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A B S T R A C T

We evaluate the frictional strength of seismogenic faults in the Main Ethiopian Rift (MER) by inverting the
available, well-constrained earthquake focal mechanisms. The regional stress field is given by − 119.6°/77.2°,
6.2°/7.6°, and 97.5°/10.2° for trend/plunge of σ1, σ2 and σ3, respectively agrees well with previous fault kine-
matic and focal mechanism inversions. We determine the coefficient of friction, μ, for 44 seismogenic faults by
assuming the pore pressure to be at hydrostatic conditions. Slip on 36 seismogenic faults occurs with μ ≥ 0.4.
Slip on the remaining eight faults is possible with low μ. In general, the coefficient of friction in the MER is
compatible with a value of μ of 0.59±0.16 (2σ standard deviation). The shear stresses range from 16 to
129MPa, is similar to crustal shear stress observed in extensional tectonic regimes and global compilations of
shear stresses from major fault zones. The maximum shear stress is observed in the ductile crust, below the
seismologically determined brittle-ductile transition (BDT) zone. Below the BDT, the crust is assumed to be weak
due to thermal modification and/or high pore fluid pressure. Our results indicate linearly increasing μ and shear
stress with depth. We argue that in the MER upper crust is strong and deforms according to Coulomb frictional-
failure criterion.

1. Introduction

Thorough understanding of the regional stress field is of paramount
importance in constraining the strength of faults and the crust along
actively deforming plate boundaries. In general, fault zones are rela-
tively weaker than the surrounding stable crust (Zoback et al., 1987).
However, there are still questions regarding whether the strength of
individual faults in a deformed region is the same or varies, and also
whether the strength of the fault varies along strike on the same fault.
In a recent study, Floyd et al. (2016) showed that the frictional para-
meters of a fault may vary over only a few kilometers distance de-
pending on lithological controls. Fault strength varies not only spatially
but also temporally. By reviewing about 300 experimental results, Di
Toro et al. (2011) suggested that the strength of faults could be reduced
during earthquakes.

Coefficient of friction, μ, can be used as a proxy to model the
strength of faults and crust. Laboratory estimates of μ are usually high,
ranging from 0.6 to 0.8 (Byerlee, 1978) although lower μ values are
reported (using rotary shear apparatus) from the San Andreas fault

(e.g., Carpenter et al., 2015). Some researchers argue that if these μ
values really exist during seismic slip, we should have found high heat
flow and extensive melting (e.g. pseudotachilite) along exhumed faults
(e.g., Mulargia and Bizzarri, 2016). The apparent absence of these rock
types is used to argue that coefficient of friction is lower than labora-
tory estimates. In line with this, numerical modeling studies in active
tectonic areas, e.g. in East African Rift (EAR) (Bird et al., 2006), argue
that the friction coefficient is much lower than the laboratory estimates.
This agrees with recent laboratory experiment that found μ to be below
0.4 under pressure condition equivalent to a depth of ∼15 km (Di Toro
et al., 2011).

Mulargia and Bizzarri (2016) proposed a multi-stage earthquake
process which involves a high friction coefficient with μ ∼ 0.7 during
the first stage. The high friction stage induces high temperature that
almost immediately induces fluid pressurization and reduces the per-
meability of fault gouges and subsequently the pore pressure reaches
lithostatic state. In this case, μ drops to ∼0.2. Other, equally important
fault lubrication mechanisms include melt lubrication (Di Toro et al.,
2006), gelification (Di Toro et al., 2004) and decarbonation (Han et al.,
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2010), which are also proposed for the reduction of μ during seismic
slip.

Stamps et al. (2015) argue that buoyancy forces, weak continental
faults and Couette-type mantle flow in the asthenosphere explain ex-
tension across the EAR. In that study, weak fault friction results in
better fit between geodynamic model and present-day geodetic ob-
servations in Africa (Saria et al., 2014).

