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Here, we present a novel method for estimation of harmonic spectrum features gener-

ated from ultrashort high-intensity laser pulses propagating through gas-filled capillaries,

based on pump pulse decomposition and statistical considerations.

Because of the strong optical nonlinearity, a high-intensity pump pulse launched with

a simple, e.g. Gaussian, temporal profile develops a highly complex structure during

propagation. We show how such complex propagating ultrashort infrared pulses can be

decomposed and subdivided to provide more in-depth analysis of each of their intense

regions, leading to a complete diagnostic view of the relevant features of ultrashort

pulses for nonlinear optics, e.g. the number, peak intensities, and temporal widths of

these individual pulse components within the complex structure. This analysis provides

more insight into the collective action of all pulse components as opposed to traditional

means which focus on a single feature, and allows diagnosis of the evolution of the large

ensemble of features found in such intense ultrashort pulses.

This analysis is then used to inform an approximation of the high harmonic spectrum

generated from such a pulse based on the cumulative harmonic generation of each of

the propagating pulse components. We show that this method is ∼57 times faster than

explicit simulation, requires significantly less computational power, and provides good

approximations to many features of the generated high harmonic spectra. We see that

this method provides a strong complementary approach to finding optimal conditions

for generating the highest harmonics, and provides an intuitive system for identifying

the root of certain harmonic pulse features and potentially for predicting the conditions

for generating them.





Contents

Declaration of Authorship XI

Acknowledgements XIII

1 Introduction 1

1.1 Applications of ultrashort and XUV optical pulses . . . . . . . . . . . . . 2

1.2 Current XUV sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 History of high-harmonic generation . . . . . . . . . . . . . . . . . . . . . 4

1.4 Project aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theory of HHG in Capillaries 7

2.1 Pulse propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Waveguide modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Capillary dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Gas nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Numerical model and simulation details . . . . . . . . . . . . . . . 11

2.1.5 Pulse propagation examples . . . . . . . . . . . . . . . . . . . . . . 12

2.2 High-Harmonic Generation theory . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Tunnel/multiphoton ionization . . . . . . . . . . . . . . . . . . . . 13

2.2.2 HHG Theory - Quantum model . . . . . . . . . . . . . . . . . . . . 16

2.2.3 HHG Theory - Semi-classical model . . . . . . . . . . . . . . . . . 19

2.2.4 XUV propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Theory Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Statistical analysis of nonlinear infrared pulse propagation 25

3.1 Features of pump pulse propagation and the need for statistics . . . . . . 25

3.2 Pulse deconstruction and subpulse identification . . . . . . . . . . . . . . 27

3.3 Fast fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Subpulse counting and intensity/width counting algorithms and evolution 30

3.5 Coefficient mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Peak intensity mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Statistics of fast fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.8 Covariance of subpulse intensities and widths . . . . . . . . . . . . . . . . 40

3.9 Joint statistics of fast fluctuations . . . . . . . . . . . . . . . . . . . . . . 41

3.10 Analysis of fitting and mapping . . . . . . . . . . . . . . . . . . . . . . . . 43

V



VI CONTENTS

4 Statistical Spectra and Analysis 45

4.1 Computational efficiency of the statistical spectra . . . . . . . . . . . . . . 47

4.2 Analysis of statistical and explicit spectra . . . . . . . . . . . . . . . . . . 47

4.3 “Hand phase matching” and discussion of phase matching in statistical
spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Power/pressure scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Harmonic Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 XUV Energy Buildup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Summary 61

6 Future work 63

6.1 Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Off-axis effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A 65

A.1 Coefficient Tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.1.1 a(U, p) (figure 3.8) coefficients: . . . . . . . . . . . . . . . . . . . . 65

A.1.2 b(U, p) (figure 3.9) coefficients: . . . . . . . . . . . . . . . . . . . . 65

A.1.3 R2 for nsub(z, U, p) coefficients: . . . . . . . . . . . . . . . . . . . . 66

A.1.4 Pump-pulse peak intensity (figure 3.11) fit coefficients: . . . . . . . 66



List of Figures

1.1 Schematic diagram of the experimental setup. . . . . . . . . . . . . . . . . 5

2.1 Flow chart showing the processes that form the basis of a nonlinear pump
pulse propagation through a gas-filled capillary. . . . . . . . . . . . . . . 8

2.2 Figure showing the initial (–) and final(- -) intensity profiles of a 0.6 mJ
pulse propagated through at 7 cm capillary with 100 mbar argon. . . . . . 12

2.3 Figure showing the initial (–) and final(- -) intensity profiles of a 1.2 mJ
pulse propagated through at 7 cm capillary with 100 mbar argon. . . . . . 13

2.4 Energy level diagram showing the transition between bound state E1 and
continuum state E2 by absorption of a photon of energy ∆E=E2−E1,
and the same transition achieved by the absorption of four photons of
energy 1

4∆E, with dashed lines denoting virtual states with energies E1 +
{1

4 ,
1
2 ,

3
4}∆E. These virtual states are simply an example and typically

multiphoton ionization occurs through absorption of photons of differing
energies and total energy > ∆E . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Schematic of tunnel ionization showing how deformation of the atomic
potential by the pump field allows an outer shell electron to tunnel from
its parent atom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Figure showing the imaginary component of a typical pump pulse (- -) of
0.395 PW/cm2 intensity and 40 fs length; the fraction of 1+ and 2+ ions
it generates, (–) and (–), respectively; also the fraction of neutral atoms
(–) illustrating how abruptly and efficiently such a pulse can generate a
large proportion of ions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Schematic plot showing the typical features of a HHG spectrum from
a monochromatic source, with characteristic discrete intensity spikes at
each odd harmonic of the source wavelength, the intensity plateau region,
and the subsequent harmonic cutoff and falloff, whose position is given
by equation 2.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Plot of the 20-55 nm wavelength section of the HHG spectrum generated
by the interaction of a 0.1 PW/cm2, 40 fs 800 nm pulse with a single argon
atom. It shows the effect of generation from a wide pump bandwidth in
the nontrivial harmonics shapes and associated wings which come from
the large variety of pump frequencies. . . . . . . . . . . . . . . . . . . . . 18

2.9 Figure showing the three-step model of HHG. It describes the tunnel
ionization of the electron, subsequent acceleration in the pump field and
finally recombination with its parent atom and emission of XUV. [att:
MDSwo / CC BY-SA 3.0] . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

VII



VIII LIST OF FIGURES

2.10 Plot of the kinetic energy gain of a free electron as a function of time
of flight in the semi classical model of electron acceleration by the pulse
field for the optimal ejection phase angle ωt0 = 17.956◦. Note that the
peak kinetic energy gain is 3.1731Up, indicating the maximum kinetic
energy that an electron can gain from ponderomotive acceleration before
recombination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.11 Plot of the transmission spectrum of 1mm of Ar at 100mbar. Note the
high transmission around 30nm, which is key in harmonic spectrum shap-
ing. This spectrum is generated by various atomic models by CXRO
[http://henke.lbl.gov/optical_constants/] . . . . . . . . . . . . . . . 22

3.1 Plot showing the intensity profile of a 0.8mJ, 100mbar propagating pulse
at launch, 25mm propagation and 50mm propagation. This highlights
the pulse breakup and its heavy effect in the pulse’s trailing edge. . . . . . 26

3.2 Plot of a cropped pulse intensity profile, with the subpulse assignments
shown by the shaded areas of decreasing brightness and assignment num-
bers. The profile is taken from partway along a propagation at ”stan-
dard parameters”, including some coupling into the LP0,2 and subsequent
modes at launch; and chosen for illustrative purposes. . . . . . . . . . . . 27

3.3 Plot of the intensity and width of the primary subpulse at “standard
parameters” (see section 1.5), with low-order fits denoting the “average”
behaviour over the propagation. . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Plots of the rescaled intensity and width for the primary subpulse as it
propagates at “standard parameters” (0.8 mJ, 100 mbar). Note that the
fluctuations are now centred round unity and appear consistent over the
propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Plot of the number of subpulses in the pump pulse as it propagates, show-
ing how the number and variance grow over the course of the propagation,
with cubic fit to show its averaging effect. . . . . . . . . . . . . . . . . . 31

3.6 Plot showing the expected subpulse number evolution at low energy and
low pressure (0.6 mJ, 70 mbar). Note the slow and eventually linear
growth in subpulse number. . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Plot showing the expected subpulse number evolution at high energy and
high pressure (1.2 mJ, 130 mbar). Note the quick growth in subpulse
number in the early propagation and plateau at 65-70mm propagation. . . 32

3.8 Fitted behaviour of the fitting constant a (from the fit nsub(z) ≈ az3 +
bz2 + 1) over an area in energy-pressure space. Note that behaviour
changes are primarily driven by the gas pressure unlike most other effects
in the system which are driven by the pulse energy. . . . . . . . . . . . . 34

3.9 Fitted behaviour of the fitting constant b (from the fit nsub(z) ≈ az3 +
bz2 + 1) over an area in energy-pressure space. Note the similarity in
behaviour with the fitting constant a. . . . . . . . . . . . . . . . . . . . . 34

3.10 Plot of the intensity of the primary subpulse at standard parameters, as
seen in figure 3.3, highlighting the persistent intensity peak at ∼ 33 mm
propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.11 Plot of the fitted behaviour of the 33mm intensity peak height, as shown
in figure 3.3 over an area in energy-pressure space. Note the low intensities
at all low energies, and the particularly high intensity in the high energy,
low pressure regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

http://henke.lbl.gov/optical_constants/


LIST OF FIGURES IX
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Chapter 1

Introduction

Since the advent of laser technology in 1960 [3], lasers of increasingly high intensity have

become widely available [4][5], driving significant interest in the nonlinear responses they

elicit in optical materials [6][7][8]. Despite the rapid development of high intensity lasers

and their uses in nonlinear optics, the field has been constrained by the availability of

short (<100 nm) wavelength lasers [9] which are required for a large variety of both

scientific and industrial applications. A particularly interesting short wavelength regime

is the extreme ultraviolet (XUV) (10-120 nm), at the length scale of many artificial and

biological structures [10] which are difficult to image by other means; unfortunately, to

this day, the main sources of XUV radiation are expensive and bulky (see section 1.2).

There is one laser source, however, which allows for relatively inexpensive tabletop XUV

generation, known as High-Harmonic Generation (HHG), which has grown in popularity

and utility since it was first shown in gases in 1987 [11].

HHG relies on the nonlinear response of a solid or gas to an intense pump laser in order

to coherently generate harmonics of the laser, at odd multiples of the laser frequency.

These harmonics can persist far into the XUV and soft x-ray (0.1-10 nm) regime and

with a sufficiently bright pump can themselves have high flux. The main problem with

this method of XUV generation is that the highly nonlinear nature of the process results

in highly localized generation around the laser focus, and hence relatively little XUV is

generated given the laser powers required and the effective conversion efficiency between

near-infrared (NIR) and XUV is relatively low.

The difficulties of short interaction lengths in HHG can be compensated for by the use

of a waveguide to contain the pump pulse and maintain intensity and hence XUV gen-

eration over several centimetres. To this end, capillary-based HHG [12] uses a capillary

waveguide to maintain pump pulse intensity over a distance of several cm, and hence

produces significant XUV flux at the capillary output. A major drawback of this method

for HHG is that it makes modelling significantly more difficult and hence most of the

progress in this area has been experimentally driven.

1



2 Chapter 1 Introduction

The primary goal of this project is to develop the capillary-based HHG system to pro-

duce more XUV flux in the 20-40 nm regime and expand upon the optimisations of

recent papers [2][13]. This will be performed primarily through numerical modelling

and simulation, building upon models developed previously by the group [2], with the

intention to provide a framework for easily predicting HHG spectrum features based on

pump laser properties, in support of the imaging work being done within the group [14].

1.1 Applications of ultrashort and XUV optical pulses

Generating coherent XUV, despite the difficulties involved, is very important for a range

of applications. Given that generating short wavelength coherent radiation below the

XUV range is extremely difficult, XUV is required to fulfil many nanoscale imaging

[14][15] and femto- and attosecond applications [16] [17].

Nanoscale imaging utilises short optical wavelengths to image objects of nanometre

scale. Given that the wavelengths of XUV/soft x-ray are typically smaller than details

of nanoscale objects, these wavelengths can be used to image such nanoscale objects.

The high flux and wide bandwidth offered by the HHG system allows for imaging of

many nanoscale objects quickly without risk of insufficiently high flux of the shortest

wavelengths. This provides stark advantages over traditional methods of non-optical

nanoscale imaging, such as atomic-force microscopy (AFM) [18] and electron-based

methods, such as transmission electron microscopy (TEM) [19], and scanning electron

microscopy (SEM) [20]. AFM produces atomic-scale resolution images of a surface but

since it requires scanning line by line over the surface, such images can be relatively

slow to obtain this way, and the surface must also be relatively flat and have smooth

depth changes compared to the scale of the scanning tip (∼ µm) or a huge loss of res-

olution will result [21]. The electron-based imaging methods do provide some benefit

over AFM, despite not achieving AFM’s atomic scale resolution. The biggest benefits

are the faster imaging times, given that electron beams can be scanned quickly across

a sample and can resolve a characteristically large depth of field, although for all these

benefits, electron-based imaging methods require specific sample conditions to produce

high resolution images. Many objects must be stained or dried to increase their elec-

tron optical contrast to allow for resolution of separate structures within an object.

