

equation, namely that for the electrostatic field. At this order Maxwell’s equation for607

the electric potential and its boundary condition are608

∇y · [(I + αQ(0))(∇yφ2 + ∇xφ1) + αQ1(∇yφ1 + ∇xφ0)],

+ ∇x · [(I + αQ(0))(∇xφ0 + ∇yφ1)] = 0,
x ∈ Ω(3.45a)609

∫
Γ

n̂0 ·
[(
I + αQ(0)

)
(∇yφ2 + ∇xφ1) + αQ1(∇yφ1 + ∇xφ0)

]
dl

+

∫
Γ

no · (y ·∇x)
[(
I + αQ(0)

)
(∇xφ0 + ∇yφ1)

]
dl

+

∫
Γ

n1 ·
[(
I + αQ(0)

)
(∇xφ0 + ∇yφ1)

]
dl = 0,

(3.45b)610

611

where the second integral in the expansion (3.45b) of the boundary condition (3.30c)612

is due to the non-local nature of the integral constraint [13]. We have not written613

the expansion of the boundary condition (3.30b) because it is not needed for the614

derivation of the macroscopic equation for the potential. To impose the solvability615

condition we need to follow steps very similar to those leading from equation (3.33)616

to equation (3.40). Briefly, we integrate equation (3.45a) over Ω, use the divergence617

theorem, apply the boundary condition (3.45b), the Reynolds transport theorem and618

some lengthy algebra based on equations (3.36)-(3.39), to obtain a macroscopic equa-619

tion for the potential,620

∇x · [K∇xφ0] = 0, x ∈ DH ,(3.46a)621

φ0(x) = Φ(x), x ∈ OD,(3.46b)622623

where624

(3.47) Kij = δij + αQ(0)
ij +

∫
∂Ω̂

yin0 ·
(
I + αQ(0)

)
∇xRj dl .625

At leading order the electric field is626

(3.48) E0 = −∇xφ0 −∇yφ1.627

As the last step in deriving a set of macroscopic equations, we simplify the particle628

equation (3.23). Using a0 = a0(x, t) and φ0 = φ0(x, t) we expand (3.23) to lowest629

order in η, namely η0, and simplify the equation governing the particle dynamics630

considerably. The first term on the right hand side of equation (3.23) is the bulk631

elastic screening torque (see end of section 3.5 for a discussion of the physical meaning632

of this and the following torques). This becomes633

(3.49) τB = −ξ2
0

∫
Γ

[
1

2
‖∇ya1‖2 +

1

2
‖∇xa0‖2 + ∇xa0 : ∇ya1

]
(n̂0 · r⊥) dl+O(η).634
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The second term is the surface torque635

(3.50) τS = β1a0 ·
∫

Γ

[κ(n̂ · r⊥)I − 2W]aS dl +O(η).636

The last term is the electric torque637

(3.51) τE = −χu
∫

Γ

r⊥ ·
(
n̂0 · T (M)

0

)
dl +O(η),638

where the first non-zero contribution from the Maxwell stress tensor is given by639

(3.52) T
(M)
0 = E0 ⊗D0 −

1

2
(E0 ·D0)I.640

Here E0 is defined in equation (3.48) and D0 = (I + αQ(0))E0. They are the first641

non-zero contributions to the electric and displacement fields. Finally, we simplify642

the dynamic component of the viscous drag, the second term on the left hand side of643

equation (3.23). We expand it in powers of η, and use v0 = 0, a0 = a0(x, t) and the644

cell problem (3.19), to write it as645 ∫
Γ

{
r⊥ · n̂0

[
(Wa0) ·

(
∂a0

∂t
+ v0 ·∇a0

)]
+ 2|a0|2r⊥ · (W (0)n̂0)

}
dl =

2|a0|2
∂ψ0

∂t

∫
Γ

r⊥ · (W (0)′n̂0) dl .

(3.53)646

where we have used the symbol ψ0 to indicate the particle angle determined at this647

order in the expansion. W (0)′ is the scaled vorticity, defined as [cfr. (3.13d)]648

