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Toroidal excitations represent an intriguing new concept in classical electrodynamics

that is rapidly becoming increasingly important in the interpretation of light-matter

interactions. This thesis reports on new manifestations of electromagnetic toroidal

excitations, both localised in matter, and propagating through free-space.

I have developed a set of new computational frameworks for evaluating the creation,

propagation, and interaction of toroidal excitations. This framework shall form a key

basis for the future study of toroidal excitations in free-space and matter. Key results

of this framework are outlined below.

I have developed a methodology for generating “focused doughnut” pulses from meta-

surface arrays of dipole resonators. Numerical simulations indicate the generated pulse

from such an array would be a 93% match for an ideal “focused doughnut”. The gener-

ation scheme has been tested and found to perform well under anticipated experimental

bandwidth limitations. Generation of a continuous train of “focused doughnut” pulses

from a frequency-comb-like excitation of the array has been demonstrated.

I have, for the first time, investigated the interactions of “focused doughnut” pulses

with continuous and particulate matter. I report on the peculiar field transformations

that the “focused doughnut” pulse experiences under reflection at an interface, and

the broadband modal excitation when incident on small particles. This includes the

excitation of multiple, dominant toroidal dipolar resonances and dynamic anapole

modes.

I have demonstrated that toroidal excitations contribute to optical activity. Using

a chiral metamaterial structure, I observed a new microscopic mechanism for circu-

lar dichroism, underpinned by the resonant excitation of the toroidal dipole and the

electric quadrupole. This toroidal circular dichroism supplements the well-established

mechanism involving electric dipole and magnetic dipole transitions.

I have demonstrated the superior coupling of radially polarised vector beams to toroidal

excitations in matter. The toroidal modes excited possess high quality factors of ∼ 124

and radiate with an almost exclusively dipolar radiation pattern.
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Chapter 1

Introduction

1.1 Motivation

The manipulation of light-matter interactions forms the core basis for a huge part

of modern science and technology. The study of such interactions dates back over

hundreds of years, and has resulted in a strong theoretical and experimental framework

that has lead to a wide range of applications acrooss all of modern society. In recent

years, new paradigms such as “metamaterials” [1–3] and “transformation optics” [4–6]

have emerged, allowing new unprecedented of control of electromagnetic radiation and

its interaction with media. One new paradigm which is of particular interest is that of

toroidal electrodynamics, which has seen a rapid expansion over the past 6 years since

the first explicit observation of dynamic toroidal excitations in 2010 [7].

As the name suggests, toroidal electrodynamics concerns electromagnetic configura-

tions that topologically resemble a torus. Toroidal excitations can exist both as lo-

calised electromagnetic excitations in a medium, and as toroidal light pulses that

propagate through free-space.

This thesis aims to add to the growing body of work on toroidal electrodynamics with

a demonstration of a new chiral phenomena in metamaterials mediated by toroidal

excitations (Chapter 3), exploiting structured light to drive toroidal modes (Chapter

4), and a thorough examination of propagating toroidal pulses in the context of their

interactions with matter (Chapter 5) and potential generator schemes to synthesise

these complex excitations (Chapter 6). It is expected that the results presented here

could have a wide range of potential applications, particularly in terms of spectroscopy

and sensing of molecules/structures with toroidal topology.

The remainder of this chapter [Section 1.2] shall provide a history of the field of toroidal

electrodynamics, both in matter and free-space, to provide context for the research

presented throughout the thesis. The chapter will conclude [Section 1.3] with an

overview of the thesis structure.

1



2 Chapter 1. Introduction

1.2 Introduction to toroidal electrodynamics

The research in this thesis is concerned primarily with the field of toroidal electro-

dynamics, and demonstrating new related phenomena in both matter and free-space.

As such, it is instructive to first give a suitable background to this field such that

the reader is comfortable with the context and terminology which will be referred to

throughout this thesis.

Light-matter interactions are of a fundamental importance to modern science and

technology, with applications such as telecommunications, information processing, data

storage, spectroscopy, imaging, and light-assisted manufacturing standing out as key

examples. The multipole expansion serves as a ubiquitous tool for understanding such

interactions [8–11], commonly understood as being composed of electric and magnetic

multipole excitations, corresponding to charges and loop currents respectively. As

such, interpretations of light matter interactions are largely framed in terms of these

electric or magnetic multipoles.

Toroidal electrodynamics complete the multipole paradigm. Toroidal electrodynam-

ics, as the name suggests, is a field concerned with electromagnetic excitations that

are topologically connected to a torus, a topology distinct from the conventional elec-

tric and magnetic excitations. Toroidal multipoles, originally referred to as moments,

first appeared in work by Zel’dovich in 1957 [12], who introduced toroidal current

configurations in the context of nuclear physics to account for parity violating weak

interactions. Since then toroidal moments have been studied in the context of nu-

clear [13], atomic [14], and molecular physics [15]; classical electrodynamics [16, 17],

and solid state physics [18,19].

For clarity, we divide the field of toroidal electrodynamics into three categories [Fig.

1.1]. The static toroidal moments, with the dipole term well known as an anapole, were

the first to be established in the literature as a configuration of static currents flowing

on the surface of a torus, equivalent to a ring a static magnetic dipoles aligned head

to tail [Fig. 1.1(a)]. The dynamic toroidal moments represent a third independent

family of dynamic electromagnetic multipoles (rather than an alternate expansion or

higher order corrections) alongside the dynamic electric and magnetic multipoles. The

dynamic toroidal dipole (the lowest order excitation) consists of currents oscillating

on the meridians of a torus, leading to a closed loop of magnetic field confined within

[Fig. 1.1(b)]. In addition to the static and dynamic toroidal excitations in matter,

there exist localised toroidal waveforms that can propagate freely through free-space

i.e. propagating toroidal excitations. These were first predicted in 1996 [20] and were

termed “focused doughnut” (FD) pulses. Topologically, the FD pulses closely resemble

the static and dynamic toroidal excitations in matter [Fig. 1.1(c)].

A large part of the motivation for the study of toroidal electrodynamics is derived from
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Figure 1.1: Static, dynamic and propagating toroidal excitations. (a) shows a

schematic of a static (magnetic) toroidal moment creating by a toroidal ordering of static

currents and magnetic dipoles. (b) shows the lowest order dynamic toroidal multipole - the

toroidal dipole - created by poloidal currents oscillating on the meridians of a torus, enclosing

a confined magnetic field. (c) shows a localised toroidal electromagnetic waveform that can

propagate through free-space. It is known as a “focused doughnut” pulse, illustrated here in a

TM configuration.

the ubiquity of toroidal structures in nature on a wide variety of scales [Fig. 1.2]. The

existence of toroidal currents in atomic nuclei represents the smallest known existence

of toroidal symmetry [Fig. 1.2(a)] [12] (though it is noted that anapole excitations have

been suggested as a candidate for dark matter [25]). Hexa-aryl benzenes [Fig. 1.2(b)]

and toroidal fullerenes [Fig. 1.2(b)] are two examples of chemical compounds that

exhibit toroidal topology, with the toroidal fullerenes having been demonstrated as

possessing toroidal moments [15]. Several important biological compounds, in particu-

lar those involved in DNA binding have been identified as possessing toroidal symmetry

[Fig. 1.2(d)-(f)]. Aside from the well known toroidal red blood cells, on a larger bio-

logical scale, recent work has shown the existence of a doughnut-shaped region in the

brains of fruit flies that acts as a form of compass [26].

The next three sections shall examine the development of toroidal electrodynamics from

the early considerations of static toroidal moments in condensed matter, to the recent

experimental and numerical works on dynamic toroidal multipoles and propagating

toroidal excitations.

1.2.1 History of localised toroidal excitations

Static toroidal moments

Of the three types of toroidal excitation identified in the previous section, the first to

be introduced were the static toroidal moments, presented as a configuration of static

currents flowing on the surface of a torus [Fig. 1.1(a)]. We note that historically there

have been two types of static toroidal moment considered in this context: electric (ax-
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Figure 1.2: Toroidal structures in biology and chemistry. This figure shows examples of

structures in biology and chemistry that exhibit toroidal topology. The characteristic length scale

of these structures is given in the upper right of each figure. (a) shows the anapole moment

within the nuclei of atoms, whereby nuclear poloidal currents (red) enclose a closed loop of

magnetic field. (b) shows the compound hexa-aryl benzene, composed to seven linked benzene

rings [21]. (c) shows a carbon fullerene arranged in a toroidal configuration. Figure adapted

from Ref. [15]. (d) shows the toroidal structure of the lambda-exonuclease. Figure adapted from

Ref. [22]. (e) shows the DNA binding protease Bleomycin Hydrolase, Ga16. Figure adapted

from Ref. [23]. (f) shows the structure of the bacteriophage phi29 DNA packaging motor.

Figure adapted from Ref. [24].

ial) and magnetic (polar). The first arises from vortex-like configurations of electric

dipoles [18], whereas the second arises from the aforementioned current configuration.

However, only the magnetic (polar) toroidal moments are generally considered, due to

the absence of magnetic charge-currents in established electromagnetism [18]. Here-

after we shall refer only to the magnetic toroidal moments unless stated otherwise.

Historically, these excitations were also known as anapoles. A key distinction between

static toroidal moments and the conventional static electric and magnetic moments

concerns their interaction with an external field. In contrast to static electric and

magnetic moments, the currents of the static toroidal moments create a magnetic field

confined purely within the torus with zero field external to this. As such they do no

interact directly with external electric and magnetic fields [12]. Initially, static toroidal

moments were introduced as a mechanism in nuclear physics to explain parity-violating

weak interaction [12,14]. However they have since become an established formalism in

the study of condensed matter physics [19,27].



Chapter 1. Introduction 5

In terms of the nuclear toroidal moment, the first explicit experimental evidence of

this came in 1997. Observation of parity non-conserving atomic transitions in caesium

atoms allowed for explicitly determining how the nuclear anapole contributes through

its interaction with the electron cloud [28].

Toroidal multipoles can be described within condensed matter physics by an order

parameter, termed toroidization or toroidal polarisation, analogous to the macroscopic

electric polarization and magnetization [29]. The toroidization represents the density of

toroidal dipole moments. A macroscopic toroidization emerges from configurations of

local toroidal moments that exhibit long-range order [30]. Materials that can exhibit

macroscopic toroidization are known as ferrotoroids, analogous to ferroelectrics and

ferromagnets, and are expected to exhibit unique forms of magnetic response [31–33]

and non-reciprocal reflection and dichroism [27]. It has been suggested that ferrotoroids

could be utilised for data storage applications [34,35].

Toroidal ordering in the solid state was first discussed in 1946 by Kittel in his work on

ferromagnetic domains of small particles [36]. Such toroidal ordering was confirmed to

exist in 1974 in compounds known as boracites [37]. This was followed by as series of

observations confirming static toroidal moments in pyroxines and olivines [38,39].

Explicit observation of ferrotoroidal domains was made in 2007 in an olivine crystal

(LiCOPO4), with the domain orientations identified by second harmonic generation

[40]. These findings were confirmed by a follow-up work that observed hysteretic effects

characteristic of a ferroic state [41]. This has cemented ferrotoroidicity as the fourth

form of ferroic order (including ferroelectricity, ferromagnetism and ferroelasticity).

Dynamic toroidal moments

Discussion of the dynamic toroidal multipoles began significantly after the introduction

of the static toroidal moments. The 1990’s saw a series of papers which examined

the radiation properties of time-dependent toroidal current configurations of the form

[16,19,42,43]:

J(t, r) = ∇×∇×
(
cT(t)δ(3)(r)

)
. (1.1)

Where J(t) represents a time dependent current density and T(t) represents a time

dependent toroidization vector i.e. density of toroidal dipoles, with the delta function

defining it as point-like as per the conventional multipole expansion.

Several works have now presented a full dynamic Cartesian multipole expansion which

explicitly includes the dynamic toroidal multipoles as a separate family from the con-

ventional electric and magnetic multipoles [44–46]. This has not been without contro-

versy however, with the inclusion or omission of toroidal multipoles from the multipole
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expansion being a topic of ongoing discussion [47–49]. The inclusion of toroidal multi-

poles in equivalent descriptions such as Mie theory has also attracted attention [50,51].

The explicit inclusion of toroidal multipoles in the multipole expansion and reconciling

this with the Mie expansion shall be discussed in detail in Sections 2.1.1 and 2.1.2.

Specifically, it shall be shown that although both the charge-current multipole expan-

sion and the vector spherical harmonic Mie expansion represent complete expansions,

the toroidal multipoles appear explicitly in the charge-current multipole expansion and

implicitly in the Mie expansion. The relevance of toroidal multipoles in light–matter

interactions has direct implications for the interpretation of electromagnetic excitation

spectra in media with elements of toroidal topology, and justifies the consideration of

toroidal moments as a separate family of multipoles.

The observation of dynamic toroidal responses is complicated by contributions of elec-

tric and magnetic multipoles, which frequently mask the toroidal response of a medium.

This is a consequence of the scattering of electromagnetic waves by electric, mag-

netic and toroidal dipoles scaling as ∼ (R/λ), ∼ (R/λ)2, and ∼ (R/λ)3 respectively,

where R is the characteristic length scale of the molecule and λ is the free-space wave-

length [42, 44, 52]. However, it can be expected that the dynamic toroidal excitations

shall play an increasingly important role as the size of the molecule approaches the

free-space wavelength i.e. R ≤ λ. Thus the criteria for observing a toroidal response

can be summarised as an electromagnetically large molecule with elements of toroidal

symmetry. Furthermore, toroidal dipolar transitions are of the same order as ex-

perimentally observed magnetic quadrupole transitions [53], suggesting that toroidal

transitions could be experimentally accessible.

The first explicit observation of a dynamic toroidal response was made using the meta-

material paradigm [7], which allows for engineering of a structure to enhance the

toroidal response, whilst suppressing the lower-order electric and magnetic excitations

through structural design. The history of these so-called toroidal metamaterials shall

be discussed in the following section.

1.2.2 Localised toroidal excitations in metamaterials

Before proceeding, it is instructive to form a concrete definition of the term “meta-

material”. We define metamaterial to be an artificial material designed to exhibit

a specific response through structuring on a sub-wavelength scale [1, 2]. This has

included thermal metamaterials [54, 55], mechanical metamaterials [56–58], acoustic

metamaterials [59,60], and electromagnetic metamaterials. In this body of work, only

metamaterials designed to exhibit an electromagnetic response are considered, and so

the term “metamaterial” shall refer exclusively to “electromagnetic metamaterial”.

As such, metamaterials are composed of arrays of individual electromagnetic resonators

known as meta-atoms or meta-molecules. The size and spacing of these building blocks
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Figure 1.3: Examples of electromagnetic metamaterials. (a) shows the first demonstra-

tion of a material with a negative refractive index. Figure adapted from Ref. [64]. (b) depicts a

two dimensional metamaterial invisibility cloak for the microwave regime. Figure adapted from

Ref. [65]. (c) shows a metamaterial exhibiting slow light and an analogue of electromagnetic

induced transparency. Figure adapted from Ref. [66]. (d) gives a plasmonic metasurface for

demonstration of anomalous reflection and refraction. Figure adapted from Ref. [67].

is chosen to be smaller than the characteristic wavelength of the driving electromagnetic

radiation i.e. sub-λ. This ensures that metamaterials respond as homogeneous media.

Arrays in three and two dimensions are most common, with one dimensional structures

being somewhat rarer [61]. Two dimensional arrays are also referred to as metasurfaces

[62]. Additionally, these arrays can be both periodic and random in nature [63].

The concept of artificial sub-λ composites can be traced back to the work of J.C.

Bose on millimeter-wave structures such as layered tin-foil and twisted jutes [68]. Al-

though the exact beginning of metamaterials research in a modern sense is debatable,

a large body of early research focused on the design of metamaterials with a simul-

taneous negative permeability and permittivity, and thus a negative refractive index

[Fig. 1.3(a)] [64,69,70]. Additional key inital results which laid the foundation for fu-

ture metamaterial research included artificial magnetism [71], electromagnetic cloaking

[Fig. 1.3(b)] [4, 5, 65], and perfect [72] and hyper lenses [73,74].

Since then, the field of metamaterials research has experienced rapid expansion as

a platform to observe fundamental and novel electromagnetic phenomena and pro-

vide potential practical solutions for a variety of electromagnetic applications. Some

important results have included plasmonic metamaterials [75], superconducting meta-

materials [76–79], slow light [Fig. 1.3(c)] [66, 80], superconducting photonics [76–78],

lasing spasers [81, 82], spatiotemporal light control [83], directed emission and meta-

material antennas [84,85], reconfigurable metamaterials [86], beam steering and shap-
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ing [Fig. 1.3(d)] [62, 67, 87], perfect metamaterial absorbers [88, 89], and nonlinear

metamaterials [90, 91]. Future directions for metamaterial research includes quantum

metamaterials [92–94], and use of novel materials such as graphene [95,96], topological

insulators [97], and phase change materials [98,99].

The first example of a metamaterial designed to exhibit a toroidal response consisted

of an periodic array of toroidal solenoids. It was predicted that such a metamaterial

would exhibit a strong toroidal response, in sharp contrast to conventional materials,

and would exhibit backwards propagating waves and negative refraction [100]. This

was followed by the first experimental observation of a toroidal response in a metama-

terial structure composed of a microwave-scale array of chiral toroidal solenoids [101].

Although the circular dichroism spectra of the metamaterial revealed a non-negligible

contribution from the toroidal dipole, the feature was masked by stronger contributions

from the conventional electric and magnetic multipoles.

The first observation of an unambiguous toroidal response was reported in 2010 in

a metamaterial composed of four split-ring resonators arranged in a ring [7]. The

presence of the toroidal dipole was confirmed through a multipole analysis of the sharp

resonance feature in the transparency spectrum of the metamaterial, and through

examination of the near-field topology of the metamolecule. When under resonant

excitation the metamolecule supports a closed loop of magnetic field threading through

the split rings - a field configuration that is typical of a toroidal dipole [Fig. 1.4(a)].

The design of the metamolecule formed a template for other structures seeking to

enhance the toroidal response and suppress the conventional electric and magnetic

multipoles [102,103].

Since this first explicit demonstration, a wide variety of metamaterial structures have

been demonstrated that exhibit strong toroidal responses. A key theme of further re-

search was to simplify the design of toroidal metamaterials, thus allowing for simplified

fabrication processes. Planar structures supporting toroidal moments are a key exam-

ple of this theme [Fig. 1.4(b)] [104–106]. It can be noted however that these designs

are not truly planar with respect to the propagation direction. It is demonstrated in

Ref. [107] that toroidal dipoles excited in a truly planar structure would not contribute

to scattering in the far-field.

The scaling down of the split-ring resonator design has extended the observation of

toroidal responses to terahertz [114] and optical regimes [115, 116]. The challenges of

manufacturing nano-scale split ring resonators in a toroidal configuration have been

overcome by the use of simpler structures such as bars [Fig.1.4(d)] [109] and discs

[117, 118]. Despite Ohmic losses damping toroidal responses in the optical part of

the spectrum, numerous comparatively simple systems have been found to support

toroidal responses. These include bas-relief patterns that support spoof plasmons [Fig.

1.4(e)] [119], ring shaped grooves under illumination at oblique incidence [110], and
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Figure 1.4: Toroidal metamaterials. This figure shows examples of metamaterial structures

exhibiting a toroidal response. (a) gives a schematic of the metamaterial unit cell used for the

first demonstration of a toroidal dipolar resonance [7]. (b) shows a planar low-loss metamaterial

based on split-ring resonators that supports a toroidal response. Figure adapted from Ref. [104].

(c) shows a structure exhibiting a plasmonic toroidal response at optical frequencies. Figure

adapted from Ref. [108]. (d) also illustrates an optical-scale toroidal metamaterial, constructed

using asymmetric bars. Figure adapted from Ref. [109]. (e) utilises spoof plasmons excited at

oblique incidence to achieve a toroidal dipolar resonance. Figure adapted from Ref. [110]. (f)

shows plasmonic oligomers consisting of voids in metallic films that exhibit a toroidal response

when driven by a free-electron beam. Figure adapted from Ref. [111]. (g) illustrates a toroidal

response in a purely dielectric structure of four cylinders without any metallic elements [112].

(h) shows a toroidal-void metamaterial that exhibits resonant transparency owing to destructive

interference between electric and toroidal dipolar excitations [113]. (i) depicts the near-field

topology of a toroidal excitation in a dielectric nanoparticle. Figure adapted from Ref. [51].
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plasmonic core-shell nanoparticles [120]. Furthermore a plasmonic oligomer structure

under excitation with an electron beam has been shown to exhibit toroidal modes

[Fig. 1.4(f)] [111]. More recent studies have been moving towards novel materials

and applications for toroidal responses, including novel laser emitters [82], low-loss

dielectrics [Fig. 1.4(g)] [112], superconducting structures [105], and excitation with

structured vector beams [121].

In addition to studies concerning the optimisation of toroidal responses in various

regimes, there have been key works on the interplay between toroidal modes and con-

ventional multipoles in metamaterials. This has manifested primarily in the study of

non-radiating configurations mediated by electric and toroidal dipole excitation. The

first observation of a structure supporting destructive interference between electric and

toroidal excitations was made in 2013 in a toroidal-void metamaterial under microwave

illumination [Fig. 1.4(h)]. Similar resonances corresponding to non-radiating config-

urations have since been observed in the optical regime, with dielectric nanoparticles

[Fig. 1.4(i)] [51], core-shell nanowires [122], and hybrid nanoparticles [120] supporting

these modes.

Toroidal excitations have been studied further in the context of more esoteric applica-

tions, for example lasing spasers [81, 82] and qubits for quantum computations [123],

which take advantage of the weak coupling of toroidal modes to the surrounding envi-

ronment.

This thesis shall investigate new avenues of toroidal excitations in artificial structures

and shall be reported on further in Chapters 3 and 4.

1.2.3 Propagating toroidal excitations

The field of toroidal electrodynamics has historically been concerned with localised

toroidal excitations in matter, where the excitations are specifically charge-current in

nature. However, there is now growing interest in expanding the field to include the

existence of toroidal excitations that propagate through free-space. Here, rather than

the ordering of charges and currents, the toroidal topology arises as a result of the

confinement of electric and magnetic fields in free-space.

Beams with toroidal topology are ubiquitous throughout research in optics, and occurs

for optical beams with radial or azimuthal polarisation which precludes the existence

of a field on axis. The relationship between the topology of these toroidal beams and

the toroidal excitations in matter has been identified and research has been conducted

to exploit this similarity.

Particular interest however is directed at a peculiar set of electromagnetic pulses

with toroidal topology known as “focused doughnut” pulses. These were first in-

troduced as theoretical constructs by Hellwarth and Nouchi in 1996 [20] as part of
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Figure 1.5: Schematics of “focused doughnut” pulses. This figure gives artistic impres-

sions of the fields, topology, and evolution of the “focused doughnut” pulse. (a) shows the

original schematic provided by Hellwarth and Nouchi in their 1996 paper [20]. The charac-

teristic parameters q1 and q2 are identified, as well as the far-field diffraction angle φm. The

envelope of the pulse is traced as it propagates through focus. (b) shows the schematic of a

“focused doughnut” pulse co-propagating with an electron, with the intent of imparting energy

to the electron through interaction with the longitudinal field components. Figures are adapted

from Ref. [20].

Ziolkowski’s EDEPT family of electromagnetic pulses [124]. In a similar way to how

the toroidal multipoles in matter form part of a complete expansion of the inhomoge-

neous Maxwell’s equations in matter, the “focused doughnut” pulses exists as exact,

finite energy solutions to the homogeneous Maxwell’s equations in free-space. They ex-

ist purely as few cycle pulses (either single or 11
2 cycle) in both transverse electric (TE)

or transverse magnetic (TM) configurations, which broadly correspond to azimuthally

and radially polarised forms respectively. Fig. 1.5(a) gives the original schematic from

Hellwarth and Nouchi’s 1996 paper [20], showing the topology of the FD pulse as it

evolves through focus at x, y, z = 0.

A number of interesting properties have been identified for the FD pulses. A key prop-

erty is that of space-time non-separability - a property which is not inherent in any of

the conventional families of pulses (Gaussian, Bessel etc). In contrast to electromag-

netic pulses where the governing equations can be explicitly separated into spatially

and temporally dependent components, the spatial and temporal dependencies of an

FD pulse are explicitly coupled and cannot be separated. This leads to interesting

properties such as a frequency components varying as a function of pulse position.

A further property is that of strong longitudinal field components on axis, at the point

where the radial and azimuthal field components are vanishing. Longitudinal fields

aligned along the propagation direction of beams and pulses are well known in the

optics community and have been utilised for applications such as particle trapping and

acceleration. Indeed particle acceleration was amongst the first suggested applications
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of the FD pulse and the relevant mechanism has been verified in the terahertz regime

using TM01 pulses. Fig. 1.5(b) shows a schematic from Hellwarth and Nouchi’s 1996

paper illustrating a FD pulse co-propagating with an electron and imparting energy

to the electron through its longitudinal field components.

Although the FD pulse has existed as an analytic pulse for two decades, there is

yet to be a successful experimental realisation of this pulse. The creation of such

a pulse is anticipated to be challenging owing to the complex topology, broadband

nature and coupling of spatial and temporal components. However, there would be

significant benefits to synthesising a FD, with potential applications including sensing,

spectroscopy, particle trapping and acceleration, communication, and directed energy

transfer. Research conducted in support of this aim shall be reported on in Chapters

5 and 6.

1.3 Thesis overview

This thesis is concerned with demonstrating new manifestations of toroidal excitations,

both within matter and metamaterial structures, and propagating through free-space.

The research reported on here has lead to the demonstration of a new type of circular

dichroism through toroidal excitations, observation of toroidal resonances driven by ra-

dially polarised light, excitation of toroidal modes in particulate matter by propagating

toroidal excitations, and demonstration of a methodology for synthesis of propagating

toroidal excitations. The thesis is structured as follows:

Chapter 2 describes the main experimental and numerical methodology utilised in this

thesis. This includes characterisation of metamaterial samples using GHz spectroscopy,

and finite element simulation in both the harmonic and transient domains. In addition,

this chapter also provides some key theory underpinning toroidal electrodynamics,

which will be referred back to through the thesis.

Chapter 3 introduces the concept of toroidal circular dichroism and considers a chiral

metamaterial designed to exhibit such an effect. The metamaterial is characterised

experimentally and the origin of the observed dichroism is traced numerically to be

the result of simultaneous excitation of toroidal dipole and electric quadrupole modes.

Chapter 4 presents radially polarised light as a mechanism to drive toroidal resonances.

The design of a scatterer that supports such a toroidal response is shown and is charac-

terised as having a high Q-factor toroidal dipolar response. The response and radiation

pattern of the toroidal scatterer is contrasted with a simple electric dipole scatterer.

Chapter 5 gives the history and theory of localised electromagnetic pulses, with par-

ticular attention given to the “focused doughnut” pulse. The key properties of the

FD pulse are analysed and finite element simulations of the pulse are conducted. The
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interactions of FD pulses with continuous and particulate matter are studied numer-

ically, with unusual field configurations, and broadband excitation of toroidal modes

being observed.

Chapter 6 studies numerically designs of a generator scheme for FD pulses, based on

metamaterial arrays of dipole resonators. The evolution of pulses generated from such

arrays is evaluated and compared to the analytic form of the FD pulse. The effect of

limiting the frequency bandwidth available to the generator scheme is studied, as is

the effect of applying a frequency comb methodology to the scheme to generate pulse

trains.l

Chapter 7 summarizes the achieved results and proposes the future directions of re-

search.

The Appendix contains technical details omitted from the preceding chapters in order

to make the main text easier to follow. The list of publications related to the research

reported on in this thesis can be found in Appendix F.





Chapter 2

Methodology

In this chapter, they key research methodologies utilised in this thesis shall be dis-

cussed. This includes an in-depth discussion of the multipole expansion, in particular

the toroidal multipole family, which is referred to regularly in this body of work as an

analytic tool to evaluate systems under electromagnetic excitation. Key experimental

techniques and methodologies for numerical simulation of electromagnetic systems are

also reported on here.

2.1 Toroidal electrodynamics

In this section, the theoretical framework for the dynamic toroidal multipoles shall

be provided. This shall include their appearance in the dynamic multipole expansion

alongside the conventional electric and magnetic families, and their implicit inclusion in

the Mie expansion. The key properties of the toroidal dipole, including its interaction

energy and its radiation pattern, shall also be discussed

2.1.1 Multipole expansion

The multipole expansion provides a useful methodology in electrostatics, magneto-

statics, and electrodynamics to calculate the fields and potentials created by arbitrary

distributions of charge and current. Conventionally, the expansion is given in terms

of electric and magnetic multipole families, with distinct contributions to the fields

and potentials [9]. Here the explicit appearance of the additional and distinct toroidal

multipole family shall be demonstrated [46,125].