In the Main Ethiopian Rift (MER) (Fig. 1), the crust and faults are
assumed to be weakened by hotspot tectonics over the last ∼30Ma
(e.g., Pik et al., 2006), including ongoing dyke intrusion (e.g., Keranen
et al., 2009; Wright et al., 2006; Beutel et al., 2010). We constrain the
coefficient of friction and stress magnitudes in the actively deforming
MER. Our approach is that first we invert the focal mechanisms and
follow basic assumptions of finding the shear and normal stresses using
tensor transformation, acting on optimally oriented seismogenic faults
and subsequently determine the coefficient of friction, μ. Our results
show spatial variation of μ along the strike of the MER and the shear
stress variation in the crust. The results presented will contribute to the
understanding of the stress magnitude at the earthquake focal depths
where in situ measurements are totally absent and the frictional
strength of MER faults and crust.

2. Tectonic setting, focal mechanism data and regional stress field

2.1. Tectonics of the Main Ethiopian Rift

The Main Ethiopian Rift forms an active plate boundary between the
Africa (Nubia) and Somalia plates in the northern EAR. Starting from
∼18Myrs, the MER is thought to have initiated asynchronously along
its length (Wolfenden et al., 2004). The asynchronous development of
the different sectors of the rift potentially influences the melt produc-
tion and strain accommodation mechanisms (Keir et al., 2015; Muluneh
et al., 2017). The MER orientation is influenced by the Neoproterozoic,
Pan-African suture zone that runs through Ethiopia, and significantly
influences the orientation of faults (e.g., Agostini et al., 2011), seismic
anisotropy (e.g., Gashawbeza et al., 2004) and also crustal thickness
(e.g., Keranen and Klemperer, 2008). During the past ∼2Myrs, de-
formation in the northern MER focused along 20 km-wide, 60 km-long

magmatic segments arranged in an en echelon manner within mid-
Miocene half-graben basin (Ebinger and Casey, 2001). The transfer of
strain from border faults to the magmatic segments could be due to rift
obliquity (Corti, 2008), weakening of the crust by release of magmatic
fluids (Muirhead et al., 2016), or by localizing extensional stresses in
strong crust within the rift in which the increase in the rock strength is
due to metamorphic reactions in rocks intruded by ascending magmas
(Lavecchia et al., 2016), and/or by solidification of new mafic material
(e.g., Beutel et al., 2010).

2.2. Earthquake focal mechanism data

Earthquake data from the EAGLE catalogue (Keir et al., 2006) for
the period 2001 to 2003 (Fig. 1a & b) shows that seismicity continues to
the depth of 28 km with magnitude ML 0.0 to 4 (Fig. 1a & b). We assume
that the depth to the brittle-ductile transition (BDT) occurs at a depth of
16 km, above which 90% of seismicity occurs (Fig. 1b). This depth also
coincides with the average depth to the base of the upper crust in the
MER (Maguire et al., 2006).

We compiled 55 well determined earthquake focal mechanisms
from CMT catalogues and published sources (Fig. 2a) (Ayele, 2000;
Hofstetter and Beyth, 2003; Ayele et al., 2006; Keir et al., 2006;
Delvaux and Barth, 2010; Wilks et al., 2016) in the MER. Fig. 2b shows
hypocentral depth of the focal mechanisms compiled and only two
mechanisms are located in the lower crust. The focal mechanism data
are strike, dip and rake of the fault planes. Most of the studies reported
the fault planes except for Hofstetter and Beyth (2003) who reported
both the auxiliary and interpreted fault planes. Distinction between
fault and auxiliary planes is based on orientation of fault traces on the
surface. Planar faults tend to have linear fault traces on the Earth's
surface whereas listric fault planes tend to be arcuate in plan view and
listric in 3-D with alternating and overlapping half grabens that change
polarity along strike (Rosendahl, 1987). In the MER, the observed faults
on the surface are linear segments with steep fault plane that led us to
conclude that they continue to be planner at depth. In cases when
multiple mechanisms for a single earthquake is reported, we use the
most recent publication. The largest focal mechanism dataset comes
from Keir et al. (2006) (33 out of 55 mechanisms) who assign a 2 sigma

Fig. 1. Location map of the Main Ethiopian Rift (MER). (a) The main map of the study area with inset showing map of Africa. The white circles are earthquake
epicenters determined by EAGLE network for a period of 2001–2003 (Keir et al., 2006). The size of the circles is scaled to their magnitudes. The red triangles are
active volcanic centers. (b) Histogram of the number of earthquakes per 1 km depth bin interval. BDT shows the depth to brittle-ductile transition at 16 km where
90% of seismicity occurs. MER=Main Ethiopian Rift. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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uncertainty of± 20° to the focal parameters and± 2 km for the hy-
pocentral depth. Most focal mechanisms show dip-slip movements
along the faults and slip with dips> 50° similar to the dip of recently
active faults in the rift (e.g., Agostini et al., 2011).

