
UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Unary Error Correction Coding

by

Wenbo Zhang

BSc., MSc.

A doctoral thesis report submitted in partial fulfilment of

the requirements for the award of Doctor of Philosophy

at the University of Southampton

March 2016

SUPERVISOR:

Dr. Robert G. Maunder

PhD, CEng, MIET, SMIEEE, FHEA

Department of Electronics and Computer Science

and

Professor Lajos Hanzo

FREng, FIEEE, FIEE, DSc, EIC IEEE Press

Chair of Communications, Signal Processing and Control Group

University of Southampton

Southampton SO17 1BJ

United Kingdom

c© Wenbo Zhang 2015

Dedicated to my family and friends

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Unary Error Correction Coding

by Wenbo Zhang

In this thesis, we introduce the novel concept of Unary Error Correction (UEC) cod-

ing. Our UEC code is a Joint Source and Channel Coding (JSCC) scheme conceived for

performing both the compression and error correction of multimedia information during

its transmission from an encoder to a decoder. The UEC encoder generates a bit sequence

by concatenating and encoding unary codewords, while the decoder operates on the basis

of a trellis that has only a modest complexity, even when the source symbol values are se-

lected from a set having an infinite cardinality, such as the set of all positive integers. This

trellis is designed so that the transitions between its states are synchronous with the tran-

sitions between the consecutive unary codewords in the concatenated bit sequence. This

allows the UEC decoder to exploit any residual redundancy that remains following UEC

encoding for the purpose of error correction by using the classic Bahl, Cocke, Jelinek and

Raviv (BCJR) algorithm. Owing to this, the UEC code is capable of mitigating any poten-

tial capacity loss, hence facilitating near-capacity operation, even when the cardinality of

the symbol value set is infinite.

We investigate the applications, characteristics and performance of the UEC code in

the context of digital telecommunications. Firstly, we propose an adaptive UEC design

for expediting the decoding process. By concatenating the UEC code with a turbo code,

we conceive a three-stage concatenated adaptive iterative decoding technique. A Three-

Dimensional (3D) EXtrinsic Information Transfer (EXIT) chart technique is proposed for

both controlling the dynamic adaptation of the UEC trellis decoder, as well as for con-

trolling the activation order between the UEC decoder and the turbo decoder. Secondly,

we develop an irregular UEC design for ‘nearer-capacity’ operation. The irregular scheme

employs different UEC parametrizations for the coding of different subsets of each mes-

sage frame, operating on the basis of a single irregular trellis having a novel structure. This

allows the irregularity to be controlled on a fine-grained bit-by-bit basis, rather than on a

symbol-by-symbol basis. Hence, nearer-to-capacity operation is facilitated by exploiting

this fine-grained control of the irregularity. Thirdly, we propose a learning-aided UEC

design for transmitting symbol values selected from unknown and non-stationary proba-

bility distributions. The learning-aided UEC scheme is capable of heuristically inferring

the source symbol distribution, hence eliminating the requirement of any prior knowledge

of the symbol occurrence probabilities at either the transmitter or the receiver. This is

achieved by inferring the source distribution based on the received symbols and by feeding

this information back to the decoder. In this way, the quality of the recovered symbols and

the estimate of the source distribution can be gradually improved in successive frames,

hence allowing reliable near-capacity operation to be achieved, even if the source is un-

known and non-stationary.

Finally, we demonstrate that the research illustrated in this thesis can be extended in

several directions, by highlighting a number of opportunities for future work. The tech-

niques proposed for enhancing the UEC code can be extended to the Rice Error Correc-

tion (RiceEC) code, to the Elias Gamma Error Correction (EGEC) code and to the Ex-

ponential Golomb Error Correction (ExpGEC) code. In this way, our UEC scheme may

be extended to the family of universal error correction codes, which facilitate the near-

capacity transmission of infinite-cardinality symbol alphabets having any arbitrary mono-

tonic probability distribution, as well as providing a wider range of applications. With

these benefits, this thesis may contribute to future standards for the reliable near-capacity

transmission of multimedia information, having significant technical and economic im-

pact.

iii

Declaration of Authorship

I, Wenbo Zhang, declare that the thesis entitled Unary Error Correction Coding and

the work presented in it are my own and has been generated by me as the result of my own

original research. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at

this University;

• Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated;

• Where I have consulted the published work of others, this is always clearly at-

tributed;

• Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• Parts of this work have been published.

Signed: .. Date: ..

iv

Acknowledgements

I would like to express my heartfelt gratitude to my supervisors Dr. Robert G. Maunder

and Professor Lajos Hanzo for their outstanding supervision and support throughout my

four years study and research. Their patient guidance, continuous encouragement and

inspiring advice have greatly benefited me not only in research but also in life.

Many thanks to my colleagues and the staff of the Southampton Wireless Group for

the valuable discussions and comments throughout my research. Special thanks to my

colleagues, Dr. Soon Xin Ng, Dr. Mohammed El-Hajjar, Dr. Matthew F. Brejza, Dr. Tao

Wang and Dr. Jie Hu for their technical support and collaborative work.

I would like to express my warmest gratitude to my father, Yuezhong, my mother,

Xiaoling, for their lifelong support, for their eternal love and for their understanding and

faith on me. Finally, thanks also go to my fiancée, Haibo, for her lover, support and care

for me. Words cannot describe how lucky I am to have her in my life. I love you and look

forward to our lifelong journey.

List of Publications

Journals:

1. Robert G. Maunder, Wenbo Zhang, Tao Wang and Lajos Hanzo, “A Unary Error

Correction Code for the Near-Capacity Joint Source and Channel Coding of Symbol

Values from an Infinite Set”, IEEE Transactions on Communications, vol. 61, no. 5,

pp. 1977-1987, May 2013.

2. Tao Wang, Wenbo Zhang, Robert G. Maunder and Lajos Hanzo, “Near-Capacity

Joint Source and Channel Coding of Symbol Values from an Infinite Source Set Us-

ing Elias Gamma Error Correction Codes,” IEEE Transactions on Communications,

vol 62, no. 1, pp. 280-292, January 2014.

3. Wenbo Zhang, Yanbo Jia, Xi Meng, Matthew F. Brejza, Robert G. Maunder and La-

jos Hanzo, “Adaptive Iterative Decoding for Expediting the Convergence of Uanry

Error Correction Codes”, IEEE Transactions on Vehicular Technology, vol 64, no.

2, pp. 621-635, February 2015.

4. Jinhui Chen, Wenbo Zhang, Robert G. Maunder and Lajos Hanzo, “Bit-by-Bit Iter-

ative Decoding Expedites the Convergence of Repeat Accumulate Decoders”, IEEE

Transactions on Communications, vol. 63, no. 6, pp. 1952-1962, June 2015.

5. Wenbo Zhang, Matthew F. Brejza, Tao Wang, Robert G. Maunder and Lajos Hanzo,

“An Irregular Unary Error Correction Code for the Near-Capacity Joint Source and

Channel Coding of Symbol Values from an Infinite Set”, IEEE Transactions on Com-

munications, vol. 63, no. 12, pp. 5073-5088, December 2015.

6. Wenbo Zhang, Zeyu Song, Matthew F. Brejza, Tao Wang, Robert G. Maunder and

Lajos Hanzo, “Learning-aided Unary Error Correction Codes for Non-Stationary

and Unknown Sources”, IEEE Access, accepted, February 2016.

7. Tao Wang, Wenbo Zhang, Matthew F. Brejza, Robert G. Maunder and Lajos Hanzo,

“Reordered Elias Gamma Error Correction Codes for the Near-Capacity Joint Source

and Channel Coding of Multimedia Information”, IEEE Transactions on Vehicular

Technology, submitted, February 2016.

8. Jie Hu, Dimitrios Alanis, Wenbo Zhang, Lie-Liang Yang and Lajos Hanzo, “Energy-

Efficient Cross-Layer Design of Wireless Mesh Networking for Content Sharing in

Online Social Networks”, to be submitted.

9. Matthew F. Brejza, Tao Wang, Wenbo Zhang, David Al-Khalili, Robert G. Maun-

der, Bashir M. Al-Hashimi and Lajos Hanzo, “Exponential Golomb and Rice Error

Correction Codes for Near-Capacity Joint Source and Channel Coding”, to be sub-

mitted.

vi

Conferences:

1. Wenbo Zhang, Robert G. Maunder and Lajos Hanzo, “On the Complexity of Uanry

Error Correction Codes for the Near-Capacity Transmission of Symbol Calues from

An Infinite Set”, IEEE Wireless Communications and Networking Conference (WCNC),

pp. 2795-2800, Shanghai, CN, 7-10 April, 2013.

2. Matthew F. Brejza, Wenbo Zhang, Robert G. Maunder, Bashir M. Al-Hashimi

and Lajos Hanzo, “Adaptive Iterative Decoding for Expediting the Convergence of

Unary Error Correction Decoders Concatenated with Turbo Decoders and Iterative

Demodulator”, IEEE International Conference on Communications (ICC), “Smart

City and Smart World”, pp. 2603-2608, London, GB, 8-12 June, 2015.

vii

Contents

Abstract ii

Declaration of Authorship iv

Acknowledgements v

List of Publications vi

Glossary xiii

List of Symbols xvi

Chapter 1 Introduction 1

1.1 Separate Source and Channel Coding . 1

1.2 Joint Source and Channel Coding . 2

1.3 Motivation and Contribution . 4

1.4 Thesis Organisation . 8

Chapter 2 Background 12

2.1 Introduction . 12

2.2 Concatenated Schemes . 13

2.2.1 Serially Concatenated Schemes 13

2.2.2 Parallel Concatenated Schemes 15

2.2.3 Self-Concatenated Schemes . 16

viii

2.3 Unity-Rate Convolutional code . 17

2.3.1 Linear Feedback Shift Register 17

2.3.2 Generator and Feedback Polynomials 18

2.3.3 Encoding Operation . 19

2.4 Multiplexer Operation . 21

2.5 Interleaver Operation . 22

2.6 Quadrature Phase-Shift Keying . 23

2.7 Uncorrelated Narrow-band Rayleigh Channel 24

2.8 Soft QPSK Demodulation . 27

2.8.1 Logarithmic Likelihood Ratio 27

2.8.2 Soft Demodulator . 28

2.9 Deinterleaver Operation . 29

2.10 Demultiplexer Operation . 29

2.11 BCJR Algorithm . 29

2.11.1 ACS Operations . 30

2.11.2 γ, α, β and δ Calculations . 31

2.12 Iterative Decoding . 34

2.13 EXIT Chart . 37

2.14 Irregular Design Philosophy . 45

2.15 Summary and Conclusions . 47

Chapter 3 Unary Error Correction Codes and Their Complexity 49

3.1 Introduction . 49

3.1.1 Background and Motivation . 49

3.1.2 Novel Contributions . 51

3.1.3 Chapter Organisation . 51

3.2 Symbols Value Sets Having an Infinite Cardinality 52

3.3 UEC Encoder Operation . 53

3.3.1 Unary Encoder . 54

ix

3.3.2 Trellis Encoder . 55

3.3.3 IrURC Encoder, Interleaver, Puncturer and Modulator 59

3.4 UEC Decoder Operation . 60

3.4.1 Trellis Decoder . 60

3.4.2 Iteratively Decoding . 61

3.4.3 Unary Decoder . 61

3.5 Near-capacity Performance of UEC Codes 61

3.5.1 EXIT Curves . 62

3.5.2 Area Property . 63

3.6 An SSCC Benchmarker . 65

3.6.1 EG-CC Encoder . 65

3.6.2 EG-CC Decoder . 66

3.7 Parametrization of the UEC-IrURC and EG-CC-IrURC schemes 67

3.8 Decoding Complexity Analysis . 71

3.9 Simulation Results . 73

3.10 Summary and Conclusions . 75

Chapter 4 Adaptive UEC Codes for Expediting Iterative Decoding Convergence 78

4.1 Introduction . 78

4.1.1 Background and Motivation . 78

4.1.2 Novel Contributions . 80

4.1.3 Chapter Organisation . 81

4.2 System Overview . 81

4.2.1 Transmitter . 81

4.2.2 Receiver . 85

4.3 Adaptive Iterative Decoding . 87

4.3.1 EXIT Chart Analysis . 87

4.3.1.1 2D EXIT Curves . 88

4.3.1.2 3D EXIT Chart . 89

x

4.3.1.3 2D EXIT Chart Projections 92

4.3.2 Dynamic Adjustment of the Decoder Activation Order 94

4.3.3 Complexity and Storage Analysis 95

4.4 Comparison with Benchmarkers . 98

4.5 Summary and Conclusions . 108

Chapter 5 Irregular UEC Codes for ‘Nearer-Capacity’ Operation 110

5.1 Introduction . 110

5.1.1 Background and Motivation . 110

5.1.2 Novel Contributions . 112

5.1.3 Chapter Organisation . 113

5.2 IrUEC-IrURC Encoder . 113

5.2.1 Unary Encoder . 113

5.2.2 IrTrellis Encoder . 114

5.2.3 IrURC Encoder and Modulator 118

5.3 IrUEC-IrURC Decoder . 119

5.3.1 Demodulator and Iterative Decoding 119

5.3.2 IrTrellis Decoder . 120

5.3.3 Unary Decoder . 120

5.4 Algorithm for the Parametrization of the IrUEC-IrURC Scheme 121

5.4.1 Design of UEC Component Codes 121

5.4.2 Double-sided EXIT Chart Matching Algorithm 125

5.5 Benchmarkers . 126

5.5.1 Recursive Systematic Component CC Codes 128

5.5.2 Recursive Non-Systematic Component CC Codes 130

5.5.3 Parallel Component UEC Codes 131

5.6 Simulation Results . 132

5.7 Summary and Conclusions . 138

Chapter 6 Learning-aided UEC Codes for Non-Stationary and Unknown Sources 140

xi

6.1 Introduction . 140

6.1.1 Background and Motivation . 140

6.1.2 Novel Contributions . 141

6.1.3 Chapter Organisation . 142

6.2 Nature of the Source . 143

6.2.1 Stationary Zeta Distribution . 143

6.2.2 Non-Stationary Zeta Distribution 145

6.3 Learning-aided UEC Coding . 146

6.3.1 Transmitter Operation . 147

6.3.2 Receiver Operation . 149

6.3.3 Learning Algorithm . 150

6.4 Benchmarkers . 152

6.4.1 Learning-aided EG-CC Benchmarker 153

6.4.2 Learning-aided Arithmetic-CC Benchmarker 155

6.5 Simulation Results . 157

6.6 Summary and Conclusions . 160

Chapter 7 Conclusions and Future Research 163

7.1 Main Conclusions . 163

7.2 Design Guidelines . 166

7.3 Future Work . 170

7.3.1 Adaptive/Irregular/Learning-aided EGEC, RiceEG and ExpGEC

schemes . 170

7.3.2 Adaptive/Irregular/Learning-aided REGEC schemes 174

7.4 Closing Remarks . 176

Bibliography 177

Subject Index 190

Author Index 194

xii

Glossary

2D Two-Dimensional

3D Three-Dimensional

ACS Add, Compare and Select

APP A Posteriori Probability

AWGN Additive White Gaussian Noise

BCH Bose-Chaudhuri-Hocquenghem

BCJR Bahl, Cocke, Jelinek and Raviv

BEC Binary Erasure Channel

BER Bit Error Ratio

BICM Bit-Interleaved Coded Modulation

CC Convolutional Code

CRC Cyclic Redundancy Check

DCMC Discrete-input Continuous-output Memoryless Channel

EA Evolutionary Algorithm

EG Elias Gamma

EGEC Elias Gamma Error Correction

EWVLC Even Weight Variable Length Codes

EXIT EXtrinsic Information Transfer

ExpGEC Exponential Golomb Error Correction

FLC Fixed length Code

xiii

HD Hamming Distance

HEVC High Efficiency Video Coding

IID Independent and Identically Distributed

IrCC Irregular Convolutional Code

IrTrellis Irregular Trellis

IrUEC Irregular Unary Error Correction

IrURC Irregular Unity-Rate Convolutional

IrVLC Irregular Variable Length Code

JSCC Joint Source and Channel Coding

LDPC Low-Density Parity-Check

LFSR Linear Feedback Shift Register

LLR Logarithmic Likelihood Ratio

LTE Long Term Evolution

LUT Look-Up-Table

MAP Maximum A-Posteriori

MI Mutual Information

ML Maximum Likelihood

MMIA Maximal Mutual Information Achieving

PCC Parallel Concatenated Codes

PSK Phase-Shift Keying

QPSK Quadrature Phase-Shift Keying

REG Reordered Elias Gamma

REGEC Reordered Elias Gamma Error Correction

RiceEC Rice Error Correction

RV Random Variable

RVLC Reversible Variable Length Code

RVLC Reversible Variable Length Codes

SCC Serially Concatenated Codes

SECC Self-Concatenated Codes

xiv

SER Symbol Error Ratio

SISO Soft-In Soft-Out

SNR Signal to Noise Ratio

SOVA Soft-Output Viterbi Algorithm

SSCC Separate Source and Channel Coding

SSVLC Self-Synchronizing Variable Length Codes

TCM Trellis-Coded Modulation

UEC Unary Error Correction

UEP Unequal Error Protection

URC Unity-Rate Convolutional

VLC Variable Length Code

VLEC Variable Length Error Correction

VQEG Video Quality Expert Group

XOR Boolean Exclusive-OR

xv

List of Symbols

Special Symbols

Schematics

x: The source symbol vector.

x̂: The reconstructed source symbol vector.

a: The length of source symbol vector.

a: The source bit vector.

â: The reconstructed source bit vector.

J : The length of source bit vector.

y: The encoded bit vector.

ŷ: The reconstructed encoded bit vector.

b: The length of encoded bit vector.

π: The interleaving.

π−1: The de-interleaving.

z: The encoded bit vector.

w: The interleaved bit vector.

c: The multiplexed bit vector.

g: The modulated vector.

(̃·): The Logarithmic Likelihood Ratio (LLR) vector pertaining to the specified

bits/symbols vector.

(̃·)p: The a posteriori LLR vector pertaining to the specified bits/symbols vector.

(̃·)a: The a priori LLR vector pertaining to the specified bits/symbols vector.

(̃·)au: The a priori LLR vector of upper component code.

(̃·)al : The a priori LLR vector of lower component code.

(̃·)ao: The a priori LLR vector of outer component code.

(̃·)e: The extrinsic LLR vector pertaining to the specified bits/symbols vector.

(̃·)eu: The extrinsic LLR vector of upper component code.

xvi

(̃·)el : The extrinsic LLR vector of lower component code.

(̃·)eo: The extrinsic LLR vector of outer component code.

M : The storage memory employed in the learning-aided scheme.

m: The size of the storage memory M .

D: The input data stream of demultiplexer.

D̃: The output data stream of demultiplexer.

Probability distribution

Pr(·): The probability of an arbitrary event occurring.

Pr(·|·): The conditional probability.

Pr(·, ·): The joint probability.

HX : The symbol entropy.

HZ : The bit entropy.

N1: The infinite-cardinality set comprising all positive integers.

ζ(s): The Riemann zeta function.

p1: The probability of symbol value equals 1.

p̄1: The mean value of p1.

p: The probabilities of the first r/2− 1 symbol values.

p̂: The estimated value of p.

l: The average codeword length for each symbol.

l̂: The estimated value of l.

T : The number of successive symbol vectors produced per cycle.

σ: The standard deviation of the filtered Gaussian-distributed values.

Trellis

C: The codeword of the trellis.

C: The complementary codeword of the trellis.

r: The number of states in the trellis.

n: The number of bits in the trellis.

j: The trellis state index.

mj : The j-th trellis state.

M : The set of all possible trellis states.

df : The free-distance.

g(·): The hexadecimal generator polynomials.

f(·): The hexadecimal feedback polynomials.

Codebook

r: The number of states in the codebook.

xvii

n: The number of bits in the codebook.

t: The component URC code index.

T : The component URC codes count.

URC: The component URC codebook.

URCt: The component URC codeword.

s: The component UEC code index.

S: The component UEC codes count.

UEC: The component UEC codebook.

UECs: The component UEC codeword.

n: The component CC code index.

N : The component CC codes count.

CC: The component CC codebook.

CCn: The component CC codeword.

CCns: The non-systematic recursive CC codebook.

CCn
ns: The non-systematic recursive CC codeword.

CCs: The systematic recursive CC codebook.

CCn
s : The systematic recursive CC codeword.

Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm

γ: The a priori trellis transition probabilities.

γj(m,m′): The j-th a priori trellis transition probability from state m to state m′.

α: The forward trellis transition probabilities.

αj(m): The j-th forward trellis transition probability obtained for the trellis state m.

β: The backward trellis transition probabilities.

βj(m
′): The j-th backward trellis transition probability obtained for the trellis state

m′.

δ: The a posteriori trellis transition probabilities.

δj(m,m′): The j-th a posteriori trellis transition probability from state m to state m′.

I: The number of iterative decoding iterations.

EXtrinsic Information Transfer (EXIT) chart

I(·, ·): The Mutual Information (MI).

f [I((̃·)a, (·))]: The EXIT function.

f [I((̃·)e, (·))]: The inverted EXIT function.

A: The area above the inverted EXIT curve.

A: The area beneath the EXIT curve.

Ao: The area beneath the EXIT curve of outer code.

xviii

Ai: The area beneath the EXIT curve of inner code.

Channel

h: The channel gain vector.

n: The Additive White Gaussian Noise (AWGN) vector.

N0: The power spectral density of the AWGN.

η: The effective throughput.

C: The channel capacity.

Es: The energy per symbol.

Ts: The symbol duration time.

fs: The frequency of the carrier.

sn(·): The signal in the time domain.

Es/N0: The channel Signal to Noise Ratio (SNR).

Eb/N0: The channel SNR per bit of source information.

Code parameters

R: The coding rate.

Ro: The coding rate of outer code.

Ri: The coding rate of inner code.

w(y): The weight of bit vector y.

l(y): The length of bit vector y.

Special Operations

| · |2: The Euclidean norm of a vector/matrix.

Re(·): The real part of a complex value.

Im(·): The imaginary part of a complex value.

∠B: The angle of a complex value B.
∑

: The summation of all elements.

∀: For all elements within a certain range.

lim: The limitation operation.

exp(·): The exponential operation.

log(·): The logarithm operation.

ln(·): The natural logarithm operation.

E{·}: The expectation operation.

⌈·⌉: Rounding a numerical value to its nearest higher integer.

⌊·⌋: Rounding a numerical value to its nearest lower integer.

max(·): The maximum value of a vector/matrix.

xix

min(·): The minimum value of a vector/matrix.

mod(x, y): The remainder after the division of x by y.

(·): The complementary operation.

⊕: The Boolean Exclusive-OR (XOR) operation.

odd(·): The function yields 1 if the operand is odd or 0 if it is even.

xx

Chapter 1

Introduction

The novel concept of Unary Error Correction (UEC) coding is introduced. We investigate

its applications, characteristics and performance in the context of digital telecommunica-

tions. Our UEC scheme is a Joint Source and Channel Coding (JSCC) [1] scheme con-

ceived for performing both compression and error correction of multimedia information

during its transmission from an encoder to a decoder. Moreover, our near-capacity UEC

scheme is designed for facilitating the practical encoding and decoding of multimedia in-

formation at a moderate complexity.

1.1 Separate Source and Channel Coding

In Shannon’s seminal contribution [2], his source and channel coding separation theorem

stated that source coding designed for compression and channel coding invoked for error

correction can be designed entirely independently, without any loss of performance. In

general, a basic Separate Source and Channel Coding (SSCC) scheme in wireless digital

communications may be represented by Figure 1.1. When communicating over a per-

fectly noiseless wireless communications channel, Shannon [2] showed that the minimum

number of bits required after compression using source coding to reliably convey perfect

knowledge of the source signal’s information content to the receiver is given by the source

entropy, because source coding eliminates the redundancy inherent in the source infor-

mation. When communicating over noisy channels, Shannon [2] showed that if a source

signal’s information content is conveyed at a rate (bits per second) that does not exceed the

channel’s capacity, then it is theoretically possible to reconstruct it with an infinitesimally

low probability of error. This motivates the employment of separate channel coding, which

introduces carefully controlled redundancy that can be beneficially exploited for error cor-

rection. With this SSCC guidelines, the efforts of the academic and industrial research

communities expended over the past 60 years are summarized at a glance in Table 1.1.

1.2. Joint Source and Channel Coding 2

Source

Source

Decoding

Source Channel

Decoding

Channel

Modulator

Destination Demodulator
Channel

Encoding Encoding

Figure 1.1: A digital communications system relying on Separate Source and

Channel Coding (SSCC).

However, Shannon’s findings are only valid under a number of idealistic assump-

tions [3], namely that the information is transmitted over an uncorrelated non-dispersive

narrowband Additive White Gaussian Noise (AWGN) channel, while potentially impos-

ing an infinite decoding complexity and buffering latency. These assumptions clearly have

limited validity for practical finite-delay transmissions over realistic fading wireless chan-

nels [4]. Additionally, Shannon assumed that the source is stationary and that it is loss-

lessly encoded. These assumptions have a limited validity in the case of multimedia trans-

mission, since video, image, audio information is typically non-stationary, having charac-

teristics that vary in time and/or space [5,6]. Furthermore, ‘lossy’ compression [7] is often

readily tolerated for multimedia information, since human observers can typically tolerate

moderate signal degradation in exchange for requiring a reduced bandwidth. Owing to

this, some residual redundancy is typically retained during source coding, hence prevent-

ing near-capacity operation. This observation motivated the conception of Joint Source

and Channel Coding (JSCC) [1], as it will be introduced in Section 1.2.

1.2 Joint Source and Channel Coding

In order to exploit the residual redundancy and hence to achieve near-capacity operation,

the classic SSCC schemes may be replaced by JSCC arrangements [1] in many applica-

tions. Generally, a basic JSCC scheme routinely used in wireless digital communications

system is represented by Figure 1.2. The history and milestones of JSCC development are

listed in Table 1.2. Diverse methods have been proposed for JSCC, which we will now

briefly discuss.

Channel-optimised source coding [48, 49] may be employed for reducing the recon-

struction error of the source, when the channel decoder is unable to correct all transmission

errors. More particularly, the source encoder is designed with special consideration of the

transmission errors that are most likely to occur, namely those causing a particular binary

codeword to be confused with another similar codeword. In this way, channel-optimised

1.2. Joint Source and Channel Coding 3

Year Author(s) Contribution

1948 Shannon [2] Information theory and channel capacity

1949 Fano [8] Discrete message transmission in noiseless systems

1950 Hamming [9] Hamming code was proposed

1952 Huffman [10] Huffman code was proposed

1954 Reed [11] Reed-Muller (RM) code was introduced

1955 Elias [12] Convolutional Code (CC) was conceived

1957 Wozencraft [13] Sequential decoding

1962 Gallager [14] Low-Density Parity-Check (LDPC) code

1966 Golomb [15] Golomb and Rice Codes

1972 Bahl et al. [16] Maximum A-Posteriori (MAP) algorithm

1973 Forney [17] The Viterbi algorithm

1974 Bahl et al. [18] Symbol based MAP algorithm

1975 Elias et al. [19] Elias Gamma (EG) source code

1977 Imai and Hirawaki [20] Bandwidth-efficient MultiLevel Coding (MLC)

1978 Wolf [21] Trellis-decoding of block codes

Ziv and Lempel [22] Lempel-Ziv coding

1979 Rissanen and Landgon [23] Describes a broad class of arithmetic codes

1982 Ungerböck [24] Trellis-Coded Modulation (TCM)

1987 Witten et al. [25] Arithmetic coding for data compression

1988 Blahut [26] Multiple trellis-coded modulation

1989 Calderbank [27] Multilevel codes and multistage decoding

Hagenauer et al. [28] Soft-Output Viterbi Algorithm (SOVA)

1990 Koch and Baier [29] Classic Log-MAP algorithm

1991 Webb et al. [30] Hard-decision Star QAM/Differential

Amplitude Phase Shift Keying (DAPSK)

1992 Zehavi [31] Bit-Interleaved Coded Modulation (BICM)

1993 Berrou [32] Turbo codes

1994 Kofman et al. [33] Performance of a multilevel coded modulation

Le Goff et al. [34] BICM-based Turbo Coded Modulation (TuCM)

1995 Robertson et al. [35] Approx-Log-MAP algorithm

1997 Li and Ritcey [36] Bit-Interleaved Coded Modulation with Iterative

Decoding (BICM-ID)

1998 Robertson and Wörz [37] Turbo trellis-coded modulation (TTCM)

Benedetto et al. [38] Self-concatenated coding

2001 Richardson et al. [39] Irregular LDPC code

2002 Luby [40] Rateless Luby Transform (LT) codes

2004 Hou and Lee [41] Multilevel LDPC codes design for semi-BICM

2006 Shokrollahi [42] Rateless Raptor codes

2007 Yue et al. [43] Finite-length LDPC code

Grangetto et al. [44] Iterative Decoding of Serially Concatenated

Arithmetic and Channel Codes

2009 Arikan [45] Polar codes

2012 Wang and Luo [46] Generalized channel coding theory for

random access communication

2015 Luo [47] Generalized channel coding theory for

distributed communication

Table 1.1: Milestones in Separate Source and Channel Coding (SSCC).

1.3. Motivation and Contribution 4

Source

Channel

Source
/Channel

Source
/Channel
Decoding

Demodulator

Encoding

Destination

Modulator

Figure 1.2: A digital communications system relying on Joint Source and Channel

Coding.

source encoding allocates pairs of similar codewords to represent similar reconstructed

source parameter values. This principle may be applied both to scalar quantisation [50,51]

and to vector quantisation [49, 52]. Furthermore, JSCC may be beneficially employed, if

some of the source correlation is not removed during source encoding [53], or some re-

dundancy is intentionally introduced during source coding [54]. Based on this approach,

the receiver is capable of exploiting the residual redundancy in order to provide an error

correction capability, which may be exploited for mitigating any transmission errors that

could not be eliminated during channel decoding.

JSCC has been successfully applied to the encoding of symbols selected from finite

sets, such as the 26 letters of the English alphabet {a, b, c, . . . , z}. However, when the

source symbol values are selected from a set having an infinite cardinality, such as the pos-

itive integers in the range of 1 to infinity N1 = {1, 2, 3, . . . ,∞}, the existing JSCCs, such

as Self-Synchronizing Variable Length Codes (SSVLC) [55], Reversible Variable Length

Codes (RVLC) [56], Variable Length Error Correction (VLEC) codes [57], Even Weight

Variable Length Codes (EWVLC) [58] and Irregular Variable Length Code (IrVLC) [59]

become unsuitable. More specifically, when the cardinality of the symbol value set is in-

finite, the trellis and graph structures [60–67] employed by these codes become infinitely

large, hence the corresponding decoding algorithms become infinitely complex. This mo-

tivates the work in this treatise.

1.3 Motivation and Contribution

The motivation of our UEC code is summarized in Table 1.3. For those source symbols

that are selected from a set having finite cardinality, classic SSCC based on Huffman [2] or

Shannon-Fano [8] codes may indeed be capable of reconstructing the source information

with an infinitesimally low probability of error, provided that the transmission rate does not

exceed the channel’s capacity [2]. However, SSCC schemes require both the transmitter

1.3. Motivation and Contribution 5

Year Author(s) Contribution

1959 Kotelnikov [68] JSCC using Shannon-Kotelnikov mappings

1969 Kurtenbach and Wintz [69] Quantizing for noisy channels

1978 Massey [1] JSCC tutorial

1980 Linde et al. [48] Channel-optimised indexing of vector

quantisation

1984 Kumazawa et al. [49] Channel-optimised vector quantisation

1986 Montgomery and Abrahams [55] Self-Synchronizing Variable Length Codes

1987 Farvardin et al. [70] Optimal quantizer design for noisy channels

1989 Wyrwas and Farrell [71] JSCC for binary image transmission

1990 Farvardin [52] Channel-optimised vector quantisation

1991 Sayood and Borkenhagen [53] Use residual redundancy in JSCC design

1993 Ramchandran et al. [72] Multiresolution JSCC for digital broadcast

1995 Takishima et al. [56] Reversible Variable Length Codes

1998 Kozintsev and Ramchandran [73] Multi-resolution JSCC over

energy-constrained time-carrying channels

1999 Dyck and Miller [74] JSCC in video transmission

2000 Cai and Chen [75] Robust JSCC in image transmission

Buttigieg and Farrell [57] Variable Length Error Correction codes

Jin et al. [76] Irregular Repeat-Accumulate (IRA) codes

2001 Görtz [77] Iterative JSCC decoding framework

Balakirsky [60] JSCC using variable length codes

2002 Ramstad [78] Analog JSCC using Shannon mapping

2003 Hagenauer and Görtz [79] The turbo principle in JSCC

2005 Kliewer and Thobaben [80] Iterative JSCC of variable length codes

2006 Thobaben and Kliewer [58] Even Weight Variable Length Codes

2007 Jaspar et al. [81] JSCC turbo technique for discrete-sources

Xu et al. [82] Distributed JSCC using Raptor codes

2009 Maunder and Hanzo [59] Irregular Variable Length Code

2011 Minero et al. [83] JSCC via hybrid coding

2012 Persson et al. [84] JSCC for the MIMO broadcast channel

2013 Kostina and Verdu [85] Lossy JSCC having a finite block length

2014 Romero et al. [86] Analog JSCC for wireless optical

communications

2015 Tridenski et al. [87] Ziv-Zakai-Rényi bound for JSCC

Table 1.2: Milestones in Joint Source and Channel Coding (JSCC).

and receiver to accurately estimate the occurrence probability of every symbol value that

the source produces. For example, in the English alphabet, the letter ‘e’ occurs with a

much higher probability than the letter ‘x’. In practice, the occurrence probability of rare

symbol values can only be accurately estimated, if a sufficiently large number of symbols

has been observed, hence potentially imposing an excessive latency.

This motivates the design of so-called universal codes, such as the Elias Gamma (EG)

codes [19], which facilitate the binary encoding of symbols selected from infinite sets,

without requiring any knowledge of the corresponding occurrence probabilities at either

1.3. Motivation and Contribution 6

Finite Symbol set Infinite symbol set

e.g. {a, b, c, . . . , z} e.g. N = {1, 2, 3, . . . ,∞}
Separate Source and • Shannon-Fano code [2] • Unary code [88]

Channel Coding (SSCC) • Huffman code [10] • Elias Gamma code [19]

Joint Source and • Variable Length Error • Unary Error Correction

Channel Coding (JSCC) Correction (VLEC) code [57] (UEC) code

Table 1.3: The motivation for our UEC code.

the transmitter or receiver. In order to exploit the residual redundancy and hence to achieve

near-capacity operation, the classic SSCC schemes may be replaced by JSCC arrange-

ments [1], such as the VLEC code [57]. However, the decoding complexity of all previous

JSCCs, such as Reversible Variable Length Code (RVLC) [56] and VLEC codes [57],

increases rapidly with the cardinality of the symbol set becoming excessive for the cardi-

nality of the symbols produced by practical multimedia encoders, such as H.264 [89] and

H.265 [90], and asymptotically tending to infinity, when the cardinality is infinite. Against

this background, we propose a novel JSCC scheme, which is referred to as the Unary Error

Correction Code (UEC). As shown in Table 1.3, our UEC is designed to fill the gap for the

combination of JSCC and infinite source symbol sets.

As it will be introduced in Chapter 3, our UEC encoder generates a bit sequence by

concatenating unary codewords [88], while the decoder employs a trellis that has only a

modest complexity, even when the cardinality of the symbol value set is infinite. This

trellis is designed so that the transitions between its states are synchronous with the tran-

sitions between the consecutive unary codewords in the concatenated bit sequence. This

allows the UEC decoder to exploit the residual redundancy using the classic Bahl, Cocke,

Jelinek and Raviv (BCJR) algorithm [91]. Furthermore, we prove that in the case of arbi-

trary symbol value distributions, the capacity loss asymptotically approaches zero, as the

complexity of the UEC trellis is increased. In fact, we show that the capacity loss closely

approaches zero, even if only a modest trellis complexity is employed.

UEC
candidate
component

codes

Inner
concatenated

codes

Irregular

designs operations

Adaptive

distribution

Source

Figure 1.3: The design-flow of a UEC coded scheme.

In this treatise, we introduce the novel concept of UEC coding and investigate its ap-

plications, characteristics and performance in the context of digital telecommunications.

As depicted in Figure 1.3, there are a range of different aspects that have to be considered,

when designing UEC codes. In each of the following chapters, we will focus on and make

1.3. Motivation and Contribution 7

contributions to one or more of the aspects seen in Figure 1.3. The thesis is based on

the four journal papers [92–95] and two conference papers [96, 97] shown in the List of

Publications. The novel contributions of the thesis are as follows.

In Chapter 3, we will study the encoding and decoding operations of the UEC scheme

and quantify the computational complexity of the UEC scheme.

• An iteratively-decoded serial concatenation of the UEC code and an Irregular Unity-

Rate Convolutional (IrURC) code [98] is designed, which is capable of asymptoti-

cally eliminating any capacity loss, hence achieving near-capacity operation.

• It is formally shown that when the symbol values obey a geometric probability dis-

tribution, the UEC scheme eliminates all capacity loss, even when the UEC trellis

has a very low complexity. It is also shown that for arbitrary source distributions,

the capacity loss asymptotically approaches zero as the complexity of the UEC trel-

lis is increased. Three scenarios associated with different source distributions are

considered.

• We quantify the computational complexity of the Log-BCJR decoder in terms of the

number of Add, Compare and Select (ACS) operations [96], for the sake of providing

fair comparisons between our UEC scheme and the benchmarkers.

In Chapter 4, we will propose an Adaptive UEC design for expediting the attainable

iterative decoding convergence.

• A novel three-stage concatenation of the UEC code and a half-rate turbo code is pro-

posed, in which there are three decoders, hence facilitating a Three-Dimensional (3D)

EXtrinsic Information Transfer (EXIT) chart [99] analysis and a novel adaptive iter-

ative decoding algorithm.

• We employ the above-mentioned 3D EXIT chart to estimate the potential quantita-

tive benefits associated with activating each decoder at each stage of the iterative

decoding process. Then a more intuitive Two-Dimensional (2D) EXIT chart projec-

tion is employed to provide insights into whether or not any capacity loss is expected

for the scheme.

• Based on the EXIT analysis, we dynamically adapt the activation order of the three

decoders of the UEC-Turbo scheme, in order to expedite the iterative decoding con-

vergence of the whole scheme. We also adaptively adjust the number of states that

are employed in the UEC trellis, providing a reduced complexity and/or an improved

performance.

In Chapter 5, we will propose an Irregular UEC design for achieving ‘nearer-capacity’

operation.

1.4. Thesis Organisation 8

• A novel single irregular UEC trellis is designed, which is referred to as the Irregular

Trellis (IrTrellis). This allows the irregularity to be controlled on a fine-grained

bit-by-bit basis, rather than on a symbol-by-symbol basis, hence facilitating nearer-

to-capacity operation than the state-of-the-art approach.

• In order to select UEC candidate codes having a desirable performance, the free-

distance properties of the UEC codebooks are characterised for the first time, using

a heuristic method that is capable of obtaining an approximate measurement of the

free-distance.

• We also propose a novel extension of the double-sided EXIT chart matching algo-

rithm of [100] that can be employed for jointly designing the EXIT function match-

ing between the IrUEC and IrURC constituent codes.

In Chapter 6, we will propose a Learning-aided UEC design for operating on non-

stationary and unknown sources.

• We analyse and characterise the symbol values that are entropy-encoded in the H.265

video codec. Inspired by the distribution of these symbol values, we propose a non-

stationary probability distribution for modelling the source distribution, which can

be readily parametrized to represent the H.265 distribution.

• A novel learning-aided UEC scheme is proposed. In contrast to the conventional

UEC schemes, the learning-aided scheme does not require any prior knowledge of

the source distribution at the receiver in order to achieve near-capacity operation.

The algorithm operates by learning the source distribution based on the received

symbols and then by feeding this information back to the decoder in order to assist

the decoding process.

• In order to implement the learning algorithm, we employ a memory storage at the

receiver, which is used to store the source distribution statistics that have been ob-

served from successively recovered symbol vectors. We quantify the size of this

memory storage in terms of the number of the most-recently recovered symbol vec-

tors, as well as considering how to strike a desirable trade-off between the size of

the memory and the error correction capability.

1.4 Thesis Organisation

The organization of the thesis is listed below, with reference to Figure 1.4:

Chapter 2: In this chapter, we introduce all background knowledge relied upon by our

discussions of the UEC in the following chapters. We commence with the two

basic structures of iterative decoding schemes, namely serially concatenation and

1.4. Thesis Organisation 9

parallel concatenation. Following this, we focus our attention on the serially con-

catenated scheme and successively describe how each module of the transmitter

operates, including the Unity-Rate Convolutional (URC) encoder, multiplexer, in-

terleaver, Quadrature Phase-Shift Keying (QPSK) modulator, as well as how each

corresponding module operates in the receiver, including the URC decoder, demul-

tiplexer, deinterleaver and QPSK demodulator. We also highlight how the uncorre-

lated narrow-band Rayleigh fading channel affects the transmitted symbols.

Chapter 3: In this chapter, we commence by characterizing the symbol value sets that

have an infinite cardinality by considering the geometric distribution, the zeta dis-

tribution and the H.264 distribution. We study a serially concatenated UEC-IrURC

scheme and detail the operations of both the UEC encoder and decoder, as well

as the iterative decoding operations exchanging extrinsic information between the

UEC decoder and the IrURC decoder. We introduce the EXIT chart concept and

its area properties in the context of the UEC code, demonstrating semi-analytically

that near-capacity operation can be achieved depending on the UEC trellis decoder’s

complexity, regardless of the specific symbol value distribution. An SSCC EG-CC-

IrURC benchmarker is introduced, and three different scenarios are considered in

order to offer a deeper insight into the parametrizations of both the proposed scheme

and the benchmarker. Moreover, we quantify the computational complexity of the

UEC and EG-CC schemes in terms of the number of ACS operations, in order to

strike a desirable trade-off between the contradictory requirements of low complex-

ity and near-capacity operation.

Chapter 4: In this chapter, we propose an Adaptive UEC-Turbo scheme, which is a three-

stage concatenated arrangement that applies an adaptive iterative decoding technique

for expediting the iterative decoding convergence. With the assistance of a 3D EXIT

chart analysis, we extend our adaptive iterative decoding approach, allowing the

dynamic adjustment of the UEC decoder’s operation, as well as of its activation

order with the aid of two turbo decoder components. We also provide its decoding

complexity and storage requirement analysis. Finally, the proposed Adaptive UEC

scheme is compared to four benchmarkers.

Chapter 5: In this chapter, we propose a novel Irregular UEC scheme that operates on the

basis of a single irregular trellis, which we refer to as the IrUEC code. Like the reg-

ular UEC code, it employs a unary code, but replaces the UEC’s trellis code with a

novel Irregular Trellis (IrTrellis) code, which operates on the basis of a single amal-

gamated irregular trellis, rather than a number of separate trellises. This allows the

irregularity of the proposed IrUEC code to be controlled on a fine-grained bit-by-bit

basis, rather than on a symbol-by-symbol basis, hence facilitating nearer-to-capacity

1.4. Thesis Organisation 10

operation than the state-of-the-art. The IrUEC code is constructed from several UEC

codes employing different UEC codebooks. In order to select UEC codebooks hav-

ing an attractive performance, the free-distance properties of the UEC codebooks are

characterised for the first time, using a heuristic method that is capable of estimat-

ing the free-distance. A novel extension of the double-sided EXIT chart matching

algorithm is proposed for jointly designing the EXIT function matching between the

IrUEC and IrURC codes. We also construct a Parallel UEC benchmarker and two

versions of the SSCC EG-IrCC-IrURC benchmarkers, namely the EG-IrCC(sys)-

IrURC benchmarker and the EG-IrCC(nonsys)-IrURC benchmarker, respectively.

Chapter 6: In this chapter, we commence by analysing the nature of the source symbol

distribution in multimedia application by introducing a non-stationary zeta distri-

bution inspired by the non-stationary nature of the symbols produced by the H.265

video encoder. We propose a learning-aided UEC scheme, which facilitates near-

capacity operation without requiring any knowledge of the symbol occurrence prob-

abilities at either the transmitter or at the receiver. The learning algorithm is ca-

pable of heuristically and iteratively estimating the source symbol statistics based

on the recovered symbol vectors, which are then fed back to the trellis decoder as

a priori information, in order to improve the receiver’s error correction capability.

We also propose a pair of SSCC benchmarkers that employ a similar learning tech-

nique, namely a learning-aided EG-CC scheme and a learning-aided Arithmetic-CC

scheme, as well as their corresponding idealized but impractical versions, in order

to characterize the upper bounds on their performance.

Chapter 7: In this chapter, we summarise the thesis and the main findings of our inves-

tigations, before offering design guidelines based on the previous chapters. Finally,

we present a number of avenues for future research.

1.4. Thesis Organisation 11

Learning−aidedIrregularAdaptive

Encoding

Operations

Decoding

Operations

Complexity

Analysis

Chapter 1: Introduction

Chapter 2: Background

-Motivation and Contribution

- Non-stationary and unknown source

Chapter 6: UEC

Chapter 7: Conclusions and Future work

- Summary and Conclusions

- Design Guidelines

- Suggestions for Future Work

- Closing Remarks

Chapter 5: UEC

- Single irregular trellis design

- Double-sided EXIT chart matching
- Up-to-date a priori information feedback

- Free-distance analysis

Chapter 4: UEC

- Three-stage concatenation

- Dynamic UEC trellis decoder

- Adaptive decoding activation order

-Separate Source and Channel Coding

-Joint Source and Channel Coding

-Thesis Organisation

distribution

statistics

Chapter 3: Unary Error Correction Code

Knowledge required when designing UEC schemes

- Heuristically learnt source distribution

Figure 1.4: The structure of the thesis.

Chapter 2

Background

2.1 Introduction

In this chapter, we present the background knowledge required for designing a Unary Error

Correction (UEC) scheme. More specifically, this chapter portrays the state-of-the-art

proceeding the introduction of the UEC code, whilst the discussion of the UEC code itself

is postponed to Chapter 3. As highlighted in Figure 2.1, this chapter refers to, but it is not

constrained to, the topics related to the inner code design and irregular code design. The

techniques that are introduced in this chapter are widely used in wireless communication

systems. In the following chapters, we will frequently refer back to the knowledge that has

been introduced in this chapter.

UEC
candidate
component

codes

Inner
concatenated

codes

Irregular

designs operations

Adaptive

distribution

Source

Figure 2.1: The design-flow of a UEC coded scheme. This chapter deals with the

design aspects in the order indicated using the bold boxes.

The rest of this chapter is organised as follows. In Section 2.2, we commence by

introducing two basic concatenated iterative source-channel coding schemes, namely se-

rial and parallel concatenated codes, respectively. Then in the following sections, we

focus our attention on serial concatenated scheme and describe how each module oper-

ates. In Sections 2.3 and 2.11, we detail how the encoder and decoder of Unity-Rate

Convolutional (URC) code operate, respectively, while in Sections 2.4 and 2.10, we in-

troduce the multiplexer and demultiplexer concepts. Then in Sections 2.5 and 2.9, the

random interleaver and its corresponding deinterleaver are described, respectively, fol-

lowed by the Quadrature Phase-Shift Keying (QPSK) modulator and soft demodulator

2.2. Concatenated Schemes 13

in Sections 2.6 and 2.8, respectively. In Section 2.7, we introduce the wireless channel

model used throughout this thesis, namely the uncorrelated narrow-band Rayleigh fading

channel. In Section 2.12, we describe the iterative decoding process exchanging extrinsic

information between the two URC decoders of the serially concatenated scheme and char-

acterize its Bit Error Ratio (BER) performance. We then introduce then powerful analysis

tool of EXtrinsic Information Transfer (EXIT) charts in Section 2.13, which may be used

to analyse the convergence behaviour of iteratively decoded schemes. In Section 2.14, we

discuss the associated irregular code design, which may be employed to facilitate the near-

capacity operation at low channel Signal to Noise Ratio (SNR), and conclude this chapter

in Section 2.15.

2.2 Concatenated Schemes

Several commonly used concatenated schemes have been conceived for iterative source-

channel coding, namely serial concatenation [101], parallel concatenation [32] and hybrid

concatenation of various constituent codes. In our work, we mainly focus on the family

of serial and parallel concatenated schemes, which will be introduced in Section 2.2.1 and

Section 2.2.2, respectively.

2.2.1 Serially Concatenated Schemes

The serial concatenation constitutes a general structure and many decoding and detection

schemes can be described as serially concatenated structures, such as those used in turbo

equalization [102], Joint Source and Channel Coding (JSCC) [103, 104], Low-Density

Parity-Check (LDPC) coding [105] and so on. The basic structure of Serially Concatenated

Codes (SCC) [101] is composed of at least two codes, which are referred to as the inner and

the outer codes that are interconnected by an interleaver. An example of an SCC having

two constituent components is shown in Figure 2.2, where both the inner and the outer

codes are URC codes [106].

At the encoder of Figure 2.2(a), the bit vector a is firstly encoded by the outer URC

encoder, resulting in the bit vector b, which has the same length as a. Then a multiplexer is

employed for concatenating the bit vectors a and b, in order to create a bit vector c having

a length twice that of a and resulting in an outer coding rate of 1/2. The introduction of

the interleaver π1 scrambles the bits of c before they are passed to the inner URC encoder,

providing a practical manifestation of time diversity. To elaborate a little further, this

ensures that even if a specific bit has been gravely contaminated by the channel, the chances

are that the other constituent decoder is still capable of providing reliable information

concerning this bit [107]. The interleaved bit vector d is then encoded by the inner URC

encoder to provide the bit vector e and interleaved by π2 to obtain the bit vector f , which

2.2.1. Serially Concatenated Schemes 14

(b)

(a)

π1 π2

π−1
2

cb e

π−1
1

π1

ãa

d̃ac̃eb̃e

ãe

b̃a c̃a d̃edecoder decoder

URC

encoder
d URC

ẽ f̃ QPSK

demodulator

URC

encoder

URC

modulator
f QPSKa g

g̃ãp

Figure 2.2: Schematic of a serially concatenated code, including (a) encoder and

(b) decoder, in which both the component codes are URC codes. Here, π1 and

π2 represent interleavers, while π−1
1 and π−1

2 represent the corresponding deinter-

leavers, respectively. A multiplexer is employed in order to give a half-rate outer

code. Bold notation without a diacritic is used to denote a bit vector. A diacritical

tilde represents an LLR frame pertaining to the bit vector with the corresponding

notation. The superscripts ‘a’, ‘e’ and ‘p’ denote a priori, extrinsic and a posteri-

ori LLRs, respectively.

is modulated by the QPSK modulator in order to obtain the symbol vector g. Without loss

of generality, here we consider transmission over an uncorrelated narrow-band Rayleigh

channel.

In the receiver of Figure 2.2(b), a QPSK demodulator converts the vector g̃ of re-

ceived symbols into the vector f̃ of Logarithmic Likelihood Ratio (LLR). These soft-bits

express not only what the most likely value of each bit in f is, but also how likely or reli-

able that value is. A deinterleaver π−1
2 is employed to convert the Logarithmic Likelihood

Ratio (LLR) vector f̃ into the reordered vector ẽ, before invoking iterative decoding for

exchanging extrinsic information between the outer URC decoder and the inner URC de-

coder. More particularly, the outer URC decoder and the inner URC decoder sequentially

exchange the a priori LLR vectors, c̃a and d̃a, and the extrinsic LLR vectors, c̃e and d̃e,

while deinterleaving is performed to convert d̃e to c̃a, as seen in Figure 2.2. Demulti-

plexing is employed for separating the vector c̃a into sub-vectors ãa and b̃a. Meanwhile,

observe in Figure 2.2 that multiplexing combines ãe and b̃e to obtain c̃e. With this iterative

exchange of soft information, the two decoders become capable of providing each other

with increasingly reliable LLRs. After a certain number of iterations, the a posteriori LLR

vector ãp = ãa + ãe of Figure 2.2 is finally obtained and used to make a hard-decision

about the value of the recovered bits.

2.2.2. Parallel Concatenated Schemes 15

In Sections 2.3 to 2.14, we will further detail the serially concatenated scheme of Fig-

ure 2.2, by sequentially introducing each module by following the bit flow in the encoding

and decoding process.

2.2.2 Parallel Concatenated Schemes

The parallel concatenated structure is employed in the classic turbo codes [32]. The

component encoders are often CCs, but binary Bose-Chaudhuri-Hocquenghem (BCH)

codes [108] have also been used. In this section, we provide an example of Parallel Con-

catenated Codes (PCC), in which URC codes are used as the component codes, as shown

in Figure 2.3.

(a)

(b)

π2
e f

modulator

QPSK

π−12
g̃ẽ

demodulator

f̃ QPSK
π1 π−11

encoder

URC

encoder

URC

URC

decoder

URC

π1

b

g

dc

a

b̃
ãe

decoderãa

c̃e
d̃

c̃a

ãp

Figure 2.3: Schematic of a parallel concatenated code, including (a) encoder and

(b) decoder, in which both the component codes are URC codes. Here, π1 and

π2 represent interleavers, while π−1
1 and π−1

2 represent the corresponding deinter-

leavers, respectively. A multiplexer is employed in order to acquire a half-rate

parallel concatenated code. Bold notation without a diacritic is used to denote a

bit vector. A diacritical tilde represents an LLR vector pertaining to the bit vector

with the corresponding notation. The superscripts ‘a’, ‘e’ and ‘p’ denote a priori,

extrinsic and a posteriori LLRs, respectively.

In the transmitter of Figure 2.3(a), the bit vector a is encoded by the upper URC en-

coder, and the bit vector c that is a π1-interleaved version of a is encoded by the lower

constituent URC encoder. The pair of bit vectors, b and d, that are output by the two

URC encoders may be punctured in order to obtain arbitrary coding rates. In our exam-

ple shown in Figure 2.3, the URC-encoded bit vectors b and d are multiplexed, hence a

half-rate parallel code is obtained. The resultant bit vector e of Figure 2.3 is interleaved

by π2 to obtain f and then modulated by the QPSK modulator. The transmitter outputs the

resultant symbol vector g, which is conveyed over an uncorrelated narrow-band Rayleigh

2.2.3. Self-Concatenated Schemes 16

fading channel. Note that this structure can be extended to a parallel concatenation of more

than two component codes, leading to multiple-stage codes [109, 110].

In the receiver of Figure 2.3(b), the received symbol vector g̃ is demodulated to give

the LLR vector f̃ , which is then deinterleaved to give ẽ and demultiplexed to give b̃ and

d̃. Iterative processing is employed for exchanging extrinsic information between the two

component URC decoders of the PCC scheme. Similar to that of the SCC scheme of

Figure 2.2, the iterative decoder exchanges the a priori LLR vectors, ãa and c̃a, and the

extrinsic LLR vectors, ãe and c̃e, between the two URC decoders, hence providing increas-

ingly reliable information for each other. Finally, the a posteriori LLR vector ãp = ãa+ ãe

of Figure 2.3 is obtained to make the final decision for the decoded bits.

Note that while Sections 2.3 to 2.14 focus on the serially concatenated scheme of Fig-

ure 2.2, their discussions are also analogously relevant to the parallel concatenated scheme

of Figure 2.3.

2.2.3 Self-Concatenated Schemes

In this section, we provide an example of Self-Concatenated Codes (SECC) [111], in which

a URC code is used as the component code, as shown in Figure 2.4.

(a)

(b)

π1

g
π2

e f

modulator

QPSK

π−12
g̃

demodulator

f̃ QPSKURC

decoder
π1 π−11

encoder

URC
c

ẽãa

c̃e

ãe

c̃a

ãp

a

Figure 2.4: Schematic of a self-concatenated code, including (a) encoder and (b)

decoder, in which the component code is provided by a URC code. Here, π1 and

π2 represent interleavers, while π−1
1 and π−1

2 represent the corresponding dein-

terleavers, respectively. Bold notation without a diacritic is used to denote a bit

vector. A diacritical tilde represents an LLR vector pertaining to the bit vector

with the corresponding notation. The superscripts ‘a’, ‘e’ and ‘p’ denote a priori,

extrinsic and a posteriori LLRs, respectively.

A SECC is similar to a PCC when its two component codes are replaced by a sin-

gle component code employing an odd-even separated turbo interleaver, as discovered

in [112]. SECC exhibits a low complexity, since it invokes only a single encoder as de-

picted in Figure 2.4(a) and only a single decoder as shown in Figure 2.4(b).

2.3. Unity-Rate Convolutional code 17

2.3 Unity-Rate Convolutional code

As shown in Figure 2.2, the source bit vector a is forwarded to the URC [113] encoder. The

URC code may be employed either as an intermediate code [114] or as a precoder [115],

in order to improve the attainable decoding convergence and to achieve an infinitesimally

low BER. In Section 2.3.1, we will highlight how to construct a URC code using a Lin-

ear Feedback Shift Register (LFSR). Section 2.3.2 details how to invoke polynomials for

mathematically describing the URC code. Finally, Section 2.3.3 uses a truth table, a state

transition diagram and a trellis diagram for demonstrating how the URC code works.

2.3.1 Linear Feedback Shift Register

A URC code constitutes a special case of a Convolutional Code (CC) [116] having a coding

rate of 1, which implies that the number of bits output by the encoder is equal to the number

input. The URC encoder can be constructed using a LFSR structure, which is composed

of binary memory elements and modulo-2 adders. The general LFSR structure of a URC

encoder having m binary memory elements is illustrated in Figure 2.5. Each memory

element can hold one bit, having either a 0-state or 1-state. As a result, the total number

of states for memory m registers is 2m = r, where r is defined as the number of states

that can be adopted by the URC encoder. The modulo-2 adder shown in Figure 2.5 can be

simply implemented using a single Boolean Exclusive-OR (XOR) gate.

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
a

b

S2S1 S3 Sm

Figure 2.5: A general linear feedback shift register structure of a URC encoder,

where a is the input bit vector and b is the corresponding output bit vector.

Note that, unless otherwise specified, all registers initially store a value of 0, which

means that all the m registers of Figure 2.5 are initially at their 0-states. More particularly,

the state of each register is sequentially driven by each successive bit in the vector a that

is fed into the left-most register. Then the bit stored in each register is sequentially passed

to its next register, resulting in one output bit in b. Since the overall coding rate of URC

codes is 1, the bit vectors a and b have the same length.

The selection of dotted arrows seen in Figure 2.5 can be invoked for creating a par-

ticular combination of connections in the forward and backward paths, according to the

2.3.2. Generator and Feedback Polynomials 18

+

+

+

+ +

+

+

+

+

+

+ +

+

+

+

++

+

+ +

+

+ +

+

+ +

++

+ +

URC
6

URC
7

URC
8

URC
9

URC
10

URC
1

URC
2

URC
3

URC
4

URC
5

Figure 2.6: The Linear Feedback Shift Register (LFSR) encoder structures for the

T = 10 URC codes {URCt}T=10
t=1 [98].

specific parametrization of the URC encoder. For example, the LFSR designs [98] of Fig-

ure 2.6 can be employed to construct T = 10 URC codes {URCt}T=10
t=1 from the set of all

possible designs, containing a number of registers in the set m ∈ {1, 2, 3}. These ten URC

codes are selected as they can provide sufficiently diverse EXIT characteristics [99], as it

will be demonstrated in Section 2.13.