(3.54) W (0)′ =
1

2

[
∇yu1 − (∇yu1)T

]
.649

Hence, the final form of the particle equation is650

(3.55) κ0
∂ψ0

∂t
= −ξ2

0B : (∇xa0 ·∇xa0)− β1q
(κ) · a0 − χuPimlkε(0)

il φ0,mφ0,k,651

where652

Bij =

∫
Γ

1

2
(χi,j + χj,i + χi,kχj,k) (r⊥ · n̂0) dl,(3.56a)653

Pimlk =

∫
Γ

(
δkl +

∂Rl
∂yk

)(
δim +

∂Ri
∂ym

)
(r⊥ · n̂0) dl,(3.56b)654

ε(0) = I + αQ(0),(3.56c)655

q(κ) =−
∫

Γ

[κ(n̂0 · r⊥)I − 2W]aS dl,(3.56d)656

κ0 =

∫
Γ

[
r⊥ ·

(
ζ ′D(0)′n̂0 − n̂0P0

)]
dl + 2|a0|2

∫
Γ

r⊥ ·
(
W (0)′n̂0

)
dl.(3.56e)657

658

To summarize, equations (3.40), (3.46) and (3.55) capture the macroscopic behavior659

of the system. Their coefficients are the key link between microscopic and macroscopic660

physics of the suspension. Normally, the homogenization procedure would stop here.661

However, in the specific case of liquid crystals a further simplification is possible,662

namely we can apply a second multiple scale expansion, this time in the time domain,663

to obtain a final set of macroscopic equations. We do this in the following section and664

then proceed to discuss in detail the physical meaning of the various terms in these665

equations.666
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3.5. Multiple time scale analysis. Looking at equations (3.40) and (3.55) we667

notice that ξ2
0 , χa and β1 are extremely small parameters ∼ O(10−7), see table 2.2.668

Away from defects the elastic and particle driving terms are small in comparison to669

the thermotropic terms. As a results when equations (3.40) and (3.55) are integrated670

to equilibrium, the dynamics in the absence of defects roughly correspond to a rapid671

equilibration of the scalar order parameter followed by a slow elastic reorientation.672

We now follow the method of [15] and use multiple scale analysis to obtain equations673

governing the slow elastic reorientation.674

The slow reorientation dynamics are driven by terms of the order ξ2
0 . We simplify675

equations (3.40) by expanding in terms of ηM = ξ2
0 and express β1 = ηM β̂, χa =676

ηM χ̂a, χu = ηM χ̂u and ∂
∂t = ηM

∂
∂t̂

. We assume that all dynamics on a faster time-677

scale than t̂ have reached equilibrium. Equation (3.55) is driven solely by terms of678

order ηM , its dynamics are confined solely to the slow elastic time-scale t̂. The first679

order part of equation (3.40) is680

(3.57) a0 − a0|a0|2 = 0,681

which defines an invariant manifold682

(3.58) |a0|2 = 1.683

At next order we find684

∇x · K∇xa0 + χ̂a

[
eM

(
1 + 2

|Ωnp|
|Ω|

)
+ p

]
+

β̂

|Ω|

∫
Γ

(aS − a0) dl − ∂a0

∂t̂
+

2

|Ω|
∂ψ0

∂t̂
a⊥ = 4a0 (a0 · a1) .

(3.59)685

To obtain the time and space dependence of a0 we require that (3.59) posses a solution686

for any a1. The solvability condition is that the left hand-side of (3.59) is orthogonal687

to a⊥ =Wa0: this ensures that both the left and right hand-side of (3.59) are in the688

direction of a0. Applying the solvability condition and re-expressing the result on the689

rapid time-scale we find690

a⊥ ·
∂a0

∂t
− 2

|Ω|
∂ψ0

∂t
= ξ2

0 (∇x · K∇xa0) · a⊥

+ χa

[
eM

(
1 + 2

|Ωnp|
|Ω|

)
+ p

]
· a⊥ +

β1

|Ω|

(∫
Γ

aS dl

)
· a⊥,

(3.60a)691

a0 ·
∂a0

∂t
=0.(3.60b)692

693

These equations are valid for x ∈ DH and have boundary conditions (3.41). Equa-694

tion (3.60a) is the solvability condition, while equation (3.60b) is obtained by differ-695

entiating (3.58). Together they define the dynamics of the nematic along the manifold696

of uniaxial Q-tensors with scalar order parameter given by (3.57).697

Equation (3.46), (3.55) and (3.60) are the final macroscopic equations for a two-698

dimensional suspension of freely rotating metallic particles in a nematic liquid crystal699

in the absence of defects.700

The torque the particle experiences due to the elastic free energy is captured by701

Bij in equation (3.55) and represents a screening effect. This term tends to align702

a particle so that it screens opposing boundary conditions. The surface interaction703
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with the nematic is captured by q(κ) in equation (3.55) and favors aligning the particle704

easy axis with the macroscopic director. Its coefficient is the scaled anchoring energy705

coefficient β1 rather than the unscaled value β: this is to reflect that the alignment706

equation is valid only in the weak anchoring limit discussed in section 3.1. The707

interaction with the electric field is determined by both the local field and the local708

alignment of the nematic. The term containing Pimlk in equation (3.55) describes this709

coupling.710

The terms in (3.60) offer a similar interpretation. In place of the screening effect711

we have an excluded volume effect given by K. The surface interaction takes a slightly712

different form but still favors aligning the nematic with the local particle easy axis.713