2.3. Inversion method and regional stress field

The stress field can be quantified by formally inverting a group of
earthquake focal mechanisms or active fault data. A least square in-
version technique is developed to invert a group of diverse earthquake
mechanisms by assuming the regional stress field is uniform (Michael,
1984). The inversion technique minimizes the difference between the
slip vector and the resolved shear stress which can be used to assess the
success of the inversion result. The resulting stress field quantifies the
relative magnitude, ϕ, trend and plunge of principal stresses (σ1, σ2 and
σ3; where σ1 ≥ σ2 ≥ σ3). We used the inversion method of Michael
(1984, 1987) in order to estimate the regional stress field of the MER.
The confidence region for the best fit stress tensor is calculated using
the bootstrap resampling method. To estimate the 95% confidence limit

we used 2000 repetitions (Michael, 1987). During the inversion pro-
cess, we used the reported fault planes (Ayele, 2000; Ayele et al., 2006;
Keir et al., 2006; Wilks et al., 2016) as they are. In cases when we
encounter large angular misfit during the inversion process, we change
the nodal plane until the misfit is reduced to an acceptable level. The
nodal planes that reduce the angular misfit are the preferred fault
planes (Michael, 1987). However, the individual misfit of each plane
must be kept below 25° (Michael, 1991). Only two focal mechanisms
show individual misfit of higher than 25° but below 30°. The observed
regional stress field is given by − 119.6°/77.2°, 6.2°/7.6°, 97.5°/10.2°
for trend/plunge of σ1, σ2 and σ3 (Fig. 3; Table 1). The quality of the
inversion result is measured by the β value; a misfit measure that de-
fines the angle between the observed and predicted rake angles for the
mechanisms (Michael, 1984). Our inversion results an average misfit,
β , of 10.3°± 7.6°. Although the inversion process suffers from the
absence of diverse focal mechanisms, it results in similar trend and
plunge of principal stress axes to other studies in the rift (e.g., Delvaux
and Barth, 2010; Keir et al., 2006) and extension direction inferred
from GPS observations (e.g., Saria et al., 2013). In addition, the focal
mechanism dataset is a complete compilation of literature.

Several studies have been conducted in order to compare different
inversion techniques (e.g., Kastrup, 2003; Delvaux and Barth, 2010).
Irrespective of the methods used, the optimal solutions for the stress
inversion are consistent and similar. Using 7 earthquake focal me-
chanism solutions from CMT catalogue in the MER, Delvaux and Barth
(2010) conducted stress inversions using the method of Michael (1984,
1987) and Delvaux and Sperner (2003). They showed that the or-
ientation of the principal stress axes is almost the same with significant
difference in stress ratio.

2.4. Absolute stress magnitudes

In areas where in-situ stress measurements are lacking, a number of

Fig. 2. (a) Earthquake focal mechanisms compiled for this study scaled to the
magnitude of events. (b) Depth of earthquake focal mechanisms is shown on
(a). BF=border fault.

Fig. 3. Result of stress tensor inversion using earthquake focal mechanisms in
the MER. Circle, triangle and diamond symbols show σ1 (largest compressive
stress), σ2 (intermediate), and σ3 (least compressive stress), respectively. The
95% confidence level is estimated with bootstrap resampling (Michael, 1987).
Inversion results in our study are shown by open symbols. Principal stresses
from Delvaux and Barth (2010) using Delvaux and Sperner (2003) are shown by
blue and using Michael (1984) by red filed symbols. Black diamond symbol
shows σ3 orientation from Keir et al. (2006). (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of
this article.)
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assumptions can be used to find the absolute magnitude of principal
stresses at the earthquake focal depths and later used to quantify the
strength of the crust. In order to quantify the shear and normal stresses
and later the coefficient of friction, μ, on optimally oriented faults, in-
formation about the absolute magnitude of the principal stresses is re-
quired (Zoback, 1992). Earthquake focal mechanism inversion allows
the determination of direction and relative magnitudes of principal
stresses, σ1, σ2, and σ3. When one principal stress axis is oriented ver-
tically (σ1 in extensional regime), its magnitude is given by the over-
burden weight (e.g., Zoback and Zoback, 2002)