The Maxwell’s equations in CGS units assuming harmonic time dependence of the

form e−iωt are given by:

∇ ·E (r) = 4πρ (r) , (2.1)

∇×E (r) =
iω

c
B, (2.2)

15
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∇ ·B (r) = 0, (2.3)

∇×B (r) =
4π

c
J +

iω

c
E. (2.4)

By combining Eqs. 2.1 and 2.2 and Eqs. 2.3 and 2.4, and making use of the vector

identity ∇×∇×A = ∇ (∇ ·A)−∇2A, the inhomogeneous wave equations for both

the electric E and magnetic B fields can be written as:

[
∇2 + k2

]
E (r) = 4π

[
∇ρ (r)− ik

c
J (r)

]
, (2.5)

[
∇2 + k2

]
B (r) = −4π

c
∇× J (r) . (2.6)

These can be solved using the Green’s function of the Helmholtz equation:

[
∇2 + k2

]
G
(
r, r′

)
= −4πδ

(
r− r′

)
, (2.7)

G
(
r, r′

)
=
eik|r−r

′|

|r− r′|
. (2.8)

Solutions for the electric and magnetic field are then given by integrating over the

sources of Eqs. 2.5 and 2.6:

E (r) = −
∫
∇ρ
(
r′
)
G
(
r, r′

)
d3r′ +

ik

c

∫
J
(
r′
)
G
(
r, r′

)
dr′3, (2.9)

B (r) =

∫
∇× J

(
r′
)
G
(
r, r′

)
dr′3. (2.10)

The Green’s function can then be expanded as a series of spherical vector harmonics:

G
(
r, r′

)
= 4πik

∞∑
l=0

l∑
m=−l

jl
(
kr′
)
hl(kr)Yl,m (θ, φ)Y ∗l,m

(
θ′, φ′

)
, (2.11)

Where jl(kr) and hl(kr) are the spherical Bessel and Hankel functions respectively, and

Yl,m represents the spherical vector harmonics, with Pml as the associated Legendre

polynomials:

Yl,m (θ, φ) =

√
(2l + 1) (l −m)!

4π (l +m)!
Pml (cosθ) eim

φ
, (2.12)

Pml (α) =
(−1)m

2ll!

(
1− α2

)m/2 dl+m

dαl+m
(
α2 − 1

)l
. (2.13)

Substitution of the expanded Green’s function [Eq. 2.11] into Eqs. 2.9 and 2.10 gives:
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E (r) =
4πk2

c

∑
l,m

[El,mΨl,m +Ml,mΦl,m] , (2.14)

B (r) =
4πk2

c

∑
l,m

[El,mΦl,m −Ml,mΨl,m] , (2.15)

Where Φl,m and Ψl,m represent vector spherical wave harmonics:

Φl,m = Lhl (kr)Yl,m (θ, φ) , (2.16)

Ψl,m =
i

k
∇×Φl,m, (2.17)

Where the angular momentum operator L = −ir×∇. The coefficients El,m and Ml,m

are known as the dynamic electric and magnetic multipole moments and are defined

as:

El,m = − i

l (l + 1)

∫
jl
(
kr′
)
Y ∗l,m

(
θ′, φ′

) [
ikr′ · J

(
r′
)
− c

(
2 + r′ · ∇′

)
ρ
(
r′
)]
dr′3,

(2.18)

Ml,m =
i

l (l + 1)

∫
jl
(
kr′
)
Y ∗l,m

(
θ′, φ′

) [
r′ · ∇ × J

(
r′
)]
dr′3. (2.19)

The electric multipole coefficient can be split into two distinct terms: Ql,m and Tl,m:

El,m = Ql,m + Tl,m, (2.20)

Ql,m =
i

l (l + 1)

∫
jl
(
kr′
)
Y ∗l,m

(
θ′, φ′

) [
c
(
2 + r′ · ∇′

)
ρ
(
r′
)]
dr′3, (2.21)

Tl,m =
k

l (l + 1)

∫
jl
(
kr′
)
Y ∗l,m

(
θ′, φ′

) [
r′ · J

(
r′
)]
dr′3. (2.22)

This results in three multipole families - electric Ql,m, magnetic Ml,m, and toroidal

Tl,m - that represent three distinct types of volumetric oscillations. The electric multi-

poles are dependent on charge oscillations. The magnetic multipoles are dependent on

transverse current oscillations (r × J 6= 0). The toroidal multipoles are dependent on

radial current oscillations (r ·J 6= 0). Together these three multipole families provide a

complete description of the scattered electric and magnetic fields of an arbitrary-charge

current distribution:

E (r) =
4πk2

c

∑
l,m

[Ql,mΨl,m +Ml,mΦl,m + Tl,mΨl,m] , (2.23)

B (r) =
4πk2

c

∑
l,m

[Ql,mΦl,m −Ml,mΨl,m + Tl,mΦl,m] . (2.24)
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Though in general, all three multipole families are required to form a complete descrip-

tion of an arbitrary charge-current distribution, the toroidal multipole family Tl,m is

usually neglected in conventional descriptions of the multipole expansion. This can

be attributed to the extra k-dependence in the definition of the Tl,m coefficient. As

such, in the long-wavelength limit, the toroidal terms are frequently omitted. This

also reflects the fact that Tl,m is dependent on oscillating radial currents of the form

(r · J 6= 0). To excite such currents necessarily requires an electrically large source

beyond the long wavelength limit.

2.1.2 Toroidal multipoles in Mie theory

In Mie theory, in contrast to multipole theory, the spherical vector harmonic expansion

is applied to scattered Esca, incident Einc, and internal (with respect to the scatterer)

Eint fields. The expansion coefficients for the internal and scattered fields (Mie coef-

ficients) are determined by enforcing the continuity of the fields across the scatterer’s

boundary. These boundary conditions are only respected for the transverse E and H

field components:

(Einc + Esca −Eint)× r = 0, (2.25)

(Hinc + Hsca −Hint)× r = 0. (2.26)

This is due to the radial components of the scattered field vanishing in the far-field.

Consequently, the Mie expansion of the scattered field possesses only two families of

Mie scattering coefficients al,m and bl,m:

Esca = k2
∑
l,m

(Al,mal,mΨl,m +Bl,mbl,mΦl,m) , (2.27)

Where Al,m and Bl,m are the expansion coefficients for the incident field. Unlike the

multipole expansion coefficients, al,m and bl,m are not directly related to a particu-

lar charge current excitation, but instead are related to the shape of the scatterer

and spatial structure of the scattered fields. Furthermore, there is no explicit term

corresponding to a toroidal multipole family.

This can be understood to be the result of two factors. Firstly, the electric and toroidal

multipole families radiate identically in the far-field. Secondly, their differences in near-

field (due to non-vanishing radial field components) is not recognised by the imposed

Mie boundary conditions. Consequently, the scattered field contributions from the

electric and toroidal multipoles are mixed together in the al,m coefficient and cannot

be separated without exact knowledge of the charge current distribution.



Chapter 2. Methodology 19

2.1.3 Properties of the toroidal multipoles

It is instructive to begin our discussion in terms of the lowest order term of the toroidal

multipoles - the toroidal dipole. Schematically, the ideal toroidal dipole consists of

poloidal currents flowing on the surface of a torus. The poloidal currents enclose a

loop of magnetic field that exists only within the confines of the torus. The resultant

toroidal dipole is then orientated along the axis of the torus. In the same way that a

dynamic magnetic dipole can be thought of as a closed loop of electric dipoles arranged

head-to-tail, the toroidal dipole can be though of as a closed loop of magnetic dipoles

orientated head-to-tail [Fig. 2.1].

There are several definitions of toroidal dipoles that are instructive to examine. The

simplest definition of a macroscopic toroidal dipole consists of a wire solenoid bent

into a closed loop, whereby the magnetic field is purely confined within the solenoid

loop. Under this description, the macroscopic toroidal dipole can be defined as [19]:

T =
IπdR2

2c
=
IV

4πc
, (2.28)

Where I is the total poloidal current on the surface of the torus, and V is the total

volume of the torus. In the frame of the multipole expansion, a definition of the

toroidal dipole of an arbitrary charge-current distribution can be obtained through an

expansion of the current density of a source and considering the radial currents of the

form r · J 6= 0 [19]. This yields the toroidal dipole T as [19,43,44]:

T =
1

10c

∫ [
(r · j) r− 2r2J

]
d3r, (2.29)

Where r is the general spherical coordinate. It can be shown that upon substituting

the current definitions corresponding to electric and magnetic dipoles (see Appendix

A) into Eq. 2.29, the resultant toroidal dipole shall be identically 0 [19]. However,

substitution of the ideal point-like toroidal current distribution [16,19,42]:

J(t, r) = ∇×∇×
(
cT(t)δ(3)(r)

)
, (2.30)

Shall lead to a non-zero toroidal moment.

Beyond the toroidal dipole, the toroidal multipoles expand to higher order terms in the

same manner as the electric and magnetic multipoles, with the expressions for toroidal

quadrupoles and octupoles given in Sec. 2.2.1. Toroidal quadrupoles (octupoles, etc)

radiate in the same manner as electric quadrupoles (octupoles, etc). We note that a

material where a toroidal multipole of higher order than dipole makes a significant

contribution to the electromagnetic response has not yet been engineered.
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Figure 2.1: Toroidal multipoles in context. (a)-(c) show artistic schematics of the lowest

order excitations of each of the microscopic multipole families: (a) electric dipole p, (b) mag-

netic m, and (c) toroidal dipole T. The charge-current topology of each excitation is clearly

indicated. (d) and (e) give some historical illustrations of the toroidal dipole provided in some

of the early works on dynamic toroidal excitations, adapted from Refs. [19] and [16] respectively.

Interaction energy

It can be shown that the toroidal dipole T interacts directly only with external currents

J and the time derivative of the electric field ∂E/∂t through evaluating the expression

for its energy of interaction with electromagnetic fields WT [19, 43]:

WT = −T ·
[

4π

c
J +

1

c

∂E

∂t

]
. (2.31)

This is equivalent to interaction with a vortex of magnetic field i.e ∇ × B. It can

be noted that in the static case (∂E/∂t=0), the toroidal dipole interacts only with

currents and tends to align parallel to the current flow. It is noted that the interaction

of the toroidal dipole with the time derivative of the E field will be suppressed for low

frequency excitations, and has been suggested as a paradigm for engineering toroidal

qubits that are protected from low-frequency noise [123].

We can contrast this with the interaction energy for electric p and magnetic m dipoles.

Wp = −p ·E− 1

c

∂

∂t
(p ·A) , (2.32)

Wm = −m ·B. (2.33)

From these, it can be seen that an electric dipole will interact with the electric field

E and vector potential A. A magnetic dipole will interact with the magnetic field B.
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The distinction here is clear: whilst the electric and magnetic dipoles interact directly

with fields, the toroidal dipole interacts with currents and the temporal gradient of the

E-field. A full derivation of all interaction energy expressions is given in Appendix A.

Radiation patterns

It is important to discuss the radiation properties of the toroidal multipoles. Although

the toroidal multipoles represent distinct charge-current excitation from the electric

multipoles, it is found that they emit radiation with identical angular momentum and

parity properties [42,46]. This was highlighted in Section 2.1.1 for the general multipole

expansion and is emphasised below in the expressions for the far-field electric field of

the electric p and toroidal T dipoles:

Ep(r) =
k2c

4π

√
µ0
ε0

(
eikr

r

)
(r̂× p)× r̂, (2.34)

ET (r) =
ik3c

4π

√
µ0
ε0

(
eikr

r

)
(r̂×T)× r̂. (2.35)

It can be seen that the only distinction between the two expressions is an extra factor

of ik in the toroidal dipole field, which represents an additional phase difference and

frequency dependence. This was also emphasised in Section 2.1.1. A full derivation of

these expressions can be found in Appendix B. This implies that although the toroidal

dipole could not be distinguished from the electric dipole by observing the far-field

radiation pattern alone, they could be distinguished by their frequency dependence

using a spectroscopic analysis [44, 46]. This shall be particularly relevant in Chapter

4.

Interestingly, although they exhibit identical radiation patterns, the vector potentials

from an electric and a toroidal dipole are non-identical and the difference ∆A =

AT −Ap cannot be removed through a gauge transformation [42]. This forms the basis

for the intriguing charge-current distribution known as a non-radiating configuration,

or dynamic anapole [42,113,126]. From the above expressions, it can be seen that co-

located electric and toroidal dipoles with an appropriate phase difference will radiate

fields that will destructively interfere in the far-field, whilst still maintaining a non-

vanishing vector potential. Such a source of propagating electromagnetic potential has

been suggested as a new channel for information transfer in time-dependent Aharonov-

Bohm-like experiments, though this remains a controversial topic [127].
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2.2 Multipole analysis of electromagnetic scattering

With the toroidal dipole identified as a potentially interesting and exploitable exci-

tation for this work, it is necessary to be able to identify its presence amongst the

excited current modes of a material, as well its relative intensity and other modes it

may be coupling to. Though the concept of evaluating metamaterials in terms of their

excited multipole modes is not a new one [128–131], only recently has the toroidal mul-

tipole family been considered in such calculations. A commercially available Maxwell’s

equation solver (COMSOL 3.5a) is used to model metamaterials and using methods

established in Ref. [44] and [52], the dominant current modes in the material can be

determined and the material’s far field radiation response can be calculated.

2.2.1 Multipoles from simulated current distributions

The multipole moments of the metamaterial system were calculated with a numeri-

cal Maxwell’s equations solver (COMSOL 3.5a) by integrating the current densities

across the metamaterial unit cells. This was performed according to the integral rep-

resentations of multipoles below [7, 44, 45]. These expressions can be obtained (with

some algebraic effort) in Cartesian coordinates from the multipole expansion given in

Section 2.1.1:

Dipole order - electric p, magnetic m, toroidal T, and the mean-square radius of the

magnetic dipole distribution
〈
R2

m

〉
:

p =
1

iω

∫
d3rJ, (2.36)

m =
1

2c

∫
d3r (r×J) , (2.37)

T =
1

10c

∫
d3r

[
(r · J) r− 2r2J

]
, (2.38)〈

R2
m

〉
=

1

2c

∫
d3r (r× J) r2. (2.39)

Quadrupole order - electric Qαβ, magnetic Mαβ, and toroidal Tαβ:

Qαβ =
1

2iω

∫
d3r

[
rαJβ + rβJα −

2

3
δαβ (r · J)

]
, (2.40)

Mαβ =
1

3c

∫
d3r

[
(r× J)α rβ + (r× J)β rα

]
, (2.41)

Tαβ =
1

28c

∫
d3r

[
4rαrβ (r · J)− 5r2 (rαJβ + rβJα) + 2r2 (r · j) δαβ

]
. (2.42)
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Octupole order - electric Qαβγ and magnetic Mαβγ :

Qαβγ =
1

6iω

∫
d3r

[
Jα

(
rβrγ −

r2

5
δβγ

)
+ rα

(
Jβrγ + rβJγ −

2

5
(r · J)

)]
+ · · ·

· · ·+ {α↔ β, γ}+ {α↔ γ, β} ,
(2.43)

Mαβγ =
15

2c

∫
d3r

(
rαrβ −

r2

5
δαβ

)
· [r× J]γ + {α↔ β, γ}+ {α↔ γ, β} . (2.44)

Where ρ(r) is the charge density, J is the current density, and δαβ is the Kronecker

delta function. We note that in some cases charge density has been replaced with

current density using the continuity relation: ∇ · J = −∂ρ/∂t. In the octupole terms,

a shorthand has been used to improve clarity. For example, {α↔ β, γ} indicates that

this term of the equation can be obtained by exchanging the α and β indicies of the

first given term.

Higher order terms have not been given here as the metamolecules being considered

in this work are not optimised to excite multipoles of higher order than the electric

quadrupole. As such, no multipole modes greater than octupole order are calculated.

2.2.2 Scattering intensity of multipoles

The intensity radiated through a sphere surrounding the metamolecule by these mul-

tipoles can then be calculated from the above multipole definitions. Note that this

is not an expansion, but merely a summation of the intensity terms derived from the

multipoles given above. Further, the equation is given in CGS units, rendering the

speed of light c dimensionless.

I =
2ω4

3c3
|p|2 +

2ω4

3c3
|m|2 +

4ω5

3c4
Im
(
p† ·T

)
+

2ω6

3c5
|T|2 + . . .

. . .+
ω6

5c5
QαβQαβ +

ω6

20c5
MαβMαβ +

2ω6

15c5
Re
(
M† ·

〈
R2

m

〉)
(2.45)

The electric and magnetic octupole, and toroidal quadrupole terms have been omit-

ted for brevity. Along with the expected radiation intensity terms characterised by

the square of the respective multipoles, there also exist terms corresponding to in-

terference effects [7, 44, 113]. The third term arises due to interference between the

conventional electric dipole p and toroidal dipole T, which is generally non-zero. The

seventh term arises due to interference between the conventional magnetic dipole m and

the first-order mean-square radius of the magnetic dipole distribution
〈
R2

m

〉
. Higher

order interference terms were neglected in calculations. It can be noted that the

non-radiating configuration mentioned in Section 2.1.3, can be inferred from this pre-

scription for scattered intensity, whereby the electric/toroidal dipole interference term
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4ω5

3c4
Im
(
p† · t

)
effectively cancels the individual electric and toroidal dipole intensity

terms [113].

2.3 GHz spectroscopy

For the study of microwave metamaterials in this thesis, we utilise an anechoic cham-

ber equipped with linearly-polarised horn antenna (Schwarzbeck BBHA 9120D) and

a vector network analyser (VNA) (Agilent E8364B), which allows for simultaneous

measurement of amplitude and phase of microwave radiation in the 1-18GHz range.

This apparatus allowed for full characterisation of the reflection, transmission and po-

larisation response of a metamaterial sample. A photograph of the anechoic chamber

and a schematic of the experimental setup are shown in Fig. 2.2. The antenna were

equipped with collimating lenses to focus the emitted microwaves and ensure maximum

power is focused on the sample. The antennae could be rotated to take measurements

of arbitrary polarisations. The metamaterial under interrogation was supported by a

wooden stand with an aperture to block rogue microwave radiation.

2.3.1 Vector network analyser

The VNA used for our experiments (Agilent E8364B) constitutes a two port network,

with each port able to emit and receive electromagnetic radiation over a range of fre-

quencies. A full characterisation of a metamaterial sample requires two measurements

at each frequency - one using emission from port 1, and one using emission from port

2. The quantities that are measured by the VNA are complex amplitude (intensity

and phase) of: the radiation emitted by port 1 (a1), radiation emitted by port 2 (a2),

radiation received by port 1 (b1), and radiation received by port 2 (b2). The scattering

matrix S can be used to relate these four quantities:

[
b1

b2

]
=

[
S11 S12

S21 S22

][
a1

a2

]
, (2.46)

Where components of Sij are known as S-parameters and can be computed from the

measured quantities in the following manner:

S11 =
b1
a1

, provided a2 = 0 S12 =
b1
a2

, provided a1 = 0

S21 =
b2
a1

, provided a2 = 0 S22 =
b2
a2

, provided a1 = 0

As such, it can be seen that S11 and S22 represent reflection from the metamaterial

sample when it is illuminated from port 1 and 2 respectively. Similarly, S21 and S12

represent transmission through the metamaterial sample from port 1 → port 2 and
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Figure 2.2: Experimental setup for GHz spectroscopy. This figure shows the experimental

setup used to analyse metamaterials in the microwave regime. (a) shows the anechoic chamber

with microwave absorbing walls. The linearly polarised horn antenna are placed on wooden

stands in the center of the chamber. (b) shows the schematic for a transmission measurement

of a metamaterial sample. Linearly polarised radiation is generated by the horn antennae and

collimated by dielectric lenses. The metamaterial under investigation is located equidistant

between the two antennae.The emitted and received signals are analysed by the vector network

analyser.

port 2 → port 1 respectively. Given that the metamaterial samples used in this study

are identical under 180o rotation, the parameters S11 = S22 and S21 = S12, with any

discrepancies arising due to misalignments and asymmetries in the experimental setup.

Additionally, reflection measurements were not necessary for the experiments reported

on in this thesis, and so we are concerned only with the S12 and S21 parameters.

2.3.2 Calibration

Prior to taking experimental data of a metamaterial sample, it is necessary to cali-

brate the VNA setup. In principle, the VNA should only measure the electromagnetic

response of the metamaterial sample under interrogation. However, for a realistic ex-

perimental setup, the signal has to travel through multiple components e.g. connecting

cables, waveguiding elements; before and after interaction with the metamaterial sam-

ple, thus leading to a combined response being measured by the VNA. Calibration is
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therefore required to isolate the electromagnetic response of the metamaterial sample

from that of the other components in the setup.

This achieved using a two-port error correction process, that is built in as part of

the VNA software. This procedure is based on measurement of reference samples and

allows the VNA to remove systematic errors associated with parts of the setup from

the final spectroscopic data. The reference cases utilised for our calibration procedures

were a free-space S-parameter measurement, and a measurement using reflective plates

of identical thickness to the metamaterial sample under investigation.

2.3.3 Gating of spectroscopic data

In addition to the antennae measuring reflected and transmitted signals from the meta-

material sample, the antenna will also detect spurious higher-order reflections between

the antennae and the metamaterial, and reflections between the two antennae. These

extra signals manifest as high frequency oscillations in the measured reflection and

transmission spectra in the frequency domain.

This noise can be removed using the built-in gating functions of the VNA. This process

involves Fourier transforming the spectra into the time domain and suppressing the

echoes that arrive after the primary pulse. This done by introducing a maximum

cut-off time for the data before Fourier transforming back to the frequency domain,

resulting in significantly improved spectra.

2.4 Numerical modelling

This section briefly describes the method used to simulate the light-matter interactions

reported on in this thesis. Interactions were simulated by solving the 3D Maxwell’s

equations using the Finite Element Method (FEM) [132]. The commercially available

FEM software COMSOL 3.5a was utilised for this. Both harmonic and transient simu-

lation modes were used, with the harmonic domain being used primarily for simulations

of metamaterial structures under illumination by plane waves, whilst the simulated do-

main was used to study the propagation and interactions of electromagnetic pulses.

2.4.1 Simulations in the frequency domain

Simulations in the harmonic domain broadly consisted of simulating the response of

metamaterial structures to incident electromagnetic radiation over a specified fre-

quency range. A typical example of the geometry utilised for this is shown in Fig.

2.3. The geometry consists of an individual metamaterial unit cell located at the cen-

ter of a tunnel of free-space in the z direction. The model is simplified by assuming the
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Figure 2.3: Numerical modeling in the frequency domain. This figure shows a typical

geometry in COMSOL 3.5a used to simulate the electromagnetic response of a metamaterial

array. The size of the metamaterial array was assumed to be infinite in the x and y directions,

and so a single unit cell with periodic boundary conditions could be simulated. The metamaterial

unit cell was located in the center of a long free-space domain. Scattering boundaries at each

end of the domain were used to generate plane wave incident light, and to simulate radiation

scattering into free-space.

metamaterial extends infinitely in the x and y directions, and the x and y boundaries

are modeled as periodic boundaries to reflect this. It is noted that there are impor-

tant distinctions between infinite and finite planar arrays in terms of electromagnetic

scattering, principally the absence of edge effects and the cancellation via destructive

interference of radiation components not parallel to the incident field. This can lead

to discrepencies between simulated and experimental scattering results and shoould

be accounted for during analysis.

At each end of the free-space tunnel, the boundaries are assigned as scattering bound-

aries which fulfil two functions. Firstly, electromagnetic waves representing incident

radiation can be launched from the scattering boundary. Secondly, scattering bound-

aries allow incident radiation to pass through without reflection, simulating scattering

into free-space. By integrating the Poynting vector over the scattering boundaries, the
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transmission and reflection of the metamaterial can be determined. The length of the

free-space tunnel either side of the metamaterial is necessarily in the 3-5 wavelengths

range. This ensures that they only interact with far-field radiation from the meta-

material. Different materials were modeled either through use of a complex-valued

dielectric constant, or use of perfect electrical conductor (PEC) boundaries, which are

good approximations to metals in the microwave regime.

Verification of simulation results could be achieved by one of two methods - comparison

with experimental results, and by changing the number of finite elements in the model.

In the latter case, if by increasing the number of finite elements did not change the

results of the simulation, it could be concluded that the simulation was valid.

2.4.2 Obtaining macroscopic properties from multipole response

When simulating metamaterial structures, evaluating the multipoles excited in a meta-

material can give an excellent insight into the underlying cause of the metamaterial’s

macroscopic properties. However, in cases where the overall multipole response is

complex, it can be difficult to directly trace resonant features to specific multipole ex-

citations. An example of such a system will be given in Chapter 3, where the resonant

circular dichroism features in the metamaterial transmission spectrum are attributed

to pairs of multipoles. As such, it is beneficial to have a methodology that can directly

relate the macroscopic properties of a metamaterial to the microscopic multipoles ex-

cited within its metamolecules.

Such a methodology has been provided by V. Savinov et al [52]. It follows broadly the

procedure outlined below:

1. Simulate metamaterial structure using the COMSOL simulation pack-

age.

Approximate a realistic metamaterial by simulating an infinite array i.e.

simulate a single metamaterial unit cell with periodic boundary condi-

tions under plane wave excitation at normal incidence, as described in Sec-

tion 2.4.1. Simulation of an infinite array necessarily accounts for inter-

metamolecule interactions in the metamaterial.

2. Calculate the microscopic multipole response of a single unit cell using

the formulae in Section 2.2.1.

3. Calculate the radiation of the individual multipole components of the

unit cell excitation.

4. Sum contributions of whole array at the position of the observer to

obtain the macroscopic, far-field properties of the metamaterial struc-

ture.
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The total field radiated by an infinitely large planar array of an arbitrary

multipole is obtained by summing the contributions from all unit cells at

the position of the observer:

Escattered =
∑
r

E (r) ≈ 1

∆2

∫
d2rE (r) , (2.47)

Where ∆2 is the unit cell area. Note that certain radiation components will

not contribute to the far-field radiation of the metamaterial, for example

radiation in the plane of the metamaterial. The reflected Ereflected and

transmitted Etransmitted fields of this array will be given by:

Ereflected = [Escattered]n̂=−k̂ , (2.48)

Etransmitted = [Escattered]n̂=k̂ + Eincident. (2.49)

This procedure yields a set of reflected and transmitted fields attributed to the micro-

scopic multipoles excited in the metamaterial. The sum of these multipole radiation

components gives the total radiation of the array, which can then be compared to

the incident plane wave to give the macroscopic reflection (r,R) transmission (t, T )

coefficients.

The benefit of this methodology is that by inclusion or exclusion of the radiating

components of different multipoles, their contribution to the macroscopic properties of

a metamaterial can be explicitly quantified. An example of such a procedure shall be

given in Chapter 3.

2.4.3 Simulations in the time domain

Simulations in the transient domain were conducted to examine the propagation dy-

namics and interactions of electromagnetic pulses. A typical example of the geometry

utilised for this is shown in Fig. 2.4. The geometry consists of cylindrical free-space

domain with an arbitrary scatter located in the center. The boundaries of the cylinder

are assigned to be scattering boundaries, which as previously mentioned, allows for

simulation of an incident electromagnetic excitation and for radiation to pass through

without reflection. The excitation of a scattering boundary is is chosen as a time

dependent electric field E(t). The size of the cylindrical domain is chosen such that

the full width of the pulse is confined within the cylinder, and that it will propa-

gate over a distance of several effective wavelengths before exiting the domain. The

width of the domain, and the well-collimated nature of the simulated pulses over the

domain length, means the simulation can be conducted without the use of perfectly

matched layers [133]. As in the harmonic case, different materials are simulated by use
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Figure 2.4: Numerical modeling in the time domain. This figure shows a typical geometry

in COMSOL 3.5a used to simulate time-dependent electromagnetic interactions. A scatterer is

located at the center of a cylindrical domain. The domain is bordered by scattering boundaries

which allows for generation of the time dependent excitation, and absorption of scattered fields.

of a complex valued dielectric. Transient simulation precludes the use of a frequency-

dependent dielectric constant, and so all simulations in the transient domain assumed

non-dispersive media.

As in the case of harmonic simulations, the spatial meshing considerations are relevant

to ensuring the accuracy of the simulation. However as the simulation is in the time

domain, where the solution at the current time is dependent on the solution at pre-

vious times, the step size in the time domain is also important to ensure stability of

the solutions [134]. Furthermore, an important consideration in the case of transient

excitation is the size of the spatial finite elements relative to the step length in the

time domain. Time steps were generally taken to be tstep = 1
10 (λeff/c). Spatial steps

were accordingly matched to this, with a size of ≈ λeff/10, where λeff represents the

effective wavelength of the transient excitation.
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Toroidal circular dichroism

3.1 Introduction

Chirality, i.e., the property by which an object cannot be superimposed with its mirror

image [135], is a basic characteristic of matter at all scales from the cosmological to

the molecular. It enters fundamental questions, such as the homochirality observed in

life [136] and the parity violation within the standard model of physics [137, 138]. A

ubiquitous manifestation of chirality is optical activity, which consists of two important

electromagnetic phenomena: circular birefringence and circular dichroism. These are

defined as:

Circular birefringence

– Real part of the refractive index of a medium is dependent on the handedness of

incident circularly polarised light.

