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INTERFACIAL PHYSICS OF FIELD-EFFECT BIOSENSORS

by Benjamin Mark Lowe

Field-Effect Transistor-sensors (FET-sensors) are a class of pH and biomolecule sensors that can be
produced at a low cost and with high sensitivity, as a result having potential for commercialisation
and widespread use. The response of a FET-sensor is generated when the electric field at the sensor
surface changes, thereby inducing a measurable change in current through the device. The electric
field can be modified by pH or by binding of an analyte to the surface. The solid state counterpart, the
Metal Oxide Semiconductor FET, has been extensively studied as it is the basis of modern electronics.
FET-sensors are less well understood, mainly due to the inherent complexity introduced by the aqueous
media present at the sensor surface. The FET-sensor surface is usually an oxide such as silica and
its interaction with aqueous solution introduces many complex effects, such as ion-dynamics and pH
dependent ionisation, which make these systems non-trivial to understand and predict. To-date, most
models of FET-sensor response have relied upon mean-field assumptions which neglect the multi-scale

nature of the system and even qualitative predictions of FET-sensor response remain challenging.

In the work presented here, the interfacial physics of FET-sensors were modelled using a variety of
simulation techniques at different time- and length-scales. Acid-base surface charging reactions at
the oxide surface of the sensor are an important part of FET-sensor response. Density Functional
Theory (DFT) simulations revealed a new mechanism of surface charging and also showed that these
reactions have no well-defined transition state which can be used to model their kinetics. A Kinetic
Monte Carlo (KMC) model was validated that can be used describe the dynamics of surface-charging

reactions on a device scale.

As FET-sensors operate by detecting changes in the interfacial electric field, the mean net charge
density of surface-bound biomolecules is an important parameter in most models of BioFET response.
Semi-empirical calculations were performed to estimate the net charge of two different biomolecular
systems relevant to biosensing studies. The ion dynamics in the electrical double layer at the silica-
water-biomolecule interface were investigated using classical Molecular Dynamics (MD) simulations,
which suggested that, in contrast to commonly used net-charge arguments for FET-sensor response,

the importance of water polarisation for FET-sensor response has been hitherto underestimated.

A quantitative analysis of data extracted from the FET-sensor literature was performed, comparing
experimental biosensing data with pH-sensing data. This revealed some frequent problems related to
reproducibility and comparability of experimental data in this field, and highlighted that optimisation of
surface chemistry is an underappreciated component of sensor optimisation. Despite these limitations,
BioFET research is a rapidly advancing field in which novel device design and operation methodologies

are constantly being developed which increase the viability of BioFET devices for commercial use.
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1. Introduction

A wide range of nanomaterials, including nanoparticles [1], nanowires [2], and nanofilms [3], have been
developed over the last three decades. Such materials have facilitated a new generation of solid-state
electronic devices that include nanowire transistors [4, 5], magnetoresistive random-access memory
(MRAM) [3] and solar cells [6]. In recent years, there has been a new focus on the application of
nanotechnology to biomedical diagnostics, in which the unique properties of nanomaterials can be
applied to detect biological molecules through the creation of nanosensors. As an example, the utility
of nanosensors has been demonstrated through wide-spread usage as biosensors, either detecting
glucose in blood or in pregnancy tests [7]. Beyond biological analytes, nanosensor applications extend
into environmental analysis [8], explosives detection [9] and food safety [10]. In general, a biosensor
consists of a biochemical receptor which recognises an analyte and a transducer which converts the

binding of the receptor to the analyte into a measurable response [11].

Nanosensor design and engineering focuses on optimising time-to-readout, cost, limit of detection
and dynamic range. Ideally, the nanosensor would require the smallest sample volume, and be
highly sensitive and specific to the relevant analyte(s). For commercialisation, broader considerations
must also be considered such the extent of market demand, the nature of the analyte sample (e.g.
blood, urine, swab etc.), the requirements for internal controls to provide reliable sensor response,
and regulatory requirements. A promising type of nanosensor based on field-effect transistor (FET)

technology, may be capable of meeting these extensive goals.