∫= = ≈σ σ ρgdz ρgzv
z

1 0 (1)

where ρ is the density of crustal material (taken here as 2800 kg/m3), g
is acceleration due to gravity [∼10m/s2] and z is the focal depth [m].
Eq. (1) shows that σ1 increases in an approximately a linear fashion
with depth.

Based on limiting frictional strength of optimally oriented faults in
the crust (e.g., Sibson, 1974; Zoback and Townend, 2001), the least
compressive stress, σ3, can be estimated by

−

−
= + +

σ p
σ p
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where p0 is the pore fluid pressure which is assumed to be hydrostatic
and is given by λ× σv where λ=0.3737 (Albaric et al., 2009; Zoback,
1992; Fadaie and Ranalli, 1990); μc is a static frictional coefficient
∼0.75 (Sibson, 1974; Jager and Cook, 1979) and is considered to re-
present the regional value for absolute stress determination (Kastrup,
2003). From Eq. (2), it is evident that p0 can not exceed σ3 without the
occurrence of hydraulic fracturing, although λ values greater than 1 are
possible without causing hydraulic fracturing if total principal stresses
within the fault zone are magnified due to contrasts in rheological

properties (e.g., Rice, 1992). Inserting the μc value into = − ( )θ tan μ
1
2

1 1

c
,

where θ is the angle σ1 makes with the fault plane, gives the dip angle of
∼ 63° for optimally oriented normal faults (Sibson, 1974). This angle is
the typical dip of normal faults (Agostini et al., 2011) and the inter-
preted fault planes of earthquake focal mechanisms (Keir et al., 2006)
(Fig. 4a & b) in the MER. Fig. 3 shows that σ1 is near-vertical and fulfills
the assumption of vertical maximum stress in order to determine ab-
solute stress magnitude.

Finally an additional constraint to the determination of absolute
magnitudes is given by

=
−

−
ϕ σ σ

σ σ
2 3

1 3 (3)

in which ϕ value is independently determined from the inversion of
earthquake focal mechanisms. Eqs. (1)–(3) are adequate to estimate the
absolute magnitude of principal stresses.

To get the normal (σn) and shear (τ) stresses on individual fault
plane, we need to transform the stress tensor through tensor transfor-
mation (e.g., Allmendinger et al., 2012). To quantify the frictional
strength of the faults, the ratio of τ to σṅ must be determined using the

modified linear frictional sliding equation (Eq. (4)) where the cohesion
is assumed to be close to zero (Zoback, 1992, and references therein)

= − =τ μ σ p μσ( ) ̇n n0 (4)

where μ is considered to represent the frictional strength of the earth-
quake faults. We assume that the pore pressure to be hydrostatic and we
vary μ to match the normal and shear stresses.

3. Results and discussion

3.1. Coefficient of friction, μ

The ratio of shear to effective normal stresses give μ values on each
fault (Fig. 5). Fig. 6a & b shows μ values plotted in the MER. We esti-
mated the frictional parameters (μ, normal and shear stresses) for 44
well constrained earthquake focal mechanisms in the MER. Earthquakes
used in the this study together with calculated σn, τ and μ are included
as a supplementary material to this paper.

Most faults in the MER fail under high frictional stress with μ ≥0.3.
A regression of all the μ values (Fig. 5) indicates the rift deforms ac-
cording to laboratory-determined friction coefficients (Byerlee, 1978).

The average value for the crust is computed using ∑

∑

=

=

μ f

f
i
N

i i

i
N

i

1

1
from dis-

tribution of μ values on earthquake faults, where μi and fi are friction
coefficients and number of events, respectively. In general, the crust
fails with μ of 0.59± 0.16 (2σ standard deviation). Box plot of μ values
(Fig. 5) also fall within this range.