– Ability to rotate the plane of polarisation of incident electromagnetic waves.

Circular dichroism

– imaginary part of the refractive index of a medium i.e. the absorption coefficient,

is dependent on the handedness of incident circularly polarised light.

– Ability to change the polarisation ellipticity of incident electromagnetic waves.

Observed more than 150 years ago by Pasteur on solutions of tartaric acid [139],

optical activity occupies a central position in the diagnostic methodology of many

scientific disciplines [140] where it provides the means for obtaining information about

the microscopic structure and electromagnetic excitations of a medium from its far-field

scattering properties. An examination of optical activity is invaluable, for example, in

the biosciences where it enables deduction of the conformation of proteins in a dynamic

fashion [141] or in the study of magnetic phenomena in strongly correlated electronic

systems [142].

Optical activity is typically described within the dipole approximation of the dynamic

31
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Figure 3.1: Multipole mechanisms for conventional and toroidal circular dichroism.

This figure illustrates the microscopic multipole mechanisms that result in the macroscopic

phenomenon of circular dichroism. Conventional circular dichroism is understood to be caused

by simultaneous excitation of electric p and magnetic m dipoles. In some cases, the electric

quadrupole Qe can replace the magnetic dipole in this mechanism. In the case of toroidal

circular dichroism however, the toroidal dipole T assumes the role of the electric dipole.

multipole expansion [6] where the interaction of an incident wave with induced collinear

electric and magnetic dipoles affects the polarization state of the wave upon transmis-

sion. Indeed the conventional expression for the rotary power R of a medium (an

indicator of optical activity) is dependent only on electric p and magnetic m dipole

operators [143]:

Rn,k = Im [〈ψk |p|ψn〉 〈ψn |m|ψk〉] , (3.1)

Where ψk and ψn represent states of the electric and magnetic moments of a molecule.

This expression is obtained using perturbation theory under the common (in chemical

sciences) assumption that the size of a molecule is much smaller that the wavelength

of light (i.e. k · r� 1). Certain combinations of electric dipole and other higher-order

multipoles, most notably the electrical quadrupole, can also contribute to optical activ-

ity [11, 144]. However, such contributions are usually considered negligible, especially

in isotropic media [145, 146]. As such, we term the circular dichroism attributed to

combinations of electric dipoles, magnetic dipoles, and electric quadrupoles as “con-

ventional circular dichroism” [Fig. 3.1].

However, it has been suggested [101] that optical activity could arise even in the

absence of an electric dipolar response due to the excitation of toroidal multipoles. This

is attributed to the similarities in the radiation properties of the electric and toroidal

multipoles (see Section 2.1.3). We term such a mechanism of circular dichroism as

“toroidal circular dichroism” [Fig. 3.1] to contrast it with the conventional electric

and magnetic mechanism. It is anticipated that toroidal circular dichroism could be
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Figure 3.2: Prior art for the study chiral toroidal structures. This figure shows exam-

ple of toroidal structures which have been shown to exhibit chiral phenomena. (a) illustrates

how chirality can arise in hexaarylbenzene compounds - so-called propeller chirality. Figure

adapted from Ref. [147]. (b) shows a toroidal metamaterial polarisation-twister designed for

the microwave regime. Figure adapted from Ref. [148]. (c) shows a metamaterial based on

toroidal wire helices which exhibits strong dichroism in the microwave regime, in addition to a

non-vanishing toroidal moment. Figure adapted from Ref. [101]. (d) shows plasmonic chiral

toroidal metamolecules based on gold nanoparticles. The helical structures were constructed

using a DNA origami method. Figure adapted from Ref. [149].

a dominant mechanism in chiral structures with a toroidal topology that are of a

comparable size to the wavelength (i.e. k · r ≈ 1) [101].

The study of toroidal structures exhibiting chiral phenomena has been reported on

before in the literature, with many such structures across different size regimes having

been identified [Fig. 3.2]. Indeed some of the toroidal structures introduced at the

beginning of this thesis [Fig. 1.2] possess inherent chirality. Hexaryl-benzenes [21] are

an example of such a compound, with recent studies having demonstrated that they can

exhibit so-called propeller chirality, which arises due to the axial tilt of the peripheral

benzene rings [147] [Fig. 3.2(a)]. Toroidal fullerenes can additionally be formed into

enantiomeric structures by the choice of folding angle of the carbon sheets [15].

In terms of the metamaterial paradigm, the first presented concept of a toroidal meta-

material was inherently chiral owing to design being a closed toroidal solenoid [100].

Thus the chirality was a result of the winding angle of the solenoid. This was ex-

panded on with a metamaterial that gave the first experimental signature of a toroidal

response [101]. The chirality of this metamaterial was again a result of the solenoid

winding number, which can be seen in Fig. 3.2(c). The circular dichroism observed

from this metamaterial was analysed explicitly in terms of the excited microscopic
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multipoles, revealing the presence of a toroidal dipole. Although this could be consid-

ered the first indication of a form of toroidal circular dichroism, the toroidal response

of the metamaterial was small compared to the conventional electric and magnetic

multipoles, making at best a tertiary contribution to the observed dichroism.

Since this demonstration, several other artificial chiral toroidal systems have been

investigated. The first unambiguous observation of a toroidal dipole [7], served as

a template for a chiral polarisation twister for transforming between RCP and LCP

light [Fig. 3.2(b)] [148]. Furthermore novel methods have been utilised to create chiral

toroidal structures in the optical regime. DNA origami methods have been presented as

a means of obtaining plasmonic toroidal metamolecules with a solenoid-like structure,

thus giving them two enantiomeric forms and a strong circular dichroism response [149].

Despite this, the mechanism of toroidal circular dichroism had not been explicitly

observed in these structures. In this chapter, a chiral toroidal metamaterial that

exhibits toroidal circular dichroism shall be presented and evaluated both numerically

and experimentally.

3.2 Theory

3.2.1 Linear and circularly polarised transmission matrices

We can describe the transmission through a metamaterial structure in terms of a

complex transmission matrix t, which can be defined in an arbitrary polarisation basis.

In a linearly polarised basis, the coefficients of t will take the form ti,j (i, j,= x, y),

defined as:

t =

[
txx txy

tyx tyy

]
. (3.2)

Here, txx and tyy represent direct x and y polarisation transmission coefficients, whereas

txy and tyx represent polarisation conversion from y to x and x to y respectively. We

note that the components of t can be readily obtained form the S parameters in Section

2.3 for different incident polarisations. Equivalently, in a circularly polarised basis, the

coefficients of t will take the form tα,β (α, β,= +,−), defined as:

t =

[
t++ t+−

t−+ t−−

]
. (3.3)

Here, t++ and t−− represent direct RCP and LCP transmission coefficients, whereas

t+− and t−+ represent polarisation conversion from LCP to RCP and RCP to LCP
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respectively. The intensity of transmission T can be readily obtained from T = |t|2.
Circular dichroism ∆ is then defined as:

∆ = |t++|2 − |t−−|2 , (3.4)

As outlined in Section 2.3, the vector network analyser and horn antennae utilised for

the experimental study operate in a linearly polarised basis and so return ti,j . One can

move from a linear to a circularly polarised basis (ti,j → tα,β) using the transformations

below:

[
t++ t+−

t−+ t−−

]
=

1

2

[
txx + tyy + i (txy − tyx) txx − tyy − i (txy + tyx)

txx − tyy + i (txy + tyx) txx + tyy − i (txy − tyx)

]
, (3.5)

Thus allowing for characterisation of a metamaterial’s response to circularly polarised

light from purely linearly polarised data.

3.2.2 Circular dichroism in a linear basis

When considering circular dichroism in terms of the microscopic excitations of the

medium, it is more intuitive to work in a linearly polarised transmission basis, as this

will directly relate to the microscopic multipole components excited in a linear basis.

In this section, we will derive the equation for circular dichroism [Eq. 3.4] in a linear

basis, and demonstrate the explicit dependence of circular dichroism on the linear

polarisation conversion coefficients, txy and tyx.

First we take the definitions of t++ and t−− from the linear-to-circular transformations

in Eq. 3.5:

t++ =
1

2
[txx + tyy + i (txy − tyx)] = a+ ib, (3.6)

t−− =
1

2
[txx + tyy − i (txy − tyx)] = a− ib, (3.7)

Where a =
txx+tyy

2 and b =
txy−tyx

2 . Squaring these gives:

|t++|2 = (a+ ib) (a∗ − ib∗) , (3.8)

|t−−|2 = (a− ib) (a∗ + ib∗) , (3.9)

Where ∗ indicates the complex conjugate. The circular dichroism [Eq. 3.4] can now

be written as:

∆ = |t++|2 − |t−−|2 = (a+ ib) (a∗ − ib∗)− (a− ib) (a∗ + ib∗) . (3.10)

Expanding this and simplifying leads to:

∆ = 2i (a∗b− ab∗) . (3.11)
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Using the identity Im(z) = z−z∗
2i , this can be rewritten as:

∆ = −4Im (a∗b) . (3.12)

Finally, subbing back in for a and b yields:

∆ = −Im
[(
t∗xx + t∗yy

)
(txy − tyx)

]
. (3.13)

Therefore ∆ ∝ txy − tyx, i.e. the difference in either amplitude or phase between the

linear poalrisation conversion terms.

3.2.3 Mechanism for conventional circular dichroism

In the previous section, we established from Eq. 3.13 that circular dichroism is propor-

tional to a difference between the linear conversion terms in the transmission matrix.

Here we will relate this equation to the microscopic mechanism for conventional circular

dichroism established in Fig. 3.1.

The simplest microscopic multipole combination that can lead to circular dichroism

is a combination of co-aligned electric and magnetic dipoles. It is well established

that electric dipoles and magnetic dipoles have an identical far-field radiation pattern.

However, an electric dipole radiates electric field parallel to the dipole axis, whereas

a magnetic dipole radiates electric field orthogonal to its axis. Consequently, co-

aligned and co-located electric and magnetic dipoles will in general radiate elliptical

polarisation.

Such a situation is illustrated in Fig. 3.3, which illustrates a metamaterial structure

designed to support co-aligned electric and magnetic dipoles. The structure is com-

posed of metal wires in spiral shapes embedded in a dielectric substrate. The spiral

shape of the wires gives this structure intrinsic 3D chirality, with two enantiomers.

The metamaterial is embedded in the xy plane and driven by a plane wave incident

along ther z-axis with linear y-polarisation i.e. along the axis of the metal spirals. The

incident light will excite charge-current multipoles in the metal spirals which will con-

tribute to the transmission coefficients of the metamaterial. Similar chiral structures

have been described in Refs. [150,151].

The primary charge current configurations excited on an individual metamolecule are

shown in the insets to Fig. 3.3. Initially the incident y-polarised light will drive charge

separation between the top and bottom of the spiral, resulting in an electric dipole

p1 aligned along the y-direction. This dipole will radiate y-polarised radiation into

the far-field and so we can write the tyy transmission component of the metamaterial

in terms of the incident E-field Eincy and the contribution from the electric dipole

radiation Erady (p1).
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Figure 3.3: Co-aligned electric and magnetic dipoles in a chiral metamaterial. This

figure illustrates how a chiral metamaterial structure can support the co-aligned electric and

magnetic dipoles required for circular dichroism. The metamaterial consists of metal spirals

embedded in a dielectric substrate, with a y-polarised plane wave incident along the z-axis. The

insets show the charge-current distributions on a single metamolecule at two points in time -

t = 0 and t = T/4, where T represents the period of the plane wave.

tyy ∝ Eincy + Erady (p1). (3.14)

We note that in this configuration, there is also a separation of charges in the z −
direction due to the 1.5 turns of the helical wire, causing a z-aligned electric dipole

component. However, this component will primarily radiate in the plane of the array,

and so will not contribute to the far-field scattering of the metamaterial.

A quarter of an optical cycle after the excitation of the electric dipole, the charge

separation gives way to currents as the electrons are driven from one end of the spiral

to the other. These circulating currents result in a magnetic dipole m1 aligned along

the y-direction. This dipole will radiate E-field orthogonal to its axis Eradx (m1) and

so can be used to define the txy transmission matrix component:

txy ∝ Eradx (m1). (3.15)

We can now consider the analogous situation where the metamaterial is illuminated

with x-polarised light. As the incident light is no-longer polarised along the axis of

the metal spiral, the excitations of electric and magnetic dipoles will be accordingly

weaker than in the y-polarised incidence case. Nonetheless, we can write the remaining

components of the transmission matrix in terms of the excited electric p2 and magnetic

m2 dipoles:

txx ∝ Eincx + Eradx (m2), (3.16)
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tyx ∝ Erady (p2). (3.17)

We now refer to Eq. 3.13, which gives our definition for circular dichroism ∆ in terms

of the linear transmission components. We note that ∆ ∝ txy − tyx. We can sub our

expressions for txy [Eq. 3.15] and tyx [Eq. 3.17] into this to obtain:

∆ ∝ txy − tyx = Eradx (m1)− Erady (p2). (3.18)

From this we can see that provided there is a difference in amplitude or phase be-

tween m2 (excited by y-polarised light) and p1 (excited by x-polarised light), the

metamaterial will exhibit non-zero circular dichroism. We note from Fig. 3.3, there

will necessarily be a phase difference between the electric and magnetic dipoles, thus

resulting in circular dichroism independent of the amplitude of the multipoles.

3.3 Chiral toroidal metamaterial

The metamaterial used for this study has been derived from the structure previously

shown to support a strong toroidal dipolar response under linearly polarized excitation.

Its metamolecule consists of a cluster of four rectangular metallic wire loops embedded

in a dielectric slab [Fig. 3.4(a)]. The loops are arranged about the axis of the meta-

molecule (y-axis) at separations of 90o to give a fourfold symmetric structure, where

opposite facing loops are separated by a distance r. The symmetry is then broken by

introducing identical splits to the loops, located on either the top or the bottom sides

of the slab and alternating between adjacent loops. The metamaterial is formed by

translating the metamolecule along the x and y axes, resulting in a one-metamolecule

thick metamaterial slab with a rectangular unit cell, as shown in Fig. 3.4(a). Al-

though the individual metamolecules are achiral, the resulting metamaterial crystal is

chiral due to the regular arrangement of its metamolecules (structural chirality) and is

available in two enantiomeric forms interconnected by a mirror reflection [Fig. 3.4(b)].

The metamaterial sample was fabricated by etching a 35µm thick copper foil on both

sides of a low-loss dielectric PCB laminate Rogers TMM R© 3 [152] using high-resolution

photolithography1 [Fig. 3.4(c)]. The top and bottom patterns were electrically con-

nected through narrow electroplated holes. All copper tracks were coated with a 2µm

thick layer of gold to prevent oxidization and staining of copper, as well as to reduce

Ohmic losses. The assembled metamaterial sample consisted of 24×24 metamolecules.

1Fabrication of the metamaterial was conducted by Dr. Wei Ting Chen and Prof. Din Ping Tsai

at the National Taiwan University, Taipei, Taiwan.
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Figure 3.4: Schematic of the chiral toroidal metamaterial and fabricated structure.

This figure shows the metamaterial structure used to observe toroidal circular dichroism. (a)

gives a schematic of the toroidal metamolecule and its orientation with respect to the metama-

terial crystal lattice (indicated by dashed lines). The dimensions are d = 8mm, s = 7.5mm,

h = 1.5mm, r = 2.44mm, g = w = 0.15mm and a = 1.8mm. RCP (red) and LCP (blue)

light propagates along the z axis. The individual metamolecules are achiral, as indicated by the

mirror image. (b) shows the bulk metamaterial formed by translating the unit cell along the

x and y axes, which imposes structural chirality on the sample. The mirror image shows the

enantiomeric form of the metamaterial crystal. (c) shows a close-up photograph of a fabricated

toroidal metamolecule, whilst (d) shows the whole metamaterial sample after assembly.

3.4 Results

Here, we shall present a set of experimental and numerical results in support of the

hypothesis that the aforementioned chiral metamaterial structure exhibits toroidal

circular dichroism as a dominant scattering mechanism.

3.4.1 Metamaterial transmission

To fully characterise the chiral toroidal metamaterial structure, we begin by evaluating

the experimental transmission matrix in a linear basis ti,j [Eq. 3.2] where i, j = x, y.

This experimental characterisation was conducted using the methodology described

in Section 2.3 in a microwave anechoic chamber. Measurements of amplitude and

phase were taken for all polarisation components of metamaterial transmission over a

frequency range of 12.5-16.5GHz (wavelength range of 1.82-2.4cm), and were gated to

remove spurious reflections as per Section 2.3.3. The linearly polarised transmission

matrix ti,j was converted to a circularly polarised basis tα,β [Eq. 3.3] where α, β = +,−
using established transformations [Eq. 3.5].

To complement our experimental characterisation of the chiral toroidal metamaterial,

a full-wave simulation of the metamaterial response using a three-dimensional finite-

element solver (COMSOL 3.5a) in the harmonic domain. The full methodology is

described in Section 2.4.1. The simulations were conducted over a frequency range
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Figure 3.5: Transmission and dichroism of a chiral toroidal metamaterial. This

figure shows the experimentally measured (left column) and numerically calculated circular

transmission response of the toroidal metamaterial. (a-b) show the amplitudes of the circularly

polarised transmission t++ and t−−, while panels (c-d) show circular dichroism ∆. Results are

calculated using two different methods - finite-element simulation and multipole decomposition

of currents are shown by solid and dashed curves, respectively. Pink and navy bands mark the

resonances of corresponding conventional (ν1) and toroidal (ν2) circular dichroism, respectively.

of 12.5-16.5 GHz and utilised periodic boundary conditions to simulate an infinite

metamolcule array. The wires of the metallic loops were assumed to be infinitely thin

strips of perfect electric conductors. The permittivity of the dielectric medium was set

to εr = 3.45 − 0.007i, which corresponds to the Rogers TMM R© 3 dielectric laminate

used in fabrication of the sample [152]. From this analysis, the circularly polarised

transmission matrix tα,β for the simulated metamaterial can be obtained.

Circular dichroism ∆ is determined by the difference between direct circularly polarised

transmission coefficients i.e |t++|2−|t−−|2 [Eq. 3.4]. As such, Fig. 3.5(a) and (b) com-

pares the amplitudes of the direct circular polarisation transmission coefficients |t++|
and |t−−| of the (a) experimental and (b) numerical transmission matrices. The pres-

ence of circular dichroism is immediately clear from observing the difference between

the plots of |t++| and |t−−|. This is reinforced in Fig. 3.5(c) and (d) which explicitly

plots the circular dichroism from the experimental and numerical data respectively.

Good agreement is obtained between the experimental and numerical data, with dis-

crepancies arising due to fabrication tolerances, uncertainty in the permittivity of the

dielectric laminate, and use of infinitely thin PEC strips in the simulations.

Two clear resonances in the circular dichroism spectra are identified in both cases,

identified by the purple and pink bands. In the experimental data, these resonances

occur at ν1 = 14.6GHz and ν2 = 13.6GHz. In the numerical data, they occur at
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ν1 = 14.7GHz and ν2 = 14.1GHz. The magnitude of circular dichroism at ν1 and ν2

approaches ∼ 0.8 and ∼ 0.6 respectively.

3.4.2 Multipole analysis

Having confirmed that the chiral toroidal metamaterial exhibits circular dichroism

in both its experimental and numerical transmission response, it is now necessary to

evaluate the microscopic origin of this observed phenomenon in terms of the multipolar

charge-current excitations supported by the metamolecule. This will confirm if the

observed phenomenon can be considered conventional circular dichroism, or if the

mechanism of toroidal circular dichroism plays a role [Fig. 3.1].

The multipole moments were computed based on spatial distributions of the induced

conduction and displacement current densities extracted from the simulated meta-

molecule. These were evaluated up to octupole order for conventional multipoles and

the quadrupole order for toroidal multipoles from the integrals described in Section

2.2.1. Furthermore, following the methodology described in Section 2.4.2 we can di-

rectly link the multipolar excitations of the individual metamolecules to the far-field

response of the whole metamaterial array.

This yields a new transmission matrix t̃i,j , in which the individual matrix terms are

reconstructed from the the incident field and the far-field radiation of the excited

multipoles.

t̃i,j =

[
t̃xx t̃xy

t̃yx t̃yy

]
. (3.19)

This matrix can then be converted from linear to circular polarisation using Eq. 3.5.

The accuracy of this approach can be seen in Fig. 3.5, which compares the metamate-

rial transmission obtained directly from finite element simulations (solid curves), with

transmission calculated from multipole composition and the reconstructed transmission

matrix t̃i,j . A good match is achieved between the two methods, with discrepancies

likely arising due to the complexities of evaluating currents on infinitely thin PEC

strips

In Section 3.2.2 it was shown that the linear transmission matrix components txy

and tyx i.e. the linear conversion terms, can be regarded as a manifestation of the

observed circular dichroism in a linear basis. From Eq. 3.13 it can be seen that

circular dichroism will only exist for nonzero and nonidentical polarisation conversion

terms. We note that necessarily |txy| = |tyx|, as dictated by the symmetry of the

metamaterial with respect to the propagation direction (z-axis). As such we consider

the linear conversion terms of the reconstructed transmission matrix t̃xy and t̃yx and

examine the microscopic multipoles that contribute to these terms.
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Figure 3.6: Multipole transmission coefficients of chiral toroidal metamaterial. This

figure shows the amplitudes of the fields radiated by the four most dominant multipole compo-

nents (electric dipole p, magnetic dipole m, toroidal dipole T, and electric quadrupole Qe)

that contribute to the polarisation conversion response of the chiral toroidal metamaterial. (a)

shows the |txy| field amplitudes, and (b) shows the tyx field amplitudes.

Fig. 3.6 shows the multipole terms that contribute to t̃xy and t̃yx scattering from

the metamaterial. For clarity, only six multipole components have been displayed,

these being x components of electric p and magnetic m dipoles at ν1 and electric

quadrupole Qe and y components of electric, magnetic, and toroidal T dipoles at ν2.

Other multipole components are at least one order of magnitude smaller than these

dominant ones.

In agreement with the modeled circular dichroism data [Fig. 3.5], the resonances in

the multipole scattering occur at frequencies ν1 and ν2. Fig. 3.6 indicates a symmetry

to the linear conversion response as expected from the aforementioned |txy| = |tyx|
condition. However, the multipoles contributing to the same resonant features in

txy and tyx are different. This indicates that the observed circular dichroism can be

attributed to the simultaneous excitation of pairs of different multipoles. In particular,

at ν1 the dominant pair comprises electric and magnetic dipoles with collinear moments

- px and mx . Such a combination corresponds to the conventional mechanism of optical

activity and hence is considered as a reference case in our further analysis. At ν2,

however, the contributions of px and mx become only secondary, whereas the circular

dichroism appears to be underpinned by the previously unexplored combination of the

toroidal dipole Ty and electric quadrupole Qe. We also note a tertiary contribution at

ν2 from the py and my multipole pair.

The presence of these multipole pairs can be visually detected in the near-field distribu-

tions of electric and magnetic field inside the metamolecule when driven by circularly

polarised light. This can be examined using the finite-element simulations of the meta-

molecule, which provides specifically the near-field topology of the excitation. Fig. 3.7

illustrates the electric and magnetic fields in the near field of the simulated meta-

molecule when under excitation with LCP light. It si noted that as the cross-sections

are taken through the centre of the metamolecule wire loops, strong localised fields

within the splits in the wire loops are not visible.
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Figure 3.7: Near-field distributions of the chiral toroidal metamaterial at resonance.

This figure gives the near-field distributions of log|E| and log|H| around the simulated meta-

molecule when excited by LCP light at (a-b) ν1 and (c-d) ν2. The black arrows give the corre-

sponding E and H field direction. The green (blue) arrows show the orientation of the induced

electric (magnetic) dipoles for the individual rings.

At ν1 the field lines of both electric and magnetic fields are seen to align parallel to

the x axis, which indicates the presence of electric and magnetic dipolar excitations

in the metamolecule with the net dipole moments being collinear and oriented along

the x axis[Fig. 3.7(a)-(b)]. At ν2 the distribution of the electric field features a

pattern similar to that in Fig. 3.7(a) but with the field lines on the opposite sides

of the metamolecule aligned anti-parallel to each other [Fig. 3.7(f)], which represents

the anti-parallel electric dipoles indicative of an electric quadrupole excitation. The

magnetic field is confined within a well-defined ring-like area where the field lines

form a closed loop, threading through all individual resonators of the metamolecule

[Fig. 3.7(c)]. The magnetic field is rapidly vanishing outside of this region. Such

a magnetic-field configuration is unique to the toroidal dipolar excitation with a net

dipole moment aligned parallel to the axis of the metamolecule (y axis) and is formed

by poloidal currents flowing in the individual wire loops of the metamolecules.

3.4.3 Transmission matrix under rotation transformation

In the previous section we have identified the multipoles that are anticipated to be key

contributors to the circular dichroism of the metamaterial, which appear in symmetric

pairs in the linear conversion coefficients of the metamaterial transmission matrix

[Fig. 3.6]. It is important to determine whether this mechanism is independent of the

coordinate system chosen for the analysis.

To evaluate this we can apply a rotation transformation to the linear scattering matrix

[Eq. 3.2]:

R

[
txx txy

tyx tyy

]
RT = t′, (3.20)
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Figure 3.8: Multipole transmission coefficients of the chiral toroidal metamaterial

under rotation. (a) shows the formation of the new coordinate system (x′, y′, z) through a

rotation about the z-axis of the metamaterial structure. (b)-(e) show the amplitudes of the

fields radiated by the four most dominant multipole components (electric dipole p, magnetic

dipole m, toroidal dipole T, and electric quadrupole Qe) that contribute to the polarisation

conversion response as a function of rotation angle (0 → 360o). b) and c) show respectively

|txy| and |tyx| at ν1 = 14.7GHz. d) and e) show respectively |txy| and |tyx| at ν2 = 14GHz.

Where R represents the rotation matrix:

R =

[
cos (θ) sin (θ)

−sin (θ) cos (θ)

]
, (3.21)

Where θ is the angle of rotation. This gives a transmission matrix t′ in a new coordinate

system, defined by two orthogonal vectors offset from the original x and y-axes: (x′, y′).

This procedure is analogous to physically rotating the metamaterial in space i.e. a

rotation about the z-axis in Fig. 3.8(a). We note that under rotation of 90o, |t′yx| =

|txy| and |t′xy| = |tyx|. Similarly, under rotations of 180o, |t′yx| = |tyx| and |t′xy| = |txy|.

We apply this rotation scheme to our reconstructed transmission matrix [Eq. 3.19] at

the identified resonant frequencies ν1 and ν2. This yields the contributions of different

multipoles to the rotated linear conversion components t′xy and t′yx at resonance for

rotation angles of θ = 0→ 360o.
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From Fig. 3.6, we have identified the key multipole contributors to txy and tyx ra-

diation, these being the electric px and magnetic dipole mx components at the ν1

resonance, and the toroidal dipole Ty and electric quadrupole Qe components at the

ν2 resonance. It is anticipated that the dominance of these multipoles should be un-

changed under rotation of the coordinate system.

We first consider the effect of rotation at the ν1 resonance, illustrated in Fig. 3.8(b)

and (c). Necessarily for θ = 0o, t′xy = txy and t′yx = tyx, with the amplitude of

the multipole radiation being identical to that in Fig. 3.6. It can be seen that the

electric and magnetic dipole components are dominant across a full 360o rotation of

the transmission matrix. It can be seen that the traces in Fig. 3.8(b) and (c) are

identical except for a 90o phase shift between them, which reflects the fact that x and

y are orthogonal.

Under rotations where θ is a multiple of 90o, we find that t′xy and t′yx are dominated by

either electric or magnetic dipole radiation components, thus preserving the mechanism

for circular dichroism identified from Fig. 3.6 for these rotation angles. The situation

for other angles becomes more complex. This is a consequence of the principle axes

of the structure being aligned along the x and y directions and so for any coordinate

system not aligned with these, the role of anisotropy in the electromagnetic response

will increase. This can be seen in Fig. 3.8(b) at ≈ 150o where the electric dipole

response is strongest for t′xy, corresponding to the angle of greatest anisotropy.

A similar situation is observed at the ν2 resonance in Fig. 3.8(d) and (e). At 90o in-

tervals, t′xy and t′yx are dominated by either the electric quadrupole or toroidal dipole,

as anticipated from Fig. 3.6, but for other angles the increase in anisotropy compli-

cates the multipole response. Nonetheless, for coordinate systems aligned with the

principle axes of structure where anisotropy is minimised, it is clear that the multipole

contributions to t′xy and t′yx are invariant under rotation.

