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This study investigates methods to analyze Laser-induced breakdown spectroscopy (LIBS) signals generated
from water immersed deep-sea hydrothermal deposits irradiated by a long pulse (N100 ns) that are analyzed
using Artificial Neural Networks (ANNs). ANNs require large amounts of training data to be effective. For this rea-
son, we propose methods to preprocess full-field spectral signals into an appropriate form for ANNs artificially
increase the amount of training data. The ANN was trained using a dataset of signals from immersed pelletized
hydrothermal deposit samples that were preprocessed using the proposed method. The proposed method im-
proved the accuracy of identification from 82.5% to 90.1% and significantly increased the speed of learning. The
result shows that the ANN can be used to construct a generic method to identify hydrothermal deposits by
long pulse underwater LIBS signals without the need for explicit peak detection.

© 2018 Published by Elsevier B.V.
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1. Introduction

Laser-induced breakdown spectroscopy (LIBS) is a method for
chemical analysis that can determine the elemental composition of tar-
gets by analyzing the optical emission from plasmas generated by a
high-power laser pulse. LIBS has advantages that it allows for real-
time measurement without any sample preparation, and this has led
to it being widely used for in-situ geological investigation on land and
in planetary exploration [1,2]. For deep-sea exploration, long-pulse
LIBS has the unique advantage that signals can be obtained from solid
targets at high, oceanic pressures, and the technique has been applied
to in-situ geochemical surveys of deep-sea mineral deposits [3-6].
ChemiCam, a deep-sea long pulse LIBS instrument was developed by
our group in 2013, and has been deployed on numerous occasions at
depths of over 1000 m in active hydrothermal fields in the Okinawa
Trough and the Izu Bonin Arc [7,8]. While in-situ detection of peaks of
elements contained in the deep-sea rocks has been successfully per-
formed, methods to classify and quantify these signals are in need. An-
alytical methods to extract chemical information from signals
generated underwater are being investigated using calibration curves,
calibration-free LIBS (CF-LIBS), and multivariate analysis methods
[9-13]. While calibration curves and CF-LIBS require matrix-matched
samples with relatively simple compositions, their applications to in-
situ analysis of complex targets such as rocks and sediments are limited.
Multivariate analysis methods can be applied to targets with unknown
and complex matrices by constructing a model using full spectral infor-
mation of various samples in a training dataset. In particular linear re-
gression methods such as Principal Components Regression (PCR)
analysis and Partial Least Squares (PLS) regression analysis are com-
monly used for analyzing LIBS spectra since information linearly related
to concentration changes can be extracted and isolated from spectral in-
formation using a training dataset.

The incompressibility of water results in plasmas that are smaller
andhave a shorter duration than in air (Fig. 1) [14,15]. The signal quality
is more susceptible to the surface condition of the sample, the power of
the laser and temporal deviation of plasma dynamics. These lead fluctu-
ations significantly to complicate the analysis of underwater LIBS sig-
nals. For the multivariate regression analysis of underwater spectra
with large fluctuations, a temperature based segmentation method
was proposed [13] to compensate for the nonlinear behavior. Mean-
while the method requires peaks to be detected in order to calculate
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Fig. 1. Conceptual diagrams of the plasma size difference between in air and in water.

