The University of Southampton
University of Southampton Institutional Repository

Analytics for the Internet of Things: A survey

Analytics for the Internet of Things: A survey
Analytics for the Internet of Things: A survey
The Internet of Things (IoT) envisions a world-wide, interconnected network of smart physical entities. These physical entities generate a large amount of data in operation and as the IoT gains momentum in terms of deployment, the combined scale of those data seems destined to continue to grow. Increasingly, applications for the IoT involve analytics. Data analytics is the process of deriving knowledge from data, generating value like actionable insights from them. This article reviews work in the IoT and big data analytics from the perspective of their utility in creating efficient, effective and innovative applications and services for a wide spectrum of domains. We review the broad vision for the IoT as it is shaped in various communities, examine the application of data analytics across IoT domains, provide a categorisation of analytic approaches and propose a layered taxonomy from IoT data to analytics. This taxonomy provides us with insights on the appropriateness of analytical techniques, which in turn shapes a survey of enabling technology and infrastructure for IoT analytics. Finally, we look at some tradeoffs for analytics in the IoT that can shape future research.
0360-0300
Siow, Eugene
01f33f70-e412-467c-aab2-5509d58d1b94
Tiropanis, Thanassis
d06654bd-5513-407b-9acd-6f9b9c5009d8
Hall, Wendy
11f7f8db-854c-4481-b1ae-721a51d8790c
Siow, Eugene
01f33f70-e412-467c-aab2-5509d58d1b94
Tiropanis, Thanassis
d06654bd-5513-407b-9acd-6f9b9c5009d8
Hall, Wendy
11f7f8db-854c-4481-b1ae-721a51d8790c

Siow, Eugene, Tiropanis, Thanassis and Hall, Wendy (2018) Analytics for the Internet of Things: A survey. ACM Computing Surveys, 51 (4). (doi:10.1145/3204947).

Record type: Article

Abstract

The Internet of Things (IoT) envisions a world-wide, interconnected network of smart physical entities. These physical entities generate a large amount of data in operation and as the IoT gains momentum in terms of deployment, the combined scale of those data seems destined to continue to grow. Increasingly, applications for the IoT involve analytics. Data analytics is the process of deriving knowledge from data, generating value like actionable insights from them. This article reviews work in the IoT and big data analytics from the perspective of their utility in creating efficient, effective and innovative applications and services for a wide spectrum of domains. We review the broad vision for the IoT as it is shaped in various communities, examine the application of data analytics across IoT domains, provide a categorisation of analytic approaches and propose a layered taxonomy from IoT data to analytics. This taxonomy provides us with insights on the appropriateness of analytical techniques, which in turn shapes a survey of enabling technology and infrastructure for IoT analytics. Finally, we look at some tradeoffs for analytics in the IoT that can shape future research.

Text IoTSurveyCSUR - Accepted Manuscript
Download (2MB)

More information

Accepted/In Press date: 4 April 2018
e-pub ahead of print date: 6 September 2018

Identifiers

Local EPrints ID: 419347
URI: https://eprints.soton.ac.uk/id/eprint/419347
ISSN: 0360-0300
PURE UUID: fcda252b-4bbd-46bc-8d4a-a06f21451c2d
ORCID for Eugene Siow: ORCID iD orcid.org/0000-0002-3593-2436
ORCID for Thanassis Tiropanis: ORCID iD orcid.org/0000-0002-6195-2852
ORCID for Wendy Hall: ORCID iD orcid.org/0000-0003-4327-7811

Catalogue record

Date deposited: 11 Apr 2018 16:30
Last modified: 20 Nov 2018 05:01

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×