The interaction with the electric field is split into two parts, the macroscopic field eM714

and the polarization p. The macroscopic field coupling is increased due to the volume715

occupied by metallic particles: the field is only non-zero outside the particles, but the716

total change in potential due to an externally driven field remains constant regardless717

of the presence of metallic particles. The polarization captures the additional field718

due to induced surface charges on the dopant particles.719

4. Numerical validation. To check the accuracy of the macroscopic model720

derived in the previous section, we compare its predictions with numerical simula-721

tions of realistic, but numerically manageable, colloidal suspensions. This requires722

us to tackle two independent issues: the first is the integration of the cell problems,723

equations (3.19), (3.28) and (3.32), that define the parameters that appear in the724

macroscopic equations. Once these are known, the integration of the macroscopic725

equations (3.46), (3.55) and (3.60) is relatively trivial. The second is the integration726

of the microscopic equations (2.25), (2.29), (2.31) and (2.32). We discuss these two727

issues in turn and then compare the results of the two sets of simulations.728

To use the macroscopic equations (3.46), (3.55), and (3.60) we must first solve729

the set of cell problems (3.19), (3.28) and (3.32) to obtain the effective material pa-730

rameters. This can be accomplished using the finite element package COMSOL mul-731

tiphysics (see section SM3 of the Supplementary materials for details). To integrate732

the macroscopic equations we use a spectral collocation method [47] to discretize in733

space and the MATLAB variable order solver ode15s, which uses implicit numerical734

differentiation, to integrate in time.735

The macroscopic equations (3.46), (3.55), and (3.60) can be integrated with rel-736

ative ease numerically in arbitrarily large macroscopic domains. However, for com-737

parison with the microscopic equations (2.25), (2.29), (2.31), and (2.32) we select a738

one dimensional macroscopic domain, with 0 ≤ x2 ≤ 1. This is equivalent to a liquid739

crystal cell with flat surfaces at x2 = {0, 1} and uniform alignment conditions there.740

A potential difference V is applied between x2 = 0 and x2 = 1. The equivalent mi-741

croscopic system is a stack of up to 64 unit cells, each containing one particle, that742

is solved using a finite element method. The number of particles is large enough to743

make the model realistic, but small enough that the integration of the microscopic744

equations takes no more than a few hours on a high spec PC (as opposed to a few745

seconds for the macroscopic equations).746

The microscopic equations (2.25), (2.29), (2.31), and (2.32) are solved in a mi-747

croscopic domain consisting of a 1 × N array of unit cells each containing a single748

identical particle. Within each cell the particle is free to rotate and equations (2.25),749

(2.29), (2.31) and (2.32) are solved throughout the whole system. The long sides of750

the array are subject to periodic boundary conditions while the ends are subject to751

appropriate Dirichlet conditions. In all cases we assume zero pre-tilt and constant752
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Fig. 4.1. Director (left) and particle (right) angle as a function of distance into the cell for
different values of the voltage applied to the cell. The solid lines are the solutions of the homoge-
nized/macroscopic equations, while the colored points and circles are solutions of the microscopic
equations computed using Comsol with N = 64 particles. Elliptic particles with semi-axes 0.1 and
0.23, the angle ψ is formed by the semi-major axis and the x1-axis and the anchoring energy is
µ̃ = 10−6 J m−2.
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Fig. 4.2. Director (top) and particle (bottom) angle as a function of distance into the cell at
V = 3 for µ̃ = 10−6 Jm−2 (left) and µ̃ = 3.1 · 10−8 Jm−2 (right). In all plots the red solid lines are
the result of the homogenized/macroscopic equations, while the blue dashed lines and crosses are the
solutions of the microscopic equations for N = 32 elliptic particles of the same size as in figure 4.1.
In the stronger anchoring case (left column) the particles are slaved to the director field and θ and
ψ have the same profile. In the weaker anchoring case (right column) the particles partially detach
from the liquid crystal and align with the electric field. The black dashed line in the top two graphs
is the director angle in the case of a pure liquid crystal.