TEM has the specific requirement of ultrathin samples, since the electron beam must

be detectable after passing through the sample; this disallows many objects from being

imaged this way, although many objects can be cut to this thickness. SEM also has

a similarly restrictive condition in that any imaged surfaces must be conductive to be

easily imaged, and to this end many non-conductive objects like biological samples must

be metal coated before imaging, which may damage the sample or obscure fine details

in the surface [22].
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The alternative methods of nanoscale imaging include sub-diffraction methods, which

allow for nanoscale imaging with long wavelength lasers. These methods include inter-

ferometric [23] and 4PI [24] methods, although these also have their own disadvantages,

for example, interferometric imaging is entirely dependent on having very high coher-

ence of the light source and extremely high quality optics to produce clean images, while

4PI imaging requires that samples fluoresce during illumination by the laser. The other

main method of achieving sub-wavelength imaging resolution is the use of near-field

imaging [25] systems, which employ components smaller than the optical wavelength

used, and hence use evanescent fields to image surfaces, although such surfaces must

have a sub-wavelength separation from the imaging device and such devices intrinsically

require extremely high precision fabrication to maintain high resolution.

With so many limitations on imaging speed and resolution, a compact, bright, coherent

source of XUV such as capillary-based HHG has the potential to provide significant

advantages over current imaging methods, since it allows for simple, direct imaging.

The other main application of XUV is the generation of attosecond pulses, most com-

monly used in studies of femto- and attosecond scale dynamics, such as atomic and

electronic dynamics [26], which require pulses with length much shorter than the time

scale of the dynamics being imaged. Such attosecond pulses are generated by gating

the isolated HHG pulses that result from the broadband HHG spectrum, usually by

polarization gating or a second pump wavelength [27].

1.2 Current XUV sources

The most prodigious source of coherent XUV, synchrotrons were the only source until the

advent of free electron lasers and HHG. Even now they have enormous power and space

demands and can easily cost > £100 million to build. They consist of evacuated tubes

forming N -sided polygons with bending magnets at each corner. Relativistic electrons

are accelerated around the synchrotron and at each corner they radiate tangentially

as they are bent. This radiation can then be collected and filtered to produce the

desired light source. Due to the nature of the machine the radiation is relatively short

pulse, ∼ picosecond full width half maximum (FWHM), which is very long compared to

the ∼ femtosecond pulse FWHMs available from HHG sources, although it is partially

compensated for by the wide potential wavelength ranges (between 0.5Å and 1µm for

the Diamond Light Source [28]).

Free electron lasers (FELs) operate on very similar principles to synchrotrons, except

they use accelerated electrons, usually from a linear accelerator, which then pass through

an undulator which consists of a series of alternating magnetic fields which cause the

electrons to oscillate perpendicular to their propagation direction. This oscillation causes

the electrons to radiate in the propagation direction. In a strong undulator, the electrons
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bunch because of the sinusoidal ponderomotive force along the propagation path; this

causes the electrons to emit their photons in phase and in very short bursts, resulting

in ultrashort (∼ fs [29]) coherent pulses with wavelengths between microwave and x-

ray. Such pulses can have the ideal combination of high flux, ultrashort length, short

wavelength, and strong coherence, although there are some distinct disadvantages to

using FELs, especially at x-ray wavelengths.

Firstly, FELs, like synchrotrons, require a lot of space and power; a linear accelerator

producing the desired electron energies to generate x-rays can be > km in length and

require large amounts of power to run, as well as requiring physical reconfiguration to

change electron energies. Likewise, the undulator requires a lot of energy to run and

cool, and because the oscillation frequency depends on the period of the undulator, it

must be physically reconfigured to produce different wavelengths, which requires a lot of

time and work. Because of this, many FELs have very limited wavelength ranges, such

as LCLS at Standford which has a generating range of 4.5 nm - 1.3 Å [30]. Ignoring

the enormous cost of building and running an FEL, it is still extremely impractical for

most laboratories and groups who need a compact source with more tunability and lower

running costs.

1.3 History of high-harmonic generation

The foundation for HHG was lain long before its inception with the 1960 invention of the

laser [3] and the subsequent discovery of nonlinear optical responses [6]. The first actual

HHG came in 1977, and used a high power CO2 laser to generate harmonics from planar

aluminium targets, although this level of laser intensity was not widely available until

the invention of chirped pulse amplification (CPA) [31] and the Ti:Sapphire laser [5] in

1985 and 1986, respectively. With this new availability of high intensity laser sources,

HHG was shown in gases a year later [11], and the development of HHG began.

Most early progress on HHG was experimental due to the difficulty of simulating and

predicting the HHG spectrum given the lack of computing power at the time, however

early attempts at explicit simulation [32] provided invaluable single-atom spectra and

gave a first prediction of the cutoff harmonic frequency. Subsequent attempts at simula-

tion [33] [34] [35] adopted a semi-classical approach which allowed for rapid simulation

and gave rise to many theoretical predictions, particularly the cutoff law (eq 2.11) which

allowed for rapid development of HHG sources.

The first use of a capillary waveguide in HHG came in 1998 [12] in an attempt to achieve

longer laser-gas interaction lengths. Early theoretical development of the capillary HHG

source came in 1999 with the first analysis of the nontrivial, but highly beneficial, phase-

matching benefits of the capillary waveguide [36], using the capillary waveguiding theory
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of [37]. This also gave rise to subsequent optimisation of capillary HHG sources in [38],

providing a general set of capillary and parameters for effective HHG in capillaries.

Full simulation of capillary based HHG became viable with the publishing of nonlinear

pulse propagation equations [39] for the pump pulses used, allowing for the development

of better simulations [40] and standardised models of pump pulse propagation and semi-

classical HHG [41] [17]. These improved and standardised models gave rise to studies

of phase matching and pump pulse growth [42] [13] [2] which provided the capillary

optimisations which are used today.

1.4 Project aims

The primary aim of this project is to provide a framework for predicting harmonic

spectra based on initial system conditions in as time-efficient manner as possible, with

the ultimate intention of optimizing the input pulse energy and the gas pressure to

provide as bright harmonics in the 20-35 nm range as possible, while simultaneously using

these findings and to learn more about the structure and processes in the pump pulse

propagation and subsequent HHG, such as the combined phase-matching conditions

produced by the non-trivial nonlinear interactions between gas, laser, and plasma.

1.5 Experimental Setup

The system being modelled in this thesis is the optimized capillary-based HHG system

developed within the group, [2] [42] and [13], as seen in figure 1.1. This setup has been

somewhat optimized in terms of length and much analysis has been done on it, making

it an ideal baseline for further analysis and optimization. The dimensions of the system

are as follows:

Gas

Ti:Sapph

pump laser:

1kHz, 40fs

Pump laser
Harmonics 

Diagnostics

Gas-filled capillary

Figure 1.1: Schematic diagram of the experimental setup.

A 7 cm long, 75 µm radius, fused silica capillary, with gas holes drilled 3 and 5 mm

from the front and back of the capillary waveguide, respectively. The capillary itself is

filled with argon by pumping the region around the capillary midsection to the desired

pressure. The region either end of the capillary is pumped down to high vacuum to

stop the heavy absorption of any generated XUV by the neutral air and attenuation and

nonlinear defocusing of the pump beam by ionized air near the focus.
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The pump laser is a Ti:Sapphire system with a 1kHz repetition rate and an 800nm

central wavelength. The pulse shape is Gaussian to a good approximation with approx-

imately 40fs full-width-half-maximum (FWHM). This beam is focused by a 600 mm

focus lens into a 48 µm focus at the capillary entrance, which optimises coupling into

the fundamental capillary mode.

In this thesis, pulse energy, U , and gas pressure, p, as the most easily-variable system

parameters, are left variable to allow investigation of their effect on pump pulse and

subsequently HHG behaviour. To this end, they are assigned ranges which straddle

the divide between the linear-dominated and nonlinear-dominated behaviour domains.

Pulse energy is varied over the range U ∈ [0.5, 1.2] mJ, while pressure is varied over the

range p ∈ [50, 140] mbar, with (U, p) = (0.5, 50) corresponding to mostly linear pump

pulse propagation, and (U, p) = (1.2, 140) corresponding to nonlinearity/plasma driven

propagation.

The “average case” propagation is the case where both linear and nonlinear effects are

important, resulting in particularly interesting temporal behaviour. The pulse energy

and gas pressure used to display this behaviour are taken from previous studies and

experimental work, such as [2] and [13]. These energy and pressure values, U = 0.8 mJ

and p = 100 mbar, are hereby referred to as “standard parameters”, along with the fixed

physical system attributes previously mentioned.

1.6 Thesis summary

As the preceeding chapter explains, there is a great need for a system such a capillary-

based HHG for a variety of applications and there is still great scope for optimization

of such a system. The following chapter will address the theory of HHG in capillaries

and provide physical insight into the difficulties and advantages of HHG while provid-

ing a broad and thorough theoretical base for understanding the work of this project.

Chapter 3 will address more specific problems with optimization of capillary-based HHG

systems and present the primary approach and methods used in this thesis and provide

justification for much of the methodology employed. Chapter 4 will present the main

results of the thesis and anaylse the effectiveness of the statistical model presented. Con-

clusions about the efficacy of the project will then be drawn and proposals for future

investigation presented.



Chapter 2

Theory of HHG in Capillaries

High harmonic generation in capillaries is difficult to explicitly simulate; since HHG

operates on a single atom basis, the HHG spectrum generated from each atom, its effect

on the pump pulse, and the effects of the forward and backward propagating XUV

on every atom should, in principle, be calculated for each atom of gas in the capillary.

Luckily there are a few approximations which can reduce this into a set of discrete steps:

� The pump laser is assumed to be very intense, which means that HHG effects

on its propagation are negligible and hence the pump pulse propagation can be

considered independently and requires only knowledge of the capillary dispersion

and gas nonlinearities.

� The system is assumed to be circularly symmetric. This removes a large proportion

of the complexity from the system and allows the propagation and generation to

be considered in 1D with simplified waveguide dispersion and severely reduced

number of calculations required for a 2D capillary output.

With these approximations in place, the pump pulse propagation and subsequent HHG

are modelled in three distinct stages. First is pump pulse propagation which calculates

the effect of the capillary waveguide and enclosed gas on the pump pulse as it propagates,

taking into account the capillary dispersion and gas nonlinearities. This step produces

the electric field of the pulse and associated generated ionisation profile at every spatial

point and time along the capillary.

Next the HHG process, based on the already-calculated pump pulse and ions, is simu-

lated and the generated harmonics at each point in the capillary are calculated. Finally,

these harmonics are then propagated to the end of the capillary, being shaped by the

absorption of the gas and the phase of the generated spectra, predicting the cumulative

harmonic output of the capillary.

7
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2.1 Pulse propagation

Figure 2.1: Flow chart showing the processes that form the basis of a nonlinear
pump pulse propagation through a gas-filled capillary.

As a pulse propagates through a gas-filled capillary, there are several physical effects

which shape its evolution. The largest effects come from the capillary dispersion, the

gas nonlinearities, and the dispersion and absorption from any generated plasma. These

shape the pulse and lead to many interesting features which aid effective HHG. The

major steps involved in simulating pump pulse propagation are shown in figure 2.1 and

the steps explained in the following sections.

2.1.1 Waveguide modes

Transverse waveguide modes are a linear basis of stable 2D electric field patterns found

in waveguides which can propagate in the guiding direction, each with a different prop-

agation velocity.

In capillary waveguides, there are an infinite number of possible modes, of which a

limited number (usually the lowest order modes) are excited. The number of possible

excited modes can also be narrowed in this case; since the pump beam is assumed to

be linearly polarized and coupled into the capillary on-axis, symmetry requires that

only the circularly-symmetric linearly polarized modes, {LP0,m}, can be excited. For

simplicity, they are labelled {Fm(r)} and their form is given by [37]:

Fm(r) = J0(u0mr/R)/Nm

Here J0(x) is the zeroth-order Bessel function of the first kind and u0m is its mth root.

R is the capillary radius and Nm is the normalization for the mth mode.

The modes contain a variable proportion of the pump pulse over the course of the

pulse duration, which also varies over the course of the propagation. To describe this

variation, functions describing the amount of pump field coupled into each mode, the

mode envelope functions, {Am(z, t)} (or in the frequency domain, {Ãm(z, ω)}) can be

constructed. The full pump pulse can then be described by the superposition of modes

and their envelope functions, as shown in equation 2.1, taken from [2]:
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E(r, z, t) =
1

2

∑
m

∫
dωFm(r)eiβm(ω)zÃm(z, ω)e−iωt + c.c. (2.1)

Here βm(ω) is the propagation constant for the mth mode and c.c. denotes the complex

conjugate of the preceding expression. As this equation shows, the only components

which are z-dependent are the mode evolution operator eiβm(ω)z, and the mode envelope

functions {Ãm(z, ω)}; although because eiβm(ω)z has such a trivial dependence on z, the

evolution of the coupled pump pulse can be described purely in terms of the evolution

of the mode envelope functions, {Ãm(z, ω)}. At launch, the coupling into each mode is

calculated by the mode overlap between the incoming pump and the capillary modes:

ξm =
∫
Fm(r)Ep(r)rdr, where Ep(r) is the radial profile of the incoming pump beam.

Thus,

Am(z = 0, t) =
ξm
Ξ

√
P0 exp[−1

2
(t/T0)2] (2.2)

Here T0 = 2
√

log(2)TFWHM is the pulse width, P0 = Upulse/(T0
√
π) is the pulse peak

intensity and Upulse is the pulse energy. Ξ =
√∑

m ξ
2
m is a normalization factor for the

coupling coefficients.

For simplicity, the field is assumed in the following to couple directly into the lowest order

mode, F1(r), with 100% efficiency, resulting in initial single mode behaviour, although

in reality a small proportion of the field couples into higher order modes for all possible

Gaussian beam inputs.