FET-sensor operation can be qualitatively explained by the following mechanism: introduction of
analyte to the surface of the sensor results in a change in the electric field, which causes a change in
concentration of charge carriers within the device and finally resulting in a measurable change in the
device conductivity. FET-sensors offer a key advantages over many traditional methods in bioanalysis
[12] in that labelling of biomolecules is not required, which would reduce the assay development
time, the readout time and the level of expertise and equipment required. In comparison with many
currently available biosensors which operate via mass-detection [13, 14], the electrical detection offered
by FET-sensors provides additional information on, for example, conformational changes [15] or
extracellular potentials [16]. FET-biosensors have been shown to be capable of high selectivity [17],

high sensitivity [18], and rapid detection of picomolar concentrations of analyte [19, 20].

FET-sensors can be divided into two broad categories: ion-sensitive FETs (IS-FETs) and Biologically-
sensitive FETs (BioFETS). Ion-sensitive FETs were first developed in the 1970s by Bergveld [21-24]
and can detect changes in electrolyte ion concentration (e.g. pH or Na™ concentration). BioFETs
can be used to detect the presence of biomolecules, which gained significant recognition in 2001 with
the work of Cui et al. [25, 26] and over the last two decades has received a rapid increase in interest.
For pH-sensing ion-sensitive FETs, a changes in surface charge induced by acid-base reaction at the
surface cause a change in electric field thereby producing a measurable response. Whilst for BioFETs,
binding of charged molecules to receptors at the surface of the device causes a change in the electric

field, thereby producing a measurable response.

FETs are relatively well understood as solid-state devices, as evidenced through the wide availability

of textbooks on FET theory [27-30] and the ubiquitous application of FETs in the modern computing
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industry (e.g. in smartphones and laptops). In contrast, FET-sensors are much less well understood
due to the complexity introduced by the aqueous media and surface chemistry, including surface
ionisation and ion dynamics. Even qualitative predictions of the response of FET-sensors to the

interaction of analyte molecules remains challenging [31].

FET-sensors are usually nanostructured in order to optimise the analyte-exposed surface area-to-
volume ratio (e.g. ‘nanowire’, ‘nanoribbon’ etc.), but it can be microscopic and planar. The surface of
a FET-sensor typically consists of an oxide-layer exposed to aqueous solution containing the analyte.
This oxide component is most commonly composed of silica. The silica-water interface exhibits several
unusual acid-base properties, and understanding of its interfacial chemistry remains an active area of

research [32].

A key challenge of modelling FET-sensors is that the time-scales of interest span far longer than their
solid-state counterparts. For example, the time-scales involved range from approximately 10~ 3to 103
seconds for biomolecule binding events compared to approximately 107! seconds for the changes
in conductivity of the sensor. The field-effect mechanism of FET-sensors is inherently a multi-scale
problem as the stimulus for the sensor, such as biomolecules, are of the length scale of nanometres,
and the device itself can be on a scale up to micrometres; the field-effect occurs over the length of
the electrical double layer in the sample and into the surface layer of the device, which can be up
to micrometre length scales depending on the scale of the sensor. As FET-sensors are capable of
detecting these molecular-scale changes in electrostatics, even low levels of background noise can
interfere with interpreting the response [33, 34]. A reliable model of FET-sensor response therefore
requires an accurate description of the electric field across these disparate time- and length-scales, a

complex problem as yet unsolved.



2. Thesis Qutline

The overall aim of the work presented within this thesis is to improve understanding of the interfacial

physics of BioFETs in order to facilitate rational improvement of BioFET design.

BioFET response is determined by the interplay between the chemical environment and the electro-
static environment at the surface. Surface-charging is a key component of this environment, and
understanding the dynamics of this process has relevance not only to understanding FET-sensor
response, but also a range of other fields such as geochemistry, whereby it is relevant to dissolution
processes. A model capable of describing the dynamics of surface charging could be used to investigate,
for example, how the oxide-surface charge is affected by biomolecule binding. With this motivation, a
Density Functional Theory study of the energetics and mechanisms of surface charging at the silica-
water interface was performed (Chapter 4) which modelled relevant atomic-scale chemical reactions
occurring over picosecond time-scales. However, the use of such as model revealed that these reactions
have no well-defined transition state which can be used to model the kinetics. Hence, a Kinetic
Monte Carlo model capable of modelling the dynamics of surface charging over macroscopic time-
and length-scales was validated and the resulting model may be used as a component in multi-scale

modelling efforts of BioFET response (Chapter 5).