potential across the ends of the stack. Equation (2.25) is implemented as a general753

form PDE, the electrostatics package is used to compute the electric field, the particles754

motion is included as a set of global ODEs.755

A comparison between the homogenized equations and the large-scale finite ele-756

ment simulations is shown in figure 4.1 for a range of voltages V = 2 to V = 5 applied757
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to a suspension of elliptical particles. For each voltage 64 particles were used in the758

microscopic simulations. There is excellent agreement at all voltages.759

Figure 4.2 illustrates the effect of the anchoring energy on the alignment of the760

liquid crystal (top graphs) and of the particles (bottom graphs) in response to an elec-761

tric field parallel to the x2 axis. The red lines represent the results of the macroscopic762

model, while the blue dashed lines and crosses are the solution of the microscopic763

equations with N = 32 elliptic particles of the same size as in figure 4.1. This figure764

shows once again that the agreement between microscopic and macroscopic models is765

remarkably good, even at relatively large values of η: the microscopic model simulated766

in this figure has N = 32 particles which corresponds to η = 1/32. The figure also767

illustrates very clearly the effect of microscopic parameters on the system behavior:768

for stronger anchoring (left column) the liquid crystal and the particles are slaved to769

each other and θ(x2) and ψ(x2) have the same profile. For weaker anchoring (right770

column) the particles are approximately parallel to the electric field ψ ≈ π/2 across771

the entire cell, while the director profile is still far from saturation: the particles are in-772

fluenced more by the applied field and screening effects, both of which favor ψ = π/2,773

than by the surface anchoring. For comparison, the black dashed lines in the top774

panels of figure 4.2 are the alignment of the liquid crystal in the absence of particles:775

the amplitude of the director deflection is much smaller, indicating clearly how the776

particles amplify the response of the liquid crystal to external fields. Finally, we have777

checked that the particle symmetry does not affect the quality of the approximation778

(see section SM4 of the Supplementary material).779

5. Discussion. In this paper we studied the alignment of a nematic liquid crystal780

containing freely rotating metallic particles using the method of asymptotic homoge-781

nization. We have derived a set of macroscopic equations that include the shape and782

composition of the dopant particles directly. We have shown that the model developed783

here agrees well with large-scale numerical simulations. The main difference between784

the theory developed here and that developed previously [6] is the presence of particle785

dynamics. We find that the particles are aligned by elastic screening interactions with786

the liquid crystal, surface anchoring effects and a direct interaction with the electric787

field. As in previous work [6] the key advantage of using homogenization is the ability788

to link the macroscopic quantities such as susceptibilities, to the micro-structure of789

the problem.790

The main assumption we have made in deriving our model is that a separation791

of scales exists between the inter-particle spacing and the macroscopic size of the792

system. This is a valid assumption for low concentration colloids that are typically793

studied experimentally. One consequence of this assumption is that the alignment794

cannot vary significantly within the neighborhood of a particle. This precludes the795

study of defects. In addition we have assumed that the anchoring energy density is796

scaled with the concentration of particles in the system. This has some impact on the797

range of systems that may be modeled. Our model is certainly valid for anchoring798

energies of the order of 10−6 Jm−2 (see figure 4.2). Preliminary work has shown that799

if the weak anchoring constraint is dropped we obtain both an additional set of cell800

problems which couple the elastic and surface interactions and terms quadratic in the801

anchoring strength µ̃ in the macroscopic equations. This will be explored further in802

future work.803

Future work may explore extending this theory to the three dimensional case,804

incorporating fluid flow more completely and allowing for more general particle mo-805

tion. The extension to three dimensions does not introduce any new physics to this806
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problem, but requires considerably longer algebra as the Q-tensor has 5 independent807

components and the particle orientation is described by two angles. Moreover, the808

computational time needed to solve the cell problems and verify the model against809

large-scale numerical simulations will increase significantly. Incorporating the full dis-810

sipation function derived by Sonnet et al. [44] would couple the particle and nematic811

dynamics leading to a more complicated model. It may be possible to incorporate812

translating particles using the method employed by Richardson and Chapman [37].813

This method involves making a change of coordinates that maps a seemingly non-814

periodic problem into a periodic problem in general curvilinear coordinates. Treating815

moving particles in this way may allow the particles to move away from the lattice816

configuration we are currently confined to.817

In principle it may be possible to extend this work to the strong anchoring case.818

As strong anchoring is essential for self-assembly this is certainly a problem well worth819

studying. However, it is non-trivial and would require a considerable recasting of the820

homogenization procedure: one of the key consequences of the weak anchoring limit821

is that the lowest order director field a0 is a function of the macroscopic coordinates822

only. This would be no longer the case if defects were present.823

6. Conclusions. Despite a number of assumptions, the theory developed in this824

paper represents an important step forward in modeling the interactions of a liquid825

crystal with small particles. The use of homogenization ties the average properties826

of the liquid crystal to the dopant material properties, size, density and shape. This827

approach opens up the possibility of using optimization to design particles for a specific828

application without the need for large scale simulation and lays the groundwork for829

future model development.830
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