2.3.2 Generator and Feedback Polynomials

Generator and feedback polynomials can be employed in pairs to uniquely identify each

URC encoder parametrization mathematically. Conventionally, a code generator matrix is

a k-by-n-element matrix, if the code gives n output bits for every k input bits. The specific

element in the ith row and the jth column indicates how the ith input contributes to the

jth output. For a URC code, the generator matrix can be simplified to a scalar, since we

have k = n = 1. Likewise, the feedback polynomial of a URC code may be simplified to

a scalar. More specifically, both may be denoted by a hexadecimal number, as exemplified

in Table 2.1.

r r = 2 r = 4 r = 8
URC URC1 URC2 URC3 URC4 URC5 URC6 URC7 URC8 URC9 URC10

(g, f) (2,3) (7,5) (7,6) (4,7) (6,7) (8,B) (D,C) (8,F) (B,F) (E,F)

Table 2.1: The T = 10 URC codes {URCt}T=10
t=1 of Figure 2.6 are denoted by

using the format (g(URC), f(URC)), where g(URC) and f(URC) are the hex-

adecimal generator and feedback polynomials of the URC code [98], respectively.

2.3.3. Encoding Operation 19

As illustrated in Figure 2.6, the left-most bit in the binary representation of the hex-

adecimal number specifies the current input, while the rightmost bit represents the oldest

input that still remains in the shift register. In order to obtain the generator and feedback

polynomials of the URC code, we build a binary number representation by placing a 1 at

each spot, where a connection line from the shift register feeds into the adder, and a 0 else-

where. Here, the upward facing dotted arrows in Figure 2.5 correspond to the generator

polynomial, while the downward facing arrows contribute to the feedback polynomial. Let

us consider the URC7 code of Figure 2.6 as an example, where the generator polynomial

is g(URC7) = 1101, while the feedback polynomial is f(URC) = 1100. By converting

the binary representation into hexadecimal representation, we have g(URC7) = D and

f(URC) = C, respectively. Similarly, the generator and feedback polynomials of the

T = 10 URC codes {URCt}T=10
t=1 of Figure 2.6 can be found in Table 2.1.

2.3.3 Encoding Operation

In this section, we will demonstrate how the URC encoder operates by using the LFSR

structure, the truth table, the state transition diagram and the trellis diagram. Without loss

of generality, we consider the URC1 code of Table 2.1 as an example.

aj

bj

mj−1mj

Figure 2.7: The Linear Feedback Shift Register (LFSR) encoder of the URC1

code, including one shift register and one modulo-2 adder. Here, we denote the

input bit by aj and the corresponding output bit by bj . Meanwhile, mj−1 and mj

are the previous state and the current state of the shift register, respectively.

As shown in Figure 2.7, there is only a single shift register element and one modulo-

2 adder in the LFSR schematic of the URC1 code. For each input bit aj of the vector

a = [aj]
J
j=1, the encoder will update the current state mj of its shift register according

to the feedback polynomial, and output bit bj of the vector b = [bj]
J
j=1 according to the

generator polynomial. Therefore, we have

mj = aj ⊕mj−1,

bj = mj , (2.1)

2.3.3. Encoding Operation 20

where mj−1 is the previous state of the shift register and mj is the current state. Note

that the initial state of the register m0 = 0, since all shift register memory elements are

initialized to store a logic-0, as discussed in Section 2.3.1. A J-bit input vector a = [aj]
J
j=1

yields a (J + 1)-element state vector m = [mj]
J
j=0, comprising each successive state held

by the shift register. For example, the input bit vector a = [10010] yields a state vector

m = [0, 1, 1, 1, 0, 0], as well as the output bit vector b = [11100].

mj−1 aj mj bj
0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 0

Table 2.2: The truth table of the URC1 code shown in Figure 2.7. Here, we denote

the input bit by aj and the corresponding output bit by bj . And mj−1 and mj are

the previous state and the current state of the shift register, respectively.

According to the logic connection in Eq. (2.1), we can derive the truth table of the

URC1 code, as shown in Table 2.2. More particularly, given an initial state mj−1 and an

input bit aj , we can directly read the next state mj and the output bit bj from the table.

mj−1 aj/bj mj

1

2

1

2
1/0

0/1

1/1

0/0

Figure 2.8: The state transition diagram of the URC1 code shown in Figure 2.7.

Here, we denote the input bit by aj and the corresponding output bit by bj . And

mj−1 and mj are the previous state and the current state of the shift register, re-

spectively.

Furthermore, we may characterise the operations of the truth table of Table 2.2 in a

state transition diagram, as illustrated in Figure 2.8. It is clear that each input bit aj forces

the trellis encoder to traverse from its particular previous state mj−1 into a new state mj

that is selected from two legitimate alternatives, whilst outputting the bit bj at the same

time. In contrast to the truth table, we denote the register state by its state index, rather

than the physical register state, for the sake of avoiding confusion between the states and

the input or output bits. For example, the set of all possible states of the shift register shown

in Figure 2.7 may be denoted by M = {1, 2}, rather than using the corresponding binary

2.4. Multiplexer Operation 21

contents of the memory elements 0 and 1, respectively. Hence, we have mj−1 ∈ {1, 2}
and mj ∈ {1, 2}, as illustrated in Figure 2.8. This is particularly useful, when the URC

code has more than two states, hence avoiding the use of binary strings to identify each

state. In our following chapters, we will employ the state transition diagram to describe

the proposed UEC codes.

1

2

1/1

0/0

a1/b1m0 a2/b2 a3/b3 a4/b4 a5/b5 m5m2m1 m3 m4

1

2
0/1

1/0

1/1

0/0

0/1

1/0

1/1

0/0

0/1

1/0

1/1

0/0

0/1

1/0

1/1

0/0

Figure 2.9: The trellis diagram of the URC1 code shown in Figure 2.7. Here, each

line connecting two states denotes the transformation between the previous and

the new state of the register. At each state, the first bit before slash is the input bit

and the second is the output bit. The bold line demonstrates the coding process of

the input bit vector a = [10010].

As depicted in Figure 2.9, we can portray the trellis diagram of the URC1 code by con-

catenating the state transition diagrams. This allows us to see how the state transitions flow

from one to another during the encoding of successive bits in the vector a. For example,

the encoding process of the input bit vector a = [10010] is demonstrated by the bold line of

Figure 2.9. The trellis diagram will be shown to be especially useful, when designing the

Irregular Unary Error Correction (IrUEC) code of Chapter 5. Note that the state transition

diagram for the first bit a1 is pruned, since having an initial state of m0 = 1 is guaranteed.

2.4 Multiplexer Operation

In the serially concatenated code of Figure 2.2, a multiplexer (or MUX) is employed to

combine the bit vector a and the URC-encoded bit vector b in order to obtain a coding

rate of 1/2. Generally, the function of a multiplexer is to combine multiple input data

streams into a single data stream. In electronics, the multiplexer is a device that may select

one of several analog or digital input signals and forwards the selected input to the single

output [117].

A basic multiplexer structure is depicted in Figure 2.10, where there are three input

data streams, namely A, B, C, and only one selected for creating the output data stream D.

Note that the signal selection may proceed in a sequential order, for example, [A, B, C, A,

B, C, ...]. On the other hand, the signal selection may also be pre-defined in a specified

order, e.g., [A, C, A, C, B, A, C, A, C, B, ...]. In the case of the schematic of Figure 2.2,

the multiplexer combines the pair of bit vectors a = [10010] and b = [11100] having the

2.5. Interleaver Operation 22

input A

input B

input C

output D

Figure 2.10: An example of multiplexer schematic, where there are three input

data streams A, B and C, and one output data stream D.

length of J = 5 into a single bit vector c = [1001011100] having the length 2J = 10, by

concatenating the bit vector b to the end of the bit vector a.

2.5 Interleaver Operation

As shown in Figure 2.2, the bit vector c is fed into an interleaver π1, which is widely

used in communication systems to disperse the bursts of errors imposed by fading [107].

The error correction code of the communication system may fail to recover the original

codeword, if the errors within a received bit vector are too concentrated, too close together.

An interleaver ameliorates this problem by shuffling the bit errors across the received bit

vector, thereby creating a more uniform-distribution of errors [118].

1 0

1 0

1 1 1 0 0010

0 1011 100

c

d

1 2 3 4 5 6 7 8 9 10

83956174210

Figure 2.11: An example of random interleaver π1 in Figure 2.2, having the ran-

dom interleaver vector π1 = [10, 2, 4, 7, 1, 6, 5, 9, 3, 8]. Here, c and d are the

corresponding bit vectors shown in Figure 2.2.

A random design of the interleaver π1 of Figure 2.2 is illustrated in Figure 2.11, where

the interleaver imposes a random permutation that is known to both the transmitter and re-

ceiver. More particularly, the interleaver vector is denoted by π1 = [10, 2, 4, 7, 1, 6, 5, 9, 3, 8].

As shown in Figure 2.11, each bit cj of the vector c = [1001011100] swaps its posi-

tion according to the interleaver vector π1, resulting in the interleaved bit vector d =

[0011110001], according to dj = cπ1(j). For example, we have d1 = c10, since π1(1) = 10.

Similarly, the interleaver π2 of Figure 2.2 also has a random interleaving design.

2.6. Quadrature Phase-Shift Keying 23

Apart from the random interleaver, there are other interleaver designs, such as the rect-

angular (or uniform) interleaver, convolutional interleaver and contention-free quadratic

permutation polynomial (QPP) interleaver [119], which is used in the 3GPP Long Term

Evolution (LTE) mobile telecommunication standard [120]. For the sake of adequately

shuffling the bits, the S-random interleaver [121] has been proposed to ensure that no input

bits within a distance of S appear within a distance of S from each other in the output bit

vector. Moreover, a novel Evolutionary Algorithm (EA) capable of designing improved in-

terleavers for SCCs was proposed in [122], without artificially limiting the achievable error

correction capability, even if only a modest complexity can be afforded. In our following

discussions, we will employ the random interleaver design, unless specified otherwise.

2.6 Quadrature Phase-Shift Keying

Following the inner URC encoder and the interleaver π2 of Figure 2.2, QPSK modulation

is invoked for the transmission of the bit vector f through the channel. Phase-Shift Key-

ing (PSK) is a digital modulation scheme that maps the bits onto the phase of a carrier

wave, in order to convey the data. Since QPSK modulation is a particularly common PSK

scheme, we will mainly use QPSK modulation in our following investigations.

01 00

11 10

I

Q

π
4

√

Es

2

√

Es

2

√
Es

Figure 2.12: Constellation diagram for Quadrature Phase-Shift Keying (QPSK)

modulation with Gray coding, where the label of each adjacent symbol only differs

by one bit. Here, the real and imaginary axes are termed as the in-phase and

quadrature axes, respectively.

A constellation diagram is a convenient way of characterising a PSK scheme, as shown

in Figure 2.12 for QPSK relying on Gray coding [123]. The Gray coding is invoked for

minimizing the BER, since this results in each constellation point having only a single bit

difference from its neighboring constellation points. As shown in Figure 2.12, the four

QPSK constellation points are plotted in a complex plane, where the real and imaginary

2.7. Uncorrelated Narrow-band Rayleigh Channel 24

axes are termed as the in-phase and quadrature axes, respectively. The amplitude of each

point along the in-phase axis is used for modulating a cosine carrier wave, while that of the

quadrature axis is used to modulate a sine carrier wave. In order to create the maximum

phase-separation between the adjacent points and hence the best immunity to corruption,

the four points on the constellation diagram have uniform angular spacing around a circle.

Owing to this, all of the codewords can be transmitted with the same energy.

The amplitudes applied to the cosine and sine carriers by each constellation point can

be combined to produce a single cosine carrier having a particular phase, according to

sn(t) =

√

2Es

Ts
cos[2πfct + (2n− 1)

π

4
], n = 1, 2, 3, 4, (2.2)

where Es is the energy per symbol, Ts is the symbol duration time, fc is the frequency of

the carrier and sn(·) is the signal in the time domain. This yields the four phases of π/4,

3π/4, 5π/4 and 7π/4, corresponding to the four constellation points having n = 1, 2, 3, 4,

which are Gray-mapped to the bits 00, 01, 11, 10, respectively, resulting in the four points

of±
√

Es/2±
√

Es/2i. Without loss of generality, we assume that Es = 1. Therefore, we

have four points (I, Q) = ±0.7071± 0.7071i in the complex plane of Figure 2.12, each of

which is mapped to one QPSK codeword.

For example, when the bit vector f = [1000110111] is fed into the QPSK modulator

of Figure 2.2, the bits of f are processed two at a time to obtain the output symbol vector

g = [0.7071−0.7071i, 0.7071+0.7071i,−0.7071−0.7071i,−0.7071+0.7071i,−0.7071−
0.7071i]. Now the symbol vector g is ready to be transmitted through the channel. Hence,

we have introduced all operations of the transmitter shown in Figure 2.2(a).

The effective throughput of a QPSK-based communication scheme is given by η =

Ro · Ri · log2(M) bits per symbol, where Ro = 1/2 is the coding rate of the outer code of

Figure 2.2, Ri = 1 is that of the inner code and QPSK has M = 4 constellation points.

2.7 Uncorrelated Narrow-band Rayleigh Channel

The symbol vector g of Figure 2.2 is transmitted through an uncorrelated narrow-band

Rayleigh fading channel. Rayleigh fading is a reasonable model, when there are many

objects in the environment that scatter the radio signal before it arrives at the receiver [124].

It is assumed that the magnitude of a signal that has passed through such an uncorrelated

narrow-band Rayleigh channel will fade randomly according to a Rayleigh distribution,

which is the radial component of the sum of two uncorrelated Gaussian random variables.

2.7. Uncorrelated Narrow-band Rayleigh Channel 25

In general, a Rayleigh channel can be modeled by

g̃ = h · g + n, (2.3)

where g is the input symbol vector of the channel, g̃ is the output signal vector, h is the

channel gain vector and n is the Additive White Gaussian Noise (AWGN) vector. The

real part and imaginary part of a channel gain h may be denoted by Re(h) and Im(h),

respectively. Likewise, the real part and imaginary part of a noise element n may be

denoted by Re(n) and Im(n), respectively. Note that both the channel gain h and the noise

n obey complex-valued Gaussian distributions. More specifically, both Re(h) and Im(h)

have a mean of 0 and a variance of 1/2, while both Re(n) and Im(n) have a mean of 0 and

a variance of N0/2, where N0 is the power spectral density of the AWGN.

C
D B

A

E

∠h

|h|
00

Re(n) Im(n)

Figure 2.13: Effects of uncorrelated narrow-band Rayleigh channel on the 00 point

in the constellation diagram of QPSK modulation, including amplitude fading,

phase rotation and additive noise.

Generally, there are three different categories of effects that a Rayleigh channel im-

poses on the transmitted signals, including amplitude fading, phase rotation and addi-

tive noise. Considering the 00 constellation point in the first quadrant of Figure 2.12

for example, Rayleigh fading affects the magnitude of the signal according to |h| =
√

Re(h)2 + Im(h)2, which forces the constellation point to traverse from the point A to the

point B = |h| · A, as demonstrated in Figure 2.13. Meanwhile, the Rayleigh channel also

rotates the signal from the pointB to the pointC by an angle of ∠h = arctan
Im(h)

Re(h)
, where

∠B = ∠C+∠h. Moreover, the AWGN corrupts the constellation point from the point C to

the point D = C+Re(n), then from the point D to the point E = D+Im(n) · i. Finally, the

point E represents the corresponding received symbol in the vector g̃, which may then be

QPSK demodulated, as described in later Section 2.8. For example, assuming that we have

h = [0.1818−0.0388i,−0.6678+0.6443i,−0.9346+0.4204i, 0.6540+0.2476i, 0.0000+

2.7. Uncorrelated Narrow-band Rayleigh Channel 26

0.8841i], n = [0.6575−1.1397i, 0.1695−0.0173i,−0.4882−1.3780i,−0.4607+0.7216i, 0.8429+

0.6093i], upon transmitting the symbol vector g = [0.7071−0.7071i, 0.7071+0.7071i,−0.7071−
0.7071i,−0.7071 + 0.7071i,−0.7071 − 0.7071i], the received symbol vector becomes

g̃ = h · g + n = [0.7585 − 1.2957i,−0.7582 − 0.0339i, 0.4700 − 1.0144i,−1.0982 +

1.0089i, 1.4680− 0.0158i].

QPSK modulation

Es/N0 (dB)

C
h
an

n
el

C
ap

ac
it
y

(b
it

/s
y
m

b
ol

)

20151050-5-10

4

3

2

1

0

Figure 2.14: The Discrete-input Continuous-output Memoryless Channel

(DCMC) capacity of uncorrelated Rayleigh fading channels for QPSK modula-

tion.

The Discrete-input Continuous-output Memoryless Channel (DCMC) capacity [125]

of uncorrelated Rayleigh fading channels for QPSK is shown in Figure 2.14. The DCMC

capacity provides an upper bound on the effective throughput η, for which reliable com-

munication is possible. Near-capacity communication is facilitated, if a communication

scheme can be designed that achieves reliable communication using an effective through-

put η that closely approaches the DCMC capacity. Near-capacity operation is of particular

interest in the design of state-of-the-art wireless communication systems. This is because

the channel’s capacity reduces with the channel’s Signal to Noise Ratio (SNR) Es/N0,

which depends on the transmit power, on the distance to the remote receiver and on the

amount of noise that is imposed upon the signal. Hence, wireless communication systems

having a particular effective throughput η are associated with a minimum threshold SNR at

which the channel’s achievable throughput drops below that particular effective throughput

η. If a wireless communication system can be designed to support near-capacity opera-

tion, then the SNR required to achieve high quality reception is reduced, facilitating lower

transmit powers, longer transmission ranges or tolerance to more noise. Note that for a

communication scheme having an effective throughput of η, the channel SNR is typically

expressed as Eb/N0 [dB] = Es/N0 [dB] − 10 · log10(η). In the following chapters, we

2.8. Soft QPSK Demodulation 27

will propose some novel schemes employing sophisticated techniques in order to achieve

near-capacity operation.

2.8 Soft QPSK Demodulation

From this section onwards, we will introduce the operations of the receiver shown in Fig-

ure 2.2(b). After receiving the symbol vector g̃ through an uncorrelated narrow-band

Rayleigh channel, the QPSK demodulator invokes the classic soft demodulation algorithm

for processing the soft information about the transmitted bits of f . In Section 2.8.1, we

will introduce the LLR used by the soft decoding algorithms. Following this, Section 2.8.2

describes how the soft QPSK demodulator processes the LLRs.

2.8.1 Logarithmic Likelihood Ratio

The LLR [108, 126] is the most common representation of soft information used by the

soft demodulator of Section 2.8.2 and by the Log-BCJR algorithm of Section 2.11. An

LLR expresses not only what the most likely value of a transmitted bit is, but also how

likely that value is. The LLR of a bit is defined as the natural logarithm of the quotient

between the probabilities that the bit is equal to ‘1’ or ‘0’, which is formulated as

g̃j = ln

(

P (gj = 1)

P (gj = 0)

)

. (2.4)

Here, gj denotes one bit in the bit vector g of Figure 2.2 and g̃j is the corresponding LLR

of this bit, while P (gj = 0) denotes the probability of gj = 0 and P (gj = 1) denotes the

probability of gj = 1. Naturally, we have P (gj = 0) + P (gj = 1) = 1. Given the LLR g̃j ,

it is possible to calculate P (gj = 0) or P (gj = 1) by taking the exponent of both sides in

Eq. (2.4), hence we have

P (g̃j = 0) =
1

1 + exp(g̃j)
, (2.5)

P (g̃j = 1) =
exp(g̃j)

1 + exp(g̃j)
. (2.6)

Figure 2.15 depicts how g̃j varies as the probability P (gj = 1) varies. It is clear that the

sign of the LLR g̃j indicates whether the bit gj is more likely to have the value 0 or 1, where

a positive LLR g̃j indicates that gj = 1 is more likely. Meanwhile, the magnitude of the

LLR gives an indication of how likely it is that the sign of the LLR gives the correct value

of gj . For example, when the LLR is g̃j = 0, we have P (gj = 0) = P (gj = 1) = 0.5. This

means that the LLR g̃j indicates no confidence in the value of the bit gj and the selection

of a bit value gj will only give the correct result with a probability of 50%. On the other

hand, when g̃j ≫ 0, we have P (gj = 0) ≪ P (gj = 1), which implies that the LLR

2.8.2. Soft Demodulator 28

P (gj = 1)

g̃
j

10.90.80.70.60.50.40.30.20.10

4

3

2

1

0

-1

-2

-3

-4

Figure 2.15: The LLR g̃j versus the probability P (gj = 1).

expresses confidence that we have gj = 1. By contrast, when g̃j ≪ 0, we can be confident

that gj = 0 is true with a high probability.

2.8.2 Soft Demodulator

Having introduced the LLR, this section discusses how the soft QPSK demodulator works.

After receiving the symbol vector g̃ through the uncorrelated Rayleigh channel, we can

derive the LLR corresponding to each bit in the transmitted bit vector f [32,127], as follows

f̃2j−1 = −
4|hj|2
N0

· Im
(

g̃j
hj

)

, (2.7)

f̃2j = −
4|hj |2
N0

· Re
(

g̃j
hj

)

, (2.8)

where g̃j is the j-th symbol in the received symbol vector g̃, hj is the corresponding chan-

nel gain from the vector h, N0 is the power spectral density of the AWGN, f̃2j−1 is the LLR

for the first bit in symbol g̃j and f̃2j is the LLR for the second bit, as well as Re(·) and

Im(·) are the real part and the imaginary part of (·), respectively. Here, it is assumed that

the receiver has perfect knowledge of the channel gain vector h and of the power spectral

density N0.

Again, we consider the second symbol g̃2 = −0.7582−0.0339i of the received symbol

vector g̃ as an example. According to Eq. (2.7) and Eq. (2.8), we have the LLR values

of f3 = −2.2034 and f4 = −2.0884. These LLR values may be combined with those

obtained from the other four received symbols of g̃, in order to obtain the vector f̃ of

J = 10 LLRs, which may be passed to the URC decoder as the soft input, as it will be

discussed in Section 2.11. Note that if a hard decision was made based on Figure 2.15

2.9. Deinterleaver Operation 29

using the values of f̃2j−1 and f̃2j , this would suggest that the correct symbol is the 00 point

in the constellation diagram, which indeed matches with the transmitted symbol g2.

2.9 Deinterleaver Operation

As shown in Figure 2.2(b), the QPSK demodulated LLRs of f̃ may be deinterleaved by

π−1
2 , for the sake of rearranging the order of LLRs to produce the vector ẽ pertaining to

the corresponding bits in the vector e. Since the deinterleaving operation in the receiver

is the reverse of the interleaver operation in the transmitter, we can simply use the same

interleaver vector. More specifically, ẽπ2(j) = f̃j . Similarly, the other deinterleaver π−1
1 of

Figure 2.2(b) is employed in the same manner. Note that the deinterleaver π−1
1 also has

another role, which is to mitigate the dependencies between neighboring LLRs in c̃a and

ãa of Figure 2.2(b), as required by the Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm’s

associated assumption of exploiting independent a priori information. These aspects will

be described in Section 2.11 and Section 2.13.

For example, let us assume that the extrinsic LLR vector provided by the inner URC

decoder is d̃e = [0.5497, 0.3906, -0.8309, -0.6987, -0.2616, -0.6861, 1.4936, 0.4513,

0.5186, -0.6613]. This has to be deinterleaved in order to obtain the a priori LLR vec-

tor c̃a for the outer URC decoder of Figure 2.2(b). Reusing the interleaver vector π1 =

[10, 2, 4, 7, 1, 6, 5, 9, 3, 8] results in the a priori LLR vector c̃a = [-0.6613, 0.3906, -0.6987,

1.4936, 0.5497, -0.6861, -0.2616, 0.5186, -0.8309, 0.4513], where c̃aπ1(j)
= d̃e

j . Both of

the a priori and the extrinsic LLR vectors are obtained using the BCJR algorithm, as it will

be discussed in Section 2.11.

2.10 Demultiplexer Operation

In contrast to the multiplexer of Figure 2.2, a demultiplexer (or DeMUX) is a device tak-

ing a single input data stream and selecting one of many data-output-lines, which are

connected to each output data stream. A simple demultiplexer schematic is depicted in

Figure 2.16, in accordance with the multiplexer in Figure 2.10. At the receiver, the data

stream D is split into three streams A, B and C. Note that a demultiplexer at the receiver is

often used as a complement of a multiplexer at the transmitter, so they are typically used

in pairs. Note that the signal selection operations of multiplexer and demultiplexer must

be complementary.

2.11 BCJR Algorithm

In Figure 2.2(b), the iterative operation of the inner and outer URC decoders may be in-

voked after demodulation and deinterleaving. The URC decoder can be implemented by

2.11.1. ACS Operations 30

input D̃

output C̃

output B̃

output Ã

Figure 2.16: An example of demultiplexer schematic, where there is one input

data stream D, and three output data streams A, B and C.

the so-called Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm [91], which is an A Pos-

teriori Probability (APP) Soft-In Soft-Out (SISO) algorithm. In practice however, the

logarithmic versions of the BCJR algorithm, the Log-BCJR algorithm and the Approx-

Log-BCJR algorithm [108], have wider employment, as a benefit of their implementation

simplicity. In this section, we will briefly describe the Log-BCJR algorithm and Approx-

Log-BCJR algorithm. We commence in Section 2.11.1 by introducing the fundamental

Add, Compare and Select (ACS) operations that form the basis of these algorithms. Fol-

lowing this, Section 2.11.2 describes the steps that are employed in the Log-BCJR and

Approx-Log-BCJR algorithms.

2.11.1 ACS Operations

The original BCJR algorithm relies on a pair of basic operations, namely the addition and

the multiplication of bit probabilities. However, these multiplication operations lead to

complex hardware. Furthermore, the bit probabilities may have a very high dynamic range,

requiring the employment of complex floating-point processing. The Log-BCJR algorithm

avoids these problems by transforming the algorithm into the logarithmic domain, where

multiplications become additions. For example, assuming that A = ln(a) and B = ln(b),

we have

ln(a · b) = ln(eA · eB) = A+B. (2.9)

In this way, the multiplication (a · b) in the classic linear domain becomes an addition in

the logarithmic domain of the Log-BCJR algorithm. Furthermore, additions in the linear

domain may be carried out by invoking the Jacobian logarithm in the logarithmic domain,

which we denote using the max∗ operator according to [128]

ln(a+ b) = ln(eA + eB) = max(A,B) + ln(1 + e−|A−B|) = max∗(A,B). (2.10)

Note that the max∗ operation may be computed using successive pairwise operations,

when it has to process more than two operands, where we have max∗(A,B,C) = max∗(max∗

(A,B), C), for example. In the Approx-Log-BCJR algorithm, the function fc(|A−B|) =

2.11.2. γ, α, β and δ Calculations 31

ln(1 + e−|A−B|) can be implemented using a Look-Up-Table (LUT), which compares

|A − B| to the elements in the LUT, in order to select the best approximation available

in the LUT for fc(|A − B|). Likewise, the max(A,B) operation can be implemented by

comparing A and B, and then selecting the larger one. Hence, all operations required in

the Approx-Log-BCJR algorithm are “Addition”, “Comparison” and “Selection”, which

are the so-called ACS operations. In the following chapters, we will employ the num-

ber of ACS operations as a metric to quantify the complexity of the decoders in different

schemes, in order to make fair comparisons between them.

2.11.2 γ, α, β and δ Calculations

In order to present the Log-BCJR algorithm step by step, we consider the outer URC BCJR

decoder of Figure 2.2. Here, the Log-BCJR algorithm imposes the URC1 code constraints

on the input a priori LLR vectors ãa and b̃a, outputting the improved extrinsic LLR vectors

ãe and b̃e.

The calculation of the extrinsic LLR vectors ãe and b̃e may be completed following

the calculation of four sets of internal variables, namely γ, α, β and δ. For the sake of

consistency, we continue using the notions in the transition diagram of Figure 2.8 and those

in the trellis diagram of Figure 2.9. Next, we will demonstrate how to calculate these four

sets of internal variables. Meanwhile, a detailed example is illustrated in Figure 2.17 to

augment our discussions.

• γ calculation

The γ = [γj(m,m′)] values provide the a priori probability for each transition in the

trellis, where m,m′ ∈M and 1 ≤ j ≤ J . In the example of Figure 2.17, M ∈ {1, 2}
is the set of all the legitimate states of the trellis, and J = 5 is the length of the

bit vectors a and b. For the j-th bit, each γj(m,m′) value denotes the transition

probability that the decoder traverses from the previous state m′ to the next state m.

Clearly, there is a one-to-one mapping between the γ = [γj(m,m′)] values and the

trellis transitions, as shown by the labelling of each transition in Figure 2.17(e).

As observed in Figure 2.17(e), the values of γ depend on the input a priori LLR

vectors ãa and b̃a that are shown in Figure 2.17(a). More particularly, for the given

states m and m′, γj(m,m′) can be calculated by

γj(m,m′) = ãaj · a(m,m′) + b̃aj · b(m,m′) + ln[P (m|m′)], (2.11)

where P (m|m′) is the probability that trellis transitions from the previous state m′

to the next state m in the encoder, while a(m,m′) and b(m,m′) are the correspond-

ing bit values for a and b, when the trellis transitions from state m′ to state m, as

2.11.2. γ, α, β and δ Calculations 32

(a)

(b)

(d)

(e)

(f)

(g)

(h)

(i)

(c)

1

2

1

2

1

2

1

2

1

2

1

2

1

2

max∗

max∗

max∗max∗max∗max∗

1

1

0

0

1

1

0

00

1

1

0

0

1

1

00

1

a

j=2 j=3 j=4 j=5

lnP (m|m′)

α

β

δ

0

-0.7 -0.7

-0.7

-0.7

-0.7

-0.7

-0.7

-0.7

-0.7

-3 1.5 -1

-2.7 1.5

-0.5

-1.8

-3.7

1.1

0.8

-2.5

-1.7

-0.7 -0.7

-0.7

-0.7

-0.7

-0.7

-0.7

-0.7

-0.7

-0.7

-1.5

-0.7

-0.4

-0.7

1.2

-0.7

1.3

-0.7

-0.7

-2.7

0

0

j=1

2 0.31.9 0.8

0.2

b̃a

ãa -2.1

-0.6

b̃e

b̃a4ãa2

b

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

γ

-2.1

-0.3-0.4

-1.8

-1.4

1.6

1.9

2.1

-0.1ãe

-1.6

2.5

0.3

-1.9

2.5

-2.7

-0.3

-1.5

-2.5

-2.4

2.6

-2.8

-1.4

2.4

0.8

2.2

0.4

0.1

0.3

-0.9

-0.5

0.5

0.40.5

1.7

3.2

3

-1.2

0.9

-1.6

2.1

2.9

1.8

Figure 2.17: An example of applying the Log-BCJR algorithm to the outer URC

decoder of Figure 2.2, where the inputs are the a priori LLR vectors ãa and b̃a,

while the outputs are the extrinsic LLR vectors ãe and b̃e.

2.11.2. γ, α, β and δ Calculations 33

shown in Figure 2.17(b) and Figure 2.17(c), respectively. Since the URC1 code of

Figure 2.6 is employed in the schematic of Figure 2.2, we have P (m|m′) = 0.5 for

all transitions, as shown in Figure 2.17(d), hence ln(P (m|m′) ≈ −0.7. For example,

as demonstrated in Figure 2.17(e), we have γ2(2, 1) = ãa2 · a(2, 1) + b̃a2 · b(2, 1) +
lnP (2|1) = 0.2 + 2− 0.7 = 1.5.

• α calculation

The α = [αj(m)] values correspond to the forward transition probabilities, where

m ∈ M and 0 ≤ j ≤ J − 1. There is a one-to-one mapping between the α =

[αj(m)] values and the states of the trellis, as shown by the labelling of the states

in Figure 2.17(f). Each αj(m) value depends on αj−1(m
′) for all previous states

m′ ∈ M and all γj(m,m′) for the current transitions where m′ ∈ M. Hence,

it requires forward recursions in the trellis to obtain all the αj(m) values. More

particularly, given the state m, αj(m) can be obtained by

αj(m) = max∗
m′∈M

[αj−1(m
′) + γj(m,m′)]. (2.12)

For j = 0, we have the boundary condition α0(1) = 0, since the encoding is always

initialised from the state m0 = 1, as described in Section 2.3.3.

For example, as illustrated in Figure 2.17(f), we have α4(1) = max∗[α3(1)+γ4(1, 1),

α3(2) + γ4(1, 2)] = max∗(−1.2− 0.7, 0.9− 3.7) = −1.6. For simplicity, the result

of −1.6 has been rounded to a single decimal place.

• β calculation

The β = [βj(m
′)] values correspond to the backward transition probabilities, where

m′ ∈M and 1 ≤ j ≤ J . There is a one-to-one mapping between the β = [βj(m
′)]

values and the states of the trellis, as shown by the labelling of the states in Fig-

ure 2.17(g). Each βj(m
′) value depends on βj+1(m) for all next states m ∈M and

all γj(m
′, m) for the current transitions, where we have m ∈M. Hence, it requires

backward recursions in the trellis to obtain all the βj(m
′) values. More particularly,

given the state m′, βj(m
′) can be obtained by

βj(m
′) = max∗

m∈M
[βj+1(m) + γj(m

′, m)]. (2.13)

For j = J , we have the boundary conditions of βJ(m) = 0 for all m ∈M.

For example, as illustrated in Figure 2.17(g), we have β4(1) = max∗[β5(1) +

γ4(1, 1), β5(2) + γ4(2, 1)] = max∗(0− 0.7, 0− 1.5) = −0.5.

• δ calculation

In the fourth step, the three sets of the intermediate variables, γ, α and β, can be used

for calculating the a posteriori probability that the encoder traversed through each

2.12. Iterative Decoding 34

transition in the trellis. More particularly, we denote the probability of transition

from state m′ to state m by δj(m,m′), and all the transitions in the trellis by δ =

[δj(m,m′)], where m,m′ ∈ M and 1 ≤ j ≤ J . More particularly, each δj(m,m′)

value can be calculated by

δj(m,m′) = αj(m
′) + γj(m,m′) + βj(m). (2.14)

For example, as demonstrated in Figure 2.17(h), we have δ4(1, 1) = α4(1)+γ4(1, 1)+

β4(1) = −2.1− 0.7− 0.7 = −3.5.

Finally, the extrinsic LLRs of ãe and b̃e can be obtained based on the δ values. More

particularly, for the values ãej and b̃ej , we have

ãej = max∗
m,m′|a(m,m′)=1

[δj(m,m′)]− max∗
m,m′|a(m,m′)=0

[δj(m,m′)]− ãaj . (2.15)

b̃ej = max∗
m,m′|b(m,m′)=1

[δj(m,m′)]− max∗
m,m′|a(m,m′)=0

[δj(m,m′)]− b̃aj . (2.16)

For example, as demonstrated in Figure 2.17(i), we have ãe2 = max∗[δ2(2, 1), δ2(2, 1)] −
max∗[δ2(1, 1), δ2(2, 2)]− ãa2 = max∗(2.5,−2.7)−max∗(−1.9, 0.3)−0.2 = 1.9, and b̃e4 =

max∗[δ4(2, 1), δ4(2, 2)]−max∗[δ4(1, 1), δ4(1, 2)]−b̃a4 = max∗(−1.4, 0.8)−max∗(−2.8, 2.4)−
0.3 = −1.8.

This step completes the Log-BCJR algorithm. Throughout this treatise, we will invoke

the Log-BCJR algorithm for soft decoding.

2.12 Iterative Decoding

In this section, we discuss the employment of the BCJR algorithm for iterative decoding.

The so-called iterative decoding method is widely used in the concatenated systems of

Section 2.2. As seen in the schematic of Figure 2.2(b), the extrinsic LLR vectors c̃e and

d̃e are exchanged iteratively between the inner and outer URC decoders. For the first

iteration, the inner URC decoder may be activated, given the inputs LLR vectors ẽ and

d̃a. Note that the LLR vector ẽ is the soft information generated from the demodulator,

while the a priori LLR vector d̃a may be initialized to be an all-0 vector during the first

iteration. After running the BCJR algorithm, the inner URC decoder outputs the extrinsic

LLR vector d̃e, which is deinterleaved by π−1
1 of Figure 2.2 to obtain the a priori LLR

vector c̃a as the input of the outer URC decoder. Similarly, the output extrinsic LLR vector

c̃e of the outer URC decoder in Figure 2.2 is interleaved by π1 to obtain the a priori LLR

vector d̃a used as the input for the second iteration of the inner URC decoder. With the aid

of this improved a priori LLR vector c̃a, the inner decoder generates an improved extrinsic

2.12. Iterative Decoding 35

LLR vector c̃e. This process may continue for a certain amount number of iterations. In

this way, gradually increasingly reliable a priori and extrinsic information is fed back to

both decoders of Figure 2.2, in order to successively improve the decoding performance of

the whole scheme.

1 iteration

8 iterations

Eb/N0 [dB]

B
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

Figure 2.18: The BER performance that is obtained during the achievement of

iterative decoding convergence in the serially concatenated scheme of Figure 2.2,

when the bit vector a has a length of J = 50 and is transmitted over an uncorre-

lated narrow-band Rayleigh fading channel.

Figures 2.18, 2.19 and 2.20 characterize the BER performance of the scheme shown

in Figure 2.2, when employing iterative decoding for frames having different lengths of

J ∈ {50, 500, 5000}. It can be seen that an improved BER performance is achieved, when

more decoding iterations are employed. Nevertheless, there is limit for how much the

BER performance can be improved, whereupon no increased-confidence information can

be obtained, even if more decoding iterations are carried out. This can be explained using

the EXIT chart, as it will be discussed in Section 2.13.

Note that a superior BER performance is achieved, upon using longer frame lengths J .

Observe in Figure 2.18 that for the case of J = 50, a BER below 10−2 is only achieved after

I = 8 decoding iterations, when the channel SNR is around 6 dB. By contrast, as shown in

Figure 2.19 and Figure 2.20 for the cases of J = 500 and J = 5000, respectively, a BER

below 10−2 can be obtained when the SNR is around 4 dB, after I = 8 decoding iterations.

Moreover, Figure 2.20 shows that when a relatively long bit vector length of J = 5000 is

employed, the BER rapidly reduces as the channel SNR increases towards 5 dB. This is

the so-called ‘waterfall’ or ‘cliff’ region. It becomes clear from these three BER plots that

the turbo cliff is much steeper, when the bit vector length is higher.

2.12. Iterative Decoding 36

1 iteration

8 iterations

Eb/N0 [dB]

B
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

Figure 2.19: The BER performance that is obtained during the achievement of

iterative decoding convergence in the serially concatenated scheme of Figure 2.2,

when the bit vector a has a length of J = 500 and is transmitted over an uncorre-

lated narrow-band Rayleigh fading channel.

1 iteration

8 iterations

Eb/N0 [dB]

B
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

Figure 2.20: The BER performance that is obtained during the achievement of

iterative decoding convergence in the serially concatenated scheme of Figure 2.2,

when the bit vector a has a length of J = 5000 and is transmitted over an uncor-

related narrow-band Rayleigh fading channel.

2.13. EXIT Chart 37

2.13 EXIT Chart

As discussed in the previous section, the BER plot is indeed capable of characterizing

the decoding performance of iterative decoding schemes. However, it does not explicitly

characterise their convergence behaviours. This motivates the conception of a more so-

phisticated analysis tool, namely the EXIT chart [99], which may be employed to predict

the convergence behaviour of an iteratively decoded scheme. In particular, an EXIT chart

allows the outer and inner decoders of Figure 2.2(b) to be characterised independently of

each other, before also cosidering their iterative decoding interaction. For example, the

schematic depicted in Figure 2.21 may be used for generating the EXIT curve for the outer

URC code of Figure 2.2. In this section, we will briefly introduce how to generate an EXIT

chart and how to use it for analysing the decoding convergence behaviour.

The Mutual Information (MI) [129] is employed by the EXIT chart to quantify the

reliability of the soft information contained in the iteratively exchanged LLR vectors. As

described in [99], the MI between an LLR vector and the corresponding vector of bit values

depends on the distribution of the LLR values. Based on the discussions in Section 2.8.1,

if the distribution of the LLR values that corresponds to 0-bits is equal to that of the LLR

values pertaining to 1-bits, then the MI will be zero. This implies that the LLR values

are totally unreliable and the selection of a bit’s value based upon the sign of the corre-

sponding LLR will only give the correct answer with a probability of 50%. By contrast,

as the reliability of the LLRs increases, the two LLR distributions will move apart and

will only partially overlap, giving a MI that is higher than zero. When the distributions

become completely separated, the resultant MI becomes equal to one, in which case the

correct bit values will always be obtained by making decisions based upon the sign of the

corresponding LLRs. In this treatise, the MI is denoted by I(·, ·). For example, I(c̃e, c) in

Figure 2.21 denotes the MI between the LLRs in the vector c̃e and the corresponding bits

in the vector c, where we have I(c̃e, c) ∈ [0, 1].

The schematic shown in Figure 2.21 may be used for generating the EXIT curve for

the outer UEC decoder of Figure 2.2(b). In order to calculate the extrinsic MI I(c̃e, c), we

provide the URC BCJR decoder of Figure 2.2(b) with an a priori LLR vector c̃a having

a particular MI I(c̃a, c). This can be realized by considering the bit values in the vector

c and generating a corresponding synthetic vector c̃a of uncorrelated Gaussian distributed

a priori LLRs [99], as illustrated in Figure 2.21. This synthetic LLR vector c̃a may then

be input to the URC decoder and the MI I(c̃e, c) of the resultant extrinsic LLR vector c̃e

can be recorded. In our work, we employ the averaging method of [130] to calculate the

MI, which is capable of calculating the MI of an LLR vector without having to consider

the ground truth contained in the corresponding bit vector. However, this assumes that

2.13. EXIT Chart 38

b c
encoder

URC

URC

decoder

ãa

ãe c̃e

Generate

random

bits

b̃e Measure
mutual

b̃a c̃a Generate

LLRs

I(c̃e, c)

I(c̃a, c)random

a

information

Figure 2.21: Schematic for generating the inverted EXIT curve for the outer URC

BCJR decoder of Figure 2.2(b). Here, the a priori LLR vector c̃a is generated

using a particular MI I(c̃a, c) that is plotted on the vertical axis of the EXIT chart,

while the extrinsic LLR vector c̃e is used to calculate the MI I(c̃e, c) that is plotted

on the horizontal axis.

the extrinsic LLR vector is generated by an optimal APP decoder, such as the Log-BCJR

algorithm of Section 2.11. By contrast, the other method that may be used for calculat-

ing the MI is the histogram method [99], which uses knowledge of the bit values in the

vector to avoid having to “believe” what the LLRs indicate. This produces a more reli-

able measurement of the MI, when the decoder is sub-optimal, such as when using the

Approx-Log-BCJR algorithm of Section 2.11.

I(c̃e; c)

I
(c̃

a
;c

)

10.90.80.70.60.50.40.30.20.10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 2.22: The solid line denotes the inverted EXIT curve of the outer URC

decoder that is generated by the schematic of Figure 2.21. The dashed lines de-

note the average inverted EXIT curve measurement plus and minus its standard

deviation. Here, the bit vector c has a length of 2J = 100.

For example, the inverted EXIT curve of the outer URC decoder of Figure 2.2(b) is

demonstrated in Figure 2.22, where the MI I(c̃e, c) of the extrinsic LLR vector c̃e is plotted

on the horizontal axis and the MI I(c̃a, c) of the a priori LLR vector c̃a is plotted on the

2.13. EXIT Chart 39

I(c̃e; c)

I
(c̃

a
;c

)

10.90.80.70.60.50.40.30.20.10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 2.23: The solid line denotes the inverted EXIT curve of the outer URC

decoder that is generated by the schematic of Figure 2.21. The dashed lines de-

note the average inverted EXIT curve measurement plus and minus its standard

deviation. Here, the bit vector c has a length of 2J = 1000.

I(c̃e; c)

I
(c̃

a
;c

)

10.90.80.70.60.50.40.30.20.10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 2.24: The solid line denotes the inverted EXIT curve of the outer URC

decoder that is generated by the schematic of Figure 2.21. The dashed lines de-

note the average inverted EXIT curve measurement plus and minus its standard

deviation. Here, the bit vector c has a length of 2J = 10000.

2.13. EXIT Chart 40

vertical axis. More particularly, a specific point in the inverted EXIT curve of Figure 2.22

quantifies the MI I(c̃e, c) ∈ [0, 1] between the bit vector c and the extrinsic LLR vector c̃e

that is output by the outer URC decoder, when it is provided with the a priori LLR vector

c̃a having a particular MI I(c̃a, c) ∈ [0, 1]. In Figure 2.22, it is clearly seen that I(c̃e, c)

increases from 0 to 1, when provided with increasing I(c̃a, c) in the range 0 to 1, which

means that the output of the outer URC decoder becomes more and more reliable with

increasingly reliable input. The EXIT chart finally reaches the (1, 1) point at the top right

corner, which is where iterative decoding convergence to a low BER is facilitated. This is

because MIs of I(c̃a, c) = I(c̃e, c) = 1 implies perfect knowledge of the bits in the vector

c.

Furthermore, two more EXIT curves are provided in Figures 2.23 and 2.24, where the

bit vector c has a length of 1000 and 10000, respectively. Clearly, the MI measurements of

Figure 2.24 exhibit a lower standard deviation, compared to those of Figures 2.22 and 2.23.

This is because the average values of large sets of random variables exhibit a lower stan-

dard deviation than those of small sets. This reduced variation from frame-to-frame when

employing long vectors of bits explains the steep turbo ‘waterfall’ region shown in Fig-

ure 2.20. More explicitly, with low variation from frame-to-frame, either all frames will

decoded with a low BER, if the Eb/N0 is sufficiently high, or none of them will be decoded

with a low BER, if the Eb/N0 is low. By contrast, the slower waterfalls of Figures 2.18

and 2.19 are explained by the greater variation from frame-to-frame that is exhibited when

using shorter bit vector c. More explicitly, at a particular Eb/N0, some frames may be

decoded with a low BER, while some others may not be, where the ratio between these

outcomes depends on how high the Eb/N0 is.

ed

d̃a

d̃e

encoder

URC

URC

decoder demodulator

f̃ẽ QPSK

modulator
f QPSK

π2

π−1
2

I(d̃a,d)
random
LLRs

Generate

bits
random
Generate

I(d̃e,d) Measure
mutual

information

channel

Simulate
Es/N0

g

g̃

Figure 2.25: Schematic for generating the EXIT curve for the inner URC BCJR

decoder of Figure 2.2. Here, the a priori LLR vector d̃a is generated using a

particular MI I(d̃a,d) that is plotted on the horizontal axis of the EXIT chart, and

the extrinsic LLR vector d̃e is used to calculate the MI I(d̃e,d) that is plotted on

the vertical axis.

Similarly, the schematic used for generating the EXIT curve of the inner URC decoder

is shown in Figure 2.25. In addition to the a priori LLR vector d̃a that is generated to have

a particular MI I(d̃a,d), the inner URC decoder also has an extra input LLR vector ẽ that

2.13. EXIT Chart 41

is received from the soft QPSK demodulator, which has a quality that is dictated by the

symbol SNR Es/N0 at the output of the channel. Owing to this, the MI of the extrinsic

LLR vector d̃e produced by the inner URC decoder of Figure 2.2(b) depends on both the

LLR vectors d̃a and ẽ. In Figure 2.26, the EXIT function of the inner URC decoder is

depicted for different SNRs, while the dashed lines denote the average plus or minus one

standard deviation. As for the inverted outer EXIT curves of Figure 2.22, the standard

deviation becomes wider, when employing shorter bit vectors, as shown in Figure 2.26 for

the case where d has a length of 2J = 100. The standard deviation reduces for longer

bit vectors d, as demonstrated in Figures 2.27 and 2.28. Note that when the SNR Es/N0

increases, the EXIT curve of the inner URC decoder moves upwards, which is associated

with producing higher-quality extrinsic LLR vectors. This may be explained by the area

properties of the EXIT chart, as it will be further discussed below.

Es/N0=4 dB
Es/N0=3 dB
Es/N0=2 dB

I(d̃a;d)

I
(d̃

e
;d

)

10.90.80.70.60.50.40.30.20.10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 2.26: The solid lines denote the EXIT curves of the inner URC decoder

that is generated by the schematic of Figure 2.25 for the case where Es/N0 =
2, 3, 4 dB. The dashed lines denote the average EXIT curve measurements plus and

minus their standard deviations. Here, the bit vector d has a length of 2J = 100.

As alluded to above, EXIT charts can be employed for predicting the iterative decod-

ing convergence behaviour of the serially concatenated scheme shown in Figure 2.2. As

described in Section 2.12, the two URC decoders of Figure 2.2(b) may be operated it-

eratively one after another, sequentially providing each other with increasingly reliable

vectors of LLRs. This process may be characterised by plotting the so-called Monte-Carlo

simulation-based iterative decoding trajectory, which advances up the tunnel created be-

tween the EXIT curves of the two URC decoders in a staircase fashion, until the pair

of EXIT curves intersect, as depicted in Figures 2.29 and 2.30. Observe in Figure 2.29

that when the channel SNR is Es/N0 = 4 dB, the EXIT charts do not intersect before

reaching the (1, 1) point, hence creating an open EXIT chart tunnel [131] and therefore

2.13. EXIT Chart 42

Es/N0=4 dB
Es/N0=3 dB
Es/N0=2 dB

I(d̃a;d)

I
(d̃

e
;d

)

10.90.80.70.60.50.40.30.20.10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 2.27: The solid lines denote the EXIT curves of the inner URC decoder

that is generated by the schematic of Figure 2.25 for the case where Es/N0 =
2, 3, 4 dB. The dashed lines denote the average EXIT curve measurements plus and

minus their standard deviations. Here, the bit vector d has a length of 2J = 1000.

Es/N0=4 dB
Es/N0=3 dB
Es/N0=2 dB

I(d̃a;d)

I
(d̃

e
;d

)

10.90.80.70.60.50.40.30.20.10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 2.28: The solid lines denote the EXIT curves of the inner URC decoder

that is generated by the schematic of Figure 2.25 for the case where Es/N0 =
2, 3, 4 dB. The dashed lines denote the average EXIT curve measurements plus and

minus their standard deviations. Here, the bit vector d has a length of 2J = 10000.

2.13. EXIT Chart 43

potentially enabling absolutely reliable soft information to be obtained. This indicates

that iterative decoding convergence to an infinitesimally low BER may be obtained at

Eb/N0 = Es/N0 = 4 dB, which is in accordance with the BER curves of Figure 2.20.

1 iteration

8 iterations

Eb/N0 [dB]

B
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

outer URC
trajectory Eb/N0=4 dB

inner URC Eb/N0=4 dB

I(d̃a;d), I(c̃c; c)

I
(d̃

e
;d

),
I
(c̃

a
;c

)

10.90.80.70.60.50.40.30.20.10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 2.29: EXIT charts and iterative decoding trajectories for the serially con-

catenated URC decoders of Figure 2.2. Here the scheme is employed for the trans-

mission over a QPSK-modulated Rayleigh fading channel having Eb/N0 = 4 dB.

The bit vectors c and d have a length of 2J = 10000.

However, if the channel SNR is reduced to Es/N0 = 2 dB, the inner UEC decoder’s

EXIT curve of Figure 2.30 moves downwards to intersect with the inverted outer URC

EXIT curve, before reaching the (1, 1) point. In this case, the tunnel is closed, hence pre-

venting the iterative decoding trajectory from approaching the (1, 1) point and therefore

resulting in a relatively high BER that is commensurate with the MI achieved. This can

also be seen in the BER results of Figure 2.20, where the BER is above 10−1, when we

have Eb/N0 = Es/N0 = 2 dB. Note that the number of steps in the iterative decoding

trajectory indicates the number of decoding iterations that are required to achieve itera-

tive decoding convergence. Also note that the variation between the different trajectories

shown in Figures 2.29 and 2.30 may be explained by the standard deviations discussed

above, hence resulting in a reduced variation for longer bit vectors.

As mentioned above, the EXIT curve of the inner URC decoder moves upwards, as the

channel SNR increases, which may be explained by the area properties of the EXIT charts.

Here, we denote the area beneath the inverted outer EXIT curve and the area beneath the

inner EXIT curve by Aouter and Ainner, respectively. In [131, 132], the area Aouter of an

optimal outer APP SISO decoder having a coding rate of Router was shown to be given by

Aouter = Router. (2.17)

2.13. EXIT Chart 44

outer URC
trajectory Eb/N0=2 dB

inner URC Eb/N0=2 dB

I(d̃a;d), I(c̃c; c)

I
(d̃

e
;d

),
I
(c̃

a
;c

)

10.90.80.70.60.50.40.30.20.10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 2.30: EXIT charts and iterative decoding trajectories for the serially con-

catenated URC decoders of Figure 2.2. Here the scheme is employed for the trans-

mission over a QPSK-modulated Rayleigh fading channel having Eb/N0 = 2 dB.

The bit vectors c and d have a length of 2J = 10000.

For example, the outer URC code of Figure 2.2 has a coding rate of Router = 0.5, which

matches the area beneath the inverted EXIT curves of Figures 2.22, 2.23 and 2.24. As de-

scribed in Section 2.6, the effective throughput η in bits of source information per channel

symbol is given by

η = Router ·Rinner · log2(M) = Aouter · Rinner · log2(M). (2.18)

Furthermore, [131,132] also showed that the DCMC capacity C [125] expressed in bits of

source information per channel symbol is related to Ainner according to

C = Ainner · Rinner · log2(M), (2.19)

when Rinner = 1 and when an optimal inner APP SISO decoder is employed. Based

on these observations, we have the following three SNR bounds that constitute necessary

conditions for iterative decoding convergence to an infinitesimally low probability of error

to be supported.

• 1. Capacity bound

As Shannon stated in his seminal publication of 1948 [133], η < C constitutes a

necessary condition for a reliable communication system. Therefore, the Eb/N0

or Es/N0 SNR value where the capacity C is equal to the effective throughput η

provides a lower bound on the SNR, where a low BER can be obtained. We refer to

this as the capacity bound.

2.14. Irregular Design Philosophy 45

• 2. Area bound

In order to facilitate the creation of an open EXIT chart tunnel, it is necessary, but not

sufficient, for the area Aouter beneath the inverted outer decoder’s EXIT function to

exceed the area Ainner beneath the inner decoder’s EXIT function [132]. Therefore,

the area bound provides the specific Eb/N0 or Es/N0 SNR value, where we have

Aouter = Ainner, which would theoretically allow the creation of an open EXIT

chart tunnel [134] and the achievement of a low BER, if the outer and inner EXIT

functions were shaped to match each other.

• 3. Tunnel bound

Depending on how well the EXIT curve shapes match each other, a narrow but open

EXIT chart tunnel can only be created at a specific Eb/N0 or Es/N0 SNR value,

which we refer to as the tunnel bound. Therefore, if the SNR exceeds the tunnel

bound, the EXIT curves will not intersect each other before reaching the (1, 1) point

in the EXIT chart and consequently the step-wise iterative decoding trajectory will

also reach the (1, 1) point. This results in a low BER, provided that the bit vector

lengths are sufficiently high for this to be consistently achieved.

Here, we may conclude that near-capacity transmissions are facilitated, when a narrow,

yet marginally open EXIT chart tunnel can be created for facilitating convergence to an in-

finitesimally low BER. Based on these observations of the bounds, the difference between

the capacity bound and the area bound quantifies the loss that is mitigated by JSCC, while

the difference between the area bound and the tunnel bound quantifies the capacity loss

that is mitigated by irregular coding [135], as it will be discussed in the following section.

Finally, the difference between the specific SNR, where a low BER is achieved and the

tunnel bound quantifies the loss that can be mitigated by using longer bit vectors.

2.14 Irregular Design Philosophy

Irregular coding has been proposed for the reliable transmission of information at channel

SNRs that are close to the channel’s capacity bound [125] without imposing an excessive

decoding complexity and latency. This concept was originally introduced [136] in the

context of LDPC codes in [14, 137, 138], and then it was followed by applications in the

context of turbo codes [139] and CCs [116].

Considering the serially concatenated scheme of Figure 2.2, the irregular design may be

applied to the inner URC code, resulting in an Irregular Unity-Rate Convolutional (IrURC)

as the inner code. Here, URCs having different parametrizations are used for the coding

of different fractions of the bit vector d of Figure 2.2. As mentioned in Section 2.3.1, the

T = 10 URC codes {URCt}T=10
t=1 [98] of Figure 2.6 can be employed as the component

2.14. Irregular Design Philosophy 46

codes of the IrURC code, since they have a variety of EXIT function shapes It(d̃
e,d) =

fURCt [It(d̃
a,d)]. The specific fractions {βt}T=10

t=1 of the bit vector d that are encoded

by each component code may be carefully chosen in order to shape the irregular EXIT

function It(d̃
e,d) = fIrURC[It(d̃

a,d)] according to

fIrURC[It(d̃
a,d)] =

T
∑

t=1

βt · fURCt [It(d̃
a,d)], (2.20)

where we have to obey
T
∑

t=1

βt = 1. (2.21)

Furthermore, the overall IrURC coding rate RIrURC may be obtained according to

RIrURC =

T
∑

t=1

βt · RURCt . (2.22)

URC10(E,F)
URC9(B,F)
URC8(8, F)

URC7(D,C)
URC6(8, B)
URC5(6, 7)
URC4(4, 7)
URC3(7, 6)
URC2(7, 5)
URC1(2, 3)

I(d̃a;d)

I
(d̃

e
;d

)

10.90.80.70.60.50.40.30.20.10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 2.31: EXIT charts for the T = 10 URC codes {URCt}T=10
t=1 of Figure 2.6

for a QPSK-modulated Rayleigh fading channel having Es/N0 = 4 dB. Curves

are labeled using the format (g(URC), f(URC)), where g(URC) and f(URC)
are the hexadecimal generator and feedback polynomials of the URC code [98],

respectively.

The EXIT functions of the T = 10 component URC codes {URCt}T=10
t=1 are illustrated

in Figure 2.31, for the case where they are employed for transmission over an uncorrelated

narrowband Rayleigh fading channel having an SNR of Es/N0 = 4 dB. Since the cod-

ing rate of each component URC code URCt is RURCt = 1, we have the overall coding

rate of RIrURC = 1 for any IrURC code obtained by combining these component codes.