2.1.2 Capillary dispersion

Capillary dispersion is a defining feature of this approach to HHG. It not only keeps the

beam collimated while propagating through the gas, but also aids in self-compression

of the pump pulse, which allows for more intense pulses and hence higher harmonics.

The dispersion also allows the capillary to support a very large number of modes at

near-infrared (NIR) frequencies. These, combined with the nonlinearities discussed in

section 2.1.3 allow mode overlaps and the various mode propagation rates to generate

isolated ultrashort pulses within the pump pulse which act as isolated HHG centres,

generating large amounts of XUV radiation in short bursts.

The effect of the capillary dispersion on the propagating pulse over a distance δz for

each mode, for each frequency, is given by Ãm(z + δz, ω) = exp[i ˆ̃Dδz]Ãm(z, ω), where
ˆ̃D is the dispersion operator which describes the propagation constants for each mode,

as given by [37]:
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ˆ̃D =
ω

c

{
1− 0.5

[unmc
ωR

]2
[
1− 2ing(ω)c

ωR

]}
(2.3)

where R is the capillary radius, unm is the mth root of Jn−1(unm) = 0, and ng(ω) is the

refractive index profile of the capillary glass.

2.1.3 Gas nonlinearities

Outside of harmonic generation, the gas used in the capillary has a great effect on

the propagation of the pump pulse. The effects, along with the capillary dispersion,

provide the primary mechanisms for pulse shaping though mode coupling and nonlinear

propagation rates. The first gas effect comes in the form of the nonlinear response of

the neutral gas, given by [2]:

N̂{Am(z, t)} = in2
ω0

c

[
1 +

i

ω0

∂

∂t

]∑
jkl

SmjklAj(z, t)Ak(z, t)A
∗
l (z, t) (2.4)

where n2 is the nonlinear refractive index of the gas, ω0 is the central laser frequency, c

is the speed of light, and Smjkl =
∫
dxdyFmFjFkFl are the set of mode overlap integrals.

With sufficient gas pressure, this response has significant influence on the mode coupling

and self-steepening that drives the generation of intense isolated peaks within the pump

pulse, although at the pressures and intensities being considered in this thesis, this effect

is dwarfed by the other gas effects.

In the high intensity (∼ PW/cm2), low pressure (∼ 100 mbar) regime being investigated,

the significant levels of plasma generated by the pump pulse (see section 2.2.1) result

in another major source of mode coupling and self-steepening. This arises from the

dispersive effect of the generated free electrons and their collectively highly dispersive

and nonlinear electric fields, and is given by [2]:

P̂{Am(z, t)} = − iω0

2c

[
1− i

ω0

∂

∂t

] ∫
dxdy F ∗mE(x, t)

ω2
pl(x, t)

ω2
0

(2.5)

where ωpl is the plasma frequency (the mean frequency for oscillations in electron density

in a generated plasma), {F ∗m} is the set of normalised mode functions for the capillary

and E(x, t) is the spatially, temporally, resolved electric field of the pulse (eq 2.1).

The other nonlinear effect of the generated plasma is absorption arising from the plasma

dynamics, which, again, due to its nonuniform strength, provides significant mode cou-

pling and aids in pulse shaping, especially in the high pulse energy/high pressure regime.

It is given by [2]:
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P̂L{Am(z, t)} = −1

2

∫
dxdy F ∗mE(x, t)

∑
q ρq(x, t)Wq(x, t)Uq

|E(x, t)|2
(2.6)

here Wq is the ionization rate for atoms in the qth ionization state (q ∈ N0), with ion

densities ρq, and ionization energies Uq.

Between them, these nonlinearities drive the nontrivial pump pulse propagation which

gives the high intensities and particularly high harmonics that are characteristic of the

capillary approach to HHG.

2.1.4 Numerical model and simulation details

The pump pulse propagation simulation, based on the work of [41], propagates the

mode-decomposed pulse field by evaluating small z-steps of size ∆z sequentially along

the propagation direction. In each step, a split-step Fourier method is used to evaluate

the dispersion in the frequency domain, while the gas nonlinearities are evaluated by a

Runge-Kutta-Fehlberg method. The latter method allows for high-order estimation of

the nonlinearities’ effects, while producing an estimate of the error involved. This error

estimate allows for adaptive step size to compensate for ∆z � 0, since the split-step

method assumes ∆z → 0; it also allows for consistent error control and allows a minimal

number of steps to be used, greatly increasing efficiency.

The algorithm follows the following basic structure for each z step:

� δz, a small portion of ∆z, is defined as a first approximation to a “sufficiently

small” step size

� the field is operated on by exp(0.5iδz ˆ̃D) (as in equation 2.3) in Fourier space to

make up half a step of dispersion’s effect, adding an order of accuracy over a full

step of dispersion.

� the field is operated on by P̂ + P̂L (equations 2.5 and 2.6), which is evaluated by

the Runge-Kutta-Fehlberg (RKF) method.

� If the error estimated by RKF is too high, the z step is repeated using a smaller

δz.

� The field is transformed back into Fourier space to apply another exp(0.5iδz ˆ̃D) as

the second half of the dispersion’s effect.

� These steps are repeated until z + ∆z is reached.

δz can be almost equal to ∆z for the early propagation because there is little nonlinearity

and hence the change in the electric field of the pulse along the propagation, ∂E
∂z , is



12 Chapter 2 Theory of HHG in Capillaries

small, allowing a whole ∆z to be sufficiently small to remain within the δz = ∆z → 0

approximation.

In later propagation, however, there are more isolated intensity spikes and generally

more nonlinear behaviour (∂E∂z becomes large). In this case δz = ∆z is far outside the

realm of δz → 0 which leads to many required steps and hence high computational cost

as δz � ∆z.

2.1.5 Pulse propagation examples
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Figure 2.2: Figure showing the initial (–) and final(- -) intensity profiles of a 0.6
mJ pulse propagated through at 7 cm capillary with 100 mbar argon.

Figures 2.2 and 2.3 show initial and propagated pulses for initial pulse energies of 0.6

and 1.2 mJ, respectively, propagating in 100 mbar argon, showing the typical evolution

of an intense pulse in the system. These plots also highlight the extent to which higher

levels of nonlinearity from the increase in pulse energy lead to extreme changes in the

trailing-edge propagation leading to a very non-trivial intensity profile.
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Figure 2.3: Figure showing the initial (–) and final(- -) intensity profiles of a 1.2
mJ pulse propagated through at 7 cm capillary with 100 mbar argon.

2.2 High-Harmonic Generation theory

Calculating the XUV radiation generated from an intense pulse propagation requires the

process be split into two main steps: ionization of the gas atoms’ outer shell electrons and

then their acceleration and recombination. These processes can be considered almost

entirely separate and in fact the level of ionization is calculated in the pulse propagation

stage of simulation and is used to calculate the plasma nonlinearities in equations 2.5

and 2.6; because the ionization processes occurring are quite different from the standard

single-photon ionization processes, they are detailed in the following section 2.2.1.

The post-ionization acceleration and recombination portions of the HHG process are

detailed in section 2.2.2, providing insight into the actual mechanics of the process.

This process, as described later, is computationally inefficient to simulate and so a

semi-classical model which approximates the underlying physics is used and descibed in

section 2.2.3.

2.2.1 Tunnel/multiphoton ionization

Ionization usually occurs when an electron bound at energy EI in an atom is excited by

a photon with energy E > EI , ejecting the electron. For a gas such as Argon, this would

require a photon of wavelength < 78 nm, which are difficult to consistently generate.

In cases where such high energy photons are not present, ionization can still occur

through absorption of multiple photons of E < EI , which can be done in two ways:



14 Chapter 2 Theory of HHG in Capillaries

Multiple photons can be absorbed simultaneously, as long as their combined energy is

greater than EI , as in figure 2.4. This is common in high-intensity pulses where there

are a lot of photons colliding with an atom at any give time. Multiphoton ionization can

also happen incrementally, with subsequent excitations putting the electron in stable

higher energy states, until eventually its energy exceeds EI . This does require a wide

spectrum containing photon energies correspending to the particular transition energies

of an atom, and a large flux to ensure that the probabilities of mass excitation are

non-negligible.

E2

E1

E = E2-E1

1/4 E

1/4 E

1/4 E

1/4 E

Figure 2.4: Energy level diagram showing the transition between bound state E1

and continuum state E2 by absorption of a photon of energy ∆E=E2−E1, and
the same transition achieved by the absorption of four photons of energy 1

4∆E,
with dashed lines denoting virtual states with energies E1 + {1

4 ,
1
2 ,

3
4}∆E. These

virtual states are simply an example and typically multiphoton ionization occurs
through absorption of photons of differing energies and total energy > ∆E

The other method of ionizing electrons with photons of energy E < EI is through tunnel

ionization, as seen in figure 2.5. In this case, an intense, fast-varying field can distort

the atomic potential. With sufficient intensity, the potential on one side of the atom

becomes sufficiently low that an electron, or at least part of its wavefunction, can tunnel

from its ground state through this potential barrier, resulting in ionization. In this

case, the electron’s wavefunction does not completely tunnel though the barrier, and

hence the electron has a finite chance of existing either in the ground or ionized state, a

chance which depends on the level of potential deformation. Because of this deformation

dependence, very intense fields are required to ensure a significant ionization rate.

Although the two ionization methods described above are somewhat different, they are

not mutually exclusive and are both part of what is fundamentally a single quantum pro-

cess, as described by Keldysh theory [43], with their relative rates given by the Keldysh

parameter γ = ω/ωt = Ip/(2Up) = |E|−1ω
√

2meIp/e, where |E| is the magnitude of the

exciting field, ω is the frequency of the pump laser, ωt is the electron tunneling frequency
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Figure 2.5: Schematic of tunnel ionization showing how deformation of the
atomic potential by the pump field allows an outer shell electron to tunnel from
its parent atom.

given by the effective potential barrier, and me, Ip, Up, and e are the electron mass, the

ionization potential, the ponderomotive energy of the pump field, and the electronic

charge, respectively. The two limiting cases of the Keldysh parameter are when one of

the two above ionization processes dominates.

When γ � 1, multiphoton absorption dominates because the potential is insufficiently

deformed to allow much of the electron wavefunction to exist outside the atom. This

is because the tunnelling time is very small compared to the photon frequency, and so

tunnel ionization must occur in a very small proportion of the optical cycle, resulting

in a low probability of tunnel ionization. Conversely, the high optical frequencies allow

many photons to be absorbed in the time taken for a single tunnel ionization.

In the other extreme, γ � 1 and so the tunnelling frequency exceeds the optical fre-

quency, allowing many tunnel ionizations in the time of a single optical cycle. This

leaves a large proportion of the electron wavefunction outside the atom in the time a

single photon, of the many required for multiphoton ionization, is absorbed.

In the intermediate case (γ ∼ 1), both multiphoton and tunnel ionization occur with

similar probabilities, although most systems tend to work at either extreme.

In the system under examination, the pump pulses used typically fulfil the γ � 1

condition and so the ionization rate for transitions from unionised to the 1+ ionization

state is given by [43]:

W (t) = κ2

√
3

π
C2
kl 22n∗ F (t)1.5−2n∗ exp

[
− 2

3F (t)

]
(2.7)

C2
kl =

22n∗−2

n∗ n∗!(n∗ − 1)!
(2.8)

Here F (t) = |E(t)|/κ3Ea is the reduced field, where E is the electric field of the pump

pulse, κ2 = I/IH is the ratio of the ionization energy, I, to the ionization energy of
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hydrogen, IH = 13.6 eV. Ea = 5.14 × 109 V cm−1 is the atomic unit of electric field

intensity. n∗ = Z/κ is the effective quantum number, with Z being the atomic number.

Figure 2.6 shows the fraction of 1+ and 2+ ions generated from a single pass of a 0.395

PW/cm2 40 fs pump pulse, illustrating how abruptly a large proportion of ions can be

generated and the typical shape of W (t) for short times. The fraction is assumed to

return to zero between pulses. As the figure shows, the level of 2+ ionization is very

low even in the most nonlinear cases and so it is ignored for the simulations performed

in this thesis. Also it must be noted that equations 2.7 and 2.8 are written with the

assumption that only the lowest energy bound electrons are ionized, which is a reasonable

assumption given that the lowest energy electron is by far the most likely to be ionized

first and, as figure 2.6 shows, the proportion of 2+ ions generated is extremely small.
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Figure 2.6: Figure showing the imaginary component of a typical pump pulse
(- -) of 0.395 PW/cm2 intensity and 40 fs length; the fraction of 1+ and 2+
ions it generates, (–) and (–), respectively; also the fraction of neutral atoms
(–) illustrating how abruptly and efficiently such a pulse can generate a large
proportion of ions.

2.2.2 HHG Theory - Quantum model

After ionization by either of the above processes occurs a portion of the electron wave-

function exists, disconnected from a parent atom, in the intense driving field. The part

of the electron wavefunction which left the atomic potential experiences nonlinear ac-

celeration from the intense, rapidly varying driving field, known as the ponderomotive

force. This force arises from the high intensity oscillations of the driving field, and when

averaged over an optical cycle is proportional to I/ω2 , where I is the field intensity, and

ω is the frequency of the field. Because of its nonlinear nature, this acceleration can

provide a lot of energy to the ionized electron. For example a PW/cm2 intensity field
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at 800 nm can provide up to ∼ 60 eV to the electron, or the equivalent of absorbing 39

photons, making the process extremely efficient compared to acceleration by absorption.