An exception to the relatively high μ values for most of the data, is
that six focal mechanisms have μ ranging from 0.21 to 0.3 (Fig. 7a).
There are potentially several explanations for the low μ results. We
observed a cluster of 3 earthquakes near the axis of the northernmost
MER with μ<0.3 (Fig. 7a). These earthquakes are spatially and tem-
porally coincident with the intrusion of a dyke near Amoissa volcano
during May 2000, and interpreted to be induced by stress change above
the new intrusion (Keir et al., 2011). Two strike-slip faults of ML 1.4 and
1.55 beneath Fentale volcano make angles of 64° and 56° to σH, higher
than the angle expected for reactivated strike-slip faults, and as a result
slip with μ of 0.23 and 0.3, respectively. Weak faults such as the San
Andreas Fault fail by creeping with small magnitude earthquakes (Mw

∼ 2) (Nadeau and Guilhem, 2009). The low frictional strength and low
magnitude earthquakes might explain failure by creeping along the two
strike-slip faults.

An additional focal mechanism (Keir et al., 2006) with a selected
nodal plane with a dip of 22° (selected during the inversion since this
lowers the individual misfit to 6.8°) shows a μ of 0.21. The new dip
angle deviates by ∼40° from optimally oriented normal faults (Fig. 4b)
so that a lower μ is evident. Traditionally, normal faults with dip angle
of< 30° were not thought to be able to lock and subsequently slip as
earthquakes (Collettini et al., 2011), but emerging evidence of slip on
low angle normal faults, e.g. in West Salton detachment faults (Prante
et al., 2014) argues that low angle fault might slip through earthquakes.
The geometry of this fault can be explained by very low μ, near

Table 1
Stress inversion results from earthquake focal mechanism data.

# of fms σ1 σ2 σ3 ±β s.d. ±τ s.d. ϕ Reference

tr/pl [°] tr/pl [°] tr/pl [°] [°] [°]

44 −119.6/77.2 6.2/7.6 97.5/10.2 10.3± 7.6 0.93± 0.2 0.37 This study
7 178/76 029/13 297/07 – – 0.57 DB10
7 239/79 024/09 115/06 – 0.94± 0.19 0.79 DB10*
36 – – 283/06 10.9± 7.0 – – D06

# of fms= number of focal mechanism solutions; tr/pl - trend/plunge of the principal stress axes; ϕ measures the relative size of principal stresses. ±τ s.d. - the
average angular misfit with standard deviation. High standard deviation might be due to a non-diverse range of focal mechanisms (Keir et al., 2006). fms= focal
mechanism solutions, DB10*=Delvaux and Barth (2010) using Michael (1984) method, DB10=Delvaux and Barth (2010) using Delvaux and Sperner (2003)
method; D06=Keir et al. (2006).
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lithostatic pore pressure or some combination of the two. Middleton
and Copley (2013) noted that slip on such low angle normal faults
possibly occurs due to the presence of weak materials along the pre-
existing fault surface. Lower strength faults at shallower depth could be
due to the presence of clay minerals along the fault surfaces and high
temperatures near active magmatic centers, such as beneath Fentale
and Amoissa volcanoes (e.g., Keir et al., 2011).

The estimated μ for one mechanism at a depth of ∼19 km is ∼0.67
(Fig. 7a). The shear stress for the same mechanism is ∼70MPa
(Fig. 7b), lower than the maximum shear stress observed at the BDT
(∼100MPa) (Fig. 7b). In order for a slip to occur at higher μ and lower
shear stress, the effective normal stress should be low which in turn
implies higher pore pressure at this depth. This hints that the pore
pressure in the lower crust might be in super hydrostatic or lithostatic

condition.
Plotting the distribution of μ with depth (Fig. 7a) indicates that μ

generally increases upwards from the BDT. Below the BDT, μ decreases
from the maximum value but is still high (0.65–0.7). Fig. 7a shows μ
values cluster in two zones. At 0–10 km depth, the crust is mainly
characterized by μ of 0.2–0.4. Below 10 km up to 16 km, the crust is
generally characterized by higher μ (∼0.6–0.75). The high μ (∼0.6)
observed for MER faults is also supported by the agreement between P-,
B-, and T-axes of the earthquake focal mechanisms and the regional
stress field (e.g., Keir et al., 2006). Zoback and Zoback (2002) argue
that in regions for which μ ranges from 0.6 to 1, P-, B-, and T-axes
approximate the average principal stress orientations.