3.4.4 Eigenstate analysis

In the previous sections, we have provided qualitative evidence for the role of the

toroidal dipole-electric quadrupole mechanism in the circular dichroism of the chiral

metamaterial. Here we will seek to give a more quantitative description by analysis

of the elliptical eigenstates of the metamaterial. This approach will also address the

issue with separating circular dichroism from linear birefringence due to anisotropy

identified in the previous section.

In general, a metamaterial structure with a transmission matrix described by Eq. 3.3

will have two counter-rotating elliptical eigenstates, which satisfy the following relation:
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[
t++ t+−

t−+ t−−

][
A+e+

A−e−

]
= λ

[
A+e+

A−e−

]
, (3.22)

Where A+e+ and A−e− represent respectively the right and left handed components

of the eigenvectors, and λ represents the associated eigenvalue. The two eigenvectors

represent incident electromagnetic waves that can propagate through the metamaterial

without a change to their polarisation state. The polarization eigenstates can be

characterised in terms of their ellipticity angle ε using the following relation:

ε =
1

2
arcsin

(
|A+|2 − |A−|2

|A+|2 + |A−|2

)
, (3.23)

Where |ε| takes values between π/4 (circular polarization) and 0 (linear polarization).

A positive ellipticity angle defines right handed rotation, whilst a negative defines left

handed rotation.

We can identify two limiting cases. The first is where the ellipticity takes the maximum

value of ε = ±π/4. This corresponds to an optically active (chiral) medium with a

purely circularly polarised eigenstate. The second is when the ellipticity tends to 0,

represents a linearly birefringent (achiral) anisotropic media with a purely linearly

polarised eigenstate.

As demonstrated in the previous section, we can reconstruct the transmission ma-

trix of the chiral toroidal metamaterial entirely based on the radiated fields of the

excited microscopic multipoles [Eq. 3.19]. The eigenstate ellipticities obtained from

this multipole transmission matrix are shown in Fig. 3.9(a), in addition to traces

of the eigenstates at resonance. It can be seen that at both resonances ν1 and ν2

the metamaterial eigenstates are counter-rotating polarisation ellipses, indicating the

presence of both optical activity (circular dichroism) and linear birefringence (owing

to metamaterial anisotropy) phenomena in the structure.

Obtaining a multipole transmission matrix makes it possible to directly trace the source

of eigenstate ellipticity, and thus circular dichroism, to the independent multipoles.

This is achieved by subtracting the multipole contributions from the transmission

matrix coefficients and recalculating the ellipticity angles of the resultant eigenstates.

We note that from Eq. 3.13, circular dichroism is dependent on the difference between

the linear conversion terms of the transmission matrix, txy and tyx, and as such we

subtract multipole contributions from these components.

From Fig. 3.6, we have identified the key multipole contributors to txy and tyx ra-

diation, these being the electric px and magnetic dipole mx components at the ν1

resonance, and the toroidal dipole Ty and electric quadrupole Qe components at the
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Figure 3.9: Eigenstate ellipticities of the chiral toroidal metamaterial. This figure

shows the ellipticity angles of the metamaterial eigenstates and the associated polarization el-

lipses at ν1 and ν2, calculated based on the multipole expansion of microscopic charge-current

excitations supported by toroidal metamolecules. (a) shows the results obtained using the com-

plete multipole set. (b) and(c) show the results corresponding to pairs px-mx and Ty -Qe being

removed from the microscopic response of the metamaterial (solid curves) and compared to the

complete multipole response from (a) (dashed curves).

ν2 resonance. As such it it anticipated that these pairs of multipoles will be the pri-

mary contributors to the circular dichroism at these resonances. Subtraction of these

multipole pairs from the multipole transmission matrix should result in the term in

Eq. 3.13 (txy − tyx)→ 0, and so the circular dichroism ∆→ 0.

This subtraction of multipole pairs can be expected to be visible in the ellipticities of

the metamaterial’s polarisation eigenstates. In the absence of the multipole contrib-

utors to txy and tyx, it is anticipated that the ellipticities of the eigenstates will tend

towards zero, corresponding to an achiral material, indicating explicitly the contribu-

tion of the multipoles to circular dichroism.

We first examine the case of the ν1 resonance by removing the contributions of px and

mx from the transmission matrix and evaluating the modified polarisation eigenstates.

The ellipticities of the new eigenstates are shown in Fig. 3.9(b). It can be immediately

seen that this leads to a decrease in |ε| to approximately π/60 for both eigenstates.

This is reinforced by the eigenstate traces which depict how the elliptical polarisations

collapse to an almost linear state in the region of ν1. This significant transition towards

a purely anisotropic response confirms that on the microscopic level the observed cir-

cular dichroism at ν1 results from electric and magnetic dipole scattering induced in

the metamolecules.
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We now utilise the same approach for the ν2 resonance, subtracting the contributions

of Ty and Qe. The ellipticities of the new eigenstates are shown in Fig. 3.9(c). A

similar effect is observed, with |ε| decreasing to approximately π/30, with the eigenstate

traces showing a collapse towards a linear state in the region of ν2. This supports our

hypothesis that the circular dichroism observed at ν2 is underpinned primarily by the

resonant combination of the toroidal dipole and the electric quadrupole.

We note that magnitude of ellipticity change in Fig. 3.9(c) is smaller than in Fig.

3.9(b). This can be attributed to contributions from px and mx which, whilst only

dominant at ν1, are non-negligible at ν2 [Fig. 3.6]. It can be seen that the y-aligned

components py and my also play a non-negligible role. Nonetheless, it is clear that the

combination of the toroidal dipole and electric quadrupole represents the dominant

mechanism.

3.5 Summary

In this chapter, experimental and numerical investigations of a structurally-chiral meta-

material have been conducted. The metamaterial is observed to exhibit strong circular

dichroism and a resonant toroidal dipolar response. Analysis of the fields scattered

by the charge-current multipoles induced in the metamolecules and the polarization

eigenstates of the system reveals that the metamaterial exhibits both the conventional

mechanism of circular dichroism by way of electric and magnetic dipole transitions

and a previously unobserved form of circular dichroism, underpinned by the resonant

excitation of the toroidal dipole and electric quadrupole.

We note that metamaterial structures have been utilized to replicate many phenom-

ena which occur in natural media with metamolecules being analogous to molecules

and conduction currents being analogous to displacement currents and polarization.

Hence, this observed multipole combination is anticipated to be the cause of (or at

least strongly contribute to) circular dichroism in many other material systems with

toroidal topology, such as large molecules commonly encountered in chemistry and

biology where optical activity is directly linked to the topology of the whole molecule.

Examples of such structures include the hexa-arylbenzenes and chiral gold nanoparti-

cles shown in Fig. 3.2 which have been shown to exhibit circular dichroism, but have

not had the microscopic origin confirmed.

It is important to note that the new form of circular dichroism identified here is un-

derpinned by toroidal dipole and electric quadrupole excitations. It is anticipated that

simultaneous excitation of the toroidal dipole and magnetic dipole will also lead to a

form of toroidal circular dichroism, that would be directly analogous to the conven-

tional mechanism of electric and magnetic dipoles [Fig. 3.1]. Although this mecha-

nism of toroidal circular dichroism is yet to be observed, there is potential for it to be
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observed in helical molecules which would support co-aligned magnetic and toroidal

dipoles.





Chapter 4

Interaction of toroidal scatterers

with structured beams

4.1 Introduction

In the context of the previous chapter, and in general the observations of dynamic

toroidal excitations as a whole, the dominant approach has been to consider careful

engineering of the structure in order to suppress electric and magnetic modes whilst

enhancing the toroidal response. Whilst this has led to the successful observation of

toroidal responses in a variety of regimes (see Chapter 1), fabrication of structures that

support such responses becomes more difficult to achieve at smaller scales. As such,

there has been recent interest in obtaining toroidal responses from more structurally-

simple systems, for example simple core-shell nanoparticles [120], nanowires [122], and

dielectric discs [51].

Here an alternative approach is considered - in contrast to engineering of the meta-

molecules with a complex design, structured light is utilised to excite a toroidal re-

sponse, relying on more complex topologies of the incident light field to drive toroidal

dipoles.

Our interest lies with radially polarised beams, in which the E-field polarisation is

directed along the ρ̂ unit vector. This polarisation distribution Eρ can be readily

obtained by the superposition of two orthogonally polarised TEM01 Laguerre-Gaussian

modes [153]. Radially polarised beams are subset of the larger family of cylindrical

vector beams, which also includes azimuthally polarised light and more complex beam

arrangements such as those with orbital angular momentum. Destructive interference

between anti-parallel E components as ρ → 0 results in the Eρ-field vanishing in the

center of the beam. This drop in beam intensity as ρ→ 0 gives the beam’s transverse

cross-section a “doughnut” profile. Although the radial fields vanish as ρ → 0, there

still exists on-axis E-field components aligned along the direction of propagation.

Cylindrical vector beams have been the subject of increasing research owing to their

51
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polarisation properties and small focal spot size [154, 155], which has led to a variety

of applications in nanophotonics and plasmonics [156,157]. The potential applications

of cylindrical vector beams makes a means of interacting with and controlling them

highly desirable. Metamaterial structures provide a platform for engineering such an

interaction, with several structures having been suggested in the literature [158, 159].

However, little attention has been given to the response of individual metamolecules

to incident radially polarised light, and consequently, what the optimum microscopic

excitation is for interaction.

The toroidal dipole appears to be a prime candidate for optimum interaction. The

current distribution of a toroidal dipole necessarily requires radial currents i.e. J·ρ̂ 6= 0,

which would be readily excited by Eρ of a radially polarised beam. Furthermore, a

radially polarised beam possesses an azimuthal H-field, which is analogous to the

near-field magnetic field distribution of a toroidal dipole. Recent work by Bao et al

has demonstrated the viability of using radially polarised light to excite toroidal dipole

responses in a simple metal-dielectric-metal sandwich nanostructure [121].

Here, we seek to explicitly demonstrate that the toroidal dipole provides a superior

means of interacting with radially polarised light when compared to the conventional

multipoles. The theme here of driving toroidal resonances with structured light shall

form the basis for discussions in later chapters of this thesis. As radial electric fields

are not conducive to magnetic excitations, we neglect comparison with the magnetic

multipole family and focus on the electric dipole, which shares an identical far-field

radiation pattern to the toroidal dipole (see Appendix B) [44,52].

4.2 Simulations

4.2.1 Defining a radially polarised incident beam

We can begin by considering the scalar field distribution of two TEM01 Laguerre-

Gaussian modes, with orientation along the x and y axes respectively. The scalar field

distributions are given by:

Ex(r, φ) = E0
r

w
exp

(
−r2

w2

)
cos(φ), (4.1)

Ey(r, φ) = E0
r

w
exp

(
−r2

w2

)
sin(φ), (4.2)

Where r and φ represent the cylindrical coordinates, and w represents the width of the

beam waist. The summation of these two scalar fields when given orthogonal vector
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Figure 4.1: Simulation of a radially polarised beam.(a) illustrates the construction of

a radially polarised beam from TEM01 Laguerre-Gaussian modes. The arrows indicate the

E-field orientation. (b) shows the energy density of a radially polarised beam for different

slices through the simulation domain. The beam propagates from left to right and takes the

characteristic doughnut topology of radially polarised light. The scatterers under investigation

are placed in the center of the simulation domain.

orientations leads to the formation of either azimuthally or radially polarised light.

The summation required for radially polarised light is given below:

Er(r, φ)r̂ = Ex(r, φ)x̂+ Ey(r, φ)ŷ. (4.3)

This procedure is illustrated in Fig. 4.1(a) which illustrates the formation of a radial

polarisation distribution from the addition of TEM01 modes. Fig. 4.1 illustrates the

subsequent generation of a radially polarised beam (ν = 26GHz) in a full 3D COMSOL

simulation, propagating through a cylindrical domain 3cm in length. The beam is well

confined within the doughnut-shaped region and undergoes diffraction in the expected

manner for a Laguerre-Gaussian beam. The scatterer under interrogation shall be

placed in the center of the simulation domain. We note that in general, radially

polarised beams also possess a longitudinal field component, that has a magnitude

dependent on how well collimated the beam is. We do not define this longitudinal field

in the boundary specifications of the model, but instead allow it to arise as a necessary

consequence of Maxwell’s equations in the solver.

4.2.2 Design and optimisation of toroidal scatterer

The design for the T-scatterer consists of two perfect electrical conductor (PEC) ‘+’

elements with bar length s and width w, with s� w [Fig. 4.2]. The width w is chosen

to be 0.5mm length s is chosen to be 1cm, which should support λ/2 resonances in

each spoke of the ‘+’ element in the ∼30GHz regime i.e. ν0 = 30GHz, λ0 = 1cm. The

two ‘+’ elements are separated by a dielectric spacer of thickness d and refractive index

n = 1.73 + 0.0011i corresponding to a circuit board laminate typically used for fabri-
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Figure 4.2: Schematic of the T -scatterer design. This figure gives a schematic of a radially

polarised beam propagating along the z axis interacting with a T -scatterer. The expected B

field and resultant toroidal dipole T excited on the scatterer are illustrated. The inset gives the

characteristic parameters of the T -scatterer: the length s and width w of the ‘+’-shaped bars,

and the dielectric thickness d.

cation of GHz-scale metamaterials. The dielectric layer acts to facilitate displacement

currents between the two ‘+’ shaped elements, which complete the poloidal current

configuration necessary for toroidal dipolar excitation. It is orientated such that the

‘+’ lies perpendicular to the propagation axis (z-axis) of an incident radially polarised

beam and centered at xy = 0.

This configuration should allow for maximum coupling of the scatterer to incident

radially polarised light, leading to a toroidal dipole orientated along the z-axis [Fig.

4.2]. It is anticipated that two other multipole components shall be prevalent in the

excitation spectrum of this scatterer. It is expected that there will be accumulations of

charge at the center of each ‘+’ shaped element, due to the convergence and divergence

of radially-orientated currents. At resonance, these accumulations of charge will be

opposite and as such will result in a z-aligned electric dipole at the center of the T -

scatterer. This will also be facilitated by z-aligned displacement currents across the

center of the T -scatterer, driven by the longitudinal field component of the radially

polarised beam. This electric dipole can be expected to occur simultaneously with a

toroidal dipole resonance.

It is not anticipated that the magnetic multipoles will play a significant role in the

excitation of the T -scatterer. This is due to the radial E-fields of the incident light

and the geometry of the scatterer, which shall not facilitate the transverse currents

(r× J 6= 0) required for magnetic multipole excitation.

The characteristic dimensions of the T -scatterer (w, s and d) gives a broad parameter

space to evaluate for the optimum T -scatterer configuration. Providing s� w, varying

s will essentially only affect the resonant frequency of the T -scatterer. This leaves the

dielectric thickness (‘+’ element separation) d as the most influential parameter in

optimising the response scatterer.
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Figure 4.3: Optimisation of the T -scatterer. (a) shows the dependence of the peak scat-

tering intensity of the toroidal dipole (I
(max)
T ) excited in the T -scatterer on the thickness of the

dielectric layer d. (b) shows the equivalent dependence of the resonant frequency of the toroidal

dipole ν0(I
(max)
T ). The dots indicate data points whilst the lines serve as eye guides. The d

value for which the maximum toroidal dipole scattering is attained is indicated by the dotted

line.

Optimising is conducted over a range of d values: d = λ/100 → λ/2 i.e. d = 0.1 →
5mm. T -scatterers with different d values are evaluated in COMSOL Multiphysics

under excitation from radially-polarised light over a frequency range of ν = 20 →
32GHz. Using the integral formulation described in Section 2.2.1, the microscopic

multipoles excited in the T -scatterer can be evaluated. As a metric for the optimisation

of the scatterer, the scattering power of the toroidal dipole at resonance I
(max)
T is

chosen [see Eq. 2.2.2], which we aim to maximise through varying d. This scattering

intensity is normalised to the power incident on the scatterer from the incident radially

polarised beam. The effect of varying d on the resonant frequency of the toroidal dipole

ν0(I
(max)
T ) is also evaluated.

The effect of d on the maximum value of the toroidal dipole scattering intensity I
(max)
T

and the resonant frequency are shown in Fig. 4.3(a) and (b) respectively. I
(max)
T

does not vary significantly as d is decreased from 5 to 1mm, approaching a maximum

value for d = 1mm i.e. d = λ/10. For smaller d values, I
(max)
T drops off rapidly with

decreasing separation. This can be attributed to a combination of the T -scatterer

becoming two dimensional in the xy plane as d → 0 [107], dissipation loss in the

substrate, and the finite width of the wires [160].

The peak frequency of the toroidal dipole resonance ν0(I
(max)
T ) on the other hand

gradually decreases as d is decreased from 5 to 1mm, before decreasing rapidly as d→ 0.

The observations presented here are in good agreement with previous results on the

effect of plane separation on the toroidal dipole resonance in similar structures [161].

4.2.3 Design of electric dipole scatterer

For comparison with the toroidal T -scatterer, we construct a p-scatterer optimised for

an electric dipole response when excited by radially polarised light. The p-scatterer is

constructed from the elements used to create the T -scatterer. A PEC bar of length s/2
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Figure 4.4: Schematic of the p-scatterer design.This figure gives a schematic of a radially

polarised beam propagating along the z axis interacting with a p-scatterer. The expected B

field and resultant electric dipole p excited on the scatterer are illustrated. The inset gives the

characteristic parameters of the p-scatterer: the length s/2 and width w of the bar, and the

dielectric thickness d/2. These parameters are given relative to those of the T -scatterer in Fig.

4.2.

and width w forms the main component of the scatterer, with this corresponding to

one arm of the T -scatterer. This bar should support a λ/2 resonances in the ∼30GHz

regime i.e. ν0 = 30GHz, λ0 = 1cm. It can be noted that in the limit of s� w, w shall

not have a significant effect on the resonant frequency of the structure. The PEC bar

is backed by a layer of dielectric with a thickness d/2. Parameters used here w, s, and

d are identical to those used in the previous section for the T -scatterer, with d being

chosen as 1mm, representing the optimised d value for the T -scatterer.

The p-scatterer is orientated such that its primary axis lies along the propagation

direction of the radially polarised beam [Fig. 4.4]. In this orientation, the p-scatterer

is not expected to couple strongly to the radially polarised component of the incident

light, which is necessarily zero on-axis [Fig. 4.1]. However, radially polarised light also

supports on-axis polarisation components aligned along the beam propagation axis. It

is anticipated that these longitudinal polarisation components should couple strongly

to the p-scatterer in this orientation, resulting in an electric dipole along the z-axis

[Fig. 4.4].

This excited electric dipole shall be co-aligned with the toroidal dipole excited in the

T -scatterer when under the same illumination. As such, in the ideal case both T and

p-scatterers will possess an identical far-field radiation pattern, due to the identical

nature of the electric and toroidal dipole radiation. This would make the two scatterers

indistinguishable from an examination of the far-field radiation alone. However, it is

expected that differences in the near-field coupling could manifest as differences in the

frequency response of the scatterers.

The response of the p-scatterer is examined in the same manner as the T -scatterer in

the previous section, across a frequency range of of ν = 20→ 32GHz.
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4.3 Comparison of scatterers

Here, the T -scatterer and the p-scatterer shall be directly compared to evaluate the

differences in their coupling to incident radial polarisation. This shall be done in

terms of evaluation of the excited microscopic multipoles, and the far-field radiation

distributions of the scatterers.

4.3.1 Multipole scattering

The multipoles excited in the optimised T and p-scatterers are computed using the

integrals in Section 2.2.1 and the scattering intensity of the multipoles is evaluated

from these using Eq. 2.2.2 in the same section. The multipole scattering intensities

up to quadrupole order are shown in Fig. 4.5(a) and (b) for the T and p-scatterers

respectively, with higher order multipoles being omitted due to their negligible con-

tribution to the scattering. The presented scattering intensities are normalised to the

power incident on the scatterers.

It is immediately clear from 4.5(a) and (b) that the resonance characteristics of the

two scatterers are very different. The T -scatterer supports a sharp, narrow toroidal

dipole resonance with a Q-factor of 124 at ν = 26.6GHz. In contrast, the electric

dipole resonance of the p-scatterer is much broader with a Q-factor of 5.

In the case of the T-scatterer [Fig. 4.5(a)], it can be seen that the toroidal dipole ac-

counts for ∼ 96% of the multipole scattering with the next most significant contributor

being a non-resonant electric quadrupole. An electric dipole, aligned primarily along

the z-axis of the structure is also excited at the same frequency as the toroidal dipole

resonance. This can be attributed to accumulations of opposing charge at the centers

of the two ‘+’ elements and displacement currents in the dielectric. In the p-scatterer

[Fig. 4.5(b)], the electric dipole accounts for > 99% of the multipole scattering. The

next most dominant multipole scatterer at this resonance is the toroidal dipole. Whilst

this may seem counter-intuitive considering the geometry of the scatterer, the relevance

of toroidal dipoles to structures with non-toroidal geometry, such as simple wires, has

been discussed in the literature [122].

The dominant toroidal dipole of the T -scatterer and dominant electric dipole of the

p-scatterer are directly compared in Fig. 4.5(c). This emphasises the difference in Q-

factor of the two resonances. Furthermore, at their respective resonances, the toroidal

dipole scattering from the T -scatterer is ∼ 4 times greater than the electric dipole

scattering from the p-scatterer. This indicates that radially polarised light couples

significantly more strongly to a T -scatterer than a p-scatterer.

The dominance of the multipoles excited in the respective scatterers can be further

emphasised by considering the field distributions in the near-field of the scatterers
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Figure 4.5: Excited multipoles and near-field of the T and p-scatterers. (a) and (b)

show the multipole scattering intensities up to quadrupole order for the T and p-scatterers

respectively for a dielectric thickness d of 1mm. The green and blue boxes indicate the resonant

positions of the toroidal and electric dipole respectively. (c) directly compares the dominant

multipole resonances excited on each scatterer, these being the toroidal dipole for the T scatterer

and the electric dipole for the p-scatterer. (d) and (e) show the near-field distribution of the

magnetic field around the T and p-scatterers respectively, with the arrows giving the vector

orientation of the field.

[Fig. 4.5(d) and (e)]. Both T and p-scatterers show a magnetic field distribution in

teh azimuthal direction around the scatterer, as expected for an electric or toroidal

dipole excitation. However, it can be seen that in Fig. 4.5(d), the intensity of the

magnetic field decays rapidly outside the confines of the T-scatterer, which illustrating

the weak coupling to the environment suggested by the high Q-factor resonance. Such

confinement of the azimuthal magnetic field is a clear indicator of a toroidal dipole

excitation, supporting the multipole scattering intensity analysis in Fig 4.5(a). In con-

trast, in Fig. 4.5(e) the magnetic field extends far from the p-scatterer, corroborating

the evidence for a dominant electric dipole excitation.
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4.3.2 Far-field radiation

As already noted in Section 2.1.3, the far-field radiation patterns of the electric and

toroidal dipoles are identical. Therefore, we anticipate that the far-field radiation

patterns of the T and p-scatterers at resonance should be near identical, despite the

microscopic origin of this radiation being two fundamentally different excitations. To

verify this, we use the excited currents to reconstruct the radiated E and B-fields, and

Poynting vector S of the p and T -scatterers at their respective resonances.

From Fig. 4.5(a) and (b), the key excitation components of the T -scatterer are the

toroidal dipole T , electric dipole p, and electric quadrupole Q. The p-scatterer addi-

tionally has a non-negligible magnetic dipole m component. As such, these multipole

components are used to reconstruct the radiation patterns of the scatterers in order

to characterise the perturbing effects of the non-dominant multipoles on the dominant

dipole radiation.

In the far-field, the radiated electric fields for p, m, T , and Q in the far-field are given

by the following equations:

Ep(r) =
k2c

4π

√
µ0
ε0

(
eikr

r

)
(r̂× p)× r̂, (4.4)

Em(r) = −k
2c

4π

√
µ0
ε0

(
eikr

r

)
(r̂×m) , (4.5)

ET (r) =
ik3c

4π

√
µ0
ε0

(
eikr

r

)
(r̂×T)× r̂, (4.6)

EQ(r) =
−ik3c
24π

√
µ0
ε0

(
eikr

r

)
(r̂×Q)× r̂. (4.7)

A full derivation of these radiated fields is given in Appendix B. The radiated magnetic

fields can be readily obtained from these using [9]:

H =

√
ε0
µ0

r̂×E. (4.8)

The radiation pattern can be evaluated from the radial component of the time-averaged

Poynting vector S [9]:

Sr =
1

2
(E×H∗)r , (4.9)

Where E and H are summations of the individual multipole electric and magnetic

fields.

The Poynting vector is evaluated for both T and p scatterers at a on a sphere of radius

r = 1m, which can be considered the far-field given the mm-scale of the scatterers.
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Figure 4.6: Far-field radiation patterns of the T and p-scatterers. This figure illustrates

the radiation distributions of the T and p-scatterers given in terms of the radial component of

the Poynting vector <(Sr) at a radial distance of 1m from the respective scatterers. The upper

panels depict the full three dimensional radiation patterns in terms of Sx, Sy, and Sz, whilst

the lower panels give the cross-sections at Sx = 0. (a) shows the far-field radiation distribution

emitted from the T -scatterer at the toroidal dipole resonance ν0(I
(max)
T ) = 26.6GHz.(b) shows

the far-field radiation distribution emitted from the T -scatterer off-resonance at ν = 30GHz.

(c) shows the far-field radiation distribution emitted from the p-scatterer at the electric dipole

resonance ν0(I
(max)
p ) = 24.6GHz. All values are normalised to the maximum value of <(Sr)

for the T -scatterer.

The real part of the radial Poynting vectors <(Sr) are plotted in Fig. 4.6. The

radiation pattern of the T -scatterer is evaluated both at the toroidal dipole resonance

(ν = 26.6GHz) [Fig. 4.6(a)] and off-resonance (ν = 30GHz) [Fig. 4.6(b)] where the

electric quadrupole has become the dominant excitation. In the case of the p-scatterer,

the electric dipole is dominant across the full frequency range considered, and so the

radiation pattern is only evaluated at resonance (ν = 24.6GHz) [Fig. 4.6(c)].

For the T -scatterer [Fig. 4.6(a)] at resonance, the doughnut-like radial Poynting vec-

tor distribution is typical of dipole radiation, as expected owing to the dominance of

a z-aligned toroidal dipole at resonance [Fig. 4.5(a)]. We note that there exists a

slight asymmetry to the radiation distribution, with a slight bias towards the positive

Sz direction. This can be attributed to contributions from the non-resonant elec-

tric quadrupole, which slightly perturb the dominant dipole radiation. Owing to the

high Q-factor of the toroidal dipole resonance, the T -scatterer only exhibits dipole-

like radiation across a narrow frequency range. Outside of this frequency range, the
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electric quadrupole becomes the dominant excitation [Fig. 4.5(a)], leading to a typi-

cal quadrupole radiation pattern when the T-scatterer is off-resonance [Fig. 4.6(b)].

For the p-scatterer [Fig.4.6(c)], the observed radiation distribution is electric dipole in

character, as expected from the scattering intensity analysis [Fig. 4.5(b)]. We note

that all radiation patterns are symmetric about the φ direction to within noise levels.

From this analysis, it can be said that the two scatterers would be very difficult to

distinguish in the far-field by their radiation patterns alone. However, the two scatter-

ers can be identified by an examination of their frequency response, which is radically

different for the two examined scatterers.

4.4 Summary

The T -scatterer exhibits a significantly higher quality resonance that couples more

strongly to the incident field than the broadband p-scatterer resonance. This is can

be examined in the context of antennas. In general, an electric dipole antenna is

limited in both minimum [162–164] and maximum [165] Q-factor, with the geometry

of the configuration being the primary consideration. Work by Hazdra et al [165]

demonstrates that, for a w
λ ratio of ∼ 4.1 × 10−3 as in the case of our p-scatterer,

the maximum Q-factor is ∼ 4.7. This is in good agreement with our simulations [Fig.

4.5(c)], with discrepancies arising due to our choice of a 2D rather than 3D wire.

The T -scatterer design using the same thickness of wire however, can substantially

surpass this Q-factor limitation by a factor of 25, whilst maintaining an identical far-

field radiation pattern. As such, we present the interaction between radially polarised

light and toroidal scatterers as a means of achieving a far-field electric dipole radiation

pattern that exceeds the conventional limitations on Q-factor.

The work presented here demonstrates the benefits of matching the topology of the

illuminating light to the topology of the scatterer, a topic which we shall expand upon

in the following chapter. It is explicitly demonstrated that the toroidal dipole couples

strongly to radially polarised light. This could be expanded upon by considering more

complex vector beams, for example beams with orbital angular momentum.





Chapter 5

The “focused doughnut” pulse

5.1 Introduction

In this chapter, we move from discussing toroidal excitations in matter to discussing

propagating toroidal excitations in free-space. Specifically, these propagating toroidal

excitations are exact pulse solutions to the homogeneous Maxwell’s equations intro-

duced by Hellwarth and Nouchi in 1996 [20] and are known as“focused doughnut”

pulses.