Fig. 2. Exemplary LIBS spectra of a hydrothermal precipitate target measured a) in air, and b) in water.
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the plasma temperature,which requires assumption to bemade regard-
ing the origin of the detected peaks. In this study, we investigate a ge-
neric analytical method that does not rely on assumptions or require
any form of explicit peak recognition, using Artificial Neural Networks
(ANNs) that can describe non-linear properties through supervised-
learning. It is generally agreed that for ANNs, in order to obtain good re-
sults, it is necessary to train the models using a large amount of data
with appropriate signal pre-processing techniques. Many methods
have been proposed in image and language processing fields [16-18].
In the LIBS signal, using specific peak intensities is preferred instead of
Fig. 3. Conceptual diagram
using the entire spectra because the peak frequencies are physically de-
termined for each element [19]. Several reports have successfully ap-
plied ANNs to LIBS in air by choosing elemental peaks for using
relatively small networks and datasets [20-23]. However, for spectra
generated in water, the elemental peaks are not well resolved because
the spectra are broad and in some cases self-absorbed due to high
plasmadensities. Fig. 2 shows the comparison of spectra of a deposit tar-
get taken in a) air and in b) water. Significant peak broadening is ob-
served in the four peaks of Pb I at 357.3, 364.0, 368.4, and 374.0 nm.
Therefore, specific peaks are more likely to interfere with neighboring
of experimental setup.
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signals. This study investigates full-field signal pre-processing methods
that use the entire signal as an input, which enable ANNs to learn with
limited database size by considering the features of underwater LIBS
spectra. The methods are verified through the identification of known
pelletized deep-sea hydrothermal precipitates.
2. Materials and methods

2.1. Experimental setup

The experimental setup for this work is shown in Fig. 3. A custom-
built long-pulse Nd:YAG laser emits light with the fundamental wave-
length of 1064 nm, pulse energy of 5 mJ, pulse duration of 150 ns, and
a repetition rate of 2 Hz. The pulse is delivered via a 600 μm fused-
silica fiber and generates a plasma on a target submerged in artificial
seawater. The distance between the target surface and the face of a
custom-made objective lens of 5 timesmagnification is 7mm. The opti-
cal emissions of the laser-generated plasmas are observed through the
same path used for laser delivery and recorded from 320 nm to
550 nm at a resolution of 0.25 nm using a Czerny-Turner spectrograph
and Intensified Charged Coupled Device (ICCD, Princeton Instruments,
PI-MAX 4 HQf) camera with gate width of 500 ns and gate delay of
800 ns. The wavelength was calibrated using a standard mercury lamp
(Ocean Optics, HG-1).
Table 1
Major element compositions (in wt.%) of samples.

No. Location Compos

Site name Area Depth (m) Al

1 Iheya North Knoll Okinawa Trough, Japan 971 0.18
2 Iheya North Knoll Okinawa Trough, Japan 971 0.68
3 Iheya North Knoll Okinawa Trough, Japan 982 0.78
4 Hatoma Knoll Okinawa Trough, Japan 1447 0.65
5 Mariner Site Valu Fa Ridge 1472 0.01
6 Pika Site Southern Mariana Trough 2787 0.00
7 Kairei Field Indian Ocean 2455 0.05
8 - Izu-Bonin Arc 802 0.15
9 Izena Hole Okinawa Trough, Japan 1600 0.02
10 Izena Hole Okinawa Trough, Japan 1624 0.84
11 Hatoma Knoll Okinawa Trough, Japan 1481 0.30
12 Yoron Hole Okinawa Trough, Japan 591 0.20
13 Iheya North Knoll Okinawa Trough, Japan 995 0.16
14 Iheya North Knoll Okinawa Trough, Japan 998 0.18
15 Iheya North Knoll Okinawa Trough, Japan 1070 0.40
16 Iheya North Knoll Okinawa Trough, Japan 1079 0.14
17 Hatoma Knoll Okinawa Trough, Japan 1530 0.71
18 Hatoma Knoll Okinawa Trough, Japan 1531 5.85
19 Iheya North Knoll Okinawa Trough, Japan 991 0.70
20 Iheya North Knoll Okinawa Trough, Japan 991 0.73
21 Iheya North Knoll Okinawa Trough, Japan 991 1.86
22 Iheya North Knoll Okinawa Trough, Japan 1003 0.26
23 Iheya North Knoll Okinawa Trough, Japan 996 0.65
24 Iheya North Knoll Okinawa Trough, Japan 993 0.28
25 Iheya North Knoll Okinawa Trough, Japan 1016 0.10
26 Iheya North Knoll Okinawa Trough, Japan 999 1.72
27 Iheya North Knoll Okinawa Trough, Japan 993 0.15
28 Iheya North Knoll Okinawa Trough, Japan 993 0.00
29 Iheya North Knoll Okinawa Trough, Japan 1001 1.28
30 Iheya North Knoll Okinawa Trough, Japan 1013 0.81
31 Iheya North Knoll Okinawa Trough, Japan 1013 0.86
32 Iheya North Knoll Okinawa Trough, Japan 1015 0.38
33 Iheya North Knoll Okinawa Trough, Japan 1018 0.02
34 Iheya North Knoll Okinawa Trough, Japan 992 0.20
35 Iheya North Knoll Okinawa Trough, Japan 992 0.25
36 Iheya North Knoll Okinawa Trough, Japan 1015 0.00
37 Iheya North Knoll Okinawa Trough, Japan 1015 0.23
38 Iheya North Knoll Okinawa Trough, Japan 1015 0.00
39 Hatoma Knoll Okinawa Trough, Japan 1474 0.10
40 Hatoma Knoll Okinawa Trough, Japan 1472 0.60
41 Hatoma Knoll Okinawa Trough, Japan 1472 0.02
42 Kosaka-Motoyama Akita prefecture, Japan − 0.18
2.2. Materials