Our estimate of μ for the MER crust deviates significantly from the
frictional parameter inferred using numerical modeling studies in the
EAR (Bird et al., 2006; Stamps et al., 2015). To produce a better fit with
observed plate scale separation of Somalia from Africa, low fault fric-
tion is required (Bird et al., 2006; Stamps et al., 2015). We argue that
discrepancy between our results and numerical modeling studies might
be due to the input and model parameters used in the numerical
modeling studies.

3.2. Frictional strength of the crust

Maggi et al. (2000) questioned the popular view of continental
strength profiles in which a weaker lower crust resides between
stronger upper crust and mantle. Spatial variation in continental
strength of the lithosphere is mainly controlled by the presence or ab-
sence of smaller amounts of water (Maggi et al., 2000). Topography and
gravity field analysis indicate that lithospheric stress is supported by
upper crust overlying a weaker lower crust (Thatcher and Pollitz,
2008).

Albaric et al. (2009) noted that the strength of lithosphere/crust can
vary within the same tectonic setting. Even on a finer scale, Floyd et al.
(2016) showed how the along strike variation of rheological properties
controls the frictional strength of a fault. Here we discuss the frictional
strength of the MER crust based on shear stress magnitudes estimated at
hypocentral depth. The shear stress magnitude varies from 16.2 to
129MPa with an average value of 60MPa similar to crustal-average
shear stress of 56MPa (e.g., Bird, 1999). Similar to μ values, the shear

Fig. 4. (a) Histogram of the dips of focal mechanisms with unambiguously determined fault planes per 2° bin. (b) Deviation of the dip angles from optimal dip of
fault for μ=0.75. Lock-up angle of fault planes, 27° for μ=0.75 is also shown. All, but one, fault planes are above the expected angle of ∼30° for reactivation of
normal faults.

Fig. 5. Shear stress vs effective normal stress plot to estimate the coefficient of
friction, μ on each earthquake fault (circles). A linear fit in the main map de-
fines μ=0.59± 0.16 (2σ standard deviation). A Tucky box plot in the inset
shows a median value of 0.66 and the box outlines the upper and lower
quartiles of 0.7 and 0.58, respectively.
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stress also show a lower value (∼20MPa) above 10 km and ranges from
40 to 100MPa between 10 and 16 km. One earthquake fault fails with a
shear stress of 129MPa (Fig. 7b), at∼20 km depth, higher than friction
controlled shear stress for the upper crust.

The shear stress variation with depth seems inconsistent with
models in which significant decrease in strength occurs at the BDT (e.g.,
Chester, 1995) but rather shows an increase to a depth of ∼20 km,
within the ductile, lower crust. This argument, however, is based on
only one focal mechanism. A recent thermo-mechanical modeling study
in the MER (Lavecchia et al., 2016) shows a transition from brittle to
ductile rheology at a depth between 20 km and 25 km. On the other
hand, geophysical studies show that the lower crust is weak (Keranen
et al., 2009) and therefore the highest shear stress observed here might
be due to the hydrostatic pore pressure imposed in our calculation.

Fig. 7b shows that faults at depths shallower than the 10 km appear
to be weaker than their equivalent at depth below 10 km. This agrees

with the global compilation of stress-depth data (Behr and Platt, 2014)
that middle crust sustains higher stress than the brittle faults above.
Furthermore, the process that allows slip at lower shear stress
(∼16–50MPa, Fig. 7b) in the brittle crust terminates at 10 km depth
probably due to higher temperature in the lower part of the upper crust.