Conventionally, free-space electromagnetic propagation is described in terms of plane-

waves i.e. non-diffracting infinite energy solutions to Maxwell’s equations [9], or

diffracting beams such as Gaussian beams, which are solutions to the paraxial form

of Maxwell’s equations in free-space [166]. In 1983 however, Brittingham introduced

the concept of focus wave modes - exact three-dimensional solutions to Maxwell’s

equations representing localised transmission of electromagnetic energy through free-

space [167]. It was anticipated that the creation of such electromagnetic pulses would

lead to a variety of novel applications based on complex light-matter interactions.

These include infinite depth-of-field microscopes, low-loss power transmission, secure

communications, remote sensing and directed energy weapons [124]. From a theoret-

ical standpoint, a full description of localised EM energy transmission would satisfy

Brittingham’s original goal of obtaining a classical description of a photon i.e. a finite

energy solution to Maxwell’s equations exhibiting wave-particle duality [124,167].

Since Brittingham’s original work on the concept of focus wave modes in 1983 [167],

many families of pulses that satisfy the criteria for localised transmission of electro-

magnetic energy have been theoretically identified. Broadly speaking, these pulses

remain diffractionless and localised over large distances of propagation, are space-time

non-separable and possess a wide range of novel properties, such as complex field ge-

ometry, explicit single cycle nature, and spatiotemporal transformations [20,168]. Our

key interest lies in the electromagnetic directed energy pulse train (EDEPT) family

of solutions introduced by Ziolkowski in 1989 [124], of which the “focused doughnut”

pulse is a member.

63
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The primary interest in the “focused doughnut” pulse stems from its direct topolog-

ical similarities to the localised toroidal excitations in matter, characterising it as a

free-space analogue of the toroidal multipoles. This similarity is anticipated to mani-

fest as preferential excitation of toroidal modes in light-matter interactions involving

“focused doughnut” pulses, which could be exploited for spectroscopy, sensing and

communication applications.

Although the field of localised pulses has recieved significant theoretical discussion, ex-

perimental realisation has been limited. Demonstration of X-shaped pulses [169] and

Airy-Bessel pulses [170] have been some of the first successes. However, experimental

realisations of the EDEPT solution family, including the “ focused doughnut” pulse,

have remained elusive with research confined to qualitative discussion [168, 171–173],

preliminary work [174], analogies with observed terahertz pulses [175–178] and acous-

tic analogues [179,180]. As such, the research presented here aims to lay a foundation

for an experimental realisation of the “focused doughnut” pulses, in addition to high-

lighting their light-matter interactions that may be relevant to future applications.

In this chapter, a thorough theoretical background for the “focused doughnut” pulse

shall be given, with its key properties identified and investigated. It shall be demon-

strated that these pulses can be effectively simulated in commercial simulation soft-

ware. Finally, the interactions of these pulses with continuous and particulate matter

shall be numerically investigated, with particular attention to drawn to their coupling

to toroidal modes in matter.

5.2 History of localised electromagnetic pulses

5.2.1 Conventional solutions to the electromagnetic wave equation

The form of free-space, source-free EM fields is determined by solving Helmholtz’s

wave equation:

(
∇2 − 1

c2
∂2

∂t2

)
f(r, t) = 0, (5.1)

Plane waves of the form ei(kr−ωt) are the simplest solution to the wave equation, but

are non-physical due to their infinite spatial extent and thus infinite energy [9]. Plane

waves however are useful approximations in cases where the wavelength is significantly

larger than the region of interest, or when the region of interest is suitably far from a

source, where wavefront curvature can be neglected. Solutions that are more useful for

describing real phenomena, particularly in the context of optics and laser physics, can

be found by adopting the paraxial approximation of the Helmholtz equation, which

assumes the longitudinal distribution of a wave pulse is slowly varying compared to
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the wavelength. This leads to wave solutions in the form of Gaussian and paraboloidal

beams/pulses [9].

5.2.2 Localised electromagnetic beams and pulses

The search for localised electromagnetic beams and pulses was motivated by the phe-

nomenon of diffraction, which significantly affects the transverse profile of conventional

beams and pulses when propagating [166]. A Gaussian beam for instance with width

at waist of order one wavelength, will have doubled it’s width after propagation of

only a few wavelengths. It was generally believed that the plane wave was the only

waveform free of diffraction [166].

In 1941 Stratton introduced a monochromatic solution to the wave equation with a

transverse profile defined by a Bessel function [181]. This solution was known as a

Bessel beam and can be thought of as a series of plane waves propagating with non

zero radial wavevectors kr. This property means an ideal Bessel beam can propagate

for an infinite distance without undergoing diffraction and will also possess self healing

properties if the path of the beam is interrupted.

However, an ideal Bessel beam requires an infinitely wide aperture to be created and

thus possesses infinite energy [166]. Approximations of Bessel beams can be produced

experimentally by use of an axicon with a truncated finite aperture [166, 184, 185]. It

was found that the beam could travel approximately 28 times further than a Gaus-

sian beam before its transverse intensity peak is appreciably changed [166, 184], rep-

resenting a real example of a non-diffracting beam. Bessel beams have since been

produced from several mechanisms such as computer generated holograms [186, 187]

and transformation optics waveguides [188], and have been found particularly useful

for optical tweezer applications [189]. Other diffractionless beams, such as Mathieu

beams [190,191], which are comparable to Bessel beams have also been introduced.

In the same way that plane waves can form a basis function to synthesise Gaussian

beams and pulses, Bessel beams can be used to synthesise further types of pulses.

This has given rise to the so-called X-wave solutions to the wave equation, which are

formed by a superposition of Bessel beams with the same phase velocity (i.e. same

axicon angle) [Fig. 5.1(a)] [166, 169, 192] formed by a summation of Bessel beams.

These represent some of the first examples of truly localised wave packets being ex-

perimentally realised [169] and have shown interesting properties such as propagation

through dispersive media without distortion [192].

Recently there has been significant interest in combining Bessel beams with a variety of

pulse envelopes as a means of achieving localised wavepackets. Much interest has been

given to Airy profiles for beams, which have already attracted considerable interest due

to properties of finite energy and the ability to accelerate along arbitrary trajectories
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Figure 5.1: Examples of localised pulses. This figure gives some examples of localised pulse

solutions that have been examined in the literature, either experimentally or numerically. (a)

shows the field of a localised X-shaped pulse formed by a superposition of Bessel beams. Figure

adapted from [166]. (b) illustrates the construction of a localised Airy-Bessel wave packet, with

a transverse Bessel profile and temporal Airy profile. Figure adapted from [170]. (c) depicts

the first theroetically-identified EDEPT pulse solution, known as the modified power spectrum

pulse. Figure adapted from [124]. (d) gives a further example of an EDEPT pulse solution,

this one known as the “focused pancake” pulse. Figure adapted from [182]. (e) shows an

EDEPT pulse solution constructed with an azimuthal dependence, that gives the pulse a non-

zero angular momentum. Figure adapted from [183]. (f) shows an ultrasonic localised acoustic

pulse generated in water by a synthetic line array. Figure adapted from [179].

[193, 194]. Using a combination of phase masks and axicons, Airy-Bessel light pulses

can be produced that represent localised wavepackets that are non significantly affected

by either diffraction or dispersion due to their self-healing properties [Fig. 5.1(b)] [170].

Other types of pulse based on this methodology have also been considered, such as

Gauss-Bessel, Airy-Gauss, and Airy-Airy pulses [193,195].

5.2.3 Focus wave modes and electromagnetic directed energy pulse

train (EDEPT) solutions

In this section, the methodology introduced by Brittingham and extended by Zi-

olkowski for constructing localised finite energy pulse solutions to Maxwell’s equa-

tions shall be discussed in detail. This methodlogy forms the theoretical basis for the

construction of the “focused doughnut” pulse.

In Brittingham’s 1983 paper on focus wave modes [167], the criteria for a 3D, non-

dispersive, source-free, classical EM pulse are written as follows:

1. Must satisfy the homogenous Maxwell’s equations
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2. Be continuous and non-singular

3. Have a 3D pulse structure

i.e. functional values fall off in all directions from the moving pulse centre.

4. Be non-dispersive for all time

i.e. the pulses’ envelope shape remains unchanged after propagation.

5. Move at light velocity in straight lines

6. Carry finite energy

The final requirement ensures that any resultant pulse forms are practical and applica-

ble. Brittingham’s pulse solutions were subsequently shown not to satisfy this crucial

final condition [196]. It was shown by Ziolkowski that Brittingham’s original focused

wave mode solutions represent modified Gaussian pulses [124, 197]. The form of this

pulse is given below:

φk(r, t) =
e(−kρ

2/V )

4πiV
eik(z+ct), (5.2)

Where 1/V = 1/A−i/R, A = z0+τ2/z0, R = τ+z20/τ and τ = z−ct. A represents the

pulse spread and R represents the radius of curvature of the phase fronts. The param-

eter z0 represents the complex source location of the pulse at (ρ, τ) = (0, iz0) [197].

This is known as the moving, modified Gaussian pulse (MMGP). It is immediately

clear that the presence of both z + ct and z − ct terms in the equation for the MMGP

means this pulse is bidirectional. In fact, generalised solutions to the scalar wave equa-

tion can be expressed in terms of such bidirectional functions [166]. A superposition of

forward propagating Bessel beam modulated by backwards propagating plane waves is

such a decomposition [166]. Work such as that by Ziolkowski [124], demonstrated that

localised pulse solutions could be ‘tweaked’ to ensure that the backwards propagating

components of the pulse are negligible, and only the forward propagating components

contribute to the resultant pulse.

The MMPG propagates through space with only local deformations but possesses in-

finite energy. The same conclusions were drawn for extensions of the MMPG utilising

Hermite [198] and Laguerre [199] polynomials, analogous to conventional Hermite-

Gaussian and Laguerre-Gaussian modes. However, it was realised by Ziolkowski that

the fundamental MMGP can be used as a basis equation to form new transient solu-

tions to the scalar wave equation (equation 5.1) [124]. Due to the localised nature of

the MMGP, it is clear that it is better suited for describing directed EM energy trans-

mission than plane wave summations using the conventional Fourier approach [124].
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Transient solutions are achieved by integration of the basis functions over a carefully

chosen weighting function F (k):

f(r, t) =

∫ ∞
0

φk(r, t)F (k)dk. (5.3)

By integration of equation (5.3) with the modified power spectrum (MPS) chosen as

F (k), the wave equation solution known as the MPS pulse can be found:

f(r, t) = f0
e−s/q3

(q1 + i(z − ct))(s+ q2)α
, (5.4)

Where:

s =
ρ2

(q1 + i(z − ct))
− i(z + ct). (5.5)

The parameters q1, q2 and q3 are all real and adjustable with dimensions of length

and f0 and α are real, dimensionless constants [124]. It is reported by Hellwarth and

Nouchi that the parameters q1 and q2 are, respectively, measures of the wavelength

and focal region depth of these EDEPT solutions [20]. The MPS pulse satisfies all of

the aforementioned localised pulse criteria set out by Brittingham [167], in particular,

the finite energy requirement [124].

By chosing the values of these parameters, multiple localised pulses can be constructed.

Ziolkowski initially used the constraints q1 � q3 � q2 and α = 1 in his analysis of the

MPS pulse [124]. This was expanded on by Hellwarth and Nouchi, and subsequently

by Feng et al, who used the constraints q1 � q2, α = 1 and q3 → ∞ [20, 168].

The MPS pulse was further extended in work by Lekner, who introduced azimuthal

dependence of the form eimφ, where m is some positive or negative integer, to the

previously axisymmetric pulse. This led to an analysis of azimuthally dependent [200]

and helical [183] localised light pulses. This was the first case of localised pulse with

orbital angular momentum.

Localised E and H pulse fields can then be formed from the MPS by constructing a

Hertz vector, and subsequently vector potential A, from f(r, t) [20,124,168] as shown

in Eq. 5.6:

A(r, t) = µ0∇× (n̂f(r, t)) , (5.6)

Where n̂ is some arbitrary unit vector. The choice of direction of this Hertz vector

allows for a wide variety of pulses to be constructed in this regime. Cases of Hertz

vectors parallel to [20,124] and transverse to [168,182] the propagation axis have been

considered.
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5.2.4 Examples of EDEPT solutions

Through the methodology in the previous section, the choice of parameters values

and the alignment of the Hertz vector allows for an arbitrary number of solutions to

Maxwell’s equations to be synthesised (although not without some algebraic effort).

The first of these was Ziolkowski’s MPS pulse solution from the original paper, with

q1 � q3 � q2 and α = 1, and a Hertz vector aligned along the direction of propagation

[Fig. 5.1(c)]. Key general properties of the EDEPT solutions were identified from this

pulse, such as the single cycle nature, broadband spectrum, and energy localisation

[124]. The “focused doughnut” pulses, which are the key topic of this chapter, were

introduced by Hellwarth and Nouchi shortly afterwards [20] and shall be addressed in

detail in the next section. ”Focused pancake” pulses were introduced by Feng et al, so

named due to their transverse extent far exceeding the longitudinal extent [Fig. 5.1(d)].

These pulses were analysed extensively particularly in terms of their spatiotemporal

evolution, revealing the field transformations that EDEPT solutions undergo during

propagation [168,182]. This shall be discussed further in Section 5.3.1.

The parameter space for the EDEPT solutions was extended by Lekner, by introducing

azimuthal dependence of the form eimθ, giving localised pulses with angular momentum

as well as with circular polarisation [Fig. 5.1(e)] [183,200,201].

It can be noted that Ziolkowski identified that their could be acoustic analogues of the

EDEPT solutions (known as ADEPT solutions) that could be synthesised experimen-

tally in the ultrasound regime [Fig. 5.1(f)] [179, 180, 202]. Many potential generation

schemes for EDEPT pulses have been suggested, and these shall be discussed in more

detail in Chapter 6.

5.3 Properties of the “focused dougnut” pulse

The “focused doughnut” pulse was first established as an exact solution to the homoge-

neous Maxwell’s equations by Hellwarth and Nouchi [20]. They followed the procedure

established by Ziolkowski to create localised finite-energy pulses through a superposi-

tion of MMGPs with a weighting function given by the MPS (see Section 5.2.3). As

illustrated by Eq. 5.4 and 5.5, the MPS pulse that arises as a result of this summation

is characterised by four parameters: q1, q2, q3, and α, which can be freely chosen. Hell-

warth and Nouchi chose the following constraints in their analysis: q1 � q2, q3 →∞,

and α = 1. Following Eq. 5.6, the vector potential for this pulse can be constructed by

choosing an alignment for the Hertz vector. Here Hellwarth and Nouchi chose n̂ → ẑ

i.e. a Hertz vector aligned along the direction of propagation.

With this choice of parameters, the field equations for a torus shaped pulse known as

a “focused doughnut” can be constructed. The fields for the TE “focused doughnut”
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Figure 5.2: 3D schematic of “focused doughnut” pulses. This figure gives a full artistic

representation of a TM focused doughnut pulse propagating from right to left. Here, the mag-

netic field H is azimuthally polarised and confined in a torus-shaped region, and the electric

field E is winding along the meridians of the torus, resulting in a longitudinal component at the

centre of the pulse. The projected cross-section illustrates the confinement of the pulse energy

in two adjacent toroidal regions, and the white arrow indicates the propagation direction.

pulse solutions from Ref. [20] are given below:

Eθ = −4if0

√
µ0
ε0

ρ (q1 + q2 − 2ict)

[ρ2 + (q1 + iτ) (q2 − iσ)]3
, (5.7)

Hρ = 4if0
ρ (q2 − q1 − 2iz)

[ρ2 + (q1 + iτ) (q2 − iσ)]3
, (5.8)

Hz = −4f0
ρ2 − (q1 + iτ) (q2 − iσ)

[ρ2 + (q1 + iτ) (q2 − iσ)]3
, (5.9)

Where τ = z − ct, σ = z + ct and f0 is a real constant. The complementary TM fields

can be constructed using the identities:

ETM =

√
µ0
ε0

HTE , (5.10)

HTM = −
√
ε0
µ0

ETE . (5.11)
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Figure 5.3: Field structure of at TE “focused doughnut” pulse. This figure shows

the field topology on a yz plane at x = 0 of a TE FD pulse at focus (t=0). (a) shows the

transverse electric field Ex, (b) shows the longitudinal magnetic field Hz, and (c) shows the

in-plane magnetic field Hx of the real part of the TE pulse. (d) to (f) show the analogous fields

for the imaginary part of the TE pulse. The characteristic parameters of the FD pulse in all

cases are q2 = 100q1. All plots are generated from the analytical form of the FD pulse [Eq.

5.7-5.9] and are normalised to their maximum values.

The parameters q1 and q2 are found to represent respectively the effective wavelength

of the pulse and the focal region depth. Beyond the focal region (|z| > q2), the FD

diffracts in the same manner as a Gaussian pulse with wavelength q1 and Rayleigh

length q2. The azimuthal electric field in Eq. 5.7 forms closed loops that are zero

valued on axis. The magnetic field components [Eqs. 5.8 and 5.9] form closed loops

around the electric field, forming the meridians of a torus structure. The field along

the meridians of the torus results in strong longitudinal field component on axis due to

the increase in field density within the centre of the torus. Further separating the real

and imaginary parts of Eqs. 5.7-5.9 yields two families of pulses which independently

satisfy Maxwell’s equations. These correspond to a 11
2 cycle and a single cycle pulse

respectively, which is as defined by the behaviour of the on-axis field in the vicinity of

focus. It is key to identify that Eqs. 5.7-5.9 cannot be separated into separate functions

of only spatial and only temporal variables. The spatial and temporal components of

the pulse are inherently coupled rendering the pulse space-time non-separable.

A full 3D schematic of a “focused doughnut” pulse with respect to its characteristic

parameters q1 and q2 is given in Fig. 5.2 early illustrating the toroidal topology and

few-cycle nature of the pulse as it evolves through focus.

Eqs. 5.7-5.9 are plotted out explicitly in Fig. 5.3 along a yz cross-section for pulse

parameters q2 = 100q1at a time t=0 i.e. in the region of focus. Both the real and

imaginary components of the field equations are depicted, which clearly illustrates

the distinction between the 11
2 cycle and a single cycle pulses. It can be seen that

a single (11
2) cycle azimuthal and radial field will correspond to a 11

2 (single) cycle

longitudinal field. As expected, the longitudinal field component of FD pulses is the
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only component that is non-zero at ρ = 0. The energy density
(
µ0H

2 + ε0E
2
)

drops

off polynomially with r, decaying as r−8 for the real pulse and r−10 for the imaginary

pulse, at the point of maximum focus (z = 0, t = 0). Both real and imaginary FD

solutions have been shown to possess equal and finite total energy [20].

5.3.1 Spatiotemporal evolution

It is worth discussing further the spatiotemporal evolution of the FD pulse families.

The definition for the ‘long’ and ‘short’ cycle pulses is only valid for the z � q1 limit,

and is ambiguously defined with relation to the pulse parameter q2, which represents

an effective focal region depth. Analysis of the field equations reveals that both the

real and imaginary pulses are subject to pulse transformations between the single and

11
2 cycle pulse forms as they propagate through the focus over a distance of q2.

This is clearly illustrated in Fig. 5.4, which shows traces of the (a) real and (b)

imaginary azimuthal electric field Eθ at a radius of ρ = 5q1 for five different propagation

distances along the z axis. In the case of the real FD pulse, the form of the pulse

evolves from 11
2 cycle at z = −q2/2 to single cycle at z = 0, and returning to 11

2

cycle as it propagates out to z = q2/2. The complementary transformation occurs for

the imaginary FD pulse, changing from single → 11
2 → single over the q2 propagation

distance.

Similar pulse transformations have been described for other members of the EDEPT

family, such as the “focused pancake” pulses described by Feng et al [168,182]. Exper-

imental work has also demonstrated similar behavior for single cycle Gaussian pulses

in the Terahertz domain [175]. These transformations can be understood in terms

of the Gouy phase shift of the focus wave modes, which lead to significant temporal

reshaping [168,182].

5.3.2 Fourier decomposition

As a result of their few-cycle nature, FD pulses are considered to be ultra–broad

bandwidth pulses. Hellwarth and Nouchi give a far-field (z � q2) approximation for

the Fourier spectra of a real FD in their original paper:

F ′ω =

(
iπµ0f0ω |ω| sinψ

2rc2

)
e(iωr−|ω|Q)/c, (5.12)

Where Q = (q1 + q2 − (q2 − q1)cosψ)/2, and ψ is the polar angle. The equivalent

Fourier spectrum for the imaginary pulse is formed by F ′′ω = (iω/ |ω|)F ′ω [20], though

this does not affect the magnitude. However, we seek to evaluate the Fourier spectrum
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Figure 5.4: Spatiotemporal evolution of “focused doughnut” pulses. This figure illus-

trates the spatiotemporal evolution of both the (a) real and (b) imaginary “focused doughnut”

pulses of q2 = 100q1 as they propagate over a distance of q2 i.e. effective focal region depth

from z = −q2/2 → q2/2. All plots show traces of the azimuthal electric field Eθ at a radius

of ρ = 5q1, with each plot spanning a time of t = 9q1/c centred on the pulse. Spatiotemporal

evolution is shown at 5 spatial points to illustrate the transitions between single and 1 1
2 cycle

nature.

of the FD pulse in the region of focus (z = 0, t = 0) using a numerical analysis. We

consider a TE FD pulse with characteristic parameters q2 = 100q1 and conduct a

Fourier decomposition from the azimuthal electric field Eθ.

Fig. 5.5(a) shows the intensity of the calculated Fourier spectrum as a function of

frequency ν and radial position ρ. A number of intriguing properties of the FD pulse

can be inferred from the Fourier decomposition. It is clear that owing to the space-

time non-separability of the pulse, the Fourier spectrum is strongly dependent on radial

position ρ. This is emphasised in Fig. 5.5(b) which plots cross-sections of Fig. 5.5(a)

at four different values of ρ. It can be seen that in the region of small ρ, high frequency

components are more prevalent. As ρ increases, the peak frequency at these positions

decreases and low frequency components become more dominant. This effect can be

visualised by considering Fig. 5.3, where the curvature of the pulse wavefronts indicates

a change in frequency as ρ increases. From Fig. 5.5(a), we see that the peak energy

content of the pulse occurs for a frequency of c
4q1

at a radius of ≈ 5q1. We note that

as the FD evolves in space, different radial points acquire different peak frequencies

due to diffraction. However, it can be noted that as the pulse propagates, the peak

frequency at the point of peak intensity remains constant.

The property of a varying peak frequency transverse to the pulse propagation direc-

tion is known as spatial chirp, and is a common occurrence in ultrafast optics [203].

However, whilst the spatial chirp of the FD is intrinsic to the pulse, it generally arises

in ultrafast optics due to misalignment of optical elements used for production of ul-
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Figure 5.5: Fourier spectra of a “focused doughnut” pulse. (a) shows the Fourier

spectrum intensity of a “focused doughnut” pulse with q2 = 100q1, calculated at focus (z = 0,

t = 0) as a function of radius ρ and frequency ν normalised to the maximum value. (b) shows

the Fourier spectra intensity at specific radii from (a), these being ρ = 2.5q1, 5q1, 7.5q1, and

10q1. Both figures illustrate a clear dependence of the bandwidth, intensity, and peak frequency

on radial position.

trashort pulses e.g. prisms, tilted substrates and Fourier pulse shapers. This lack of

control of the phenomenon leads to the spatial chirp being considered an undesirable

side-effect. The well-defined spatial chirp of the FD pulse however, allows to exploit

this property by coupling frequency information to spatial positions of the pulse, a

situation which is of interest for spectroscopy for example. In addition, it can be noted

that the spatial chirp of the FD is axially symmetric, as per the topology of the pulse,

and so can in fact be termed radial chirp. This radial chirp is a manifestation of the

space-time non separability of the FD pulse.

A further point is that for all ρ, the bandwidth of the FD pulse is greater than the

peak frequency. As an example we consider the Fourier spectrum at ρ = 5q1 [Fig.

5.5(b), red curve]. The peak frequency ν0 at this ρ value is c
4q1

, compared to a full

width at half maximum bandwidth of ∼ 1.1ν0. For instance, an FD pulse with a peak

frequency in the green region of the optical spectrum (ν0 =550THz), would possess

a total bandwidth of ∼ 605THz, covering the entire optical spectrum and extending

into both the infra-red and ultra-violet. This can be taken in contrast to the typical

bandwidth-limited pulses produced by solid-state lasers, for which the bandwidth will

always be smaller than the peak frequency.

The space-time non-separability of the FD pulse can be further examined by consider-

ing the effects of truncating the bandwidth of the pulse. For a conventional pulse, for

example a Gaussian pulse, restricting the bandwidth would only affect the temporal

structure of the pulse. However, in the case of the FD, it can be anticipated that

bandwidth limitations will affect both the temporal and transverse profile of the pulse.

We consider this scenario in Fig. 5.6, which shows the effects of bandwidth limitation

on pulse topology. Fig. 5.6(a) illustrates the full Fourier spectrum of a FD pulse at

focus with characteristic parameters q2 = 100q1 (as seen in Fig. 5.5), with the cor-
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Figure 5.6: Reconstructions of “focused doughnut” pulses with truncated frequency

spectra. This figure shows how the topology of “focused doughnut” pulses is affected by a

truncations to their bandwidth. The left-hand column shows Fourier spectra intensities as a

function of radius and frequency, with (a) showing the full spectra for a “focused doughnut”

at focus with parameters q2 = 100q1, and (b)-(e) showing the spectra with increasing levels of

frequency truncation indicated by the dashed blue lines. The right-hand maps show the field

intensity as a function of radius and time for the pulses reconstructed from the Fourier spectra

on the left.

responding pulse topology. Subsequent plots [Fig. 5.6(b)-(e)] illustrate an increasing

truncation of the Fourier spectra from both high and low frequency ends of the spectra,

along with the pulses reconstructed from the available bandwidth.

Although the topology of the FD pulse is relatively unaffected for small truncations -

with only small deformations to the head and tail of the pulse occurring [Fig. 5.6(b)] -

increasing bandwidth truncation leads rapidly to a loss of single-cycle nature, decrease

in transverse pulse extent, and reduction in radial chirp [Fig. 5.6(c)-(d)]. The reduction

in size can be interpreted in terms of the loss of low frequency components during the

bandwidth truncation, which are dominant at larger radii. Under the limiting case of

significant bandwidth truncation, the FD pulse collapses towards a single-frequency
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radially polarised beam [Fig. 5.6(e)].

This analysis is of particular relevance for any scheme that seeks to generate an FD

pulse experimentally, which will likely be subject to some limitations in the available

frequency bandwidth. The consequences of such limitations shall be examined further

in Chapter 6.

5.3.3 Potential applications

With its range of intriguing properties, there are a range of potential applications

that could benefit from an experimental realisation of the FD pulse. We have already

mentioned one addressed in Hellwarth and Nouchi’s original paper, which is that of

utilising the longitudinal field components of the FD pulse to accelerate particles [20].

This suggestion has been further examined in other works [204], with similar schemes

having been demonstrated in the Terahertz regime [205].

Spectroscopy applications have been suggested that take advantage of the broadband

nature of the FD pulse. However we mentioned in the previous section how the radial

chirp of the pulse could be exploited to couple frequency information to spatial posi-

tions of the pulse. Furthermore, it is anticipated that the spatiotemporal coupling of

the pulse, combined with the unusual field topology, could be used to drive excitation

modes in an analyte that would not be accessible under illumination with conventional

electromagnetic radiation. This is particularly true of toroidal excitations in matter,

which we have already identified as bearing topological similarity to these free-space

toroidal pulses. However, it is important here to note that only the TM FD pulse

shares similarities in field structure to the toroidal multipoles, with the field distribu-

tion of the TE FD pulse being analogous to the magnetic multipoles. This is expected

to manifest as a distinction in the light-matter interactions of the two pulses, which

shall be examined later in this chapter.

Communications applications have been of particular interest owing to the strong

energy confinement and tunable diffraction of the FD pulse. This is relevant not just

in the context of a new free-space information carrier, but also as a new form of

guided wave in waveguides or optical fibers, which would be of particular interest to

the telecommunications field. Indeed the topic of guided localised waves has already

received some theoretical discussion in the literature [172, 206, 207]. Ultimately, this

could lead to communication schemes purely based on dedicated FD antennas, emitters

and detectors.

Several new experimental methodologies could be enhanced by a FD pulse. For ex-

ample, one could take advantage of the focusing properties and arbitrary focal re-

gion depth of the FD pulse to realise high depth-of-field microscopes. In addition,

light-assisted manufacturing methods could benefit from utilising the FD as a tightly-
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confined energy packet that exhibits unique interactions with matter.