A total of 42 hydrothermal deposits are used for analysis. These have
been collected from deep-sea hydrothermal fields and volcanogenic
massive sulfide deposits on land. All samples are crushed to make pow-
der pellets to reduce the effects of rock inhomogeneity. The composi-
tions of the targets used are shown in Table 1, where these
compositions have been measured by Inductively Coupled Plasma
Atomic Emission Spectroscopy (ICP-AES) and ICP-Mass Spectrometry
(ICP-MS). For each sample, 500 LIBS spectraweremeasured underwater
and the measurement location was changed every 10 shots.

2.3. Artificial Neural Networks

The Multi-Layer Perceptron (MLP), used for the analysis in this re-
search, is a type of ANN that is composed of three kinds of layers
whose basic structural unit is the neuron. A neuron (Fig. 4 a)) has n in-
puts (x1,x2,...,xn) where the output is,

z ¼ f
Xn
m¼1

wmxm þ b

 !
: ð1Þ

The weight, wm, is a matrix that expresses the strength of connectivity
to each input and b is the bias. f is an activation function,where sigmoid,
itions of major elements (in wt.%)

Ba Cu Fe Mg Mn Pb Zn others

0.01 4.63 12.47 0.04 0.31 4.99 42.60 34.78
0.01 3.08 19.49 0.05 0.43 15.10 28.50 32.67
0.23 5.11 9.44 0.04 0.09 3.79 28.20 52.32
0.01 3.69 10.38 0.10 0.13 4.36 30.90 49.79
12.89 1.85 1.69 0.02 0.00 0.02 22.90 60.61
0.00 0.01 46.18 0.00 0.01 0.00 0.03 53.76
0.00 35.90 30.91 0.00 0.01 0.00 0.33 32.80
0.04 0.01 0.10 3.35 0.16 2.12 2.98 91.09
16.88 0.15 8.63 0.02 0.02 2.22 5.21 66.85
14.96 0.03 0.51 0.04 0.01 0.00 0.09 83.52
0.09 6.12 6.81 0.03 0.30 24.10 35.10 27.16
17.10 0.22 0.69 0.02 0.00 0.78 2.25 78.75
9.01 2.63 6.27 0.03 0.08 1.61 21.90 58.32
0.10 3.65 11.23 0.05 0.45 17.90 30.70 35.74
0.13 4.66 12.32 0.02 0.29 12.70 37.80 31.68
0.02 3.60 11.45 0.02 0.16 8.79 44.30 31.51
25.78 1.43 1.13 0.12 0.04 15.40 19.30 36.09
10.55 0.00 2.71 0.42 0.08 5.24 0.00 75.16
0.04 3.29 13.11 0.03 0.27 12.70 32.00 37.86
0.12 2.13 4.82 0.08 0.06 5.77 24.80 61.49
0.00 1.77 13.63 0.08 0.08 2.61 11.70 68.26
0.01 6.34 17.09 0.05 0.06 0.65 35.72 39.82
0.63 1.27 3.06 0.06 0.07 8.20 12.96 73.10
0.12 3.37 17.33 0.04 0.20 5.98 24.59 48.09
0.01 4.57 9.42 0.01 0.05 11.79 34.07 39.98
0.03 4.00 9.38 0.09 0.08 1.40 17.89 65.38
0.04 2.35 3.60 0.02 0.08 1.62 16.49 75.66