As BioFETSs operate by detecting changes in the interfacial electric field, the mean net charge density of
biomolecules on the surface is an important parameter in most models of BioFET response. Therefore,
semi-empirical calculations were performed to estimate the net charge of two different biomolecular
systems relevant to biosensing studies (Chapter 6). Literature BioFET response models have almost
exclusively treated the charge introduced by the biomolecule as smeared out in an infinitely thin
surface charge [2, 35-45] and therefore cannot accurately describe the changes in electrical double
layer structure (and therefore electric field and sensor response) induced by binding of charged
macromolecules. Given these limitations of existing models, simulations of the electric field as a
function of the distribution and dynamics of charges within the system were required. Classical
Molecular Dynamics simulations were performed to investigate the electric field at the silica-water-
biomolecule interface over nanosecond-time-scale and nanometre-length scales (Chapter 7). This
study suggested that the importance of water polarisation in BioFET response has been hitherto

underestimated.

Whilst IS-FETs have achieved commercial success as pH sensors [21], BioFETs are currently unsuitable
for immediate commercialisation due to a lack of reliable detection capability and stable response. As
a step towards a better understanding of how to address this and to design more informative and
reliable metrics, a quantitative analysis of the FET-sensor literature data was performed (Chapter 8),
comparing experimental biosensing data with pH-sensing data. This revealed some common problems
in the field related to reproducibility and comparability of experimental data and highlighted that

surface chemistry optimisation is an underappreciated component of sensor-optimisation.






3. General Background

3.1. The Field-Effect Transistor (FET)

The concept of FETs date back to 1925, when J.E. Lilienfeld filed a patent for a semiconducting device
for which the electric current through the device could be varied upon exposure to an electrostatic
influence [46]. This design represents one of the simplest forms of FET, and is now often referred to
as the bipolar junction transistor. This type of device was largely superseded in the 1950s with the
invention of the Metal Oxide Semiconductor FET (MOSFET). Advances in photolithography and
other relevant processes meant that MOSFETs could be produced reliably at low-cost, and easily
integrated into circuit boards. As a result, MOSFETs have become the standard (referred to as
‘CMOS technology’) in microelectronics [27] and can be found in a wide variety of electronic devices
that exist today [47].

3.1.1. MOSFET Structure and Operation

A schematic representation of the structure of a MOSFET is shown in Figure 3.1. A potential
difference is applied between the source and the drain electrodes (Vgs) which generates a current
which flows between the source and drain electrodes through the semiconductor and depending on the
electric field at the surface. This current is commonly referred to as the ‘drain current’ (I). The drain
current can vary by many orders of magnitude as the device switches from being a poor conductor to
a good conductor, hence why the device is called a transistor. The drain current is modulated by
the field-effect (Section 3.1.2) based on the magnitude of the voltage, between the source and gate
(referred to here as the gate voltage V). The minimum gate voltage required to pass a significant
current through the semiconductor is termed the 'threshold voltage’ (Vir), which can be controlled to

some extent by varying the backgate-source voltage (Vig).

The structure of the semiconductor is usually doped silicon and the gates can be metal; however,
despite their name, MOSFETSs need not actually contain metal because the gates can be composed of
polysilicon. Polysilicon is a form of silicon composed of non-aligned, randomly oriented domains of
silicon crystals. Polysilicon can act as a resistor or a conductor depending on doping concentration

and grain boundary properties.