5.4 Simulation of “focused doughnut” pulses

Finite-element modeling of ‘focused doughnut’ pulses, and more generally any of the

focus wave modes derived from Ziolkowski’s work [124], is a non-trivial exercise. Owing

to the complex spatiotemporal coupling and broadband nature of these pulse solutions

to Maxwell’s equations, the suitability of commercially available finite-element software

for modeling the propagation and interaction of these pulses is unclear. To the author’s

knowledge, this problem has not previously been addressed in any literature. Indeed,

the propagation in non-free-space environments and interactions of focus wave modes

as a whole has received little attention [168,172].

As such, the potential of utilising COMSOL 3.5a for modelling of FD pulses shall be

evaluated here. There are two aims to this work; the first is to develop an understanding

of how finite-element modeling treats these complex, space-time non-separable pulses.

This would mean that in future, they can easily be recognised as the output from a

pulse transformation simulation. The second is that it would allow simulation of the

interaction of FD pulses with a variety of media, which will provide an insight into

potential applications of these pulses.

Simulations of the FD are conducted in the transient domain of COMSOL Multi-

physics, using the methodology outlined in Section 2.4.3. A (real) TE FD pulse is

chosen as a case study with characteristic parameters q2 = 100q1. It is defined in the

simulation by the azimuthal electric field Eθ exclusively [Eq. 5.7]. This is converted

into a Cartesian basis so as to be compatible as a transient input field on a scattering

boundary in COMSOL (see Section 2.4.3) :

Eθθ̂ → −Eθsin (θ) x̂ + Eθcos (θ) ŷ. (5.13)

As the real component of Eθ is chosen, it is anticipated that the simulated field topology

will resemble the analytic pulse shown in Fig. 5.3(a)-(c). Simulations are conducted in

a cylindrical domain of length 15q1 and radius 25q1 over a time range of t = −30q1
c →

30q1
c with a time step tstep ≈ q1

8c . As the length of the cylindrical domain is significantly

smaller than the q2 parameter (considering q2 = 100q1), no significant diffraction of

the pulse should be expected within the domain. The cylindrical domain is aligned

along the z-axis i.e. the propagation axis of the pulse.

Fig. 5.7 shows the results of the simulation at a time t = 0, corresponding to the

point of focus for the pulse. The three field components - transverse electric field,

and longitudinal and in-plane magnetic field - are shown in (a)-(c) and show a strong

correlation with the analytic fields depicted in Fig. 5.3(a)-(c), with the fields being



78 Chapter 5. The “focused doughnut” pulse

Figure 5.7: Simulation of a “focused doughnut” pulse. This figure shows field plots on

a yz plane at a time t = 0 extracted from a simulation of a (real) TE FD pulse (q2 = 100q1)

propagating through free-space. The transverse electric field Ex, and longitudinal Hz and in-

plane Hy magnetic fields are plotted in (a)-(c) respectively. The total energy density is shown

in (d) with xy cross sections shown in (e) and (f) at a position of z = 0.5q1 (dashed line).

Arrows in (e) and (f) show the orientation of the electric and magnetic fields respectively.

tightly confined within few-cyle toroidal structure. The energy confinement is further

illustrated by considering the total energy density of the pulse [Fig. 5.7(d)], which also

shows a non-zero energy density on-axis owing to the longitudinal field components

of the pulse. The toroidal topology of the pulse is reinforced by Fig. 5.3(e) and

(f), which show the total energy density on an xy cross-section i.e. perpendicular to

the propagation direction, in addition to arrows corresponding to the E and H fields

respectively. These show clearly the azimuthal E field component and the H field

circling around the meridians of the toroidal pulse structure. Note that the strong

longitudinal H field component seen in Fig.5.7(b) is a result of the high density of

these meridian fields as they converge within the ring of the torus.

Evidence of numerical noise in both the main pulse structure and in the region behind

the pulse, suggests that simulation of FD pulses is susceptible to resolution issues

in both the time and spatial domain. Considering the broadband nature of the pulse

established in Section 5.3.2, it is expected that high frequency components of the pulse

will not be adequately resolved in the case of the time steps or spatial steps being too

large. This could potentially be an issue in the case of simulations of FD interactions,

but it is anticipated that suitable truncation of the analysis in the frequency domain

will minimise these problems.

5.5 Interactions of “focused doughnuts” with interfaces

Whilst this work is predominantly focused on the goal of obtaining localised waveform

transformations from metamaterial structures, there is also interest in what applica-
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tions these waveforms could potentially be utilised, with some of these already men-

tioned in previous sections. As such, it would be desirable to have knowledge of how

these complex waveforms interact with dielectric and metallic objects in the path of

their propagation. As with the modeling described in the previous section, these sce-

narios have not been addressed in literature. However, with knowledge that COMSOL

3.5a is a suitable tool for modeling the propagation of “focused doughnut” pulses in

free-space, we can now begin using it for simulating interaction scenarios.

We first consider the case of a FD pulse at normal incidence to macroscopic media, these

being a semi-infinite dielectric medium and a PEC interface, giving an understanding

of how the pulse interacts at a boundary and how the field topology is altered under

reflection and transmission. It can be noted that the topic of reflection and refraction of

localised waves has already received some discussion in the literature [208], illustrating

some of the intricacies of the interaction particularly in the case of oblique incidence.

We first consider a PEC boundary located at z = 20q1 in the free-space propagation

domain. Fig. 5.8(a) and (b) show the TE and TM pulse respectively at two times -

one prior to incidence on the boundary (t1) and one after the pulse has been reflected

(t2).

For the TE FD pulse in Fig. 5.8(a), the transverse electric and longitudinal magnetic

field components are shown. It is clear from examining the field distributions at the

two time steps that, upon reflection, the transverse electric field of the TE pulse rotates

in the same direction with respect to the propagation direction as before reflection.

Similarly, the longitudinal magnetic field component both before and after reflection

has a component parallel to the propagation direction leading the pulse.

In contrast however, the reflection of the TM pulse at the boundary in Fig. 5.8(b)

results in the reversal of both the electric and magnetic field components. After re-

flection, the transverse magnetic fields are counter-rotating with respect to the prop-

agation direction. The longitudinal electric field component is dominated by a strong

component parallel to the propagation direction at the pulse front. Upon reflection,

the electric field at the pulse front is anti-parallel to the propagation of the pulse. The

presence of a longitudinal field component, anti-parallel to the propagation direction,

at the leading edge of the pulse is a particularly intriguing and non-intuitive property

of the reflected TM FD pulse.

This modeling of the FD pulse also highlights the spatiotemporal transformations

the pulse undergoes, as described in Section 5.3.1 and Fig. 5.4(c) and (d). These

transformations are independent of the interaction of the pulse with the interface. It

can be clearly seen in Fig. 5.8(a) how, after reflection at the boundary, the transverse

magnetic field of the pulse is beginning to transform from single cycle to 11
2 cycle

nature. Equivalently, the longitudinal electric field is beginning to transform from 11
2

cycle to single cycle nature. This spatiotemporal transformation is also evident in Fig.
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Figure 5.8: Interaction of “focused doughnut” pulses with continuous PEC bound-

aries. This figure illustrates reflection of “focused doughnut” pulses from a perfect electrical

conductor. (a) Transverse electric (left) and longitudinal (right) magnetic field components of

a transverse electric FD pulse before (t1) and after (t2) reflection. (b) Similar to (a) but for

a transverse magnetic pulse. In both cases the parameters of the FD pulse are q2 = 100q1 and

the boundary is located at a distance z = 20q1 from the focal point of the pulse (z = 0). All

field components have been normalized to their maximum value.

5.8(b) for the TE FD pulse.

We now consider interaction at a dielectric boundary. The modeling space is separated

into two regions - one free-space and one of refractive index n = 2, with the boundary

located at z = 15q1 so as to illustrate both the reflected and transmitted pulse. Fig.

5.9 shows the results of these models in both TE and TM incidence cases, with the

transverse and longitudinal fields shown at two times - one prior to incidence on the

boundary (t1) and one after the pulse has been reflected and transmitted (t2). In
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Figure 5.9: Interaction of “focused doughnut” pulses with semi-infinite dielectrics.

This figure illustrates reflection and refraction of “focused doughnut” pulses at a vacuum-

dielectric interface. (a) Transverse electric (left) and longitudinal magnetic field (right) com-

ponents of a transverse electric FD pulse before (t1) and after (t2) incidence on the interface.

(b) Similar to (a) but for a transverse magnetic pulse. In both cases the parameters of the FD

pulse are q2 = 100q1 and the boundary is located at a distance z = 15q1 from the focal point

of the pulse (z = 0). All field components have been normalized to their maximum value. The

dielectric is considered to be semi-infinite with a refractive index n = 2.

both polarisation cases the toroidal topology of the pulse is maintained after being

transmitted though the dielectric boundary and it undergoes the expected increase in

momentum within the medium as for conventional electromagnetic pulses. Similarly

the reflected pulse also maintains its toroidal topology. Evaluation of reflection and

transmission coefficients for the reflected and transmitted respectively pulses indicates

that both TE and TM FD pulses interact with the semi-infinite dielectric as predicted
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by evaluation of the Fresnel equations.

It is worth noting that all models in this section utilise idealised non-dispersive metals

and dielectrics, in the form of PEC and a dielectric refractive index of n = 2. This

is due to limitations in Maxwell’s equations solver utilised for this study, which pro-

hibits temporal dispersion for transient models. As illustrated previously in this paper,

the FD pulse is highly broadband with a bandwidth greater than the peak frequency.

For realistic materials, it is likely that dispersive effects would be present over such a

wide frequency range, inducing some reshaping to the temporal profile of the pulse.

However, it is expected that this will not limit the analysis of the reflected and trans-

mitted geometries. It could also be considered that this would be a valid description

for the interaction of matter with FD pulses in the microwave regime. This is owing

to the dispersion of metals at microwave frequencies, which allows metals generally be

approximated as PECs for thicknesses greater than µm-scale [209,210].

5.6 Interactions of “focused doughnuts” with particles

In this section we shall consider the interactions of FD pulses with particulate matter,

which of particular relevance given the potential of these pulse to be utilised for sensing

and spectroscopy applications.

First, we consider dielectric spheres, of diameter < the pulse diameter, in the path

of the pulse. It is anticipated that the large bandwidth of these short cycle pulses

should result in excitation of multiple modes within the particles. We then consider

the interaction of FD pulses with a dielectric torus. Again we anticipate broad modal

excitation within the particles, with the additional interest of the topological similarity

between the FD pulse and a toroidal particle. Asin the previous sections, the FD pulses

are defined with parameters q2 = 100q1.

5.6.1 Interaction with dielectric spheres

The case considered here is that of a spherical dielectric particle located at ρ = z = 0.

The radius of the nanoparticle is given as q1, such that it is less than the width of the

FD pulse. In this regime, excitation by the ultra-broadband FD pulse can be expected

to induce multiple Mie modes of the dielectric nanoparticle. As in the previous section,

the dielectric is given a non-dispersive refractive index of n = 2. For an incident TM

FD pulse, the interaction with the particle is dominated by the longitudinal electric

field on axis. Fig. 5.10 shows both the simulated interactions [Fig. 5.10(a) and (b)]

and artistic schematics [Fig. 5.10(c) and (d) insets] for both TE and TM cases.

We first evaluate the normalised electric field intensity within the particle as a function

of frequency. This is calculated first by taking a Fourier transform of the E-field within
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the particle to move from the time to the frequency domain:

Ei(r, t)
Fourier−−−−−−−→
transform

Ei(r, ω), (5.14)

Where i = x, y, z. The E-field intensity is then integrated across the dielectric sphere,

to give total intensity as a function of frequency within the particle:

P (ω) =

∫ [
|Ex(r, ω)|2 + |Ey(r, ω)|2 + |Ez(r, ω)|2

]
d3r. (5.15)

This is then normalised to the power incident on the particle from the incident pulse.

The E-field intensity within the dielectric sphere is shown in Fig. 5.10(c) and (d) for

the TE and TM incidence case respectively. For TE FD incidence, a clear series of

Mie modes are excited corresponding to resonant distributions of the azimuthal field

throughout the particle. This is emphasised in Fig. 5.10(e), which shows out-of-plane

electric field distributions for a cross-section through the particle at three different

peaks. In contrast, the spectrum for excitation of the particle by a TM pulse is more

complicated, owing to the interplay between the radial and longitudinal electric field

components. As such, the TM excitations are considerably weaker than those from

TE pulse incidence. Modes corresponding to distributions of x-aligned (in-plane) E

field from three frequencies are shown in Fig. 5.10(f), corresponding to a series of Mie

resonances, similar to the TE pulse case.

We now evaluate the multipoles excited within the dielectric sphere to extend our

description of the interaction. These are evaluated up to quadrupole order using the

integrals in Section 2.2.1. As the initial simulations are conducted in the time domain

we also utilise the methodology outlined in Appendix D.

In the case of TE FD incidence on the particle [Fig. 5.10(g)] it is clear that the dom-

inant contributors to the scattering are the magnetic multipoles. This is anticipated

owing to the azimuthal E field configuration of the TE FD pulse. Contributions from

the electric and toroidal multipoles are significantly suppressed. For the case of TM

incidence [Fig. 5.10(h)] however, the multipole excitations are more complex. As ex-

pected, electric multipoles dominate at lower frequencies, as a result of coupling to

the longitudinal E field of the incident pulse. However at ∼ 0.46(c/q1), the toroidal

dipole becomes the dominant scattering multipole up to quadrupole order. This is a

particularly intriguing feature as it demonstrates a significant toroidal response in a

system with non-toroidal geometry, reiterating the importance of toroidal multipoles

in evaluation of scattering systems.

It can be seen from Fig. 5.10(h) that in the case of TM FD incidence on a dielectric

sphere, at a frequency of ν ≈ 0.46c/q1 both the electric and toroidal dipoles are

resonant. This gives an opportunity to study the unusual electromagnetic phenomenon
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Figure 5.10: Interaction of “focused doughnut” pulses with dielectric nanoparticles.

This figure illustrates the interaction of “focused doughnut” pulses with dielectric spheres of

radius q1 and refractive index n = 2.(a) and (b) show the xz cross-sections of the COMSOL

simulation domain at a time t = 0. (a) shows the normalised transverse electric field of a TE

FD pulse, and (b) shows the normalised longitudinal electric field of the TM FD pulse. The

outline of the spherical nanoparticle is shown by the dotted line. (c) and (d) show the elec-

tric field intensity integrated over the volume of the nanoparticle as a function of frequency,

when under excitation from a transverse electric (TE) and a transverse magnetic (TM) FD

pulse respectively. (e) and (f) show the electric field distributions on an xz cross-section of the

nanoparticle (see grid in the insets to (c) and (d)) at resonance positions (i)-(vi). These have

been individually normalised to emphasise each distribution. (g) and (h) show the scattering

intensity of the individual Cartesian multipoles up to quadrupole order (electric dipole p, mag-

netic dipole m, toroidal dipole T , electric quadrupole Qe, and magnetic quadrupole Qm) for

illumination with TE and TM FD pulses, respectively. In (c)-(d) and (g)-(h) dots correspond

to simulation data points, while lines serve as eye guides.
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Figure 5.11: Anapole a in dielectric sphere excited by a TM “focused doughnut”.

(a) shows the scattering intensity of the individual Cartesian multipoles up to quadrupole order

in a dielectric sphere when excited by a TM FD pulse. In an extension to the plot in Fig.

5.10(h), here we include the term proportional to Im
(
p† ·T

)
representing interference between

the electric p and toroidal T dipoles with it’s maximum absolute value indicated by the dashed

line. (b) gives the total scattering intensity summed over all multipoles. The point of suppressed

scattering at ν ≈ 0.46c/q1 is indicated by the dashed line. In both (a) and (b) dots correspond to

simulation data points, while lines serve as eye guides. (c) and (d) show the Ex and Ez electric

field distributions and absolute values of these fields respectively on an xz cross-section of the

nanoparticle at the anapole resonance. These have been individually normalised to emphasise

each distribution.

known as the dynamic anapole, or non-radiating configuration. As discussed in Section

2.1.3 the toroidal dipole radiates in an identical manner in the far-field to the electric

dipole, save for a phase shift and additional dependence on wavelength. For co-located

and co-aligned electric and toroidal dipoles, their radiation patterns can destructively

interfere in the far-field. This results in a non-radiating configuration which does

not contribute in the far-field despite the existence of a charge-current distribution

in the near-field. This can be seen in the expression for total multipole scattering

intensity [Eq. 2.2.2] where the term proportional to Im
(
p† ·T

)
reflects constructive

or destructive interference between the electric and toroidal dipoles and as such can

take either positive or negative values.

We plot the multipole scattering intensity for a dielectric sphere with a TM FD incident

upon it and include the Im
(
p† ·T

)
interference term [Fig. 5.11(a)]. It can be seen that

at the point of electric and toroidal dipole reosnance (ν ≈ 0.46c/q1) the interference

term is negative with a large absolute value, indicating strong destructive interference

between the excitations. This is reflected in the total scattering intensity summed over

all multipoles [Fig. 5.11(b)] which reveals a distinct decrease in total scattering in the
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region of the resonant electric and toroidal dipoles, typical of a dynamic anapole.

Although the total scattering of the dielectric sphere decreases, the configuration at

ν ≈ 0.46c/q1 cannot be considered a true anapole for several reasons. Firstly, as the

electric and toroidal dipoles are not equal in magnitude, destructive interference can-

not completely cancel the far-field radiation, leaving some residual dipolar radiation.

Furthermore, the scattering of other multipoles such as the electric quadrupole Qe is

non-negligible at the electric and toroidal dipole resonance. In addition, as the ex-

pansion here is only calculated up to the quadrupole order, it cannot be determined

whether higher order multipoles e.g. electric octupole, will mask this dynamic anapole

effect in the far-field.

Despite this, this quasi-anapole is dominant up to the quadrupole order at ν ≈
0.46c/q1. This reinforces the necessity of including the toroidal multipoles in the

microscopic multipole analysis. We note that the minimum in total scattering in the

region of the electric quadrupole anti-resonance shall not be observed if the toroidal

dipole is neglected and only the electric dipole is taken into account.

5.6.2 Interaction with dielectric tori

In the previous section, it was demonstrated that FD pulses incident on dielectric

spheres will induce broadband modal excitation and in particular, the excitation of

a dominant toroidal mode in a system without toroidal topology. Here the case of

FD pulses incident on a dielectric torus will be considered. Owing to the topological

similarities between the FD pulse and toroidal particles, it is anticipated that such an

interaction would lead to similar broadband mode excitation.

In the case of a TE FD pulse interacting with a toroidal particle, it is expected that

excitation of toroidal modes will be suppressed in favour of magnetic modes. This is

due to the field topology of the TE FD pulse [Fig. 5.12(a)], which consists of closed

loops of azimuthal electric field and restricts the radial currents necessary for toroidal

modes. In contrast, the field configuration of the TM FD pulse is analogous to the

toroidal dipole in matter, with both possessing closed loops of azimuthal magnetic field

[Fig. 5.12(b)]. Consequently, it is anticipated that toroidal modes could be excited

dominantly across a broad frequency range in such an interaction.

Using the same methodology as in the previous section, we construct a transient model

of both TE and TM FD pulses incident on a dielectric torus. The FD has characteristic

parameters of q2 = 100q1 and is incident on a dielectric torus of small radius r = q1,

large radius R = 2q1, and refractive index n = 2, located at x, y, z = 0. Cross sections

of the simulated interaction at a time t = 0 are shown in Fig. 5.12, with (c) showing

the transverse E-field of the TE FD pulse and (d) showing the longitudinal field of the

TM pulse.
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Figure 5.12: Interaction of “focused doughnut” pulses with dielectric tori. This

figure illustrates the interaction of “focused doughnut” pulses with toroidal dielectric particles

of small radius q1, large radius 2q1, and refractive index n = 2. (a) and (b) shows a schematic

of TE and TM FD pulses respectively incident on a dielectric torus. (c) and (d) show the xz

cross-sections of the COMSOL simulation domain at a time t = 0. (c) shows the normalised

transverse electric field of a TE FD pulse, and (d) shows the normalised longitudinal electric

field of the TM FD pulse. The outline of the toroidal particle is shown by the dotted line. (e) and

(f) show the scattering intensity of the individual Cartesian multipoles up to quadrupole order

for illumination with TE and TM FD pulses, respectively. The dots correspond to simulation

data points, while lines serve as eye guides

The microscopic multipoles are then extracted from the displacement currents excited

within the dielectric tori, as per the same method described in the previous section.

For TE FD incidence, the spectrum consists primarily of a series of magnetic dipole

resonances [Fig.5.12(e)]. This can be understood in terms of the azimuthal E-field

driving currents around the loop of the torus to give a typical magnetic dipole current

distribution. Counter-intuitively there is also a weak contribution from the toroidal

dipole at higher frequencies. This is attributed to the gradient in azimuthal field across

the width of the dielectric torus.

In the case of TM FD incidence however, the excitation of conventional multipole

modes is suppressed, with the spectrum instead being primarily composed of a series of

toroidal dipole resonances, with a small electric quadrupole contribution [Fig .5.12(f)].

This can be understood in terms of both the radial and longitudinal E-fields of the

incident pulse driving poloidal currents along the meridians of the dielectric torus,

forming a closed loop of magnetic field that is characteristic of the toroidal dipole
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Figure 5.13: Fields excited within a dielectric torus by a TM “focused doughnut”

pulse. This figure shows xz cross-sections of the COMSOL simulation (TM FD pulse inci-

dent on dielectric torus) at a time tc = 10q1 i.e. after the FD pulse has propagated past the

torus. The figure shows (a) in-plane electric field Ex, (b) longitudinal electric field Ey, and

(c) transverse magnetic field Hy. These have been individually normalised to emphasise each

distribution.

excitation. The symmetry of the system suppresses the excitation of the conventional

electric and magnetic multipoles. The exception is a small electric quadrupole response,

which is attributed to the varying intensity of the radial field across the nanoparticle.

In particular, the electric dipole is almost completely suppressed. This is understood

to be a result of the strongest longitudinal field components of the incident pulse

existing in the central void of the dielectric torus, and so do not contribute strongly

to the interaction. Within the dielectric torus, the dominant excitation mechanism is

the radial field component of the TM FD, which due to symmetry cannot create an

electric dipole resonance.

The presence of toroidal dipoles in TM excitation spectrum can be reinforced by consid-

ering the field distributions within the dielectric torus. The in-plane and longitudinal

electric fields, and transverse magnetic fields are examined at a time tc = 10q1, corre-

sponding to a time significantly after the TM FD is incident on the torus [Fig. 5.13].

It is clear that the field distribution within the torus is closely correlated with that of

an ideal toroidal dipole. The combination of in-plane and longitudinal electric fields

seen in Fig. 5.13(a) and (b) would drive poloidal currents around the meridians of

the dielectric torus. Fig. 5.13(c) shows a highly confined azimuthal magnetic field

within the torus, typical of a toroidal excitation. It can be noted that the broad se-

ries of toroidal resonances observed in the excitation spectrum [Fig. 5.12(f)] allows

for observation of the excited toroidal modes in the time domain, rather than after

transformation to the frequency domain.

5.7 Summary

In this chapter, the history and theory behind localised pulse solutions to Maxwell’s

equations have been examined. In particular the “focused doughnut” pulse family has
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been identified as a particularly intriguing subset of these solutions that represents a

propagating free-space analogue to the dynamic toroidal multipole moments in matter.

Key properties of the FD pulses, such as spatiotemporal evolution, and broadband

radial chirp have been identified and discussed.

This chapter reports on the first instance of a full 3D finite element simulation of FD

pulses has been conducted and has been demonstrated to accurately reproduce the

topology and propagation properties of the theoretical pulse. This methodology is

utilised here to study the interactions of FD pulses with both continuous and partic-

ulate matter, with results such as unusual field configurations upon reflection, broad

modal excitations and dominant toroidal dipole responses in dielectric particles, and

dynamic anapole-like scattering.

The research into the FD pulse is still in its infancy, with no practical realisation of

these pulses yet achieved. However, the results obtained here in this chapter suggest

multiple potential applications of these pulses if they can be physically synthesised.

Key amongst these is the use of FD pulses for spectroscopy, which would take advantage

of the broadband nature of the pulse. This would be particularly relevant in the case

of structures with toroidal topology [Fig. 1.2] where FD pulses could excite a range

of toroidal modes which would not be otherwise accessible. In addition, the potential

of FD pulses to preferentially excite toroidal modes could prove valuable in sensing

applications and also form the basis of a detector to detect experimental realisations

of these pulses.





Chapter 6

Generation of “focused doughnut”

pulses

6.1 Introduction

In the previous chapter, we provided a detailed discussion of the history, theory, and

properties of the intriguing “focused doughnut” pulse. We further produced a nu-

merical analysis of the interactions the FD pulse undergoes with both continuous and

particulate matter, demonstrating non-trivial light-matter interactions. This reinforces

our interest in this unique electromagnetic pulse and in obtaining an experimental re-

alisation of the FD pulse - something that has not yet been achieved to date. This is

unsurprising given the complex field topology, ultra-broadband nature, and spatiotem-

poral coupling of the pulse. In this chapter, we shall seek to directly address this ques-

tion of experimentally generating FD pulses, towards the ultimate aim of obtaining a

pulse transforming device for converting conventional electromagnetic radiation into

FD pulses.

Since Brittingham first introduced the concept of focus wave modes in 1983 [167],

there are have been a series of theoretical works discussing how localised transmission

of electromagnetic energy could be achieved experimentally. Many of these works

were produced by Ziolkowski, focusing on generation of localised pulses from discrete,

tunable antenna arrays [211, 213], driven apertures [214], and log-periodic antennae

[215]. An example of a tunable antenna array is given in Fig. 6.1(a), which consists

of N individual antenna elements, each with an individual driving function fN . The

feasibility of this antenna approach was verified by the synthesis of acoustic analogues

of localised electromagnetic pulses using arrays of acoustic resonators [179, 180]. A

depiction of one of these acoustic analogues was given in Fig. 5.1(e). Other suggested

schemes include generation from oscillating electric dipoles [173], use of a dynamic

Gaussian aperture [171], and launching from a waveguide [172]. In parallel to this,

synthesis of electromagnetic Bessel beams [184–186] and X-shaped pulses [169] gave

the first experimental forms of localised propagating electromagnetic energy. We note

91
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Figure 6.1: Prior art for our generator scheme. (a) shows a generator scheme for

localised waves suggested by Ziolkowski. The suggested generator scheme is based on an array

of N independently addressable radiating elements positioned at arbitrary locations in space.

Each element is assumed to have a radiating area of Ai associated with it and is excited with

a driving function fi(t). Figure adapted from Ref. [211]. (b)-(e) give examples of planar

metasurface resonator arrays for generation of complex wave shapes. (b) shows a Huygens’

metasurface composed of dielectric electric and magnetic dipole resonators. Figure adapted

from Ref. [212]. (c) shows a spatially varying V-shaped antenna array for creating optical

vortex beams. Figure adapted from Ref. [87]. (d) gives a nanostructured hologram designed for

the broadband manipulation of vector beams e.g. radially polarised light. Figure adapted from

Ref. [159]. (e) shows a fishnet metamaterial structure that can be used for spatial and spectral

light shaping with simultaneous amplitude and phase control. Figure adapted from Ref. [83].

however that these beams/pulses are not the exact finite energy solutions to Maxwell’s

equations that the EDEPT solutions represent.

We seek to combine these theoretical works with recent advances in metamaterial

engineering, in particular metasurface arrays for manipulating electromagnetic beam

structure. Metasurfaces i.e. 2D structures of artificially engineered metamolecules,

have received considerable interest over recent years owing to their ability to exercise

amplitude, phase, and polarisation control over incident electromagnetic radiation.

This had led to a series of designs exhibiting such phenomena as anomalous reflection

and refraction [216, 217], generation and detection of optical vortices [87, 218], broad-

band manipulation of vector beams [159], wavevector selective surfaces [219], Huygens’

metasurfaces [212,220], beam shaping with surface plasmons [221], Gaussian-to-Bessel

beam trasnformation [222], and spatial and spectral light shaping [83]. Examples of

these metasurface arrays can be seen in Fig. 6.1(b)-(e). We note that these metasur-

faces are designed primarily for interaction with harmonic beams as opposed to pulses.

However, non-linear generation of Terahertz pulses from a metasurface array under
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Figure 6.2: Schematic of “focused doughnut” generation from a metamaterial dipole

array. This figure illustrates the concept of a metamaterial transformer for converting con-

ventional electromagnetic radiation into a “focused doughnut” pulse. Conventional transverse

electromagnetic radiation is incident upon a metasurface array which possess a coupled spa-

tial and frequency response. The collective response of the resonators in this array produces a

propagating “focused doughnut” pulse.

femtosecond pumping has been demonstrated [91].