By carefully selecting the fractions {βt}T=10
t=1 , the IrURC EXIT function can be shaped to

2.15. Summary and Conclusions 47

create a narrow, but ‘just’ open EXIT chart tunnel with the inverted outer URC decoder’s

EXIT curve of Figures 2.22, 2.23 and 2.24. In this way, the tunnel bound will closely

approach the capacity bound and near-capacity operation will be facilitated, when the bit

vector length is sufficiently high. Note that the ability of EXIT chart matching to create

a narrow, but ‘just’ open EXIT chart tunnel depends on the availability of a suite of com-

ponent codes having a wide variety of EXIT function shapes, like that of Figure 2.31. In

Chapter 5, we will design the candidate component codes for the UEC codes, and employ

a novel double-sided EXIT chart matching algorithm to iteratively design the fractions for

both the outer IrUEC code and the inner IrURC code. This results in a very narrow but

still open EXIT chart tunnel that facilitates near-capacity operation.

2.15 Summary and Conclusions

In this chapter, we commenced our discussions in Section 2.2 by introducing two basic

structures for iteratively decoded concatenated codes, namely the serially concatenated

and parallel concatenated philosophy. After that, the chapter focussed on the serially con-

catenated scheme that is depicted in Figure 2.2 and successively described how each mod-

ule operates in the transmitter, including the URC encoder, multiplexer, interleaver, QPSK

modulator, as well as the corresponding modules in the receiver, including the URC de-

coder, demultiplexer, deinterleaver and QPSK demodulator. We also described how the

uncorrelated narrow-band Rayleigh channel affects the transmitted symbols. Both the

magnitude and the phase of the modulated symbols in the constellation diagram are in-

fluenced by the channel in terms of amplitude fading, phase rotation and additive noise.

When introducing the soft URC decoder of Section 2.11, we highlighted the APP SISO

decoding algorithm, namely the BCJR algorithm that was invented by Bahl, Cocke, Jelinek

and Raviv in 1972. For the sake of avoiding a complex circuit implementation due to the

multiplications employed by the BCJR algorithm, as well as for the sake of reducing the

memory requirement and allowing fixed-point processing to be used, the Log-BCJR algo-

rithm and the Approx-Log-BCJR algorithm have found wider applications in practice. Fol-

lowing this, Section 2.12 described how the iterative decoding process exchanges extrinsic

information between the two URC decoders by exchanging increasingly reliable vectors

of LLRs and thus gradually improving the achievable error correction performance. Af-

ter a hard-decision is made for the value of each message bit based upon the vector of

LLRs output by the URC BCJR decoders, we characterised the BER curves of the serially

concatenated scheme, when employing various parameter values, such as the number of

iterations and bit vector length. Observe in the BER plots of Figures 2.18, 2.19 and 2.20,

that lower BERs can be achieved when longer bit vectors are employed or when more

2.15. Summary and Conclusions 48

decoding iterations are performed. However, there is a limit as to how much the BER per-

formance can be improved by performing more iterations, owing to the iterative decoding

convergence behaviour of the concatenated codes

Although the BER plot is capable of characterizing the error correction performance

of iteratively decoded concatenated codes, it is unable to closely characterise their conver-

gence behaviour. This requires the EXIT charts [99] detailed in Section 2.13. An EXIT

chart uses the MI for quantifying the quality of the extrinsic information exchanged be-

tween the constituent decoders in an iterative decoder. As discussed Section 2.13, we

plotted the inverted EXIT curves for the outer URC code according the schematic of Fig-

ure 2.21, as well as the EXIT curves for the inner URC code according to the schematic

of Figure 2.25. Having an open tunnel between the EXIT curves of the outer and inner

codes facilitates a successful iterative decoding process towards a low BER. Finally, we

considered irregular designs in Section 2.14, which may be invoked for facilitating near-

capacity operation at low SNRs. In the following chapters, we will frequently refer back

to the knowledge that has been introduced in this chapter.

Chapter 3

Unary Error Correction Codes and

Their Complexity

3.1 Introduction

In this chapter, we introduce the structure of Unary Error Correction (UEC) codes [92,96]

as well as their encoding and decoding operations. Near-capacity operation is facilitated

when our outer UEC code is serially concatenated with an inner code, such as the Unity-

Rate Convolutional (URC) code of Section 2.3, which then iteratively exchange their ex-

trinsic soft information. As highlighted in Figure 3.1, this chapter also relates to the prob-

ability distribution of the source symbols, the parametrization of the UEC code and the

irregular design of the concatenated URC code.

UEC
candidate
component

codes

Inner
concatenated

codes

Irregular

designs operations

Adaptive

distribution

Source

Figure 3.1: The design-flow of a UEC coded scheme. This chapter deals with the

design aspects in the order indicated using the bold boxes.

3.1.1 Background and Motivation

In mobile wireless scenarios, multimedia transmission has to be bandwidth efficient and

resilient to transmission errors, motivating both source and channel coding [140–142].

Classic Separate Source and Channel Coding (SSCC) [2] may be achieved by combining a

near-entropy source code with a near-capacity channel code. In this scenario, it is theoreti-

cally possible to reconstruct the source information with an infinitesimally low probability

of error, provided that the effective throughput of the transmission does not exceed the

3.1.1. Background and Motivation 50

channel’s capacity [2]. However, SSCC is only capable of approaching the capacity in

the general case by imposing both infinite complexity and infinite latency, provided that

the error statistics are random, rather than bursty. For example, arithmetic coding [143]

and Lempel-Ziv coding [22] are capable of encoding a sequence of symbols using a near-

entropy number of bits per symbol. However, these schemes require both the transmitter

and receiver to accurately estimate the occurrence probability of every symbol value that

the source produces. In practice, the occurrence probability of rare symbol values can

only be accurately estimated, if a sufficiently large number of symbols has been observed,

hence potentially imposing an excessive latency.

This motivates the design of universal codes, such as the Elias Gamma (EG) codes [19],

which facilitate the binary encoding of symbols selected from infinite sets, without requir-

ing any knowledge of the corresponding occurrence probabilities at either the transmitter

or receiver. The H.264 video codec [89] employs the EG code and this may be concate-

nated with classic channel codes, such as the serially concatenated pair of Convolutional

Code (CC) [12] of Section 2.3, which provide a separate error correction capability. Never-

theless, this SSCC typically suffers from a capacity loss, owing to the residual redundancy

that is typically retained during EG encoding, which results in an average number of EG-

encoded bits per symbol that exceeds the entropy of the symbols.

In order to exploit the residual redundancy and hence to achieve near-capacity op-

eration, the classic SSCC schemes may be replaced by Joint Source and Channel Cod-

ing (JSCC) arrangements [1] in many applications. As we will demonstrate in Section 3.2,

the symbols that are EG encoded in H.264 are approximately zeta probability distributed

[144], resulting in most symbols having low values, but some rare symbols having values

around 1000. Until recently, the decoding complexity of all previous JSCCs, such as Re-

versible Variable Length Code (RVLC) [56] and Variable Length Error Correction (VLEC)

code [57], increased rapidly with the cardinality of the symbol set, so much so that it be-

came excessive for the H.264 symbol probability distribution. Indeed, the complexity

asymptotically tends to infinity, when the cardinality of the source symbol set is infinite.

Against this background, a novel JSCC scheme was proposed in [92], which is referred

to as the UEC code1. The UEC encoder generates a bit sequence by concatenating unary

codewords [88] and then further encoding them using a trellis encoder, for the sake of

protecting them against transmission errors. The decoder exploits the residual redundancy

of the source sequence using a corresponding trellis that has only a modest complexity,

1The UEC scheme was originally proposed in [92], where the author of this thesis contributed the IrURC

code design and Symbol Error Ratio (SER) simulations. This chapter is mainly based on [96] which further

developed [92] by characterising the complexity of UEC codes primarily based on the contribution of the

author of this thesis, so that aspects of [92] are also summarised for the sake of completeness.

3.1.2. Novel Contributions 51

even when the cardinality of the symbol value set is infinite. This trellis is designed so that

the transitions between its states are synchronous with the transitions between the con-

secutive unary codewords in the concatenated bit sequence. Therefore, the UEC decoder

is also able to exploit the residual redundancy using the classic Bahl, Cocke, Jelinek and

Raviv (BCJR) algorithm [91] of Section 2.11. In addition to detailing the operations of

the UEC encoder and decoder, this chapter also quantifies the computational complexity

of the UEC decoder in terms of the number of the Add, Compare and Select (ACS) opera-

tions discussed in Section 2.11.1, in order to facilitate a fair comparison between our UEC

scheme and some suitably designed benchmarkers.

3.1.2 Novel Contributions

The novel contributions of this chapter are summarised as follows:

• An iteratively-decoded serial concatenation of the UEC code and an Irregular Unity-

Rate Convolutional (IrURC) [98] is designed, which is capable of achieving near-

capacity operation.

• Three application scenarios associated with different source distribution parametriza-

tions are considered. In order to facilitate this, we introduce the employment of

puncturing for controlling the effective throughputs of the proposed UEC scheme

and of the benchmarkers, for the sake of facilitating fair comparisons in each of the

scenarios considered.

• We quantify the computational complexity of the Log-BCJR algorithm used in the

UEC decoder in terms of the number of the ACS operations required for the sake of

providing fair comparisons between our UEC scheme and the benchmarkers. The

ACS metric will also be used in all of the following chapters.

3.1.3 Chapter Organisation

The rest of this chapter is organised as follows:

• In Section 3.2, we introduce symbol value sets that have an infinite cardinality, such

as the geometric distribution, the zeta distribution and the H.264 distribution.

• In Section 3.3, we review the operations of the UEC encoder, including the unary

encoder and the UEC trellis encoder. The operations of the concatenated Irregular

URC encoder, interleaver and modulator will be presented as well.

• In Section 3.4, we elaborate on how the UEC trellis decoder operates, and detail

the iterative decoding operations exchanging extrinsic information between it and

the IrURC decoder. The unary decoder makes a final decision on the values of the

recovered symbols.

3.2. Symbols Value Sets Having an Infinite Cardinality 52

• In Section 3.5, we illustrate the EXIT chart concept and summarize the so-called area

properties [108] of UEC codes, and mathematically prove that near-capacity oper-

ation can be achieved with the aid of an increased UEC trellis decoder complexity,

regardless of the specific symbol value distributions.

• In Section 3.6, we introduce an SSCC EG-CC-IrURC benchmarker and discuss its

encoding and decoding operations.

• In Section 3.7, we consider three different scenarios and offer a deeper insight into

the parametrizations of both the proposed scheme as well as of the benchmarker, and

detail the design of an IrURC that may be concatenated with the UEC and EG-CC

schemes for the sake of achieving near-capacity operation.

• In Section 3.8, we characterize the computational complexity of the UEC and EG-

CC schemes in terms of the number of ACS operations, which can be used to strike

a desirable trade-off between the conflicting requirements of low complexity and

near-capacity operation.

• In Section 3.10, we conclude this chapter.

3.2 Symbols Value Sets Having an Infinite Cardinality

The UEC code is designed for conveying a vector x = [xi]
a
i=1 comprising a number of

symbols. Each symbol xi ∈ N1 of the vector is obtained by an Independent and Identically

Distributed (IID) Random Variable (RV) Xi with probability Pr(Xi = x) = P (x), where

N1 = {1, 2, 3, . . .} is the infinite-cardinality set comprising all positive integers. Here, the

symbol entropy is given by HX =
∑

x∈N1
H [P (x)], where H [p] = p log2(1/p).

For example, Figure 3.2 depicts the geometric distribution [144], which is defined as

P (x) = p1(1− p1)
x−1, (3.1)

where p1 = Pr(Xi = 1) and the symbol entropy is given by

HX =
H [p1] +H [1− p1]

p1
. (3.2)

By contrast, the zeta distribution [144] of Figure 3.2 is defined as

P (x) =
x−s

ζ(s)
, (3.3)

3.3. UEC Encoder Operation 53

H.264

Zeta

Geometric

p1

p1

x

P
(x

)

1000100101

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Figure 3.2: The geometric and zeta probability distributions for p1 ∈
{0.2, 0.4, 0.6, 0.7, 0.8, 0.9}, as well as the H.264 distribution, where p1 = 0.536.

This was obtained by recording the values of the 44.6 million symbols that

are EG-encoded when the JM 18.2 H.264 video encoder employs the ‘en-

coder baseline.cfg’ configuration to encode the 175 s of video that are comprised

by 4:2:0 versions of the Video Quality Expert Group (VQEG) test sequences.

where ζ(s) =
∑

x∈N1
x−s is the Riemann zeta function2 and s > 1. In this case, p1 =

1/ζ(s) and the symbol entropy is given by

HX =
ln (ζ(s))

ln(2)
− sζ ′(s)

ln(2)ζ(s)
, (3.4)

where ζ ′(s) = −∑

x∈N1
ln(x)x−s is the derivative of the Riemann zeta function.

Figure 3.23 also exemplifies the distribution of the symbol values that are EG encoded

by the H.264 video encoder, corresponding to an entropy of HX = 2.980 bits per symbol.

Note that EG code is a special case of the Exponential Golomb (ExpG) code, as shown in

Table 7.2. Here, the symbols also include motion vectors, DCTs and all other EG-encoded

parameters. Note that these symbol values appear to obey Zipf’s law [144], since their

distribution may be approximated by the zeta distribution. As a result, we mainly focus

our attention on the zeta probability distribution in our work.

3.3 UEC Encoder Operation

Figure 3.3 illustrates the UEC scheme, which performs the JSCC encoding and decoding

of symbols values that are selected from a set having an infinite cardinality. Explicitly,

2Expressing the zeta distribution as P (x) = x−s/
∑

x∈N1
x−s offers an attractive parallel with the

geometric distribution, which may also be expressed in the form P (x) = s−x/
∑

x∈N1
s−x, giving

p1 = (s− 1)/s.
3The H.265 [90] software was not ready for use when [92] and [96] were written. However, the H.265

distribution is considered in the most recent work of Chapter 6.

3.3.1. Unary Encoder 54

the UEC encoder consists of two parts, the unary encoder and the trellis encoder, both of

which are introduced in this section.

UEC encoder

UEC decoder

Trellis
decoder

Trellis
encoder

yx

x̂

Unary
encoder

Unary
decoder

z

z̃e

z̃a

ỹp

IrURC
encoder

decoder
IrURC

modulator

demodulator

QPSK

QPSK
π1

π2π1

π−1
2

π−1
1

Figure 3.3: Schematic of the UEC JSCC scheme, when serially concatenated with

IrURC coding and Gray-coded QPSK modulation schemes. Here, π1 and π2 rep-

resent interleavers, while π−1
1 and π−1

2 represent the corresponding deinterleavers.

Puncturing and depuncturing may also be performed by π2 and π−1
2 , respectively.

3.3.1 Unary Encoder

As shown in Figure 3.3, the UEC scheme firstly encodes the symbol vector x using a

unary encoder, which represents each symbol xi by the corresponding unary codeword yi

that comprises xi bits, as exemplified in Table 3.1. These codewords are then concatenated

to obtain the b-bit vector y = [yj]
b
j=1 shown in Figure 3.3. For example, the source symbol

vector x = [4, 1, 2, 1, 3, 1, 1, 1, 2, 2] of a = 10 symbols yields the b = 18-bit vector y =

[111001001100001010]. Note that the average length of bit vector y is a · l.

xi P (xi) yi

p1 = 0.7 p1 = 0.8 p1 = 0.9 Unary EG

1 0.7000 0.8000 0.9000 0 1

2 0.1414 0.1158 0.0717 10 010

3 0.0555 0.0374 0.0163 110 011

4 0.0286 0.0168 0.0057 1110 00100

5 0.0171 0.0090 0.0025 11110 00101

6 0.0112 0.0054 0.0013 111110 00110

7 0.0079 0.0035 0.0007 1111110 00111

8 0.0058 0.0024 0.0004 11111110 0001000

9 0.0044 0.0017 0.0003 111111110 0001001

10 0.0034 0.0013 0.0002 1111111110 0001010

Table 3.1: The first ten symbol probabilities for a zeta distribution having the pa-

rameter p1 = 0.7, 0.8, 0.9, as well as the corresponding unary and EG codewords.

Note that the bit vector length b of y has an average value al that is finite, provided that

the unary codewords have a finite average length

l =
∑

x∈N1

P (x)x. (3.5)

3.3.2. Trellis Encoder 55

This is guaranteed [144] when the symbol values obey the geometric probability distribu-

tion of Eq. (3.1), in which case we have

l =
1

p1
. (3.6)

By contrast, when the symbols adopt the zeta distribution of Eq. (3.3), the average unary

codeword length only remains finite4 for s > 2 and hence for p1 > 0.608, in which case

we have

l = ζ(s− 1)/ζ(s). (3.7)

Note that for the H.264 symbol value distribution of Figure 3.2, we obtain the finite average

unary codeword length of l = 7.191 bits per symbol.

3.3.2 Trellis Encoder

Following unary encoding, the bit sequence y is forwarded to the trellis encoder of Fig-

ure 3.3. This employs a UEC trellis of the sort depicted in Figure 3.4 to encode each bit yj

in the vector y, in order of increasing bit-index j.

As shown in the generalized UEC trellis given in Figure 3.4, each bit yj of the input bit

sequence y = [yj]
b
j=1 forces the trellis encoder to traverse from its previous state mj−1 ∈

{1, 2, . . . , r} to its next state mj ∈ {1, 2, . . . , r}, in order of increasing bit-index j. Each

next state mj is selected from two legitimate alternatives, depending on the bit value yj ,

according to

mj =

{

1 + odd(mj−1) if yj = 0

min[mj−1 + 2, r − odd(mj−1)] if yj = 1
, (3.8)

where the number of possible states r has to be even and the encoding process always

begins from the state m0 = 1. The function odd(·) yields 1 if the operand is odd or 0 if

it is even. In this way, the bit vector y identifies a path through the trellis, which may be

represented by a vector m = [m]bj=0 comprising (b+ 1) state values.

For example, Figure 3.5 and Figure 3.6 exemplify two UEC trellises having r = 4

and r = 6 states, respectively. The bit vector y = [111001001100001010] yields the path

m = [1, 3, 3, 3, 2, 1, 3, 2, 1, 3, 3, 2, 1, 2, 1, 3, 2, 4, 1] through the r = 4-state trellis of Figure

3.5, while yields the path m = [1, 3, 5, 5, 2, 1, 3, 2, 1, 3, 5, 2, 1, 2, 1, 3, 2, 4, 1] through the

r = 6-state trellis of Figure 3.6. Note that the path m may be modeled as a particular

realization of a vector M = [Mj]
b
j=0 comprising (b + 1) RVs, which are associated with

the transition probabilities Pr(Mj = m,Mj−1 = m′) = P (m,m′) of Eq. (3.11).

4Note that for zeta distributions having p1 ≤ 0.608, our Elias Gamma Error Correction (EGEC) code

of [145] may be employed in order to achieve a finite average codeword length, as it will be detailed in

Chapter 7.

3.3.2. Trellis Encoder 56

1

3

2

4

1

3

2

4

r − 3

r − 1

r − 3

r − 1

r − 2

r

r − 2

r

yj/zjmj−1 mj

1/c2

0/c2

1/c1

0/c1

1/cr/2−1

0/cr/2−1

1/c2

0/c2

1/c1

0/c1

0/cr/2

1/cr/2

0/cr/2−1

1/cr/2−1

0/cr/2

1/cr/2

Figure 3.4: The generalized UEC trellis, having r states and n-bit codewords,

where C = {c1, c2, . . . , cr/2−1, cr/2}.

yj/zjmj−1 mj

1

3

2

4

1

3

2

4

0/11

1/00

1/10

0/01

0/10

1/01

0/00

1/11

Figure 3.5: An r = 4-state n = 2-bit UEC trellis, where C = {01, 11}.

3.3.2. Trellis Encoder 57

1

3

2

4

1

3

2

4

1/00

5

0/11

1/00

0/11

1/10

0/01

0/10

1/01

0/00

1/11

0/00

6

1/11

6

5

mjyj/zjmj−1

Figure 3.6: An r = 6-state n = 2-bit UEC trellis, where C = {01, 11, 11}.

The transition path m may be modeled as particular realization of a RV vector M =

[Mj]
b
j=0, which are associated with the transition probabilitiesPr(Mj = m,Mj−1 = m′) =

P (m,m′) is given in Eq. (3.11). Thus, the conditional transition probabilities Pr(Mj =

m|Mj−1 = m′) = P (m|m′) are given by

P (m|m′) =
P (m,m′)

∑r
m̌=1 P (m̌,m′)

, (3.9)

while the entropy of the RV vector M is given by

HM = b

r
∑

m′=1

r
∑

m=1

P (m,m′) log2

(

1

P (m|m′)

)

. (3.10)

Note that the UEC trellis is designed to ensure that the transitions between its states are

synchronous with the unary codewords of Table 3.1. More particularly, just as each symbol

xi in the symbol vector x corresponds to an xi-bit codeword yi in the bit vector y, the sym-

bol xi also corresponds to a section mi of the trellis path m comprising xi transitions. A

symbol having the value of xi < r/2 and an odd index i results in a path section comprising

the sequence of states mi = [1, 3, 5, . . . , 2xi − 1, 2], while mi = [2, 4, 6, . . . , 2xi, 1] is re-

sulted when i is even. By contrast, for symbols having the value of xi ≥ r/2, an odd index

i results in the sequence of xi transitions mi = [1, 3, 5, . . . , r−1, r−1, . . . , r−1, 2], while

mi = [2, 4, 6, . . . , r, r, . . . , r, 1] is yielded when i is even. As a result, a path sequence mi

3.3.2. Trellis Encoder 58

P (m,m′) =



















































1
2l

[

1−∑

⌈

m′

2

⌉

x=1 P (x)

]

if m′ ∈ {1, 2, 3, . . . , r − 2}, m = m′ + 2

1
2l
P (x)

∣

∣

∣x=⌈m′

2 ⌉ if m′ ∈ {1, 2, 3, . . . , r − 2}, m = 1 + odd(m′)

1
2l

[

1−
∑

r
2
−1

x=1 P (x)
]

if m′ ∈ {r − 1, r}, m = 1 + odd(m′)

1
2l

[

l − r
2
−
∑

r
2
−1

x=1 P (x)
(

x− r
2

)

]

if m′ ∈ {r − 1, r}, m = m′

0 otherwise
(3.11)

having an odd index i always starts from state 1 and ends at state 2, while sequences having

an even index i start from state 2 and end at state 1. Owing to this, the trellis path m is

guaranteed to be terminated at the state mb = 1, when the symbol vector x has an even

length a, while mb = 2 is guaranteed, when a is odd.

The trellis encoder represents each bit yj in the vector y by an n-bit codeword zj.

This is selected from the set of r/2 codewords C = {c1, c2, . . . , cr/2−1, cr/2} or from the

complementary set C = {c1, c2, . . . , cr/2−1, cr/2}, which is achieved according to

zj =

{

c⌈mj−1/2⌉ if yj = odd(mj−1)

c⌈mj−1/2⌉ if yj 6= odd(mj−1)
. (3.12)

Finally, the selected codewords are concatenated to obtain the (b ·n)-bit vector z = [zk]
b·n
k=1

of Figure 3.3. For example, when the n = 2-bit codewords C = {01, 11} are employed in

the r = 4-state UEC trellis of Figure 3.5, the path m = [1, 3, 3, 3, 2, 1, 3, 2, 1, 3, 3, 2, 1, 2, 1,

3, 2, 4, 1] through the r = 4-state n = 2-bit trellis of Figure 3.5 corresponds to the en-

coded bit vector z = [100000111010001110011010110100]. Similarly, when the n = 2-

bit codewords C = {01, 11, 11} are employed in the r = 6-state UEC trellis of Fig-

ure 3.6, the path m = [1, 3, 5, 5, 2, 1, 3, 2, 1, 3, 5, 2, 1, 2, 1, 3, 2, 4, 1] through the r = 6-

state n = 2-bit trellis of Figure 3.6 corresponds to the same encoded bit vector z =

[100000111010001110011010110100]. This is because the codewords C = {01, 11, 11}
represent an extension of the codewords C = {01, 11}, as it will be discussed in Sec-

tion 4.2.

The bit vector z may be modeled as a specific realization of a vector Z = [Zk]
b·n
k=1

comprising b ·n binary RVs. Furthermore, the UEC trellis of Figure 3.4 has been designed

to obey symmetry and to rely on complementary codewords, so that it produces mostly

equiprobable bits, where Pr(Zk = 0) = Pr(Zk = 1) and the bit entropy is HZ = 1.

3.3.3. IrURC Encoder, Interleaver, Puncturer and Modulator 59

Therefore, it is possible for the UEC scheme to avoid capacity loss, as detailed in Sec-

tion 3.4. Note that owing to the edge effect, the binary RVs near either end of the vector

Z do not adopt equiprobable values in general, in contrast to those in the middle of the

vector. In practice however, this is only apparent for bits that are within a few positions

from the ends of the vector Z. As a result, the edge effect is negligible for practical values

of the bit vector length b ·n and will be disregarded throughout the remainder of our work.

EG-CC R · n

EG-CC A · n

UEC R · n

UEC A · n

r

p1

R
·
n

or
A
·
n

10.90.80.70.60.5

1

0.8

0.6

0.4

0.2

0

Figure 3.7: Plots of R · n and A · n that are obtained for the UEC and EG-CC

schemes of Figures 3.3 and 3.10, in the case where the symbol values obey the zeta

distribution of Eq. (3.3) having the parameter p1. The value of A · n is provided

for UEC codes having various numbers of states, namely r ∈ {2, 4, 6, 30}.

The average length of the bit vector z is a · l ·n and the average coding rate of the UEC

encoder is given by

R =
HX

l · n =
1

l · n
∑

x∈N1

H [P (x)]. (3.13)

In the case where the RVs in the vector X obey a geometric distribution, we can substitute

Eq. (3.6) and Eq. (3.6) into Eq. (3.13) in order to obtain [146]

R =
H [p1] +H [1− p1]

n
. (3.14)

Figure 3.7 provides the corresponding plot for the case where the symbol values obey the

zeta distribution of Eq. (3.7). Here, the coding rate Ro becomes 0 when p1 ≤ 0.608, since

the average unary codeword length l becomes infinite in this circumstance.

3.3.3 IrURC Encoder, Interleaver, Puncturer and Modulator

As shown in Figure 3.3, the UEC-encoded bit vector z may be interleaved in the block

π1, IrURC encoded [98, 100] as detailed in Section 2.14 and then interleaved as well as

3.4. UEC Decoder Operation 60

punctured in the block π2. In accordance with convention, the coding rate Ri of this process

is given by the number of input bits per output bit. More particularly, the IrURC encoder is

comprised of T = 10 component codes, which are provided by the component URC codes

{URCt}Tt=1. As listed in Table 3.3, each URC component code is employed for encoding a

particular fraction β of the bits provided by the interleaver π1 of Figure 3.3. In Section 2.3,

we have investigated the structures and coding process of these T = 10 component URC

codes {URCt}Tt=1, which are elaborately selected, since they can provide diverse choices

of the EXIT functions, as discussed in Section 2.13. Moreover, the fractions β listed in

Table 3.3 were chosen using the algorithm of [135] for the sake of generating EXIT chart

curves that match those of the UEC schemes, as detailed in Section 2.14.

Note that in the absence of puncturing, the IrURC coding rate is given by the value

of HZ . If the UEC was not designed to produce equiprobable bits, then HZ and the inner

coding rate Ri would be less than unity, introducing capacity loss [131]. Following this,

Quadrature Phase-Shift Keying (QPSK) modulation may be employed for transmission, as

shown in Figure 3.3. Note that the puncturer may be adjusted for controlling the throughput

η = Ro · Ri · log2(M), where we have M = 4 for QPSK. The operations of interleaver,

puncture and QPSK modulator have been already introduced in Chapter 2.

3.4 UEC Decoder Operation

In the receiver of Figure 3.3, QPSK demodulation, depuncturing π−1
2 , IrURC decoding and

deinterleaving π−1
1 may be performed before invoking the proposed UEC decoder. In line

with the UEC encoder, the UEC decoder also consists of two parts, which are the trellis

decoder and the unary decoder.

3.4.1 Trellis Decoder

The trellis decoder of Figure 3.3 is provided with a vector of a priori LLRs z̃a = [z̃ak]
b·n
k=1

that pertain to the corresponding bits in the vector z. The trellis decoder applies the BCJR

algorithm [91] to a UEC trellis of the sort shown in Figure 3.4, in order to consider every

legitimate realization of Z having the particular length b · n. Here, the value of b · n is

assumed to be perfectly known to the receiver and may be reliably conveyed by the trans-

mitter using a small amount of side information in practice. The synchronization between

the UEC trellis and the unary codewords is exploited during the BCJR algorithm’s γt cal-

culation of Eq. (9) in [91], by employing the conditional transition probabilities P (m|m′)

of Eq. (3.9). As discussed in Section 3.3.2, the UEC trellis should be terminated at m0 = 1

and either at mb = 1 or mb = 2, depending on whether the length a of the symbol vector

x is even or odd, respectively. As shown in Figure 3.3, the BCJR decoder generates the

vector of extrinsic LLRs z̃e = [z̃ek]
b·n
k=1. Note that this BCJR algorithm has only a modest

3.4.2. Iteratively Decoding 61

complexity, since the trellis of Figure 3.4 may comprise as few as two states and because

exact knowledge of the symbol probability distribution P (x) is not required. Rather, the

only knowledge required is that of the average unary codeword length l and the probabil-

ities of the first r/2 − 1 symbol values, which may be accurately estimated heuristically,

when P (x) is unknown.

3.4.2 Iteratively Decoding

The extrinsic Logarithmic Likelihood Ratio (LLR) vector z̃e of Figure 3.3 may be itera-

tively exchanged with the serially concatenated IrURC decoder. In-turn, the IrURC de-

coder may also iteratively exchange extrinsic LLR with the demodulator [147], in order to

avoid capacity loss when a mapping scheme other than Gray coding or a higher-order mod-

ulation scheme is employed. Since the combination of the IrURC decoder and demodula-

tor will also have an EXIT curve that reaches the (1, 1) point in the top right corner of the

EXIT chart [134], iterative decoder convergence towards the Maximum Likelihood (ML)

performance is facilitated [148]. At this point, the trellis decoder may invoke the BCJR

algorithm for generating the vector of a posteriori LLR ỹp = [ỹpj]
b
j=1 that pertain to the

corresponding bits in the vector y.

3.4.3 Unary Decoder

The unary decoder of Figure 3.3 sorts the values in this LLR vector in order to identify

the a number of bits in the vector y that are most likely to have values of zero. A hard

decision vector ŷ is then obtained by setting the value of these bits to zero and the value of

all other bits to one. Here, the value of a is assumed to be perfectly known to the receiver

and may be reliably conveyed by the transmitter using a small amount of side information

in practice. Finally, the bit vector ŷ can be unary decoded in order to obtain the symbol

vector x̂ of Figure 3.3, which is guaranteed to comprise a number of symbols.

3.5 Near-capacity Performance of UEC Codes

Near-capacity operation is achieved, when reliable communication can be maintained at

transmission throughputs that approach the capacity of the channel. When the UEC code

of Figure 3.3 is serially concatenated with an IrURC code, near-capacity operation is fa-

cilitated, provided that the area A beneath the UEC code’s inverted EXIT curve is equal to

its coding rate R [131].

3.5.1. EXIT Curves 62

3.5.1 EXIT Curves

The transformation of z̃a into z̃e may be characterized by plotting the inverted UEC EXIT

curve in an EXIT chart [149], as exemplified in Figure 3.8. Note that if codewords com-

prising at least n = 2 bits are employed, then the free-distance dfree of the UEC code will

be at least two, and its EXIT curve will reach the (1, 1) point in the top right corner of the

EXIT chart [150].

r = 16

r = 8

r = 4

EG-CC

UEC

I(z̃e; z)

I
(z̃

a
;z
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 3.8: Inverted EXIT curves of the r-state BCJR decoders employed in the

UEC and EG-CC schemes of Figures 3.3 and 3.10, for the case where the a priori

LLR vector z̃a is modeled by the transmission of z over a BEC and the symbol

values obey a zeta probability distribution of Eq. (3.3) having the parameter value

p1 = 0.797. In the UEC scheme, the first codeword in the set C has the value 01
and the remaining r/2− 1 codewords have the value 11, giving a free-distance of

dfree = 4 ∀ r ∈ {4, 6, 8, . . .}. The EG-CC scheme employs the n = 2-bit CCs of

Table 3.3.

As mentioned in Section 2.13, in the case where the a priori LLR vector z̃a is modeled

by the transmission of z over a Binary Erasure Channel (BEC), the EXIT chart area A that

is situated below the inverted UEC EXIT curve is given by

A =
1

n

r
∑

m′=1

r
∑

m=1

P (m,m′) log2

(

1

P (m|m′)

)

. (3.15)

This result may be obtained from Eq. (23) of [131], where the notation may be converted

according to A = 1 − A, since A is defined as the area above the inverted EXIT curve.

Furthermore, we employ I2A,max = 1 for the total area enclosed within the EXIT chart,

while the sum of the entropies of the RVs in the vector Z is given by
∑m

i=1H(Vi) =

b · n · HZ . Here, we employ H(V |Y) = H(V) as in Eq. (27) of [131], since the UEC

decoder is employed as an outer decoder, which has no access to channel information.

3.5.2. Area Property 63

Finally, we employ H(V) = HM, which is given in Eq. (3.10). This is justified, since the

proposed trellis decoder is an A Posteriori Probability (APP) decoder for a bit vector z that

may be accurately modeled by the statistics of the trellis path M. Note that the EXIT chart

of Figure 3.8 and area calculation of Eq. (3.15) offer good approximations for cases where

the LLRs of z̃a obey distributions other than that modeled by a BEC [131]. Substituting

Eq. (3.11) and Eq. (3.9) into Eq. (3.15) and then rearranging the result yields [146]

A = 1
ln

∑

r
2
−1

x=1 H [P (x)] + 2
ln
H

[

1−
∑

r
2
−1

x=1 P (x)
]

+ 1
ln
H

[

l − r
2
−

∑r/2−1
x=1 P (x)

(

x− r
2

)

]

− 1
ln
H

[

1 + l − r
2
−∑r/2−1

x=1 P (x)
(

1 + x− r
2

)

]

.

(3.16)

In the case where the RVs in the vector X obey the geometric distribution of Eq. (3.1),

the product of the UEC EXIT chart area A and the codeword length n is related to the

distribution parameter p1, as shown in Figure 3.7. Note that this relationship is symmetric

about p1 = 0.5, where A(p1) = A(1−p1). Figure 3.7 provides the corresponding plots for

the case where the symbol values obey the zeta distribution of Eq. (3.3) and where various

numbers of states r are employed.

3.5.2 Area Property

In the schematic of Figure 3.3, near-capacity operation will be achieved if the IrURC de-

coder’s EXIT curve has a shape closely matching with that of the UEC decoder, hence

creating a narrow but still open EXIT chart tunnel and facilitating iterative decoding con-

vergence towards the ML performance.

When the RVs in the vector X obey the geometric distribution of Eq. (3.1), the UEC

EXIT area A is indeed equal to the UEC coding rate R, as shown in Figure 3.13. In

fact, this is the case, regardless of both the specific number of states r employed and of

the codeword length n. This may be shown by substituting Eq. (3.1) and Eq. (3.6) into

Eq. (3.16) and then rearranging the result, yielding [146]

A =
H [p1] +H [1− p1]

n
, (3.17)

which is identical to the expression provided for the coding rate R in Eq. (3.14).

In the case of the zeta distribution of Eq. (3.3), Figures 3.7 and 3.8 suggest that the

UEC EXIT area A asymptotically approaches the UEC coding rate R as the number of

states r is increased. In fact, this is the case, regardless of which particular symbol value

distribution is adopted by the RVs in the vector X. This may be proved by observing that

the last three terms in Eq. (3.16) tend to zero as r is increased, leaving only the first term

3.5.2. Area Property 64

of

lim
r→∞

A =
1

ln

∑

x∈N1

H [P (x)], (3.18)

which is equal to the expression provided for the coding rate R in Eq. (3.13). Figure 3.9

plots the discrepancy between R · n and A · n as a function of the number of UEC states

r for zeta distributions employing various values for the parameter p1. More particularly,

the lines in Figure 3.9 are obtained when P (x) of Eq. (3.16) adopts the zeta distribution of

Figure 3.2. Note that in all the cases considered, the discrepancy becomes less than 10−2,

when at least r = 30 states are employed.

H.264

Zeta

p1

r/2

A
·
n
−

R
·
n

1000100101

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Figure 3.9: The discrepancy between R · n and A · n that results when

UEC codes having various numbers of states r are employed to en-

code symbol values having zeta distributions with the parameters p1 ∈
{0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95}, as well as symbol values having the

H.264 distribution of Figure 3.2.

Figure 3.9 also provides the corresponding plot for the case where the RVs in the vector

X obey the H.264 distribution of Figure 3.2. More particularly, the dots in Figure 3.9 are

obtained when P (x) of Eq. (3.16) adopts the H.264 distribution of Figure 3.2. In this case

r = 14 states are required for reducing the discrepancy below 10−2. Here, the discrepancy

between R · n and A · n quantifies the capacity loss. Note that the analysis of this section

is specific to the case where the LLRs of z̃a adopt distributions that may be modeled by

transmission over a BEC, since this is assumed by Eq. (3.16). However, the results of

Section 3.9 demonstrate that the proposed UEC code is also capacity-approaching in cases

where the LLRs of z̃a obey other distributions, for example when communicating over an

uncorrelated narrowband Rayleigh fading channel.

3.6. An SSCC Benchmarker 65

3.6 An SSCC Benchmarker

The JSCC UEC-IrURC scheme of Figure 3.3 may be compared to the SSCC EG-CC-

IrURC benchmarker, as shown in Figure 3.10. This is devised by replacing the components

of the UEC code with the state-of-the-art SSCC components, on a like-for-like basis.

ỹa

y

ŷ

CC
encoder

CC
decoder

x

x̂

EG
encoder

EG
decoder

z

z̃e

z̃a

IrURC

IrURC

encoder

decoder

modulator

demodulator

QPSK

QPSK

π1

π1

π−1
2

π2

π−1
1

Figure 3.10: Schematic of the EG-CC SSCC scheme,when serially concatenated

with IrURC coding and Gray-coded QPSK modulation schemes. Here, π1 and

π2 represent interleavers, while π−1
1 and π−1

2 represent the corresponding dein-

terleavers. Puncturing and depuncturing may also be performed by π2 and π−1
2 ,

respectively.

3.6.1 EG-CC Encoder

In the transmitter of Figure 3.10, the unary encoder of the UEC scheme is replaced by

an EG encoder. The first ten EG codewords are illustrated in Table 3.1. For exam-

ple, the vector of a = 8 symbols x = [2, 1, 4, 2, 1, 3, 1, 1] yields the b = 18-bit vec-

tor y = [010100100010101111]. The average EG codeword length is given by l =
∑

x∈N1
P (x) (2⌊log2(x)⌋ + 1), which is guaranteed to be finite for any monotonic sym-

bol value distribution having P (x) ≥ P (x+1) ∀ x ∈ N1, including the zeta distribution of

Eq. (3.3) for all values of p1. Even though the H.264 distribution of Figure 3.2 is not mono-

tonic, a finite average EG codeword length of l = 3.029 bits per symbol is obtained. As in

the proposed UEC scheme, the b-bit vector y may be modeled as a realization of a vector

Y = [Yj]
b
j=1 comprising b binary RVs. However in the EG-CC scheme, these RVs do not

adopt equiprobable values Pr(Yj = 0) 6= Pr(Yj = 1) in the general case, giving a value of

less than unity for the corresponding bit entropy HYj
= H [Pr(Yj = 0)] +H [Pr(Yj = 1)].

Similarly, the trellis encoder of the UEC scheme is replaced by a 1/n-rate r-state CC

encoder. We recommend the CCs that are described by the generator and feedback poly-

nomials provided in Table 3.2. More specifically, we found that these non-systematic

recursive CCs offer the optimal distance properties [151] subject to the constraint of pro-

ducing equiprobable bits Pr(Zk = 0) = Pr(Zk = 1). As described in Section 3.3, this

HZ = 1 constraint is necessary for avoiding a capacity loss, when the EG-CC scheme is

serially concatenated with an IrURC code. Note that these non-systematic recursive CCs

will also be employed as the basis of the benchmarkers in the following chapters.

3.6.2. EG-CC Decoder 66

r
n

2 3 4

2 ([2,2],3,2) ([2,2,2],3,3) ([2,2,2,2],3,4)

4 ([4,7],6,4) ([4,7,7],6,6) ([4,7,7,7],6,8)

8 ([15,17],16,6) ([13,15,17],16,10) ([13,15,15,17],16,13)

16 ([27,31],34,7) ([25,33,37],36,12) ([25,33,35,37],32,16)

Table 3.2: The optimal generator and feedback polynomials that satisfy the HZ =
1 constraint. Polynomials are provided in the format (g, f, dfree), where g is an n-

element vector of octal generator polynomials, f is the octal feedback polynomial

and dfree is the decimal free-distance.

The average coding rate R of the EG-CC encoder is given by Eq. (3.13). When the

RVs in the vector X obey the geometric distribution of Eq. (3.1), the product of the EG-

CC coding rate R and the codeword length n is related to the distribution parameter p1,

as shown in Figure 3.16. Similarly, Figure 3.7 provides the corresponding plot for symbol

values obeying the zeta distribution of Eq. (3.3). The product becomes R · n = 0.983 in

the case of the H.264 symbol value distribution of Figure 3.2.

3.6.2 EG-CC Decoder

In the receiver, the trellis decoder of the UEC scheme is replaced by a CC decoder, as

shown in Figure 3.10. This employs the BCJR algorithm during the iterative decoding

process, in order to convert the a priori LLR vector z̃a into the extrinsic LLR vector z̃e.

As shown in Figure 3.10, the BCJR algorithm can exploit some of the residual redundancy

present within the bit vector y by employing a corresponding vector of a priori LLRs

ỹa = [ỹaj]
b
j=1. Here, we have

ỹaj = ln

(

Pr(Yj = 0)

Pr(Yj = 1)

)

, (3.19)

where the bit value probabilities may be obtained heuristically.

As in the UEC scheme, the BCJR algorithm may be characterized by the corresponding

inverted EG-CC EXIT curve, as exemplified in Figure 3.8. When the a priori LLR vector

z̃a may be modeled by the transmission of z over a BEC, it can be shown that the EXIT

chart area A that is situated below the inverted EG-CC EXIT curve is given by

A =

∑b
j=1HYj

b · n . (3.20)

Note that unlike in the UEC scheme, the EG-CC EXIT chart area A is independent of the

number of states r employed in the CC, as exemplified in Figure 3.9. If the RVs in the

vector X obey the geometric distribution of Eq. (3.1), the product of the EG-CC EXIT

3.7. Parametrization of the UEC-IrURC and EG-CC-IrURC schemes 67

chart area A and the codeword length n is related to the distribution parameter p1, as

shown in Figure 3.9. Similarly, Figure 3.7 provides the corresponding plots for symbol

values obeying the zeta distribution of Eq. (3.3). The product is An = 0.998 in the case of

the H.264 symbol value distribution of Figure 3.2.

Note that in the EG-CC scheme, the values of A · n and R · n are separated by sig-

nificant discrepancies of up to about 0.2, preventing near-capacity operation, as discussed

in Section 3.5. This represents a significant disadvantage compared to the proposed UEC

scheme, which can eliminate the discrepancy, when the symbol values obey the geometric

distribution of Eq. (3.1). Note that if the EG code of the EG-CC scheme is replaced with a

Golomb code, then the discrepancy between A ·n and R ·n is eliminated when the symbol

values obey the geometric distribution of Eq. (3.1) [88]. However, a significant discrepancy

can still be observed for other distributions. For these other symbol value distributions, the

proposed UEC scheme can reduce the discrepancy to an infinitesimally small value by

employing a sufficiently high number r of states, as discussed in Section 3.5.

3.7 Parametrization of the UEC-IrURC and EG-CC-IrURC schemes

In this section, we detail a number of parametrizations conceived for the UEC-IrURC and

EG-CC-IrURC schemes. As shown in Table 3.4, we consider source symbols that obey

zeta distributions having p1 ∈ {0.7, 0.8, 0.9}. In all cases, we opted for employing UEC

and CC codes having n = 2-bit codewords, since this is the minimum number required

for facilitating iterative decoding convergence to the ML error correction performance

[92]. Note that for each of the p1 values considered, the UEC and EG-CC schemes have

different outer coding rates Ro, as may be calculated using Eq. (3.14). For the sake of fair

comparisons, the scheme having the lower outer coding rate Ro may be compensated using

an inner coding rate of Ri > 1, which is achieved by applying puncturing within the block

π2 of Figure 3.3. As shown in Table 3.4, this approach can be employed for achieving the

same throughput of η = Ro ·Ri · log2(M) for both the UEC-IrURC and the EG-CC-IrURC

scheme for each value of p1 ∈ {0.7, 0.8, 0.9}.

Note that the approach described here is in contrast to that of [92], which only con-

sidered source symbols that obey zeta distributions having p1 = 0.797. This value was

chosen since it results in identical outer coding rates Ro for the UEC and EG-CC schemes,

avoiding the requirement for puncturing in order to obtain fair comparisons. Table 3.4

provides the Eb/N0 values at which the Discrete-input Continuous-output Memoryless

Channel (DCMC) capacity C of QPSK modulation in a uncorrelated narrowband Rayleigh

fading channel becomes equal to the throughput η of the various schemes considered, as

mentioned in Section 2.13.

3.7. Parametrization of the UEC-IrURC and EG-CC-IrURC schemes 68

As shown in Table 3.4, we consider UEC codes having r ∈ {4, 6, 8, 10, 32} states. In

each case, the first codeword in the set C has the value 01 and the remaining (r/2 − 1)

codewords have the value 11. By contrast, the EG-CC scheme employs the n = 2-bit

r = 4-state CC of Table 3.2, since this was found to offer superior error correction per-

formance over that of CCs having a higher number of states r. Figure 3.11, 3.12 and

3.13 provides the inverted EXIT curves [134] of the r-state UEC and EG-CC BCJR de-

coders, for the scenario where the symbol values obey zeta probability distributions having

p1 ∈ {0.7, 0.8, 0.9}. For each case, Table 3.4 provides the area Ao beneath the UEC and

EG-CC EXIT curves, as may be calculated according to Eq. (3.16). In the case where

the RVs in the vector X obey the geometric distribution, the product of the UEC EXIT

chart area A and the codeword length n is related to the distribution parameter p1. Fig-

ure 3.7 provides the corresponding plots for the case where the symbol values obey the

zeta distribution of Eq. (3.3) and where various numbers of states r are employed.

It may be observed that the discrepancy between Ao and Ro diminishes, as the number

of states r employed in the UEC scheme is increased. This may be expected since [92]

showed that the discrepancy tends to zero, as r approaches infinity. By contrast, a sig-

nificant discrepancy can be observed between Ao and Ro for the EG-CC scheme, for each

value of p1. Note that the discrepancy is independent of r in the case of the EG-CC scheme,

as discussed in UEC.

p1 Scheme

URC component code fractions β
ACSr = 2 r = 4 r = 8

(2,3) (7,5) (7,6) (4,7) (6,7) (8,B) (D,C) (8,F) (B,F) (E,F)

0.7
UEC 0 0 0.44 0 0.44 0 0.10 0 0.02 0 120.9

EG-CC 0.35 0 0 0.18 0.17 0.05 0 0.25 0 0 121.5

0.8
UEC 0.18 0 0.71 0.10 0.01 0 0 0 0 0 96.6

EG-CC 0.30 0 0.33 0.27 0.10 0 0 0 0 0 89.6

0.9
UEC 0 0 0.33 0 0 0.09 0.58 0 0 0 184.7

EG-CC 0 0 0.85 0 0 0.02 0.13 0 0 0 124.4

Table 3.3: As mentioned in Section 2.3.1, the T = 10 URC component codes

{URCt}T=10
t=1 [98] are labeled using the format (g, f), where g and f are the

hexadecimal generator and feedback polynomials of the URC code, respectively.

As shown in Figure 3.3, the Ro-rate UEC and EG-CC schemes form the outer code

in a serial concatenation with an Ri-rate inner code, which is comprised of an IrURC

code and a puncturer π2. In order to achieve iterative decoding convergence towards a

vanishingly low error probability, it is necessary for the area beneath the inner EXIT curve

Ai to exceed Ao, so that an open EXIT chart tunnel can be created. It can be shown

that we have Ai = C/[Ri · log2(M)] for this inner code, regardless of how the IrURC

code is parametrized. Table 3.4 provides the Eb/N0 values at which Ai becomes equal to

3.7. Parametrization of the UEC-IrURC and EG-CC-IrURC schemes 69

Ao for the various schemes considered. These area bounds represent the lowest Eb/N0

values, where it would be possible to create an open EXIT chart tunnel, if the IrURC code

was particularly well parametrized. Note that the discrepancies between the area bound

and the capacity bound represent the capacity loss of each scheme considered. As shown

in Table 3.4, the EG-CC schemes suffer from a significant capacity loss, which can be

eliminated by employing a UEC scheme having a sufficiently high number of states r.

r = 32
r = 10
r = 8
r = 6
r = 4

IrURC
EG-CC

UEC

I(z̃e; z)

I
(z̃

a
;z

)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 3.11: Inverted EXIT curves for the UEC BCJR decoder having r ∈
{4, 6, 8, 10, 32} states and EG-CC BCJR decoder having r = 4 states, where

p1 = 0.7. Corresponding EXIT curves are provided for the IrURC schemes of

Table 3.3, at the lowest Eb/N0 values that facilitates the creation of an open tun-

nel with the EXIT curves of the r = 32-state UEC and the r = 4-state EG-CC, as

listed in Table 3.4.

An IrURC parametrization was designed to be serially concatenated with the UEC and

EG-CC schemes for each value of p1 ∈ {0.7, 0.8, 0.9}. These IrURCs were constrained

to the choice of the 10 URC component codes in Figure 4 of [98], since their decoders

employ no more than r = 8 states and therefore do not have an excessive computational

complexity compared to the UEC and EG-CC decoders, as shown in Table 3.5. As listed

in Table 3.3, each URC component code is employed for encoding a particular fraction β

of the bits provided by the interleaver π1 of Figure 3.3. These fractions β were chosen

using the algorithm of [135] for the sake of generating EXIT curves that match those of

the r = 32 UEC scheme and of the r = 4 EG-CC scheme. As shown in Figure 3.11, 3.12

and 3.13, this facilitated the creation of open EXIT chart tunnels at the lowest possible

Eb/N0 values, as listed in Table 3.4. These Eb/N0 values maybe deemed to represent the

open tunnel bounds, which must be exceeded for the sake of creating an open tunnel in

practice, hence facilitating iterative decoding convergence to a low error probability, when

the number of symbols a in the source sequence a is infinite. Note that the discrepancies

between the open tunnel bounds and area bounds may be attributed to the constraining

3.7. Parametrization of the UEC-IrURC and EG-CC-IrURC schemes 70

r = 32
r = 10
r = 8
r = 6
r = 4

IrURC
EG-CC

UEC

I(z̃e; z)

I
(z̃

a
;z

)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 3.12: Inverted EXIT curves for the UEC BCJR decoder having r ∈
{4, 6, 8, 10, 32} states and EG-CC BCJR decoder having r = 4 states, where

p1 = 0.8. Corresponding EXIT curves are provided for the IrURC schemes of

Table 3.3, at the lowest Eb/N0 values that facilitates the creation of an open tun-

nel with the EXIT curves of the r = 32-state UEC and the r = 4-state EG-CC, as

listed in Table 3.4.

r = 32
r = 10
r = 8
r = 6
r = 4

IrURC
EG-CC

UEC

I(z̃e; z)

I
(z̃

a
;z

)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 3.13: Inverted EXIT curves for the UEC BCJR decoder having r ∈
{4, 6, 8, 10, 32} states and EG-CC BCJR decoder having r = 4 states, where

p1 = 0.9. Corresponding EXIT curves are provided for the IrURC schemes of

Table 3.3, at the lowest Eb/N0 values that facilitates the creation of an open tun-

nel with the EXIT curves of the r = 32-state UEC and the r = 4-state EG-CC, as

listed in Table 3.4.

3.8. Decoding Complexity Analysis 71

of the IrURC parametrization to using only the low-complexity URC component codes in

Figure 4 of [98]. As shown in Table 3.4, the UEC schemes may be seen to offer significant

gains over the EG-CC schemes, when p1 ∈ {0.8, 0.9}. By contrast, for p1 = 0.7 the UEC

and EG-CC schemes may be seen to have similar open tunnel bounds. Table 3.4 quantifies

the number of ACS operations that are performed per bit of z. As described in Section 3.8,

these values are obtained by employing the fractions β as weights, when averaging the

number of ACS operations that are listed in Table 3.5 for URCs having r ∈ {2, 4, 8}
states.

3.8 Decoding Complexity Analysis

In this section, we characterize the computational complexity of the various decoders that

are employed in the UEC-IrURC and EG-CC-IrURC schemes. As mentioned in Sec-

tion 2.11, this is achieved by observing that each of the decoders listed in Table 3.5 operates

on the basis of only using the max∗ [152] and addition operations, where

max∗(z̃1, z̃2) = max(z̃1, z̃2) + ln(1 + e−|z̃1−z̃2|). (3.21)

The complexity of each type of decoder scales linearly with the number of bits b · n in

the encoded vector z of Figure 3.3. Therefore, Table 3.5 lists the number of max∗ and

addition operations that are performed per bit of z, when each type of decoder employs

a trellis having r states. Note that the computational complexity of the trellis and CC

decoder depends on whether it is used for generating an output pertaining to the bit vector

y or to z.

In practice, the term fc = ln(1 + e−|z̃1−z̃2|) in the max∗ operation can be implemented

at a low computational complexity by employing a Look-Up-Table (LUT) [152]. When

employing an 8-entry LUT, a total of log2(8) = 3 compare operations are required for

selecting the particular LUT entry that best approximates fc. Furthermore, a compare op-

eration is required for computing max(z̃1, z̃2) and an addition operation is required evalu-

ating max(z̃1, z̃2)+fc. Therefore, each max∗ operation can be considered to be equivalent

to five Add, Compare and Select (ACS) arithmetic operations. By contrast, each addition

operation corresponds to a single ACS operation. Using this logic, Table 3.5 lists the total

number of ACS operations that are performed by each type of decoder. Note that since an

IrURC is formed as a combination of URC components having different numbers of states

r, the computational complexity of an IrURC decoder can be quantified as a weighted av-

erage of the URC complexities given in Table 3.5. The weights that should be employed

in this weighted average are given by the fraction of bits β that are encoded by URC com-

ponent codes having each number of states r, as it will be exemplified in Section 3.7.

3
.8

.
D

eco
d

in
g

C
o

m
p

lex
ity

A
n

a
ly

sis
7

2

p1 Scheme Figure r Ro Ao Ri η
Eb/N0 [dB] Eb/N0 [dB] Eb/N0 [dB]

capacity bound area bound tunnel bound

0.7

EG-CC 3.10 4 0.4503 0.4861 1

0.9006 1.39

2.03 3.5

UEC 3.3

4

0.3226

0.3751

1.3958

2.70 3.8

6 0.3510 2.09 3.7

8 0.3412 1.85 3.7

10 0.3361 1.72 3.6

32 0.3253 1.46 3.4

0.8

EG-CC 3.10 4 0.3779 0.4387 1.0048

0.7594 0.83

1.96 3.1

UEC 3.3

4

0.3797

0.4019

1

1.24 2.4

6 0.3896 1.01 2.0

8 0.3853 0.92 1.8

10 0.3833 0.90 1.8

32 0.3801 0.84 1.8

0.9

EG-CC 3.10 4 0.2492 0.3247 1.0578

0.5272 0.01

1.72 2.2

UEC 3.3

4

0.2636

0.2682

1

0.11 0.9

6 0.2651 0.04 0.9

8 0.2642 0.02 0.8

10 0.2639 0.01 0.8

32 0.2636 0.01 0.7

Table 3.4: Outer coding rate Ro, inner coding rate Ri and total throughput η for UEC-IrURC scheme of Figure 3.3 and EG-CC-IrURC

scheme of Figure 3.10 with different states. Three categories of Eb/N0 bounds where C = η and Ai = Ao in theory, and where tunnel is

open in simulation, respectively.

3.9. Simulation Results 73

Decoder r max∗ add ACS

n = 2-bit CC Viterbi decoder ŷ 4 2 8 18

n = 2-bit CC BCJR decoder z̃e 4 10 22 72

n = 2-bit Trellis BCJR decoder ỹp

4 7 20 55

6 11 30.5 85

8 15 40.5 115.5

10 19 50.5 145.5

n = 2-bit Trellis BCJR decoder z̃e

4 10 22 72

6 16 32 112

8 22 42 152

10 28 52 192

URC BCJR decoder

2 6 19 49

4 14 37 107

8 30 73 223

Table 3.5: Number of max∗ and addition operations that are performed per bit of

z, for various types of decoder employing trellises having r states. Note that CC

is also a trellis code. In this chapter, the CC has a similar trellis to the UEC trellis

code when r = 4.

In the case where I decoding iterations are performed between the n = 2-bit r = 4-

state trellis decoder and the r = 2-state URC decoder, the total number of ACS operations

per symbol in the sequence x is given by

NACS =
b · n
a

(49 · I + 72 · (I − 1) + 55) = 2 · l · (121 · I − 17). (3.22)

3.9 Simulation Results

In this section, we characterize the SER performance of the UEC-IrURC scheme of Fig-

ure 3.3 and EG-CC-IrURC scheme of Figure 3.10. We consider the transmission of source

symbol sequences x comprising a = 104 symbols, since this frame length is typical of mul-

timedia applications [92]. In order to facilitate fair comparison between schemes having

different computational complexities per iteration, we impose a limit of 104 ACS opera-

tions for the decoding of each symbol in a. This facilitates an average of t = 6 decoding

iterations in the r = 10 UEC scheme for p1 = 0.7 and t = 11 iterations in the r = 4 scheme

for p1 = 0.9, which are the most and least complex schemes considered, respectively.

As shown in Figure 3.15 and 3.16, our UEC-IrURC scheme outperforms the EG-CC-

IrURC benchmarker for transmission over uncorrelated Rayleigh channel, when p1 ∈
{0.8, 0.9}. More particularly, when p1 = 0.9, a 1.3 dB gain is offered by the UEC-IrURC

scheme, while operating within 1.6 dB of the capacity bound. By contrast, in Figure 3.14,

the EG-CC-IrURC benchmarker outperforms the UEC-IrURC scheme for p1 = 0.7. This

3.9. Simulation Results 74

r = 10
r = 8
r = 6
r = 4

EG-CC
UEC

2.1dB2.5dB

C
ap

ac
it
y

b
ou

n
d

Eb/N0 [dB]

S
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

Figure 3.14: The SER performance of the UEC-IrURC scheme having r ∈
{4, 6, 8, 10} states and the EG-CC-IrURC scheme having r = 4 states of Ta-

ble 3.4, where p1 = 0.7. Communication is over an uncorrelated narrowband

Rayleigh fading channel and a complexity limit of 104 ACS operations is imposed

for decoding each of the a = 104 symbols in x. The schematics of Figures 3.3

and 3.10 were used.

r = 10
r = 8
r = 6
r = 4

EG-CC
UEC

1dB
1.8dB

C
ap

ac
it
y

b
ou

n
d

Eb/N0 [dB]

S
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

Figure 3.15: The SER performance of the UEC-IrURC scheme having r ∈
{4, 6, 8, 10} states and the EG-CC-IrURC scheme having r = 4 states of Ta-

ble 3.4, where p1 = 0.8. Communication is over an uncorrelated narrowband

Rayleigh fading channel and a complexity limit of 104 ACS operations is imposed

for decoding each of the a = 104 symbols in x. The schematics of Figures 3.3

and 3.10 were used.