After acceleration, the ionized portion of the wavefunction’s energy increases signifi-

cantly. Assuming that the driving field is linearly polarized to a good approximation,

the ionized portion of the wavefunction recombines with its parent atom, and with the

remaining unionized, still-bound, potion of the electron’s wavefunction. The recombina-

tion of these two components of the electron wavefunction, one bound and one intense

and planar, cause fluctuations in the charge density of the wavefunction. Such charge

density fluctuations radiate as a dipole, causing photons with energy much greater than

those in the driving field, to be released. This is the basic single-atom harmonic spec-

trum.

The time-dependent Schrödinger equation (TDSE) describing the system is as follows:

i~
∂

∂t
|Φ(x, t)〉 =

[
− ~2

2me
∇2 + Vatom(x) + Vfield(x, t)

]
|Φ(x, t)〉 (2.9)

Here |Φ(x, t)〉 is the electron wavefunction, me is the electronic mass, Vfield(x, t) is the

potential of the driving field, and Vatom(x) is the atomic potential.

The atomic potential is usually taken to be of the soft coulomb form Vatom(x) = −V0[α+

x]−1, where V0 is the first ionization energy of the atom while α is a regularization

parameter which should be small, with value usually equal to the Bohr radius.

Such a process can only generate odd-numbered harmonics from centrosymmetric parti-

cles, such as atomic Argon, because the time averaged response from a symmetric atomic

potential due to a single optical cycle is zero due to symmetry considerations, whereas

in a non-centrosymmetric potential would result in a non-zero time averaged force over

an optical cycle. Over a half-cycle of excitation, however, the time-averaged force is nec-

essarily positive, resulting in generation of odd harmonics, since even harmonics require

the interaction of the centrosymmetric potential and N full optical cycles and hence no

net force.

The field is then subject to phase matching between the frequency components gener-

ated, in which only the frequency components near each harmonic are efficiently propa-

gated, due to the phase difference ∆k, between the wavevectors of the harmonic and the

fundamental frequency being near zero. The phase difference in vacuum, is given by:

∆k = kh − qk1

here kh is the wavevector of the qth harmonic, and k1 is the wavevector of the pump

laser. Given this, the HHG spectrum generated from a monochromatic pump laser will
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resemble the spectrum shown in figure 2.7 [32]; although for any pulsed pump laser, like

the one used, there will be a wide spectrum in the pump laser and hence the discreteness

of the spectrum will become less pronounced as the pump pulse spectrum widens, as seen

in the spectrum calculated from theory in figure 2.8, and its wide and noisy harmonics.

Frequency
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Figure 2.7: Schematic plot showing the typical features of a HHG spectrum
from a monochromatic source, with characteristic discrete intensity spikes at
each odd harmonic of the source wavelength, the intensity plateau region, and
the subsequent harmonic cutoff and falloff, whose position is given by equation
2.11.
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Figure 2.8: Plot of the 20-55 nm wavelength section of the HHG spectrum
generated by the interaction of a 0.1 PW/cm2, 40 fs 800 nm pulse with a single
argon atom. It shows the effect of generation from a wide pump bandwidth
in the nontrivial harmonics shapes and associated wings which come from the
large variety of pump frequencies.
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2.2.3 HHG Theory - Semi-classical model

For simulation efficiency, explicit HHG simulations over the course of this work were

done using a semi-classical approximation to the quantum model seen in the previous

section. This model, based on the work of [35], including generalizations of [44] and

[17], takes a three-step model approach to HHG where the process is broken down into

ionization, acceleration, and recombination; as seen in figure 2.9. The latter two steps

are calculated together on a single-atom basis and fully determine the generated HHG

spectrum, whereas the ionization merely provides total numbers of generating atoms,

since a strong-field approximation (SFA) ensures that ionization removes a negligible

amount of energy from the pump field, allowing pulse propagation to be considered

separately.

Figure 2.9: Figure showing the three-step model of HHG. It describes the tunnel
ionization of the electron, subsequent acceleration in the pump field and finally
recombination with its parent atom and emission of XUV. [att: MDSwo / CC
BY-SA 3.0]

This model takes the electron as a nonlinear oscillator, which allows for easy calculation

of momentum and action across the bound state to continuum transition for calculating

recombination energies. The atom itself is modelled as hydrogenlike which is usual in

the semiclassical approximation [35], with bound state to continuum state transition

dipole matrix element given by [45]:

d(p) = i
27/2(2Ip)

5/4(~ω0)7/8e

πmeω0

p

(p2/(2me) + 2Ip)3

Here pst = e
t′−t

∫ t
t′ A(t′′)dt′′ is the electron’s momentum, e it’s charge, and me it’s mass,

A(t) is the vector potential of the pump field, and Ip is the atom’s first ionization energy.

The generated dipole strength, xnl(t) = 〈Φ(x, t)|x|Φ(x, t)〉, for a single atom is then given

by [44]:
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xnl(t) = Re
[ i
~

∫ t

−∞
dt′
(

π

ε+ iω0(t− t′)/2

)3/2

d∗[pst(t
′, t) + eA(t)]d[pst(t

′, t) + eA(t′)]e−iSst(t
′,t)Ep(t

′)
]

(2.10)

Here Ep(t) is the electric field of the pump pulse, ε is a small regularization constant,

introduced to avoid poles, and Sst(t
′, t) = [(t− t′)(Ip− p2

st/(2me)) + e2

2me

∫ t
t′ A

2(t′′)dt′′]/~
is the stationary action integral. The source term for the radiation at a given point in

the propagation is then given by P̃dip(ω) = F̃ T [Natom(t)xnl(t)], where F̃ T denotes a

Fourier transform, and Natom(t) is the neutral atom density across the time window.

Calculating the dipole source terms in equation 2.10 requires integration of the electric

field and its potential over all history. In reality this can be reduced by examining the

kinetic energy gain of the electron by ponderomotive acceleration from the pump pulse.

This is given by considering the electron as a particle in a linearly polarized oscillating

field:

meẍ = eE cos(ω0t)

Here me is the electron mass again, ẍ is the acceleration of the particle, e is the electronic

charge, E is the amplitude of the pulse electric field, and ω0 is the pump field frequency.

After ionization, ẋ(t0) = x(t0) = 0 =⇒ ẋ(t) = eE
meω

(sin(ω0t)− sin(ω0t0)) =⇒

x(t) =
eE

meω2
[− cos(ω0t)− ω0t sin(ω0t0) + cos(ω0t0) + ω0t0 sin(ω0t0)]

From this, and considering that only paths which return to x = 0 generate harmonics,

the kinetic energy of any returned electron is given by:

Ekin = 2
e2E2

4meω2

[
sin(ω0t) +

cos(y)− cos(ω0t0)

ω0t− ω0t0

]2

Up = e2E2

4meω2 is the aforementioned ponderomotive energy imparted by the pump field,

and so the kinetic energy gain per unit ponderomotive energy,

Ekin/Up = 2

[
sin(ω0t) +

cos(y)− cos(ω0t0)

ω0t− ω0t0

]2

This can be optimized to find the maximum possible energy gained this way. The optimal

t0 and subsequently the optimal path for kinetic energy gain is given by the solution to

the following:
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0 =
sin(ω0t0)

ω0t− ω0t0
− cos(ω0t0)

(ω0t− ω0t0)2
+[cos(ω0t)−

sin(ω0t)

ω0t− ω0t0
+

cos(ω0t0)

(ω0t− ω0t0)2
]
(ω0t− ω0t0) cos(ω0t0)

sin(ω0t)− sin(ω0t0)

This equation is solved for ωt0 = 17.956◦, resulting in a kinetic energy gain per unit

ponderomotive energy of 3.17, as shown by figure 2.10.
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Figure 2.10: Plot of the kinetic energy gain of a free electron as a function of
time of flight in the semi classical model of electron acceleration by the pulse
field for the optimal ejection phase angle ωt0 = 17.956◦. Note that the peak
kinetic energy gain is 3.1731Up, indicating the maximum kinetic energy that an
electron can gain from ponderomotive acceleration before recombination.

As seen in figure 2.10, by 2 optical cycles, the maximum kinetic energy has long been

gained by the electron. To this end, only the first 3 optical cycles will be considered when

calculating xn(t), since dipole strengths calculated over four or five cycles contribute

negligible extra energy. The maximum kinetic energy gain of the electron of 3.17Up

allows for calculation of the highest energy harmonic photons that could be produced:

Nh .

[
IP + 3.17

e2I

2cε0meω2
0

]
/~ω0 (2.11)

Here Nh is the maximum possible harmonic, IP is the first ionization energy of the gas

being used, It should be noted that the derivation for this expression assumes Up � Ip,

and so this expression is a bad approximation for Up ≈ Ip or pump intensity Imax <

83.2 TW/cm2 for 800nm pump, and so this approximation should only be used when

expecting harmonics of >20.
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2.2.4 XUV propagation

Despite propagating through the same system, the pump pulse and generated XUV have

very different propagation properties. For example, because the XUV has frequencies

far greater than the plasma frequency, the plasma-induced effects are very minimal on

the XUV and can be ignored. Similarly with the neutral gas nonlinearity and dispersion;

since the wavelengths of the XUV are many orders smaller than the capillary radius, the

effects of the capillary and the mode structure become negligible. The one thing that

does have a significant effect on the XUV propagation is the absorption of the neutral

gas. Since the pump wavelengths are well above the K-absorption edge of argon (∼ 78

nm), the linear absorption from the neutral argon is negligible; but in the XUV region

there are very severe regions of absorption, as seen in figure 2.11, which have a very large

effect on the cumulative XUV pulse. As the XUV from each single-atom propagate, they

combine to form a full HHG spectrum.
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Figure 2.11: Plot of the transmission spectrum of 1mm of Ar at 100mbar.
Note the high transmission around 30nm, which is key in harmonic spectrum
shaping. This spectrum is generated by various atomic models by CXRO [http:
//henke.lbl.gov/optical_constants/]

Combining the effects of phase matching and the gas absorption, as well as radial move-

ment, the harmonics’ cumulative field behaves according to the following differential

equation[17]:

∇2
⊥Ẽh(ω) +

2iω

c

∂Ẽh(ω)

∂z
+
iω

c
α̃(ω)Ẽh(ω) = − ω2

ε0c2
F̃ T [Natom(t, z)xnl(t, z)] (2.12)

http://henke.lbl.gov/optical_constants/
http://henke.lbl.gov/optical_constants/
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here Ẽh(ω) is the harmonic spectrum, α̃(ω) is the argon absorption spectrum as seen

in figure 2.11, Natom(t, z) is the density of neutral atoms across the temporal window,

xnl(t, z) is the set of dipole strengths generated across the pulse, as calculated in section

2.2.3, and F̃ T [Natomxnl] denotes a Fourier transform of Natomxnl from t to ω space.

Since every atom at a given time can be thought of as a point source emitting in the

+z direction and the Rayleigh length of the XUV is much longer than the capillary

length, ∇2
⊥Ẽh(ω) can be considered zero, which leaves the harmonic propagation as an

integration over z:

Ẽh(ω, z) ≈ e−
α̃(ω)z

2

∫ z

0
e
α̃(ω)z′

2 F̃ T [Natom(t, z′)xnl(t, z
′)]dz′ (2.13)

The XUV propagation is hence reduced to a series of planes, perpendicular to the prop-

agation direction, which accumulate linearly along the propagation.

2.3 Theory Summary

In the preceeding pages we have introduced a theoretical basis for the system decribed

in section 1.5, covering everything from capillary waveguides and XUV propagation to

the physics of HHG and the numerical details of simulations. This theory will be key

in understanding the methods employed in future chapters and will provide comparison

and physical insight into the results of the novel simulation method detailed in chapter

3, as well as providing the theoretical tools for one to recreate the work found herin.





Chapter 3

Statistical analysis of nonlinear

infrared pulse propagation

In this chapter we justify and introduce the novel methods used in the titular statistical

description of HHG. These include the algorithms used to subdivide propagating pulses

and the methods used to collect and characterise information taken from subdivided

pulses. It also introduces many key concepts such as fast and slow fluctuations and their

models and statistics, and paves the way for a statistically derived approximation to

HHG spectra in chapter 4.

3.1 Features of pump pulse propagation and the need for

statistics

As seen in section 2.1.5 and illustrated in figure 3.1, pump pulse propagation is very

nontrivial; effects such as the capillary dispersion and nonlinear response of the generated

plasma lead to very spiky, complicated behaviour in the pulse’s trailing edge. This

nontrivial behaviour is dealt with in the simulation by the use of a high resolution

temporal grid and very frequent evaluation along the z axis. Although this does allow

for high precision evaluation of the pump pulse propagation, it results in extremely long

simulation times when calculating the XUV generated from the pulse, which limits the

pace of theoretical research.

The nontrivial pulse shape and the fast-varying nature of the pump pulse structure mean

that a low-order approximation to the behaviour is insufficient, and sufficiently high-

order approximations become inefficient. It must be noted, however, that in a nonlinear

optical process such as HHG, pulse peaks have a significantly greater effect than any

low intensity regions, and so the behaviour of the pulse, for the purpose of predicting

generated XUV through HHG, can be considered as the behaviour of the peaks of that

25
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Figure 3.1: Plot showing the intensity profile of a 0.8mJ, 100mbar propagating
pulse at launch, 25mm propagation and 50mm propagation. This highlights the
pulse breakup and its heavy effect in the pulse’s trailing edge.

pulse, since they generate the vast majority of the XUV. It must also be noted that,

although important for a single-atom, instantaneously generated spectrum, each of the

many peaks in the pulse’s trailing edge contains little individual energy, and hence the

contribution from each individual peak should be small. There are also enough of these

small peaks over the course of a propagation to start considering them as a statistically

significant number and distribution of peaks, under the law of large numbers. In this

way, the peaks of the propagating pulse can be considered a statistical ensemble, and in

accordance with the law of large numbers, the mean HHG spectrum generated from this

ensemble should approximate the cumulative HHG spectrum generated by the actual

propagating pulse.