The overall aim is to create a FD pulse generator that shall be, in essence, a sophisti-

cated form of metasurface that exhibits a coupling between its spatial and frequency

responses, thus allowing spatiotemporal engineering of incident light. A schematic of

the intended system is given in Fig. 6.2, which depicts the conversion of conventional

transverse electromagnetic radiation into a FD pulse through means of a metasurface

transformer. We note that this scheme would also require the metasurface to convert

from incident transverse polarisation to the radial or azimuthal polarisation character-

istic of an FD pulse. A number of metasurface-based methodologies exist to address

this added complexity [159, 223, 224]. The resonators in the array would be assigned

specific frequency-dependent responses which would vary as a function of position on

the array, thus achieving spatiotemporal coupling of the response. It is likely that

these resonators will be required to operate over a broad bandwidth in order support

the frequency components required for FD generation.

In this chapter, we shall begin to examine the various manifestations and complexities

of such a generation scheme. We will begin by studying numerically the conditions

under which an array of resonators with specified excitations can generate a localised

wave approximating a FD pulse. We shall also evaluate the susceptibility of this scheme

to typical experimental limitations in available bandwidth. This is anticipated to form
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the primary obstacle to an experimental scheme, particularly in the optical regime

where broadband light control spanning an octave in frequency will be challenging.

Finally, we shall consider the conditions under which the resonator array could generate

a continuous train of FD pulses, and whether this is advantageous from an experimental

perspective. Results obtained here lay a solid proof-of-principle foundation for the

generation of FD pulse from metasurface arrays and shall be influential in designing

the first experimental generators for these pulses.

6.2 Methodology for testing “focused doughnut” genera-

tion

With the ultimate aim of this work being to obtain a metamaterial based transformer

for converting conventional electromagnetic radiation into FD pulses, it is necessary

to evaluate the discrete, finite-sized resonator arrays for their ability to recreate FD

pulses in ideal conditions.

Our methodology presented here is closely modeled off of work previously presented in

the literature. In particularly, we adopt ideas based on Ziolkowski’s work on discrete

radiating arrays [211,213], and the analysis of few-cycle pulses generated by oscillating

electric dipoles [173]. Furthermore, this approach can be considered analogous to

the schemes used to produce acoustic analogues of localised electromagnetic waves

[179,180].

As such, our scheme consists of a cylindrical array of individually addressable dipole

resonators, arranged in concentric rings. An illustration of our test FD generator

scheme is shown in Fig. 6.3. As the ideal FD pulse possesses either radial or azimuthal

polarisation, the dipoles in the array are aligned in either the radial or azimuthal

direction. The dipole resonators can be freely positioned, but to simplify the procedure

and analysis, we chose rings at fixed radii on which to locate the dipoles, taking

advantage of the azimuthal symmetry of the FD pulse. These dipoles radiate as per

the radiation pattern described in Appendix B.1. It can be noted that only the far-field

radiation contributions of the dipole resonators are included, as we are not interested

in the field topology in the near-field of the generator array (rlλ).

Each electric dipole p in the array can be independently assigned a time-dependent

dipole excitation: p→ pi(t), with i = 1→ N where N is the total number of dipoles

in the array. We note that for an ideal FD pulse, the bandwidth of the pulse decreases

for larger radii, and as such we can anticipate a shorter temporal dipole excitation at

the center of the array. A domain is established in which the generation scheme shall

be tested, defined in units of q1 - the effective wavelengh of the desired FD pulse. The

dimensions chosen are x, y = −100 → 100 and z = 0 → 200 or 0 → 400, with the
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Figure 6.3: Schematic of “focused doughnut” generation from a driven metama-

terial dipole array. This figure illustrates the concept underpinning the modeling in this

chapter. A metamaterial dipole array is driven with a short time-dependent excitation, which

is also dependent on the radial position of the dipole in the array. The cumulative effect of the

radiating dipoles results in a “focused doughnut” pulse as an output from the array.

z-axis as the intended axis of propagation. As such, the metamaterial array is located

at z = 0 and is aligned orthogonal to the z-axis.

The methodology for evaluating the electromagnetic field generated by the metamate-

rial array is as follows:

1. Consider an array of N time-dependent dipoles pi(t) with i = 1→ N located on

the xy plane.

2. Evaluate the frequency components of the dipole excitations through a Fourier

transform.

pi(ν) = F̃ {pi(t)} . (6.1)

3. Calculate the far-field radiation pattern of each dipole at each frequency (Ei(r, ν))

as per the methodology in Appendix B.1.

Ei(r
′, ν) =

k2c

4π

√
µ0
ε0

(
eikr

′

r′

)[
r̂′ × pi(ν)

]
× r̂′, (6.2)

Where r′ = r− ri, with ri representing the position of the dipole in the array.

4. Sum the electric fields from each dipole in the array at all far-field positions of

interest (i.e. position r).

E(r, ν) =
N∑
i

Ei(r
′, ν). (6.3)
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5. Evalaute the time-dependent field generated by the array through a Fourier trans-

form.

E(r, t) = F̃−1 {E(r, ν)} . (6.4)

This generated field E(r, t) can then be evaluated at positions and times of choice. We

note that an xy aligned array will necessarily radiate in both the positive and negative

z-directions. In general, we shall only be interested in the positive z direction.

6.3 Generating a single “focused doughnut” pulse

In this section, we shall utilise the methodology outlined in the previous section to

test the generation of individual FD pulses by a discrete metamaterial dipole array.

The analysis shall be presented in terms of the generated fields both in the time and

frequency domain, and shall be compared with ideal analytic FD pulses.

6.3.1 Metamaterial pulse generator and dipole excitations

For the first proof-of-principle test of the generator scheme we consider a Huygen’s

principle based approach to constructing a FD pulse. We shall begin with a stated

aim of generating TE i.e. azimuthally polarised, FD pulse with characteristic param-

eters q2 = 100q1. In the previous section the far-field domain to be evaluated was

characterised as spanning x, y = −100 → 100 and z = 0 → 400. As such we chose

q1 = 3.6, which gives an effective pulse wavelength significantly larger than the domain

resolution and will lead to a pulse with a spatial extent confined within the domain.

This gives a q2 value of 360 which, following the analysis in Fig. 5.4, should allow for

observations of the spatiotemporal transformations of the generated FD pulse over the

z-extent of the domain. We note that the generation scheme is fully scalable from the

arbitrary values used here.

For the generating array, we chose an array of 117 dipoles arranged in four concentric

rings [Fig. 6.4(a)]. These rings are given radii r = 5, 20, 35, and 50. The choice of

radii for the rings is made such that they are equidistant in radial separation, and

cover the radial region in which > 90% of the desired pulse’s energy is confined. Upon

each of these four rings, the dipoles are located equidistant from each other in the

azimuthal direction. We note that the placement of dipoles does not produce any axes

of symmetry for the array, though it is expected that the density of the dipoles should

prevent the symmetry of the generated pulse from being significantly affected.

For generation of TE FD pulse, we are interested in the azimuthally polarised E-field,

which is given in the previous chapter by Eq. 5.7. As such, we map the electric field of

the desired ideal FD pulse to the time-dependent dipole excitations i.e. pi(t) ∝ Eθ(t)
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Figure 6.4: Metamaterial dipole array positions and excitation for generation of a

single “focused doughnut”. (a) shows the xy positions of the azimuthally-aligned dipoles in

the generator array. There are 117 dipoles in total, located on four concentric rings with radii

(i) r = 5, (ii) r = 20, (iii) r = 35, and (iv) r = 50. (b) shows the Fourier spectra of the dipole

excitations. The excitation varies as a function of radial dipole position: (i)-(iv).

at a given position. Substituting the full expression for the electric field [Eq. 5.7], we

have an expression for the ith dipole as:

pθ,i = −4iA

√
µ0
ε0

ρi (q1 + q2 − 2ict)[
ρ2i + (q1 + iτ) (q2 − iσ)

]3 , (6.5)

Where τ = z − ct, σ = z + ct, q2 = 10q1 and A is a constant for normalisation and

to ensure unit consistency. To achieve azimuthal alignment, the alignment of the ith

dipole in a Cartesian basis shall vary according to:

px,i = −sin(θi)pθ,i, (6.6)

py,i = cos(θi)pθ,i, (6.7)

Where θ is the cylindrical coordinate in the xy plane.

From this, the dipole excitation is dependent on the radial position ρi.This can be seen

clearly in the frequency spectra of the dipole excitations at each of the four rings [Fig.

6.4(b)]. Dipoles nearer the center of the array will have radiation dominated by higher

frequency components, whereas lower frequencies shall be primarily generated by the

dipoles in the outer rings.

In principle, the distance from the array at which the pulse can come to focus can be

tailored by the choice of dipole excitations. By mapping FD electric fields at different

propagation distances to the dipoles, the generated pulse can be brought to focus an

arbitrary distance from the array, providing the array is large enough to generate the
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pulse in its diffracted state. We chose a focal position in front of the generating at

z = 180.

In the generation scheme described here, the interactions between dipoles in the ar-

ray are neglected in order to simplify this preliminary demonstration. It is currently

unclear how susceptible the generation scheme would be to perturbations due to inter-

dipole interactions. These interactions will be relevant for an experimental realisation

of this scheme, and will warrant further investigation. It can be noted that the effect

of dipole interactions on the generated pulse could be minimised through optimising

the dipole placement in the array.

6.3.2 Analysis of generated pulse

To determine the viability of our generator scheme, we evaluate the electric field inten-

sity emitted by the array (located at z = 0) on an xz cross-section at multiple points in

time after the initial excitation at time t = 0. We note that although the array will radi-

ate identically in both positive and negative z directions, we only evaluate the response

along the positive z axis for values z = 0→ 400. The normalised electric field intensity

maps are plotted in Fig. 6.5(a)-(d) at four different times (t = 50/c, 150/c, 250/c, and

350/c). Plots of the E-field amplitude are given in Appendix E to corroborate the

analysis.

The evolution of the E-field intensity distribution from the near-field of the array in

(a) to the far-field can be clearly traced from these images, revealing the creation of

a few-cycle pulse with toroidal topology that propagates with a speed c away from

the array. As anticipated, the field intensity is vanishing on axis at x = 0, owing to

destructive interference between the fields from the azimuthally aligned dipoles in the

array. These E-field intensity traces can be compared with FD pulses evaluated in

Chapter 5, specifically Fig. 5.7(d) which shows the energy distribution of a simulated

FD pulse. It can be seen that qualitivley there is a good match between these energy

distributions.

It can be further noted that between t = 150/c and t = 350/c i.e between Figs. 6.5(b)

and (d), the generated pulse undergoes a transformation between 11
2 cycle and single

cycle. This correlates well with our analysis of the analytic FD pulse’s spatiotemporal

transformations recorded in Section 5.4, and reinforces the viability of this generation

scheme.

The generated pulse can be further analysed by considering time traces of the Ef ield

at several positions on the x-axis. This is motivated by the spatially-varying Fourier

spectrum of the ideal FD pulse discussed in detail in Section 5.3.2. Time traces of the

E-field intensity are evaluated at z = 250 i.e. Fig. 6.5(c), at x positions of 10,20, and

30. [Fig. 6.5(e)]. It can be clearly seen that the time traces vary as a function of radial
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Figure 6.5: Generation of a single “focused doughnut” from a metamaterial dipole

array. This figure illustrates the excitation of a dipole array located a z = 0 resulting in a

“focused doughnut” pulse in the far field. (a-d) depict the normalised E-field intensity on an

xz cross-section in front of the dipole array. Four successive time shots show the evolution of

the E-field as it propagates away from the array. (e-f) show respectively the time trace and

Fourier spectrum of the E-field at z = 250 i.e. the field in (c). These are evaluated at three

different x positions: x = 10, 20, 30.

position as anticipated, with the shortest duration time trace being at x = 10 i.e. the

smallest examined x position. Examining the Fourier spectra generated from these

E-field time traces highlights this radial variation [Fig. 6.5(f)], with higher frequency

components dominating the generated pulse at low x values, whilst lower frequencies

dominate for larger x. This matches well with our analysis of the ideal FD pulse in

Section 5.3.2.

In addition, we note that the time traces at the three different x-positions in Fig.

6.5(e) are slightly offset with respect to one-another, indicating a slight curvature

to the wavefront. This is expected given that the designed focusing point of the

generated pulse was z = 180 and so some small wavefront curvature is anticipated

after propagation past this point. This holds for an ideal FD pulse, even in the well-

collimated z < q2 regime.

From these results, it can be seen that the designed generator array can create localised
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toroidal pulses that qualitatively match the ideal FD pulses in the far-field. In the

following section, a more quantitative analysis to measure the correlation between the

ideal FD pulse and the generated pulse shall be presented.

6.3.3 Figure of merit for pulse generation scheme

With the previous section establishing our generation scheme as a viable method for

creating FD pulses, it is important to introduce a means of quantifying the correlation

between our generated pulses and ideal analytic FD pulses i.e. a figure of merit (FOM).

We anticipate discrepancies between our generated pulses and the ideal FD pulse for

several reasons. Firstly, the discretisation of the excitation into a finite number of

dipoles in both the radial (in terms of the number of concentric rings rings) and

azimuthal directions, leads to artifacts in the resultant pulse due to the inhomogeneous

radiation pattern of electric dipoles. Secondly, the finite number of concentric rings

and finite radial extent of the dipole array has implications for the frequency spectrum

of the resultant pulse, owing to the space-time non-separability of the ideal FD pulse.

This is anticipated to be particularly relevant for low frequency components of the

FD pulse, which are dominant at large radii. The absence of dipoles in the array

at these large radii could cause the Fourier spectrum of the generated pulse to differ

substantially from the ideal FD pulse at low frequencies. The absence of frequency

components could further manifest in differences from the focusing properties of the

ideal FD, again owing to space-time non-separability.

We define the FOM for our FD generator scheme in terms of the electric fields of an

ideal analytic FD pulse Ea and that created by our generator scheme Eg:

FOM =
〈Ea|Eg〉

[〈Ea|Ea〉 〈Eg|Eg〉]1/2
, (6.8)

Where the inner product is defined as:

〈Ei|Ej〉 =

∫ ∫ ∫
Ei · E∗j dρdtdz. (6.9)

This allows comparison of the ideal FD pulse with or generated pulse for all simu-

lated points in space and time. We note that by virtue of also integrating over the

propagation direction z, an evaluation of the generated vs. ideal pulse diffraction is

also implicitly considered. The FOM can take values 0 → 1, with 1 representing the

case where Ea and Eg are identical. Necessarily, the FOM will be complex valued to

represent any differences in phase between the ideal and generated pulse. The FOM

can be equivalently defined in the frequency domain by using:
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Figure 6.6: Figure of merit for generation of a single “focused doughnut”. This

figure compares generated and analytic “focused doughnut” pulses to establish the FOM for the

generation scheme. (a) evaluates the absolute value of the FOM [Eq. 6.8] for the generated

pulse and analytic pulses with a range of q1 and q2 parameters. The maximum FOM is found

for an analytic pulse with q1 = 2.4 and q2 = 380. (b) shows this maximum FOM case evaluated

across the frequency components of the pulse.

〈
Ẽi|Ẽj

〉
=

∫ ∫ ∫
Ẽi · Ẽ∗j dρdνdz. (6.10)

As mentioned previously, the limitations of our generator scheme could affect the

focusing properties of the generated pulse relative to an ideal FD. As such, it is feasible

that the input q1 and q2 parameters used to characterise the array excitation will not

correspond to the best fit q1 and q2 parameters for the generated pulse. To account

for this, we comparing the generated pulse against a range of ideal FD pulses with

varying q1 and q2 parameters, and evaluate the FOM in each case. We evaluate this

for q1 = 1→ 5 and q2 = 100→ 500.

The results of this are plotted in Fig. 6.6(a), illustrating the absolute value of the

FOM when using this range of ideal FD pulses as comparison points. It can be seen

the maximum FOM is obtained when the generated pulse is compared to an ideal FD

pulse with parameters q1 = 2.4 and q2 = 380. Here the absolute value of the FOM is

≈ 0.93, indicating a 93% match between the generated pulse and the ideal FD pulse.

It can be noted that these best-fit values for q1 and q2 are different from those used as

inputs for the dipole excitation (q1 = 3.6 and q2 = 100q1), which gives a FOM value of

≈ 0.8 only, and reinforces the theory that truncating the array size and using a discrete

number of concentric rings alters the focusing properties of the generated pulse.

Taking these best-fit ideal FD pulse parameters as q1 = 2.4 and q2 = 380, we can

evaluate the FOM for this case as a function of frequency. This is achieved by only

integrating over the spatial components of the inner product in Eq. 6.10. This then

yields FOM(ν), from which the frequency components of the ideal FD pulse that are

best recreated by the generator scheme can be determined.
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Fig. 6.6(b) shows the absolute value of the frequency dependent FOM when comparing

the generated pulse with the best-fit ideal FD pulse. It can be seen that the FOM

approaches its maximum value of 1 in the region around the central frequency of

the FD pulse where the majority of the energy is contained. For lower and higher

frequencies however, the FOM decreases. This decrease is particularly rapid for the

lower frequency components which are dominant at large radii. This can be understood

as a consequence of the finite size of the generating array, and so lower frequency

components that dominate at large radii are not fully reproduced by the generating

scheme. As ν → 0, the FOM increases again as a consequence of the Fourier spectra

of both the generated and ideal FD pulse tending to 0 for ν → 0.

Overall, it can be concluded that our scheme can accurately (to 93%) generate FD

pulses, although not the FD pulse intended by the input parameters. A thorough

study of the metasurface array size and the location and distribution of dipoles within

the array would be necessary to evaluate fully how this discrepancy between input and

output arises.

6.4 Generating a single “focused doughnut” pulse with a

truncated bandwidth

Having demonstrated in the previous section that individual FD pulses can be created

from a metamaterial generator arry with a good degree of accuracy, our attention

now turns to practical considerations. The primary concern in this respect is how

susceptible the generation scheme is to bandwidth limitations.

A key property of the FD pulses are their broadband frequency spectrum, which ex-

tends beyond that for conventional few-cycle optical pulses. This bandwidth would

be challenging to accurately recreate in an experimental environment, owing to the

difficulty of engineering resonators with such a broad resonance profile.

Following from this, it is important to evaluate how susceptible our FD generation

scheme is to having the bandwidth truncated and what discrepancies arise in the

spatiotemporal structure of the generated pulse.

6.4.1 Truncating the bandwidth of the dipole excitations

To test the limitations of our generation scheme, we consider the same same dipole

array configuration used in the previous section [Fig. 6.7(a)]. We initally chose an

excitation for this array identical to that used in Fig. 6.4(b), with parameters q1 = 3.6

and q2 = 100q1. We note that this choice of input parameters does not necessarily

correlate with the generated pulse, as established in section 6.3.3.
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Figure 6.7: Metamaterial dipole array positions and excitation for generation of a

single “focused doughnut” with truncated bandwidth. (a) shows the xy positions of the

azimuthally-aligned dipoles in the generator array. There are 117 dipoles in total, located on

four concentric rings with radii (i) r = 5, (ii) r = 20, (iii) r = 35, and (iv) r = 50. (b) shows

the Fourier spectra of the dipole excitations. The excitation varies as a function of radial dipole

position: (i)-(iv). A cutoff frequency dependent on the peak frequency has been applied to the

excitations of each ring.

We now apply a bandwidth truncation scheme to these excitation spectra in order

to determine the effect of reducing bandwidth on the generated pulse. We restrict

ourselves to truncation at the high frequency end of the spectrum as the Fourier

spectra [Fig. 6.5(f)] and the FOM analysis of the generated pulse in the previous

section has indicated that the finite width of the generator array already results in a

significant reduction in the low frequency components compared to the ideal pulse.

We chose to modify each of the excitation spectra as a function of their peak frequency

ν0, truncating the spectra such that they are only non-zero between frequencies of

ν = 0 → 2ν0. This reflects four individual dipole resonators, each with their own

maximum frequency that can be generated. This is shown in Fig. 6.7(b), which

clearly illustrates the sharp cutoff to each excitation spectrum at a frequency of 2ν0.

6.4.2 Analysis of generated pulse

To evaluate the generated pulse, we again consider the electric field intensity emitted

by the array (located at z = 0) on an xz cross-section at multiple points in time after

the inital excitation at time t = 0. The normalised electric field intensity maps are

plotted in Fig. 6.8(a)-(c) at four different times (t = 150/c, 250/c, and 350/c).

Whilst the generated here shares similarities with the pulse generated in the previous

section [Fig. 6.5], there are some important differences. The toroidal topology of the

generated pulse is retained, as is the few cycle nature. However, it is important to

note the difference in effective width of this new pulse, which is significantly wider
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Figure 6.8: Generation of a single “focused doughnut” pulse from a metamaterial

dipole array with truncated bandwidth. This figure illustrates the excitation of a dipole

array located a z = 0 resulting in a “focused doughnut” pulse in the far field. (a-c) depict the

normalised E-field intensity on an xz cross-section in front of the dipole array. Four successive

time shots show the evolution of the E-field as it propagates away from the array. (d-e) show

respectively the time trace and Fourier spectrum of the E-field at z = 250 i.e. the field in (b).

These are evaluated at three different x positions: x = 10, 20, 30.

than in the case of no bandwidth truncation. This can be attributed to the complex

spatiotemporal coupling of the FD pulse, whereby changing the frequency content of

the pulse can be expected to effect the spatial focusing of the pulse.

In addition to the change in the spatial structure of the generated pulse, truncating

the bandwidth also affects the temporal extent of the pulse. This can be seen in Fig.

6.8(d), which gives time traces of the E-field intensity are evaluated at z = 250 i.e.

Fig. 6.8(b), at x positions of 10,20, and 30 [Fig. 6.8(d)]. It can be clearly seen that the

generated pulse is no longer single cycle as in the non-truncated case in Fig. 6.5(e),

but has no become closer to 2 cycles in nature, reflecting the significant reduction in

available bandwidth. Additionally, the levels of noise at the head and tail of the pulse

have now significantly increased relative to the non-truncated case.

Evaluating the Fourier spectra of these time traces [Fig. 6.8(e)] reveals how the band-

width of the generated pulse is significantly reduced compared to the non-truncated

pulse [Fig. 6.5(f)]. It can also be noted that the variation in frequency content as a
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function of position i.e. spatiotemporal coupling is no longer as pronounced as it was

in the non-truncated case, with a series of peaks occurring in approximately the same

location at each radial position.

This analysis outlines the susceptibility of the generation scheme to bandwidth limi-

tations, and illustrates how a pulse generated from such a scheme would depart from

the ideal FD case. Despite this, the generated pulse here still retains key properties

such as few-cycle nature, broad bandwidth, and toroidal topology that would make it a

desirable goal for a proof-of-principle experimental measurement. It is feasible that by

optimising the positioning of the dipole resonators in the array, the effect of bandwidth

truncation could be reduced or minimised. One potential way to achieve this would

be by increasing the dipole density at low radii where high frequency components

dominate, offsetting the bandwidth truncation at larger radii.

6.5 Generating a train of “focused doughnut” pulses

So far in this chapter, our consideration has been towards the generation of FD pulses

in a single shot procedure. In this section, we shall examine the viability, and pros and

cons, of a procedure that generates a FD pulse train rather individual processes. This

would result in a system analogous to mode-locked lasers, but generating a a periodic

train of FD pulses with some characteristic time separation.

6.5.1 Metamaterial pulse generator and dipole excitations

We begin with the same dipole array configuration used in previous sections for suc-

cessful generation of individual FD pulses [Fig. 6.9(a)]. Generation of a train of pulses

requires a modification of the excitation spectra of the array dipoles. We define the

dipole excitation required to produce such a pulse train as being proportional to the

sum of 4 FD fields, offset from each other in time by a factor of t0:

pi(t) ∝ Eθ(ρi, t) + Eθ(ρi, t− t0) + Eθ(ρi, t− 2t0) + Eθ(ρi, t− 3t0). (6.11)

We define the q1 = 3.6 and q2 = 100q1 as before, and define t0c = 60 to ensure that

separate FD pulses can be easily distinguished.

Fig. 6.9(b) shows the Fourier spectrum of this dipole excitation on each of the four

concentric rings in the array. The distinction from the excitations required for an

individual FD pulse [Fig. 6.4] is readily apparent. The frequency spectrum now takes

on the form of a frequency comb spectrum, with the original FD pulse spectrum being

restricted to a discrete series of peaks with equal separation. This significantly reduces
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Figure 6.9: Metamaterial dipole array positions and excitation for generation of a

train of “focused doughnut” pulses. (a) shows the xy positions of the azimuthally-aligned

dipoles in the generator array. There are 117 dipoles in total, located on four concentric rings

with radii (i) r = 5, (ii) r = 20, (iii) r = 35, and (iv) r = 50. (b) shows the Fourier spectra of

the dipole excitations. The excitation varies as a function of radial dipole position: (i)-(iv).

the frequency components required for generation of the FD pulses, with only those

coinciding with peaks in the frequency comb being significant in magnitude.

This distinction between the Fourier spectra required for individual FD generation and

generation of a train of pulses, may have important implications for an experimental

generator setup. In particular, it will be relevant for practical design of the resonators

in the metamaterial array. This will depend on whether it is more advantageous or fea-

sible to use individual broadband resonators, or a series of discrete narrow bandwidth

resonators.

6.5.2 Analysis of generated pulse

Following the same procedures as in the previous sections, we evaluate the radiation

from the excited dipole array [Fig. 6.9] in the time domain and observe the resultant

pulses generated. Fig. 6.10 shows the normalised E-field intensity generated by the

array on an xz cross-section at a time t = 150/c. It is immediately clear that multiple

FD pulses have been generated my this methodology, with the first two pulses in the

train visible at z = 150 and 90, and the third pulse forming in the near field of the

array. The successive pulses travel independently, coming to focus at z = 180, and are

sufficiently separated from each other in time and space that there is no interference

between them.

The individual pulses in the train are directly analogous to those presented in Section

6.3 from the single shot process. As such it is known from the FOM analysis [Section

6.3.3] that these pulses approach a 93% match with the ideal FD pulse, albeit with

different q1 and q2 parameters from those used in the input.
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Figure 6.10: Generation of a train of “focused doughnut” pulses from a metama-

terial dipole array. This figure illustrates the excitation of a dipole array located a z = 0

resulting in a train of“focused doughnut” pulses in the far field. Depicted is the normalised

E-field intensity on an xz cross-section in front of the dipole array at a time of t = 150/c.

Analysis reveals that at the temporal separation defined here, the FOM of a given

pulse in the train is not significantly affected by noise from the tail of the preceding

pulses (such noise can be seen in teh time traces of Fig. 6.5(e)). It is anticipated that

for decreased temporal separation of the pulses in the train, this noise will begin to

have a more significant affect. Further studies could benefit from understanding the

limits for temporal separation in such a pulse train.

6.5.3 Comparing single shot and pulse train “focused doughnut” gen-

erators

In this section, we will contrast the pros and cons of the single shot FD generation

scheme presented in Section 6.3 with the pulse train generation scheme described here.

From an application perspective, both single shot pulses and pulse trains find a range

of applications throughout physics, with pulse trains being of particular use in the field

of metrology [225,226].

In terms of experimental feasibility, the potential of both schemes becomes a question

of feasible resonator bandwidths. In the case of a single shot generation scheme, Fig.

6.4(b) indicates that generation of a single FD pulse would require highly broadband

resonators with > one octave bandwidth compared to the peak frequency. Accurate

control of frequency across such a bandwidth represents a daunting task, although our

work in Section 6.4 reveals that some bandwidth limitations could be tolerated in such

a scheme. In comparison, whilst generating a single FD pulse requires a continuous
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bandwidth, generating a train of FD pulses requires only multiple narrow-band peaks

as per a frequency-comb structure [Fig. 6.9(b)]. In the case of an experimental array

design, this could correspond to a series of narrowband resonators with different peak-

frequencies co-located in space (i.e. closely spaced on a sub-wavelength scale). In such a

configuration, coupling between resonators could become a potential issue. Attaining

narrowband dipole radiation could also be challenging, but could be addressed by

coupling the dipole to a sub-radiant quadrupole mode [80]. This would come at the

expense of complicating the resonator design beyond the simple dipolar case.

6.6 Summary

In this chapter, we have provided a proof-of-principle numerical demonstration for the

generation of “focused doughnut” pulses from discrete dipole arrays. In particular, we

utilise a planar array of dipole resonators arranged in a series of concentric rings where

each dipole can be individually orientated and assigned a specific temporal excitation.

Study of the radiation from this array in the far-field reveals that the generated pulse

can match an ideal FD pulse to a 93% accuracy. The focusing point of this pulse can

be altered arbitrarily by tailoring the input parameters.

Further to this, we evaluated the susceptibility of the generator scheme to bandwidth

limitations that will likely form a key consideration of any experimental realisation.

Simulations indicate that truncating the available bandwidth does affect the coupled

spatiotemporal structure of the pulse, but key properties of the ideal “focused dough-

nut”; such as spatiotemporal coupling, few cycle nature, and toroidal topology; are

still present. This represents a more realistic outcome of an initial experimental FD

generator scheme.