3.10. Summary and Conclusions 75

r = 10
r = 8
r = 6
r = 4

EG-CC
UEC

1.3dB

1.6dB

C
ap

ac
it
y

b
ou

n
d

Eb/N0 [dB]

S
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

Figure 3.16: The SER performance of the UEC-IrURC scheme having r ∈
{4, 6, 8, 10} states and the EG-CC-IrURC scheme having r = 4 states of Ta-

ble 3.4, where p1 = 0.9. Communication is over an uncorrelated narrowband

Rayleigh fading channel and a complexity limit of 104 ACS operations is imposed

for decoding each of the a = 104 symbols in x. The schematics of Figures 3.3

and 3.10 were used.

may be attributed to the high number of bits that are punctured in the UEC-IrURC scheme

for p1 = 0.7. Owing to this, a relatively high number of decoding iterations are required

for achieving iterative decoding convergence in this scheme, even when the Eb/N0 value

is high. As a result, a severe performance degradation is incurred, when imposing a limit

of 104 ACS operations for decoding each symbol in a. As shown in Figure 3.16, a UEC

decoder employing r = 6 states offers the optimal trade-off between complexity and near-

capacity operation when p1 = 0.8, while r = 8 and r = 4 are the optimal choices for

p1 = 0.7 and p1 = 0.9, respectively.

3.10 Summary and Conclusions

In this chapter, we described the encoding and decoding operations of the UEC code,

which is a novel JSCC scheme designed for encoding symbol values that are selected

from a set having an infinite cardinality, such as the set of all positive integers. The seri-

ally concatenated UEC-IrURC scheme of Figure 3.3 was proposed for facilitating practi-

cal near-capacity operation. Moreover, we quantified the performance and computational

complexity of the UEC scheme in order to strike a desirable trade-off between the conflict-

ing requirements of low complexity and near-capacity operation. Finally, our simulation

results of Figures 3.14, 3.15 and 3.16 demonstrated that the UEC-IrURC scheme of Fig-

ure 3.3 outperforms the EG-CC-IrURC benchmarker of Figure 3.10, offering a 1.3 dB

gain, when operating within 1.6 dB of the capacity bound. Note that this gain is achieved

3.10. Summary and Conclusions 76

for ‘free’, without increasing either the decoding complexity, or the transmission-duration,

-bandwidth or -energy.

In Section 3.2, we characterised a pair of probability distributions that generate symbol

values selected from an infinite cardinality, namely the geometric distribution and the zeta

distribution of Eq. (3.3). We have mainly focused our attention on the zeta distribution,

since it can be used for approximating the H.264 distribution.

Section 3.3 and Section 3.4 described the operations of the UEC encoder and decoder,

respectively. Explicitly, the UEC encoder consists of two parts, the unary encoder and the

trellis encoder of Figure 3.3. Owing to the synchronization between the unary codewords

and the trellis transitions, we found that the UEC decoder is capable of invoking the Log-

BCJR algorithm for exploiting all the residual redundancy left by the source encoder and

facilitates near-capacity operation at a moderate complexity.

In Section 3.5, we provided the EXIT chart analysis and characterized area properties

of the UEC code. We demonstrated that in the case of arbitrary symbol value distributions

[92], the capacity loss asymptotically approaches zero, as the complexity of the UEC trellis

is increased.

Section 3.6 introduced an SSCC EG-CC-IrURC benchmarker and detailed the encod-

ing and decoding operations of the EG-CC scheme. We showed that unless a recursive

non-systematic CC is employed, the output of the EG-CC scheme is not equiprobable,

hence resulting in a capacity loss.

In Section 3.7, we offered a deeper insight into the parametrization of the schemes, de-

tailing the design of IrURCs that may be concatenated with the UEC and EG-CC schemes

for achieving near-capacity operation.

In Section 3.8, we quantified the computational complexity of the UEC and EG-CC

schemes in terms of the number of ACS operations, in order to strike a desirable trade-

off between the conflicting requirements of low complexity and near-capacity operation.

Moreover, we considered three different scenarios in Section 3.7. In order to facilitate this,

we introduced puncturing for controlling the schemes’ throughputs and for facilitating fair

comparisons in each scenario considered.

In Section 3.9, the SER performance was characterized and compared between the

UEC-IrURC and EG-CC-IrURC parametrizations of Table 3.4, when operating within a

particular practical complexity limit. The UEC scheme was found to offer gains of up

to 1.3 dB in Figure 3.16, when operating within 1.6 dB of the capacity bound. This is

achieved without any increase in transmission energy, bandwidth, transmit duration or

decoding complexity.

3.10. Summary and Conclusions 77

As depicted in Figure 3.1, there are also some other aspects that we have to consider,

when designing a UEC scheme. Owing to the synchronous transitions between the trellis

states and the unary codewords as well as due to the symmetry of the trellis structure, it is

possible for us to beneficially exploit our novel trellis design, including the adaptive and

iterative decoding, irregular trellis structure and heuristic learning technique. Motivated

by this, in Chapter 4, we investigate an adaptive decoder exchanging extrinsic information

between the UEC code and concatenated code, for the sake of expediting the decoding

convergence and for striking an attractive trade-off between near-capacity operation and a

low complexity. In Chapter 5, we consider the UEC trellis encoder and carefully select the

component UEC candidate codes, in order to develop an irregular UEC scheme capable

of near-capacity operation at even lower Eb/N0 values. In Chapter 6, we then consider

non-stationary source distributions, where our UEC scheme learns the unknown source

statistics and dynamically adapts to the non-stationary statistics, so that the attainable de-

coding performance can be gradually improved.

Chapter 4

Adaptive UEC Codes for Expediting

Iterative Decoding Convergence

4.1 Introduction

In this chapter, we propose a novel serially concatenated structure, namely Adaptive UEC-

Turbo scheme [93], which performs adaptive iterative decoding in order to expedite the

convergence of the Unary Error Correction (UEC) codes. As highlighted in Figure 4.1,

this chapter addresses the inner concatenated code design and adaptive decoding aspects

of the scheme.

UEC
candidate
component

codes

Inner
concatenated

codes

Irregular

designs operations

Adaptive

distribution

Source

Figure 4.1: The design-flow of a UEC coded scheme. This chapter deals with the

design aspects in the order indicated using the bold boxes.

4.1.1 Background and Motivation

The UEC code of Figure 3.3 constitutes a novel Joint Source and Channel Coding (JSCC)

scheme capable of mitigating the capacity loss and facilitating near-capacity operation,

even when the source symbol values are selected from a set having an infinite cardinality,

such as the set of all positive integers. As discussed in Section 3.3, the UEC encoder in the

context of Figure 3.3 generates a bit sequence by concatenating unary codewords, while

the decoder employs the trellis of Figure 3.4 that has only a modest complexity. The UEC

decoder is capable of exploiting the residual redundancy left by the source encoder in the

4.1.1. Background and Motivation 79

unary encoded bit sequence using the Log-BCJR algorithm, since the UEC trellis of Fig-

ure 3.4 was designed for ensuring that the transitions between its states are synchronous

with the transitions between the consecutive unary codewords in the concatenated bit se-

quence. More specifically, Section 3.5 showed that when the symbol values have an arbi-

trary distribution, the capacity loss asymptotically approaches zero, as the number of states

in the UEC trellis increases, albeit at the cost of increased decoding complexity. Motivated

by this, in this chapter we conceive an adaptive UEC scheme that studies an attractive

trade-off between its decoding complexity and its error correction capability.

Observe in the generalised UEC trellis of Figure 3.4 that an r-state n-bit UEC code

is parametrized by a codebook C comprising r/2 number of codewords, each having n

bits. A particular codebook C1 represents an extension of another codebook C2, if C1

can be obtained by repeating the last element in C2. For example, the r = 6 codebook

C = {01, 11, 11} of Figure 3.6 can be considered to be an extension of the r = 4 codebook

C = {01, 11} of Figure 3.5. In this case, the UEC-encoded bit vector z will always be

identical, regardless of whether codebook C = {01, 11, 11} or codebook C = {01, 11}
is employed, as observed in Section 3.3.2. In fact, regardless of how much a codebook

C is extended, the UEC-encoded bit vector z will be identical, when encoding the same

symbol vector x. Moreover, when the number of states in the UEC trellis is increased,

the capacity loss of the UEC code can be asymptotically reduced to zero, albeit at the

cost of increased decoding complexity. We will exploit this property in Section 4.3 for

dynamically adjusting the number of states employed in the UEC decoder by carefully

adapting the decoding complexity.

As mentioned in Section 2.14, turbo codes [138], as well as the family of more gen-

eral schemes employing the ‘turbo principle’ [153, 154] facilitate near-capacity operation

without imposing an excessive decoding complexity or latency. This is achieved using

iterative decoding by exchanging LLRs between a number of decoders. We may employ

a carefully constructed hybrid combination of the serially concatenated scheme of Fig-

ure 2.2 and the parallel concatenated scheme of Figure 2.3, in order to construct a novel

UEC-Turbo scheme, which is capable of providing a substantial design freedom for the it-

erative decoding between the UEC decoder and the two component decoders. In this way,

a Three-Dimensional (3D) EXtrinsic Information Transfer (EXIT) chart may be conceived

for quantifying the benefit of activating each decoder at each stage of the iterative decoding

process, allowing us to activate the the specific component offering the greatest benefit at

each stage. Owing to this, a novel adaptive activation order of the decoders is achieved,

which expedites the convergence of iterative decoding.

Using these principles, this chapter proposes an adaptive iterative decoding technique

4.1.2. Novel Contributions 80

for expediting the iterative decoding convergence of UEC codes, which is referred to as

the Adaptive UEC-Turbo scheme. We also propose the employment of 3D EXIT charts

for controlling the dynamic adaptation of the UEC trellis decoder, as well as for control-

ling the decoder activation order between the UEC decoder and the turbo decoder. Our

simulation results show that the novel adaptive decoding technique advocated provides an

improved performance compared to a state-of-the-art JSCC benchmarker employing the

non-adaptive UEC scheme and an Separate Source and Channel Coding (SSCC) bench-

marker using the Elias Gamma (EG)-Convolutional Code (CC) scheme of Section 3.6.

4.1.2 Novel Contributions

The novel contributions of this chapter are summarised as follows:

• A three-stage concatenation of the UEC code and a half-rate turbo code is proposed,

in which there are three decoders that facilitate a 3D EXIT chart analysis and an

adaptive iterative decoding algorithm.

• We employ our 3D EXIT chart to estimate the potential quantitative benefits of ac-

tivating each decoder at each specific stage of the iterative decoding process. Fur-

thermore, a Two-Dimensional (2D) EXIT chart projection is employed to provide

insights into whether or not any capacity loss is expected for the scheme.

• Based on the EXIT chart analysis, we dynamically adapt the activation order of

the three component decoders of the UEC-Turbo scheme, in order to expedite the

decoding convergence of the entire scheme. Moreover, the memory storage required

for our 3D EXIT chart data is also quantified, which is shown to be readily acceptable

in practice.

• As mentioned above, the more states are employed by the UEC trellis decoder, the

nearer-capacity operation is achieved, but this is attained at the cost of an increased

decoding complexity. We quantify the computational complexity of each turbo com-

ponent decoder and of the UEC trellis decoder, when using different numbers of

states in terms of the number of Add, Compare and Select (ACS) operations. Mo-

tivated by this, we also adaptively adjust the number of states that are employed in

the UEC decoding trellis, in order to strike a desirable trade-off between the error

correction performance attained and the complexity.

• A performance comparison is carried out between our Adaptive UEC-Turbo scheme

and various non-adaptive state-of-the-art JSCC and SSCC benchmarkers. Our simu-

lation results show that the proposed scheme outperforms the benchmarkers without

requiring any additional decoding complexity, or transmission-duration, -bandwidth

or -energy.

4.1.3. Chapter Organisation 81

4.1.3 Chapter Organisation

The rest of this chapter is organised as follows:

• In Section 4.2, we propose our novel Adaptive UEC-Turbo scheme and describe the

operations of its transmitter and receiver.

• In Section 4.3, we conceive the proposed adaptive iterative decoding algorithm, al-

lowing not only the dynamic adjustment of the UEC decoder’s operation, but also

the dynamic adjustment of its iterative activation order exchanging extrinsic infor-

mation with the two turbo decoder components. We also analyse the corresponding

decoding complexity and storage requirements.

• In Section 4.4, both the capacity loss and the Symbol Error Ratio (SER) performance

of the proposed Adaptive UEC-Turbo scheme is compared to those of the state-of-

the-art benchmarkers employing either conventional SSCC or the non-adaptive UEC

scheme of Figure 3.3.

• In Section 4.5, we conclude the chapter.

4.2 System Overview

As shown in Figure 4.2, our UEC code is serially concatenated with a turbo code that

having two component Unity-Rate Convolutional (URC) codes. In this section, we detail

the operation of the UEC-Turbo scheme of Figure 4.2. The transmitter’s operation is de-

scribed in Section 4.2.1, while the receiver is considered in Section 4.2.2, where we show

that the number of states employed by the UEC decoder can be adapted independently

of the number of states employed by the UEC encoder. Owing to the novelty of the pro-

posed UEC-Turbo scheme, we show that the activation order of the three decoders may be

dynamically adapted in order to strike an expediting decoding convergence.

4.2.1 Transmitter

The UEC encoder of [92] is designed for conveying a vector x = [xi]
a
i=1 comprising a

number of symbols. The value of each symbol xi ∈ N1 may be selected from a probability

distribution Pr(Xi = x) = P (x) having an infinite cardinality, such as the set N1 =

{1, 2, 3, . . .} comprising all positive integers. In this chapter, we also assume that the

symbol values obey a zeta probability distribution [144], since this is typical of the symbols

produced by multimedia encoders, as described in Section 3.2. Without loss of generality,

Table 4.1 exemplifies the first ten symbol probabilities P (xi) for the zeta distribution of

Eq. (3.3) having the parameter of p1 = 0.797, which corresponds to s = 2.77. We will

frequently use p1 = 0.797 throughout the remainder of this thesis, since it is found that

4.2.1. Transmitter 82

URC2

URC1

URC2
encoder

encoder
URC1

π−1
3

decoder

decoder

QPSK
demodulator

Unary
decoder

x̂

UEC decoder

decoder
ỹp Trellis

z̃eu

z̃au

z̃el

z̃al

π−1
1

z̃ao π1

z̃eo π−1
2

π2

QPSK
modulator

π1

π2

π3

Turbo encoder

z

Turbo decoder

UEC encoder

Trellis
encoder

Unary
encoder

yx w

w̃

Figure 4.2: Schematic of the UEC-Turbo scheme, in which a UEC code is serially

concatenated with turbo coding and Gray-coded QPSK modulation schemes. The

subscripts ‘o’, ‘u’ and ‘l’ represent the outer UEC code, the upper turbo compo-

nent code and the lower turbo component code, respectively. Here, π1, π2 and π3

represent interleavers, while π−1
1 , π−1

2 and π−1
3 represent the corresponding dein-

terleavers. Multiplexer and de-multiplexer operations are also employed before π3

and after π−1
3 , respectively. By contrast to the UEC-IrURC scheme of Figure 3.3,

the IrURC code is replaced by a turbo code.

a fair comparison between unary- and EG-based schemes is achieved in this case. More

specifically, the average unary and EG codeword lengths are equal for p1 = 0.797.

The basic operations of the UEC encoder, including the unary encoder and trellis

encoder, have been introduced in Section 3.3. Here, we employ a new example and a

different trellis structure for illustrating that the number of states employed by the UEC

trellis decoder may be independent of that employed by the UEC trellis encoder. The out-

put of the unary encoder is generated by concatenating the selected codewords [yi]
a
i=1

of Table 4.1, in order to form the b-bit vector y = [yj]
b
j=1. For example, the source

vector x = [1, 1, 5, 1, 1, 2, 3, 1, 1, 6] of a = 10 symbols yields the b = 22-bit vector

y = [0011110001011000111110]. Note that the average length of the bit vector y is given

by (a · l).

Following unary encoding, the UEC encoder employs a trellis to encode the bit se-

quence y, as shown in Figure 4.2. The generalized UEC trellis of Figure 3.4 is parametrized

by the codebook C, which comprises r/2 number of n-bit codewords, where r is the num-

ber of trellis states employed. For example, the codebook C = {1} corresponds to the

r = 2-state n = 1-bit UEC trellis of Figure 4.3, while C = {1, 1, 1} yields the r = 6-state

n = 1-bit UEC trellis of Figure 4.4, respectively.

4.2.1. Transmitter 83

xi P (xi)
yi

Unary EG

1 0.797 0 1

2 0.117 10 010

3 0.038 110 011

4 0.017 1110 00100

5 0.009 11110 00101

6 0.006 111110 00110

7 0.004 1111110 00111

8 0.003 11111110 0001000

9 0.002 111111110 0001001

10 0.001 1111111110 0001010

Table 4.1: The first ten symbol probabilities for a zeta distribution having the

parameter p1 = 0.797, as well as the corresponding unary and EG codewords. By

contrast to Table 3.1, the parameter p1 has a different value in this table.

yj/zjmj−1 mj

1

2

1

2

0/1

1/0

0/0

1/1

Figure 4.3: An r = 2-state n = 1-bit UEC trellis, where the codebook C = {1}.
The codebook is different from that in the trellis of Figure 3.5.

yj/zjmj−1 mj

1

2

1

3

2

4

55

3

66

4

0/1

1/0

1/0

0/1

1/0

0/1

0/0

1/1

0/0

1/1

0/0

1/1

Figure 4.4: An r = 6-state n = 1-bit UEC trellis, where the codebook C =
{1, 1, 1}. The codebook is different from that in the trellis of Figure 3.6.

4.2.1. Transmitter 84

As mentioned in Section 3.3, each bit yj of the input bit sequence y = [yj]
b
j=1 forces

the trellis encoder to traverse from its previous state mj−1 ∈ {1, 2, . . . , r} to its next

state mj ∈ {1, 2, . . . , r}, in order of increasing bit-index j. Therefore, the bit vector y

identifies a path through the trellis, which may be represented by a vector m = [m]bj=0

comprising (b + 1) state values. Note that the example bit vector y provided above

yields the path m = [1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1] through the

r = 2-state trellis of Figure 4.3. Similiarly, the same bit vector y yields the path m =

[1, 2, 1, 3, 5, 5, 5, 2, 1, 2, 4, 1, 3, 5, 2, 1, 2, 4, 6, 6, 6, 6, 1] through the r = 6-state trellis of

Figure 4.4. Note that the trellis path m is guaranteed to terminate in the state mb = 1,

when the symbol vector x has an even length a, while mb = 2 is guaranteed, when a is

odd [92].

The UEC trellis encoder represents each bit yj in the vector y by an n-bit codeword

zj . This is selected from the codebook C = {c1, c2, . . . , cr/2−1, cr/2} or from the com-

plementary codebook C = {c1, c2, . . . , cr/2−1, cr/2}. Hence, the selected codewords are

concatenated to obtain the (b·n)-bit vector z = [zk]
b·n
k=1 of Figure 4.2. Recall that the r = 2-

and r = 6-state trellises of Figure 4.3 and Figure 4.4 yield the different paths m, when

encoding the same example bit vector y provided above. Despite this however, both result

in the same encoded bit vector z = [1000001011000101111110].

Note that the UEC-encoded bit vector z will always be identical, regardless of whether

the r = 2-state UEC trellis of Figure 4.3 or the r = 6-state UEC trellis of Figure 4.4 is

employed. This is because the r = 6 codebook C = {1, 1, 1} may be considered to be

an extension of the r = 2 codebook C = {1}. More specifically, a codebook C may be

extended by appending replicas of the final codeword in the codebook. For example, the

r = 2 codebook C = {1} can also be extended both to the r = 4 codebook C = {1, 1}
and to the r = 8 codebook C = {1, 1, 1, 1}. As a further example, the r = 6 codebook

C = {01, 11, 11} of Figure 3.6 can be considered to be an extension of the r = 4 codebook

C = {01, 11} of Figure 3.5. In fact, regardless of how much a codebook C is extended,

the UEC-encoded bit vector z will be identical, when encoding the same symbol vector x.

We will exploit this property in Section 4.3 for dynamically adjusting the number of states

employed in the UEC decoder.

The bit vector z may be modeled as a particular realization of a vector Z = [Zk]
b·n
k=1

comprising b · n binary RVs. Each binary RV Zk adopts the values 0 and 1 with the

probabilities Pr(Zk = 0) and Pr(Zk = 1) respectively, corresponding to a bit entropy of

HZk
= H [Pr(Zk = 0)] +H [Pr(Zk = 1)]. The overall average coding rate Ro of the UEC

encoder is given by

Ro =
a ·HX

∑b·n
k=1HZk

. (4.1)

4.2.2. Receiver 85

where HX is the symbol entropy of each symbol in vector x. Note that the average coding

rate of the UEC encoder depends upon the parameter p1 of the zeta distribution, as shown

in Figure 3.2 of [92]. Furthermore, the UEC trellis is designed to be symmetric and to rely

on complementary codewords, so that it produces equiprobable bit values, where Pr(Zk =

0) = Pr(Zk = 1) = 0.5 and giving a bit entropy of HZk
= 1. In this case, Eq. (4.1)

reduces to Ro = HX/(l ·n), which is identical to Equation 3.13. When the source symbols

obey a zeta distribution having p1 = 0.797, we obtain a UEC coding rate of Ro = 0.762,

as shown in Table 4.3, which is in agreement with Figure 3.7.

As shown in Figure 4.2, the UEC-encoded bit vector z is then forwarded to the turbo

encoder. This encodes the bit vector z twice, employing the pair of interleavers π1 and π2

to make the two encoded data sequences approximately statistically independent of each

other. Here, the pair of turbo component encoders are constituted by identical r = 8-state

URC encoders, which are labeled URC1 and URC2 in Figure 4.2. These employ (8,F) =

[1001, 1111] as the octally represented generator and feedback polynomials respectively,

as depicted in the eighth schematic of Figure 2.6. The coding rate Ri of the inner turbo

code is given by

Ri =

∑b·n
k=1HZk

2 · b · n , (4.2)

where the coding rate of each individual URC encoder is equal to 2 · Ri. In the scenario,

where HZk
= 1, we obtain Ri = 1/2, as shown in Table 4.3 and as discussed above.

After multiplexing the two resultant encoded bit sequences, the channel interleaver π3

is employed in Figure 4.2 for the sake of dispersing burst errors. Following this, Gray-

coded M = 4-ary Quadrature Phase-Shift Keying (QPSK) modulation may be employed

for transmitting the resultant bit vector w, as shown in Figure 4.2. The effective throughput

of the UEC-Turbo scheme is given by η = Ro · Ri · log2(M), which has the value of

η = 0.762 information bits/symbol, when the source symbols obey a zeta distribution

having p1 = 0.797, as shown in Table 4.3. Alternatively, a mapping scheme other than

Gray coding or a modulation scheme having a higher order M can be employed, although

this may require a higher complexity receiver design [92, 96].

4.2.2 Receiver

In the receiver of Figure 4.2, QPSK demodulation is employed in order to obtain the LLR

vector w̃. This is deinterleaved π−3
1 and demultiplexed, before iterative decoding com-

mences by exchanging extrinsic information among the URC1, URC2 and UEC decoders

of Figure 4.2. Note that higher-order modulation schemes may be readily employed, al-

though this would require the iterative exchange of extrinsic information between the de-

modulator and the URC decoders, in order to avoid capacity loss [145]. This four-stage

4.2.2. Receiver 86

concatenation scheme is considered in our work of [97], using the proposed adaptive iter-

ative decoding techniques in this chapter.

In the three-state concatenation of Figure 4.2, the interleavers π1, π−1
1 , π2 and π−2

2 are

employed for mitigating the correlation within the a priori LLR vectors of z̃ao, z̃
a
u and z̃al .

All three decoders apply the Log-BCJR algorithm [91], which has a complexity directly

dependent on the number of states employed. We assume perfect synchronization between

the UEC trellis and the unary codewords during the Log-BCJR algorithm’s γt calculation

of Equation (9) [91], as introduced in Section 2.11. This employs the conditional transition

probability Pr(Mj = m|Mj−1 = m′) of Equation 3.9. During Log-BCJR decoding, the

UEC trellis should emerge from m0 = 1 and be terminated either at mb = 1 or mb = 2,

depending on whether the length a of the symbol vector x is even or odd, respectively.

Note that since extending a UEC trellis does not change the UEC-encoded bit vector z, the

UEC decoder may decode it using an extended, larger-complexity version of the specific

UEC trellis employed by the UEC encoder. As explained in Chapter 3, increasing the

number of states r employed by the UEC trellis decoder in this way has the benefit of

improving its error correction capability, at the cost of increasing its complexity [92, 96].

In Section 4.3, we will exploit this to dynamically adjust r for the sake of striking an

attractive the trade-off between its decoding complexity and error correction capability.

Observe in Figure 4.2 that the a priori LLR vectors provided for each of the three

decoders are obtained as the sum of the extrinsic LLR vectors most recently generated by

the other two decoders, namely we have z̃ao = z̃eu + z̃el , z̃
a
u = z̃eo + z̃el and z̃al = z̃eo + z̃eu.

These LLR vectors comprise b number of LLRs, which pertain to the corresponding bits

of z. At the start of the iterative decoding process, the extrinsic LLR vectors z̃eo, z̃
e
u and z̃el

are initialized with zero-valued LLRs.

During the iterative decoding process, the iterative operation of the URC1, URC2 and

UEC decoders of Figure 4.2 may be performed using a wide variety of different decoder

activation orderings. For the sake of conceptional simplicity, a fixed decoder activation

order may be employed, in which the URC1, URC2 and UEC decoders of Figure 4.2 are

activated using a regular activation order repeated periodically. For example, the decoders

may be consecutively operated in turn, according to {URC1, URC2, UEC; URC1, URC2,

UEC; ...}, where each ordered consecutive operation of the URC1, URC2 and UEC de-

coders represents a full system iteration of the decoding process. Alternatively, we may

employ a non-periodic decoder activation order, in which an on-line decision is made at

each stage of the iterative decoding process, in order to adaptively and dynamically se-

lect which of the URC1, URC2 and UEC decoders of Figure 4.2 to activate next. This is

4.3. Adaptive Iterative Decoding 87

exploited in Section 4.3 using a novel 3D EXIT chart aided technique, in order to expe-

dite iterative decoding convergence towards an approximation of the ML error correction

performance.

Following the achievement of iterative decoding convergence, the UEC trellis decoder

of Figure 4.2 may invoke the Log-BCJR algorithm for generating the vector of a posteriori

LLRs ỹp that pertain to the corresponding unary-encoded bits in the vector y. Then, the

unary decoder sorts the vector of a posteriori LLRs ỹp, in order to identify the a number

of bits in the vector y that are most likely to have values of zero. A hard decision bit vector

ŷ is then obtained by setting the value of these bits to zero and the value of all other bits to

one. Finally, the bit vector ŷ can be unary decoded in order to obtain the symbol vector x̂,

which is guaranteed to comprise a number of symbols.

4.3 Adaptive Iterative Decoding

In this section, we propose our novel adaptive iterative decoding technique for the UEC-

Turbo scheme of Figure 4.2. As described in Section 4.1, this evaluates the benefit and cost

associated with activating each of the URC1, URC2 and UEC trellis decoders of Figure 4.2

at each stage of the iterative decoding process, in order to decide as to which decoder to

activate next. In the case of the UEC trellis decoder, the number of states r to employ is

also considered, as described in Section 4.2.

In Section 4.3.1, we employ 3D EXIT chart analysis [129,134] in order to quantify the

error correction benefit [155] that is offered by each decoder, if activated for the next de-

coding operation. Meanwhile, the computational complexity cost of each option is quan-

tified in terms of the number of the associated ACS arithmetic operations [96] in Sec-

tion 4.3.3. Hence, by jointly considering the benefit and cost, we can dynamically adapt

the iterative decoding process of the UEC-Turbo scheme of Figure 4.2, as described in

Section 4.3.2. Finally, Section 4.3.3 shows that the storage requirements of the proposed

technique are modest, compared to those of the interleavers of Figure 4.2.

4.3.1 EXIT Chart Analysis

In this section, we analyze the iterative decoding convergence of the UEC-Turbo scheme

introduced in Figure 4.2, which serially concatenates the UEC code [92] with a turbo

code. In Section 4.3.1.1, we consider the 2D EXIT curves of the URC1, URC2 and UEC

trellis decoders of Figure 4.2 separately. Then Section 4.3.1.2 shows that the three 2D

EXIT curves can be converted into 3D surfaces and plotted in the same 3D EXIT chart,

allowing the explicit visualization of the iterative decoding trajectory, when employing

any arbitrary decoder activation order. Furthermore, the 3D EXIT chart may be employed

4.3.1. EXIT Chart Analysis 88

for quantifying the benefit, offered by each decoder in terms of the achievable Mutual

Information (MI) improvement. Finally, Section 4.3.1.3 shows that the 3D EXIT chart

may be projected into two dimensions, in order to demonstrate that the proposed UEC-

Turbo scheme facilitates near-capacity operation.

4.3.1.1 2D EXIT Curves

As shown in Figure 4.2, the URC1 decoder generates the extrinsic LLR vector z̃eu with

the aid of the a priori LLR vector z̃au, which is combined with the LLRs received over

the channel. Therefore, the MI I(z̃eu; z) of z̃eu is related to the MI I(z̃au; z) of z̃au, as well

as to the MI I(w̃;w) of the LLRs w̃ provided by the demodulator, which depends on the

channel’s Signal to Noise Ratio (SNR) per bit Eb/N0 = SNR/η.

I(w̃;w) = 0.514
I(w̃;w) = 0.405
I(w̃;w) = 0.378

r

(a)

I(z̃eo; z)

I
(z̃

a o
;z
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0
I(w̃;w) = 0.514
I(w̃;w) = 0.405
I(w̃;w) = 0.378

r

(b)

I(z̃au; z)

I
(z̃

e u
;z
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 4.5: 2D EXIT charts for the UEC-Turbo scheme of Figure 4.2, for UEC

trellises having various numbers of states r ∈ {2, 4, 6, 8}. These EXIT charts are

projected in terms of (a) the URC1 decoder and (b) the UEC trellis decoder. In (a),

the solid lines represent the URC1 EXIT function I(z̃eu; z) = fu[I(z̃
a
u; z), I(w̃;w)]

for a variety of MI values I(w̃;w). Meanwhile the dotted lines represent the pro-

jected UEC-URC2 EXIT function I(z̃au; z) = fo,l[I(z̃
e
u; z), I(w̃;w), r], for the

case where I(w̃;w) = 0.405. In (b), the solid lines denote the inverted UEC

EXIT function I(z̃eo; z) = fo[I(z̃
a
o; z), r], while the dotted lines denote the pro-

jected URC1-URC2 EXIT function I(z̃ao; z) = fu,l[I(z̃
e
o; z), I(w̃;w)]. Here, MI

values of I(w̃;w) = 0.378, 0.405 and 0.514 correspond to uncorrelated narrow-

band Rayleigh fading channel Eb/N0 values of 0.8 dB, 1.3 dB and 3.3 dB, respec-

tively. Different random designs are employed for the interleavers π1, π2 and π3

in each simulated frame.

As detailed in [99], this relationship may be visualized using the 2D EXIT func-

tion I(z̃eu; z) = fu[I(z̃
a
u; z), I(w̃;w)] of the URC1 decoder, which is plotted for various

I(w̃;w) values in the 2D EXIT chart of Figure 4.5(a). Note that because the URC1 de-

coder is recursive [156], and hence has an infinite impulse response, it may be referred

to as Maximal Mutual Information Achieving (MMIA) [129]. As a result of this, the

URC1 EXIT function reaches the I(z̃au; z) = I(z̃eu; z) = 1 point of pefect decoding con-

vergence associated with the top-right corner of the EXIT chart of Figure 4.5(a), where

4.3.1. EXIT Chart Analysis 89

low decoding error rates are facilitated [156]. More explicitly, a low decoding error

rate is achieved, because in the presence of perfect a priori information, perfect extrin-

sic information is generated, again, as represented by reaching the (1, 1) point of Fig-

ure 4.5(a). Likewise, since URC2 of Figure 4.2 is identical to URC1, its EXIT function

I(z̃el ; z) = fl[I(z̃
a
l ; z), I(w̃;w)] is identical to that of URC1, therefore also reaching the

I(z̃au; z) = I(z̃eu; z) = 1 point.

Similarly, the UEC decoder’s transformation of the a priori LLR vector z̃ao into the

extrinsic LLR vector z̃eo may be characterized by the UEC EXIT function I(z̃eo; z) =

fo[I(z̃
a
o; z), r]. This EXIT function is shown inverted - i.e. with the abscissa and ordi-

nate axes swapped - in the 2D EXIT chart of Figure 4.5(b) for the cases of employing the

UEC codebooks C = {1}, C = {1, 1}, C = {1, 1, 1} and C = {1, 1, 1, 1}, which corre-

spond to r = 2, 4, 6 and 8 UEC trellis states, respectively. Note that when employing these

n = 1-bit UEC codebooks, a free-distance of dfree = 1 results for the UEC-encoded bit

vector z. Note that because we have dfree < 2, these UEC codebooks are not MMIA [150].

Owing to this distance-limitation, the inverted UEC EXIT functions of Figure 4.5(b) do

not reach the I(z̃ao; z) = I(z̃eo; z) = 1 point, where low decoding error rates are facilitated.

Nevertheless, this does not prevent iterative decoding convergence towards a low decoding

error rate, since the presence of the two MMIA URC1 and URC2 decoders is sufficient

for achieving this [129]. Note that inverted EXIT curves corresponding to a selection of

n = 2-bit UEC codebooks can be seen in Figure 3.8.

4.3.1.2 3D EXIT Chart

Observe in Figure 4.2 that the receiver employs an iterative exchange of LLRs that pertain

to the bit sequence z among three decoding components, i.e., the URC1 decoder, the URC2

decoder and the UEC’s trellis decoder of Figure 4.2. The a priori LLR sequence z̃ao is

obtained as a sum of the extrinsic LLR sequences generated by the other two components

z̃ao = z̃eu+ z̃el . Hence, the inverted EXIT function of the UEC component, which is denoted

by I(z̃eo; z) = fo[I(z̃
a
o; z), r] may be expressed as a 3D function of two arguments, i.e. as

I(z̃eo; z) = fo[I(z̃
e
u; z), I(z̃

e
l ; z), r]. Note that for the scenario, where the extrinsic LLRs in

the sequences z̃eu and z̃el are Gaussian distributed, the MI of the a priori LLR sequence z̃ao

can be obtained analytically, according to [129, 149]

I(z̃ao; z) = J

(

√

J−1[I(z̃eu; z)]
2 + J−1[I(z̃el ; z)]

2

)

, (4.3)

where

J(σ) = 1−
∫ ∞

−∞

e−(ξ−σ2/2)2/2σ2

√
2πσ2

· log2[1 + e−ξ]dξ

4.3.1. EXIT Chart Analysis 90

and σ = J−1(I) is the inverse function. In practice, the approximations of [149] may

be used for these functions. This approach allows the 3D EXIT function I(z̃eo; z) =

fo[I(z̃
e
u; z), I(z̃

e
l ; z), r] to be obtained from the 2D EXIT function I(z̃eo; z) = fo[I(z̃

a
o; z), r],

without requiring time-consuming Monte-Carlo simulations.

In a similar manner, the URC1 component’s EXIT function of I(z̃eu; z) = fu[I(z̃
a
u; z),

I(w̃;w)] seen in Figure 4.5(a) may be expressed as I(z̃eu; z) = fu[I(z̃
e
o; z), I(z̃

e
l ; z), I(w̃;w)].

Note that since the URC1 and URC2 components of the turbo code shown in Figure 4.2

are identical, we may directly obtain the URC2 component’s 3D function I(z̃el ; z) =

fl[I(z̃
e
o; z), I(z̃

e
u; z), I(w̃;w)], where we have fu = fl. Since all three of the 3D EXIT

functions I(z̃eo; z), I(z̃
e
u; z) and I(z̃el ; z) have the same arguments, they can all be plot-

ted in a single 3D EXIT chart having axes labelled with these three MIs. This approach

is shown in Figure 4.6 for our UEC-Turbo scheme of Figure 4.2, when communicating

over uncorrelated narrowband Rayleigh fading channels having a range of I(w̃;w) values.

Here, the complex channel gain has a mean of 0, a variance of 1 and a coherence time of 0,

such that each fading coefficient affects one transmitted symbol. Note that we employ this

channel model, since it is representative of various wireless channels. More specifically,

the presence of the interleaver π3 means that the EXIT functions of URC1 and URC2 re-

main unaffected by the coherence time of the Rayleigh fading channel, provided that it is

short compared to the transmit duration of each frame. Owing to this, our results apply not

only to uncorrelated Rayleigh fading channels, but also to fast fading channels.

For example, as shown in Figure 4.6(b), the surfaces I(z̃eu; z) = fu[I(z̃
e
o; z), I(z̃

e
l ; z), I(w̃;w)]

and I(z̃el ; z) = fl[I(z̃
e
o; z), I(z̃

e
u; z), I(w̃;w)], where I(w̃;w) = 0.405, represent the ex-

trinsic information produced by the URC1 and URC2 components of the turbo decoder

for Eb/N0 = 1.3 dB. Note that the intersection between these two surfaces and the plane

I(z̃eo; z) = 0 gives the 2D EXIT chart for the turbo decoder alone. This 2D EXIT chart in

Figure 4.5(a) shows that without the aid of the UEC trellis decoder, the decoding trajec-

tory would converge at about I(z̃eu; z) = I(z̃el ; z) = 0.08. By contrast, when the r = 6-

state UEC trellis decoder is introduced, an open 3D tunnel can be created, as shown in

Figure 4.6(b). This allows the iterative decoding trajectory to reach the extrinsic MIs of

I(z̃eu; z) = I(z̃el ; z) = 1, where low decoding error rates are facilitated, as described in

Section 4.3.1.1. Note that the trajectories shown in Figure 4.6 rely on the fixed, periodic

decoder activation order of {URC1, URC2, UEC; URC1, URC2, UEC; ...}, as described

in Section 4.2.2. However, the 3D EXIT chart in Section 4.3.2 will be used for comparing

the quantitative potential benefits associated with activating each decoder at each stage of

the iterative decoding process, in order to dynamically adapt the decoder activation order

for expediting the attainable convergence.

4.3.1. EXIT Chart Analysis 91

(a)

0

I(z̃e
u
; z)

1

00

11

I(z̃e
o
; z) I(z̃e

l
; z)

I(z̃e
u
; z) = fu[I(z̃

e

o
; z), I(z̃e

l
; z), I(w̃;w)]

I(z̃e
o
; z) = fo[I(z̃

e

u
; z), I(z̃e

l
; z), I(w̃;w)]

I(z̃e
l
; z) = fl[I(z̃

e

o
; z), I(z̃e

u
; z), I(w̃;w)]

1

1

1

00

0

I(z̃e
u
; z)

(b)

I(z̃e
o
; z) I(z̃e

l
; z)

I(z̃e
l
; z) = fl[I(z̃

e

o
; z), I(z̃e

u
; z), I(w̃;w)]

I(z̃e
u
; z) = fu[I(z̃

e

o
; z), I(z̃e

l
; z), I(w̃;w)]

I(z̃e
o
; z) = fo[I(z̃

e

u
; z), I(z̃e

l
; z), I(w̃;w)]

1

0
1

0 0

1

I(z̃e
u
; z)

I(z̃e
o
; z) I(z̃e

l
; z)

(c) I(z̃e
l
; z) = fl[I(z̃

e

o
; z), I(z̃e

u
; z), I(w̃;w)]

I(z̃e
u
; z) = fu[I(z̃

e

o
; z), I(z̃e

l
; z), I(w̃;w)]

I(z̃e
o
; z) = fo[I(z̃

e

u
; z), I(z̃e

l
; z), I(w̃;w)]

Figure 4.6: 3D EXIT surfaces for the UEC-Turbo scheme of Figure 4.2 when

employing r = 6 states in the UEC trellis decoder, for communicating over

an uncorrelated narrowband Rayleigh fading channel, having MI values of (a)

I(w̃;w) = 0.378, (b) 0.405 and (c) 0.514, which correspond to uncorrelated

Rayleigh fading channel Eb/N0 values of 0.8 dB, 1.3 dB and 3.3 dB, respec-

tively. In each case, a bold line is used to indicate the iterative decoding trajectory,

when employing the fixed decoder activation order {URC1, URC2, UEC; URC1,

URC2, UEC; ...}. Note that these iterative decoding trajectories reside below the

URC1 EXIT surface fu and above the two other EXIT surfaces fo and fl. Different

random designs are employed for the interleavers π1, π2 and π3 in each simulated

frame.

4.3.1. EXIT Chart Analysis 92

As shown in Figure 4.6(c), a wider EXIT chart tunnel is created at I(w̃;w) = 0.514,

requiring fewer activations of the UEC, URC1 and URC2 decoders in order to achieve

a low decoding error rate. By contrast, the EXIT chart tunnel is closed for I(w̃;w) =

0.378, preventing the achievement of a low decoder error rate, as shown in Figure 4.6(a).

In Section 4.3.1.3, our 3D EXIT charts are projected into two dimensions, in order to

characterize the effect of the I(w̃;w) value upon the iterative decoding convergence of the

proposed UEC-Turbo scheme, as well as to evaluate its capacity-achieving capability.

4.3.1.3 2D EXIT Chart Projections

The 3D EXIT surfaces of Figure 4.6 can be projected into 2D [129, 147, 157], which were

plotted in the 2D EXIT charts of Figure 4.5. More explicitly, Figure 4.5(a) complements

the URC1 component’s EXIT function I(z̃eu; z) = fu[I(z̃
a
u; z), I(w̃;w)] with the EXIT

function I(z̃au; z) = fo,l[I(z̃
e
u; z), I(w̃;w), r] where I(w̃;w) = 0.405, which represents a

2D projection of the 3D UEC and URC2 EXIT surfaces of Figure 4.6. This EXIT function

characterizes the process in which the LLR vector z̃eu is fed into the UEC and URC2 de-

coders, where these components are iteratively operated until convergence is achieved, and

then they generate the LLR vector z̃au, as shown in Figure 4.2. As a result, Figure 4.5(a)

characterizes a decoder activation order of {URC1, URC2, UEC, URC2, UEC, . . . , URC2,

UEC; URC1, URC2, UEC, URC2, UEC, . . . , URC2, UEC; . . . }. Note that the 2D projec-

tion of the 3D UEC and URC1 EXIT surfaces is identical to that of the 3D UEC and URC2

EXIT surfaces, owing to the symmetry of URC1 and URC2. Figure 4.5(a) shows that an

open EXIT chart tunnel is created at I(w̃;w) = 0.405 , when r = 6 states are employed

in the UEC trellis decoder, which is in agreement with the 3D EXIT chart of Figure 4.6(b).

This facilitates iterative decoding convergence to the I(z̃au; z) = I(z̃eu; z) = 1 point at the

top-right corner of the EXIT chart of Figure 4.5(a), where a low decoding error rate is

achieved.

Similarly, the inverted UEC EXIT function I(z̃eo; z) = fo[I(z̃
a
o; z), r] of Figure 4.5(b)

can be complemented with the EXIT function I(z̃ao; z) = fu,l[I(z̃
e
o; z), I(w̃;w)], which

represents a 2D projection of the 3D URC1 and URC2 EXIT surfaces of Figure 4.6. This

EXIT function characterizes the process in which the LLR vector z̃eo is forwarded to the

URC1 and URC2 components of Figure 4.2, where these components are iteratively op-

erated until convergence is achieved, and then they generate the LLR vector z̃ao, as shown

in Figure 4.2. As a result, Figure 4.5(b) characterizes a component activation order of

{URC1, URC2, URC1, URC2, . . . , URC1, URC2, UEC; URC1, URC2, URC1, URC2,

. . . , URC1, URC2, UEC; . . . }. Note that in agreement with the 3D EXIT chart of Fig-

ure 4.6(b), an open EXIT chart tunnel is created in Figure 4.5(b) at I(w̃;w) = 0.405, when

4.3.1. EXIT Chart Analysis 93

r = 6 states are employed in the UEC trellis decoder. This open tunnel facilitates iterative

decoding convergence to the top edge of the EXIT chart, where we have I(z̃ao; z) = 1.

The area properties of 2D EXIT charts1 [132] can be employed to determine whether an

iteratively decoded scheme suffers from any capacity loss, which prevents its near-capacity

operation. As discussed in Section 4.2.1 and shown in Table 4.3, the effective throughput

of the proposed UEC-Turbo scheme is η = 0.762 information bits/symbol. When com-

municating over an uncorrelated narrowband Rayleigh fading channel, the Discrete-input

Continuous-output Memoryless Channel (DCMC) capacity C becomes equal to η, when

the Eb/N0 value is equal to the capacity bound of 0.84 dB, as shown in Table 4.3. This

implies that reliable communication is possible for Eb/N0 values above 0.84 dB, provided

that an open tunnel can be created in the EXIT chart of Figure 4.5(b).

However, in order to facilitate an open EXIT chart tunnel, it is necessary, but not suf-

ficient, for the area Ao beneath the inverted UEC EXIT function I(z̃eo; z) = fo[I(z̃
a
o; z), r]

to exceed the area Ai beneath the 2D projection of the URC1 and URC2 EXIT surfaces

I(z̃ao; z) = fu,l[I(z̃
e
o; z), I(w̃;w)] [132], as discussed in Section 2.13. For the cases where

the proposed UEC-Turbo scheme of Figure 4.2 employs r ∈ {2, 4, 6, 8}UEC trellis states,

Table 4.3 quantifies the area bound as the Eb/N0 value at which Ao = Ai. These area

bounds represent the lowest Eb/N0 values, where it would be possible to achieve a low de-

coding error rate, provided that the EXIT functions matched each other sufficiently well.

Note that the area bound exceeds the capacity bound for all cases considered in Ta-

ble 4.3, where the discrepancy represents capacity loss. However, this capacity loss can

be seen to approach zero as the number of UEC trellis states r is increased. This is be-

cause the expression for Ao of Eq. (3.16) in Section 3.5.1 asymptotically approaches the

UEC coding rate Ro as the number of trellis states r is increased [92], where Ao = Ro is

a necessary condition for avoiding capacity loss [131]. Furthermore, the other necessary

condition Ai = C/[Ri · log2(M)] is also satisfied, since the URC1 and URC2 codes of

Figure 4.2 each have an individual coding rate of 2Ri = 1 [131].

In practice, the EXIT functions of Figure 4.5(b) do not match each other perfectly and

hence no an open tunnel emerges, until the Eb/N0 value exceeds the tunnel bound. As

shown in Figure 4.5(b) and confirmed in Figure 4.5(a) and Figure 4.6(b), the proposed

UEC-Turbo scheme has a tunnel bound of Eb/N0 = 1.3 dB, when employing r = 6 UEC

trellis states. The tunnel bounds for r ∈ {2, 4, 6, 8} are summarised in Table 4.3.

1It was shown by Land [130] that the size of the open area between a pair of components exchanging

extrinsic information is commensurate with the associated capacity loss.

4.3.2. Dynamic Adjustment of the Decoder Activation Order 94

4.3.2 Dynamic Adjustment of the Decoder Activation Order

In this section, we propose a novel adaptive iterative decoding technique for dynamically

adjusting the decoder activation order in the UEC-Turbo scheme of Figure 4.2. In contrast

to the fixed decoder activation orders that have been discussed in Sections 4.2.2, 4.3.1.2 and

4.3.1.3, these dynamic decoder activation orders can vary between frames. More specif-

ically, following the activation of a URC decoder, our novel adaptive iterative decoding

technique can either activate the other URC decoder, or it can activate the UEC trellis de-

coder and select the number r ∈ {2, 4, 6, 8} of trellis states to employ. Similarly, following

the activation of the UEC trellis decoder, our novel adaptive iterative decoding technique

can then activate either the URC1 or the URC2 decoder. As we will show in Section 4.4,

this expedites iterative decoding convergence, facilitating near-capacity operation, with re-

duced computational complexity. We employ the EXIT charts of Section 4.3.1 to quantify

the benefit associated with activating the UEC, URC1 and URC2 decoders at each stage of

the iterative decoding process, as well as the computational complexity of Section 4.3.3 to

quantify the corresponding cost.

At each stage of the iterative decoding process, our proposed technique estimates the

quality of the LLR vectors z̃eo, z̃
e
u and z̃el that were obtained after the most recent activation

of the respective decoders. More specifically, the averaging method of measuring MI [158]

may be employed to estimate I(z̃eo; z), I(z̃
e
u; z) and I(z̃el ; z), without requiring knowledge

of the bit values in the vector z. Likewise, the averaging method may be employed to

estimate the MI I(w̃;w) of the LLRs w̃ provided by the QPSK demodulator. Following

this, the 3D EXIT charts of Section 4.3.1.2 may be employed to predict the extrinsic MI

that is offered by activating each decoder. Then, the corresponding MI improvements can

be obtained as the discrepancies between these predicted MIs and the current MIs, in order

to quantify the benefit associated with activating each decoder. For example, the benefit

associated with activating the UEC trellis decoder using r states may be quantified by the

MI improvement of

∆Iro = fo [I(z̃
e
u; z), I(z̃

e
l ; z), r]− I(z̃eo; z). (4.4)

Similarly, the benefits associated with the URC1 and URC2 decoders may be quantified as

∆Iu = fu [I(z̃
e
o; z), I(z̃

e
l ; z), I(w̃;w)]− I(z̃eu; z), (4.5)

∆Il = fl [I(z̃
e
o; z), I(z̃

e
u; z), I(w̃;w)]− I(z̃el ; z), (4.6)

respectively.

As discussed in Section 4.3.1.3, when the number of states r employed by the UEC

4.3.3. Complexity and Storage Analysis 95

trellis decoder is increased, a MI improvement ∆Iro may be expected. Therefore, our

novel adaptive iterative decoding technique also considers the computational complexity

cost Cr
o , Cu and Cl of the UEC decoder having r ∈ {2, 4, 6, 8} states, as well as the 8-state

URC1 and URC2 decoders, respectively. As discussed in Section 4.3.3, Table 4.2 states

the number of ACS operations required by each decoder. Note that while our adaptive

technique makes on-line decisions about which decoder to activate at each stage of the

iterative decoding process, this is performed using the complexity figures of Table 4.2,

which were calculated in an off-line fashion. These complexity figures remain constant

throughout each decoding iteration and for each transmitted frame. For example, when

employing the r = 6-state n = 1-bit trellis shown in Figure 4.4, the complexity cost is

C6
o = 166 ACS operations per bit of z.

After each stage of the iterative decoding process, the benefit-to-cost ratios ∆Iro/C
r
o ,

∆Iu/Cu and ∆Il/Cl are calculated for the UEC trellis decoder having r ∈ {2, 4, 6, 8}
states, as well as for the URC1 and URC2 decoders, respectively. Then, the particular

decoder offering the highest benefit-to-cost ratio is selected for activation in the next stage

of the iterative decoding process.

As shown in Algorithm 4.1, the adaptive iterative decoding process continues, until the

accumulated complexityC of the activated components reaches the pre-defined complexity

limit Climit = 273 ACS operations. Note that these 273 ACS operations are reserved, so

that even if the component having the highest complexity is selected in the final stage

of the iterative decoding process, there will be 49 ACS operations remaining. This then

allows the r = 2 UEC trellis decoder to obtain the a posteriori LLR vector ỹp, as shown

in Table 4.2. However, if more ACS operations are available following the final stage of

iterative decoding, then a UEC trellis having a higher number of states r can be selected for

obtaining ỹp at a reduced probability of error. Furthermore, the iterative decoding process

will be terminated early, if the a posteriori MI I(z̃eo + z̃eu + z̃el ; z) reaches 0.999, which

implies that error free decoding can be achieved without operating any further component

decoders.

4.3.3 Complexity and Storage Analysis

In this section, we quantify the complexity of activating the UEC trellis decoder when em-

ploying r number of trellis states, in addition to quantifying the complexity associated with

activating the URC1 and URC2 decoders of Figure 4.2. Moreover, we consider the storage

requirements of the adaptive iterative decoding technique introduced in Section 4.3.2.

The complexity of each component decoder was quantified in the context of an iterative

decoding scheme relying on the number of trellis transitions and states in their respective

4.3.3. Complexity and Storage Analysis 96

Algorithm 4.1: Adaptive iterative decoding algorithm

1: z̃eo ← 0, z̃eu ← 0, z̃el ← 0, C ← 0.

2: while C ≤ Climit − 273 and I(z̃eo + z̃eu + z̃el ; z) < 0.999 do

3: z̃ao ← z̃eu + z̃el , z̃
a
u ← z̃eo + z̃el and z̃al ← z̃eo + z̃eu.

4: Measure MI: I(z̃ao; z), I(z̃
a
u; z) and I(z̃al ; z).

5: for r ∈ {2, 4, 6, 8} do

6: ∆Iro ← fo [I(z̃
a
o; z), r] − I(z̃eo; z). {}Predict MI improvement

7: end for

8: ∆Iu ← fu [I(z̃
a
u; z), I(w̃;w)]− I(z̃eu; z).

9: ∆Il ← fl [I(z̃
a
l ; z), I(w̃;w)] − I(z̃el ; z).

10: best← max(∆Iro/C
r
o ,∆Iu/Cu,∆Il/Cl), r ∈ {2, 4, 6, 8}.

11: for r ∈ {2, 4, 6, 8} do

12: if ∆Iro/C
r
o = best then

13: Activate r-state UEC trellis decoder to convert z̃ao into z̃eo,

14: C ← C + Cr
o .

15: end if

16: end for

17: if ∆Iu/Cu = best then

18: Activate URC1 decoder to convert z̃au into z̃eu,

19: C ← C +Cu.

20: end if

21: if ∆Il/Cl = best then

22: Activate URC2 decoder to convert z̃al into z̃el ,

23: C ← C +Cl.

24: end if

25: end while

26: z̃ao ← z̃eu + z̃el
27: if C ≤ Climit − 223 then

28: Activate r = 8-state UEC trellis decoder to convert z̃ao into ỹp,

29: else if C ≤ Climit − 165 then

30: Activate r = 6-state UEC trellis decoder to convert z̃ao into ỹp,

31: else if C ≤ Climit − 107 then

32: Activate r = 4-state UEC trellis decoder to convert z̃ao into ỹp,

33: else

34: Activate r = 2-state UEC trellis decoder to convert z̃ao into ỹp.

35: end if

trellises [159]. This determines the number of ACS arithmetic operations. As discussed

in Section 3.8, our approach is to decompose each of the Log-BCJR calculations detailed

in Section 2.11 into their constituent addition and max∗ operations, allowing a fair com-

parison between the complexities of the components having different types of operations.

Again, we employ the Look-Up-Table (LUT) based technique of [152] to convert the max∗

operation into five ACS arithmetic operations, as described in Section 2.11.1. Hence, we

know that the complexity of each type of decoder scales linearly with the number of bits

b ·n in the encoded vector z of Figure 4.2. Table 4.2 lists the number of max∗ and addition

operations that are performed per bit of z, when each type of decoder employs a trellis

having r states. Here, the computational complexity of the UEC trellis decoder depends

on whether it is used for generating the extrinsic LLR vector z̃e or for the a posteriori

4.3.3. Complexity and Storage Analysis 97

Decoder r max∗ add ACS

n = 1-bit Trellis BCJR decoder ỹp

2 6 19 49

4 14 37 107

6 22 55 165

8 30 73 223

10 38 91 281

n = 1-bit Trellis BCJR decoder z̃eo

2 6 20 50

4 14 38 108

6 22 56 166

8 30 74 224

10 38 92 282

URC BCJR decoder
2 6 19 49

8 30 73 223

URC Viterbi decoder 2 2 8 18

Table 4.2: Number of addition and max∗ operations that are performed per bit

of z, for the various types of decoders of Figure 4.2 employing trellises having r
states.

LLR vector ỹp. Note that the results of Table 4.2 complement those listed in Table 3.5 for

n = 2-bit codes.

Now we consider the storage requirements of the novel adaptive iterative decoding

technique introduced in Section 4.3.2. In order to quantify the benefit associated with

activating each decoder, in comparison to that of the others, the value of the functions

fo [I(z̃
e
u; z), I(z̃

e
l ; z), r], fu [I(z̃

e
o; z), I(z̃

e
l ; z), I(w̃;w)] and fl [I(z̃

e
o; z), I(z̃

e
u; z), I(w̃;w)]

is required. Rather than storing these 3D EXIT functions, the associated storage require-

ments can be reduced by instead storing the 2D EXIT functions fo [I(z̃
a
o; z), r], fu[I(z̃

a
u; z),

I(w̃;w)] and fl [I(z̃
a
l ; z), I(w̃;w)]. In this way, Eq. (4.4) – Eq. (4.6) may be reformulated

as

∆Iro = fo [I(z̃
a
o; z), r]− I(z̃eo; z), (4.7)

∆Iu = fu [I(z̃
a
u; z), I(w̃;w)]− I(z̃eu; z), (4.8)

∆Il = fl [I(z̃
a
l ; z), I(w̃;w)]− I(z̃el ; z), (4.9)

where I(z̃ao; z), I(z̃
a
u; z) and I(z̃al ; z) may be obtained using Eq. (4.3).

Furthermore, an infinite amount of storage would be required for storing the values of

the 2D EXIT functions for all possible values of I(z̃eo; z), I(z̃
e
u; z), I(z̃

e
l ; z) and I(w̃;w).

Instead, we recommend storing the 2D EXIT functions for only a limited set of carefully

selected quantised values of these parameters. During the adaptive iterative decoding pro-

cess, the values of the 2D EXIT functions may be approximated by interpolating between

the values stored.

4.4. Comparison with Benchmarkers 98

In particular, based on the observations from Figures 3.14, 3.15 and 3.16, we recom-

mend storing the values of the 2D UEC EXIT function for only the 4 values of r in the

set {2, 4, 6, 8}, since having r ≥ 10 states offers only a marginal additional MI improve-

ment compared to r = 8, at the cost of a significantly higher computational complexity.