This approach should allow calculation of the HHG spectrum generated from a prop-

agating pulse without having to calculate the spectrum generated from each part of

the propagating pump pulse at each instant by calculating the average HHG spectrum

generated by the ensemble of peaks in the propagating pulse. This should provide an

enormous speed advantage over explicit simulation of the HHG process, given that the

statistical ensemble of pump pulse peaks is easily calculable and precalculated HHG

spectra can be used to describe the spectrum generated from each peak since they have

limited intensity and width ranges. The spectrum generated from such statistical analy-

sis should be accurate provided that the system is sufficiently nonlinear and hence there

are significantly enough fast-varying peaks with enough width and intensity variance

within the pump pulse to fulfil the statistical significance condition of the law of large

numbers.

This idea of using statistics to analyse highly nonlinear behaviour is both novel and

potentially extremely useful in the active field of highly nonlinear systems. The specific

methods employed in this analysis should be widely applicable to other highly nonlinear

systems and even if not directly applicable, the ideas from this approach provide a

framework for applying such an approach to other systems. The methods used are
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documented over the remainder of this chapter and the results from these methods are

analysed and compared to explicitly simulated data in the following chapter.

3.2 Pulse deconstruction and subpulse identification

Given that a propagated pulse usually contains multiple sharp intensity peaks separated

by very low intensity troughs, and that intensity has a nonlinear effect on generated

harmonics, these low intensity troughs should produce negligible XUV, and so they can

be effectively ignored.

With the troughs in between intensity peaks ignored, the peaks resemble a discrete train

of pseudo-Gaussian pulses which generate XUV independently, known as subpulses.

Figure 3.2 shows a typical propagated pulse which has been subdivided into a number

of subpulses, which are ordered by their peak intensity.
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Figure 3.2: Plot of a cropped pulse intensity profile, with the subpulse as-
signments shown by the shaded areas of decreasing brightness and assignment
numbers. The profile is taken from partway along a propagation at ”standard
parameters”, including some coupling into the LP0,2 and subsequent modes at
launch; and chosen for illustrative purposes.

The pulse deconstruction algorithm for each z position is as follows:

� First the highest peak in the intensity-time profile, is selected and denoted as I1(z),

and the nearest half-intensity points either side are found. The temporal distance

between these two points is designated as the full width half maximum (FWHM),

T1(z) of the subpulse.

� The nearest intensity minima outside the FWHM range are then found and desig-

nated the edges of the subpulse. The temporal space between these edges is then

designated as the subpulse, as shown by the shaded areas in figure 3.2.
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� This is then repeated for every intensity peak over 10 TW/cm2 to give a set of peak

intensities, {In(z)}, and FWHMs, {Tn(z)}, describing the intensities and widths

of all n subpulses at a given z.

This algorithm is then repeated for every propagation step, producing 2m functions of

In(z) and Tn(z), where m is the maximum number of subpulses found in a pulse at any

point along the propagation. These functions describe the intensity and width evolution

of the nth most intense subpulse over the pulse’s propagation, which produces behaviour

similar to that seen in figure 3.3.
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Figure 3.3: Plot of the intensity and width of the primary subpulse at “stan-
dard parameters” (see section 1.5), with low-order fits denoting the “average”
behaviour over the propagation.

As figure 3.3 shows, the intensity and width of the most intense subpulse vary quite

sporadically and quickly, although there are definite long-distance trends. These long

distance trends or “slow fluctuations” can be extracted from the propagation to provide

a map of the purely short distance, or “fast fluctuations” . The low-order black curves

describe these slow fluctuations; they are calculated using a general least-squares fitting

algorithm. The functions describing the curves were chosen carefully to provide agree-

ment with the expected long distance behaviour while being of as low order as possible.

To this end, the slow fluctuations for a given subpulse are approximated by:

În(z) = anz
2 + bnz + cn (3.1)

T̂n(z) = exp (fnz
2 + gnz + hn) (3.2)
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here an, bn, cn, fn, gn, and hn are fitting constants for the nth subpulse.

3.3 Fast fluctuations

With the slow fluctuations, În(z) and T̂n(z), calculated for each subpulse, the rest of

the subpulse dynamics, the fast fluctuations can be exposed and analysed. The slow

fluctuations are removed by taking In(z)/În(z) and Tn(z)/T̂n(z), which should normalise

the behaviour of In and Tn over the propagation, allowing intensities and widths from

different parts of the propagation to be compared on an equal footing. For reasons that

are made clear in section 3.7, the fast fluctuations are taken as the cubic root of the

previously mentioned ratios:

Ĩn(z) =
3

√
In(z)/În(z) (3.3)

T̃n(z) =
3

√
Tn(z)/T̂n(z) (3.4)
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Figure 3.4: Plots of the rescaled intensity and width for the primary subpulse
as it propagates at “standard parameters” (0.8 mJ, 100 mbar). Note that the
fluctuations are now centred round unity and appear consistent over the prop-
agation.

As figure 3.4 shows, the fast fluctuations are well normalised to an average of unity by

the removal of the slow fluctuations, which illustrates these values as fluctuations about

another behaviour, similarly to other systems which have behaviours on very different

time and distance scales.
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3.4 Subpulse counting and intensity/width counting algo-

rithms and evolution

As previously mentioned, as the pump pulse propagates, it breaks up, forming a number

of subpulses out of the original Gaussian intensity profile. With a variable number of

subpulses, there are potential issues with using a ubiquitous pair of functional forms to

describe the intensity and width evolution of every subpulse. To this end, the number of

subpulses at each propagation step are counted to form a function nsub(z). This function

varies heavily with system parameters such as pulse energy and gas pressure, and so,

again, a fit is taken to average out such variance.

Since the number of subpulses is always one at z = 0, and appears to grow quadrati-

cally for short propagations, a quadratic fit was used, but since the number in the late

propagation seems to grow linearly and/or saturate, a cubic term was added to allow for

maximum flexibility while keeping the fit order low. The linear term was also found to

be very small for most parameter regions, and so was ignored. The chosen fit function

is then given by:

nsub(z) = νz3 + τz2 + 1

here τ describes the rate of growth in the early-mid propagation, while ν describes the

late-propagation growth, and indirectly indicates the level of saturation of subpulses

within the pulse in the late propagation.
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Figure 3.5: Plot of the number of subpulses in the pump pulse as it propagates,
showing how the number and variance grow over the course of the propagation,
with cubic fit to show its averaging effect.

Naturally the number of subpulses is integer and so the number over the propagation

is heavily stepped; this makes a smooth fit even more useful because it averages out

the rapid and nonlinear changes in the position at which a given subpulse appears,

allowing for smooth “averages” as seen in figures 3.6 and 3.7. These plots also show

the stark difference that the pump pulse energy, and hence level of nonlinearity, makes

to the pulse breakup, with more than four times the number of subpulses found in the

propagated pulse at 1.2 mJ compared to 0.6 mJ and significantly faster growth in the

early propagation which is unsurprising given that all nonlinear effects are expected to be

significantly stronger in the 1.2 mJ case than at 0.6 mJ and hence the severely increased

mode coupling and ionization leads to the increased pulse breakup. Another interesting

feature of figure 3.7 is the plateau at ∼60 mm propagation; although the actual number

of subpulses does not saturate to this degree, it is symptomatic of a small amount of

subpulse saturation within the pulse slowing the growth in subpulse number.
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Figure 3.6: Plot showing the expected subpulse number evolution at low energy
and low pressure (0.6 mJ, 70 mbar). Note the slow and eventually linear growth
in subpulse number.
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Figure 3.7: Plot showing the expected subpulse number evolution at high en-
ergy and high pressure (1.2 mJ, 130 mbar). Note the quick growth in subpulse
number in the early propagation and plateau at 65-70mm propagation.

3.5 Coefficient mapping

Part of the motivation for this project is fast and efficient pump pulse and harmonic

spectrum prediction. To this end, the parameters of fits, such as the nsub(z), În(z) and

T̂n(z) can be mapped to surfaces which predict their behaviours for any given (U, p)

(pulse energy, gas pressure) to save time recalculating the parameters for every change

to the setup. To this end, pump pulse simulations were run with random (U, p), keeping

within U ∈ [0.5, 1.2] mJ and p ∈ [50, 140] mbar, and setting a minimum distance between

points. At the end of each simulation, the coefficients from the fits for În(z), T̂n(z) and

nsub(z) were collected. These coefficient values, when plotted in (U, p) space, form
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surfaces describing each parameter as a function of pulse energy and pressure. Fitting

surfaces to these data then produces analytic approximations to each coefficient, which

can then be combined with the fitted approximations for the other coefficients to produce

analytic approximations for the intensity, width and number of subpulses as follows:

În(z;U, p) = an(U, p)z2 + bn(U, p)z + cn(U, p) (3.5)

T̂n(z;U, p) = exp (fn(U, p)z2 + gn(U, p)z + hn(U, p)) (3.6)

nsub(z;U, p) = ν(U, p)z3 + τ(U, p)z2 + 1 (3.7)

The surfaces fitted to the coefficient values are Nth order truncated 2D Taylor se-

ries, expanded around the previously discussed “standard parameters” (section 1.5)

(U0, p0) = (0.8 mJ, 100 mbar). They have the form:

fN (U, p) ≈
N+1∑
i=1

i∑
j=1

ci,j(U − U0)i−j(p− p0)j−1 (3.8)

Here {ci,j} are the set of fitting parameters describing the surface, which are tabulated

in appendix A. The surface is fitted by minimizing the residual sum of squares,
∑

k[Dk−
f(Uk, pk)]

2, where Dk is the k-th data point, and (Uk, pk) are its corresponding pulse

energy and gas pressure. This leads to the system of (N + 1)(N + 2)/2 equations which

can be solved analytically by the MATLAB symbolic computing toolbox to give the set

of coefficients {ci,j}:

∑
k

[
Dk(Uk − U0)i−j(pk − p0)j−1

]
=
∑
k

[
fN (Uk, pk)(Uk − U0)i−j(pk − p0)j−1

]
(3.9)

With these coefficients stored, in theory, În(z;U, p), T̂n(z;U, p) and nsub(z;U, p) can be

quickly and efficiently calculated for any pulse energy or gas pressure within range. The

surfaces describing nsub(z;U, p) using the aforementioned scheme are shown in figures

3.8 and 3.9.

These surfaces were calculated to 4th order with 15 coefficients apiece, the values of these

coefficients are found in appendix A. Similar surfaces and coefficient tableaux were also

calculated to the same order for the 15 coefficients of the Î1(z;U, p) and T̂1(z;U, p)

fitting constants, with the objective of doing the same for all other quantities required

for construction of statistical spectra, hence removing the need to perform any pump

pulse propagation simulations. However, this approach, despite decreasing statistical
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Figure 3.8: Fitted behaviour of the fitting constant a (from the fit nsub(z) ≈
az3+bz2+1) over an area in energy-pressure space. Note that behaviour changes
are primarily driven by the gas pressure unlike most other effects in the system
which are driven by the pulse energy.
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Figure 3.9: Fitted behaviour of the fitting constant b (from the fit nsub(z) ≈
az3 + bz2 + 1) over an area in energy-pressure space. Note the similarity in
behaviour with the fitting constant a.

spectrum calculation time significantly, does not account for the high sensitivity of the

pump pulse propagation on initial conditions.



Chapter 3 Statistical analysis of nonlinear infrared pulse propagation 35

3.6 Peak intensity mapping

As equation 2.11 shows, the maximum efficiently generated harmonic is a function of

the peak intensity of the pump pulse. Mapping the peak intensity of the pump pulse

in a similar way to section 3.5 should provide a map which indicates where the highest

harmonics will be generated. As seen in figure 3.10, this peak intensity is usually found at

∼ 33 mm propagation for the 75 µm radius, 7 cm long capillary. This peak comes about

due to beating of the LP01 and LP02 modes, and so high intensity at this peak relies on

heavy coupling into LP02 after the initial launch, which couples almost exclusively into

LP01. Such energy transfer between modes, at the gas pressures used, requires significant

ionization, and hence significant intensity, to generate enough plasma response to couple

energy from LP01 to LP02, resulting in both a large ionization fraction and plenty of

energy in both LP01 to LP02 to allow strong beating between those modes.
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Figure 3.10: Plot of the intensity of the primary subpulse at standard parame-
ters, as seen in figure 3.3, highlighting the persistent intensity peak at ∼ 33 mm
propagation.

Mapping the intensity of this peak is, however, primarily useful as a guide to finding

parameter regimes in which high frequency harmonics will be produced, as opposed to

a definitive guide to the specific harmonic content, since the harmonics generated at the

∼ 33 mm peak have to propagate through another ∼ 37 mm of argon and the highest

harmonics might be subsequently highly attenuated; also, the harmonics generated at a

single propagation point do not have intrinsically bright harmonics relative to the off-

harmonic noise generated, so there must be some phase matching effect at a particular

harmonic wavelength to produce a bright harmonic at the end of the propagation.
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Figure 3.11: Plot of the fitted behaviour of the 33mm intensity peak height,
as shown in figure 3.3 over an area in energy-pressure space. Note the low
intensities at all low energies, and the particularly high intensity in the high
energy, low pressure regime.