0.06 4.30 10.20 0.01 0.04 14.86 33.28 37.25
0.33 1.62 2.21 0.07 0.07 3.80 5.71 84.91
0.02 1.72 5.38 0.07 0.11 0.94 4.39 86.55
0.02 0.31 4.94 0.06 0.04 1.08 1.07 91.62
0.31 3.42 11.40 0.02 0.10 4.41 4.47 75.50
0.00 8.02 21.69 0.01 0.15 1.50 27.99 40.61
0.22 2.09 7.29 0.02 0.29 11.40 20.43 58.06
0.09 2.29 12.77 0.03 0.45 10.64 21.72 51.74
0.00 3.86 6.33 0.01 0.10 7.25 51.20 31.25
0.05 3.05 10.81 0.02 0.22 10.32 23.59 51.71
0.03 4.78 11.92 0.00 0.23 10.28 41.89 30.86
0.10 0.05 0.08 2.27 0.27 1.14 1.24 94.76
0.36 0.19 0.92 0.04 1.33 26.50 43.40 26.66
1.26 1.55 3.57 0.01 0.24 26.20 37.50 29.65
13.39 3.05 0.66 0.00 0.01 10.50 26.40 45.81



Fig. 4. Data processing protocol by a) artificial neuron, b) activation function, and c) neural network.
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hyperbolic tangent or rectified linear functions are commonly used. The
sigmoid function (Fig. 4 b)),

f ðxÞ ¼ 1
1þ expð−xÞ ; ð2Þ

was used in this work because of the range of value. MLP is typically
composed of three types of layers, an input layer, several hidden layers,
and an output layer (Fig. 4 c)). The number of neurons in the input layer
is equal to the size of input signal and the number of neurons in the out-
put layer is equal to the number of samples for the identification. The
number of layers and neurons for each hidden layer is adjusted to char-
acterize the features of the database. In this study, 500, 100 and 50 neu-
rons were used for each of the 3 hidden layers. The model was
implemented using TensorFlowTM [24], and the weights and biases of
this model were optimized using a back propagation algorithm. The
evaluation of the model was conducted with a k-fold crossvalidation(k
= 10). In this method, the database was divided into k subsets and
the model was trained using k − 1 pieces. After training, the model
was evaluated with one of the remaining independent subsets. The
test data was shifted subsampled, and the performance was evaluated
based on the accuracy as follows:

accuracy ¼ 1
k

Xk
n¼1

Nn
correct

Nn
all

ð3Þ

where k is the number of crossvalidation, Nall is the related number of
spectra used for validation, and Ncorrect is number of spectra classified
correctly.
Fig. 5. The intensity histogram of a) original spectru
2.4. Signal processing