Additionally, it is only necessary to store one set of 2D URC EXIT functions, since the

URC1 and URC2 decoders are identical. We recommend storing the values of the 2D URC

EXIT function for only the 24 I(w̃;w) values in the set of {0.337, 0.362, 0.389, 0.415,

0.443, 0.456, 0.465 0.476, 0.487, 0.498, 0.510, 0.521, 0.532, 0.543, 0.554, 0.565, 0.576,

0.587, 0.598, 0.609, 0.635, 0.661, 0.686, 0.710}, which correspond to the Eb/N0 values

of {0.0, 0.5, 1.0, 1.5}, {2.0, 2.2, . . . , 4.8, 5.0} and {5.5, 6.0, 6.5, 7.0}. This is motivated by

the observation that at very low I(w̃;w) values, iterative decoding convergence is impos-

sible and hence any efforts to optimise the process are futile. Furthermore, at very high

I(w̃;w) values, iterative decoding is unnecessary, since error free decoding can typically

be achieved by activating each of the UEC, URC1 and URC2 decoders only once. Simi-

larly, we recommend storing the values of the 2D EXIT functions for only the 26 values

of a priori MI in the set {0.00, 0.04, . . . , 0.96, 1.00}. Finally, we suggest using 8 bits to

store the extrinsic MI values that are obtained by the 2D EXIT functions. In Section 4.4,

we will show that using more storage would not give significantly improved performance,

while reducing it would degrade the performance.

Following the above recommendations, a total of 5824 bits memory is required for

storing the 2D EXIT functions. We consider this amount of storage to be practical, since

it is comparable to the number of bits required to store the set of 3GPP LTE interleaver

parameters [120].

4.4 Comparison with Benchmarkers

In this section, we compare our Adaptive UEC-Turbo scheme of Section 4.3 with four

benchmarkers, which are listed in Table 4.3.

1. Non-adaptive UEC-Turbo

In the first benchmarker, we consider the non-adaptive UEC-Turbo scheme, em-

ploying the fixed, periodic decoder activation order of {URC1, URC2, UEC; URC1,

URC2, UEC; . . . }. This benchmarker has the same schematic as that in Figure 4.2.

However, in both the transmitter and receiver of this non-adaptive scheme, we em-

ploy an n = 1-bit UEC trellis having a fixed number of states r = 2, 4, 6 or 8,

corresponding to the UEC codebooks C = {1}, C = {1, 1}, C = {1, 1, 1} and

C = {1, 1, 1, 1}, respectively.

2. EG-URC-Turbo

4.4. Comparison with Benchmarkers 99

Additionally, the JSCC UEC-Turbo scheme of Figure 4.2 may be compared to a

classic SSCC benchmarker, which we refer to as the EG-URC-Turbo scheme, as

shown in Figure 4.8. Separately from channel coding, this scheme employs an EG

code for source coding, where the first ten EG codewords are illustrated in Table 4.1

and the average EG codeword length is given by l =
∑

x∈N1
P (x) (2⌊log2(x)⌋ + 1).

URC2

URC1

URC2
encoder

encoder
URC1

π−1
3

decoder

decoder

QPSK
demodulator

QPSK
modulator

π1

π2

π3

Turbo encoder

z

Turbo decoder

encoderencoder
yx EG

decoder
x̂

z̃eu

z̃au

z̃el

z̃al

π−1
1

z̃ao π1

z̃eo π−1
2

π2

EG
decoder

ỹ

ỹa

URC3

URC3

Figure 4.8: Schematic of the EG-URC-Turbo scheme, in which unary coding is se-

rially concatenated with turbo coding and Gray-coded QPSK modulation schemes.

Here, π1, π2 and π3 represent interleavers, while π−1
1 , π−1

2 and π−1
3 represent the

corresponding deinterleavers. Multiplexer and de-multiplexer operations are also

employed before π3 and after π−1
3 , respectively. By contrast to the UEC-Turbo

scheme of Figure 4.2, the unary encoder is replaced by an EG encoder, while the

trellis encoder is replaced by a URC encoder.

In analogy to Figure 3.10, the EG-URC-Turbo transmitter of Figure 4.8 may be

obtained by replacing the unary encoder with an EG encoder. Furthermore, the trellis

encoder is replaced by an accumulator, which we refer to as the r = 2-state n = 1-

bit URC3 encoder, as illustrated in Figure 2.6. This accumulator is included in order

to convert the vector of non-equiprobable bits y into the vector of equiprobable bits

z.

More explicitly, the b-bit vector y = [y]bj=1 may be modeled as a realization of a

vector Y = [Yj]
b
j=1 comprising b binary RVs, where Pr(Yj = 0) 6= Pr(Yj = 1) and

the bit entropy is HYj
= H [Pr(Yj = 0)] +H [Pr(Yj = 1)] < 1 in general. Owing to

the recursive infinite impulse response nature of the accumulator, the encoded bits z

have a bit entropy of HZk
= 1, which is necessary for avoiding capacity loss, as we

will show below. In the receiver, the trellis decoder of Figure 4.2 is replaced by the

URC3 decoder.

4.4. Comparison with Benchmarkers 100

URC1

URC2
encoder

encoder
URC1

URC2

QPSK
demodulator

Unary
decoder

x̂

decoder

QPSK
modulator

π1

π2

π3

z̃al

z̃au

z̃el

π−1
1

π1

π−1
2

π2

π−1
3

Turbo encoder

encoder
Unaryx z

decoder

Turbo decoder

z̃eu
z̃a

z̃p

Figure 4.9: Schematic of the Unary-Turbo scheme, in which unary coding is seri-

ally concatenated with turbo coding and Gray-coded QPSK modulation schemes.

Here, π1, π2 and π3 represent interleavers, while π−1
1 , π−1

2 and π−1
3 represent the

corresponding deinterleavers. Multiplexer and de-multiplexer operations are also

employed before π3 and after π−1
3 , respectively. By contrast to the UEC-Turbo

scheme of Figure 4.2, the UEC encoder is replaced by a unary encoder.

During iterative decoding, the fixed decoder activation order {URC1, URC2, URC3;

URC1, URC2, URC3; . . . } is employed, which is justified since the r = 2-state

URC3 decoder has a significantly lower decoding complexity than the r = 8-state

URC1 and URC2 decoders. As shown in Figure 4.8, the URC3 decoder is employed

to convert the a priori LLR vector z̃a into the extrinsic LLR vector z̃e using the

Log-BCJR decoding algorithm. However, in analogy to Figure 3.10, this process is

assisted by additionally considering the a priori LLR vector ỹa = [ỹaj]
b
j=1, where

ỹaj = ln[Pr(Yj = 0)/Pr(Yj = 1)]. In the final decoding iteration, the URC3 decoder

uses the Viterbi algorithm [28] for generating the bit sequence ŷ, which may be

subsequently decoded by the EG decoder.

3. Unary-Turbo

In order to illustrate that satisfying the HZk
= 1 constraint is necessary for avoiding

capacity loss, we consider additional SSCC benchmarkers, in which the bits input to

the turbo encoder are not equiprobable, giving HZk
< 1.

In the Unary-Turbo benchmarker of Figure 4.9, a unary source encoder is concate-

nated with a separate turbo channel encoder. This benchmarker may be considered

to be an adaptation of the UEC-Turbo scheme of Figure 4.2, in which the UEC trel-

lis encoder is omitted. Owing to this, we have z = y, Pr(Zk = 0) = Pr(Yj = 0),

4.4. Comparison with Benchmarkers 101

Pr(Zk = 1) = Pr(Yj = 1) and HZk
= HYj

, where the bit indices k and j are

interchangeable, since we have n = 1 bit in z per bit in y.

In the receiver of Figure 4.9, the iterative decoding process exploits some of the

residual redundancy present within the bit vector z by adding the a priori LLRs

vector z̃a = [z̃ak]
b·n
k=1 to the extrinsic LLR vectors, where we have z̃ak = ln[Pr(Zk =

0)/Pr(Zk = 1)]. Following the final decoding iteration, the a posteriori LLR vector

z̃p of Figure 4.9 can be soft-decision unary decoded, as described in Section 4.2.2.

URC1

URC2
encoder

encoder
URC1

URC2

QPSK
demodulator

decoder

QPSK
modulator

π1

π2

π3

z̃al

z̃au

z̃el

π−1
1

π1

π−1
2

π2

π−1
3

Turbo encoder

encoder
x z

decoder

Turbo decoder

z̃eu
z̃a

decoder
EGx̂

EG

ẑ

Figure 4.10: Schematic of the EG-Turbo scheme, in which unary coding is seri-

ally concatenated with turbo coding and Gray-coded QPSK modulation schemes.

Here, π1, π2 and π3 represent interleavers, while π−1
1 , π−1

2 and π−1
3 represent the

corresponding deinterleavers. Multiplexer and de-multiplexer operations are also

employed before π3 and after π−1
3 , respectively. By contrast to the UEC-Turbo

scheme of Figure 4.2, the UEC encoder is replaced by an EG encoder.

4. EG-Turbo

Similarly, our final SSCC benchmarker can be obtained by replacing the unary code

of Figure 4.9 with an EG code, as depicted in Figure 4.10. The resultant EG-Turbo

scheme represents a specific version of the EG-URC-Turbo benchmarker, in which

the bits forwarded to the turbo encoder are not equiprobable, giving HZk
< 1. Note

that following the final decoding iteration in the EG-Turbo receiver, it is necessary

to use hard decisions to convert the a posteriori LLR vector z̃p into the bit vector ẑ,

before performing EG decoding.

For all five schemes, symbol values x that obey a zeta distribution having a parameter

value of p1 = 0.797 are employed. This value offers a fair comparison, since Figure 3.9

shows that unary and EG codes provide an equal average codeword length l for p1 = 0.797.

4.4. Comparison with Benchmarkers 102

As a result, all schemes have the same effective throughput of η = 0.762 information

bits/symbol, when n = 1-bit codewords and M = 4-ary QPSK are employed, as shown

in Table 4.3. Note that while all considered schemes have the same effective throughput

η, they have different outer and inner coding rates Ro and Ri, according to Eq. (4.1) and

Eq. (4.2), respectively. This is because the various schemes considered have different bit

entropies HZk
.

Table 4.3 compares the DCMC capacity, area and tunnel bounds of the various con-

sidered schemes, when employing QPSK modulation for communication over an uncor-

related narrowband Rayleigh fading channel. Note that all considered schemes have the

same capacity bound of 0.84 dB, since they all have the same effective throughput of

0.762 information bits/symbol. The area bounds of the UEC-Turbo scheme were deter-

mined as detailed in Section 4.3.1.3. This technique was also employed for determining

the area bound of the EG-URC-Turbo schemes, although Eq. (3.20) of Section 3.6.2 was

employed for determining the area beneath the inverted EG-CC EXIT function, rather than

Eq. (3.16) in Section 3.5.1. The area bounds of the Unary-Turbo and EG-Turbo schemes

were obtained by plotting the corresponding EXIT charts, in which the measured MI can

assume values in the range [0, HZk
]. Similarly, plots of the corresponding EXIT charts

were employed for determining the tunnel bounds in the case of all the schemes consid-

ered.

As described in Section 4.3.1.3, the capacity loss imposed by the proposed UEC-Turbo

scheme becomes vanishingly small as the number of UEC trellis states r is increased.

Owing to this benefit of JSCC, the proposed UEC-Turbo scheme employing r ≥ 6 UEC

trellis states suffers from less capacity loss than the SSCC EG-URC-Turbo benchmarker,

as shown in Table 4.3. Furthermore, the proposed UEC-Turbo scheme can be seen to

impose a lower capacity loss than the SSCC Unary-Turbo benchmarker. As described in

Section 4.3.1.3, the proposed UEC-Turbo scheme accrues this benefit by conditioning the

bits in the vector z so that they adopt equiprobable values, giving HZk
= 1 and 2Ri =

1. By contrast, the bits in the vector z do not adopt equiprobable values in the Unary-

Turbo benchmarker, giving HZk
< 1. As described in Section 4.3.1.3, this corresponds to

URC1 and URC2 individual coding rates of 2Ri < 1, which imposes a capacity loss [131].

This phenomenon also explains why the HZk
= 1 EG-URC-Turbo benchmarker imposes

a 0.91 dB lower capacity loss than the HZk
< 1 EG-Turbo benchmarker, as shown in

Table 4.3.

The SER of the schemes considered is compared in Figure 4.11 for the case where

vectors comprising a = 102, 103, 104 number of p1 = 0.797 zeta-distributed symbols are

4
.4

.
C

o
m

p
a

riso
n

w
ith

B
en

ch
m

a
rk

ers
1

0
3

Scheme Figure r Ro Ao Ri η
Eb/N0 [dB] Eb/N0 [dB] Eb/N0 [dB]

capacity bound area bound tunnel bound

UEC-Turbo 4.2

2

0.762

0.934

0.500

0.762 0.84

2.48 2.7

4 0.808 1.27 1.8

6 0.783 1.04 1.3

8 0.774 0.95 1.3

EG-URC-Turbo 4.8 2 0.762 0.882 0.500 1.27 2.4

Unary-Turbo 4.9 N/A 0.816 N/A 0.467 2.48 3.1

EG-Turbo 4.10 N/A 0.864 N/A 0.441 2.18 2.8

Table 4.3: Characteristics of the various schemes considered, including the outer coding rate Ro, the inner coding rate Ri and the effective

throughput η. Eb/N0 bounds are given for the case of Gray-coded QPSK transmission over an uncorrelated narrowband Rayleigh fading

channel.

4.4. Comparison with Benchmarkers 104

Adaptive UEC-Turbo
UEC-Turbo r = 8
UEC-Turbo r = 6
UEC-Turbo r = 4
UEC-Turbo r = 2

EG-URC-Turbo
Unary-Turbo

EG-Turbo

a = 102(a)

4.4 dB

C
ap

ac
it
y

b
ou

n
d

Eb/N0 [dB]

S
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

Adaptive UEC-Turbo
UEC-Turbo r = 8
UEC-Turbo r = 6
UEC-Turbo r = 4
UEC-Turbo r = 2

EG-URC-Turbo
Unary-Turbo

EG-Turbo

a = 103(b)

4.3 dB

C
ap

ac
it
y

b
ou

n
d

Eb/N0 [dB]

S
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

Adaptive UEC-Turbo
UEC-Turbo r = 8
UEC-Turbo r = 6
UEC-Turbo r = 4
UEC-Turbo r = 2

EG-URC-Turbo
Unary-Turbo

EG-Turbo

a = 104(c)

3.6 dB

C
ap

ac
it
y

b
ou

n
d

Eb/N0 [dB]

S
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

Figure 4.11: The SER performance of the five schemes of Table 4.3, when convey-

ing vectors comprising (a) a = 102, (b) a = 103 and (c) a = 104 symbols, which

obey a zeta distribution having the parameter p1 = 0.797. Communication is over

an uncorrelated narrowband Rayleigh fading channel and a complexity limit of

Climit = 3000 ACS operations is imposed for decoding each of the symbols in the

vector x. Different random designs are employed for the interleavers π1, π2 and

π3 in each simulated frame.

4.4. Comparison with Benchmarkers 105

transmitted over an uncorrelated narrowband Rayleigh fading channel. In order to facil-

itate fair comparisons amongst the schemes having different computational complexities,

their iterative decoding was always terminated, when the complexity limit of 3000 ACS

operations for each of the b ·n bits in the vector z was reached by each scheme, as show in

Algorithm 4.7. Figure 4.11 shows that our proposed Adaptive UEC-Turbo scheme outper-

forms each of the four benchmarkers, regardless of whether a = 102, 103 or 104 symbols

are conveyed by each frame. In conclusion, our proposed Adaptive UEC-Turbo scheme

offers an SER of 10−2 at an Eb/N0 value, which is nearly 1.2 dB lower than that required

by the best benchmarker, when a = 104. This scheme is capable of operating within 3.6 dB

of the DCMC capacity bound, as shown in Figure 4.11.

UEC r = 8
UEC r = 6
UEC r = 4
UEC r = 2

URC2
URC1

Eb/N0 [dB]

N
u
m

b
er

of
ac

ti
va

ti
on

s

1086420

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

Figure 4.12: Average number of activations of the component decoders in the pro-

posed adaptive UEC-Turbo scheme of Figure 4.2, when conveying vectors com-

prising a = 102 symbols, which obey a zeta distribution having the parameter

p1 = 0.797. Communication is over an uncorrelated Rayleigh fading channel and

a complexity limit of Climit = 3000 ACS operations is imposed for decoding each

of the symbols in the vector x. Different random designs are employed for the

interleavers π1, π2 and π3 in each simulated frame.

Figure 4.12 characterises the average number of times that each of the component

decoders is activated, when the proposed adaptive UEC-Turbo scheme is employed to

decode vectors comprising a = 100 symbols. This shows that at low Eb/N0 values, the

proposed adaptive iterative decoder relies on the URC decoders to a greater extent, but

that as the Eb/N0 value increases, the UEC decoder is selected more frequently. More

particularly, since the r = 2-state UEC trellis has a lower complexity and hence a higher

benefit-to-cost ratio, it is selected more frequently than the other UEC trellises. Note that

similar observations were found when employing vectors comprising a = 103 and a = 104

symbols.

4.4. Comparison with Benchmarkers 106

More SNRs C6
More IA C5

More Quantization C4
Fewer SNRs C3

Fewer IA C2
Fewer Quantization C1

Designed memory

4.2 dB

C
ap

ac
it
y

b
ou

n
d

Eb/N0 [dB]

S
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

Figure 4.13: The SER performance of the proposed adaptive UEC-Turbo scheme

of Figure 4.2 having various storage requirements, when conveying vectors com-

prising a = 103 symbols, which obey a zeta distribution having the parameter

p1 = 0.797. Communication is over an uncorrelated narrowband Rayleigh fading

channel and a complexity limit of 3000 ACS operations is imposed for decoding

each of the symbols in the vector x. Different random designs are employed for

the interleavers π1, π2 and π3 in each simulated frame.

In Figure 4.13, we show how the storage requirements of the proposed adaptive UEC-

Turbo scheme affect the attainable SER performance. Here, we repeat the SER perfor-

mance provided in Figure 4.11(b) for vectors comprising a = 103 symbols, when employ-

ing the adaptive UEC-Turbo scheme having the 5824-bit storage requirement discussed

in Section 4.3.3. This scheme relies on the storage parameters of 8-bit quantization, 26

values of a priori MI and 24 values of I(w̃;w). Figure 4.13 compares this SER per-

formance to those of three schemes having lower storage requirements, namely schemes

C1, C2 and C3. Additionally, the attainable SER performance is compared to those of

three schemes having higher storage requirements, namely schemes C4, C5 and C6. Each

of these schemes employs a different setting for one of the three storage parameters, as

follows:

C1: 5-bit quantization, giving a total storage requirement of 3640 bits.

C2: 11 values of a priori MI in the set {0.00, 0.10, . . . , 0.90, 1.00}, having a total

storage requirement of 2464 bits.

C3: 8 values of I(w̃;w) in the set {0.337, 0.389, 0.443, 0.498, 0.554, 0.609, 0.661,

0.710}, which correspond to the Eb/N0 values of {0.0, 1.0, . . . , 6.0, 7.0}, exhibiting a total

storage requirement of 2496 bits.

C4: 9-bit quantization, giving a total storage requirement of 6552 bits.

4.4. Comparison with Benchmarkers 107

C5: 51 values of a priori MI in the set {0.00, 0.02, . . . , 0.98, 1.00}, imposing a total

storage requirement of 11424 bits.

C6: 36 values of I(w̃;w) in the set {0.337, 0.347, 0.357, 0.367, 0.378, 0.389, 0.399,

0.410, 0.421, 0.432, 0.443, 0.456, 0.465 0.476, 0.487, 0.498, 0.510, 0.521, 0.532, 0.543,

0.554, 0.565, 0.576, 0.587, 0.598, 0.609, 0.620, 0.630, 0.640, 0.651, 0.661, 0.671, 0.681,

0.691, 0.700, 0.710}, which corresponds to the Eb/N0 values of {0.0, 0.2, . . . , 6.8, 7.0},
giving a total storage requirement of 8320 bits.

As shown in Figure 4.13, the schemes having lower storage requirements than our

recommendation in Section 4.3.3 Section 4.3.2 suffer from a degraded SER performance.

By contrast, the schemes having higher storage requirements do not offer a significantly

improved SER performance, motivating our recommendations. Note that similar observa-

tions were found, when employing vectors comprising a = 102 and a = 104 symbols.

0.90.850.80.75

0.9

0.85

0.8

0.75

I(w̃;w) = 0.514
I(w̃;w) = 0.405
I(w̃;w) = 0.378

Rician K = 4
Rician K = 1

Rayleigh
AWGN

I(z̃au; z)

I
(z̃

e u
;z
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 4.14: 2D EXIT functions for the URC1 decoder of the UEC-Turbo scheme

of Figure 4.2, when transmitting over various uncorrelated narrowband chan-

nels, having the particular Eb/N0 values that yield MI values of I(w̃;w) =
0.378, 0.405 and 0.514.

Furthermore, in order to generalise our adaptive decoding technique beyond the un-

correlated narrowband Rayleigh fading channel, we consider three additional channels

models, namely the Additive White Gaussian Noise (AWGN) channel, as well as the Ri-

cian channel with K-factors of K = 1 and K = 4. Regardless of the channel model,

Figure 4.14 illustrates that the URC EXIT functions are quite similar to each other, when

the MI I(w̃;w) happens to be the same. Owing to this, the proposed adaptive algorithm

can be seamlessly employed for any of the above listed channels. In these cases, our

technique can continue operating on the basis of the EXIT functions obtained using the

Rayleigh fading model, with no performance penalty. This is demonstrated in Figure 4.15,

4.5. Summary and Conclusions 108

correct channel EXIT data
Rayleigh channel EXIT data

Rician K = 4
Rician K = 1

Rayleigh
AWGN

Eb/N0 [dB]

S
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

Figure 4.15: The SER performance of the proposed Adaptive UEC-Turbo scheme

of Figure 4.2 in various channels, when conveying vectors comprising a = 104

symbols, which obey a zeta distribution having the parameter p1 = 0.797. Plots

are provided for the case where the proposed adaptive iterative decoding technique

employs 2D EXIT functions that were obtained using the correct channel model.

Plots are also provided for the case of employing 2D EXIT functions that were

obtained using the Rayleigh fading channel model.

which compares the SER performance of our adaptive UEC-Turbo scheme, when employ-

ing EXIT functions obtained using the correct channel model and when employing those

obtained using the Rayleigh fading model. As shown in Figure 4.15, the SER performance

is almost identical, regardless of whether the correct channel model is employed or not.

4.5 Summary and Conclusions

In this chapter, we proposed the Adaptive UEC-Turbo scheme of Figure 4.2, which is a

three-stage concatenation that applies an adaptive iterative decoding technique conceived

for expediting the iterative decoding convergence. In our scheme, 3D EXIT chart analysis

was employed for controlling the dynamic adaptation of the UEC trellis decoder, as well

as for controlling the decoder activation order exchanging extrinsic information between

the UEC decoder and the turbo decoder of Figure 4.2. Our simulation results showed that

this novel adaptive decoding technique provided an improved performance compared to a

conventional JSCC benchmarker employing the non-adaptive UEC scheme of Figure 3.3

and a SSCC benchmarker employing the EG-CC scheme of Figure 3.10 that was first

introduced in Section 3.6.

We commenced in Section 4.2 by summarising the operation of the UEC code of Fig-

ure 4.2 in new context, which is concatenated with a turbo code. Both the UEC encoder

and decoder operate on the basis of trellises, in which the transitions between the states are

4.5. Summary and Conclusions 109

synchronous with the transitions between consecutive codewords in a unary-encoded bit

sequence. Based on the observation that extending the UEC codebook employed by the

UEC decoder maintains compatibility with the UEC encoder, we proposed to dynamically

reduce or increase the number of states employed in the trellis decoder in order to carefully

balance the performance versus complexity requirements.

This idea was extended in Section 4.3, allowing not only the dynamic adjustment of

the UEC decoder’s operation, but also that of its activation order exchanging extrinsic

information with the two turbo decoder components. We proposed the employment of 3D

EXIT chart for quantifying the specific benefit of activating each decoding component at

each particular stage of the iterative decoding process. At the same time, we quantified the

corresponding cost in terms of the number of ACS operations performed by each decoding

component. By activating the specific decoding component offering the highest benefit-

to-cost ratio at each stage, we demonstrated that the convergence of the iterative decoding

process may be significantly expedited. In this way, we are able to control this dynamic

adaptation of the number of states employed in UEC trellis decoder, as well as to control

the decoder activation order, in order to strike an attractive trade-off between the scheme’s

decoding complexity and its error correction capability. Furthermore, we demonstrated

that the storage required for implementing the proposed adaptive iterative decoding scheme

is modest compared to the storage required by the interleavers, for example.

In Section 4.4, we compared our Adaptive UEC-Turbo scheme to other JSCC and

SSCC benchmarkers. The simulation results of Figure 4.11 demonstrated that the pro-

posed scheme offers gains up to 1.2 dB, when the zeta-distributed symbols are transmitted

over QPSK-modulated uncorrelated narrowband Rayleigh fading channel. Note that these

gains are achieved for ‘free’, without imposing any additional decoding complexity, or

transmission-duration, -bandwidth or -energy. Furthermore, we generalised our adaptive

decoding technique beyond the uncorrelated narrowband Rayleigh fading channel sce-

nario, by considering three additional channels models, including the AWGN channel, as

well as the Rician channel having K-factors of K = 1 and K = 4. In these cases, our tech-

nique continues operating on the basis of the stored EXIT charts, without any performance

penalty, regardless of which channel model is applied.

As shown in Figure 4.1, the concepts of this chapter may be extended also by consid-

ering component UEC candidate codes and irregular designs of the UEC codes, so that

near-capacity operation can be achieved at even lower SNR values. Motivated by this, the

following chapter will propose a novel irregular UEC trellis that is capable of can further

improving the attainable decoding performance.

Chapter 5

Irregular UEC Codes for

‘Nearer-Capacity’ Operation

5.1 Introduction

In this chapter, we propose a novel irregular trellis design for the Unary Error Correc-

tion (UEC) code, which we refer to as the Irregular Unary Error Correction (IrUEC)

code [94]. Unlike the conventional irregular codes of Section 2.14, the proposed IrUEC

operates on the basis of a single irregular trellis, rather than a set of separate regular trel-

lises. As highlighted in Figure 5.1, this chapter also introduces a novel EXIT chart match-

ing algorithm for jointly matching the shapes of both the EXtrinsic Information Trans-

fer (EXIT) functions of the proposed IrUEC and the concatenated Irregular Unity-Rate

Convolutional (IrURC) codes, which we refer to as ‘double-sided’ matching.

UEC
candidate
component

codes

Inner
concatenated

codes

Irregular

designs operations

Adaptive

distribution

Source

Figure 5.1: The design-flow of a UEC coded scheme. This chapter deals with the

design aspects in the order indicated using the bold boxes.

5.1.1 Background and Motivation

The previous chapters proposed a novel Joint Source and Channel Coding (JSCC) scheme

referred to as the UEC code [92], which was the first JSCC that mitigates capacity loss and

incurs only a moderate decoding complexity, even when the cardinality of the symbol set

is infinite. In a particular practical scenario, Section 4.4 showed that an iteratively-decoded

serial concatenation of the UEC code with an IrURC code offers a 1.3 dB gain compared

5.1.1. Background and Motivation 111

to a conventional Separate Source and Channel Coding (SSCC) benchmarker, without in-

curring an increased transmission energy, duration, bandwidth or decoding complexity.

Motivated by the IrURC design of Chapter 3, this chapter conceives an irregular design for

the UEC code, in order to extend the regular UEC of our previous chapters.

Observe in Figure 3.4 that the generalized UEC trellis structure is parametrized by an

even number of states r and by the UEC codebook C, which comprises r/2 binary code-

words of a particular length n. Each bit yj of the unary-encoded bit sequence y = [yj]
b
j=1

corresponds to a transition in the UEC trellis from the previous state mj−1 ∈ {1, 2, . . . , r}
to the next state mj ∈ {1, 2, . . . , r}. Each next state mj is selected from a pair of legiti-

mate alternatives, depending both on the previous state mj−1 and on the bit value yj . More

specifically, regardless of how the UEC trellis is parametrized, a unary-coded bit of yj = 1

engenders a transition towards state mj = r−1 or mj = r of the generalised UEC trellis of

Figure 3.4 in Section 3.3.2, while the yj = 0-valued bit at the end of each unary codeword

resulting a transition to state mj = 1 or mj = 2, depending on whether the current symbol

xi has an odd or even index i.

Based on this common feature of all UEC trellises, the synchronisation between the

unary codewords and trellis transitions allows the residual redundancy that remains fol-

lowing unary encoding to be exploited for error correction. Furthermore, this common

treatment of the unary-encoded bits in y between all UEC trellises allows their merger in

order to form a single irregular trellis. By contrast, the classic Convolutional Code (CC),

Variable Length Code (VLC) and Unity-Rate Convolutional (URC) codes having different

parametrizations do not generally exhibit the required similarity in their trellises.

In this chapter, we will exploit these properties of UEC codes in order to facilitate reli-

able operation even closer to the capacity bound. More specifically, we propose an IrUEC

code. This IrUEC code employs different UEC parametrizations for the coding of differ-

ent subsets of each message frame, in analogy with previous irregular codes, such as the

IrURC of [100], the Irregular Convolutional Code (IrCC) of [116] and the Irregular Vari-

able Length Code (IrVLC) of [59]. However, these previously designed irregular codes

operate on the basis of a number of separate trellises, each of which has a different but

uniform structure and is used for the coding of a different subset of the message frame. By

contrast, our new IrUEC code operates on the basis of a single irregular trellis having a

novel design, which exploits the common features of all UEC trellises, as described above.

This irregular trellis has a non-uniform structure that applies different UEC parametriza-

tions for different subsets of the frame on a bit-by-bit basis. This allows the irregularity

of the proposed IrUEC code to be controlled on a fine-grained bit-by-bit basis, rather than

5.1.2. Novel Contributions 112

on a symbol-by-symbol basis. By exploiting this fine-grained control of the IrUEC irreg-

ularity, the IrUEC EXIT function may be shaped to create a narrow, but marginally open

EXIT chart tunnel, hence facilitating nearer-to-capacity operation.

5.1.2 Novel Contributions

The novel contributions of this chapter are summarised as follows:

• We propose a novel IrUEC code that operates on the basis of a single irregular trellis

having a novel design, which is referred to as the Irregular Trellis (IrTrellis). This

IrTrellis has a non-uniform structure that applies different UEC parametrizations

for different subsets of the transmitted frame on a bit-by-bit basis. This allows the

irregularity of the proposed IrUEC code to be controlled on a fine-grained bit-by-bit

basis, rather than on a symbol-by-symbol basis, hence facilitating nearer-to-capacity

operation.

• Since an r-state n-bit UEC code is parametrized by a codebook C comprising r/2

number of codewords each having n bits, there are many candidates for the compo-

nent codes of our proposed IrUEC code. Therefore, we analyse the candidate UEC

codebooks and categorize them in terms of EXIT function shape. This allows the se-

lection of candidate codebooks to be reduced for the sake of reducing the complexity

of EXIT chart matching.

• In order to further select UEC candidate codes having good performance, the free-

distance properties of the UEC codebooks are characterised for the first time, using

a heuristic method that is able to obtain an approximate measurement of the free-

distance.

• In our serially concatenated IrUEC-IrURC scheme, we also propose a novel exten-

sion to the double-sided EXIT chart matching algorithm of [100] that can be em-

ployed for jointly designing the EXIT function matching between the IrUEC and

IrURC codes.

• We construct two versions of SSCC Elias Gamma (EG)-IrCC-IrURC benchmarker,

which are EG-IrCC(sys)-IrURC benchmarker and EG-IrCC(nonsys)-IrURC bench-

marker, respectively. In order to avoid the capacity loss introduced by the systematic

recursive CC component codes in the EG-IrCC(sys)-IrURC benchmarker, we im-

prove its performance by employing the non-systematic recursive CC component

codes in the EG-IrCC(nonsys)-IrURC benchmarker.

• A Parallel IrUEC benchmarker is proposed in analogy with the conventional irreg-

ular codes, such as the IrCC and the IrVLC codes. However, our simulation results

show that our IrUEC outperforms the Parallel IrUEC benchmarker without any in-

crease in transmission energy, bandwidth, latency or decoding complexity.

5.1.3. Chapter Organisation 113

5.1.3 Chapter Organisation

The rest of this chapter is organised as follows:

• In Section 5.2, we propose a serially concatenated IrUEC-IrURC scheme, as well as

describe its transmitter operations, including the novel IrTrellis encoder.

• In Section 5.3, we discuss the corresponding receiver operations of the proposed

IrUEC-IrURC scheme, where iterative decoding is employed for exchanging extrin-

sic information between the IrUEC decoder and the IrURC decoder.

• In Section 5.4, we investigate the free-distance properties of the UEC code for the

first time, in order to obtain a range of component UEC candidate codes that offer

sufficient design freedom for the parametrization of the proposed IrUEC code. We

also introduce a novel double-sided EXIT chart matching algorithm that facilitates

matching between the IrUEC EXIT function and the IrURC EXIT function.

• In Section 5.5, we introduce a pair of conventional SSCC schemes and a JSCC

scheme as our benchmakers, which are the EG-IrCC(sys)-IrURC benchmarker, EG-

IrCC(nonsys)-IrURC benchmarker and Parallel IrUEC-IrURC benchmarker.

• In Section 5.6, the performances of the proposed IrUEC-IrURC scheme and of the

benchmarkers are compared. We demonstrate that our IrUEC-IrURC scheme out-

performs the benchmarkers without requiring any increase in transmission energy,

bandwidth, latency or decoding complexity.

• In Section 5.7, we conclude this chapter.

5.2 IrUEC-IrURC Encoder

In this section, we introduce the transmitter of the proposed IrUEC-IrURC scheme of Fig-

ure 5.2. The IrURC encoder employs T number of component URC encoders {URCt}Tt=1,

each having a distinct independent trellis structure. By contrast, the IrUEC employs a

unary encoder and a novel IrTrellis encoder with a single irregular trellis. However, in

analogy with the IrURC code, we note that this irregular trellis comprises a merging of S

component UEC trellis structures {UECs}Ss=1, where UECs is the s-th component UEC

trellis structure that is defined by the corresponding codebook Cs, as illustrated in Fig-

ure 3.4. In Section 5.2.1 and Section 5.2.2, the two components of the IrUEC encoder in

Figure 5.2, namely the unary encoder and the novel IrTrellis encoder are detailed. The

IrURC encoder and the modulator are introduced in Section 5.2.3.

5.2.1 Unary Encoder

Similar to the UEC encoder of Section 3.3.1, the IrUEC encoder is also designed for con-

veying a vector x = [xi]
a
i=1 comprising a number of symbols, as shown in Figure 5.2.

5.2.2. IrTrellis Encoder 114

π1 π2
QPSK

modulator

QPSK
demodulator

π1

π−1
1

IrURC Decoder

u1 v1

v

decoders

ũe
1

ũa
1

z u

decoder
Unaryx̂

IrURC Encoder

ũa

ũe

encoder
Unary

IrUEC Encoder

yx

IrUEC Decoder

encoder

decoder

IrTrellis

IrTrellisỹp

z̃e

z̃a

ṽ1

ṽ w̃

w

T URC

encoders
T URC

vTuT

ũa
T

ũe
T

π−1
2ṽT

Figure 5.2: Schematic of the proposed IrUEC-IrURC scheme, in which an IrUEC

code is serially concatenated with IrURC code and Gray-coded QPSK modulation

schemes. Here, π1 and π2 represent interleavers, while π−1
1 and π−1

2 represent

the corresponding deinterleavers. In the UEC-IrURC scheme of Figure 3.3, the

regular UEC code is replaced by an irregular UEC code.

The value of each symbol xi ∈ N1 may be modeled by an Independent and Identically

Distributed (IID) Random Variable (RV) Xi, which adopts the value x with a probability

of Pr(Xi = x) = P (x). The value of each symbol in x can be selected from a set having

an infinite cardinality, such as the set N1 = {1, 2, 3, . . . ,∞} comprising all positive inte-

gers. Throughout this chapter we assume that the symbol values obey a zeta probability

distribution [144], since this models the symbols produced by multimedia encoders, as

described in Section 3.2. Without loss of generality and as exemplified in Table 4.1, we

employ a zeta distribution having the parameter of p1 = 0.797 in Eq. 3.3, which was found

to allow a fair comparison between unary- and EG-based schemes [92], as described in

Section 4.2.1.

As shown in Figure 5.2, the IrUEC encoder represents the source vector x using a

unary encoder. More specifically, each symbol xi in the vector x is represented by a

corresponding codeword yi that comprises xi bits, namely (xi − 1) binary ones followed

by a zero, as exemplified in Table 4.1. The output of the unary encoder is generated by

concatenating the selected codewords {yi}ai=1, in order to form the b-bit vector y = [yj]
b
j=1.

For example, the source vector x = [4, 1, 2] of a = 3 symbols yields the b = 7-bit vector

y = [1110010]. Note that the average length of the bit vector y is given by (a · l).

5.2.2 IrTrellis Encoder

Following unary encoding, the IrTrellis encoder of Figure 5.2 employs a single new irreg-

ular trellis to encode the bit vector y, rather than using a selection of separate trellis struc-

tures, as is necessary for the IrCC [116], IrVLC [59] and IrURC [100] coding schemes.

Our novel irregular trellis structure is facilitated by the properties of the generalised trellis

5.2.2. IrTrellis Encoder 115

structure of Figure 3.4, which was the basis of our previous work on regular UEC codes.

This trellis structure is parametrized by an even number of states r and by the UEC code-

book C, which comprises r/2 binary codewords of a particular length n. Each bit yj of the

unary-encoded bit sequence y = [yj]
b
j=1 corresponds to a transition in the UEC trellis from

the previous state mj−1 ∈ {1, 2, . . . , r} to the next state mj ∈ {1, 2, . . . , r}. Each next

state mj is selected from two legitimate alternatives, depending both on the previous state

mj−1 and on the bit value yj , according to Eq. (3.8). More specifically, regardless of how

the UEC trellis is parametrized, a unary-coded bit of yj = 1 causes a transition towards

state mj = r− 1 or r of the generalised UEC trellis of Figure 3.4, while the yj = 0-valued

bit at the end of each unary codeword causes a transition to state mj = 1 or 2, depending

on whether the current symbol xi has an odd or even index i.

3

1

2

4

7

5

6

8

3

1

2

4

7

5

6

8

m0 m1
y1/z1 y2/z2 m2

y3/z3 m3
y4/z4 m4

y5/z5 m5
y6/z6 m6

y7/z7 m7

0/0

1/1

0/1

1/0

0/1

1/0

0/1

1/0

0/1

1/0

0/0

1/1

0/0

1/1

0/0

1/1

1/0

0/1

1/1

1/0

0/0

1/1

0/0

0/0

0/0

0/1

0/1

0/1

1/0

1/0

1/1

1/1

0/00

1/11

0/11

1/00

0/11

1/00

0/11

1/00

0/00

1/11

0/00

1/11

0/00

0/11

1/00

1/11

0/01

1/10

0/10

1/01

0/000

1/111

0/011

1/100

0/111

1/000

0/100

1/011

0/000

1/111

0/011

1/100

0/111

1/000

0/100

1/011

0/0000

1/1111

0/1111

1/0000

Figure 5.3: An example of the proposed irregular UEC trellis, which is ob-

tained by amalgamating seven different UEC trellises. Here, the component UEC

codebooks C1 = {0, 1, 1, 1},C2 = {0, 1, 1, 1},C3 = {000, 000, 000},C4 =
{00, 01},C5 = {000, 011},C6 = {000, 011} and C7 = {0000} are employed.

By contrast, the regular trellis of Figure 3.4 only has a single trellis.

This common feature of all UEC trellises maintains synchronisation with the unary

codewords and allows the residual redundancy that remains following unary encoding to be

explicated for error correction. Furthermore, this common treatment of the unary-encoded

bits in y between all UEC trellises allows them to merge in order to form our novel irregular

trellis. More specifically, our novel irregular trellis can be seen as concatenation of a

number of individual UEC trellis structures with different numbers of states r and different

codebooks C. By contrast, CCs, VLCs and URC codes having different parametrizations

do not generally exhibit the required similarity in their trellises. More specifically, the final

state of a particular component encoder has no specific relationship with the initial state

5.2.2. IrTrellis Encoder 116

of the subsequent component encoder, hence preventing their amalgamation into IrCC,

IrVLC and IrURC trellises, respectively.

The IrTrellis encoder of Figure 5.2 encodes the b-bit unary-encoded bit sequence y =

[yj]
b
j=1 using an irregular trellis that is obtained by concatenating b number of regular UEC

trellis structures. The proposed IrTrellis can be constructed using diverse combinations of

component regular UEC trellises, having any parametrization. However, the component

regular trellises may be strategically selected in order to carefully shape the EXIT function

of the IrUEC code, for the sake of producing a narrow EXIT chart tunnel and for facilitating

near-capacity operation, as it will be detailed in Section 5.4. Without loss of generality,

Figure 5.3 provides an example of the irregular trellis for the example scenario where

we have b = 7. Each bit yj in the vector y is encoded using the corresponding one of

these b trellis structures, which is parametrized by an even number of states rj and the

codebook Cj = {cj1, cj2, . . . , cjrj/2−1, c
j
rj/2
}, which comprises rj/2 binary codewords of a

particular length nj . Note that successive trellis structures can have different numbers of

states, subject to the constraint rj ≤ rj−1 + 2, as it will be demonstrated in the following

discussions. Note that this constraint does not restrict the generality of the IrUEC trellis,

since the IrUEC EXIT function shape is independent of the ordering of the component

trellis structures.

Observe in Figure 5.3, the encoding process always emerges from the state m0 = 1, as

in the regular UEC trellis of [92]. The unary-encoded bits of y are considered in order of

increasing index j and each bit yj causes the novel IrTrellis to traverse from the previous

state mj−1 ∈ {1, 2, . . . , rj−1} to the next state mj ∈ {1, 2, . . . , rj}, which is selected from

two legitimate alternatives according to Equation 3.8 of Section 3.3.2. More specifically,

mj =

{

1 + odd(mj−1) if yj = 0

min[mj−1 + 2, rj − odd(mj−1)] if yj = 1
, (5.1)

where the function odd(·) yields 1 if the operand is odd or 0 if it is even. Note that the next

state mj in the irregular trellis is confined by the number of states rj in the corresponding

trellis structure, rather than by a constant number of states r, as in the regular UEC trellis

of [92]. In this way, the bit sequence y identifies a path through the single irregular trellis,

which may be represented by a vector m = [mj]
b
j=0 comprising b+ 1 state values.

As in the regular UEC trellis, the transitions of the proposed irregular trellis are also

synchronous with the unary codewords of Table 4.1. More specifically, just as each symbol

xi in the vector x corresponds to an xi-bit codeword yi in the vector y, the symbol xi also

corresponds to a section mi of the trellis path m comprising xi transitions between (xi+1)

states. Owing to this, the path m is guaranteed to terminate in the state mb = 1, when the

5.2.2. IrTrellis Encoder 117

P (mj , mj−1) =























































































































1
2l

[

1−
∑⌈mj−1

2 ⌉
x=1 P (x)

]

,

if mj−1 ∈ {1, 2, 3, . . . , rj−1 − 2}, mj = mj−1 + 2.

1
2l
P (x)

∣

∣

∣x=⌈mj−1

2 ⌉ ,

if mj−1 ∈ {1, 2, 3, . . . , rj−1 − 2}, mj = 1 + odd(mj−1).

1
2l

[

1−
∑

rj−1

2
−1

x=1 P (x)

]

,

if mj−1 ∈ {rj−1 − 1, rj−1}, mj = 1 + odd(mj−1).

1
2l

[

l − rj−1

2
−
∑

rj−1

2
−1

x=1 P (x)
(

x− rj−1

2

)

]

,

if mj−1 ∈ {rj−1 − 1, rj−1}, mj ∈ {rj − 1, rj}.

0. otherwise
(5.2)

symbol vector x has an even length a, while mb = 2 is guaranteed when a is odd [92].

Note that the example unary-encoded bit sequence y = [1110010] corresponds to the path

m = [1, 3, 5, 3, 2, 1, 1, 2] through the irregular UEC trellis of Figure 5.3.

The path m may be modeled as a particular realization of a vector M = [Mj]
b
j=0

comprising (b + 1) RVs. Note that the probability Pr(Mj = mj ,Mj−1 = mj−1) =

P (mj , mj−1) of the transition from the previous state mj−1 to the next state mj can be

derived by observing the value of each symbol in the vector x and simultaneously its

corresponding index. The state transition M = {Mj}bj=0 follows the same rule shown

in Eq. (5.1), and all the transitions can be categorised into four types, as illustrated in

Eq. (3.11) of Section 3.3.2. Owing to this, the probability of a transition P (mj , mj−1)

in the irregular trellis is associated with the transition probabilities Pr(Mj = m,Mj−1 =

m′) = P (m,m′) in Eq. (5.2). Note that these transition probabilities are generalized, allow

their application to any IrUEC trellis and to any source probability distribution P (x).

The proposed IrTrellis encoder represents each bit yj in the vector y by a codeword zj

comprising nj bits. This is selected from the corresponding set of rj/2 codewords Cj =

{cj1, cj2, . . . , cjrj/2−1, c
j
rj/2
} or from the complementary set Cj = {cj1, cj2, . . . , cjrj/2−1, c

j
rj/2
},

which is achieved according to

zj =

{

c
j
⌈mj−1/2⌉ if yj = odd(mj−1)

c
j
⌈mj−1/2⌉ if yj 6= odd(mj−1)

. (5.3)

5.2.3. IrURC Encoder and Modulator 118

Finally, the selected codewords are concatenated to obtain the bit vector z = [zk]
bn̄
k=1 of

Figure 5.2, where n̄ = 1
b

∑b
j=1 nj is the average codeword length. For example, the path

m = [1, 3, 5, 3, 2, 1, 1, 2] through the irregular UEC trellis of Figure 5.3 yields the encoded

bit sequence z = [1000011111110000], which comprises b · n̄ = 16 bits, where we have

n̄ = 16
7

.

Note that the bit vector z may be modeled as a specific realization of a vector Z =

[Zk]
bn̄
k=1 comprising bn̄ binary RVs. Observe in Figure 5.3 that each of the b component

trellis structures in the irregular UEC trellis of the IrTrellis encoder is designed to obey

symmetry and to rely on complementary codewords. Hence, bits of the encoded bit vector

Z have equiprobable values, where Pr(Zk = 0) = Pr(Zk = 1) = 0.5, and the bit entropy

obeys HZk
= H [Pr(Zk = 0)] + H [Pr(Zk = 1)] = 1. Owing to this, in contrast to

some of the benchmarkers to be considered in Section 5.5, the proposed IrUEC scheme of

Figure 5.2 does not suffer from additional capacity loss.

We assume that each of the b trellis structures in the proposed irregular UEC trellis

is selected from a set of S component UEC trellis structures {UECs}Ss=1, corresponding

to a set of S component codebooks {Cs}Ss=1. More specifically, we assume that each

codebook Cs is employed for generating a particular fraction αs of the bits in z, where

we have
∑S

s=1 αs = 1. Here, the number of bits generated using the codebook Cs is

given by b · n̄ · αs. We will in Section 5.4 show that the fractions α = {αs}Ss=1 may be

designed in order to appropriately shape the IrUEC EXIT function. Moreover, the IrUEC

coding rate is given by RIrUEC =
∑S

s=1 αs · RUECs , where the corresponding coding rate

RUECs of the regular UECs code depends on the codebook Cs and is given by Eq. (3.13)

of Section 3.3.2.

5.2.3 IrURC Encoder and Modulator

As shown in Figure 5.2, the IrUEC-encoded bit sequence z is interleaved in the block π1

in order to obtain the bit vector v, which is encoded by an IrURC encoder [98, 100] com-

prising T component URC codes {URCt}Tt=1. Unlike our IrUEC code, each component

URC code URCt of the IrURC code employs a separate trellis structure. This is necessary,

since the final state of each component URC code has no relation to the initial state of the

subsequent component URC code, as described in Section II-B. Therefore, the interleaved

IrURC-encoded bit vector u is decomposed into T sub-vectors {ut}Tt=1, each having a

length given by b · n̄ · βt, where βt represents the specific fraction of the bits in v that are

encoded by the component URCt code, which obeys
∑T

t=1 βt = 1. In Section 5.4, we also

show that the fractions β = {βt}Tt=1 may be designed in order to shape the IrURC EXIT

function.

5.3. IrUEC-IrURC Decoder 119

In common with each of its T number of component URC codes, the IrURC code has a

coding rate of RIrURC = 1, regardless of the particular irregular code design. Owing to this,

each of the T number of binary sub-vectors {vt}Tt=1 that result from IrURC encoding has

the same length as the corresponding sub-vector ut. The set of these sub-vectors {vt}Tt=1

are concatenated to obtain the bit-vector v, which comprises bn̄ bits.

Finally, the IrURC-encoded bit vector v is interleaved by π2 in order to obtain the

bit vector w, which is modulated onto the uncorrelated non-dispersive Rayleigh fading

channel using Gray-mapped Quadrature Phase-Shift Keying (QPSK). The overall effective

throughput of the proposed scheme is given by η = RIrUEC · RIrURC · log2(M), where we

have M = 4 for QPSK.

5.3 IrUEC-IrURC Decoder

In this section, we introduce the receiver of the proposed IrUEC-IrURC scheme shown in

Figure 5.2. In analogy with the IrURC encoder, the IrURC decoder employs T number of

component URC decoders {URCt}Tt=1, each having a distinct independent trellis structure.

By contrast, the IrUEC employs a unary decoder and a novel IrTrellis decoder relying on

a single irregular trellis. In Section 5.3.1, the demodulator and the iterative operation of

the IrURC and IrUEC decoders will be discussed, while in Sections 5.3.2 and 5.3.3 we

will detail the internal operation of two components of the IrUEC decoder, namely of the

IrTrellis decoder and of the unary decoder, respectively.

5.3.1 Demodulator and Iterative Decoding

As shown in Figure 5.2, QPSK demodulation is employed by the receiver in order to

obtain the vector w̃ of LLRs, which pertain to the bits in the vector w. This vector is

deinterleaved by π−1
2 for the sake of obtaining the Logarithmic Likelihood Ratio (LLR)

vector ṽ, which is decomposed into the T sub-vectors {ṽt}Tt=1 that have the same lengths

as the corresponding sub-vectors of {vt}Tt=1. Here, we assume that a small amount of side

information is used for reliably conveying the lengths of all vectors in the IrUEC-IrURC

transmitter to the receiver. The sub-vectors {ṽt}Tt=1 are then input to the corresponding

component URC decoders {URCt}Tt=1 of the IrURC decoder.

Following this, iterative exchanges of the vectors of extrinsic LLRs [160] commences

between the SISO IrUEC and IrURC decoders. In Figure 5.2, the notation ũ and z̃ repre-

sent vectors of LLRs pertaining to the bit vectors u and z, which are related to the inner

IrURC decoder and the outer IrUEC decoder, respectively. Additionally, a subscript of this

notation denotes the dedicated role of the LLR, with a, e and p indicating a priori, extrinsic

and a posteriori LLR, respectively.

5.3.2. IrTrellis Decoder 120

At the beginning of iterative decoding, the a priori LLR vector ũa is initialised with a

vector of zeros, having the same length as the corresponding bit vector u. As shown in the

IrURC decoder of Figure 5.2, the vector ũa is decomposed into the T sub-vectors {ũa
t}Tt=1,

which have the same lengths as the corresponding sub-vectors of {ut}Tt=1. Together with

{ṽa
t }Tt=1, the sub-vectors {ũa

t}Tt=1 are fed to the corresponding URC decoder URCt, which

then outputs the resulting extrinsic LLR vectors {ũe
t}Tt=1 by employing the logarithmic

Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm [91]. These vectors are combined for

forming the extrinsic LLR vector ũe that pertains to the vector u, which is sequentially

deinterleaved by the block π−1
1 in order to obtain the a priori LLR vector z̃a that pertains

to the bit vector z. Similarly, the IrTrellis decoder is provided with the a priori LLR vector

z̃a and generates the vector of extrinsic LLRs z̃e, which are interleaved in the block π1

to obtain the a priori LLR vector ũa that is provided for the next iteration of the IrURC

decoder.

5.3.2 IrTrellis Decoder

As discussed in Section 5.2, our IrUEC code employs a novel bit-based irregular trellis,

while the IrURC code employs a selection of independent trellises. The novel IrTrellis

decoder within the IrUEC decoder applies the BCJR algorithm to the irregular trellis. The

synchronization between the novel irregular trellis and the unary codewords is exploited

during the BCJR algorithm’s γt calculation of Section 2.11.2 [91]. This employs the con-

ditional transition probability Pr(Mj = mj|Mj−1 = mj−1), where we have

P (mj |mj−1) =
P (mj , mj−1)

∑rj
m̌=1 P (m̌,mj−1)

(5.4)

and P (mj, mj−1) is given in Eq. (5.2).

Note that the IrUEC decoder will have an EXIT function [161] that reaches the (1, 1)

point of perfect convergence to an infinitesimally low Symbol Error Ratio (SER), provided

that all component codebooks in the set {Cs}Ss=1 have a free-distance of at least 2 [150], as

characterised in Section 5.4. Since the combination of the IrURC decoder and demodulator

will also have an EXIT curve that reaches the (1, 1) point in the top right corner of the EXIT

chart, iterative decoding convergence towards the ML performance is facilitated [148]. At

this point, the IrTrellis decoder may invoke the BCJR algorithm for generating the vector

of a posteriori LLRs ỹp that pertain to the corresponding bits in the vector y.

5.3.3 Unary Decoder

As described in Section 3.4.3, the unary decoder of Figure 5.2 sorts the values in the LLR

vector ỹp in order to identify the a number of bits in the vector y that are most likely

5.4. Algorithm for the Parametrization of the IrUEC-IrURC Scheme 121

to have values of zero. A hard decision vector ŷ is then obtained by setting the value of

these bits to zero and the value of all other bits to one. Finally, the bit vector ŷ can be

unary decoded in order to obtain the symbol vector x̂ of Figure 5.2, which is guaranteed

to comprise a number of symbols.

5.4 Algorithm for the Parametrization of the IrUEC-IrURC Scheme

The performance of the IrUEC-IrURC scheme depends on how well it is parametrized. A

good parametrization is one that results in a narrow but still open EXIT chart tunnel, al-

though achieving this requires a high degree of design freedom, when shaping the IrUEC

and IrURC EXIT functions. Therefore, we begin in Section 5.4.1 by characterising the

free-distance property of the UEC codes and selecting a set of UEC component codes hav-

ing a wide variety of different inverted EXIT function shapes. This maximises the degree

of freedom that is afforded, when matching the IrUEC EXIT function to that of the IrURC

code. In Section 5.4.2, we propose a novel extension to the double-sided EXIT chart

matching algorithm of [100], which we employ for jointly matching the EXIT functions

of the IrUEC and the IrURC codes. However, in contrast to the algorithm of [100], which

does not allow a particular coding rate to be targeted for the IrUEC-IrURC scheme, our

algorithm designs both the fractions α and β to achieve a particular target coding rate. In

Section 5.5, this will be exploited to facilitate a fair comparison with benchmarkers having

particular coding rates.

5.4.1 Design of UEC Component Codes

Since an r-state n-bit UEC code is parametrized by a codebook set C comprising r/2

number of codewords each having n bits, there are a total of 2n·r/2 number of candidates

for C. It is neither possible nor necessary to employ all these 2n·r/2 codebooks as the

component codes in our IrUEC code, because some of the codebooks will have identical

or similar inverted EXIT function shapes, offering no additional degree of freedom, when

performing EXIT chart matching. Therefore, it is desirable to eliminate these candidate

codebooks.

The generalised UEC trellis structure associated with the codebookC = {c1, c2, . . . , cr/2−1,

cr/2} is depicted in Figure 3.4 of Section 3.3.2. Note that the upper half and the lower half

of the trellis is symmetrical in terms of the output codewords zj generated in response to a

given input bit value yj , as shown in Eq. (5.3). More specifically, for the states in the upper

half of the trellis, the output codewords zj are selected from the codebook C when yj = 0,

while the codewords from its complementary codebook C = {c1, c2, . . . , cr/2−1, cr/2} are

selected when yj = 1. For the states in the lower half of the trellis, the output codewords

zj are selected from the codebook C when yj = 1 and from the complementary codebook

5.4.1. Design of UEC Component Codes 122

C when yj = 0. Intuitively, if any particular subset of the n bits at the same positions

within each codeword of C are inverted, this would not change the distance properties of

the output bit vector z, hence resulting in an identical inverted EXIT function. For exam-

ple, inverting the first bit of each codeword in the codebook C0 = {00, 01} will give a

new codebook C1 = {10, 11} having an identical EXIT function. Likewise, inverting both

bits of the codewords in C0 will give C2 = {11, 10}, which also has an identical EXIT

function. Similarly, swapping any pair of the n bits at the same positions between each

pair of codewords will not affect the distance properties or the shape of the inverted EXIT

function either. For example, swapping the two bits in the codebook C0 results in a new

codebook C3 = {00, 10}, having an identical inverted UEC EXIT function shape. There-

fore, each of these four codebooks, C0, C1, C2 and C3, as well as their conversions created

by bit-inversion and swapping, have identical inverted EXIT functions. Consequently, all

but one of these codebooks can be eliminated as candidates for the sake of reducing the

complexity of EXIT chart matching.

3

1

2

4

m0
y1/z1 m1

y2/z2 m2
y3/z3 m3

(5, 4, 6, 7)

(6, 7, 5, 4)

(7, 6, 4, 5)

(4, 5, 7, 6)

1/100

0/011

1/111

0/000

0/111

1/000

0/100

1/011
(0, 0, 0, 0)

(0, 0, 0, 0)

(0, 0, 0, 0)

(0, 0, 0, 0)
(0, 3, 0, 0)

(0, 0, 0, 0)

(0, 0, 3, 0)

(0, 0, 0, 0)

(5, 3, 0, 4)

(0, 4, 5, 3)

(4, 0, 3, 5)

(3, 5, 4, 0)

Figure 5.4: The legitimate paths through the first three stages in UEC trellis having

the codewords C = {000, 011}.

The number of candidate UEC codebooks may be further reduced by characterising

their free-distance properties. Since no analytic method has been developed for calculat-

ing the free-distance df of a UEC code, we propose a heuristic method for obtaining an

approximate measure of df . The free-distance represents the minimum distance between

any pair of encoded bit vectors produced by different paths through the trellis. The total

number of possible pairings of paths emerging from a particular state in a UEC trellis of

length b is given by 2b−1 · (2b − 1), which grows exponentially. However, considering

the symmetry of a regular UEC trellis, it is possible to use a step-by-step directed search

for determining the free-distance, rather than using a brute force exhaustive search. Note

that in the regular UEC trellis as generalised in Figure 3.4 of Section 3.3.2, a bit vector

y = [yj]
b
j=1 identifies a unique path m = [mj]

b
j=0 that emerges from state 1 and terminates

5.4.1. Design of UEC Component Codes 123

at either state 1 or 2, hence accordingly identifying a corresponding output bit sequence

z = [zk]
bn̄
k=1. By exploiting this observation, the free-distance df can be obtained by com-

puting the Hamming Distance (HD) between each pair of paths and then selecting the pair

having the minimum HD, whenever two paths merge at a particular state in the trellis.