Figure 3.11 shows the peak intensity of the propagating pulse for (U, p) ∈ ([0.5,1.3] mJ,

[60,140] mbar), fitted to a 2D 4th order truncated Taylor series, as in section 3.5. As

expected, low pulse energy results in universally low intensity peaks, this is because

the plasma nonlinearities which result in coupling from LP01 to higher order modes,

and hence the buildup of intensity at ∼ 33 mm, are barely excited, especially at low

pressures.

In the high pulse energy region there is significant buildup of intensity at ∼ 33 mm.

This is due to the extreme levels of ionization seen at such high initial pulse intensities

causing almost universal ionization, which produces very high levels of plasma defocusing

which allows for excitation of higher order modes, but also causes high levels of plasma

absorption, resulting in significant attenuation. This balance of plasma effects is very

prominent in the high pulse energy region of figure 3.11. Here the losses at high pressures

are not compensated for by the additional coupling into higher order modes, resulting in

lower peak intensities for such regimes. In the high energy, low pressure regime, however,

the loss of extra coupling into higher order modes is more than compensated by the

reduced attenuation by the generated plasma, resulting in very high peak intensities.

The main drawback of operating in this regime, however, is that the lack of gas pressure

results in fewer harmonic photons being generated, and although the higher pump pulse

intensities will cause higher order harmonics to be generated, the overall flux of the

harmonics will suffer as a result of fewer generating atoms.
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3.7 Statistics of fast fluctuations

As discussed in section 3.3, the fast fluctuations describe the intensity and width be-

haviour of the pump pulse’s subpulses, outside of the long-distance slow fluctuations.

Their behaviours display two properties which make them bad targets for curve fitting:

the intensities and widths change over very small distances, and also vary quite errat-

ically. With this knowledge, a statistical description seems much more apt, and given

that the fast fluctuations are normalised to unity over the propagation, fluctuations from

different regions of the propagation can be compared without weighting, allowing the

statistics of intensity and width fluctuations to be calculated over the whole propagation.

Finding a distribution for such quantities is nontrivial, although there are several re-

quirements for a suitable distribution:

� Semi-finite or finite support: There are no negative intensities or widths, and so a

distribution should reflect this and have zero probability for any negative intensities

or widths; this discounts some usual distributions like the Gaussian. There is no

theoretical limit on how intense or wide an outlier subpulse may be so a potential

distribution should reflect this and allow for such high intensities and widths even

if that probability is very small, which indicates that semi-finite support would

be prudent, although a distribution with finite support can potentially provide a

good approximation.

� Simplicity: Although almost any space or distribution can be well approximated

by an N -D truncated Taylor series, the number of coefficients required to define

the surface quickly becomes restrictive as the order of the approximation grows,

and so for particularly nontrivial spaces and distributions, such methods become

unviable. An ideal distribution is one which can approximate the statistics of the

underlying data accurately enough to recover the basic statistics while requiring

as few coefficients as possible.

� Covariance: Although the subpulse intensities and widths have been considered

seperately thusfar, and for a significant proportion of this section, energy conser-

vation indicates that in the ideal case InTn ≈ const. (the quantities are inversely

propotional to each other) and so there should be some level of covariance between

the intensities and widths (since the energy in a Gaussian pulse ∝ IT ), as shown in

figure 3.12. This assumes there is little energy transfer between subpulses, which

is the ideal case for the subpulse decomposition. Although this ideal case does

not exist, the normalized covariance between Ĩ and T̃ gives an indication of how

well the subpulse model applies, and an appropriate distribution of Ĩ and T̃ should

reflect this by including the covariance between the two parameters. This criterion

is expanded upon in section 3.8.
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Figure 3.12: (a) A scatter plot of Ĩ and T̃ for a pulse propagating with “stan-
dard” energy and pressure, including all subpulses. Note the large gaps sepa-
rating parts of the distribution at high T̃ .
(b) Histogram of the above scatter, showing more clearly the smoother dis-
tribution around (1,0.9) and the isolated probability peaks at high Ĩ and T̃ .
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As a first approximation, the covariance can be ignored to allow the use of two 1D

distributions. The first two criteria still apply, and in this vein, a gamma distribution

was chosen of the form:

γ(x, k, θ) =
xk−1e−x/θ

θkΓ(k)

here k is the shape parameter and θ is the scale parameter, both of which define the

shape of the distribution and serve as fitting constants. A third parameter, m can also

be introduced in x→ x−m which allows for shifting of the mean, resulting in increased

flexibility and hence improved fitting. With only 3 free parameters, this distribution

fulfils the simplicity criterion. The function is also only valid for x > m which also

satisfies the semi-finite support criterion, and to a good approximation, the support can

be roughly finite.
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Figure 3.13: Plots of the Ĩ1 and T̃1 histograms, with shifted gamma distribution
fits, using the data from the primary subpulse at standard parameters. Note the
similarity in shape, particularly noting the sharp cutoff at, and skew towards,
low Ĩ and T̃ , as well as the exponential tailoff towards high values.

Such curves can be easily fitted to the 1D histograms of Ĩ and T̃ , as shown in figure

3.13. These fits provide good approximations to the histogram data and recreate many

features seen in the distributions such as the sharp cutoff at low values and tailoff at

high values. There is also strong skew in both distributions, and, as figure 3.13 shows,

the γ distribution is well equipped to deal with this, although the fit is not accurate for

negatively skewed data as the γ distribution can only have positive skew. To remedy

this, the data must be flipped about the mean to produce an apparent positive skew;

after fitting, the fitted distribution can then be flipped about the mean to produce a

gamma distribution with negative skew, although since Ĩ , T̃ > 0, the fitted distribution

must satisfy γ(x→ 0)→ 0 which is usually well adhered to.
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3.8 Covariance of subpulse intensities and widths

As mentioned in section 3.7, there is a great deal of covariance between Ĩ and T̃ . It

was also noted that due to energy conservation concerns, the level of covariance between

the two quantities provides some insight into the energy conservation between subpulses

and the overall applicability of the description.

To evaluate the covariance between the intensities and widths, a normalised covariance,

the Pearson coefficient, ρ(x, y) = cov(x,y)
σxσy

, is used. This coefficient allows the covariance of

pump pulse propagations with a wide range of starting conditions to be compared on an

equal footing to find system parameter regimes where the algorithm applies particularly

well. These data are given in figure 3.14.

Figure 3.14: Plot of the Pearson correlation coefficient between the width and
intensity of the primary subpulse, for a range of pulse energies and gas pressures.
Note the high degree of negative correlation along the line (0.8,60) → (0.6,130)
and the lack of correlation at (0.6,60) and (1.2,140).

As figure 3.14 shows, there is significant correlation between Ĩ and T̃ across the pa-

rameter space, especially around the 0.8 mJ 100 mbar standard parameter region, with

Pearson coefficients approaching -0.6. The ideal case is one where ρ→ −1, so ρ = −0.6

indicates a strong level of correlation between Ĩ and T̃ . Strong correlation indicates that

there is no energy transfer between subpulses as they propagate and that they are hence

almost entirely autonomous, which is one of the basic assumptions for the approach

to pulse deconstruction. This level of correlation around the standard parameters pro-

vides strong justification for using a bivariate distribution despite the extra difficulty in

defining and fitting the distribution as opposed to two 1D distributions.
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3.9 Joint statistics of fast fluctuations

The primary problem with the 1D distributions of section 3.7 is that they do not account

for the 3rd aforementioned criterion: covariance. As previously mentioned, it is very

important that any distribution of Ĩ and T̃ contain the covariance between them; it is

also preferable to stick with a distribution which has shown many of the features desired

from an ideal distribution, such as the above 1D γ distributions. There is no simple

method of deriving a 2D equivalent of the 1D γ distributions which includes covariance,

although through some very technical mathematics, the following was derived by [46]:

PDF (x, y; k1, k2, θ1, θ2,m1,m2, ρ) =

γ1(x; k1, θ1,m1)γ2(y; k2, θ2,m2)
1√

1− ρ2
× . . .

· · · × exp

[
− 1

2(1− ρ2)

[
[ρΦ−1(F (x; k1, θ1,m1))]2− . . .

· · · − 2ρΦ−1(F (x; k1, θ1,m1))Φ−1(F (y; k2, θ2,m2))+ . . .

· · ·+ [ρΦ−1(F (y; k2, θ2,m2))]2
]]

(3.10)

F (x; k, θ,m) = 1− Γ(k, x/m)

Γ(k)

Φ−1(F (x; k, θ,m)) =
√

2 erf−1(2F (x; k, θ,m)− 1)

Here γ1(a; b, c, d) is the 1D gamma distribution of a with shape b, scale c and abscissal

offset d, Γ(a, b) is the upper incomplete gamma function of a, starting at b; Γ(a) is the

complete gamma function of a [47]; ρ is the Pearson correlation coefficient; and erf−1(a)

is the inverse error function of a.

Fitting such a function to data such as that in figure 3.12 is a nontrivial task, since a least

squares fit to such sparse data results in a lot of locally minimal solutions, the majority

of which are extremely poor fits which display few of the features of the raw data. To

circumvent this highly nontrivial global optimization problem, the distribution is fitted

by an alternate method: a statistical fitting. This fitting method works similarly to least

squares, but instead of fitting to the data the distribution’s statistics are fitted to those

of the data. This is done by generating equation 3.10 for arbitrary coefficients (ρ is set

and fixed by direct calculation) and calculating the means, 〈I〉Γ & 〈T 〉Γ, the variances,

σΓI & σΓT , and the skews, SΓI & SΓT of the distribution. These are then compared with

the equivalent quantities from the data: 〈I〉D & 〈T 〉D, σDI & σDT , and SDI & SDT . The
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statistics from both distribution and data are then compared, normalised, and summed

to form a cost function:

L =
|〈I〉D − 〈I〉Γ|2

|〈I〉D + 〈I〉Γ|2
+
|〈T 〉D − 〈T 〉Γ|2

|〈T 〉D + 〈T 〉Γ|2
+

|SDI − SΓI |2

|SDI + SΓI |2
+
|SDT − SΓT |2

|SDT + SΓT |2
+

|σDI − σΓI |2

|σDI + σΓI |2
+
|σDT − σΓT |2

|σDT + σΓT |2

This cost function is then minimized by MATLAB’s optimization toolbox functions,

giving the set of constants {k1, k2, θ1, θ2,m1,m2} which define the fitted bivariate gamma

distribution.
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Figure 3.15: The gamma distribution (κI = 7.0976, κT = 2.9801, θI =
0.0825, θT = 0.0949) corresponding to the Ĩ and T̃ data collected for the entire
subpulse ensemble at “standard parameters”. Note the peak at (1,0.996) and
the sharp cutoffs at lower Ĩ and T̃ , the strong covariance at high Ĩ and T̃ .

As figure 3.15 shows, the bivariate covariant γ distribution fits the distribution indicated

by the histogram (figure 3.12(a)) quite well, successfully encapsulating the main features

seen in the data.
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3.10 Analysis of fitting and mapping

The biggest fitting challenge in this work, and the fitting which has the biggest impact on

the subsequent calculation of HHG spectra, is the bivariate gamma distribution fitting

described in section 3.9. Good fitting, representative of the underlying data, is required

here to take into account the pump pulse behaviours, and a failure to describe the

distribution of the underlying data would reduce the reliability of the simulated HHG

spectra.
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Figure 3.16: The scatter of Ĩ and T̃ at 0.7 mJ, 90 mbar, showing the similarity
in the distributions of data and fit.

As figure 3.16 shows, the statistical fitting is both visually successful and provides a very

close match between the statistics of the data and distribution:

〈I〉 〈T 〉 σI σT SI ST

Data 1.0395 0.96493 0.19241 0.14208 0.77027 0.71706

Distribution 1.0408 0.96477 0.19241 0.14208 0.77027 0.71706

As the above table shows, the statistics of the data and bivariate γ distribution are well

matched; given that the distribution is also a visually good fit, this gives credibility to

the bivariate gamma distribution as a good representation of the distribution of Ĩ and T̃ .

Although obviously the data to which the distribution is fitted is sparse, the statistics of

the data are unlikely to be particularly different for a statistically large number of data

points, given the shape of the distribution is often well defined. Adding more points to

the propagation increases the number of (Ĩ,T̃ ) data available for fitting, although this

behaves like an interpolation, simply tracing paths between the existing points, which

has a negligible effect on the statistics.





Chapter 4

Statistical Spectra and Analysis

The final construction of the “statistical” high harmonic spectra requires the following

information:

� Precalculated single-atom spectra, calculated using the semi-classical model of

section 2.2.3, which describe the HHG spectra generated by Gaussian pulses of all

intensities and FWHMs encountered in the pump pulse propagation.

– Because typical subpulse intensity profile shapes can be well approximated

by Gaussians, an array of Gaussian pulses of different widths and intensi-

ties essentially forms an idealised set of all possible subpulses and hence the

spectra generated from such pulses form a set of all the possible HHG spec-

tra that can be generated by the subpulses in the pump pulse propagation.

These Gaussian pulses are assumed to have zero carrier-envelope-phase, since

the phase information from the pump pulse propagation has already been

discarded to limit the amount of data to a practical amount.

– For practical purposes, the range of subpulse intensities and FWHMs for

which these spectra are calculated is limited by the maximum intensities and

widths seen, although for flexibility and convenience these maxima are ex-

tended past the observed maxima. Minima are also imposed on the intensity

and FWHM considered, these are more limits imposed by the methods used,

with a minimum intensity (as described in section 3.2) where the semi-classical

model used fails and only uninteresting harmonics are generated; and a near

single-cycle pulse minimum FWHM, in which a generated spectrum depends

significantly on the carrier-envelope-phase, which is not considered. Explic-

itly, the range of intensities and FWHMs considered are hence I ∈ [0.01, 1.28]

PW/cm2 and T ∈ [3, 66.5] fs.