In order to obtain good results with the analysis using ANNs, it is im-
portant to input the data after signal processing in an appropriate form,
rather than inputting the original data. Various methods to achieve this
have been proposed in the image and language processing fields. For
LIBS signals, common approaches to signal preprocessing include back-
ground subtraction, normalization, and averaging. Through these pro-
cesses, the shot to shot fluctuations of the intensity of the LIBS signal
due to variations in laser output, temporal deviation, difference in dis-
tance to the sample and influence of the surface state of the sample are
suppressed. However, simply processing signals in this way does not
lead to the spectra being in an appropriate form as an input to ANNs.
This work proposes two signal processing methods specifically tailored
to the requirements for use in an ANN. The first preprocessing step facil-
itates learning of peaks where the important spectral information is
contained. The original spectral intensity distribution is not suitable for
the shape of the activation function of ANNs. The intensity is separated
into frequencies near the baseline and frequencies including the peaks
as the histogram of LIBS spectrum intensity (Fig. 5 a)). When the input
has values that are either very large or small, the output is saturated by
the characteristics of the activation function (Fig. 4 b)). Therefore, the sen-
sitivity of the outputs to the information in the peaks, which are high in-
tensity, is poor. In order to avoid this saturation, the natural logarithm is
taken. As a result, intensity distribution width decreases (Fig. 5 b)), and
the information in the peaks has a larger influence on the output of the
function, allowing the ANNs to learn information from the peaks.

Moreover, since this approach doesn’t rely on specific peaks, but in-
stead considers the whole spectra as input, it is robust to the effects of
m, and b) spectrum taken logarithm for ANNs



Table 2
Summary of identification results with conventional, logarithm, and extension datasets.

Conventional Logarithm Extension

Accuracy [%] 82.5 ± 0.7 85.5 ± 0.8 90.1 ± 0.4
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self-absorption and broadening of specific peaks. If these affects are suf-
ficiently repeatable, the two can potentially be recognized as features of
the database.

The second method is data augmentation. It is widely known that a
large dataset is required for ANNs training, but measuring large
amounts of LIBS signals by experiments, especially underwater, is time
consuming. There are also restrictions of ship time during deep-sea ex-
ploration,which limits the amount of data that can be collected for anal-
ysis in field applications. Therefore, a method of enlarging a relatively
small database is investigated. In thefield of image processing, amethod
of increasing the data size is widely used by shifting, turning, zooming
out and in. Generally, averaging is performed in spectrum preprocess-
ing, but when doing this, the number of data decreases.

Therefore, in this work we perform random sampling using the
bootstrappingmethod, which is a commonMonte Carlo technique [25].
The method generates resampled sets by selecting random signals
Fig. 6. Confusion matrix of a) conventional model, b) logarithm model, and c) extension mo
e) logarithmmodel, and f) extension model.
recursively to a desired number, allowing the value of features of the
original dataset to be evaluated in cases where the data available is fi-
nite. This enables ANNs to recognize statistically reliable patterns of
the database. In this method, there are two parameters, the number of
spectra selected for averaging and the number of times the dataset is
resampled. In this work, 5 shots were selected for each subsampling
and the number of times for resampling was investigated.

3. Results and discussion

3.1. Identification of pelletized hydrothermal deposits measured in water

In order to verify the effectiveness of the proposed signal prepro-
cessingmethod, threemodels were trained by the datasets using differ-
ent methods. The first model performs background subtraction,
normalization and averaging by 5 shots in conventional signal process-
ing of LIBS spectra. The second converts signals to a suitable form for
ANNs by taking a logarithm of the averaged signals and normalizing
the signals to have a variance of 1, shifted to have a zero average. The
third was a model in which the size of the database was enlarged to
5000 shots per sample from the 500 original spectra by the
bootstrapping method with combining 5 spectra in addition to the
del and identification probability of sample no. 33 calculated by d) conventional model,