When the bit sequence length considered satisfies b > r/2, the paths form complete

trellis stages, as exemplified in Figure 5.4. Therefore, in order to reduce the search com-

plexity, we consider all permutations of the b-bit unary-encoded vector y bit-by-bit, con-

sidering all paths that emerge from state m0 = 1 and terminate at each particular state

mb = 1, 2, . . . , r, on a step-by-step basis. For a pair of states mj , m
′
j ∈ {1, 2, 3, . . . , r},

we define djmj ,m′

j
as the minimum HD between the set of all paths that terminate at state

mj and the set that ends at state m′
j , given the input bit sequence [y1, y2, . . . , yj], where

j ∈ {0, 1, . . . , b}. Each state mj is labelled as (djmj ,1
, djmj ,2

, djmj ,3
, . . . , djmj ,r

), where we

have djmj ,m′

j
= djm′

j ,mj
. For each state m0 ∈ {1, 2, 3, . . . , r}, the minimum HDs are initial-

ized to 0s. Therefore, the distance djmj ,m′

j
can be calculated by

djmj ,m′

j
= min

mj−1,m′

j−1

[dj−1
mj−1,m′

j−1
+ h(zmj−1,mj

, zm′

j−1
,m′

j
)]. (5.5)

Here, zmj−1,mj
is the codeword in the set C or in the complementary set C that is generated

by the transition from state mj−1 to state mj , while the function h(·, ·) denotes the HD

between the two operands. For each pair of states mj , m
′
j ∈ {1, 2, 3, . . . , r}, we perform

r(r − 1)/2 number of comparisons, which are repeated b number of times. Owing to this,

our method conceived for determining the free-distance of a UEC code has a complexity

order of O[b · r(r − 1)], where r is the number of states in the trellis and b is the length of

the bit vector y considered. Let Yb1 be the bit sequence set associated with the set of all

paths Mb1 having a length of b1, while Yb2 is the bit sequence set associated with the path

set Mb2 having a length of b2. Therefore, all sequences in Yb1 are prefix of sequences in

Yb2 , when we have b1 < b2. For example, when b1 = 2 and b2 = 3, the bit sequence y2 =

{111011} is a prefix of the bit sequence y3 = {111011111}, where y2 is associated with

the path vector m2 = {1, 3, 2} and y2 is associated with the path vector m2 = {1, 3, 2, 1},
respectively. Note that according to Lemma 1 of [162], the minimum HD df(Yb1) among

all bit sequences in Yb1 is an upper bound on the minimum HD df(Yb2) of Yb2 , when we

have b1 < b2. Owing to this, the approximate free-distance df calculated using our method

converges to the true free-distance, as the lengths of the paths considered are extended

towards infinity. In our experiments, we considered bit vector lengths of up to b = 10r.

In all cases, we found that the free-distance has converged before that point, regardless

of how the UEC code is parametrised, owing to the common features of all UEC codes

described in Section II-B.”

5.4.1. Design of UEC Component Codes 124

For example, Figure 5.4 shows all of the legitimate paths through an r = 4-state trellis

employing the codebook C = {000, 011} that may be caused by the first three bits in a bit

vector y = {yj}bj=1, having a length b > 3. Particularly, the minimum HD d12,3 between

states m1 = 2 and m′
1 = 3 is given by d12,3 = d01,1 + h(111, 000) = 3. Since there are no

legitimate paths leading to the states m1 = 1 or m1 = 4, we do not update the associated

distances, as shown in Figure 5.4. Similarly, we have d21,2 = d12,3 + h(111, 011) = 4, and

d31,2 = min(d21,2+h(000, 111), d21,4+h(000, 100), d22,3+h(111, 011), d23,4+h(011, 100)) =

4. Once the forward recursion has considered a sufficient number of trellis stages for

min(dj1,1, d
j
1,2, d

j
2,2) = min(dj−1

1,1 , dj−1
1,2 , dj−1

2,2), then the approximate free-distance becomes

df = min(dj1,1, d
j
1,2, d

j
2,2).

n r = 2 r = 4

2 ({00, 01}, 3)

3 ({000}, 3) ({000, 011}, 4)

4 ({0000}, 4) ({0000, 0111}, 5)

Table 5.1: After inverting and swapping, we select the IrUEC component UEC

codebooks {Cs}5s=1 with n bits and r states both up to 4. All the codebooks are in

the format (Cs, df), where df is the approximate free-distance.

I(z̃e; z)

I
(z̃

a
;z
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 5.5: Inverted EXIT functions for the S = 5 component UEC codes

{UECs}5s=1 of Table 5.1, when extended to r = 10 states codebooks, and when

the symbol values obey a zeta probability distribution having the parameter value

p1 = 0.797 in Eq. 3.3.

Our set of candidate component UEC codes was further reduced by considering their

free distances. More specifically, in order to achieve a wide variety of EXIT function

shapes, we retained only UEC codebooks having the maximal or minimal free distances

for each combination of n ∈ {2, 3, 4} and r ∈ {2, 4}, where a free-distance of 3 is the mini-

mal value that facilitates convergence to the (1, 1) point [150] and avoids an error floor. We

5.4.2. Double-sided EXIT Chart Matching Algorithm 125

drew the EXIT functions for all remaining candidate component UEC codes and selected

the five codebooks offering the largest variety of EXIT function shapes, as listed in Ta-

ble 5.1. Our experiments revealed that only insignificant EXIT function shape variations

are obtained, when considering more than r = 4 states. Without loss of generality, our

irregular trellis example of Figure 5.3 is constructed by concatenating the five UEC code-

books of Table 5.1. In the following simulations, we will consider irregular trellises that

are constructed using these codebooks. However, as mentioned in Chapter 3, the number of

states r employed by our five UEC component codes can be optionally and independently

increased in the receiver, in order to facilitate nearer-to-capacity operation at the cost of

an increased decoding complexity [92]. This is achieved by repeating the last element in

the codebook. For example, while the transmitter may use the codebook C = {00, 01},
the receiver may extend this to the r = 10-state codebook C = {00, 01, 01, 01, 01}. Fig-

ure 5.5 plots the inverted EXIT functions of the component UEC codes {UECs}5s=1, when

extended to r = 10 states. Note that, similar to the IrURC EXIT function, the compos-

ite IrUEC EXIT function fIrUEC is given as a weighted average of the component EXIT

functions {fUECs}5s=1, where we have

fIrUEC =

5
∑

s=1

αs · fUECs . (5.6)

5.4.2 Double-sided EXIT Chart Matching Algorithm

As depicted in the data-flow diagram of Figure 5.6, the algorithm commences by selecting

the fractions α, in order to yield an IrUEC code design having a particular coding rate

RIrUEC and a composite IrUEC EXIT function that is shaped to match the average of T

URC EXIT functions that correspond to a particular Eb/N0 value. The technique of [100]

may be employed for selecting the fractions β, in order to yield a composite IrURC EXIT

function that is shaped to match that of the IrUEC code. Following this, the algorithm

alternates between the matching of the composite IrUEC EXIT function to the composite

IrURC EXIT function and vice versa, as shown in Figure 5.6.

In order to facilitate near-capacity operation, we use a 0.1 dB Eb/N0 decrement per

iteration for the component URC EXIT functions, when designing the fractions β for the

IrURC code, until we find the lowest Eb/N0 value that achieves a marginally open EXIT

tunnel. Note that the double-sided EXIT chart matching algorithm allows the design of an

IrUEC code having a specific coding rate RIrUEC. This enables us to design the IrUEC code

to have a coding rate of RIrUEC = 0.254, which provides a fair performance comparison

with the regular UEC-IrURC scheme of [92] and with other benchmarkers, as detailed

5.5. Benchmarkers 126

Match
Match with
decremental

SNR

Composite outer
EXIT curve

EXIT curve
Composite inner

EXIT curves

average inner

EXIT curves
componentcomponent

component
EXIT curve

T innerS outer

Figure 5.6: Data-flow diagram of the proposed double-sided EXIT chart matching

algorithm. By contrast to the algorithm of [100], our double-sided EXIT chart

matching algorithm provides a fine-control of the overall coding rate.

in Section 5.5. More specifically, this results in the same overall effective throughput of

η = RIrUEC ·RIrURC · log2(M) = 0.508 bit/s/Hz, as listed in Table 5.2.

For the IrURC encoder, we employ the T = 10-component URC codes {URCt}10t=1

of [98,108], as discussed in Section 2.3. After running the double-sided EXIT chart match-

ing algorithm of Figure 5.6 until the Eb/N0 value cannot be reduced any further without

closing the EXIT chart tunnel, the composite EXIT functions of the IrUEC and IrURC

schemes are obtained, as depicted in Figure 5.7(a). Here, the Eb/N0 value is 0.3 dB, which

is 0.35 dB away from the Discrete-input Continuous-output Memoryless Channel (DCMC)

capacity bound of−0.05 dB and was found to be the lowest one that creates an open EXIT

chart tunnel. More specifically, the fractions of the bit vector z that are generated by the

constituent UEC codes {UECs}5s=1 of the IrUEC encoder are α = [0 0.7240 0.0924 0

0.1836], respectively. Similarly, the fractions of the bit vector u that encoded by the con-

stituent URC codes {URCt}10t=1 of the IrURC encoder are β = [0.1767 0 0.8233 0 0 0 0 0

0 0], respectively.

5.5 Benchmarkers

In this section, we compare the SER performance of the proposed IrUEC-IrURC scheme of

Figure 5.2 to that of various SSCC and JSCC benchmarkers. As mentioned in Section 5.4,

the proposed IrUEC-IrURC scheme and all benchmarkers are designed to have the same

effective overall throughput of η = 0.508 bit/s/Hz, for the sake of fair comparison. A pair

of benchmarkers are constituted by the UEC-IrURC and EG-CC-IrURC schemes of our

previous work [92]. Furthermore, a new benchmarker is created by replacing the unary

encoder and the IrTrellis encoder in the transmitter of Figure 5.2 with an EG encoder and

an IrCC encoder, respectively. This results in the SSCC benchmarker of Figure 5.8, which

we refer to as the EG-IrCC-IrURC scheme. Table 4.1 shows the first ten codewords of the

EG code, which are used for encoding the symbol vector x.

5.5. Benchmarkers 127

IrURC

IrUEC

(a)

I(ũa;u), I(z̃e; z)

I
(ũ

e
;u

),
I
(z̃

a
;z

)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

IrURC

EG-IrCC(sys)

(b)

I(ũa;u), I(z̃e; z)

I
(ũ

e
;u

),
I
(z̃

a
;z

)

0.90.80.70.60.50.40.30.20.10

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

IrURC

EG-IrCC(nonsys)

(c)

I(ũa;u), I(z̃e; z)

I
(ũ

e
;u

),
I
(z̃

a
;z

)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 5.7: Composite EXIT functions of (a) the IrUEC decoder of Figure 5.2

employing S = 5 component UEC codes {UECs}5s=1, (b) the EG-IrCC decoder

of Figure 5.8 employing the S = 13 component recursive systematic CC codes

{CCs
sys}13s=1 and (c) the EG-IrCC scheme employing the S = 11 component non-

systematic CC codes {CCs
ns}11s=1, and the IrURC scheme employing the T = 10

component URC codes {URCt}10t=1, when conveying symbols that obeying a zeta

distribution having the parameter p1 = 0.797, and communicating over a QPSK-

modulated uncorrelated narrowband Rayleigh fading channel. The EXIT chart

tunnel is marginally open when Eb/N0 = 0.3, 2.0 and 1.1 dB, respectively. By

contrast the EXIT functions of Figures 3.11, 3.12 and 3.12, an even narrower but

still open tunnel is obtained.

5.5.1. Recursive Systematic Component CC Codes 128

π1 π2
QPSK

modulator

QPSK
demodulatorπ−1

2

π1

π−1
1

encoder
x

IrURC Decoder

z1y1 u1 v1

v

z̃e

z̃a

z̃a1

decoders

x̂

ũa

uz

ũe
1

EG
encoders

EG-IrCC Decoder

EG
decoder decoders

y

ũe

EG-IrCC Encoder IrURC Encoder

ṽ1

w

w̃ṽ

yS zS vTuT encoders
T URC

T URC

ũa
T

ṽT

ũe
T

ũa
1z̃e1 z̃eS

z̃aS

S CC

S CC

ŷ

ỹa

Figure 5.8: Schematic of the EG-IrCC-IrURC benchmarker, in which an EG-IrCC

code is serially concatenated with IrURC code and Gray-coded QPSK modulation

schemes. Here, π1 and π2 represent interleavers, while π−1
1 and π−1

2 represent

the corresponding deinterleavers. By contrast to the IrUEC-IrURC scheme of

Figure 5.2, the IrUEC code is replaced by an EG-IrCC code.

As in the IrUEC-IrURC scheme, the bit vector y output by the EG encoder may be

modeled as a realization of vector Y = [Yj]
b
j=1 having binary RVs. However, as observed

in Section 3.6, these RVs do not adopt equiprobable values Pr(Yj = 0) 6= Pr(Yj = 1),

hence giving a less than unity value for the corresponding bit entropy HYj
. Similarly, the

bit vector z of Figure 5.8 may be modeled as a particular realization of a vector Z =

[Zk]
bn̄
k=1 comprising bn̄ binary RVs. Each binary RV Zk adopts the values 0 and 1 with the

probabilities Pr(Zk = 0) and Pr(Zk = 1) respectively, corresponding to a bit entropy of

HZk
. In the case where the IrCC code employs systematic component codes, the bits of

y having the entropy HYj
< 1 will appear in z, resulting in a bit entropy of HZk

< 1.

However, a bit entropy of HZk
< 1 is associated with a capacity loss, as described in [92].

Hence, for the sake of avoiding any capacity loss, it is necessary to use non-systematic

recursive component codes, so that the bits in the resultant encoded vector z have equiprob-

able values [92]. In order to demonstrate this, we introduce two versions of the EG-IrCC-

IrURC benchmarker. Firstly, the N = 13 recursive systematic component CC codes [116]

{CCs
sys}13s=1 that were originally proposed for IrCC encoding are adopted in the EG-IrCC-

IrURC encoder, as it will be described in Section 5.5.1. Secondly, Section 5.5.2 employs

the S = 11 non-systematic recursive CC codebooks {CCs
ns}11s=1 proposed in [98], in order

to offer an improved version of the EG-IrCC benchmarker. Meanwhile, the 10 compo-

nent URC codebooks {URCt}10t=1 employed by the IrURC encoder in both versions of the

benchmarker of Figure 5.8 are identical to those in the IrURC encoder of Figure 5.2.

5.5.1 Recursive Systematic Component CC Codes

The recursive systematic CC codes {CCs
sys}13s=1 employed in [116] were designed to have

coding rates of RCCs
sys
∈ {0.1, 0.15, . . . , 0.65, 0.7}. However, since the EG-encoded bits

5.5.1. Recursive Systematic Component CC Codes 129

in the vector y are not equiprobable, none of the systematic bits in the bit vector z will be

equiprobable either. As a result, the coding rate RCCs
sys

=
HYj

nCCs
sys
·HCCs

sys

Zk

of each system-

atic CC will be lower than the above-mentioned values. Since each CC code CCs
sys pro-

duces a different number of systematic bits, each will have a different bit entropy H
CCs

sys

Zk
,

and the EXIT function of each CC code will converge to a different point (H
CCs

sys

Zk
, H

CCs
sys

Zk
)

in the EXIT chart [156]. The composite IrCC EXIT function will converge to a point

(H IrCC
Zk

, H IrCC
Zk

), where H IrCC
Zk

is given by a weighted average of {HCCs
sys

Zk
}13s=1, according

to

H IrCC
Zk

=
13
∑

s=1

αs ·H
CCs

sys

Zk
. (5.7)

Since the vector z is interleaved to generate the bit vector u as the input of the IrURC en-

coder, the IrURC EXIT function will also converge to (H IrCC
Zk

, H IrCC
Zk

). However, this

presents a particular challenge, when parametrizing the fractions α and β of the EG-

IrCC(sys)-IrURC scheme. More specifically, the fractions α vary as our double-sided

EXIT chart matching algorithm progresses, causing the entropy H IrCC
Zk

to vary as well.

This in turn causes the IrURC EXIT function to vary, creating a cyclical dependency that

cannot be readily resolved. More specifically, the fractions α must be selected to shape the

EG-IrCC EXIT function so that it matches the IrURC EXIT function, but the IrURC EXIT

function depends on the fractions α selected for the EG-IrCC EXIT function.

Owing to this, we design the fractions α and β by assuming that the bits of y are

equiprobable and by plotting the inverted EXIT functions for the S = 13 recursive system-

atic CC codes accordingly, giving convergence to the (1, 1) point in Figure 5.7(b). Then we

invoke our double-sided EXIT matching algorithm to design the fractions α and β for the

IrCC(sys) and IrURC codes, which we apply to the EG-IrCC(sys)-IrURC scheme. For the

case where the bits of the vector y have the non-equiprobable values that result from EG

encoding, the composite EXIT functions are shown in Figure 5.7(b). Here, the effective

throughput is η = 0.508 bit/s/Hz and the Eb/N0 value is 2.0 dB, which is the lowest value

for which an open EXIT chart tunnel can be created. This Eb/N0 tunnel bound is 2.05 dB

away from the DCMC capacity bound of −0.05 dB, owing to the above-mentioned ca-

pacity loss. Furthermore, the EG-IrCC(sys)-IrURC scheme has an area bound of 1.72 dB,

which corresponds to a capacity loss of 1.77 dB, relative to the capacity bound. The de-

signed fractions for the EG-IrCC scheme are α = [0.0620 0.2997 0.0497 0.0004 0.1943

0 0.0984 0.1285 0 0 0 0.0002 0.1668], while the fractions for the IrURC code are β =

[0.6548 0 0.3452 0 0 0 0 0 0 0], respectively.

5.5.2. Recursive Non-Systematic Component CC Codes 130

5.5.2 Recursive Non-Systematic Component CC Codes

In order to avoid the capacity loss introduced by the recursive systematic CC codes, we

advocate the recursive non-systematic CC codebooks {CCs
ns}11s=1, which are described by

the generator and feedback polynomials provided in Table 3.2. More specifically, of the

12 codes presented in Table 3.2, we use all but the r = 2, n = 2 code, for the sake

of avoiding an error floor. These recursive non-systematic CC codes attain the optimal

distance properties [151] subject to the constraint of producing equiprobable bits Pr(Zj =

0) = Pr(Zj = 1), which is necessary for avoiding any capacity loss. The inverted EXIT

functions are plotted in Figure 5.9.

I(z̃a; z)

I
(z̃

e
;z
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 5.9: Inverted EXIT functions for EG-CC code, for the case where the S =
11 component recursive non-systematic CC codes {CCs

ns}11s=1 are employed, and

the symbol values obey a zeta probability distribution having the parameter value

p1 = 0.797.

For the sake of a fair comparison, we apply the double-sided EXIT chart matching

algorithm of Figure 5.6 again to design the EG-IrCC(nonsys)-IrURC scheme having a

coding rate of REG−IrCC = 0.254 and an effective throughput of η = 0.508 bit/s/Hz.

The composite EXIT functions of the EG-IrCC(nonsys) and IrURC schemes are shown

in Figure 5.7(c). Here, the fractions of the EG-IrCC scheme are α = [0.8101 0 0.0643 0

0 0 0 0.1256 0 0 0], while the fractions of the IrURC code are β = [0.2386 0 0.7614 0

0 0 0 0 0 0], respectively. The EXIT chart of Figure 5.9 is provided for an Eb/N0 value

of 1.1 dB, which is the lowest value for which an open EXIT chart tunnel is created. As

shown in Table 5.2, thisEb/N0 tunnel bound is just 1.15 dB away from the DCMC capacity

bound of−0.05 dB. This improvement relative to the EG-IrCC(sys)-IrURC scheme may be

attributed to the non-systematic nature of the EG-IrCC(nonsys)-IrURC scheme, which has

reduced the capacity loss to 1.07 dB, as quantified by considering the difference between

the Eb/N0 area bound of 1.02 dB and the capacity bound.

5.5.3. Parallel Component UEC Codes 131

5.5.3 Parallel Component UEC Codes

In order to make a comprehensive comparison, we also consider a Parallel IrUEC-IrURC

scheme. As shown in Figure 5.10, this scheme employs a parallel concatenation of S

number of separate UEC trellis encoders to encode the bit vector y, in analogy with the

structure of the EG-IrCC scheme of Figure 5.8.

π1 π2
QPSK

modulator

QPSK
demodulatorπ−1

2

π1

π−1
1

encoder
x

IrURC Decoder

z1y1 u1 v1

v

z̃e

z̃a

z̃a1

decoders

x̂

ũa

uz

ũe
1

encoders

decoder decoders

y

ũe

IrURC Encoder

ṽ1

w

w̃ṽ

yS zS vTuT encoders
T URC

T URC

ũa
T

ṽT

ũe
T

ũa
1z̃e1 z̃eS

z̃aS

Parallel IrUEC Encoder

Unary S Trellis

Parallel IrUEC Decoder

Unary S Trellisỹp

Figure 5.10: Schematic of the Parallel IrUEC-IrURC benchmarker, in which a

parallel IrUEC code is serially concatenated with IrURC code and Gray-coded

QPSK modulation schemes. Here, π1 and π2 represent interleavers, while π−1
1 and

π−1
2 represent the corresponding deinterleavers. By contrast to the IrUEC scheme

of Figure 5.2 employing the IrTrellis of Figure 5.3, the parallel IrUEC scheme of

this figure employs a parallel concatenation of separate trellises, in analogy with

the structure of the EG-IrCC scheme of Figure 5.8.

The component UEC codes of the Parallel IrUEC encoder are selected from the five

constituent codes provided in Table II, while the component UEC codes of the Parallel

IrUEC decoder are extended to r = 10 states. The irregular fractions employed by the Par-

allel IrUEC scheme are the same as those used in our proposed IrUEC scheme. However,

in order for each component UEC trellis encoder to remain synchronized with the unary

codewords in the bit vector y, it is necessary for each component trellis to commence its

encoding action from state m0 = 1 and end at state mb = 1 or mb = 2. Owing to this,

the subvectors of y input to each component UEC must comprise an integer number of

complete unary codewords. The irregular coding fractions can only be controlled at the

symbol level in the case of the parallel IrUEC scheme, rather than at the bit level, as in the

proposed IrUEC scheme. Therefore, the corresponding EXIT chart of the parallel IrUEC

scheme is not guaranteed to have an open tunnel, when the Eb/N0 value approaches the

tunnel bound of Table 5.2, hence resulting in a degraded SER performance. However, if

the frame length a was orders of magnitude higher, the difference between the symbol-

based and bit-based segmentations of the bit vector y would become insignificantly small.

As a result, a similar SER performance may be expected for the parallel IrUEC scheme

5.6. Simulation Results 132

in this case. In the following section, we will compare the performances of the Parallel

IrUEC and the proposed IrUEC schemes, using different values for the frame length a.

5.6 Simulation Results

The SER performance of the IrUEC-IrURC, the EG-IrCC(sys)-IrURC and the EG-IrCC(nonsys)-

IrURC, UEC-IrURC and EG-CC-IrURC schemes is characterised in Figure 5.11. In each

case, the source symbol sequence x comprises a = 104 symbols, the values of which

obey a zeta distribution having a parameter value of p1 = 0.797. As shown above, the

parametrizations of the irregular codes in each scheme are designed to achieve the closest

possible matching of EXIT charts, while giving the same overall effective throughput of

η = 0.508 bit/s/Hz. Transmission is performed over a Gray-coded QPSK-modulated un-

correlated narrowband Rayleigh fading channel, resulting in the DCMC capacity bound of

−0.05 dB. We select two parametrizations of the schemes in [92] to create two of our four

benchmarkers, namely the r = 4-state UEC-IrURC and the r = 4-state EG-CC-IrURC

schemes. Note that the r = 4-state EG-CC-IrURC scheme was found to outperform other

parametrizations of the same scheme having higher number of states, owing to its superior

EXIT chart matching accordingly. With the same effective throughput η, a fair comparison

is provided between our proposed IrUEC-IrURC scheme and the four benchmarkers.

Note that the practical implementation of the time-variant IrTrellis used in our IrUEC-

IrURC scheme follows the same principles as the parallel time-invariant trellises of the

benchmarker schemes, such as the EG-IrCC-IrURC scheme and the regular UEC-IrURC

scheme. Once the irregular coding fractions have been determined, the specific portions of

message that should be encoded and decoded by the corresponding trellises are also deter-

mined. In both time-variant and parallel time-invariant trellises, the hardware is required to

support different trellis structures, which may be implemented by appropriately changing

the connections among the states of a single hardware implementation of a trellis. Al-

though the proposed time-invariant trellis has some peculiarities at the interface between

its different sections, these can also be implemented using the same hardware at either side

of the interface. As an example platform for hardware implementation, the computation

unit of [152] performs one ACS arithmetic operation per clock cycle, which are the funda-

mental operations used in BCJR decoders [96]. Therefore, the implementational complex-

ity depends only on the computational complexity, as quantified per decoding iteration in

Table 5.2. Since a common computational complexity limit is used in our comparisons of

the various schemes, they can be deemed to have the same implementational complexity.

Although the routing and control of the proposed IrTrellis may be expected to be more

5
.6

.
S

im
u

la
tio

n
R

esu
lts

1
3

3

Scheme Figure Codebooks Ro Ri η
Eb/N0 [dB] Eb/N0 [dB] Eb/N0 [dB]

Complexity
capacity bound area bound tunnel bound

IrUEC-IrURC

5.2 {UECs}5s=1
0.254 1

0.508 -0.05

0.21 0.3 258

IrUEC(med)-IrURC 0.30 0.6 192

IrUEC(low)-IrURC 1.14 1.2 157

UEC-IrURC 3.3 {000, 011} 0.49 1.7 120

EG-IrCC-IrURC 5.8
{CCs

sys}13s=1 0.667 0.576 1.72 2.0 341

{CCs
ns}11s=1

0.254 1
1.02 1.1 146

EG-CC-IrURC 3.10 ([4,7,7],6,6) 1.00 2.2 132

Table 5.2: Characteristics of the various schemes considered, including outer coding rate Ro, inner coding rate Ri and effective throughput

η. Eb/N0 bounds are given for the case of Gray-coded QPSK transmission over an uncorrelated narrowband Rayleigh fading channel.

Complexity is quantified by the average number of Add, Compare and Select (ACS) operations incurred per decoding iteration and per bit in

the vector z.

5.6. Simulation Results 134

complicated than in the parallel time-invariant trellises of the benchmarkers, it may be ex-

pected that the associated overhead is negligible compared to the overall implementational

complexity.

As shown in Table 5.2, our IrUEC-IrURC scheme imposes a complexity of 258 ACS

operations per iteration per bit, when employing r = 10 states for each component UEC

code in the IrTrellis decoder. We also consider alternative parametrizations of our IrUEC-

IrURC scheme, which employ an IrTrellis having fewer states, in order to achieve lower

complexities. The IrUEC(med)-IrURC scheme relies on r = 6 trellis states for different

stages of the IrTrellis, which results in a total complexity of 192 ACS operations per iter-

ation per bit. This matches that of the UEC-IrURC benchmarker. At the same time, the

IrUEC(low)-IrURC scheme employs the minimal number of states for each stage of the

IrTrellis, namely either r = 4 states, as listed in Table 5.1, hence resulting in a complexity

of 157 ACS operations per iteration per bit.

During the simulation of each scheme, we recorded both the SER and the complexity

incurred after each decoding iteration, resulting in a Three-Dimensional (3D) plot of SER

versus Eb/N0 and versus complexity. Figure 5.11 presents Two-Dimensional (2D) plots of

SER versus Eb/N0 relationship, which were obtained by slicing through these 3D plots at

a particular complexity. More specifically, we select the complexity limits of 10, 000 and

5, 000 ACS operations per iteration per bit in Figure 5.11(b) and (c), respectively. Mean-

while, Figure 5.11(a) characterizes the SER performance achieved after iterative decoding

convergence, regardless of the complexity.

As shown in Table 5.2, the proposed IrUEC-IrURC scheme has an area bound of

0.21 dB, which is the Eb/N0 value where the area Ao beneath the inverted IrUEC EXIT

function equals that beneath the IrURC EXIT function. Although the UEC-IrURC bench-

marker has a similar area bound of Eb/N0 = 0.49 dB, it has an inferior EXIT chart match-

ing capability owing to its employment of regular UEC constituent codes. By contrast, the

employment of two irregular codes in the proposed IrUEC-IrURC scheme facilitates an

open EXIT chart tunnel at an Eb/N0 value of 0.3 dB, which is 1.4 dB lower than the open

tunnel bound of the UEC-IrURC benchmarker. Note that the area and tunnel bounds are

degraded in the context of the lower complexity versions of the proposed IrUEC-IrURC

scheme, which have fewer states in the IrTrellis. This may be explained by the increased

capacity loss encountered when the number of UEC states is reduced [92]. Note however

that even with a reduced complexity, the proposed IrUEC-IrURC scheme tends to exhibit

superior area and tunnel bounds, when compared to the EG-IrCC-IrURC and EG-CC-

IrURC benchmarkers, as shown in Table 5.2. This may be attributed to the large capacity

loss that is associated with SSCC scheme [92].

5.6. Simulation Results 135

EG-CC
UEC

IrUEC(med)
IrUEC(low)

IrUEC
EG-IrCC(nonsys)

EG-IrCC(sys)

C
ap

ac
it
y

b
ou

n
d

(a)

Eb/N0 [dB]

S
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

EG-CC
UEC

IrUEC(med)
IrUEC(low)

IrUEC
EG-IrCC(nonsys)

EG-IrCC(sys)

C
ap

ac
it
y

b
ou

n
d

(b)

Eb/N0 [dB]

S
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

EG-CC
UEC

IrUEC(med)
IrUEC(low)

IrUEC
EG-IrCC(nonsys)

EG-IrCC(sys)

C
ap

ac
it
y

b
ou

n
d

(c)

Eb/N0 [dB]

S
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

Figure 5.11: SER performance for various arrangements of the proposed IrUEC-

IrURC scheme of Figure 5.2, the EG-IrCC-IrURC of Figure 5.8, the Parallel

IrUEC-IrURC scheme of Figure 5.10, as well as the UEC-IrURC scheme of Fig-

ure 3.3 and the EG-IrURC scheme of Figure 3.10, when conveying a = 104 num-

ber of symbols obey a zeta distribution having the parameter p1 = 0.797, and

communicating over a QPSK-modulated uncorrelated narrowband Rayleigh fad-

ing channel having a range of Eb/N0 values. A complexity limit of (a) unlimited,

(b) 10, 000 and (c) 5, 000 ACS operations per decoding iteration is imposed for

decoding each of the bits in z.

5.6. Simulation Results 136

Figure 5.11 demonstrates that our proposed IrUEC-IrURC scheme has a superior SER

performance compared to all other benchmarkers, regardless of which complexity limit is

selected in this particular scenario. For example, as shown in Figure 5.11(a), our IrUEC-

IrURC scheme facilitates operation within 0.4 dB of the capacity bound, offering a 0.8 dB

gain compared to the EG-IrCC(nonsys)-IrURC scheme, which is the best-performing of

the SSCC benchmarkers. This is achieved without any increase in transmission energy,

bandwidth, transmit duration or decoding complexity. Note that the EG-IrCC(nonsys)-

IrURC benchmarker offers a 0.9 dB gain over the EG-IrCC(sys)-IrURC benchmarker,

which is owing to the capacity loss that is associated with systematic IrCC component

codes. As expected, the reduced complexity versions of the proposed IrUEC-IrURC

scheme exhibit a degraded SER performance. However, the IrUEC(low)-IrURC scheme

can be seen to offer up to 0.5 dB gain over the UEC-IrURC benchmarker, which has a

close decoding complexity per bit per iteration.

a = 104
a = 103
a = 102
IrUEC

Parallel IrUEC

C
ap

ac
it
y

b
ou

n
d

Eb/N0 [dB]

S
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

Figure 5.12: SER performance for various frame lengths a ∈ {102, 103, 104} of

the proposed IrUEC-IrURC scheme of Figure 5.2 and the Parallel IrUEC-IrURC

scheme of Figure 5.10, when conveying symbols obeying a zeta distribution hav-

ing the parameter p1 = 0.797, and communicating over a QPSK-modulated un-

correlated narrowband Rayleigh fading channel having a range of Eb/N0 values.

Since the Parallel IrUEC-IrURC scheme can only provide a symbol-level control of

the irregular coding fractions, the EXIT chart tunnel is not guaranteed to be open at low

Eb/N0 values. As a result, Figure 5.12 shows that the Parallel IrUEC-IrURC scheme of

Figure 5.10 performs relatively poorly compared to the proposed IrUEC-IrURC scheme,

particularly when the frame length has values of a = 102 and a = 103 symbols. Note

that this performance gain offered by the proposed scheme is obtained without imposing

any additional decoding complexity and without requiring any additional transmission-

energy, -bandwidth, or -duration. In analogy with Figure 5.11(a), an additional set of SER

5.6. Simulation Results 137

results is provided in Figure 5.13 for the various schemes considered, where the source

symbols obey a zeta distribution having the parameter p1 = 0.9, where the complexity

is potentially unlimited. It can be seen that the proposed IrUEC-IrURC scheme also out-

performs all other benchmarkers in this situation, offering a 1 dB gain compared to the

EG-IrCC(nonsys)-IrURC scheme, which is the best-performing one of the set of SSCC

benchmarkers.

EG-CC
UEC

IrUEC(med)
IrUEC(low)

IrUEC
EG-IrCC(nonsys)

EG-IrCC(sys)

C
ap

ac
it
y

b
ou

n
d

Eb/N0 [dB]

S
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

Figure 5.13: SER performance for various arrangements of the proposed IrUEC-

IrURC scheme of Figure 5.2, the EG-IrCC-IrURC of Figure 5.8, the Parallel

IrUEC-IrURC scheme of Figure 5.10, as well as the UEC-IrURC scheme of Fig-

ure 3.3 and the EG-IrURC scheme of Figure 3.10, when conveying a = 104

number of symbols obey a zeta distribution having the parameter p1 = 0.9, and

communicating over a QPSK-modulated uncorrelated narrowband Rayleigh fad-

ing channel having a range of Eb/N0 values. The complexity is unlimited for

decoding each of the bits in z.

Note that the performance gain of the proposed IrUEC-IrURC scheme is obtained by

elaborately designing the IrUEC EXIT function, in order to create a narrow but marginally

open EXIT chart tunnel at a low Eb/N0 value that is close to the area bound and capacity

bound, as discussed in Section 5.4.2. Since the benchmarker schemes suffer from capacity

loss which separates their tunnel, area and capacity bounds, the performance gain of the

proposed IrUEC-IrURC scheme depicted in Figure 5.11 and 5.13 may be expected in the

general case, regardless of the specific source probability distribution and the parametriza-

tion of the scheme. As an additional benefit of the proposed IrUEC-IrURC scheme, a

single bit error within a particular codeword can only result in splitting it into two code-

words, or into merging it with the next codeword, since every unary codeword contains

only a single 0. Fortunately, the decoding of the other unary codewords will be unaffected.

Owing to this, a single bit error in the IrUEC-IrURC scheme can only cause a Levenshtein

distance [163] of 2, hence preventing error propagation. By contrast, in the EG-based

5.7. Summary and Conclusions 138

benchmarkers, a single bit error can cause error propagation, resulting in a Levenshtein

distance that is bounded only by the length of the message.

5.7 Summary and Conclusions

In this chapter, we proposed a novel near-capacity JSCC scheme, which we refer to as

the IrUEC code. Like the regular UEC code of [92], it employs a unary code, but re-

places the UEC’s trellis code with a novel IrTrellis code. Unlike the conventional irregular

codes of Figures 5.8 and 5.10, the IrTrellis code of Figure 5.2 operates on the basis of

the single amalgamated irregular trellis of Figure 5.3, rather than a number of separate

trellises. This allows the irregularity of the proposed IrUEC code to be controlled on a

fine-grained bit-by-bit basis, rather than on a symbol-by-symbol basis, hence facilitating

nearer-to-capacity operation. More specifically, our results demonstrate that controlling

the IrUEC irregularity on a bit-by-bit basis offers gains of up to 0.5 dB over the best-

performing symbol-by-symbol approach, without imposing any increase in transmission

energy, bandwidth, latency or decoding complexity.

In Section 5.2 and Section 5.3, we introduced the transmitter and receiver of the

proposed IrUEC-IrURC scheme of Figure 5.2, respectively. More particularly, our pro-

posed IrUEC encoder employs a unary encoder and a novel IrTrellis encoder relying on

a single irregular trellis, while the IrURC encoder employs T component URC encoders

{URCt}Tt=1, each having a distinct independent trellis structure. In analogy to the IrURC

code of Figure 5.2, we denote the IrTrellis code of Figure 5.2 by S merged component UEC

trellises {UECs}Ss=1, where UECs is the s-th component UEC trellis structure defined by

the corresponding codebook Cs. At the receiver, both the IrUEC and IrURC decoder apply

the BCJR algorithm and perform iterative decoding for exchanging increasingly reliable

soft information.

In order to parametrize the IrUEC-IrURC scheme of Figure 5.2, Section 5.4 charac-

terises the free-distance properties of the UEC trellis for the first time, so that a suite of

UEC codes having a wide variety of EXIT curve shapes can be selected for the component

codes of our IrUEC code. Furthermore, we introduced the new double-sided EXIT chart

matching algorithm of Figure 5.6. On the one hand, the component UEC codes having a

wide variety of EXIT chart shapes provide design freedom for the IrUEC EXIT chart. On

the other hand, the novel double-sided EXIT chart matching algorithm exploit this design

freedom for parametrizing the IrUEC-IrURC scheme for the sake of creating a narrow but

marginally open EXIT chart tunnel at a low Eb/N0 value, which is close to the area bound

and the capacity bound.

5.7. Summary and Conclusions 139

The simulation results of Section 5.6 demonstrated that near-capacity operation is facil-

itated at Eb/N0 values that are within 0.4 dB of the DCMC capacity bound, when achiev-

ing an effective throughput of η = 0.508 bit/s/Hz and employing QPSK for transmission

over an uncorrelated narrowband Rayleigh fading channel. This corresponds to a gain of

0.8 dB compared to the best of several SSCC benchmarkers, which is achieved without

any increase in transmission energy, bandwidth, transmit duration or decoding complexity.

As shown in Figure 5.1, the contribution of this chapter may be complemented by also

considering non-stationary and unknown source distributions. In the following chapter,

we will design a dynamic learning-aided version of the UEC scheme, which can learn

the unknown source statistics and gradually improve its decoding performance during a

transient phase, then dynamically adapt to the non-stationary statistics and maintain its

decoding performance during a steady state phase.

Chapter 6

Learning-aided UEC Codes for

Non-Stationary and Unknown Sources

6.1 Introduction

In this chapter, we propose a dynamic version of the Unary Error Correction (UEC)

scheme [95] of Figure 6.4 for non-stationary and unknown source distributions, which we

refer to as the Learning-aided UEC scheme. It is capable of learning the unknown source

statistics and hence gradually improves its decoding performance during its learning phase

of operation, then dynamically adapts to the non-stationary statistics and maintains reli-

able near-capacity operation during its steady-state phase. As highlighted in Figure 6.1,

this chapter considers the the source probability distribution and adaptive decoding opera-

tions.

UEC
candidate
component

codes

Inner
concatenated

codes

Irregular

designs operations

Adaptive

distribution

Source

Figure 6.1: The design-flow of a UEC coded scheme. This chapter deals with the

design aspects in the order indicated using the bold boxes.

6.1.1 Background and Motivation

Chapter 3 has considered a novel Joint Source and Channel Coding (JSCC) scheme, which

was referred to as a UEC code [92] was proposed and it was the first JSCC that mitigates

capacity loss and incurs only a moderate decoding complexity, even when the cardinal-

ity of the symbol set is infinite. Based on the UEC scheme, we proposed an Adaptive

6.1.2. Novel Contributions 141

UEC scheme and Irregular UEC scheme in Chapters 4 and 5, respectively. For the Adap-

tive UEC scheme, we proposed an adaptive iterative decoding technique for expediting

the iterative decoding convergence of UEC codes. We also proposed the employment of

Three-Dimensional (3D) EXtrinsic Information Transfer (EXIT) charts for controlling the

dynamic adaptation of the UEC trellis decoder, as well as for controlling the decoder acti-

vation order between the UEC decoder and the turbo decoder. In the Irregular UEC scheme

of Chapter 5, we proposed a single irregular trellis, which operates on a bit-by-bit basis.

By exploiting this fine-grained control of the Irregular Unary Error Correction (IrUEC)

irregularity, the IrUEC EXIT function can be shaped to create a narrow, but marginally

open EXIT chart tunnel, hence facilitating ‘nearer-to-capacity’ operation.

However, in the previous chapters, the UEC code was only capable of achieving near-

capacity operation when the source distribution was known at the receiver. Hence, the

applicability of the UEC code was limited to some particular scenarios and its application

was prevented in the generalised case of unknown and non-stationary source probability

distributions.

In this chapter, we propose a new Learning-aided UEC scheme. Like our previous

UEC schemes, the proposed learning-aided scheme does not require any prior knowledge

of the source distribution at the transmitter. However, in contrast to our previous UEC

schemes of Chapters 3, 4 and 5, the proposed learning-aided scheme is also capable of

achieving near-capacity operation without any prior knowledge of the source distribution

at the receiver. This is achieved by learning the source distribution based on the received

symbols. Starting from a situation of having no prior information about the source dis-

tribution, the proposed receiver becomes capable of recovering a first frame of symbols,

albeit possibly with a relatively high Symbol Error Ratio (SER), if the channel’s Signal

to Noise Ratio (SNR) is close to the capacity bound. Nonetheless, this frame of symbols

can be used for making a first estimate of the source distribution, which is stored in mem-

ory. This information can then be used to aid the recovery of a second frame of symbols,

with an improved SER. This allows the estimate of the source distribution that is stored in

memory to be improved. In this way, the SER and the estimate of the source distribution

can be gradually improved in successive frames during the learning phase. Following this,

the receiver enters a steady-state phase, during which reliable near-capacity operation can

be maintained by continuing the learning process, even if the source is non-stationary.

6.1.2 Novel Contributions

The novel contributions of this chapter are summarised as follows:

• We analyse the characteristics of the H.265 codec’s entropy-encoded symbol values.

6.1.3. Chapter Organisation 142

Inspired by the distribution of these symbol values, we propose a non-stationary

probability distribution model, which can be readily parametrized to represent the

H.265 distribution.

• We propose a novel learning-aided UEC scheme, which does not require any prior

knowledge of the source distribution at the receiver. The learning algorithm grad-

ually infers the source distribution based on the received symbols and feeds this

information back to the decoder in order to assist the decoding process. Hence,

near-capacity operation is facilitated.

• In order to implement our learning algorithm, we employ a memory storage at the

receiver, which is used for storing the source distribution statistics that have been

observed from the successively recovered symbol vectors. Moreover, we quantify

the size of this memory storage in terms of the number of most-recently recovered

symbol vectors, and strike an attractive trade-off between the size of the memory

and the error correction capability.

• We propose a pair of learning-aided Separate Source and Channel Coding (SSCC)

benchmarkers, namely a learning-aided Elias Gamma (EG)-Convolutional Code (CC)

scheme and a learning-aided Arithmetic-CC scheme, as well as the corresponding

idealized but impractical versions of all schemes, in order to characterise the upper

bounds on their performance.

6.1.3 Chapter Organisation

The rest of this chapter is organised as follows:

• In Section 6.2, we analyse the nature of non-stationary source symbol distributions.

We extend the stationary zeta distribution model that was used in the previous chap-

ters to create a non-stationary zeta distribution model of Section 3.2, which is in-

spired by the non-stationary nature of the symbols generated by the H.265 video

codec.

• In Section 6.3, we detail the transmitter and receiver architecture of the proposed

learning-aided UEC scheme, as well as detailing our proposed learning technique.

We detail how the learning algorithm may be implemented by employing a memory

storage at the receiver to infer the source distribution statistics, which improves the

error correction capability by feeding these statistics back to the decoder.

• In Section 6.4, we propose a pair of SSCC benchmarkers that employ a similar

learning technique, namely a learning-aided EG-CC scheme and a learning-aided

Arithmetic-CC scheme, as well as their corresponding idealized but impractical ver-

sions.

6.2. Nature of the Source 143

• In Section 6.5, we compare the SER performance of the proposed learning-aided

UEC scheme to those of the learning-aided EG-CC and the learning-aided Arithmetic-

CC benchmarkers. The comparison is carried out by using different parameter sets

for the non-stationary zeta distribution and using a common complexity limit that is

sufficient for achieving iterative decoding convergence in all schemes.

• In Section 6.6, we conclude this chapter.

6.2 Nature of the Source

In this section, we introduce the source distributions considered in this paper, which are

inspired by those of H.265. However, the particular distribution of the source symbols

produced during H.265 encoding are sensitive to the specific selection of video encoding

parameters and to the type of video sequences being encoded. Owing to this, we prefer

to consider model source distributions, which can be readily parametrized to be represen-

tative of the distribution of the H.265 codec’s entropy-encoded symbol values in various

applications, as well as of a wide variety of other multimedia source distributions. We

commence in Section 6.2.1 by introducing a stationary zeta distribution, which is inspired

by the H.265 distribution. This is extended in Section 6.2.2, to conceive the non-stationary

zeta source distribution that is applied throughout the rest of this paper. This non-stationary

distribution is a direct consequence of the non-stationary nature of the H.265 distribution.

6.2.1 Stationary Zeta Distribution

As shown in Figure 6.4, the proposed learning-aided UEC scheme is designed to convey

a sequence of successive symbol vectors, where each vector x = [xi]
a
i=1 can be obtained

as the realization of a corresponding vector X = [Xi]
a
i=1 of Independent and Identically

Distributed (IID) Random Variable (RV). Each RV Xi adopts the symbol value x ∈ N1

according to the probability Pr(Xi = x) = P (x), where N1 = {1, 2, 3, . . .} is the infinite-

cardinality set comprising all positive integers. Here, the symbol entropy is given by

HX =
∑

x∈N1

H [P (x)], (6.1)

where H [p] = p log2(1/p) [92].

Figure 6.2 illustrates the logarithmically scaled probability distribution of the symbol

values that are entropy encoded by the H.265 video encoder, for the case of a particular

video encoder [164] parametrization and for a particular set of video sequences. The H.265

distribution of Figure 6.2 corresponds to a symbol entropy of HX = 2.348 bits per symbol.

6.2.1. Stationary Zeta Distribution 144

Note that these symbol values appear to obey Zipf’s law [144], since the H.265 distribution

may be approximated by the zeta distribution.

H.265

Zeta

p1

x

P
(x

)

1000100101

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Figure 6.2: The zeta probability distributions for p1 ∈ {0.1, 0.2, 0.3, . . . , 0.9}, as

well as the H.265 entropy-encoded symbol value distribution. This was obtained

by recording the values of the symbols that are EG- and UnaryMax-encoded when

the HM 13.0 H.265 video encoder employs the ‘encoder randomaccess main.cfg’

and ‘encoder lowdelay main.cfg’ configurations to encode the 112.9 million sym-

bols that occur during the 220 seconds of video from the 24 video sequences that

are commonly used in High Efficiency Video Coding (HEVC) [164]. By contrast,

the H.264 distribution of Figure 3.2 was obtained by recording the values of the

44.6 million symbols that are EG-encoded when the JM 18.2 H.264 video encoder

employs the ‘encoder baseline.cfg’ configuration to encode the 175 s of video that

are comprised by 4:2:0 versions of the Video Quality Expert Group (VQEG) test

sequences.

More specifically, the stationary zeta probability distribution [144] is defined as

P (x) =
x−s

ζ(s)
, (6.2)

where ζ(s) =
∑

x∈N1
x−s is the Riemann zeta function and s parametrizes the distribu-

tion. Alternatively, the zeta distribution may be parametrized by p1 = Pr(Xi = 1) =

1/ζ(s), which is the occurrence probability of the most frequently encountered sym-

bol value, namely of the symbol 1. Zeta distributions having the parameter of p1 ∈
{0.1, 0.2, 0.3, . . . , 0.9} and the corresponding symbol entropy of HX ∈{17.458, 9.171,

6.104, 4.402, 3.267, 2.422, 1.740, 1.154, 0.612} are depicted in Figure 6.2. Table 4.1

exemplifies the source symbol probabilities P (x) for the case of a stationary zeta distri-

bution, having the parameter of p1 = 0.797, as was considered in our previous work [92].

This parametrization corresponds to a symbol entropy of 1.171 bits per symbol.

6.2.2. Non-Stationary Zeta Distribution 145

However, in contrast to the stationary zeta distributions that have been considered in

our previous work, the H.265 source distribution is non-stationary, since it varies gradually

with time, sometimes having a higher than average entropy and sometimes having a lower

than average entropy. Motivated by this, we propose a non-stationary zeta distribution

model in this paper, as detailed in Section 6.2.2.

6.2.2 Non-Stationary Zeta Distribution

In order to characterize how quickly the non-stationary source distribution varies in H.265,

we segmented the sequence of 112.9 million entropy-encoded symbols characterized in

Figure 6.2 into successive vectors having a fixed length of a symbols. Following this, we

measured the symbol entropy in each vector using Eq. (6.1), in order to obtain a corre-

sponding sequence of symbol entropies. Finally, we measure the autocorrelation of the

consecutive pair of values in the entropy sequence, as plotted in Figure 6.3 as a function of

the vector length a that quantified in terms of the number of the symbols. It may be seen

that the largest first-order autocorrelation is achieved, when the vector length a is around

1000. Therefore, without loss of any generality, we assume that the symbol vector x of

Figure 6.4 has a length of a = 1000 symbols, throughout the rest of this paper.

a

F
ir

st
-o

rd
er

au
to

co
rr

el
at

io
n

104103102101

1

0.9

0.8

0.7

0.6

0.5

0.4

Figure 6.3: The first-order autocorrelation of symbol entropy sequence, when the

112.9 million H.265 entropy-encoded symbols are segmented into successive sub-

vectors of length a ∈ {10, 101.1, 101.2, . . . , 104}.

In contrast to the stationary zeta distribution of Section 6.2.1, the non-stationary zeta

distribution produces successive symbol vectors x of a = 1000 symbols having a series

of different but correlated p1 values, as mentioned in the context of the autocorrelation

results of Figure 6.3. This stream of correlated p1 values is obtained by first generating

an uncorrelated stream of Gaussian distributed random values. Note that this uncorrelated

stream has a length of a = 1000. This random stream is then smoothened by using a

6.3. Learning-aided UEC Coding 146

low-pass filter having a normalised cut-off frequency of 1/T , where T is a parameter

that specifies the number of successive symbol vectors x produced per cycle of variation

among the correlated p1 values. Following this, the mean and standard deviation of the

filtered values are adjusted to be equal to the parameter values p̄1 and σ, respectively.

Each successive value of p1 from this stream may then be used to parametrize the zeta

distribution of Eq. (6.2), which is used to generate each successive vector x of a = 1000

source symbols.

As listed in Table 6.1, the analysis of the following sections will consider seven dif-

ferent sets of parametrizations. In set (a) for example, the low pass filter is parametrized

by T = 40 successive symbol vectors x per p1 cycle, by a mean of p̄1 = 0.8 and by a

standard deviation of σ = 1/30, resulting in 99.7% of the non-stationary p1 values falling

in the range of [0.7, 0.9]. Note however that the proposed learning-aided UEC scheme may

be applied to arbitrary non-stationary source distributions, without being limited to those

adhering to the model described in this section.

UEC decoder

Trellis
decoder

Unary
decoder

z̃e

z̃a

ỹp

decoder demodulator
QPSK

π1

π−1
2

π−1
1

URC

M

x̂

l̂, p̂

UEC encoder

Trellis
encoder

yUnary
encoder

z

encoder modulator
QPSKπ2π1

URCx

Figure 6.4: Schematic of the proposed learning-aided UEC scheme, in which a

UEC code is serially concatenated with a URC code and Gray-mapped QPSK

modulation. Here, π1 and π2 represent interleavers, while π−1
1 and π−1

2 represent

the corresponding deinterleavers. Block M represents the memory storage that

is used to store the statistics observed from successive recovered symbol vectors

x̂. Bold notation without a diacritic is used to denote a symbol or bit vector.

A diacritical tilde represents an LLR vector pertaining to the bit vector with the

corresponding notation. The superscripts ‘a’, ‘e’ and ‘p’ denote a priori, extrinsic

and a posteriori LLRs, respectively. By contrast to the UEC-IrURC scheme of

Figure 3.3, the irregular URC code is replaced by a regular URC code.

6.3 Learning-aided UEC Coding

The proposed learning-aided UEC scheme of Figure 6.4 performs the JSCC encoding and

decoding of successive symbol vectors x, in which the symbol values are selected from

a set having an infinite cardinality, as described in Section 6.2. Like conventional UEC

coding, the proposed learning-aided UEC scheme does not require any knowledge of the

6.3.1. Transmitter Operation 147

symbol occurrence probabilities at the transmitter. However, in contrast to conventional

UEC coding, the proposed scheme does not require this knowledge at the receiver either,

since it can gradually estimate the source probability distribution from the recovered sym-

bols. Note that since our focus is the learning algorithm of the UEC code, a simple URC

code is selected for the inner code. In Section 6.3.1 and 6.3.2, we will introduce the oper-

ations of the transmitter and the receiver, respectively. Following this, Section 6.3.3 will

discuss the operation of the proposed learning mechanism.

6.3.1 Transmitter Operation

Similar to the UEC encoder of Figure 3.3 in Section 3.3.1, the learning-aided UEC scheme

encodes the source vector x = [xi]
a
i=1 using a unary encoder, as shown in Figure 6.4.

Each symbol xi in the vector x is firstly represented by the corresponding codeword yi

that comprises xi bits, namely (xi− 1) logical one-valued bits followed by a single logical

zero-valued bit, as exemplified in Table 4.1. Note that the average codeword length l of yi

of Figure 6.4 is given by Eq. (3.5). For example, the source vector x = [1, 4, 2, 1, 1, 3, 1, 2]

of a = 8 symbols yields the b = 15-bit vector y = [011101000110010]. Note that the

average length of the bit vector y of Figure 6.4 is given by a · l.

yj/zjmj−1 mj

1

2

1

3

2

4

3

4

1/10

0/01

0/10

1/01

0/00

1/11

0/11

1/00

Figure 6.5: An r = 4-state n = 2-bit UEC trellis, having codeword C = {01, 11}.
This trellis is as same as the one of Figure 3.5.

Following unary encoding, the trellis encoder of Figure 6.4 is employed for encoding

the bit vector y. Figure 3.4 illustrates the generalized r-state UEC trellis, while Figure 6.5

of this chapter exemplifies an r = 4-state UEC trellis. As discussed in Section 3.3.2, each

bit yj of the input bit sequence y = [yj]
b
j=1 forces the trellis encoder to traverse from its

previous state mj−1 ∈ {1, 2, . . . , r} to its next state mj ∈ {1, 2, . . . , r}, in the order of

the increasing bit-index j. Each next state mj is selected from two legitimate alternatives,

depending on the bit value yj , according to Eq. (3.8).

6.3.1. Transmitter Operation 148

In this way, the bit vector y identifies a path through the trellis, which may be rep-

resented by a vector m = [m]bj=0 comprising (b + 1) state values. For example, the bit

vector y = [011101000110010] yields the path m = [1, 2, 4, 4, 4, 1, 3, 2, 1, 2, 4, 4, 1, 2, 4, 1]

through the r = 4-state trellis of Figure 6.5. Note that the trellis path m through the trellis

of Figure 6.5 remains synchronised with the unary codewords, since the zero-valued bit at

the end of each codeword yi returns the path m to either state 1 or state 2, depending on

whether the codeword yi represents a symbol xi having an odd or even index i. The trellis

path m may be modeled as a particular realization of a vector M = [Mj]
b
j=0 comprising

(b + 1) RVs, which are associated with the transition probabilities Pr(Mj = m,Mj−1 =

m′) = P (m,m′) of Eq. (3.11).

The trellis encoder represents each bit yj in the vector y by an n-bit codeword zj.

This is selected from the set of r/2 codewords C = {c1, c2, . . . , cr/2−1, cr/2} or from

the complementary set C = {c1, c2, . . . , cr/2−1, cr/2}, which is achieved according to

Eq. (3.12). For example, the n = 2-bit codewords C = {01, 11} are employed in the

r = 4-state UEC trellis of Figure 6.5. Finally, the selected codewords are concate-

nated to obtain the (b · n)-bit vector z = [zk]
bn
k=1 of Figure 6.4. For example, the path

m = [1, 2, 4, 4, 4, 1, 3, 2, 1, 2, 4, 4, 1, 2, 4, 1] through the r = 4-state n = 2-bit trellis of Fig-

ure 6.5 corresponds to the encoded bit vector z = [010111110010111001011100010100].

Note that the UEC encoder does not require any knowledge of the source distribution,

since the output bit vector z of the UEC encoder only depends on the symbol vector x and

the parametrization of the UEC trellis. This is true for both the conventional UEC scheme

and for our proposed learning-aided UEC scheme.

When the source distribution is stationary, the overall average coding rate Ro of the

UEC encoder is given by Ro =
HX

nl
. However, if the source distribution is non-stationary,

then the symbol entropy HX and the average unary codeword length l will vary from frame

to frame. In this case, the average UEC coding rate Ro is given by the expectation

Ro = E

{

HX

nl

}

, (6.3)

which may be estimated experimentally.

As shown in Figure 6.4, the UEC-encoded bit vector z is interleaved in the block π1,

encoded by the Unity-Rate Convolutional (URC) encoder and then interleaved again by the

block π2. Here, we recommend a 2-state URC having the generator polynomial of [1, 0]

and the feedback polynomial of [1, 1], as characterized in Figure 9.6 of [98]. Following

this, Gray-mapped Quadrature Phase-Shift Keying (QPSK) modulation may be employed

for transmission, as shown in Figure 6.4. Consequently, the effective throughput is given

6.3.2. Receiver Operation 149

by η = Ro ·Ri · log2(M) bits per symbol, where we have Ri = 1 for the URC coding rate

and M = 4 for the QPSK modulation order.

6.3.2 Receiver Operation

In the receiver of Figure 6.4, Gray-mapped QPSK demodulation is followed by deinter-

leaving in the block π−1
2 , before commencing iterative information exchange between the

URC and UEC decoders. Here, the two decoders exchange their vectors of LLRs, which

are interleaved and deinterleaved in the blocks π1 and π−1
1 , respectively. Both of these de-

coders apply the Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm [91] to their respective

trellises, where the UEC trellis decoder may employ the trellis of Figure 6.5, which has

only a modest complexity.