Our argument for strong crust and faults in the MER agrees well
with the modeling studies in the region (Lavecchia et al., 2016; Beutel
et al., 2010). Lavecchia et al. (2016) showed that the variations in
mineral assemblages due to temperature increase during dyke intrusion
and subsequent metamorphism locally increases the strength of the
crust. This mainly occurs by changing weak minerals to strong minerals
(Lavecchia et al., 2016). This agrees with the modeling results of Beutel
et al. (2010) who noted an increase in the strength of the crust due to
solidified mafic intrusions beneath magmatic segments. In regions of
active magmatism and dyke intrusion where magma input is likely to be
particularly high (i.e. near active volcanic centers), the crust appears to

Fig. 6. (a) Variation of μ values in the MER. Inset shows the histogram of μ values. (b) Zoom in of the open rectangle in (a) with tectono-magmatic segments shown
by gray filled area (Wolfenden et al., 2004). The magmatic segments are characterized by higher μ (≥0.4) which could be due to melt-induced thermal meta-
morphism as shown by Lavecchia et al. (2016). However, low μ values are observed at or near active volcanic centers (red triangles). YTVL=Yerrer-Tullu Wellel
Volcano-tectonic Lineament. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. (a) Coefficient of friction and (b) shear stress magnitudes plotted at hypocentral depth. The gray shaded regions show where μ (a) and shear stress (b) cluster.
Both parameters show sharp increase at a depth of 10 km. The dashed line at 16 km marks the BDT.
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be weak as shown by lower μ values (Fig. 6b) in agreement with
modeling studies in the EAR (e.g., Bialas et al., 2010; Daniels et al.,
2014).

The strong faults and crust inferred in our study directly influence
kinematics of crustal blocks in the MER. Recent GPS study from EAR
(e.g., Saria et al., 2014) shows significant deviation in Nubia-Somalia
motion from the stable parts of the plates and crustal blocks in the MER.
This points to argument that strength of the faults and crust controls the
surface kinematics of the MER.

Strength of the faults and the crust are very sensitive to the pore
fluid pressure considered (Sibson, 2000). Elevated pore pressures
change the state of effective stress and reduce the force required for
deformation to occur (Hubbert and Rubey, 1959). An experiment on
fluid-rock interaction (Reynolds and Lister, 1987) showed existence of
high fluid pressure in the ductile part of the crust. For the EAR, high
pore pressure due to dehydration of metamorphic minerals in the lower
crust is invoked (Seno and Saito, 1994). However, Keir et al. (2009)
argued that in the absence of any accumulated fluid in the lower crust,
earthquake activities are controlled by emplacement of melt supplied
from the upper mantle into the lower crust. This argument is in line
with geochemical evidence of water-poor magmas in the lower crust
(Rooney et al., 2005). High pore fluid pressure and hence low strength
of faults and of the crust makes a number of predictions (e.g., Scholz,
2000) including a low magnitude of shear stress and high angle be-
tween σ1 and the fault plane. Although, there are no reported mea-
surements on the magnitude of shear stress in MER, structural mapping
on active faults and studying earthquake focal mechanisms show that σ1
forms a low angle with the fault planes. The latter lends support to the
interpretation that the faults in the rift are strong.

3.3. Hydrostatic vs lithostatic pore pressure

Pore fluid pressure is the most uncertain parameter in the calcula-
tion of the strength profile of the crust (e.g., Brace and Kohlstedt,
1980). Constraints on pore pressure in the MER are scarce. In order to
assume the pore pressure is near lithostatic state, either the rock per-
meability must be very low (Nur and Walder, 1990) or an active source
of overpressured fluids must exist at depth (Rice, 1992). Townend and
Zoback (2000) and Barton et al. (1995) showed that critically stressed
faults are hydraulically conductive and act like fluid conduits. These
faults control the permeability of the crust and results in short diffusion
time (10–1000 years over distances of 1–10 km). In extensional tectonic
setting of the Taupo volcanic zone, high permeability (k>10−16)
causes earthquake ruptures (Sibson and Rowland, 2003). This implies
that fluid pressures in the crust equilibrate over relatively shorter time
and hydrostatic pore pressure develops within the crust. Note that long
diffusion time (> 105 years) leads to near-lithostatic pore pressure to be
maintained (Nur and Walder, 1990).