� The averaged slow subpulse fluctuations Îm(z) and T̂m(z) corresponding to the

averaged I(z) and T (z) (using the methods described in section 3.4) and their

45
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corresponding fast fluctuations Ĩm(z) and T̃m(z) which are calculated from the

same averaged intensity and width profiles.

– The fast and slow fluctuations derived from the averaged intensity and width

evolutions are used here because, as section 3.7 describes, the bivariate gamma

distribution is calculated from the intensity and FWHM propagation of the

ensemble of all subpulses. This means that the slow fluctuations that are

used in the statistical spectrum construction should be representative of all

subpulses.

� nsub(z) and pressure profile.

– Since Îm(z) and T̂m(z), by which Ĩm and T̃m are normalized, are calculated

from intensity and FWHM evolutions which are averaged over all subpulses,

any spectra ”generated” at a particular z must be scaled by the number of

subpulses at that point, although the fitted nsub(z) calculated in section 3.4

is used over the explicitly measured number of subpulses to average-out the

occasional artefact-subpulses which occasionally appear briefly due to pump

pulse shapes that are mishandled by the subpulse finding algorithm.

– The pressure profile has a very similar effect, since the precalculated spectra

are single-atom, the spectra ”generated” at a given z must be scaled by the

number of atoms at that point, although since the units of the intensity

profile of the statistical spectra are unknown, they are normalized to the

highest intensity seen between 20 and 35 nm wavelength, and so the pressure

in mbar, or any other unit of pressure is as good a scaling factor as the number

of atoms.

� Other required data include the bivariate gamma distribution describing the in-

tensities and FWHMs of all subpulses, as described in section 3.7.

With these data ready, the statistical spectra can be calculated using the following

algorithm. For each intensity, In, and FWHM, Tn, considered:

1. Effective Ĩ and T̃ values for an entire propagation are calculated by taking 3

√
In/Îm(z)

and 3

√
Tn/T̂m(z), which can then be used with the bivariate gamma distribution

to produce a weight function for the current (In, Tn): Wn(z).

2. W (z) is then scaled by the pressure and number of subpulses according to W (z) =

Wn(z)× nsub(z)× p(z), where p(z) is the pressure profile along z

3. The contribution to the statistical spectra from the current (In, Tn) is then given

by:

Ẽh(ω, z) =
∑
n

W (z) exp[α̃(ω)(z − zmax)/2]ωdzP dipn (ω)
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where P dipn (ω) is the precalculated HHG spectrum corresponding to (In, Tn).

When the above algorithm is repeated for each (In, Tn) combination, the statistical

spectra can be calculated in two ways: firstly the coherent spectrum, which accounts

for the phase of the harmonic spectrum, is given by Ĩcoh(ω) = |
∑

z Ẽh(ω, z)|2 and the

incoherent spectrum, which disregards the phase of the harmonic spectrum, given by:

Ĩinc(ω) =
∑

z |Ẽh(ω, z)|2.

Note that the coherent statistical spectrum can be ”hand phase matched” (phase shifted

uniformly at each z to give a certain frequency constant phase along the propagation),

along the propagation to a specific frequency, ωpm by taking:

Ĩcoh(ω) = |
∑
z

Ẽh(ω, z)e−iΦ(Ẽh(ωpm,z))|2 (4.1)

where Φ(Ẽh(ωpm, z) is the phase of the harmonic field at the phase-matched frequency

ωpm, providing a useful tool for investigating the phase matching in the generated har-

monic field, as will be discussed in section 4.3.

4.1 Computational efficiency of the statistical spectra

The process of calculating statistical spectra is markedly quicker than that of performing

full simulations, given that the limiting step is incorporation of the absorption of the

XUV. The time for an explicit semi-classical simulation given a precalculated pump

pulse propagation is ∼ 15 hours, whereas for a statistical spectrum, the simulation can

be complete in ∼ 7.5 mins (on a 3.4GHz Intel i7-3770 CPU) which is less than the ∼
8.5 min pump pulse propagation time. Assuming that the precalculated spectra are in

an easily accessible storage device, and ignoring the pump pulse propagation simulation

which both methods require, the statistical method provides a ∼ 57x speed improvement

over the explicit semi-classical simulations. The time efficiency of the first few statistical

spectra is somewhat hampered by the several days it takes to precalculate the spectra

corresponding to the Gaussian pulses of variable width and intensity, although because of

the significant difference in simulating times, the statistical method becomes significantly

more time efficient after 4 simulations, allowing for rapid mass-simulation.

4.2 Analysis of statistical and explicit spectra

The statistical spectra (figures 4.1 and 4.2) show the classic harmonic structure, as seen

in the explicit spectrum in figure 4.3; this is expected since there is no fundamental

difference in how single-atom spectra are integrated together over the course of the
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Figure 4.1: Figure showing the coherently integrated statistical spectrum in the
λ ∈ [20, 35] nm range, generated from a pump pulse at “standard parameters”
(0.8 mJ, 100 mbar). Note the sharp, distinct, harmonics and lack of noise floor.
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Figure 4.2: Figure showing the incoherently integrated statistical spectrum gen-
erated from a pump pulse at “standard parameters” (0.8 mJ, 100 mbar). Note
the high noise floor and small even harmonics.

propagation, although as section 4.3 discusses, the differences in phase matching may

lead to other differences in the spectrum structure.

The harmonic envelope is quite well predicted by the statistical spectra, with only one
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Figure 4.3: Figure showing the explicitily simulated HHG spectrum for “stan-
dard parameters”, smoothed to 1 eV resolution. It highlights the nontrivial
structure of the generated spectra and the sharp peaks, as well as the off-
harmonic components generated by the large pump pulse bandwidth.

odd harmonic difference in the peak of the envelope between the statistical and explicit

spectra. Although this envelope is partly set by the argon absorption spectrum (figure

2.11), there are some features of the spectra which indicate coherent buildup of harmon-

ics above the off-harmonic regions and argon absorption. Pure shaping by the argon

absorption spectrum would cause a sharp drop in intensity of the 29.6nm harmonic and

longer wavelengths whereas the intensity drop seen at these wavelengths in the statisti-

cal spectra is relatively gentle, indicating the presence of a wavelength-dependent build

up mechanic. Similarly, the relatively sharp intensity drop-off seen at short wavelengths

relative to the argon absorption spectrum indicates that this is shaped by a process

other than gas absorption.

In the coherently-integrated spectrum, figure 4.1, the noise is almost entirely eliminated

due to the random phases found therein averaging to zero, whereas in the incoherent

spectrum (figure 4.2), the intensities of the noise components are integrated together,

and since they are necessarily > 0, the noise floor is consistently high.

The coherently integrated spectrum shows the lack of even harmonics seen in the explic-

itly simulated spectra (those simulated directly from the pump pulse using the theory

of section 2.2.3) and expected from the theory laid out in section 2.2.2, although the

incoherently integrated spectrum, appears to show indications of even harmonics above

its noise floor, which is again due to the addition of intensities as opposed to the addition

of complex fields in the harmonic field buildup over the propagation.
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Figure 4.4: Figure showing the coherently integrated statistical spectrum gen-
erated from a pump pulse at 1.2 mJ, 100 mbar. Note the wider harmonics and
envelope shift to shorter wavelengths compared to figure 4.1
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Figure 4.5: Figure showing the incoherently integrated statistical spectrum gen-
erated from a pump pulse at 1.2 mJ, 100 mbar. Note the wider harmonics and
envelope shift to shorter wavelengths compared to figure 4.2, as well as the
suppression of the ideally disallowed even harmonics.

The statistical spectra at 1.2mJ, 100 mbar (figures 4.4 and 4.5) show a lot of the key

features seen at standard parameters. Firstly the coherent spectrum looks very similar,
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with the same basic structure and similar envelope. The most glaring difference is that

in the high energy case the harmonic envelope is shifted towards shorter wavelengths,

with those harmonics accumulating more energy due to the increased generation of short

wavelengths from the higher intensity pump pulse. This shift towards higher frequencies

is also seen when comparing the explicitly simulated spectra, figures 4.3 and 4.6, with

significantly more energy overall going into short wavelengths in the 1.2 mJ case while

still retaining the peak at 29.6nm.
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Figure 4.6: Explicitly simulated harmonic spectrum generated at 1.2mJ, 100
mbar. Note the high noise floor and poorly defined harmonics compared to figure
4.3, and the bright non-harmonic peaks generated by the broad bandwidth of
the pump pulse.

Another effect of higher pulse intensity seen in the explicit simulations is the widening of

harmonics due to an absolute increase in the intensity of frequencies far from the central

frequency, giving rise to harmonics with slightly shifted wavelengths which cumulatively

manifest themselves as wider wings on each harmonic. This effect is seen quite clearly in

the statistical spectra, with both coherently and incoherently integrated spectra showing

the widening.

4.3 “Hand phase matching” and discussion of phase match-

ing in statistical spectra

As previously mentioned, phase matching is a crucial element of harmonic build-up,

ensuring that the odd harmonic frequencies grow, while the noise in between them is

suppressed. Since this is neglected in the statistical spectra, the statistical spectra
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struggle to have their envelopes peaking at the 25th and 27th harmonics as seen in the

explicitly simulated spectra. Instead, the statistical spectra tend to peak around the

29th harmonic because this is where the argon absorption is at its minimum.
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Figure 4.7: Statistical spectra at “standard parameters”, as in figure 4.1, un-
modified (–), and hand phase matched to the 29th (–) and 27th (–) harmonics,
respectively.

Figure 4.7 shows the statistical spectrum at standard parameters (figure 4.1), except

the single-atom spectra at each propagation step are phase-shifted to either the 27th

or 29th harmonic, “hand phase-matching” that harmonic along the propagation, as

discussed in section 4. These spectra show an improvement in envelope peak position

when compared to the explicit spectrum (figure 4.2), which is expected, since the phase-

matched harmonics should grow disproportionately over the course of the propagation.

Surprisingly, however, the phase matched harmonics are not the harmonics with the

greatest intensity, although given that all the harmonics in the region are fairly well phase

matched anyway, the effect of hand phase matching seems to be heavily diminished, and

only manifest itself as a shift towards the chosen harmonic. This also indicates that

the phase matching conditions in the explicit spectra have very localised regions of good

phase matching, since the bright harmonics in the explicit spectra are disproportionately

brighter than their surroundings indicating poor phase matching in the off-peak regions.

4.4 Power/pressure scaling

A potential prediction of the statistical spectra is the scaling of the total energy in the

harmonic spectrum in the region of interest. Since experimentally this region or an
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analogous region would be transmitted more readily than other wavelengths, analysing

how the energy of the harmonics in this region scales will give an indication of how the

flux of the experimental system would vary with changing pulse energy and gas pressure.
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Figure 4.8: Normalized energy of the statistical spectra in the wavelength range
λ ∈ [20, 35] nm, for coherently (–) and incoherently (- -) integrated spectra
generated from pulse propagations with 100 mbar pressure and U ∈ [0.5, 1.15]
mJ energy. Discrete energies for explicitly simulated spectra (*) provided for
comparison. Note the similarity between the explicitly simulated data and in-
coherently integrated spectra.

Figure 4.8 shows how the energy of the 20-35 nm harmonics of the statistical spec-

tra vary with changing pulse energy, respectively. The behaviours are shown for three

cases: explicit simulation (*), coherently integrated statistical spectra (–) and incoher-

ently integrated spectra (- -), each normalised to their mean to remove arbitrary scaling

factors.

The scaling of the 20-35nm harmonic energy, as calculated by the statistical method,

with pulse energy shows correlation with the explicitly simulated spectra, although not

perfect, it does capture the overall trend, which is testament to the integrity of the Ĩ− T̃
distribution and the weighting it gives the ensemble of single-atom spectra. The incoher-

ently integrated spectrum follows the explicitly simulated energy scaling behaviour more

closely than the coherently integrated spectrum. This is because the nonlinear phase

profile of the pump pulse and subsequently highly nontrivial phase matching conditions

of the harmonics are not sufficiently compensated for by the phase matching used in the

coherently integrated spectra.

Scaling of the 20-35nm harmonic energy for constant pulse energy and variable gas

pressure does not follow the corresponding behaviour of the explicitly simulated spectra,
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because the gas pressure prescribes phase matching lengths which the statistical model

then ignores, and hence the statistical model is unable to account for the changes in

phase matching which occur with variable pressure. This means that the total harmonic

for a range of pressures is usually either under- or over- phase matched, and hence the

overall scaling trend does not fit with corresponding data generated through explicit

simulation.