As shown in Figure 6.4, the UEC trellis decoder is provided with a vector of a priori

LLRs z̃a = [z̃ak]
bn
k=1 that pertain to the corresponding bits in the vector z. These a priori

LLRs are used for generating the vector of extrinsic LLRs z̃e = [z̃ek]
bn
k=1, which also pertain

to the corresponding bits in the vector z. Here, the value of bn is assumed to be per-

fectly known to the receiver and may be reliably conveyed by the transmitter using a small

amount of side information, in practice. The BCJR algorithm can exploit the synchroniza-

tion between the UEC trellis and the unary codewords, in order to improve the receiver’s

error correction capability and to facilitate near-capacity operation. This is achieved by in-

cluding the conditional transition probability Pr(Mj = m|Mj−1 = m′) = P (m|m′) as an

additional term during the BCJR algorithm’s γt calculation of Eq. (2.11), where we have

P (m|m′) =
P (m,m′)

∑r
m̌=1 P (m̌,m′)

, (6.4)

and P (m,m′) is given in Eq. (3.11), which depends on the symbol probability distribution

P (x) as described in Section 6.3.1.

Note that knowledge of the entire symbol probability distribution P (x) is not required

in order to exploit Eq. (6.4). Rather, the only knowledge required is that of the average

unary codeword length l and the probabilities of the first r/2 − 1 symbol values p =

[P (x)]
r/2−1
x=1 [92]. In the conventional UEC scheme of [92], the average length l and the

probability vector p are assumed to be stationary and known at the receiver, as represented

by the dashed line in Figure 6.4. However, since P (x) is non-stationary and unknown at the

receiver of the proposed learning-aided UEC scheme, it must estimate l and p heuristically

and iteratively, before this information can be exploited by Eq. (6.4). The mechanism

proposed for this learning process will be discussed in Section 6.3.3. In the absence of

this information, the Pr(Mj = m|Mj−1 = m′) term can be simply omitted from the γt

calculation of Eq. (2.11), at the cost of degrading the receiver’s error correction capability.

6.3.3. Learning Algorithm 150

In each decoding iteration, the UEC trellis decoder may also invoke the BCJR algo-

rithm for generating the vector of a posteriori LLRs ỹp = [ỹpj]
b
j=1 that pertain to the corre-

sponding bits in the vector y. The unary decoder of Figure 6.4 exploits the observation that

each of the a unary codewords in the vector y contains only a single logical zero-valued

bit. This is achieved by sorting the a posteriori LLRs in the vector ỹp in order to identify

the a number of bits in the vector y that are most likely to have values of zero. A hard

decision vector ŷ is then obtained by setting the value of these bits to zero and the value

of all other bits to one. Finally, the bit vector ŷ can be unary decoded in order to obtain

the symbol vector x̂ of Figure 6.4, which is guaranteed to comprise a number of symbols

owing to the above-described technique. Note that the value of a is assumed to be known

to the receiver. In practice, this may be achieved by either using a constant value for a that

is hard-coded into the receiver or by reliably conveying the value of a from the transmitter

to the receiver using a small amount of side information. The iterative exchange of LLRs

between the UEC and URC decoders of Figure 6.4 continues until a particular number of

iterations has been completed or until the correctly decoded symbol vector x̂ has been ob-

tained, which may be detected using a Cyclic Redundancy Check (CRC) code in practice,

for example.

6.3.3 Learning Algorithm

As discussed in Section 6.3.2, the only knowledge that the UEC trellis decoder requires in

order to facilitate near-capacity operation is the average unary codeword length l and the

probabilities of the first r/2 − 1 symbol values p = [P (x)]
r/2−1
x=1 . When the probability

distribution P (x) of source symbols x is non-stationary and unknown, our learning-aided

UEC scheme is capable of heuristically and iteratively estimating l and p from the recov-

ered symbol vectors x̂, which are then back to the trellis decoder as a priori information,

in order to improve the receiver’s error correction capability.

The estimation is implemented using the memory storage block labeled M in Fig-

ure 6.4. This memory storage is used to store source distribution statistics that have been

observed from successively recovered symbol vectors x̂. We quantify the size of this mem-

ory storage in terms of the number M of the most-recently recovered symbol vectors x̂,

from which the statistics are derived. As described in Section 6.3.2, the number a of sym-

bols in each vector x and the number b of bits in each vector y are known to the decoder.

Owing to this, following the decoding of each frame, the average unary codeword length l

can be estimated by

l̂ =

∑M
m=1 bm

∑M
m=1 am

, (6.5)

6.3.3. Learning Algorithm 151

which can then be used for assisting the decoding of the next frame. Here, am and bm

are the number of symbols and the number of bits in the m-th most-recently recovered

frame, respectively. In this way, we can also count the occurrences of the first r/2 − 1

symbol values in each recovered symbol vector x̂. Therefore, following the decoding of

each frame, the probability vector p can be estimated by

p̂ =

[

∑M
m=1N(x̂m = x)
∑M

m=1 am

]r/2−1

x=1

, (6.6)

which can then also be used for assisting the decoding of the next frame. Here, N(x̂m = x)

denotes the number of recovered symbols that has a value of x in the m-th most-recently

recovered symbol vector x̂m. Note that the memory will be empty during the decoding of

the first frame. In this case, l̂ and p̂ are not exploited during UEC decoding due to omitting

the Pr(Mj = m|Mj−1 = m′) term from the γt calculation of Eq. (2.11), as described in

Section 6.3.2. Following this, since at this stage M frames have not yet been received, the

summations in Eq. (6.5) and Eq. (6.6) are adjusted accordingly.

Note that during this initial transient phase, the estimated l̂ and p̂ may not have ac-

curate values, particularly if transmission errors occur owing to encountering a low SNR.

Nevertheless, this imperfect a priori information can still contribute towards improving

the error correction capability of the trellis decoder, gradually resulting in fewer errors in

x̂ and more reliable feedback of l̂ and p̂ for the next frame. In this way, our learning-aided

UEC scheme becomes capable of gradually learning the statistics of the source distribution,

hence iteratively updating the estimated l̂ and p̂ on a frame-by-frame basis. As a result,

the performance of the decoder can be gradually improved until a steady-state phase is

reached, where upon near-capacity operation is achieved.

For the stationary probability distribution, it is clear that the more memory storage is

applied, the more accurate source distribution statistics can be obtained. In this case, the

difference between the estimated values of l̂ as well as p̂ and the real values of l as well as

p will become infinitesimal, when an infinite memory is applied, giving

lim
M→∞

l̂ = l and lim
M→∞

p̂ = p. (6.7)

However, in the case of non-stationary source distributions, it is not desirable to apply an

infinite memory storage. This is not only because of the impracticality of infinite memory,

but also because the source distribution of the current frame is only correlated to the recent

frames, when the source is non-stationary. If the size of the memory storage is excessive,

then the estimates l̂ and p̂ will be contaminated by out-of-date source distribution statistics,

6.4. Benchmarkers 152

hence degrading the error correction capability of the scheme. Therefore, there is a trade-

off between collecting sufficient statistics for accurate estimation and collecting too many

out-of-date statistics. In the simulations of Section 6.4, we will investigate this trade-off,

in order to optimize the overall performance of our proposed learning-aided scheme. We

will also consider an idealized but impractical version of the proposed learning-aided UEC

scheme, in which a ‘genie’ provides the receiver with perfect knowledge of l and p for each

frame. As a result, this version provides a baseline, which characterizes the bound on the

performance that the learning-aided UEC scheme is capable of achieving.

encoder
URC

modulator
QPSK

demodulator
QPSK

M

M

decoder
URC

π1

π1

π−1
1

π2

π−1
2

w

w̃

z̃e

z̃a

encoder
zCCy

encoder
x

decoderdecoder
CCŷx̂

(b)

Arithmetic

Arithmetic

encoder
URC

encoder
zCCy

encoder
x EG

(a)

modulator
QPSK

demodulator
QPSK

M

v3

v1,v2

decoder
URC

π1

π1

π−1
1

π2

π−1
2

w

w̃

z̃e

z̃adecoderdecoder
CCŷx̂ EG

ỹa

Figure 6.6: Schematics of (a) the learning-aided EG-CC and (b) the learning-

aided Arithmetic-CC benchmarkers, which employ serial concatenation with a

URC code and a Gray-mapped QPSK modulation scheme. Here, π1 and π2 rep-

resent interleavers, while π−1
1 and π−1

2 represent the corresponding deinterleavers.

For the sake of controlling the effective throughput η, doping or puncturing may be

performed by π2. Block M represents the memory that is used to store the statis-

tics observed from successive recovered bit vectors ŷ or symbol vectors x̂. By

contrast to the learning-aided UEC-URC scheme of Figure 6.4, the UEC scheme

is replaced by EG-CC and Arithmetic-CC schemes, respectively.

6.4 Benchmarkers

In this section, we compare the proposed learning-aided UEC scheme to a pair of SSCC

benchmarkers that employ a similar learning strategy, as well as to the corresponding ide-

alized but impractical versions of all schemes. In the learning-aided EG-CC benchmarker

6.4.1. Learning-aided EG-CC Benchmarker 153

of Figure 6.6(a), the unary code of Figure 6.4 is replaced by an EG code and the UEC

trellis code is replaced by a CC code. As a further step, the learning-aided Arithmetic-CC

benchmarker is obtained by replacing the EG code by an arithmetic code, as shown in

Figure 6.6(b). The design and parametrizations of the two benchmarkers are detailed in

Section 6.4.1 and Section 6.4.2, respectively.

6.4.1 Learning-aided EG-CC Benchmarker

In the transmitter of the learning-aided EG-CC scheme, an EG encoder is invoked for con-

verting the symbol vector x into the bit vector y, which typically has non-equiprobable

bit values. Here, the first ten codewords of the EG code are given in Table 4.1. When

the source distribution is stationary, the average EG codeword length is given by l =
∑

x∈N1
P (x) (2⌊log2(x)⌋ + 1). However, when the source distribution is non-stationary,

the average EG codeword length will vary from frame to frame, as described in Sec-

tion 6.3.1. Following EG encoding, y is CC encoded to obtain the bit vector z, as shown

in Figure 6.6(a). The CC encoder may be described by the generator and feedback poly-

nomials provided in Table 3.2. Here, we employ the n = 2-bit r = 4-state CC code,

in order to facilitate a fair comparison with the scenario where the trellis encoder of the

learning-aided UEC scheme employs the UEC trellis of Figure 6.5.

In the case of a non-stationary source distribution, the EG-CC coding rate Ro may be

quantified by the expectation of Eq. (6.3) and will typically differ from that of the UEC

scheme. For the sake of fair comparisons, either the technique of doping [165] or punc-

turing may be applied in the block π2 of Figure 6.6 in order to achieve the same effective

throughput η for all schemes. Explicitly doping is applied when the coding rate Ro of EG-

CC encoding is higher than that of UEC encoding, while puncturing is applied, when the

coding rate of EG-CC encoding is lower. More particularly, in the doping operation of π2,

a certain number of bits from the tail of the interleaved bit vector w are duplicated and ap-

pended to the end of w. In the receiver, the ‘de-doping’ operation of π−1
2 is constituted by

removing the corresponding LLRs of the vector w̃, before adding them into the LLRs that

now form the end of w̃. By contrast, when puncturing is applied in π2, a certain number

of bits are truncated from the tail of the bit vector w. In the corresponding ‘de-puncturing’

operation of π−1
2 , the positions in the Logarithmic Likelihood Ratio (LLR) vector w̃ that

correspond to the truncated bits are filled by zero-valued LLRs. The inner coding rate Ri is

defined as the ratio of the number of bits entering π2 to the number of bits emerging from

π2, where Ri > 1 for puncturing as Ri < 1 for doping, as listed in Table 6.1.

During iterative decoding, the CC decoder chooses the BCJR algorithm for converting

the vector of a priori LLRs z̃a into the vector of extrinsic LLRs z̃e, and it employs the

Viterbi algorithm [3] for converting z̃a into the vector of recovered bits ŷ, which is then

6
.4

.1
.

L
ea

rn
in

g
-a

id
ed

E
G

-C
C

B
en

ch
m

a
rk

er
1

5
4

Set T p̄1 σ Scheme Figure Ro Ri η
Eb/N0 [dB] Eb/N0 [dB] Eb/N0 [dB]

Complexity
capacity bound area bound tunnel bound

a 40 0.8 1/30

UEC 6.4 0.3726 1

0.7452 0.767

1.26 2.5 189

EG-CC 6.6(a) 0.3765 0.9897 1.95 3.0 186

Arith-CC 6.6(b) 0.5000 0.7452 1.78 2.6 141

b 40 0.85 1/30

UEC 6.4 0.3330 1

0.6660 0.485

0.87 2.3 160

EG-CC 6.6(a) 0.3201 1.0401 1.63 3.3 166

Arith-CC 6.6(b) 0.5000 0.6660 1.60 2.4 105

c 40 0.75 1/30

UEC 6.4 0.3626 1

0.7252 0.695

1.58 2.7 245

EG-CC 6.6(a) 0.4198 0.8638 2.61 3.1 209

Arith-CC 6.6(b) 0.5000 0.7252 1.90 2.7 176

d 20 0.8 1/30

UEC 6.4 0.3727 1

0.7454 0.776

1.31 2.5 189

EG-CC 6.6(a) 0.3786 0.9845 1.98 3.1 186

Arith-CC 6.6(b) 0.5000 0.7454 1.78 2.6 141

e 160 0.8 1/30

UEC 6.4 0.3718 1

0.7436 0.757

1.27 2.5 188

EG-CC 6.6(a) 0.3732 0.9962 1.98 3.1 186

Arith-CC 6.6(b) 0.5000 0.7436 1.69 2.6 139

f 40 0.8 1/60

UEC 6.4 0.3767 1

0.7534 0.810

1.32 2.5 185

EG-CC 6.6(a) 0.3759 1.0020 1.95 3.1 186

Arith-CC 6.6(b) 0.5000 0.7534 1.73 2.5 139

g 40 0.8 1/20

UEC 6.4 0.3621 1

0.7242 0.681

1.18 2.4 195

EG-CC 6.6(a) 0.3762 0.9626 2.02 3.1 187

Arith-CC 6.6(b) 0.5000 0.7242 1.60 2.5 142

Table 6.1: The parametrization of the seven sets of non-stationary source distribution parameters, including frames per cycle T , as well as

mean p̄1 and standard deviation σ of the zeta distribution parameter p1. Characteristics are provided for the various schemes considered,

including outer coding rate Ro, inner coding rate Ri and effective throughput η. Eb/N0 bounds are given for the case of Gray-mapped QPSK

transmission over an uncorrelated narrowband Rayleigh fading channel. Complexity is quantified by the average number of ACS operations

incurred per symbol in the vector x.

6.4.2. Learning-aided Arithmetic-CC Benchmarker 155

EG decoded in order to obtain the recovered symbol vector x̂. Note that in the receiver

of the learning-aided EG-CC scheme, the CC decoder is unable to exploit knowledge of

the average codeword length l or that of the symbol probability distribution P (x), like the

UEC trellis decoder. However, the BCJR algorithm employed by the CC decoder is able

to exploit the knowledge of the probability of occurrence of the binary values in the bit

vector y output by the EG encoder. More specifically, the CC decoder is provided with a

vector ỹa = [yaj]
b
j=1 of a priori LLRs, having identical values. As shown in Figure 6.6(a),

we consider two different versions of the learning-aided EG-CC benchmarker, depending

on how the value used for all LLRs in the vector ỹa is obtained.

• 1. Idealized but impractical a priori information

As indicated by the dashed line in Figure 6.6(a), the first version of the learning-

aided EG-CC benchmarker relies on an impractical genie to provide the receiver with

perfect knowledge of the bit value probabilities of each frame, which can be used

to provide the idealized a priori LLR vector ỹa. As a result, this version provides a

baseline, which characterizes the bound on the performance that the learning-aided

EG-CC benchmarker can achieve.

• 2. Estimated a priori information

Based on the learning technique of Section 6.3.3, the second version of the learning-

aided EG-CC benchmarker employs memory M at the receiver to store the bit proba-

bility statistics obtained from the M most-recently recovered bit vectors ŷ, as shown

in Figure 6.6(a). In this way, the a priori LLRs can be estimated as

ỹa = ln

∑M
m=1w(ŷm)

∑M
m=1 [l(ŷm)− w(ŷm)]

, (6.8)

where w(ŷm) and l(ŷm) are the weight and length of the m-th most-recently recov-

ered bit vector ŷm, respectively. As in the learning-aided UEC scheme, the number

of frames M considered by the memory storage may be optimized in the case of

non-stationary source probability distributions. Note that during the transient phase,

the memory and the a priori LLR vector ỹa are operated in analogy with the tech-

nique employed by the proposed learning-aided UEC scheme during the learning

phase.

6.4.2 Learning-aided Arithmetic-CC Benchmarker

As shown in Figure 6.6(b), the learning-aided Arithmetic-CC benchmarker can be ob-

tained by replacing the EG code of Figure 6.6(a) by an arithmetic code. Both arithmetic

encoding and decoding require knowledge of the entire source symbol probability distribu-

tion. However, this corresponds to an infinite amount of knowledge, when the cardinality

6.4.2. Learning-aided Arithmetic-CC Benchmarker 156

of the source alphabet is infinite. In order to overcome this problem, the learning-aided

Arithmetic-CC scheme clips all symbol values in the vector x to a limit of 1000, before

they are arithmetic encoded. This clipping leads to some arithmetic decoding errors, since

the receiver will recover the clipped value, rather than the correct value of each symbol.

However, this effect is small, since symbol values exceeding 1000 are extremely rare in

the source distributions considered in Figure 6.2. In case of non-stationary source distribu-

tions, the arithmetic encoder and decoder’s knowledge of the source distribution must be

adaptively updated, in order to reflect the time-variant statistics of the source. As shown in

Figure 6.6(b), depending on how this knowledge is updated and whether synchronization

between the transmitter and the receiver is assumed, we consider three different versions

of the learning-aided Arithmetic-CC scheme, as follows.

• v1. Idealized but impractical knowledge of the source distribution and idealized but

impractical synchronization

As indicated by the dashed line in Figure 6.6(b), the first version of the learning-

aided Arithmetic-CC benchmarker relies on an impractical genie to provide perfect

knowledge of the source distribution of each frame to both the transmitter and re-

ceiver, guaranteeing perfect synchronization between them. As a result, this ver-

sion provides a baseline, which characterizes the bound on the performance that the

learning-aided Arithmetic-CC scheme can only theoretically achieve.

• v2. Estimated knowledge of the source distribution and idealized but impractical

synchronization

Based on the learning technique of Section 6.3.3, the second version of the learning

Arithmetic-CC benchmarker employs the memory M of Figure 6.6(b) at the trans-

mitter for storing all the symbol probability statistics estimated from the M previous

symbol vectors x, as shown in Figure 6.6(b). Therefore, in analogy to Eq. (6.6), the

symbol occurrence probabilities can be estimated as

p̂ =

[

1 +
∑M

m=1N(x̂m = x)

1000 +
∑M

m=1 am

]1000

x=1

. (6.9)

Here, the addition of 1 in the numerator of Eq. (6.9) ensures that no symbols are

attributed an estimated probability of zero and naturally allows a uniform probabil-

ity distribution to be assumed when encoding the first frame, for which the memory

M of Figure 6.6(b) is empty. During the subsequent learning phase, the memory

is operated in analogy with the learning-aided UEC scheme. This version of the

6.5. Simulation Results 157

learning-aided Arithmetic-CC benchmarker relies on an impractical genie convey-

ing the estimated symbol probabilities p̂ from the transmitter to the receiver, guar-

anteeing perfect synchronization.

• v3. Estimated knowledge of the source distribution and imperfect but practical syn-

chronization

In this practical version of the learning-aided Arithmetic-CC benchmarker, the learn-

ing process of Eq. (6.9) is performed independently in the transmitter and receiver,

based on the symbol vector x and the recovered symbol vector x̂, respectively. This

is achieved using independent memories M in the transmitter and receiver, as shown

in Figure 6.6(b). Owing to this, synchronization between the memory continues

storing the estimated symbol probabilities is not guaranteed in the presence of trans-

mission errors, which may cause x̂ and x to differ.

In the case of a non-stationary source distribution, the arithmetic coding rate Ro may

be quantified in analogy to Eq. (6.3), once the steady state has been reached. In order

to facilitate fair comparisons, doping or puncturing may be applied in the learning-aided

Arithmetic-CC scheme, in order to achieve the same steady-state effective throughput η as

the learning-aided UEC and EG-CC schemes.

6.5 Simulation Results

In this section, we compare the steady-state SER performance of the proposed learning-

aided UEC scheme to those of the learning-aided EG-CC and the learning-aided Arithmetic-

CC benchmarkers of Figure 6.6. In each of Figures 6.7(a) to 6(g), the source symbol vector

x obeys the non-stationary zeta distribution of Section 6.2.2, which is parametrized by the

corresponding set shown in Table 6.1. For example, the simulation results of Figure 6.7(a)

correspond to the parameter set (a), for which the parameters T = 40, p̄1 = 0.8 and

σ = 1/30 are employed to generate a sequence of p1 values, as described in Section 6.2.2.

Each of those p1 values is used for generating a symbol vector x comprising a = 103

symbols, which is then encoded by the various schemes considered. Transmission is per-

formed over a Gray-mapped QPSK-modulated uncorrelated narrowband Rayleigh fading

channel. Table 6.1 quantifies the number of Add, Compare and Select (ACS) operations

performed by the BCJR algorithm of each scheme per symbol of x [96]. In Figure 6.7, all

SER results are obtained using a limit of 7500 ACS operations per symbol of x, which is

sufficient for achieving iterative decoding convergence in all schemes, and facilitates fair

comparisons in terms of decoding complexity.

As described in Sections 6.4.1 and 6.4.2, we employ doping and puncturing in order

to obtain the same overall effective throughput η for all schemes employing the same

6.5. Simulation Results 158

Arithmetic-CC v3

Arithmetic-CC v2

Arithmetic-CC v1

EG-CC idealized

EG-CC M = 1

EG-CC M = 0

UEC idealized

UEC M = T

UEC M = 1

UEC M = 0

C
ap

ac
it
y

b
ou

n
d

(g)

Eb/N0 [dB]

S
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

C
ap

ac
it
y

b
ou

n
d

(f)

Eb/N0 [dB]

S
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

C
ap

ac
it
y

b
ou

n
d

(e)

Eb/N0 [dB]

S
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

C
ap

ac
it
y

b
ou

n
d

(d)

Eb/N0 [dB]

S
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

C
ap

ac
it
y

b
ou

n
d

(c)

Eb/N0 [dB]

S
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

C
ap

ac
it
y

b
ou

n
d

(b)

Eb/N0 [dB]

S
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

C
ap

ac
it
y

b
ou

n
d

(a)

Eb/N0 [dB]

S
E

R

1086420

100

10−1

10−2

10−3

10−4

10−5

10−6

Figure 6.7: SER performance for various arrangements of the proposed learning-

aided UEC scheme of Figure 6.4, the learning-aided EG-CC benchmarker of Fig-

ure 6.6(a) and the learning-aided Arithmetic-CC benchmarker of Figure 6.6(b),

when conveying symbols obeying a non-stationary zeta distribution that is gener-

ated by the corresponding parameter sets (a) to (g) of Table 6.1, and communicat-

ing over a QPSK-modulated uncorrelated narrowband Rayleigh fading channel.

A complexity limit of 7500 ACS operations is imposed for decoding each of the

symbols in x.

6.5. Simulation Results 159

source distribution parameter set. The ninth column of Table 6.1 provides the specific

Eb/N0 values, where the Discrete-input Continuous-output Memoryless Channel (DCMC)

capacity becomes equal to the effective throughput η of each scheme considered. These

Eb/N0 values represent the capacity bound, above which it is theoretically possible to

achieve reliable communication. For example, the parameter set (a) of Table 6.1, results in

an effective throughput of η = 0.7452 bit/s/Hz for all the schemes considered, yielding a

corresponding DCMC capacity bound of 0.767 dB. This bound is represented by a vertical

line in Figure 6.7(a). However, in order to facilitate the creation of an open EXIT chart

tunnel, it is necessary, but not sufficient, for the area Ao beneath the inverted outer EXIT

function to exceed the area Ai beneath the inner EXIT function [132]. Therefore, the area

bound provides the Eb/N0 value, where we have Ao = Ai, which would theoretically

allow the creation of an open EXIT chart tunnel [134]. Depending on how well the EXIT

functions match each other, a narrow but open EXIT chart tunnel can only be created at a

specific Eb/N0 value, which we refer to as the tunnel bound. Based on these observations,

the Eb/N0 bounds may be used for characterizing the iterative decoding performance of

our proposed scheme and the benchmarkers.

Furthermore, for the practical versions of our schemes that employ the memories

shown in Figure 6.4 and 6.6, we consider different memory sizes M used for each pa-

rameter set. More specifically, Figure 6.7 considers the case of M = 0, where no memory

is used at the receiver and hence the decoders never have any knowledge of the source

symbol distribution. When M = 1, only the statistics derived from the previous recovered

symbol vector x̂ are stored in the memory, providing the decoder with only limited knowl-

edge about the source distribution. Despite this, the learning-aided UEC scheme benefits

from an Eb/N0 gain of up to 1 dB, when employing M = 1 instead of M = 0. As de-

scribed in Section 6.3.3, the size M of the memory expressed in terms of the number of

entropy-encoded symbols can be optimized to suit the nature of the non-stationary source.

Without loss of generality and for the sake of simplicity, Figure 6.7 provides SER results

for the proposed learning-aided UEC scheme, where the size of the memory M is set to the

number of frames per cycle T , which parametrizes the non-stationary source distribution.

Our experiments reveal that the resultant SER performance is close to that offered

by optimizing M . However, the optimized value of M may be adjusted accordingly in

practice. As shown in Figure 6.7, the SER performance of the practical learning-aided

UEC scheme having the optimized memory size M offers a performance that is within

0.1 dB from the idealized but impractical UEC scheme, at the SER of 10−3. By contrast,

the practical learning-aided EG-CC scheme only requires M = 1 in order to achieve the

same performance as its idealized but impractical baseline. This is because the learning-

aided EG-CC scheme only has to estimate a single source distribution, namely the value

6.6. Summary and Conclusions 160

of the LLR that is used for all elements of the vector ỹa provided to the CC decoder.

Nevertheless, our proposed M = 1 based learning-aided UEC scheme offers up to 0.8 dB

gain compared to the M = 1 learning-aided EG-CC scheme at the SER of 10−3, and

gains of up to 0.85 dB when employing the value of M = T . This may explained by

the capacity loss that is incurred by the SSCC used in the learning-aided EG-CC scheme,

which is characterized by the large discrepancies between the Eb/N0 tunnel and capacity

bounds shown in Table 6.1.

Note that the gains offered by the proposed learning-aided UEC scheme are achieved

for free, with no increase to decoding complexity or to transmission-energy, -bandwidth or

-duration. Note that the idealized versions of the Arithmetic-CC benchmarker offer similar

SER performances to our optimized practical learning-aided UEC scheme. This may be

explained by the high efficiency of the arithmetic code, which results in a smaller capacity

loss, compared to that of the EG-CC benchmarker. Note that the results of Figure 6.7 are

provided for the case, where the Arithmetic-CC scheme employs a memory size of M =

T , which was found to offer a performance closely matching that of the optimized M .

However, the practical version of the learning-aided Arithmetic-CC benchmarker performs

poorly, since the memories in its transmitter and receiver become easily desynchronized in

the presence of transmission errors.

6.6 Summary and Conclusions

In this chapter, we developed a novel learning-aided UEC scheme, which was designed

for transmitting symbol values selected from unknown and non-stationary probability dis-

tributions. More specifically, the learning-aided UEC scheme is capable of heuristically

inferring the source symbol distribution, based on the estimated symbol probabilities ob-

tained from the recovered symbols that are stored in memory at the receiver. By iteratively

feeding these estimated symbol probabilities back to the UEC decoder of Figure 6.4, it can

dynamically adjust and maintain near-capacity operation, at the cost of only a moderate

memory requirement at the receiver. The simulation results of Figure 6.7 show that our

learning-aided UEC scheme outperforms the benchmarkers by up to 0.85 dB in a vari-

ety of scenarios, without imposing any additional decoding complexity or any additional

transmission-energy, -bandwidth, or -duration.

In Section 6.2, we commenced by reviewing the stationary zeta distribution that was

used in the previous chapters and which can be used for crudely modelling the symbols

produced by the H.265 video codec. However, in the H.265 codec, the particular distribu-

tion of the source symbols produced during entropy encoding is sensitive to the specific

selection of video encoding parameters and to the type of video sequences being encoded.

6.6. Summary and Conclusions 161

Owing to this, we prefer to consider model source distributions, which can be readily

parametrized to be representative of the distribution of the H.265 codec’s entropy-encoded

symbol values in various applications, as well as of a wide variety of other multimedia

source distributions. This idea was extended by conceiving the non-stationary zeta source

distribution model that is applied throughout this chapter. This non-stationary distribution

is inspired by the non-stationary nature of the H.265 distribution.

The transmitter and the receiver operations of the proposed learning-aided UEC scheme

of Figure 6.2 were introduced in Sections 6.3.1 and 6.3.2, respectively. Like conventional

UEC coding, the proposed learning-aided UEC scheme does not require any knowledge

of the symbol occurrence probabilities at the transmitter. However, in contrast to con-

ventional UEC coding, the proposed scheme does not require this knowledge at the re-

ceiver either, since it can gradually estimate the source probability distribution from the

recovered symbols. The operation of our proposed learning mechanism was discussed in

Section 6.3.3. When the probability distribution P (x) of the source symbols x is non-

stationary and unknown, our learning-aided UEC scheme is capable of iteratively estimat-

ing the average unary codeword length l and the probabilities of the first r/2 − 1 symbol

values p = [P (x)]
r/2−1
x=1 from the recovered symbol vectors x̂, which are then fed back to

the trellis decoder as a priori information, in order to improve the receiver’s error correc-

tion capability. The estimation is implemented using the memory storage block labeled M

in Figure 6.4. This memory storage is used to store source distribution statistics that have

been observed from the successively recovered symbol vectors x̂. Moreover, we quanti-

fied the size of this memory storage in terms of the number M of most-recently recovered

symbol vectors x̂, allowing us to strike a desirable trade-off between the memory size and

the error correction capability.

In Section 6.4, we also proposed two SSCC benchmarkers based on the same learning

technique, namely a learning-aided EG-CC scheme and a learning-aided Arithmetic-CC

scheme, as well as their idealized and impractical versions. For the sake of fair comparison,

we applied doping or puncturing in order to obtain the same overall effective throughput

η for all schemes, as well as selecting the same computational complexity limit in order to

achieve iterative decoding convergence in all schemes.

Our simulation results of Section 6.5 showed that the proposed learning-aided UEC

scheme benefits from an Eb/N0 gain of up to 1 dB, when employing M = 1 instead of

M = 0. The SER performance of the practical learning-aided UEC scheme having the

optimized memory size M offers a performance that is within 0.1 dB from the idealized

but impractical UEC scheme, at the SER of 10−3. By contrast, the practical learning-

aided EG-CC scheme only requires M = 1 in order to achieve the same performance as

6.6. Summary and Conclusions 162

its idealized but impractical baseline. This is because the learning-aided EG-CC scheme

only has to estimate a single source distribution parameter, namely the value of the LLR

that is used for all elements of the vector ỹa provided for the CC decoder. Nevertheless,

our M = 1-based learning-aided UEC scheme offers up to 0.8 dB gain compared to the

M = 1 learning-aided EG-CC scheme at the SER of 10−3, and gains of up to 0.85 dB

when employing the value of M = T . Note that the results of Figure 6.7 are provided for

the case, where the Arithmetic-CC scheme employs a memory size of optimized M . The

practical version of the learning-aided Arithmetic-CC benchmarker was found to perform

poorly, since the memories in its transmitter and receiver become easily desynchronized in

the presence of transmission errors.

Chapter 7

Conclusions and Future Research

In this concluding chapter, a summary of the thesis and the main findings of our investiga-

tions will be presented in Section 7.1, followed by a range of tangible design guidelines in

Section 7.2. Finally, we present a number of potential ideas for future work in Section 7.3.

7.1 Main Conclusions

As discussed in Chapter 1, in classic Separate Source and Channel Coding (SSCC), the

source information may be reconstructed with an infinitesimally low probability of er-

ror, provided that the transmission rate does not exceed the channel’s capacity. However,

SSCC schemes require both the transmitter and receiver to accurately estimate the occur-

rence probability of every symbol value that the source produces. In practice, the occur-

rence probability of rare symbol values can only be accurately estimated, if a sufficiently

large number of symbols has been observed, hence potentially imposing an excessive la-

tency. This motivates the design of universal codes, which facilitate the binary encoding of

symbols selected from infinite sets, without requiring any knowledge of the corresponding

occurrence probabilities at either the transmitter or receiver. In order to exploit the residual

redundancy and hence to achieve near-capacity operation, the classic SSCC schemes may

be replaced by Joint Source and Channel Coding (JSCC) arrangements in many applica-

tions. However, the decoding complexity of all previous JSCCs increases rapidly with the

cardinality of the symbol set, to the extent that it becomes excessive for the H.264/H.265

symbol probability distribution and asymptotically tends to infinity, when the cardinality

is infinite.

Against this background, the novel concept of Unary Error Correction (UEC) coding

is studied and its applications, characteristics and performance are investigated in this the-

sis. Before we introduced our proposed UEC family, Chapter 2 presented the background

knowledge that is required when designing codes in the UEC family. Chapter 2 focused on

7.1. Main Conclusions 164

the state-of-the-art that is widely used in wireless communications, providing a foundation

that is frequently referred to by the following chapters. In each of the following chapters,

we focused our attention and made contributions to one or more aspects of Figure 1.3,

which is repeated in Figure 7.1 for convenience. The important conclusions of this treatise

are as follows.

UEC
candidate
component

codes

Inner
concatenated

codes

Irregular

designs operations

Adaptive

distribution

Source

Figure 7.1: The design-flow of a UEC coded scheme.

In Chapter 3, we reviewed the encoding and decoding operations of the UEC code

and characterized a serial concatenation scheme, namely the UEC-Irregular Unity-Rate

Convolutional (IrURC) scheme proposed for facilitating practical near-capacity operation.

We also quantified the computational complexity of the UEC scheme in order to strike a

desirable trade-off between the contradictory requirements of low complexity and near-

capacity operation. The main conclusions of this chapter were as follows.

• The UEC encoder consists of two parts, the unary encoder and the trellis encoder.

Owing to the synchronization between the unary codewords and the trellis transi-

tions, the UEC decoder can employ the Bahl, Cocke, Jelinek and Raviv (BCJR)

algorithm to exploit all residual redundancy that remains following unary encoding,

hence facilitating near-capacity operation at a moderate complexity.

• The EXIT chart and area properties of the UEC code were characterized and it

was shown that in the case of arbitrary symbol value distributions, the capacity loss

asymptotically approaches zero, as the complexity of the UEC trellis is increased.

• We showed that the SSCC Elias Gamma (EG)-Convolutional Code (CC) bench-

marker suffers from capacity loss. Hence, our simulation results demonstrate that

our UEC-IrURC scheme outperforms the EG-CC-IrURC benchmarker, offering as

much as 1.3 dB gain and operating within 1.6 dB of the capacity bound.

In Chapter 4, we proposed an Adaptive UEC-Turbo scheme, which is a three-stage

concatenation that applies an adaptive iterative decoding technique for expediting iterative

decoding convergence. A Three-Dimensional (3D) EXIT chart analysis was proposed for

controlling the dynamic adaptation of the UEC trellis decoder, as well as for controlling

the decoder activation order between the UEC decoder and the turbo decoder. The main

conclusions of this chapter were as follows.

7.1. Main Conclusions 165

• When a UEC trellis encoder operates on the basis of an extended codebook, the cor-

responding trellis decoder can still employ the original codebook with lower com-

plexity. Based on this observation, we proposed dynamically reducing or increasing

the number of states employed in the trellis decoder, in order to balance the perfor-

mance versus complexity trade-off..

• A 3D EXIT chart was employed for quantifying the benefit of activating each de-

coding component at each stage of the iterative decoding process. We showed that

the UEC decoder’s operation can be dynamically adjusted, and additionally its ac-

tivation order controlling the iterative soft information exchange with the two turbo

decoder components may also be varied.

• We quantified the corresponding complexity cost in terms of the number of Add,

Compare and Select (ACS) operations performed by each decoding component. By

activating the specific decoding component offering the largest benefit-to-cost ratio

at each stage, we demonstrated that the convergence of the iterative decoding pro-

cess may be significantly expedited, resulting in an attractive trade-off between its

decoding complexity and its error correction capability.

In Chapter 5, we proposed an Irregular UEC-IrURC scheme, which facilitates nearer-

capacity operation. The IrUEC scheme employs different UEC parametrizations for the

encoding of different subsets of each message frame, operating on the basis of a single

irregular trellis having a novel design. The main conclusions of this chapter are as follows.

• The irregular trellis employed by an IrUEC has a non-uniform structure that applies

different UEC parametrizations for different subsets of the frame on a bit-by-bit

basis. This allows the irregularity of the proposed IrUEC code to be controlled on

a fine-grained bit-by-bit basis, rather than on a symbol-by-symbol basis. Hence,

nearer-to-capacity operation is facilitated by exploiting this fine-grained control of

the IrUEC irregularity.

• The free-distance properties of the UEC trellis were characterised for the first time in

this chapter, in order to conceive an attractive parametrization of the IrUEC scheme.

Having characterized the free-distance of the UEC trellis using different codebooks,

we carefully selected a suite of UEC codes having a wide variety of EXIT chart

shapes for the component codes of our IrUEC code.

• A new double-sided EXIT chart matching algorithm was proposed for jointly match-

ing the EXIT charts of the IrUEC and the IrURC codes. On the one hand, the compo-

nent UEC codes having a wide variety of EXIT chart shapes provide design freedom

for the IrUEC EXIT chart. On the other hand, the novel double-sided EXIT chart

7.2. Design Guidelines 166

matching algorithm exploits this design freedom, in order to parametrize the IrUEC-

IrURC scheme for creating a narrow but marginally open EXIT chart tunnel at a low

Eb/N0 value that is close to the area bound and the capacity bound.

In Chapter 6, we developed a novel Learning-aided UEC scheme, which was designed

for transmitting symbol values selected from unknown and non-stationary probability dis-

tributions. The learning-aided UEC scheme is capable of heuristically inferring the source

symbol distribution, hence eliminating the requirement for any prior knowledge of the

symbol occurrence probabilities at either the transmitter or the receiver. The main conclu-

sions of this chapter were as follows.

• Inspired by the H.265 video codec, we extended the stationary zeta source sym-

bol distribution of the previous chapters to conceive a non-stationary zeta source

distribution, which is capable of modelling the non-stationary nature of the H.265

distribution.

• The proposed learning mechanism can heuristically and iteratively estimate the av-

erage unary codeword length l and the probabilities of the first r/2−1 symbol values

p = [P (x)]
r/2−1
x=1 from the recovered symbol vectors x̂, which are then fed back to

the trellis decoder as a priori information, in order to improve the receiver’s error

correction capability.

• The proposed learning algorithm was implemented using a memory storage at the

receiver. This memory storage is used for storing the source distribution statistics

that have been observed from successively recovered symbol vectors. We quantified

the size of this memory storage in terms of the M most-recently recovered symbol

vectors, showing that a trade-off between the memory size and the error correction

capability can be achieved, while maintaining near-capacity operation.

7.2 Design Guidelines

In this section, we will summarize the general design guidelines of the UEC scheme by

examining the various schemes investigated throughout Chapter 3 to Chapter 6, which are

summarized in Table 7.1. Figure 7.1 highlights the specific aspects that must be consid-

ered, when designing a UEC coding scheme.

• Source distribution

The UEC code is designed for conveying a vector x = [xi]
a
i=1 comprising a number

of symbols. Each symbol xi ∈ N1 of the vector is obtained by an Independent and

Identically Distributed (IID) Random Variable (RV) Xi, which adopts the value x

7
.2

.
D

esig
n

G
u

id
elin

es
1

6
7

Chapter Scheme Figure Source distribution

Outer codec Inner codec

Modem
Number of EXIT Adaptive Number of EXIT Adaptive

component matched operation component matched operation

codes codes

3 UEC-IrURC 3.3 Zeta distribution 1 No No 10 Yes No

Gray-coded4 UEC-Turbo 4.2 Zeta distribution 4 No Yes 1 No Yes

5 IrUEC-IrURC 5.2 Zeta distribution 5 Yes No 10 Yes No
QPSK

6 UEC-URC 6.4
Non-stationary

1 No Yes 1 No No
zeta distribution

Table 7.1: Comparison of the various schemes proposed in Chapters 3 to 6.

7.2. Design Guidelines 168

with the probability Pr(Xi = x) = P (x), where N1 = {1, 2, 3, . . .} is the infinite-

cardinality set comprising all positive integers. Figure 3.2 depicts the geometric

distribution, the zeta distribution and the distribution of the symbol values that are

EG encoded by the H.264 video encoder. These symbol values appear to obey Zipf’s

law, since their distribution may be approximated by the zeta distribution. As shown

in Table 7.1, we therefore focused our attention on the stationary zeta probability dis-

tribution in Chapters 3 to 5, considering its parametrization using the parameter p1.

In Chapter 6, we extended the stationary zeta distribution to create a non-stationary

zeta distribution model, which is capable of modelling the non-stationary nature of

the symbols generated by the H.265 video codec.

The design of a UEC scheme must consider, whether the source distribution is

known as in Chapters 3 to 5, or unknown as in Chapter 6. Likewise, the design

must consider whether the distribution is stationary as in Chapters 3 to 5, or non-

stationary as in Chapter 6. If the distribution is unknown or non-stationary, then the

learning-aided UEC scheme of Chapter 6 is motivated. Otherwise, the design of the

UEC scheme must be parametrized according to the particular source distribution,

as was the case for the adaptive and irregular UEC schemes of Chapters 4 and 5,

respectively.

• UEC candidate component codes

In Chapter 5, the free-distance properties of the UEC codebooks are characterised for

the first time, using a heuristic method is capable of obtaining an approximate mea-

surement of the free-distance. Having characterized the free-distance of the UEC

trellis using different codebooks, a suite of UEC codes having a wide variety of

EXIT chart shapes are selected for the candidate component codes of the IrUEC

code, as shown in Table 7.1. Since this suite of codes facilitates the creation of a

narrow but marginally open EXIT chart tunnel, we recommend its employment for

near-capacity irregular UEC schemes.

By contrast, only one UEC candidate code is selected for each of the regular UEC

codes that are employed in Chapters 3, 4 and 6. For regular UEC schemes, the

selection of the UEC codebook is based on a trade-off between (a) creating a nar-

row but marginally open EXIT chart tunnel for the sake of facilitating near-capacity

operation and (b) having a low complexity.

• Inner concatenated codes

Near-capacity operation is facilitated when our outer UEC code is serially concate-

nated and iteratively decoded with an inner code. In Chapter 3, a serial concatenation

of the UEC-IrURC scheme is proposed, in which the IrURC code is employed as the

inner code, as shown in Table 7.1. In Chapter 4, a three-stage concatenation of the

7.2. Design Guidelines 169

UEC-Turbo scheme is conceived, in which a turbo code is employed as the inner

code, as shown in Table 7.1. More particularly, the turbo code is a half-rate code

comprising two Unity-Rate Convolutional (URC) codes. Therefore, the UEC-Turbo

scheme comprises a total of three decoders, requiring 3D EXIT chart analysis and an

adaptive iterative decoding algorithm. An outer IrUEC code is concatenated with an

inner IrURC code in Chapter 5, as shown in Table 7.1. Owing to our novel double-

sided EXIT chart matching algorithm, ‘nearer-capacity’ operation is facilitated by

the IrUEC-IrURC scheme. Table 7.1 also shows that a regular URC is employed

as the inner code in Chapter 6, where we conceived a learning algorithm for allow-

ing the UEC code to recover source symbols having an unknown or non-stationary

distribution.

Where near-capacity operation is desired, we recommend irregular inner codes, al-

though these must be parametrized according to the specific source distribution en-

countered. For adaptive or simple schemes, we recommend regular inner codes.

• Irregular design

Irregular coding has been proposed for the reliable transmission of information at

channel SNRs that are close to the channel’s capacity bound without imposing an

excessive decoding complexity and latency. The difference between the Eb/N0 area

bound and the Eb/N0 tunnel bound quantifies the capacity loss that is mitigated by

irregular coding. In Chapters 3 and 5, irregular design is applied to the inner URC

code, resulting in an IrURC code. Here, the T = 10 URC codes {URCt}T=10
t=1 of

Figure 2.6 are employed as the component codes. As a further step, the novel IrUEC

code of Chapter 5 operates on the basis of a single irregular trellis having an irregular

design that is afforded by the common features of all UEC trellises. This irregular

trellis has a non-uniform structure that applies different UEC parametrizations for

different subsets of the frame on a bit-by-bit basis, which allows the irregularity of

the proposed IrUEC code to be controlled on a fine-grained bit-by-bit basis, rather

than on a symbol-by-symbol basis.

Where operation extremely close to capacity is desired, we recommend the use of

irregular outer and inner codes, although these must be parametrized according to

the particular source distribution.

• Adaptive operations

Owing to the three-stage UEC-Turbo concatenation of Chapter 4, we can employ

a 3D EXIT chart for quantifying the benefit of activating each decoding compo-

nent, in order to dynamically adjust the activation order of the UEC decoder and the

two turbo decoder components. Furthermore, based on the observation that extend-

ing the UEC codebook employed by the UEC decoder maintains compatibility with

7.3. Future Work 170

the UEC encoder, we can also dynamically reduce or increase the number of states

in the trellis decoder of the UEC-Turbo scheme. Therefore, a desirable trade-off

between complexity and error correction performance is obtained by the Adaptive

UEC-Turbo scheme of Figure 4.2. Meanwhile, the learning-aided UEC scheme of

Chapter 6 employs adaptive operations to avoid requiring any prior knowledge of

the symbol occurrence probabilities at either the transmitter or at the receiver. This

is because it can heuristically estimate the source probability distribution from the

recovered symbols, as well as iteratively feeding the distribution-related information

back to the trellis decoder as a priori information, in order to adjust the receiver’s

parametrization and to improve the receiver’s error correction capability. Hence,

adaptive operation constitutes a powerful tool, which may be exploited for enhanc-

ing the performance of the UEC schemes.

7.3 Future Work

The research illustrated in this treatise can be extended in several directions. In this section,

we highlight a number of potential future research ideas.

7.3.1 Adaptive/Irregular/Learning-aided EGEC, RiceEG and ExpGEC schemes

Chapter 3

Chapter 5Chapter 4 Chapter 6 [139]

[160] [161]

UEC

Irregular
UEC UECUEC

Adaptive Learning-aided

Universal Error Correction Codes

Adaptive, Irregular, Learning-aided

EGEC

REGECRiceEC,
ExpGEC

Figure 7.2: The enhancement of universal error correction codes by using the

techniques developed in this treatise.

The proposed UEC code is based on the unary code, which is a special case of the Rice

code [15]. More specifically, the Rice code is parametrized by MRice, where MRice = 1

7.3.1. Adaptive/Irregular/Learning-aided EGEC, RiceEG and ExpGEC schemes 171

yields the unary code, as shown in Table 7.2. By exploiting the similarities between the

unary and Rice codes, our UEC code was extended to conceive a Rice Error Correction

(RiceEC) code in [166]1. Although RiceEC codes have shorter average codeword lengths

than UEC codes for some source symbol distributions, neither of them may be deemed to

constitute universal codes having finite average codeword lengths for all monotonic source

symbol distributions. Owing to this, the UEC and RiceEC codes may suffer from having

an average codeword length that tends to infinity for some source symbol distributions,

including zeta distributions having p1 ≤ 0.608 in the case of the UEC code, as described

in Section 3.3.

By contrast, the Elias Gamma (EG) code [12] and the Exponential Golomb (ExpG)

code [15] are universal codes, providing a finite average codeword length for any mono-

tonic source symbol distribution. Motivated by this, universal JSCCs were obtained by

extending the UEC code to conceive the Elias Gamma Error Correction (EGEC) code

of [145]2 and the Exponential Golomb Error Correction (ExpGEC) code of [166]. Both

the codes are capable of facilitating the near-capacity transmission of infinite-cardinality

symbol alphabets having any arbitrary monotonic probability distribution, hence having a

much wider applicability. Note that the ExpG code is parametrized by k and the EG code

is obtained in the special case of k = 0, as shown in Table 7.2. More specifically, Table 7.2

characterizes the Unary, Rice, EG and ExpG codes, which map each symbol di in the vec-

tor d = [di]
a
i=1 to the respective codeword Unary(di), Rice(di), EG(di) or ExpG(di), where

the Rice and ExpG encoders are parametrized by MRice ∈ {1, 2, 4, 8} and k ∈ {0, 1, 2},
respectively.

Note that all codewords in Table 7.2 can be considered to be a concatenation of a unary

codeword and a suffix codeword. All codewords having the same unary prefix start with a

suffix having the same fixed length. Motivated by this, the EGEC, RiceEG and ExpGEC

encoders decompose each input symbol into two sub-symbols, which are encoded sepa-

rately by two distinct sub-encoders, as shown in the schematic of Figure 7.3. The first

sub-encoder is referred to as the UEC sub-encoder, which operates in the same manner as

the UEC encoder of this treatise. The second sub-encoder employs a serial concatenation

of a Fixed length Code (FLC) and of a Convolutional Code (CC), which is referred to as

the FLC-CC sub-encoder. More particularly, the splitter S decomposes each symbol di in

the vector d = [di]
a
i=1 into the sub-symbols xi in the vector x = [xi]

a
i=1 and the sub-symbol

ti in the vector t = [ti]
a
i=1, according to the arrangement shown in Table 7.2 for the various

1In which the author of this thesis was co-authored and contributed to obtain the source distribution

statistics.
2In which the author of this thesis was co-authored and contributed to the simulations.

7
.3

.1
.

A
d

a
p

tiv
e/Irreg

u
la

r/L
ea

rn
in

g
-a

id
ed

E
G

E
C

,
R

iceE
G

a
n

d
E

x
p

G
E

C
sch

em
es

1
7

2

Rice(di) MRice=1, Rice(di) MRice=2 Rice(di) MRice=4 Rice(di) MRice=8 ExpG(di) k=0, ExpG(di) k=1 ExpG(di) k=2 REGEC

Unary(di) EG(di)

di xi yi ui ti xi yi ui ti xi yi ui ti xi yi ui ti xi yi ui ti xi yi ui ti xi yi ui ti

1 1 1 0 1 1 0 0 1 1 00 0 1 1 000 0 1 1 0 1 1 0 0 1 1 00 0 1

2 2 01 0 1 1 1 1 1 1 01 1 1 1 001 1 2 01 0 0 1 1 1 1 1 1 01 1 001

3 3 001 0 2 01 0 0 1 1 10 2 1 1 010 2 2 01 1 1 2 01 00 0 1 1 10 2 011

4 4 0001 0 2 01 1 1 1 1 11 3 1 1 011 3 3 001 00 0 2 01 01 1 1 1 11 3 00001

5 5 00001 0 3 001 0 0 2 01 00 0 1 1 100 4 3 001 01 1 2 01 10 2 2 01 000 0 00011

6 6 000001 0 3 001 1 1 2 01 01 1 1 1 101 5 3 001 10 2 2 01 11 3 2 01 001 1 01001

7 ...
...

...
4 0001 0 0 2 01 10 2 1 1 110 6 3 001 11 3 3 001 000 0 2 01 010 2 01011

8 4 0001 1 1 2 01 11 3 1 1 111 7 4 0001 000 0 3 001 001 1 2 01 011 3 0000001

9 5 00001 0 0 3 001 00 0 2 01 000 0 4 0001 001 1 3 001 010 2 2 01 100 4 0000011

10 5 00001 1 1 3 001 01 1 2 01 001 1 4 0001 010 2 3 001 011 3 2 01 101 5 0001001

11 6 000001 0 0 3 001 10 2 2 01 010 2 4 0001 011 3 3 001 100 4 2 01 110 6 0001011

12 6 000001 1 1 3 001 11 3 2 01 011 3 4 0001 100 4 3 001 101 5 2 01 111 7 0100001

13 ...
...

...
...

4 0001 00 0 2 01 100 4 4 0001 101 5 3 001 110 6 3 001 0000 0
...14 4 0001 01 1 2 01 101 5 4 0001 110 6 3 001 111 7 3 001 0001 1

15 4 0001 10 2 2 01 110 6 4 0001 111 7 4 0001 0000 0 3 001 0000 2

Table 7.2: The decomposition of symbols di into sub-symbols xi and ti for the EGEC, RiceEC and ExpGEC codes [145, 166] of Figure 7.3.

Each codeword can be considered to be a concatenation of yi and ui, where the bit-vector is decomposed into the sub-bit-vectors. The

bit-vectors yi and ui relate to the sub-symbols xi and ti according to yi = Unary(xi) and ui = FLC(ti), respectively. The first 12 codewords

are also listed for the REGEC code [167].

7.3.1. Adaptive/Irregular/Learning-aided EGEC, RiceEG and ExpGEC schemes 173

modulator
QPSK

demodulator
QPSK

Trellis
encoder

z URC
encoder

π1

CC
encoder

URC
encoder

π5
w π4π3

π2

u

encoder

t FLC
encoder

Unary
S

d x y

v

Trellis
decoder z̃a

URC
decoder

π−1
1

CC
decoder

URC
decoder

π−1
5

π3
w̃e

w̃a

ŷ

π4

π−1
4

Unary
decoder

t̂ FLC
decoder

π−1
2

x̂d̂

z̃e

ṽaũe

ũa
π−1
3

ṽe

S−1

π1

UEC sub-encoder

FLC-CC sub-encoder

EGEC, RiceEG or ExpGEC encoder

UEC sub-decoder

FLC-CC sub-decoder

EGEC, RiceEC or ExpGEC decoder

Figure 7.3: The schematic of the EGEC, RiceEG and ExpGEC codes [145, 166].

codes considered. Each sub-symbol xi and each sub-symbol ti is encoded by the UEC sub-

encoder and the FLC-CC sub-encoder, respectively. An Unequal Error Protection (UEP)

scheme was also proposed for optimizing the relative contribution of the two sub-codes to

the encoding process, facilitating near-capacity operation at a low decoder complexity.

Owing to the similarity between the UEC scheme and the UEC sub-part of the EGEC,

RiceEG and ExpGEC schemes, they may be readily enhanced by extending our adaptive,

irregular and learning-aided techniques of Chapters 4, 5 and 6.

• For the adaptive design of Chapter 4, the upper URC code of Figure 7.3 may be

replaced by a turbo code, providing a three-stage concatenation in the UEC sub-

part. In this way, the EGEC, RiceEG or ExpGEC decoder can dynamically adjust

the activation order of the three decoders in the UEC sub-part, as well as the number

of states in the UEC trellis decoder in order to strike an attractive trade-off between

the decoding complexity and the error correction capability. Likewise, the FLC-CC

part of Figure 7.3 may be concatenated with a turbo code and the corresponding

decoder activation order can be dynamically adapted.

• For the irregular design of Chapter 5, the UEC sub-part can provide a fine-grained

bit-by-bit basis of the irregularity, rather than on a symbol-by-symbol basis. This

allows an IrUEC sub-part to be designed in order to match the concatenated URC

code. In the FLC-CC part, a conventional Irregular Convolutional Code (IrCC) may

be used to obtain a similar benefit.

• For the learning-aided design of Chapter 6, a memory storage may be employed

7.3.2. Adaptive/Irregular/Learning-aided REGEC schemes 174

in the scheme of Figure 7.3, in analogy to that of Figure 6.4. Therefore, the oc-

currence probabilities of the source symbols of the vector x can be estimated and

hence can be fed back to the UEC trellis decoder as a priori information, facilitating

reliable communication for unknown and non-stationary source probability distri-

butions. Likewise, a similar mechanism may be employed in the FLC-CC part, in

analogy to the learning-aided CC code used in the benchmarker of Chapter 6.

However, the EGEC, RiceEG and ExpGEC schemes have a complicated structure that

comprises two parts, as shown in Figure 7.3. Owing to this, the FLC-CC sub-encoder

cannot be operated until the operation of the UEC sub-encoder is completed, since the

FLC-CC sub-decoder relies on the side information provided by the UEC sub-decoder.

Therefore, the EGEC, RiceEG and ExpGEC schemes may suffer from the delay and loss

of synchronization that are associated with the two parts. Furthermore, the UEP of the two

parts must be tailored to the specific parametrization of the source distribution, leading to

degraded performance, when the source distribution is unknown or non-stationary. Addi-

tionally, the puncturing used in this UEP scheme increases the complexity and can lead

to capacity loss. Motivated by this, the so-called Reordered Elias Gamma Error Correc-

tion (REGEC) code was proposed in [167], as a universal JSCC having a simpler structure,

as discussed in the following subsection.

7.3.2 Adaptive/Irregular/Learning-aided REGEC schemes

As shown in Figure 7.4, the REGEC code [167] combines a so-called Reordered Elias

Gamma (REG) source code with a novel trellis-based channel code. As shown in Table 7.2,

the REG codewords comprise a reordering of the bits in the EG codewords, allowing the

REGEC trellis to be designed so that the transitions between its states are synchronous

with the transitions between the consecutive codewords in the REG encoded bit sequence.

This allows the residual redundancy in the REG encoded-bit sequence to be exploited for

error correction by the REGEC trellis decoder, facilitating near-capacity operation. In this

way, the REGEC scheme avoids the complicated two-part structure that is used in the

EGEC, RiceEG and ExpGEC schemes, as well as the associated drawbacks. In particular,

the REGEC code also has a simple structure comprising only a single part, which does

not suffer from the delay and loss of synchronization that are associated with the two parts

of the EGEC, RiceEG and ExpGEC codes. Furthermore, since the REGEC code does

not need UEP, its parametrization does not have to be tailored to the particular source

distribution, giving a “one size fits all” scheme.

Owing to the similarity between the UEC scheme and the REGEC scheme, our adap-

tive, irregular and learning techniques may be readily extended to design the corresponding

Adaptive-, Irregular- and Learning-aided REGEC schemes.

7.3.2. Adaptive/Irregular/Learning-aided REGEC schemes 175

REGEC decoder

Trellis
decoder

Trellis
encoder

yd

d̂

REG
encoder

REG
decoder

z

z̃e

z̃a

ỹp

URC
encoder

decoder
URC

modulator

demodulator

QPSK

QPSK
π1

π2π1

π−1
2

π−1
1

REGEC encoder

Figure 7.4: The schematic of the Reordered Elias Gamma Error Correction

(REGEC) code [167].

• In case of the adaptive design of Chapter 4, the codebook extension technique is

also applicable to the REGEC code, as discussed in [167]. This allows the number

of states employed in the REGEC trellis decoder to be dynamically selected, in order

to strike an attractive trade-off between the decoding complexity and the error cor-

rection capability. Furthermore, the URC code of Figure 7.4 may be replaced by a

turbo code, providing a three-stage concatenation. Therefore, 3D EXIT chart analy-

sis can be employed to quantify the potential benefits associated with activating each

decoder, allowing hence the activation order of the three decoders to be dynamically

adjusted.