Fig. 8. The accuracy plot of the averaged, and extendedmodel (extension rate=× 1,×10,
and × 100) of three different size of datasets (original data size = 50, 100, and 500 shots
per sample).
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second preprocessingmethod. Table 2 shows the identification result of
42 hydrothermal deposits. The accuracy of the first conventional model
is 82.5 ± 0.7%, the second model that uses the natural logarithm to
change the dataset characteristics is 85.5 ± 0.8% and the third model
trainedwith an extended dataset is 90.1±0.4%. The identification accu-
racy of hydrothermal deposits was increased by performing the pro-
posed signal processing method. The confusion matrix (Fig. 6 a), b),
and c)) illustrates the result of identification, where white indicates a
high probability. The confusion matrix of the proposed model signifi-
cantly improves upon the conventional preprocessing model. Fig. 6 d),
e), and f) is the classification probability of the predicted sample for
each set of 5 shots. The red arrow shows the correct sample line.
While the conventional model misjudged the origin of several signals
as thewrong sample, themodel which changed database characteristics
improved the performance, though still there are dark lines which
means the model confused several hydrothermal deposits of similar
composition as Fig. 6 e) shows. After data augmentation, most of the
dark lines are eliminated (Fig. 6 f)). From these results, it can been
seen that the proposed signal processing for the input spectra improves
the identification accuracy of ANNs for underwater LIBS applications.

3.2. Investigation of database characteristics change

The influencewas examined of the learning speed of theANNby tak-
ing logarithm and changing variance, which was done as a process to
change the characteristics of spectrum. Fig. 7 is a graph of the identifica-
tion accuracy in each step of the model trained by the database of con-
ventional method and the database of the proposed preprocessing
method. As this figure shows, the model of the proposed method was
faster in learning than the conventional method, where learning was
completed in 20,000 steps, whereas the model of conventional method
required 40,000 steps to converge. The fact that learning progresses
quickly is an indication that the features of the signal are recognized
and more easily learned as an input of ANNs by performing the pro-
posed preprocessing.

3.3. Investigation of database extension rate

The database extension rate, which is the number for generating
larger databases by resampling signals using the bootstrappingmethod,
was examined. Fig. 8 shows the transition of identification accuracy of a
model with an averaged dataset by 5 shots, and models in which the
sizes of the databases were increased by the bootstrapping method
with three different extension rate (× 1,×10,×100), which means how
large from original database size, with the number of spectra of each
sample is 50, 100, and 500 shots. The first thing we can see from this
graph is that the accuracy gets higher when the model learns in a
Fig. 7. Step by step accuracy of conventional model and logarithm model.
large database, and the accuracy learned by the database of 500 shots
was better than 50 shots. For any data size tested in this range, if the
data amount is extended, the accuracy got higher than just taking the
average. When examining how many times the amount of data should
be increased by the bootstrapping method, if the size was increased to
about ten times of the original number of shots, the accuracy was im-
proved, but even if it was made larger (100 times), there was no signif-
icant improvement in accuracy. The reason is thought to be that spectra
with new features were not generated once the extension rate reached
a certain value because no unique features were being captured by the
recursively selected spectra.
4. Conclusion

This study proposed a signal preprocessing method for LIBS spectra
analysis using ANNs. The method takes the full spectra as input, which
is preprocessed by taking the logarithm to make its shape suitable for
input to an ANNs, and enlarging the database using a Monte Carlo ap-
proach to analyze dataset of limited size. The effectiveness of the
method was confirmed by the identification of pelletized hydrothermal
deposits usingunderwater LIBS. Theproposedmethod improved the ac-
curacy of equivalent ANNs without preprocessing from 82.5% to 90.1%
and increases the speed of training. Through the comparison of the
rate of data size extension, an increase in data by an order of magnitude
with respect to the original number of shots was found to give a notice-
able improvement in performance for all conditions tested. From this
study, it was found that full-field spectral signals can be used for ANNs
by transforming the signals to a suitable form for model construction
without manual selection of peaks. The whole process in this study,
from signal preprocessing to ANN analysis, can be fully automated end
to end, which is applicable to in-situ chemical analysis of deep-sea hy-
drothermal deposits.
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