Finally, it is demonstrated that by applying a frequency-comb like structure to the

dipole excitations, the generating array can be tailored to generate a train of “focused

doughnut” pulses with an arbitrary separation in time. These individual pulses do not

interfere with each other and can each be matched to an ideal FD pulse with a 93%

accuracy.

The results presented here in this chapter lend support to the feasibility of producing

“focused doughnut” pulses using a metamaterial paradigm. However, there remain

several key questions to answer. Owing to the discrepancy between the desired pulse

parameters and those of the generated pulse [Section 6.3.3], the direct relationship

between the positioning of dipoles in the metamaterial array and the resultant spa-

tiotemporal structure of the pulse requires a thorough analysis. It may be that there is

some array configuration that could achieve an optimum matching between input and

output parameters, which may be greater than the 93% match achieved here. Further-

more, it would be beneficial to characterise the maximum bandwidth truncation that
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can be tolerated in such a generation scheme before key properties of the FD pulse are

lost. This would give the lower bounds for the tolerances of an experimental generator

scheme.





Chapter 7

Conclusions

7.1 Summary

The aim of this thesis was to explore the various manifestations of toroidal electrody-

namics in free-space, matter, and metamaterial structures. The results presented here

are anticipated to pave the way towards practical applications of toroidal electrody-

namics, particularly in the fields of sensing, spectroscopy and communications.

Prior to the work presented here, toroidal responses had been identified as a key

component in the excitations of metamaterial structures across a variety of spectral

ranges. In this thesis a number of theoretical and experimental advances have been

made concerning toroidal responses in matter:

• The first instance of a chiral metamaterial structure that exhibits circular dichro-

ism due to the simultaneous excitation of an electric quadrupole and a toroidal

dipole. We term this new enantiomeric phenomenon toroidal circular dichro-

ism.

• A methodology for determining the microscopic origin of chirality in meta-

material structures. The approach is based on evaluating changes to a mate-

rial’s polarisation eigenstates upon removal of radiating multipole components.

• A toroidal scatterer that can be excited by radially polarised light, and

exhibits a high Q-factor dipole radiation pattern.

Insights have also been gained concerning the “focused doughnut” pulse. These the-

oretical pulses with a complex toroidal topology are as yet unsynthesised and are

hypothesised to lead to non-trivial light-matter interactions. Numerous results have

been presented in this thesis:

• First instance of a full 3D finite element simulation of “focused doughnut”

pulses.

• Simulations of “focused doughnut” pulses interacting with continuous in-

terfaces, including observation of these pulses under reflection and refraction.

111
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• Simulations of “focused doughnut” pulses interacting with particulate mat-

ter with spherical and toroidal topologies. Explicit observation of broadband

modal excitation, preferential excitation of toroidal multipoles, and exci-

tation of a quasi-anapole mode.

Finally, potential schemes for generating “focused doughnut” pulses have been inves-

tigated with the aim of achieving a physical realisation of these pulses. Key results

include:

• Demonstration of “focused doughnut” pulses generated from a metama-

terial dipole array. The generated pulse can achieves a 93% match with the

analytic pulse. The effects of truncating the bandwidth of the dipole array

on the generated pulse were studied.

• Utilising a frequency-comb-like excitation spectra to generate a train of “fo-

cused doughnut” pulses form a metamaterial array.

7.2 Outlook

The work presented in this thesis covers a broad range of topics in toroidal electrody-

namics, including both experimental and proof-of-principle numerical demonstrations

of intriguing phenomena in matter, metamaterials, and free-space. There is significant

scope for continued research in all the topics discussed in the previous chapters. Some

of the suggestions for future research will be discussed below.

The mechanism of toroidal circular dichroism identified in Chapter 3 of this thesis,

represents a new, previously unobserved, microscopic mechanism for optical activity

in matter. We argue that this mechanism should be routinely taken into account

in the interpretation of circular dichroism spectra as an extension of the textbook

descriptions of conventional optical activity. This particularly relevant in the case of

the many biological and chemical structures that exhibit both toroidal topology and

an enantiomeric structure.

In Chapter 4, the interaction between radially polarised vector beams and toroidal

scatterers was described. The demonstration of high-quality toroidal responses in

the scatterer presents a new avenue for exciting and probing toroidal structures, and

generating high-quality dipole radiation. Furthermore, the work here reinforces the

preferential coupling of radially polarised light to the toroidal multipoles. Further

work could seek to examine the excitation of toroidal modes with more complex vector

beams, such as optical vorticies.

The research conducted on the properties, interactions, and generation of “focused

doughnut” pulses, reported on in Chapter 5 and 6, offers a variety of avenues for fu-

ture research, both in terms of continued numerical analysis and experimental work.
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There remains a wealth of interactions scenarios that would expand knowledge of the

light-matter interactions of these complex pulses. An example of this would be the

viability of a guiding mechanism for FD pulses. This could take the form of waveg-

uiding mechanisms in matter [172, 206], or guiding along metallic wires, as has been

demonstrated in the Terahertz regime [227]. Demonstration of guided FD propagation

would make the pulse increasingly viable as a new form of information carrier and

would be of particular interest to the telecommunications industry. A demonstration

of of FD stability whilst propagating through non-ideal environments would also be

instructive for this aim. Examples of such environments would include dispersive me-

dia and media with noise-like fluctuations in refractive index, reflecting variations in

air density and dust in an experimental setting.

Further light-matter interactions of interest would include optimal absorption of FD

pulses, with respect to energy harvesting and detection applications; interaction with

non-linear media, taking advantage of the highly localised energy density of the pulse to

drive non-linear processes; and the hypothetical excitation of space-time non-separable

electromagnetic “bursts” in matter, dispersive media, and plasmas.

Following on from our work in Chapter 6, an ultimate aim would be the experimental

demonstration of the generation, transmission, and detection of a FD pulse. A gen-

erator system would be based on the proof-of-principle metasurface scheme presented

here in this thesis. A full experimental realisation of a conventional-to- FD-pulse

metasurface transformer would require further investigation of broadband light ma-

nipulation and polarisation conversion techniques. Both the Terahertz and optical

regimes have been considered for experimental work, with the Terahertz benefiting

from the ubiquity of broadband pulses in this regime and relative ease of fabricating

sub-wavelength structures on this scale. Fabrication and attaining broadband light ma-

nipulation would be more challenging in the optical regime, but would open up more

possible applications, for example spectroscopy, optical manufacturing techniques, and

telecommunications.

Detection schemes could be based on the generator, or take advantage of the interac-

tions described in Chapter 5. This could include detectors sensitive to the dominant

excitation of toroidal modes, or detectors sensitive to the strong longitudinal field

component of the FD pulse. A combination of generators and detectors could form

the basis for integrated FD line-of-sight communication and directed energy transfer

systems.





Appendix

A Interaction energies of multipoles

In this Appendix, the interactions energies of the electric, magnetic, and toroidal

dipoles shall be calculated. Note that CGS units are used here to be consistent with

the relevant literature.

We begin from the definition of the electromagnetic interaction energy W :

W =

∫
d3r

[
ρφ− 1

c
J ·A

]
. (A.1)

The relevant charge ρ and current J densities for the specific multipoles can then be

inserted.

A.1 Interaction energy of the electric dipole

It can be shown that the charge-current density corresponding to an infinitesimally

small electric dipole p located at the origin is given by [42]:

ρ(r) = −p · ∇δ(3)(r), (A.2)

J(r) =
∂p

∂t
δ(3)(r). (A.3)

Substituting these definitions into Eq. A.1 gives:

Wp =

∫
d3r

[(
−p · ∇δ(3)(r)

)
φ− 1

c

∂p

∂t
·Aδ(3)(r)

]
. (A.4)

The first term in the square brackets can be shown to be equivalent to:

Wp =

∫
d3r

[
−p · ∇φδ(3)(r)− 1

c

∂p

∂t
·Aδ(3)(r)

]
. (A.5)

Integrating over the delta functions and substituting E = −∇φ− 1
c
∂A
∂t then yields:

Wp = −p ·E− 1

c

∂

∂t
(p ·A) . (A.6)
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As such, the electric dipole interacts with both the electric field E and the magnetic

vector potential A.

A.2 Interaction energy of the magnetic dipole

It can be shown that the charge-current density corresponding to an infinitesimally

small magnetic dipole m located at the origin is given by [16]:

ρ(r) = 0, (A.7)

J(r) = ∇×
(
cmδ(3)(r)

)
. (A.8)

Substituting these definitions into Eq. A.1 gives:

Wm = −1

c

∫
d3r

(
∇× cmδ(3)(r)

)
·A. (A.9)

This can be shown to be equivalent to:

Wm = −
∫
d3r (∇×A) ·mδ(3)(r). (A.10)

Integrating over the delta function and substituting B = ∇×A then yields:

Wm = −m ·B. (A.11)

As such, the magnetic dipole interacts with the magnetic field B.

A.3 Interaction energy of the toroidal dipole

It can be shown that the charge-current density corresponding to an infinitesimally

small toroidal dipole T located at the origin is given by [16]:

ρ(r) = 0, (A.12)

J(r) = ∇×∇×
(
cTδ(3)(r)

)
. (A.13)

Substituting these definitions into Eq. A.1 gives:

WT = −1

c

∫
d3r

(
∇×∇× cTδ(3)(r)

)
·A. (A.14)

This can be shown to be equivalent to:
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WT = −
∫
d3r (∇×∇×A) ·Tδ(3)(r). (A.15)

Integrating over the delta function and substituting Ampere’s Law then yields:

WT = −T ·
[

4π

c
J +

1

c

∂E

∂t

]
. (A.16)

As such, the toroidal dipole interacts with the current J and the time derivative of the

electric field ∂E/∂t.

B Radiation patterns of multipoles

In this Appendix the far-field radiation distributions of the first few orders of multipoles

shall be constructed. Note that SI units shall be used here to be consistent with the

relevant literature.

We begin with the solutions for scalar φ and vector A potentials of an arbitrary charge

ρ and current J distribution based on the Green’s function:

φ(r) =
1

4πε0

∫
eik|r−r

′|

|r− r′|
ρ
(
r′
)
d3r′, (B.1)

A(r) =
µ0
4π

∫
eik|r−r

′|

|r− r′|
J
(
r′
)
d3r′. (B.2)

These solutions to the inhomogenous wave equation are constructed using the Lorenz

Gauge for the vector potential A:

∇ ·A− 1

c2
∂φ

∂t
= 0 (B.3)

The electric E and magnetic fields can then be constructed using the following rela-

tions:

E = −∇φ− ∂A

∂t
, (B.4)

B = ∇×A. (B.5)

At this point we emphasise that only far-field (i.e. as r → ∞) radiation components

are considered in the following derivations, and as such consider only terms of order

O (1/r). In practice, the full expressions for the radiated fields contain terms dependent

on higher order powers of r.

In addition, source terms ∝ δ(r) that characterise the behaviour of the fields at the

origin are ommited from the following derivations. These arise from a complete dif-

ferentiation of the term
(
eikr

r

)
, and ensure the full field expressions satisfy Maxwell’s
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equations for a radiating source. For example, the full E-field of a radiating electric

dipole p contains a term ∝ pδ(r). For a full description of the complete field expres-

sions for radiating dipoles and a discussion of the relevance of source terms, the reader

is directed to references [9, 228,229].

B.1 Radiation of the electric dipole

It can be shown that the charge-current density corresponding to an infinitesimally

small electric dipole p located at the origin is given by:

ρ(r) = −p · ∇δ(3)(r), (B.6)

J(r) = −iωpδ(3)(r). (B.7)

We note that this identity is consistent with both the continuity equation iωρ+∇·J and

the definition for electric dipole in terms of a current integral in Section 2.2.1. These

definitions for ρ and J can be inserted into Eqs. B.1 and B.2. First φ is calculated:

φp(r) =
1

4πε0

∫
eik|r−r

′|

|r− r′|

[
−p · ∇′δ(3)(r′)

]
d3r′ =

1

4πε0
p ·
∫
∇′ e

ik|r−r′|

|r− r′|
δ(3)(r′)d3r′.

This can be shown to be equivalent to:

φp(r) =
1

4πε0
p · (−∇)

∫
eik|r−r

′|

|r− r′|
δ(3)(r′)d3r′ = − 1

4πε0
p · ∇e

ikr

r
. (B.8)

The vector potential A is calculated to be:

Ap(r) =
µ0
4π

∫
eik|r−r

′|

|r− r′|

[
−iωpδ(3)(r′)

]
d3r′ = − iωµ0

4π
p
eikr

r
. (B.9)

These definitions of φ and A can now be substituted into Eq. B.4, assuming harmonic

excitation of the form −∂A
∂t → iωA:

Ep(r) = −∇
[

1

4πε0
p · ∇e

ikr

r

]
− ∂

∂t

[
− iωµ0

4π
p
eikr

r

]
,

= − 1

4πε0
∇
[
p · ∇e

ikr

r

]
+
ω2µ0
4π

p
eikr

r
,

=
c

4π

√
µ0
ε0

[
k2p−∇ (p · ∇)

](eikr
r

)
.

Evaluating the differentials and considering only O (1/r), the electric field Ep is then

defined in the far-field as:
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Ep(r) =
k2c

4π

√
µ0
ε0

[p− r̂ (p · r̂)]

(
eikr

r

)
,

Which can be shown to be equivalent to:

Ep(r) =
k2c

4π

√
µ0
ε0

(
eikr

r

)
(r̂× p)× r̂. (B.10)

It can be seen from the factor (r̂× p)× r̂ that Ep will be primarily aligned along the

axis of the dipole.

B.2 Radiation of the magnetic dipole

It can be shown that the charge-current density corresponding to an infinitesimally

small magnetic dipole m located at the origin is given by:

ρ(r) = 0, (B.11)

J(r) = ∇×
(
cmδ(3)(r)

)
. (B.12)

As the charge density ρ for a magnetic dipole is zero, only the vector potential A is

required to construct the far-field radiation. The defintiion for J can be inserted into

Eq. B.2:

A(r) =
µ0
4π

∫
eik|r−r

′|

|r− r′|

[
∇× cmδ(3)(r)

]
d3r′. (B.13)

By following through the integration, it can be shown that:

Am(r) = −cµ0
4π

[m×∇]

(
eikr

r

)
. (B.14)

The electric field E can then be calculated from Eq. B.4. The scalar potential φ = 0

and assuming harmonic excitation of the form −∂A
∂t → iωA, this gives:

Em(r) = − iωcµ0
4π

[m×∇]

(
eikr

r

)
,

= − ikc
4π

√
µ0
ε0

[m×∇]

(
eikr

r

)
.

Evaluating the differential and considering only O (1/r), the electric field Em is then

defined in the far-field as:
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Em(r) = −k
2c

4π

√
µ0
ε0

(
eikr

r

)
(r̂×m) . (B.15)

It can be seen from the (r̂×m) that Em in the far-field will be aligned orthogonal to

the dipole axis. This is in contrast to the radiated field Ep from an electric dipole,

which is aligned primarily along the dipole axis

B.3 Radiation of the toroidal dipole

As the expression for radiation of a toroidal dipole is not given in the standard texts,

here we will provide a full derivation. We start from the charge ρ and current J density

distributions for a toroidal dipole:

ρ(r) = 0, (B.16)

J(r) = ∇×∇×
(
cTδ(3)(r)

)
, (B.17)

Where T represents a toroidal dipole. As the charge density ρ of a toroidal dipole is

zero, the scalar potential φ= 0. The vector potential AT is given by:

AT (r) =
cµ0
4π

∫
e(ik|r−r

′|)

|r− r′|

[
∇×∇×Tδ(3)(r′)

]
)d3r′. (B.18)

By following through the integration, it can be shown that:

AT (r) =
cµ0
4π

[
∇ (T · ∇)−T∇2

](eikr
r

)
. (B.19)

The electric field E can then be calculated from Eq. B.4. The scalar potential φ = 0

and assuming harmonic excitation of the form −∂A
∂t → iωA, this gives:

AT (r) =
iωcµ0

4π

[
∇ (T · ∇)−T∇2

](eikr
r

)
. (B.20)

Evaluating the differentials and considering only O (1/r), the ET is then defined in the

far-field as:

ET (r) =
ik3c

4π

√
µ0
ε0

[T− r̂ (r̂ ·T)]

(
eikr

r

)
, (B.21)

ET (r) =
ik3c

4π

√
µ0
ε0

(
eikr

r

)
(r̂×T)× r̂. (B.22)

We note that the far-field radiation pattern of the toroidal dipole has a similar struc-

ture to that of the electric dipole [Eq. B.10], save for a phase factor and additional
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dependence on k. Indeed for p = −ikT, the two radiation patterns will be identi-

cal. For cases p = −ikT, the radiated fields of the two multipoles will be identical

in magnitude but a factor of π out of phase, leading to destructive interference. This

is the basis for a non-radiating configuration and will be demonstrated explicitly in

Appendix B.4.

B.4 Interference between electric and the toroidal dipole radiation

Consider the superposition of far-field toroidal dipole radiation [Eq. B.22] and far-field

electric dipole radiation [Eq. B.10] where the electric dipole p = −ikT :

Ep+T (r) = Ep(r) + ET (r), (B.23)

Ep+T (r) =
k2c

4π

√
µ0
ε0

(
exp (ikr)

r

)
(r̂× (−ikT))×r̂+

ik3c

4π

√
µ0
ε0

(
exp (ikr)

r

)
(r̂×T)×r̂.

(B.24)

Collecting like terms and simplifying leads to:

Ep+T (r) =

[
ik3c

4π
− ik3c

4π

]√
µ0
ε0

(
exp (ikr)

r

)
(r̂×T)× r̂, (B.25)

Ep+T (r) = 0. (B.26)

This demonstrates the destructive interference of the far-field radiation components

i.e. a non-radiating configuration in the case of co-located and co-aligned electric and

toroidal dipoles where p = −ikT.

This can be reinforced by considering the equation for multipole scattering intensity as

given by Eq. 2.2.2. Considering only the terms dependent on the electric and toroidal

dipole we have:

Ip,T =
2ω4

3c3
|p|2 +

2ω6

3c5
|T|2 − 4ω5

3c4
Im
(
p† ·T

)
. (B.27)

We note that the sign of the third term has changed from positive to negative relative

to Eq. 2.2.2. This is because our derivation of radiation patterns in Appendix B

utilises a −iωt harmonic convention, whereas Eq. 2.2.2 utilises a +iωt convention.

Both descriptions are valid for the correct definitions of the dipole phases.

Substituting p = −ikT into Eq. B.27 gives:
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Ip,T =
2ω4

3c3
|−ikT|2 +

2ω6

3c5
|T|2 − 4ω5

3c4
Im
(
ik |T|2

)
, (B.28)

Ip,T =
4ω6

3c5
|T|2 − 4ω6

3c5
|T|2 = 0. (B.29)

It can be seen that the total scattering intensity of the electric and toroidal dipoles

vanishes for p = −ikT.

B.5 Radiation of the electric quadrupole

The radiation pattern of the electric quadrupole is difficult to obtain using the method-

ology outlined in the previous sections. This is due to the complexities in writing

charge density ρ and current density J in terms of the electric quadrupole tensor Qαβ.

Nonetheless, a definition of electric quadrupole radiation can be extracted from the

multipole expansion and is well covered in the literature:

EQ(r) =
−ik3c
24π

√
µ0
ε0

(
eikr

r

)
(r̂×Q)× r̂, (B.30)

Where Qα is defined in terms of the electric quadrupole tensor as:

Qα =
∑
β

Qαβrβ. (B.31)

We refer the reader to Ref. [9] for an in-depth derivation.

C Definition of current in simulation domains

Numerical simulations in COMSOL 3.5a do not include a predefined definition of

current density within a simulation domain. This is necessary in order to fully evaluate

the multipoles excited in matter. Here a working definition shall be defined. We start

with Ampere’s circuital law (with Maxwell’s addition):

∇×B = µ0J + iωµ0ε0E. (C.1)

In COMSOL 3.5a, it is given in equivalent form as:

∇×B = µ0σE + iωµ0ε0εrE, (C.2)

Where σ represents the electrical conductivity and εr represents the relative permit-

tivity. Equating these two definitons gives:
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µ0J + iωµ0ε0E = µ0σE + iωµ0ε0εrE, (C.3)

J = σE + iωε0 (εr − 1) E. (C.4)

Noting that in dielectric σ = 0, we are left with the definition:

J = iωε0 (εr − 1) E. (C.5)

This can be utilised to calculate current density within simulation domains, and thus

multipoles from volume rather than surface currents.

D Multipole integrals in transient simulations

The multipole integrals given in Section 2.2.1 are explicitly frequency dependent, and

can be utilised to extract the microscopic multipoles from harmonic domain simula-

tions. However, many of the simulations conducted in support of this thesis utilise

transient domain simulations, specifically the research reported on in Chapter 5. As

such, here the methodology for extracting frequency-dependent multipoles from tran-

sient data will be described.

Here we modify the charge-current integrals given in Section 2.2.1 (up to quadrupole

order) with a Fourier transform so that they can be extracted from a transient sim-

ulation. The subsitution J = iωε0 (ε̃r − 1) E is also used for the definition of induced

current density.

p (ω) = ε0(εr − 1)F̃

{∫
E(t)d3r

}
, (D.1)

m(ω) =
iω

2c
ε0(εr − 1)F̃

{∫
r×E(t)d3r

}
, (D.2)

T(ω) =
iω

10c
ε0(εr − 1)F̃

{∫ [
br ·E(t)c r− 2r2E(t)

]
d3r

}
, (D.3)

Qαβ(ω) =
1

2
ε0(εr − 1)F̃

{∫ [
rαEβ(t) + rβEα(t)− 2

3
δαβ br ·E(t)c

]
d3r,

}
(D.4)

Mαβ(ω) =
iω

3c
ε0(εr − 1)F̃

{∫ [
br×E(t)cα rβ + br×E(t)cβ rα

]
d3r

}
, (D.5)

Where F̃ represents the Fourier transform from the time to the frequency domain.

This gives the Fourier spectra of the microscopic multipoles from a time-dependent

simulation.
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Figure E.1: Transverse electric field of a “focused doughnut” pulse generated by a

metamaterial dipole array. This figure illustrates the excitation of a dipole array located a

z = 0 resulting in a “focused doughnut” pulse in the far field. (a-c) depict the transverse i.e.

out-of-plane E-field on an xz cross-section in front of the dipole array. Three successive time

shots show the evolution of the E-field as it propagates away from the array.

E Fields generated by “focused doughnut” generation scheme

In Chapter 6 it was demonstrated that “focused doughnut” pulses could be synthesised

from metasurface dipoles array with a 93% accuracy. The results in this chapter were

presented in terms of intensity maps of the fields emitted from the array [Fig. 6.5].

In this appendix, we shall additionally examine the fields emitted by the array to

complement the intensity plots and clarify the polarisation of the generated pulse.

Fig. E.1 depicts the equivalent FD generation scheme as shown in Section 6.3 (only

depicted over a z range of 0-200) at three time points, but plots the transverse i.e.

out-of-plane component of the E-field as opposed to the E-field intensity.

The azimuthal polarisation of the generated pulse is clear from these plots, as indicated

by the out-of-phase field components for positive and negative x values. The plots here

can be directly compared with the analytic FD field plots presented in Fig. 5.3 to give

a qualitative comparison between the analytic FD and our generated pulse.

It can be noted that the radiation generated by the array with low kz values i.e.

primarily propagating along the x − direction, is clearly visible in these field plots.

This radiation would be responsible for inter-dipole interaction in the generating array

and would be a relevant concern for experimental relaisations of this scheme.
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F Publications

F.1 Peer-reviewed articles

• T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. J. Youngs, and N. I. Zhe-

ludev, “Electromagnetic excitation of anapole and toroidal modes in dielectric

particles”, submitted to ACS Photonics.

• T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W.

T. Chen, D. P. Tsai and N. I. Zheludev, “Toroidal circular dichroism”, Physical

Review B 94, 035119 (2016).

• N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev,

“Electromagnetic toroidal excitations in matter and free space”, Nature Materials

15, 263 (2016).

• T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. J. Youngs, and N. I. Zheludev,

“Focused electromagnetic doughnut pulses and their interaction with interfaces

and nanostructures”, Optics Express 24, 3150 (2016).

F.2 To-be published

• N. Papasimakis, T. A. Raybould, V. A. Fedotov, I. J. Youngs, and N. I. Zheludev,

“Generation of electromagnetic flying toroids from metamaterial arrays”

• T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. J. Youngs, and N. I. Zheludev,

“Interaction of structured light with toroidal scatterers”

F.3 Conference contributions

• (poster) T. A. Raybould, N. Papasimakis, V. A. Fedotov, I. Youngs, and N.

I. Zheludev, “Generation of flying electromagnetic doughnuts via spatiotempo-

ral conversion of transverse electromagnetic pulses”, Nanometa 2017, Seefeld,

Austria, 4 - 7 Jan 2017.

• (invited) T. A. Raybould, V. Savinov, N. Papasimakis, V. A. Fedotov, and N.

I. Zheludev, “Electromagnetic doughnuts: localised and propagating toroidal

excitations enabled by metamaterials”, Metamaterials 2016, Chania, Greece, 17

- 22 Sep 2016.

• (invited) T. A. Raybould, V. Savinov, N. Papasimakis, V. A. Fedotov, and N.

I. Zheludev, “Metamaterials as a platform to study localised and propagating

toroidal excitations”, CIMTEC 2016, Perugi, Italy, 5 - 9 June 2016.
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• (poster) T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Youngs, and N. I.

Zheludev, “Toroidal excitations in space and matter”, New Horizons for Nanopho-

tonics, Newport Pagnell, UK, 23 - 24 May 2016.

• (invited) T. A. Raybould and N. I. Zheludev, “Flying and localized electromag-

netic doughnuts”, KnIFE Programme Lunchtime Seminar, DSTL, Porton Down,

UK, 14 Mar 2016.

• (poster) T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Youngs, and N.

I. Zheludev, “Toroidal excitations in space and matter”, Defence and Security

Doctoral Symposium, Cranfield, UK, 25 - 26 Nov 2015.

• (oral) T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. Youngs,

W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Chiral phenomena in toroidal

metamaterials”, Metamaterials 2015, Oxford, UK, 7 - 12 Sep 2015.

• (oral) T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Youngs, and N. I. Zhe-

ludev, “Propagating toroidal electromagnetic excitations and their interactions

with metamaterials and nanostructures”, Metamaterials 2015, Oxford, UK, 7 -

12 Sep 2015.

• (invited) N. I . Zheludev, V. A. Fedotov, N. Papasimakis, V. Savinov, T. A.

Raybould, and I. Youngs, “Propagating and localized toroidal excitations in free

space and metamaterials”, SPIE Optics and Photonics 2015, San Diego, CA,

USA, 9 - 13 Aug 2015.

• (invited) T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Youngs, and N. I.

Zheludev, “Interrogating nanoparticles with focused doughnuts”, PIERS 2015,

Prague, Czech Republic, 6 - 9 Jul 2015.

• (oral) T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Youngs, W. T. Chen,

D. P. Tsai, and N. I. Zheludev, “A new type of optical activity in a toroidal

metamaterial”, PIERS 2015, Prague, Czech Republic, 6 - 9 Jul 2015.

• (oral) T. A. Raybould, V. A. Fedotov, N. Papsimakis, I. J. Youngs, W. T. Chen,

D. P. Tsai, and N. I. Zheludev, “New enantiomeric phenomena in toroidal media”,

CLEO/Europe-EQEC 2015, Munich, Germany 21 - 25 Jun 2015.

• (oral) T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Youngs, W. T. Chen,

D. P. Tsai, and N. I. Zheludev, “A new type of optical activity in a toroidal

metamaterial”, CLEO 2015, San Jose, CA, USA, 10 - 15 May 2015.

• (oral) T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Youngs, and N. I.

Zheludev, “Interrogating nanoparticles with focused doughnut pulses”, Optical

Wave and Waveguide Theory and Numerical Modelling Workshop, London, UK,

17 - 18 Apr 2015.
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• (poster) T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Youngs, N. I. Zhe-

ludev, “Flying electromagnetic toroids: propagation properties and light-matter

interactions”, Nanometa 2015, Seefeld, Austria, 5 - 8 Jan 2015.

• (invited) N. I. Zheludev, V. A. Fedotov, T. A. Raybould, N. Papasimakis, V.

Savinov and I. Youngs, “Metamaterials, toroids and flying donuts”, IEEE Pho-

tonics Conference 2014, San Diego, CA USA, 12 - 16 Oct 2014.

• (poster) T. A. Raybould, N. Papasimakis, V. A. Fedotov, I. Youngs, and N. I.

Zheludev, “Interaction of flying electromagnetic doughnut with nanostructures”,

CLEO 2014, San Jose, CA, USA, 8 - 13 Jun 2014.
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[204] C. Varin, M. Piché, and M. Porras, “Acceleration of electrons from rest to GeV

energies by ultrashort transverse magnetic laser pulses in free space,” Physical

Review E, vol. 71, p. 026603, Feb. 2005.

[205] E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D.
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