• In case of the irregular design of Chapter 5, the REGEC trellis also exhibits common

features regardless of its parametrization, in the same way as the UEC trellis. This

may be exploited to create an irregular REGEC trellis having an irregularity that can

be controlled on a fine-grained bit-by-bit basis, rather than on a symbol-by-symbol

basis. Moreover, the URC code of Figure 7.4 may be replaced by an IrURC code, in

order to create a narrow, but marginally open EXIT chart tunnel, hence facilitating

‘nearer-to-capacity’ operation.

• In case of the learning-aided design of Chapter 6, the memory storage that is em-

ployed in the scheme of Figure 6.4 may be also introduced into the REGEC scheme

of Figure 7.4. In this way, the occurrence probabilities of the source symbols can

be estimated and then fed back to the trellis decoder as a priori information. In this

way, the REGEC code would become capable of reliable near-capacity communica-

tion for unknown and non-stationary source probability distributions.

7.4. Closing Remarks 176

7.4 Closing Remarks

Throughout this thesis we have introduced the novel UEC scheme and methodologies for

its design in the context of digital telecommunications. Our UEC scheme is a JSCC ar-

rangement conceived for performing both the compression and error correction of multi-

media information during its transmission from an encoder to a decoder. The UEC code is

capable of mitigating capacity loss, hence facilitating near-capacity operation, even when

the source symbol values are selected from a set having an infinite cardinality, such as the

set of all positive integers. In Chapter 4, we proposed an Adaptive UEC-Turbo scheme,

which is a three-stage concatenation that applies an adaptive iterative decoding technique

for expediting iterative decoding convergence. A 3D EXIT chart analysis was proposed for

controlling the dynamic adaptation of the UEC trellis decoder, as well as for controlling

the activation order of exchanging soft extrinsic information between the UEC decoder

and the turbo decoder. In Chapter 5, we developed an Irregular UEC-IrURC scheme,

which facilitates nearer-capacity operation. The IrUEC scheme employs different UEC

parametrizations for the encoding of different subsets of each message frame, operating

on the basis of a single irregular trellis having a novel design. In Chapter 6, we pro-

posed a Learning-aided UEC scheme, which was designed for transmitting symbol values

selected from unknown and non-stationary probability distributions. The learning UEC

scheme is capable of heuristically inferring the source symbol distribution, hence elimi-

nating the requirement for any prior knowledge of the symbol occurrence probabilities at

either the transmitter or the receiver. Finally, in Chapter 7, we described the application

of the proposed techniques to universal error correction codes, as potential opportunities

for future work. With these benefits, this thesis may contribute to future standards for the

reliable near-capacity transmission of multimedia information, having significant technical

and economic impact.

Bibliography

[1] J. L. Massey, “Joint source and channel coding,” in Proceedings of Communication

Systems and Random Process Theory, (The Netherlands: sijthofoo and Noordhoff),

pp. 279–293, December 1978.

[2] C. E. Shannon, “The mathematical theory of communication,” Bell System Techni-

cal Journal, vol. 27, pp. 379–423, July 1948.

[3] A. J. Viterbi and J. Omura, Principles of Digital Communication and Coding. New-

York: McGraw-Hill, 1979.

[4] L. Hanzo, P. J. Cherriman, and J. Streit, Video Compression and Communications:

H.261, H.263, H.264, MPEG4 and Proprietary Codecs for HSDPA-Style Adaptive

Turbo-Transceivers. John Wiley and IEEE Press, September 2007.

[5] L. Hanzo, P. J. Cherriman, and J. Streit, Video Compression and Communications:

H.261, H.263, H.264, MPEG4 and Proprietary Codecs for HSDPA-Style Adaptive

Turbo-Transceivers. John Wiley and IEEE Press, September 2007.

[6] L. Hanzo, F. C. A. Somerville, and J. P. Woodard, Voice and Audio Compression for

Wireless Communications. John Wiley and IEEE Press, 2007.

[7] A. Wyner and J. Ziv, “The rate-distortion function for source coding with side infor-

mation at the decoder,” IEEE Transactions on Information Theory, vol. 22, pp. 1–10,

January 1976.

[8] R. M. Fano, “The transmission of information,” in Research Laboratory of Elec-

tronics, pp. Mass. Inst. of Techn. (MIT), Technical Report No. 65, March 1949.

[9] R. W. Hamming, “Error detecting and error correcting codes,” Bell System Technical

Journal, pp. 147–160, April 1950.

[10] D. A. Huffman, “A method for the construction of minimum-redundancy codes,”

Proceedings of the IRE, vol. 40, pp. 1098–1101, September 1952.

[11] I. Reed, “A class of multiple-error-correcting codes and the decoding scheme,” IRE

Professional Group on Information Theory, vol. 4, pp. 38–49, September 1954.

BIBLIOGRAPHY 178

[12] P. Elias, “Coding for two noisy channels,” IRE Convention Record, pt.4, pp. 37–47,

1955.

[13] J. Wozencraft, “Sequential decoding for reliable communication,” IRE National

Converntion Record, vol. 5, pp. 11–25, August 1957.

[14] R. G. Gallager, “Low-density parity-check codes,” IRE Transactions on Information

Theory, vol. 8, pp. 21–28, January 1962.

[15] S. W. Golomb, “Run-length encodings,” IEEE Transactions on Information Theory,

vol. 12, pp. 399–401, September 1966.

[16] L. Bahl, C. Cullum, W. Frazer, and F. Jelinek, “An efficient algorithm for comput-

ing free distance (corresp.),” IEEE Transactions on Information Theory, vol. 18,

pp. 437–439, May 1972.

[17] G. D. Forney, “The viterbi algorithm,” Proceedings of the IEEE, vol. 61, pp. 268–

278, March 1973.

[18] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for

minimizing symbol error rate (corresp.),” IEEE Transactions on Information The-

ory, vol. 20, pp. 284–287, March 1974.

[19] P. Elias, “Universal codeword sets and representations of the integers,” IEEE Trans-

actions on Information Theory, vol. 21, pp. 194–203, March 1975.

[20] H. Imai and S. Hirakawa, “A new multilevel coding method using error-correcting

codes,” IEEE Transactions on Information Theory, vol. 23, pp. 371–377, May 1977.

[21] J. Wolf, “Efficient maximum likelihood decoding of linear block codes using a trel-

lis,” IEEE Transactions on Information Theory, vol. 24, pp. 76–80, January 1978.

[22] J. Ziv and A. Lempel, “Compression of individual sequences via variable rate cod-

ing,” IEEE Transactions on Information Theory, vol. 24, pp. 530–536, September

1978.

[23] J. Rissanen and G. G. Langdon, “Arithmetic coding,” IBM Journal of Research and

Development, vol. 23, pp. 149–162, March 1979.

[24] G. Ungerböck, “Channel coding with multilevel/phase signals,” IEEE Transactions

on Information Theory, vol. 28, pp. 55–67, January 1982.

[25] I. H. Witten, J. G. Cleary, and R. Neal, “Arithmetic coding for data compression,”

Communications of the ACM, pp. 520–540, June 1987.

[26] D. Divsalar and M. K. Simon, “Multiple trellis coded modulation (MTCM),” IEEE

Transactions on Communications, vol. 36, pp. 410–419, April 1988.

[27] A. R. Calderbank, “Multilevel codes and multistage decoding,” IEEE Transactions

on Communications, vol. 37, pp. 222–229, March 1989.

BIBLIOGRAPHY 179

[28] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision outputs and

its applications,” in Proceedings of IEEE Global Telecommunications Conference,

vol. 3, pp. 1680–1686, November 1989.

[29] W. Koch and A. Baier, “Optimum and sub-optimum detection of coded data dis-

turbed by time-varying intersymbol interference [applicable to digital mobile radio

receivers],” in Proceedings of IEEE Global Telecommunications Conference, vol. 3,

pp. 1679–1684, December 1990.

[30] W. T. Webb, L. Hanzo, and R. Steele, “Bandwidth efficient QAM schemes for

Rayleigh fading channels,” IEE Proceedings I, Communications, Speech and Vi-

sion, vol. 138, pp. 169–175, June 1991.

[31] E. Zehavi, “8-PSK trellis codes for a rayleigh channel,” IEEE Transactions on Com-

munications, vol. 40, pp. 873–884, May 1992.

[32] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting

coding and decoding: Turbo codes,” in Proceedings of the International Conference

on Communications, (Geneva, Switzerland), pp. 1064–1070, May 1993.

[33] Y. Kofman, E. Zehavi, and S. Shamai, “Performance analysis of a multilevel coded

modulation system,” IEEE Transactions on Communications, vol. 42, pp. 299–312,

February 1994.

[34] S. L. Goff, A. Glavieux, and C. Berrou, “Turbo-codes and high spectral effi-

ciency modulation,” in IEEE International Conference on Communications, vol. 2,

pp. 645–649, May 1994.

[35] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-

optimal map decoding algorithms operating in the log domain,” in IEEE Interna-

tional Conference on Communications, vol. 2, pp. 1009–1013, June 1995.

[36] X. D. Li and J. A. Ritcey, “Bit-interleaved coded modulation with iterative decod-

ing,” IEEE Communications Letters, vol. 1, pp. 169–171, November 1997.

[37] P. Robertson and T. Wörz, “Bandwidth-efficient turbo trellis-coded modulation us-

ing punctured component codes,” IEEE Journal on Selected Areas in Communica-

tions, vol. 16, pp. 206–218, February 1998.

[38] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Self-concatenated trellis

coded modulation with self-iterative decoding,” in IEEE Global Telecommunica-

tions Conference, vol. 1, (Sydney, NSW, Australia), pp. 585–591, 1998.

[39] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-

approaching irregular low-density parity-check codes,” IEEE Transactions on In-

formation Theory, vol. 47, pp. 619–637, February 2001.

BIBLIOGRAPHY 180

[40] M. Luby, “LT codes,” in Proceedings of 43rd Annunal IEEE Symposium Foun-

dations of Computer Science, (Vancouver, BC, Canada), pp. 271–280, November

2002.

[41] J. Hou and M. H. Lee, “Multilevel LDPC codes design for semi-BICM,” IEEE

Communications Letters, vol. 8, pp. 674–676, November 2004.

[42] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information Theory, vol. 52,

pp. 2551–2567, June 2006.

[43] G. Yue, B. Lu, and X. Wang, “Design of rate-compatible irregular repeat accumulate

codes,” IEEE Transactions on Communications, vol. 55, pp. 1153–1163, June 2007.

[44] M. Grangetto, B. Scanavino, G. Olmo, and S. Benedetto, “Iterative decoding of

serially concatenated arithmetic and channel codes with JPEG 2000 applications,”

IEEE Transactions on Image Processing, vol. 16, pp. 1557–1567, June 2007.

[45] E. Arikan, “Channel polarization: A method for constructing capacityachieving

codes for symmetric binary-input memoryless channels,” IEEE Transactions on In-

formation Theory, vol. 55, pp. 3051–3073, July 2009.

[46] Z. Wang and J. Luo, “Error performance of channel coding in random-access com-

munication,” IEEE Transactions on Information Theory, vol. 58, pp. 3961–3974,

June 2012.

[47] J. Luo, “A generalized channel coding theory for distributed communication,” IEEE

Transactions on Communications, vol. 63, pp. 1043–1056, April 2015.

[48] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer design,” IEEE

Transactions on Communications, vol. 28, pp. 84–95, January 1980.

[49] H. Kumazawa, M. Kasahara, and T. Namekawa, “A construction of vector quantiz-

ers for noisy channels,” Electronics and Engineering in Japan, vol. 67-B, pp. 39–47,

January 1984.

[50] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on Information

Theory, vol. 28, pp. 129–137, March 1960.

[51] J. Max, “Quantizing for minimum distortion,” IRE Transactions on Information

Theory, vol. 6, pp. 7–12, March 1960.

[52] N. Farvardin, “A study of vector quantization for noisy channels,” IEEE Transac-

tions on Information Theory, vol. 36, pp. 799–809, July 1990.

[53] K. Sayood and J. C. Borkenhagen, “Use of residual redundancy in the design of joint

source/channel coders,” IEEE Transactions on Communications, vol. 39, pp. 838–

846, June 1991.

[54] D. J. Miller and M. Park, “A sequence-based approximate mmse decoder for source

coding over noisy channels using discrete hidden markov models,” IEEE Transac-

tions on Communications, vol. 46, pp. 222–231, February 1998.

BIBLIOGRAPHY 181

[55] B. L. Montgomery and J. Abrahams, “Synchronization of binary source codes,”

IEEE Transactions on Information Theory, vol. 32, pp. 849–854, November 1986.

[56] Y. Takishima, M. Wada, and H. Murakami, “Reversible variable length codes,”

IEEE Transactions on Communications, vol. 43, pp. 158–162, February 1995.

[57] V. Buttigieg and P. G. Farrell, “Variable-length error-correcting codes,” IEE Pro-

ceedings on Communications, vol. 147, pp. 211–215, August 2000.

[58] R. Thobaben and J. Kliewer, “Design considerations for iteratively-decoded source-

channel coding schemes,” in Proceedings of Allerton Conference on Communica-

tions, Control, and Computing, (Monticello, IL, USA), September 2006.

[59] R. G. Maunder and L. Hanzo, “Genetic algorithm aided design of component

codes for irregular variable length coding,” IEEE Transactions on Communications,

vol. 57, pp. 1290–1297, May 2009.

[60] V. B. Balakirsky, “Joint source-channel coding using variable-length codes,” Pro-

ceedings of IEEE International Symposium on Information Theory (ISIT’97),

p. 419, January 1997.

[61] M. Park and D. J. Miller, “Joint source-channel decoding for variable-length en-

coded data by exact and approximate MAP sequence estimation,” IEEE Transac-

tions on Communications, vol. 48, pp. 1–6, January 2000.

[62] K. Sayood, H. H. Otu, and N. Demir, “Joint source/channel coding for variable

length codes,” IEEE Transactions on Communications, vol. 48, pp. 787–794, May

2000.

[63] R. Bauer and J. Hagenauer, “Symbol by symbol MAP decoding of variable length

codes,” in Proceedings of ITG Conference on Source and Channel Coding, (Munich,

Germany), pp. 111–116, January 2000.

[64] R. Thobaben and J. Kliewer, “Robust decoding of variable-length encoded Markov

sources using a three-dimensional trellis,” IEEE Communications Letters, vol. 7,

pp. 320–322, July 2003.

[65] C. Weidmann, “Reduced-complexity soft-in-soft-out decoding of variable-length

codes,” in Proceedings of IEEE International Symposium on Information Theory,

(Yokohama, Japan), p. 201, June 2003.

[66] S. Malinowski, H. Jegou, and C. Guillemot, “Synchronization recovery and state

model reduction for soft decoding of variable length codes,” IEEE Transactions on

Information Theory, vol. 53, pp. 368–377, January 2007.

[67] R. G. Maunder, J. Kliewer, S. X. Ng, J. Wang, L.-L. Yang, and L. Hanzo, “Joint

iterative decoding of trellis-based VQ and TCM,” IEEE Transactions on Wireless

Communications, vol. 6, pp. 1327–1336, April 2007.

BIBLIOGRAPHY 182

[68] V. A. Kotelnikov, The Theory of Optimum Noise Immunity. New York, NY, USA:

McGraw-Hill, 1959.

[69] A. Kurtenbach and P. Wintz, “Quantizing for noisy channels,” IEEE Transactions

on Communications, vol. 17, pp. 291–302, April 1969.

[70] N. Farvardin and V. Vaishampayan, “Optimal quantizer design for noisy channels:

An approach to combined source-channel coding,” IEEE Transactions on Informa-

tion Theory, vol. 33, pp. 827–838, November 1987.

[71] R. R. Wyrwas and P. G. Farrell, “Joint source-channel coding for raster document

transmission over mobile radio,” IEE Proceedings I on Communications, Speech

and Vision, vol. 136, pp. 375–380, December 1989.

[72] K. Ramchandran, A. Ortega, K. M. Uz, and M. Vetterli, “Multiresolution broadcast

for digital HDTV using joint source/channel coding,” IEEE Journal on Selected

Areas in Communications, vol. 11, pp. 6–23, January 1993.

[73] I. Kozintsev and K. Ramchandran, “Robust image transmission over energy-

constrained time-varying channels using multiresolution joint source-channel cod-

ing,” IEEE Transactions on Signal Processing, vol. 46, pp. 1012–1026, April 1998.

[74] R. E. V. Dyck and D. J. Miller, “Transport of wireless video using separate, con-

catenated, and joint source-channel coding,” in Proceedings of the IEEE, vol. 87,

pp. 1734–1750, October 1999.

[75] J. f. Cai and C.-W. Chen, “Robust joint source-channel coding for image transmis-

sion over wireless channels,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 10, pp. 962–966, September 2000.

[76] H. Jin, A. Khandekar, and R. McEliece, “Irregular repeat-accumulate codes,” in

Proceedings of the Second International Conference on Turbo Codes and Related

Topics, (Brest, France), pp. 1–5, September 2000.

[77] N. Görtz, “A generalized framework for iterative source-channel decoding,” Annals

of Telecommunications, Special issue on “Turbo Codes: a wide-spreading tech-

nique”, pp. 435–446, July 2001.

[78] T. A. Ramstad, “Shannon mappings for robust communication,” Telektronikk,

vol. 98, no. 1, pp. 114–128, 2002.

[79] J. Hagenauer and N. Görtz, “The turbo principle in joint source-channel coding,” in

Proceedings of IEEE Information Theory Workshop, (Paris, France), pp. 275–278,

March 2003.

[80] J. Kliewer and R. Thobaben, “Iterative joint source-channel decoding of variable-

length codes using residual source redundancy,” IEEE Transactions on Wireless

Communications, vol. 4, pp. 919–929, May 2005.

BIBLIOGRAPHY 183

[81] X. Jaspar, C. Guillemot, and L. Vandendorpe, “Joint source-channel turbo tech-

niques for discrete-valued sources: From theory to practice,” Proceedings of the

IEEE, vol. 95, pp. 1345–1361, June 2007.

[82] Q. Xu, V. Stankovic, and Z.-X. Xiong, “Distributed joint source-channel coding

of video using raptor codes,” IEEE Journal on Selected Areas in Communications,

vol. 25, pp. 851–861, May 2007.

[83] P. Minero, S. Lim, and Y.-H. Kim, “Joint source-channel coding via hybrid coding,”

IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 781–

785, July 2011.

[84] D. Persson, J. Kron, M. Skoglund, and E. G. Larsson, “Joint source-channel coding

for the mimo broadcast channel,” IEEE Transactions on Signal Processing, vol. 60,

pp. 2085–2090, April 2012.

[85] V. Kostina and S. Verdu, “Lossy joint source-channel coding in the finite block-

length regime,” IEEE Transactions on Information Theory, vol. 59, pp. 2545–2575,

May 2013.

[86] S. M. Romero, M. Hassanin, J. Garcia-Frias, and G. R. Arce, “Analog joint source

channel coding for wireless optical communications and image transmission,” Jour-

nal of Lightwave Technology, vol. 32, pp. 1654–1662, May 2014.

[87] S. Tridenski, R. Zamir, and A. Ingber, “The Ziv-Zakai-Rényi bound for joint source-

channel coding,” IEEE Transactions on Information Theory, vol. 61, pp. 4293–

4315, August 2015.

[88] R. G. Gallager and D. C. V. Voorhis, “Optimal source codes for geometrically

distributed integer alphabets,” IEEE Transactions on Information Theory, vol. 21,

pp. 228–230, March 1975.

[89] Advanced video coding for generic audiovisual services. ITU-T Std. H.264, March

2005.

[90] High efficiency video coding. ITU-T Rec. H.265, June 2013.

[91] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for

minimizing symbol error rate(corresp.),” IEEE Transactions on Information Theory,

vol. 20, pp. 284–287, March 1974.

[92] R. G. Maunder, W. Zhang, T. Wang, and L. Hanzo, “A unary error correction code

for the near-capacity joint source and channel coding of symbol values from an

infinite set,” IEEE Transactions on Communications, vol. 6, pp. 1977–1987, May

2013.

[93] W. Zhang, Y. Jia, X. Meng, M. F. Brejza, R. G. Maunder, and L. Hanzo, “Adaptive

iterative decoding for expediting the convergence of unary error correction codes,”

IEEE Transactions on Vehicular Technology, vol. 64, pp. 621–635, February 2015.

BIBLIOGRAPHY 184

[94] W. Zhang, M. F. Brejza, T. Wang, R. G. Maunder, and L. Hanzo, “An irregular

trellis for the near-capacity unary error correction coding of symbol values from

an infinite set,” IEEE Transactions on Communications, vol. 63, pp. 5073–5088,

December 2015.

[95] W. Zhang, Z. Song, M. F. Brejza, T. Wang, R. G. Maunder, and L. Hanzo,

“Learning-aided unary error correction codes for non-stationary and unknown

sources,” to be submitted, December 2015.

[96] W. Zhang, R. G. Maunder, and L. Hanzo, “On the complexity of unary error correc-

tion codes for the near-capacity transmission of symbol values from an infinite set,”

IEEE Wireless Communications and Networking Conference (WCNC), pp. 2795–

2800, April 2013.

[97] M. F. Brejza, W. Zhang, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “Adap-

tive iterative detection for expediting the convergence of a serially concatenated

unary error correction decoder, turbo decoder and an iterative demodulator,” IEEE

International Conference on Communications (ICC), pp. 2603–2608, June 2015.

[98] L. Hanzo, R. G. Maunder, J. Wang, and L.-L. Yang, Near-Capacity Variable Length

Coding. Chichester, UK: Wiley, 2010.

[99] S. ten Brink, “Convergence of iterative decoding,” IEEE Electronics Letters, vol. 35,

pp. 806–808, May 1999.

[100] R. G. Maunder and L. Hanzo, “Near-capacity irregular variable length coding and

irregular unity rate coding,” IEEE Transactions on Wireless Communications, vol. 8,

pp. 5500–5507, November 2009.

[101] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial concatenated of in-

terleaved codes: performance analysis, design, and iterative decoding,” IEEE Trans-

actions on Information Theory, vol. 44, pp. 909–926, May 1998.

[102] C. Douillard, M. Jezequel, C. Berrou, A. Picart, P. Didier, and A. Glavieux, “Iter-

ative correction of intersymbol interference: Turbo equalization,” European Trans-

actions on Telecommunications, vol. 6, pp. 507–511, September 1995.

[103] R. Bauer and J. Hagenauer, “On variable length codes for iterative source/channel

decoding,” in Proceedings of IEEE Data Compression Conference (DCC), (Snow-

bird, USA), pp. 273–282, April 2001.

[104] M. Adrat and P. Vary, “Iterative source-channel decoding: Improved system design

using EXIT charts,” EURASIP Journal on Applied Signal Processing (Special Issue:

Turbo Processing), pp. 928–941, May 2005.

[105] T. Richardson and R. Urbanke, “The capacity of LDPC codes under message pass-

ing decoding,” IEEE Transactions on Information Theory, vol. 47, pp. 595–618,

February 2001.

BIBLIOGRAPHY 185

[106] D. Divsalar, S. Dolinar, and F. Pollara, “Serial concatenated trellis coded modula-

tionn with rate-1 inner code,” in Proceedings of the IEEE Global Telecommunica-

tions Conference, (San Francisco, CA, USA), pp. 777–782, November 2000.

[107] A. Goldsmith, Wireless Communications. Cambridge University Press, 1st ed.,

2005.

[108] L. Hanzo, T. H. Liew, B. L. Yeap, R. Y. S. Tee, and S. X. Ng, Turbo Coding, Turbo

Equalisation and Space-Time Coding: EXIT-Chart Aided Near-Capacity Designs

for Wireless Channels. John Wiley and Sons, 2rd ed., 2011.

[109] D. Divsalar and F. Pollara, “Turbo codes for deep space communications,” TDA

Progress Report 42-120, pp. 29–39, February 1995.

[110] S. Huettinger and J. Huber, “Design of multiple turbo codes with transfer character-

istics of component codes,” in Proceedings of Conference on Information Sciences

and Systems (CISS ’02), (Princeton, NJ, USA), March 2002.

[111] D. Divsalar and F. Pollara, “Serial and hybrid concatenated codes with applications,”

in International Symposium on Turbo Codes and Related Topics, (Brest, France),

September 1997.

[112] S. X. Ng, M. F. U. Butt, and L. Hanzo, “On the union bounds of self-concatenated

convolutional codes,” IEEE Signal Processing Letters, vol. 16, pp. 1070–9908,

September 2009.

[113] D. Divsalar, S. Dolinar, and F. Pollara, “Serial concatenated trellis coded modula-

tion with rate-1 inner code,” in Proceedings of IEEE Global Telecommunications

Conference, (San Francisco, CA, USA), pp. 777–782, November 2000.

[114] R. Y. S. Tee, R. G. Maunder, and L. Hanzo, “Exit-chart aided near-capacity irregular

bit-interleaved coded modulation design,” IEEE Transactions on Wireless Commu-

nications, vol. 8, pp. 32–37, January 2009.

[115] L. Hanzo, O. Alamri, M. E. Hajjar, and N. Wu, Near-Capacity MutiFunctional

MIMO Systems. John Wiley and Sons, 2009.

[116] M. Tüchler, “Design of serially concatenated systems depending on the block

length,” IEEE Transactions on Communications, vol. 52, pp. 209–218, February

2004.

[117] T. Dean, Network+ Guide to Networks. Course Technology, 2009.

[118] B. Vucetic and J. Yuan, Turbo Codes: Principles and Applications. Kluwer Aca-

demic Publishers, Norwell, Mass, USA, 2002.

[119] O. Y. Takeshita, “Permutation polynomial interleavers: An algebraic-geometric per-

spective,” IEEE Transactions on Information Theory, vol. 53, pp. 2116–2132, June

2007.

BIBLIOGRAPHY 186

[120] Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding. 3rd Generation Partnership Project (3GPP), TS 36.212, September 2008.

[121] S. Dolinar and D. Divsalar, “Weight distributions for turbo codes using random

and nonrandom permutations,” Telecommunications and Data Acquisition Progress

Report, vol. 122, pp. 56–65, April 1995.

[122] R. G. Maunder and L. Hanzo, “Evolutionary algorithm aided interleaver design

for serially concatenated codes,” IEEE Transactions on Communications, vol. 59,

pp. 1753–1758, July 2011.

[123] F. Gray, Pulse Code Communication. U. S. Patent 2 632 058, March 1953.

[124] B. Sklar, “Rayleigh fading channels in mobile digital communication systems i.

characterization,” IEEE Communications Magazine, vol. 35, pp. 90–100, July 1997.

[125] J. G. Proakis and M. Salehi, Digital Communications. McGraw-Hill, 5th ed., 2008.

[126] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and con-

volutional codes,” IEEE Transactions on Information Theory, vol. 42, pp. 429–445,

March 1996.

[127] P. S. Ahmed, R. G. Maunder, and L. Hanzo, “Partial soft decode and forward,” IEEE

Vehicular Technology Conference (VTC Fall), pp. 1–5, September 2011.

[128] L. Li, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “A low-complexity turbo

decoder architecture for energy-efficient wireless sensor networks,” IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, vol. 21, pp. 14–22, January

2013.

[129] R. G. Maunder and L. Hanzo, “Extrinsic information transfer analysis and design

of block-based intermediate codes,” IEEE Transactions on Vehicular Technology,

vol. 60, pp. 762–770, March 2011.

[130] I. Land, P. Hoeher, and S. Gligorevic, “Computation of symbol-wise mutual in-

formation in transmission systems with LogAPP decoders and application to exit

charts,” in Proceedings of International Conference on Source and Channel Coding

(SCC), (Germany), pp. 195–202, January 2004.

[131] A. Ashikhmin, G. Kramer, and S. ten Brink, “Extrinsic information transfer func-

tions: Model and erasure channel properties,” IEEE Transactions on Information

Theory, vol. 50, pp. 2657–2673, November 2004.

[132] A. Ashikhmin, G. Kramer, and S. ten Brink, “Code rate and the area under extrinsic

information transfer curves,” in Proceedings of IEEE International Symposium on

Information Theory, (Lausanne, Switzerland), p. 115, June 2002.

[133] C. E. Shannon, The mathematical theory of communication. July 1948.

BIBLIOGRAPHY 187

[134] S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated

codes,” IEEE Transactions on Communications, vol. 49, pp. 1727–1737, October

2001.

[135] M. Tüchler and J. Hagenauer, “Exit charts of irregular codes,” in Proceddings of

Conference on Information Systems and Sciences (CISS), (Princeton, NJ), pp. 748–

753, March 2002.

[136] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann, “Practi-

cal loss-resilient codes,” in Proceedings of the ACM symposium on Theory of Com-

puting, (El Paso, TX, USA), pp. 150–159, May 1997.

[137] R. G. Gallager, Low Density Parity Check Codes. Cambridge, Mass.: MIT Press,

1963.

[138] D. J. C. MacKay and R. M. Neal, “Near shannon limit performance of low density

parity check codes,” IEEE Electronics Letter, vol. 32, pp. 457–458, August 1996.

[139] B. J. Frey and D. J. C. MacKay, “Irregular turbo-like codes,” in Proceedings of the

International Symposium on Turbo Codes, (Brest, France), pp. 67–72, September

2000.

[140] J. Zou, H. Xiong, C. Li, R. Zhang, and Z. He, “Lifetime and distortion optimization

with joint source/channel rate adaptation and network coding-based error control

in wireless video sensor networks,” IEEE Transactions on Vehicular Technology,

vol. 60, pp. 1182–1194, March 2011.

[141] Y. Huo, C. Zhu, and L. Hanzo, “Spatio-temporal iterative source-channel decoding

aided video transmission,” IEEE Transactions on Vehicular Technology, vol. 62,

pp. 1597–1609, May 2013.

[142] N. Othman, M. El-Hajjar, O. Alamri, S. X. Ng, and L. Hanzo, “Iterative amr-

wb source and channel decoding using differential space-time spreading-assisted

sphere-packing modulation,” IEEE Transactions on Vehicular Technology, vol. 58,

pp. 484–490, January 2009.

[143] B. Ryabko and J. Rissanen, “Fast adaptive arithmetic code for large alphabet sources

with asymmetrical distributions,” IEEE Communications Letters, vol. 7, pp. 33–35,

January 2003.

[144] N. L. Johnson, A. W. Kemp, and S. Kotz, Univariate Discrete Distributions. John

Wiley and Sons, Inc., Hoboken, NJ, USA, 2005.

[145] T. Wang, W. Zhang, R. G. Maunder, and L. Hanzo, “Near-capacity joint source and

channel coding of symbol values from an infinite source set using elias gamma error

correction codes,” IEEE Transactions on Communications, vol. 62, pp. 280–292,

January 2014.

BIBLIOGRAPHY 188

[146] R. G. Maunder, W. Zhang, T. Wang, and L. Hanzo, “Derivations for ‘A unary error

correction code for the near-capacity joint source and channel coding of symbol

values from an infinite set’,” [Online]. Available: http://eprints.soton.ac.uk/341736/.

[147] M. Tüchler, “Convergence prediction for iterative decoding of threefold concate-

nated systems,” in Proceedings of IEEE Global Telecommunications Conference,

(Taipei, Taiwan), pp. 1358–1362, November 2002.

[148] D. Divsalar, H. Jin, and R. J. McEliece, “Coding theorems for ‘turbo like’ codes,”

in Proceedings of the 36th Allerton Conference on Communication, Control and

Computing, (Allerton House, USA), pp. 201–210, September 1998.

[149] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check

codes for modulation and detection,” IEEE Transactions on Communications,

vol. 52, pp. 670–678, April 2004.

[150] J. Kliewer, N. Goertz, and A. Mertins, “Iterative source-channel decoding with

Markov random field source models,” IEEE Transactions on Signal Processing,

vol. 54, pp. 3688–3701, October 2006.

[151] P. Frenger, P. Orten, and T. Ottosson, “Convolutional codes with optimum distance

spectrum,” IEEE Communications Letters, vol. 3, pp. 317–319, November 1999.

[152] L. Li, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “A low-complexity turbo

decoder architecture for energy-efficient wireless sensor networks,” IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, vol. 21, pp. 14–22, January

2013.

[153] J. Hagenauer, “The turbo principle - Tutorial introduction and state of the art,”

in Proceedings of the International Symposium on Turbo Codes, (Brest, France),

pp. 1–11, September 1997.

[154] L. Hanzo, J. P. Woodard, and P. Robertson, “Turbo decdoing and detection for wire-

less applications,” Proceedings of the IEEE, vol. 95, pp. 1178–1200, June 2007.

[155] Nasruminallah and L. Hanzo, “Exit-chart optimized short block codes for iterative

joint source and channel decoding in H.264 video telephony,” IEEE Transactions

on Vehicular Technology, vol. 58, pp. 4306–1315, October 2009.

[156] J. Kliewer, A. Huebner, and D. J. Costello, “On the achievable extrinsic information

of inner decoders in serial concatenation,” in IEEE International Symposium on

Information Theory, (Seattle, WA, USA), pp. 2680–2684, July 2006.

[157] F. Brannstrom, L. K. Rasmussen, and A. J. Grant, “Convergence analysis and op-

timal scheduling for multiple concatenated codes,” IEEE Transactions on Informa-

tion Theory, vol. 51, pp. 3354–3364, September 2005.

BIBLIOGRAPHY 189

[158] J. Hagenauer, “The EXIT chart - Introduction to extrinsic information transfer in

iterative decoding,” in Proceedings of the European Conference on Signal Pro-

ceesing, (Vienna, Austria), pp. 1541–1548, September 2004.

[159] H. Chen, R. G. Maunder, and L. Hanzo, “Low-complexity multiple-component

turbo-decoding-aided hybrid ARQ,” IEEE Transactions on Vehicular Technology,

vol. 60, pp. 1571–1577, May 2011.

[160] S. Benedetto and G. Montorsi, “Iterative decoding of serially concatenated convo-

lutional codes,” IEEE Electronics Letters, vol. 32, pp. 1186–1188, June 1996.

[161] R. G. Maunder and L. Hanzo, “Iterative decoding convergence and termination of

serially concatenated codes,” IEEE Transactions on Vehicular Technology, vol. 59,

pp. 216–224, January 2010.

[162] A. Diallo, C. Weidmann, and M. Kieffer, “Efficient computation and optimization

of the free distance of variable-length finite-state joint source-channel codes,” IEEE

Transactions on Communications, vol. 59, pp. 1043–1052, April 2011.

[163] D. Sankoff and J. B. Kruskal, Time Warps, String Edits, and Macromolecules: The

Theory and Practice of Sequence Comparison. Addison-Wesley, 1983.

[164] M. Wien, High Efficiency Video Coding - Coding Tools and Specification. Berlin,

Heidelberg: Springer, 2014.

[165] S. ten Brink, “Rate one-half code for approaching the Shannon limit by 0.1 dB,”

IEEE Electronics Letters, vol. 36, pp. 1293–1294, July 2000.

[166] M. F. Brejza, T. Wang, W. Zhang, D. A. Khalili, R. G. Maunder, B. M. Al-

Hashimi, and L. Hanzo, “Exponential golomb and rice error correction codes for

near-capacity joint source and channel coding,” to be submitted, December 2015.

[167] T. Wang, W. Zhang, M. F. Brejza, R. G. Maunder, and L. Hanzo, “Reordered elias

gamma error correction codes for the near-capacity joint source and channel coding

of multimedia information,” to be submitted, December 2015.

Subject Index

Symbols

γ, α, β and δ Calculations31–34

2D . 7, 80, 134

2D EXIT Chart Projections 92–93

2D EXIT Curves 88–89

3D. ii, 7, 79, 134, 141, 164

3D EXIT Chart 89–92

A

ACS 7, 30, 51, 80, 133, 157, 165

ACS Operations 30–31

Adaptive Iterative Decoding 87–98

Adaptive UEC Codes for Expediting Iter-

ative Decoding Convergence 78–

109

Adaptive/Irregular/Learning-aided EGEC,

RiceEG and ExpGEC schemes170–

174

Adaptive/Irregular/Learning-aided REGEC

schemes 174–175

Algorithm for the Parametrization of the

IrUEC-IrURC Scheme . 121–126

An SSCC Benchmarker 65–67

APP. .30

Area Property.63–64

AWGN xix, 2, 25, 107

B

Background . 12–48

Background and Motivation 49–51,

78–80, 110–112, 140–141

BCH . 15

BCJR . . ii, xviii, 6, 29, 51, 120, 149, 164

BCJR Algorithm 29–34

BEC . 62

Benchmarkers 126–132, 152–157

BER . 13

BICM . 3

C

CC 3, 17, 50, 80, 111, 142, 164

Chapter Organisation . . . 51–52, 81, 113,

142–143

Closing Remarks 176

Comparison with Benchmarkers . 98–108

Complexity and Storage Analysis . 95–98

Concatenated Schemes 13–16

Conclusions and Future Research . . 163–

176

CRC . 150

D

DCMC 26, 67, 93, 126, 159

Decoding Complexity Analysis . . . 71–73

Deinterleaver Operation 29

Demodulator and Iterative Decoding119–

120

Demultiplexer Operation 29

Design Guidelines 166–170

SUBJECT INDEX 191

Design of UEC Component Codes . 121–

125

Double-sided EXIT Chart Matching Al-

gorithm 125–126

Dynamic Adjustment of the Decoder Ac-

tivation Order 94–95

E

EA . 23

EG 5, 50, 80, 112, 142, 164

EG-CC Decoder 66–67

EG-CC Encoder 65–66

EGEC. iii, 171

Encoding Operation 19–21

EWVLC . 4

EXIT ii, xviii, 7, 13, 79, 110, 141

EXIT Chart .37–45

EXIT Chart Analysis 87–93

EXIT Curves 62–63

ExpGEC . iii, 171

F

FLC . 171

Future Work.170–175

G

Generator and Feedback Polynomials18–

19

H

HD . 123

HEVC . 144

I

IID . 52, 114, 143

Interleaver Operation 22–23

Introduction 1–10, 12–13, 49–52, 78–81,

110–113, 140–143

IrCC. .111, 173

Irregular Design 45–47

Irregular UEC Codes for ‘Nearer-Capacity’

Operation 110–139

IrTrellis . 8, 112

IrTrellis Decoder 120

IrTrellis Encoder114–118

IrUEC. 21, 110, 141

IrUEC-IrURC Decoder 119–121

IrUEC-IrURC Encoder 113–119

IrURC 7, 45, 51, 110, 164

IrURC Encoder and Modulator . 118–119

IrURC Encoder, Interleaver, Puncture and

Modulator 59–60

IrVLC . 4, 111

Iterative Decoding 34–35

Iteratively Decoding 61

J

Joint Source and Channel Coding . . . 2–4

JSCC ii, 1, 13, 50, 78, 110, 140, 163

L

LDPC. 3, 13

Learning Algorithm 150–152

Learning-aided Arithmetic-CC Benchmarker

155–157

Learning-aided EG-CC Benchmarker153–

155

Learning-aided UEC Codes for Non-Stationary

and Unknown Sources . 140–162

Learning-aided UEC Coding . . . 146–152

LFSR . 17

Linear Feedback Shift Register . . . 17–18

LLR xvi, 14, 61, 119, 153

Logarithmic Likelihood Ratio 27–28

LTE . 23

LUT . 31, 71

M

Main Conclusions 163–166

SUBJECT INDEX 192

MAP . 3

MI . xviii, 37, 88

ML . 61

MMIA . 88

Motivation and Contribution 4–8

Multiplexer Operation 21–22

N

Nature of the Source 143–146

Near-capacity Performance of UEC Codes

61–64

Non-Stationary Zeta Distribution . . 145–

146

Novel Contributions 51, 80, 112,

141–142

P

Parallel Component UEC Codes131–132

Parallel Concatenated Schemes . . . 15–16

Parametrization of the UEC-IrURC and

EG-CC-IrURC schemes . . 67–71

PCC . 15

PSK. .23

Q

QPSK 9, 12, 60, 85, 119, 148

Quadrature Phase-Shift Keying (QPSK)

Modulation 23–24

R

Receiver . 85–87

Receiver Operation 149–150

Recursive Non-Systematic Component CC

Codes . 130

Recursive Systematic Component CC Codes

128–129

REG . 174

REGEC . 174

RiceEC . iii

RV . 52, 114, 143

RVLC . 4, 6, 50

S

SCC . 13

SECC . 16

Separate Source and Channel Coding1–2

SER 50, 81, 120, 141

Serially Concatenated Schemes . . . 13–15

Simulation Results 73–75, 132–138,

157–160

SISO . 30

SNR xix, 13, 26, 88, 141

Soft Demodulator 28–29

Soft QPSK Demodulation 27–29

SOVA . 3

SSCC 1, 49, 80, 111, 142, 163

SSVLC . 4

Stationary Zeta Distribution 143–145

Summary and Conclusions47–48, 75–77,

108–109, 138–139, 160–162

Symbols Value Sets Having an Infinite Car-

dinality 52–53

System Overview 81–87

T

TCM . 3

Thesis Organisation 8–10

Transmitter . 81–85

Transmitter Operation 147–149

Trellis Decoder 60–61

Trellis Encoder 55–59

U

UEC ii, 1, 12, 49, 78, 110, 140, 163

UEC Decoder Operation 60–61

UEC Encoder Operation 53–60

UEP . 173

Unary Decoder 61, 120–121

SUBJECT INDEX 193

Unary Encoder 54–55, 113–114

Unary Error Correction Codes and Their

Complexity 49–77

Uncorrelated Narrow-band Rayleigh Chan-

nel . 24–27

Unity-Rate Convolutional code . . . 17–21

URC 9, 12, 49, 81, 111, 148, 169

V

VLC . 111

VLEC. .4, 50

VQEG . 53, 144

X

XOR. .xx, 17

Author Index

A

Abrahams, J. [55] 4, 5

Adrat, M. [104] . 13

Ahmed, P.S. [127] 28

Al-Hashimi, B.M. [128] 30

Al-Hashimi, B.M. [152] 71, 96, 132

Al-Hashimi, B.M. [97]7, 86

Al-Hashimi, B.M. [166] 171–173

Alamri, O. [142] 49

Alamri, O. [115] 17

Arce, G.R. [86] . 5

Arikan, E. [45] . 3

Ashikhmin, A. [132] 43, 44, 93, 159

Ashikhmin, A. [131] . . 41, 43, 44, 60–63,

93, 102

Ashikhmin, A. [149] 62, 89, 90

B

Bahl, L. [16] . 3

Bahl, L. [18] . 3

Bahl, L. [91] . 6, 30, 51, 60, 86, 120, 149

Baier, A. [29] . 3

Balakirsky, V.B. [60] 4, 5

Bauer, R. [103] . 13

Bauer, R. [63] . 4

Benedetto, S. [44] 3

Benedetto, S. [38] 3

Benedetto, S. [160] 119

Benedetto, S. [101] 13

Berrou, C. [34] . 3

Berrou, C. [32] 3, 13, 15, 28

Berrou, C. [102] . 13

Borkenhagen, J.C. [53] 4, 5

Brannstrom, F. [157] 92

Brejza, M.F. [93] 7, 78

Brejza, M.F. [94] 7, 110

Brejza, M.F. [95] 7, 140

Brejza, M.F. [97] 7, 86

Brejza, M.F. [167] 172, 174, 175

Brejza, M.F. [166] 171–173

Butt, M.F.U. [112] 16

Buttigieg, V. [57] 4–6, 50

Buzo, A. [48] . 2, 5

C

Cai, J.-f. [75] . 5

Calderbank, A.R. [27] 3

Chen, C.-W. [75] . 5

Chen, H. [159] . 96

Cherriman, P.J. [4] 2

Cherriman, P.J. [5] 2

Cleary, J.G. [25] . 3

Cocke, J. [18] . 3

Cocke, J. [91] 6, 30, 51, 60, 86, 120, 149

Costello, D.J. [156] 88, 89, 129

Cullum, C. [16] . 3

D

Dean, T. [117]. .21

Demir, N. [62] . 4

AUTHOR INDEX 195

Diallo, A. [162] 123

Didier, P. [102] . 13

Divsalar, D. [26] . 3

Divsalar, D. [38] . 3

Divsalar, D. [121] 23

Divsalar, D. [109] 16

Divsalar, D. [148] 61, 120

Divsalar, D. [106] 13

Divsalar, D. [111] 16

Divsalar, D. [113] 17

Divsalar, D. [101] 13

Dolinar, S. [121] 23

Dolinar, S. [106] 13

Dolinar, S. [113] 17

Douillard, C. [102] 13

E

El-Hajjar, M. [142] 49

Elias, P. [12] 3, 50, 171

Elias, P. [19] 3, 5, 6, 50

F

Fano, R.M. [8] . 3, 4

Farrell, P.G. [71] .5

Farrell, P.G. [57] 4–6, 50

Farvardin, N. [52] 4, 5

Farvardin, N. [70] 5

Forney, G.D. [17] . 3

Frazer, W. [16] . 3

Frenger, P. [151] 65, 130

Frey, B.J. [139] . 45

G

Gö, N. [77] . 5

Gö, N. [79] . 5

Gallager, R.G. [88]6, 50, 67

Gallager, R.G. [137] 45

Gallager, R.G. [14] 3, 45

Garcia-Frias, J. [86] 5

Glavieux, A. [34] . 3

Glavieux, A. [32] 3, 13, 15, 28

Glavieux, A. [102] 13

Gligorevic, S. [130] 37, 93

Goertz, N. [150] 62, 89, 120, 124

Goff, S.L. [34] . 3

Goldsmith, A. [107] 13, 22

Golomb, S.W. [15].3, 170, 171

Grangetto, M. [44] 3

Grant, A.J. [157] 92

Gray, F. [123] . 23

Gray, R. [48] . 2, 5

Guillemot, C. [81] 5

Guillemot, C. [66] 4

H

Hagenauer, J. [28] 3, 100

Hagenauer, J. [126] 27

Hagenauer, J. [158] 94

Hagenauer, J. [153] 79

Hagenauer, J. [79] 5

Hagenauer, J. [103] 13

Hagenauer, J. [63] 4

Hajjar, M.E. [115] 17

Hamming, R.W. [9] 3

Hanzo, L. [112] . 16

Hanzo, L. [30] . 3

Hanzo, L. [93] 7, 78

Hanzo, L. [159] . 96

Hanzo, L. [154] . 79

Hanzo, L. [128] . 30

Hanzo, L. [155] . 87

Hanzo, L. [142] . 49

Hanzo, L. [161] 120

Hanzo, L. [114] . 17

Hanzo, L. [141] . 49

Hanzo, L. [127] . 28

Hanzo, L. [115] . 17

AUTHOR INDEX 196

Hanzo, L. [4] . 2

Hanzo, L. [6] . 2

Hanzo, L. [5] . 2

Hanzo, L. [146] 59, 63

Hanzo, L. [59] 4, 5, 111, 114

Hanzo, L. [94] 7, 110

Hanzo, L. [100] 8, 59, 111, 112, 114,

118, 121, 125, 126

Hanzo, L. [95] 7, 140

Hanzo, L. [152] 71, 96, 132

Hanzo, L. [97] 7, 86

Hanzo, L. [96] 7, 49, 50, 53, 85–87, 132,

157

Hanzo, L. [167] 172, 174, 175

Hanzo, L. [166]171–173

Hanzo, L. [122] . 23

Hanzo, L. [129] 37, 87–89, 92

Hanzo, L. [145] 55, 85, 171–173

Hanzo, L. [108] 15, 27, 30, 52, 126

Hanzo, L. [92].7, 49,

50, 53, 67, 68, 73, 76, 81, 84–87,

93, 110, 114, 116, 117, 125, 126,

128, 132, 134, 138, 140, 143, 144,

149

Hanzo, L. [98] . 7, 18, 45, 46, 51, 59, 68,

69, 71, 118, 126, 128, 148

Hanzo, L. [67] . 4

Hassanin, M. [86] 5

He, Z. [140] . 49

Hirakawa, S. [20] . 3

Hoeher, P. [35] . 3

Hoeher, P. [28] 3, 100

Hoeher, P. [130].37, 93

Hou, J. [41] . 3

Huber, J. [110] . 16

Huebner, A. [156] 88, 89, 129

Huettinger, S. [110] 16

Huffman, D.A. [10]3, 6

Huo, Y. [141] . 49

I

Imai, H. [20] . 3

Ingber, A. [87] . 5

J

Jaspar, X. [81] .5

Jegou, H. [66] . 4

Jelinek, F. [16] . 3

Jelinek, F. [18] . 3

Jelinek, F. [91]6, 30, 51, 60, 86, 120, 149

Jezequel, M. [102] 13

Jia, Y. [93] .7, 78

Jin, H. [148] 61, 120

Jin, H. [76]. .5

Johnson, N.L. [144] . 50, 53, 55, 81, 114,

144

K

Kasahara, M. [49] 2, 4, 5

Kemp, A.W. [144]. . .50, 53, 55, 81, 114,

144

Khalili, D.A. [166] 171–173

Khandekar, A. [76] 5

Kieffer, M. [162] 123

Kliewer, J. [64] . 4

Kliewer, J. [80] . 5

Kliewer, J. [58] 4, 5

Kliewer, J. [156]88, 89, 129

Kliewer, J. [150] 62, 89, 120, 124

Kliewer, J. [67] . 4

Koch, W. [29] . 3

Kofman, Y. [33] . 3

Kostina, V. [85] . 5

Kotelnikov, V.A. [68] 5

Kotz, S. [144] . . . 50, 53, 55, 81, 114, 144

Kozintsev, I. [73] . 5

AUTHOR INDEX 197

Kramer, G. [132] 43, 44, 93, 159

Kramer, G. [131] . 41, 43, 44, 60–63, 93,

102

Kramer, G. [149] 62, 89, 90

Kron, J. [84] . 5

Kruskal, J.B. [163] 137

Kumazawa, H. [49] 2, 4, 5

Kurtenbach, A. [69] 5

L

Land, I. [130] 37, 93

Langdon, G.G. [23] 3

Larsson, E.G. [84] 5

Lee, M.H. [41] . 3

Lempel, A. [22] 3, 50

Li, C. [140] . 49

Li, L. [128] . 30

Li, L. [152] 71, 96, 132

Li, X.D. [36] . 3

Liew, T.H. [108] 15, 27, 30, 52, 126

Linde, Y. [48] . 2, 5

Lloyd, S. [50] . 4

Lu, B. [43] . 3

Luby, M. [40] . 3

Luby, M. [136] . 45

Luo, J. [46] . 3

Luo, J. [47] . 3

M

MacKay, D.J.C. [138] 45, 79

MacKay, D.J.C. [139] 45

Malinowski, S. [66] 4

Massey, J.L. [1] 1, 2, 5, 6, 50

Maunder, R.G. [93]7, 78

Maunder, R.G. [159] 96

Maunder, R.G. [128] 30

Maunder, R.G. [161].120

Maunder, R.G. [114] 17

Maunder, R.G. [127] 28

Maunder, R.G. [146] 59, 63

Maunder, R.G. [59] 4, 5, 111, 114

Maunder, R.G. [94] 7, 110

Maunder, R.G. [100] 8, 59, 111, 112,

114, 118, 121, 125, 126

Maunder, R.G. [95] 7, 140

Maunder, R.G. [152] 71, 96, 132

Maunder, R.G. [97]7, 86

Maunder, R.G. [96] 7, 49, 50, 53, 85–87,

132, 157

Maunder, R.G. [167] 172, 174, 175

Maunder, R.G. [166] 171–173

Maunder, R.G. [122] 23

Maunder, R.G. [129] 37, 87–89, 92

Maunder, R.G. [145] . . . 55, 85, 171–173

Maunder, R.G. [92] 7, 49,

50, 53, 67, 68, 73, 76, 81, 84–87,

93, 110, 114, 116, 117, 125, 126,

128, 132, 134, 138, 140, 143, 144,

149

Maunder, R.G. [98] 7, 18, 45, 46, 51, 59,

68, 69, 71, 118, 126, 128, 148

Maunder, R.G. [67] 4

Max, J. [51] . 4

McEliece, R.J. [148] 61, 120

McEliece, R. [76] .5

Meng, X. [93] 7, 78

Mertins, A. [150] 62, 89, 120, 124

Miller, D.J. [54] . 4

Miller, D.J. [74] . 5

Miller, D.J. [61] . 4

Minero, P. [83] . 5

Mitzenmacher, M. [136] 45

Montgomery, B.L. [55] 4, 5

Montorsi, G. [38] . 3

Montorsi, G. [160] 119

AUTHOR INDEX 198

Montorsi, G. [101].13

Murakami, H. [56] 4–6, 50

N

Namekawa, T. [49] 2, 4, 5

Nasruminallah, [155] 87

Neal, R.M. [138] 45, 79

Neal, R. [25] . 3

Ng, S.X. [112] . 16

Ng, S.X. [142] . 49

Ng, S.X. [108].15, 27, 30, 52, 126

Ng, S.X. [67] .4

O

Offer, E. [126] . 27

Olmo, G. [44] . 3

Omura, J. [3] 2, 153

Ortega, A. [72] . 5

Orten, P. [151] 65, 130

Othman, N.S. [142] 49

Ottosson, T. [151] 65, 130

Otu, H.H. [62] .4

P

Papke, L. [126] . 27

Park, M. [54] . 4

Park, M. [61] . 4

Persson, D. [84] . 5

Picart, A. [102] . 13

Pollara, F. [38] . 3

Pollara, F. [109] . 16

Pollara, F. [106] . 13

Pollara, F. [111] . 16

Pollara, F. [113] . 17

Pollara, F. [101] . 13

Proakis, J.G. [125] 26, 44, 45

R

Ramchandran, K. [73]5

Ramchandran, K. [72]5

Ramstad, T.A. [78] 5

Rasmussen, L.K. [157] 92

Raviv, J. [18] . 3

Raviv, J. [91] . 6, 30, 51, 60, 86, 120, 149

Reed, I. [11] . 3

Richardson, T.J. [39] 3

Richardson, T. [105] 13

Rissanen, J. [143] 50

Rissanen, J. [23] . 3

Ritcey, J.A. [36] . 3

Robertson, P. [35] 3

Robertson, P. [37] 3

Robertson, P. [154] 79

Romero, S.M. [86] 5

Ryabko, B. [143] 50

S

Salehi, M. [125] 26, 44, 45

Sankoff, D. [163] 137

Sayood, K. [53] 4, 5

Sayood, K. [62] . 4

Scanavino, B. [44] 3

Shamai, S. [33] . 3

Shannon, C.E. [2] 1, 3, 4, 6, 49, 50

Shannon, C.E. [133] 44

Shokrollahi, A. [136] 45

Shokrollahi, A. [42]3

Shokrollahi, M.A. [39] 3

Simon, M.K. [26] . 3

Sklar, B. [124] . 24

Skoglund, M. [84] 5

Somerville, F.C.A. [6] 2

Song, Z. [95] 7, 140

Spielman, D. [136] 45

Stankovic, V. [82] 5

Steele, R. [30] . 3

Stemann, V. [136] 45

AUTHOR INDEX 199

Streit, J. [4] . 2

Streit, J. [5] . 2

Sung Lim, [83] . 5

T

Tü, M. [135] . 60, 69

Tü, M. [147] . 61, 92

Tü, M. [116] 17, 45, 111, 114, 128

Takeshita, O.Y. [119] 23

Takishima, Y. [56] 4–6, 50

Tee, R.Y.S. [114] 17

Tee, R.Y.S. [108] 15, 27, 30, 52, 126

ten Brink, S. [132] 43, 44, 93, 159

ten Brink, S. [131] 41, 43, 44, 60–63, 93,

102

ten Brink, S. [165] 153

ten Brink, S. [99] . . . 7, 18, 37, 38, 48, 88

ten Brink, S. [149] 62, 89, 90

ten Brink, S. [134] 61, 68, 87, 159

Thitimajshima, P. [32] 3, 13, 15, 28

Thobaben, R. [64] 4

Thobaben, R. [80] 5

Thobaben, R. [58] 4, 5

Tridenski, S. [87] . 5

U

Ungerböck, G. [24] 3

Urbanke, R.L. [39]3

Urbanke, R. [105] 13

Uz, K.M. [72] . 5

V

Vaishampayan, V. [70] 5

Van Dyck, R.E. [74] 5

Van Voorhis, D.C. [88] 6, 50, 67

Vandendorpe, L. [81] 5

Vary, P. [104] . 13

Verdu, S. [85] . 5

Vetterli, M. [72] . 5

Villebrun, E. [35] . 3

Viterbi, A.J. [3] 2, 153

Vucetic, B. [118] 22

W

Wörz, T. [37] .3

Wada, M. [56] 4–6, 50

Wang, J. [98] . . . 7, 18, 45, 46, 51, 59, 68,

69, 71, 118, 126, 128, 148

Wang, J. [67] . 4

Wang, T. [146] 59, 63

Wang, T. [94] 7, 110

Wang, T. [95] 7, 140

Wang, T. [167] 172, 174, 175

Wang, T. [166] 171–173

Wang, T. [145] 55, 85, 171–173

Wang, T. [92] 7, 49,

50, 53, 67, 68, 73, 76, 81, 84–87,

93, 110, 114, 116, 117, 125, 126,

128, 132, 134, 138, 140, 143, 144,

149

Wang, X. [43] . 3

Wang, Z. [46] . 3

Webb, W.T. [30] . 3

Weidmann, C. [162] 123

Weidmann, C. [65].4

Wien, M. [164] 143, 144

Wintz, P. [69] . 5

Witten, I.H. [25] . 3

Wolf, J. [21] . 3

Woodard, J.P. [154] 79

Woodard, J.P. [6] . 2

Wozencraft, J. [13].3

Wu, N. [115] . 17

Wyner, A. [7] . 2

Wyrwas, R.R. [71] 5

X

Xiong, H. [140] . 49

AUTHOR INDEX 200

Xiong, Z-X. [82] . 5

Xu, Q. [82] . 5

Y

Yang, L.-L. [98] 7, 18, 45, 46, 51, 59, 68,

69, 71, 118, 126, 128, 148

Yang, L.-L. [67] . 4

Yeap, B.L. [108] 15, 27, 30, 52, 126

Young-Han Kim, [83] 5

Yuan, J. [118] . 22

Yue, G. [43] . 3

Z

Zamir, R. [87] . 5

Zehavi, E. [31] . 3

Zehavi, E. [33] . 3

Zhang, R. [140] . 49

Zhang, W. [93] 7, 78

Zhang, W. [146] 59, 63

Zhang, W. [94].7, 110

Zhang, W. [95].7, 140

Zhang, W. [97] 7, 86

Zhang, W. [96] 7, 49, 50, 53, 85–87, 132,

157

Zhang, W. [167]. 172, 174, 175

Zhang, W. [166] 171–173

Zhang, W. [145] 55, 85, 171–173

Zhang, W. [92] 7, 49,

50, 53, 67, 68, 73, 76, 81, 84–87,

93, 110, 114, 116, 117, 125, 126,

128, 132, 134, 138, 140, 143, 144,

149

Zhu, C. [141] . 49

Ziv, J. [22] .3, 50

Ziv, J. [7] . 2

Zou, J. [140] . 49