In the previous sections, we showed that the MER faults are favor-
ably oriented and hence facilitate the easy passage of fluids and sup-
ports the notion that the pore pressure in the region is near hydrostatic
state. Recent CO2 degassing study at Aluto volcano in the central MER
estimated a total of 250–500 t d−1 CO2 emitted along major faults and
volcanic structures (Hutchison et al., 2015). Such emission rate is
comparable to rates observed in the Eastern rift of the EARS (Lee et al.,
2016). Furthermore, maximum CO2 flux is observed adjacent to the
faults implying that the permeability of faults in the MER is high and
gives an easy access to the flow of fluids. Hutchison et al. (2015) also
noted that the faults in the Aluto volcano penetrate deep and connect
the reservoir to the surface. This provides a favorable condition for the
fluid to reach hydrostatic state in a relatively short time period. Per-
meability values ranging 0.5–1.1× 10−12 m2 are estimated from
∼2 km deep Aluto-Langano geothermal wells (Electroconsult, 1985).
Deep penetrating faults in other parts of the EAR (e.g. in Tanzania) are
known to act as pathways for CO2 ascent (e.g., Lee et al., 2016). Seis-
micity recorded by CRAFTI array suggest that volatiles migrate from

upper mantle or lower crust following extensional faults (e.g., Lee et al.,
2016). However, it is questionable whether the permeability at upper
crustal level is adequately representative of the deeper level or not
(Sibson, 2000). Recent geophysical studies in the EAR (Lindenfeld et al.,
2012; Weinstein et al., 2017) and Taupo rift (Reyners et al., 2007)
showed that high pore fluid pressure induce faulting and seismic ac-
tivities in the lower crust. Geophysical studies in MER (Keranen et al.,
2009) and Tanzanian rift (Weinstein et al., 2017) indicated that the
lower crust in these regions is weak and ductile and higher pore fluid
pressure can provide a mechanism for brittle failure at lower shear
stress. Our compilation of earthquake focal mechanisms in MER in-
dicated that only two earthquake focal mechanisms occurred in the
lower crust (below 16 km). For the two lower crustal earthquake focal
mechanisms, we examine how increased pore pressure (from hydro-
static to super hydrostatic; i.e. 0.56× σv) affects the strength of the
faults. Using a mean μ of 0.59 and normal stress values (see the sup-
plementary material), Eq. (4) results in the shear stress of 34MPa and
3MPa for focal mechanisms at depths of 20.29 km and 19.01 km, re-
spectively. Increasing the pore pressure from hydrostatic to super hy-
drostatic conditions leads to significant reduction of shear strength of
earthquake faults.

However, since most of focal mechanisms occur at depths above
16 km, the assumption of hydrostatic pore pressure can be considered
as adequately representative of the state of pore fluid pressure in the
upper crust and well depicts the strength of the crust and faults in the
MER. We found both high and low μ values for earthquake faults in the
MER implying that thermal modifications are more important than pore
fluid pressure in modifying the strength of the faults in the upper crust.

Finally, further studies constraining the condition of pore fluid
pressure in the crust are required in order to link fluid weakening and
deep crustal earthquakes in MER.

4. Conclusions

Based on our findings, we reach the following conclusions:

1. Based on the orientation of optimally oriented faults controlling the
flow of fluids in the rift and high CO2 seepage rate, we argue that
pore pressure in the upper crust is in near hydrostatic state.
However the argument for hydrostatic pore pressure in the lower
crust might be flawed as indicated by high μ, low shear strength
fault and deep crustal seismicity.

2. Very low μ (≤0.3) values are observed near active volcanic centers,
whereas high μ correspond to areas either at margins or in between
magmatic segments implying that high pore fluid pressure might not
be required for slip on weak faults.

3. Although data from the southern MER are scarce, there are no in-
dications of weak faults, which could be in agreement with a less
evolved rifting and lower magmatic modification in the area.

4. A best fit of μ values for MER faults indicate a regional value of
0.59± 0.16 implying the crust is strong under hydrostatic condi-
tion.

5. The strong upper crust contributes to the strength of the lithosphere
in the MER, with the lower portion of the upper crust (10–16 km)
being the strongest layer.

The strong faults and crust inferred in our study directly influence
the kinematics of crustal blocks in the MER. Therefore, the conclusion
we draw can be tested by future geodetic and modeling studies.
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