4.5 Harmonic Width
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Figure 4.9: Plot showing the statistical spectra generated from a pump pulse of
0.8 mJ and 60 mbar (–), and from a pump pulse of 0.8mJ and 150 mbar (- -),
showing the widening of harmonics with increasing pressure, as seen in [1]

Figure 4.9 shows the normalized statistical spectra generated from pump pulses of 0.8 mJ

and 60 and 150 mbar, respectively. These data show that the harmonics become wider

as the pressure is increased, an effect noted experimentally in [1]. At low gas pressures

there is very little pulse breakup, and with the long 40 fs FWHM, the pump pulse

spectrum remains relatively narrow, resulting in almost exclusively XUV frequencies at

the harmonic frequencies of the carrier (800 nm). At higher pressures the increased

nonlinearity leads to increased pulse breakup and more few cycle subpulses, resulting

in a wider range of pump pulse frequencies, and given that each pump pulse frequency

produces XUV of its own harmonic frequencies, this widens the HHG spectrum around

each of the carrier (800 nm) frequency harmonics. This is a significant triumph for the

statistical spectra as the extreme frequencies often seen in the full pump pulse are not

fully considered here given that each subpulse is reduced to a simple Gaussian intensity

profile. It is, however, implausibly difficult to compare this to the spectra explicitly
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simulated through the semi-classical method, given that those spectra contain a lot of

noise and very nontrivial pule shapes and hence, as seen in figures 4.3 and 4.6, without

including the full radial pulse and post-capillary free space propagation, the intensity

spikes which usually correspond to the harmonics are poorly defined.
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Figure 4.10: Plot showing the statistical spectra generated from a pump pulse
of 1.1 mJ and 60 mbar (–), and from a pump pulse of 1.1mJ and 150 mbar (-
-), showing the widening of harmonics with increasing pressure which supports
the conclusions draw from figure 4.9

Figure 4.10 shows the normalised statistical spectra generated from pump pulses of 1.1

mJ energy and 60 and 150 mbar pressure, respectively. Although slightly less pro-

nounced, these data support the conclusions drawn from figure 4.9, showing evidence

of harmonics widening at increasing pressures although this behaviour is suppressed at

this higher pulse energy. This is because in the prior case, the difference in nonlinearity

between 60 and 150 mbar at 0.8 mJ is huge, whereas in the 1.1 mJ case, 60 mbar already

represents a significant amount of nonlinearity and hence pulse breakup. Increasing the

pressure to 150 mbar does increase the level of nonlinearity and hence pulse breakup, but

given that the pulse is significantly fractured at lower pressures, this difference is much

less noticeable and hence the resulting pump pulse spectrum widening and subsequent

harmonic widening is suppressed.

Figure 4.11 shows a widening of the harmonics with fixed gas pressure and increasing

pulse energy. This gives credence to the analysis of figure 4.9 which attributes widening

harmonics to greater nonlinearity in the pump pulse resulting in more pulse breakup and

hence a wider spectrum of pump pulse frequencies. The fixed pressure and varied pulse

energy is simply a more extreme method of increasing nonlinearity in the system and

hence it is unsurprising that widening between the 0.6 and 1.1 mJ cases is so pronounced.
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Figure 4.11: Plot showing the statistical spectra generated from a pump pulse
of 100 mbar and 0.6 mJ (–), and from a pump pulse of 100 mbar and 1.1 mJ (-
-), showing the widening of harmonics with increasing pulse energy, as seen in
[1]
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Figure 4.12: Plot showing the statistical spectra generated from a pump pulse
of 150 mbar and 0.7 mJ (–), and from a pump pulse of 150 mbar and 1.1 mJ (-
-), showing the widening of harmonics with increasing pulse energy.

Figure 4.12 shows the statistical spectra generated from pump pulses in 150 mbar with

0.7 and 1.1 mJ energy, respectively. It clearly shows the same widening of harmonics,
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although again, as seen in the comparison of figures 4.9 and 4.10, the effect is less

pronounced because the level of nonlinearirty is high in both cases and so there is a

smaller relative difference in the number of subpulses between the two.

4.6 XUV Energy Buildup
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Figure 4.13: Plot showing the energy in the cumulative statistical spectrum
at “standard parameters” for a range of different propagation lengths, for the
coherently (–) and incoherently (- -) summed spectra. Note the peak at 45mm,
coinciding with the optimum capillary length predicted by [2]

Figure 4.13 shows the energy of the coherent and incoherent statistical spectra at 0.8 mJ,

100 mbar, for a range of different propagation lengths. The behaviour of this quantity

is determined by the quantity of XUV of a given wavelength generated relative to the

absorption rate of argon for that wavelength, as given by figure 2.11. This implies that

more intense subpulses, which generate more XUV in the 20-30 nm argon ”window”, will

have a potentially positive effect on the growth of total harmonic energy, whereas low

intensity subpulses will primarily generate in the 30-78nm region, where argon absorbs

heavily, resulting in severely diminished XUV energy growth, or even potential XUV

energy loss. This is seen particularly in the 30-40mm propagation region, around where

the most intense peak of the propagation is found, as mentioned in section 3.6; here the

energy in the generated XUV pulse grows significantly faster than at any other point

in the propagation, primarily due to the large flux of 20-30 nm harmonics generated by

the primary subpulse.
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This result falls in agreement with the work of [2] and [?]3 who predict optimal XUV flux

from a 45mm length of 150 µm diameter capillary. In the aforementioned papers only

the peak pump pulse intensity is used to predict the optimal capillary length, ignoring all

other subpulses and considering only pump pulse behaviour. Here we have reproduced

the result by consideration of all subpulses and the XUV they would generate which

indicates some validity in the way that total XUV flux is considered in this method.
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Figure 4.14: Plot showing the distance, in mm, along the capillary at which the
coherently integrated spectra predict maximum XUV flux, as seen in figure 4.13
Note: for the (U, p) ∈ {(0.6714, 82.86), (0.6714, 94.2857), (0.7429, 60)}, a global
optimization method is required for bivariate distribution fitting and hence these
values are interpolated from the rest of the data.

Figure 4.14 shows the distance along the capillary at which the XUV flux is maximum,

as predicted by the coherently integrated statistical spectra. It agrees with the 45 mm

maximum for 0.8 mJ, 100 mbar, from [13] and figure 4.13, which is expected given that

this is the beat length between the LP0,1 and LP0,2 modes, and for most significant

levels of nonlinearity the LP0,2 is strongly excited. By the same logic, the low energy

propagation have extremely long build up lengths, which, given that most of their energy

is contained within the LP0,1 mode with little coupling into higher modes, resulting in

an absorption-limited build up where the only limitation is that eventually enough of

the pulse energy will be absorbed/dispersed by the gas to result in no significant XUV

generation, although this distance is clearly longer than the 70 mm capillary considered.

The shorter build up length seen predicted for 0.6 mJ 60 mbar seems to indicate that

some effect is increasing the mode coupling at that point resulting in shorter build up

distance, although this point has the lowest nonlinearity of any considered and almost

all energy in the pump pulse is in the LP0,1 mode, and so one would expect an extremely
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long build up length. The most likely explanation for this prediction is that there is so

little change in the pump pulse that there is a very sparse Ĩ and T̃ distribution and

hence the statistical method does not provide a strong prediction at this point. Overall,

however, figure 4.14 agrees with intuitive and qualitative behaviours of the system and

may serve as a useful prediction tool for future experiments.





Chapter 5

Summary

This thesis has introduced some useful and potentially important methodology for deal-

ing with capillary-based HHG and other more nonlinear applications such as filamenta-

tion. The subpulse deconstruction allows for another way of analysing such nonlinear

behaviour without relying on simple indicators such as pump pulse peak powers or total

pump pulse widths, providing a more complete view of the pump pulse propagation and

its implications for the generated XUV spectrum. Above this, the method provides a

strong framework for analysing the overall behaviour of the pump pulse, giving qual-

itative data on the level of nonlinearity present in the system and the stability of the

subpulse structure.

Following the introduction of the pump pulse deconstruction, the statistics of the sub-

pulse ensemble were introduced, and with some normalisation and rescaling allowing

analysis of the statistics of the whole subpulse ensemble, reducing the complexity and

non-triviality of the pump pulse propagation to a few simple fitting constants and al-

lowing easy comparison of different pump pulses.

Although the statistical spectra do not immediately provide the easy route to calculating

HHG spectra directly from pump pulse characteristics as originally intended, they do

not produce entirely dissimilar results and with some future inclusion of additional phase

matching could provide an accurate approximation. Even though it does not exactly

recreate the explicitly simulated spectra, the statistical spectra provide insight into the

nature of HHG in capillaries, such as the complex phase profiles generated from the

outer subpulses of the pump pulse, a region usually ignored in pump pulse analysis, and

the way in which the interplay between this phase-matched harmonic growth and the

absorption of the generating medium dictate the structure and flux of any generated

XUV.

The statistical spectra also provide some predictions which hold true when compared

to experimental and simulated data; for example, the widening of the harmonics for
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increasing levels of nonlinearity seen in section 4.4 shows that the same fundamental be-

haviours are at work in the statistical system as in experiment and providing qualitative

predictions for harmonic behaviours at different levels of nonlinearity. The statistical

spectra also provide a rough guide to the scaling of the XUV flux for varying pulse

energies although this is mostly just an implication of the strong recreation of the prop-

agating harmonic flux as seen in figure 4.13 which accurately predicts the point along

the capillary at which the generated XUV will have maximum energy, an invaluable pre-

diction for the purpose of building capillary-based HHG systems which produce optimal

flux.

The computational efficiency of the method, as discussed in section 4.1, makes the

statistical spectra particularly apt for mass simulation, particularly for large parameter

scans where using explicit semi-classical spectra could result in months of simulation

time for even small scan sizes (∼ 48 full semi-classical simulations compared to ∼ 2740

statistical simulations per month per cpu), and this huge increase in time efficiency and

ability to simulate en masse could easily compensate for the loss of spectral accuracy

seen in the statistical spectra.

Overall, the system produces many predictions and provides many insights into the

nature of capillary-based HHG, and with some further development could produce a

robust system for fast and effective estimation of generated XUV spectra for the purpose

of optimisation and XUV source development.
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Future work

6.1 Phase

The most obvious potential continuation of the work in this thesis is the addition of phase

information to the subpulse deconstruction and then to the final statistical spectrum

calculation. The simplest method of implementing this would be by recording primary

subpulse phases at the pulse deconstruction and using that phase to weight precalculated

spectra in the statistical spectrum construction. The problem then arises that even in

the semi-classical model the generated XUV depends non trivially on the phase of the

pump pulse (see equation 2.10), and so ideally separate spectra should be precalculated

for a fine grid of phases in addition to the intensity and width parameters already

being considered. Unfortunately with the current method for precalculating and storing

single-atom HHG spectra the data requirements would be huge, but it could be reduced

through a variety of data compression and decimation methods.

The final consideration for improving the phase matching model of the statistical spectra

is by considering intra-pulse subpulse interactions. This would involve including phase

information for every contributing subpulse and hence would account for most of the

phase matching-related effects seen in explicit simulations, particularly the off-harmonic

components and fine harmonic envelope shape. Such a system would require extensive

improvements in the computational efficiency of the generation, storage, and calling of

the precalculated HHG spectra.

6.2 Off-axis effects

One of the major differences between the spectra explicitly simulated in this thesis

and those observed in the lab is that those observed experimentally have smoother

spectra with more clearly defined but wider harmonics. This is because of the averaging
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that results from far-field propagation of a 3D field, and how this propagation brings

similar wavelengths together resulting in a smoothed and spatially discrete spectrum of

harmonics as opposed to the raw axial spectra seen in simulations. To include these

propagation effects, the generation can be simulated on a radial grid and the result

propagated into the far-field to simulate the travel distance to the detector inherent

in experiment. This would, of course, dramatically increase the computational load

off a single simulation, although it would improve the statistical method’s ability to

approximate experimental results.

The inclusion of off-axis effects also introduces the opportunity to consider non radially

symmetric pump pulse coupling and the excitement of non radially symmetric capillary

modes and the unique pump pulse and XUV pulse shapes which can arise from non

symmetric pulses. It would also increase the method’s ability to account for experimental

inaccuracies and effects, some of which result in unique intensity growths and hence XUV

spectra which are extremely difficult to model explicitly.



Appendix A

A.1 Coefficient Tableaux

Here are the coefficient tableaux for a and b from nsub ≈ az3+bz2+1, as well as R2(nsub)

and the pump pulse peak intensity Ipeak. Note: U0 = 0.8mJ and p0 = 100mbar.

A.1.1 a(U, p) (figure 3.8) coefficients:

a(U, p) =

5∑
i=1

i∑
j=1

ci,j(U − U0)i−j(p− p0)j−1 subpulses/mm3 (A.1)

j

5 -4.11e-5

4 -1.45e-4 -3.91e-7

3 -1.23e-4 -1.26e-6 2.21e-9

2 -1.58e-4 -2.53e-6 5.06e-9 5.02e-11

1 4.82e-4 -2.52e-6 1.04e-8 2.15e-11 -7.37e-13

ci,j 1 2 3 4 5 i

A.1.2 b(U, p) (figure 3.9) coefficients:

B(U, p) =

5∑
i=1

i∑
j=1

ci,j(U − U0)i−j(p− p0)j−1 subpulses/mm2 (A.2)
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j

5 5.13e-3

4 0.0161 4.36e-5

3 2.51e-3 1.12e-4 -2.07e-7

2 5.09e-3 1.14e-4 -5.76e-7 -2.82e-9

1 -0.0215 1.48e-4 -5.66e-7 -7.83e-10 4.03e-11

ci,j 1 2 3 4 5 i

A.1.3 R2 for nsub(z, U, p) coefficients:

R2(U, p) =

5∑
i=1

i∑
j=1

ci,j(U − U0)i−j(p− p0)j−1 (A.3)

j

5 0.941

4 0.237 5.44e-4

3 -2.13 -7.41e-3 -1.66e-5

2 5.90 0.0155 4.19e-5 1.41e-7

1 -6.05 -9.01e-3 5.80e-5 7.77e-8 -7.89e-10

ci,j 1 2 3 4 5 i

A.1.4 Pump-pulse peak intensity (figure 3.11) fit coefficients:

Ipeak(U, p) =
5∑
i=1

i∑
j=1

ci,j(U − U0)i−j(p− p0)j−1 W/cm2 (A.4)

j

5 5.25e14

4 6.56e14 -2.61e7

3 -1.55e9 -1.25e8 7.91e6

2 3.87e10 1.32e8 7.31e6 3.64e3

1 -5.59e10 3.58e8 4.14e7 1.19e5 -751

ci,j 1 2 3 4 5 i
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