Due to their significant commercial applications, MOSFETs have been extensively studied and
engineered ever since the 1950s and therefore it is no surprise that the principles behind MOSFETs
operation are generally well understood. Highly predictive models for MOSFET operation have been

developed based on conventional semiconductor physics. [30, 48]

3.1.2. The Field-Effect and MOSFET Theory

The term ‘field-effect’ refers to the phenomenon that drives a change in conductivity/drain current
through a semiconducting layer with changes in the magnitude of an external, electrically isolated,

electric field. It is almost exclusively used to describe transistors in which the current is controlled by
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Figure 3.1.: A schematic representation of the operation of an ideal p-doped MOSFET. A potential
difference is applied between the source and drain terminals. The source and drain terminals are heavily
doped such that they have a high electron concentration, which is termed n+. (a) When the applied
gate voltage is less than zero (negative) ‘accumulation’ of mobile positive majority carriers occurs but no
significant current can flow between the n+ doped terminals. (b) As a positive gate voltage is applied,
‘depletion’ occurs in which the mobile positive carriers are depleted from the surface by the positive
gate voltage and a negative charge is generated in the silicon substrate due the remaining presence of,
significantly less mobile (i.e. immobile from the perspective of device operation), ionised acceptor ions.
Again, no significant current can flow between the source and drain electrodes (c¢) As the gate voltage is
increased beyond the threshold voltage, ‘inversion’ occurs, in which minority carriers are attracted to
the highly positive gate voltage, resulting in a ‘inversion layer’, or ‘n-channel’, in which conduction can
occur between the source and drain electrodes, resulting in a significant drain current. The transistor is
sometimes said to be ‘on’ in this state.

an external electric field'. In MOSFETs, this external electric field originates from the gate electrode
which is separated from the semiconductor by an insulating oxide layer (and thus is ‘external’), but in
principle it could arise from any source of charge at the surface such as biomolecule binding, as will
be described later.

A qualitative explanation of the field-effect can be given by example. Before a voltage is applied to the
gate, the device is ‘off” and the semiconducting layer acts as an insulator. In an ideal p-type device,
the main semiconductor region is p-doped (majority charge carriers are positive electron holes, and
minority charge carriers are electrons) and situated between heavily doped source and drain regions
which are electron rich terminals, referred to as n+ terminals. Normal operation of this device has a
potential difference applied between the source and drain and a separate potential difference applied

to the gate relative to the substrate. There are three situations that can be considered:

(a) If a negative bias (gate voltage < 0), the positive majority charge carriers (p-type, therefore holes)
will accumulate at the semiconductor-oxide interface and ‘accumulation’ occurs. As the channel is
still electron deficient, electrons cannot flow between the source and drain terminals and there is no

significant drain current. (shown in Figure 3.1, a).

(b) If a weak positive bias is applied (0 < gate voltage < threshold voltage), ‘depletion’ occurs. The
majority carriers (p-type: holes) move away from the surface leaving behind a channel which is free
of majority carriers, and only the significantly less mobile (i.e. immobile from the perspective of
device operation ) negatively charged dopants/impurities remain. No significant drain current can

flow between the source and drain as there are no mobile carriers (shown in Figure 3.1, b).

(c) If a strong positive bias is applied (gate voltage > threshold voltage), ‘inversion’ occurs as the

1The field-effect is defined by Webster’s New World College Dictionary as: ‘designating or of an electronic component
or device, especially a transistor, controlled by an external electric field’ [49].
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potential is strong enough to also induce the movement of negative minority charge carriers (electrons)
to the surface and current can now readily flow from the source to the drain. This region of minority
carriers is referred to as the ‘inversion layer’. The onset of inversion occurs when the gate voltage is

equal to the threshold voltage (as shown in Figure 3.1, c).

For an n-type MOSFET, p+ doped terminals are used instead of n+ terminals and the converse logic
is applied to qualitatively describe the drain current-gate voltage characteristics. The backgate voltage

affects the thickness of the inversion layer and also modulates the value of the threshold voltage [50].

Whilst in the example described in this section the device was initially ‘off” before a gate voltage was
applied (i.e. charge signs and biases are inverted), in practice the MOSFET threshold voltage can be
modified to change the default state of the device. For instance, the device can be set to be ‘on’ prior
to applying a gate voltage, either by usage of a back-gate voltage or changing the material properties

of the device.

3.1.2.1. Parameter Regions of Operation

When the applied gate voltage is low, i.e. V; < Vr, and the semiconductor is only weakly inverted, the
drain current is known as the ‘subthreshold current’ and the device is operated in the ‘subthreshold
region’. In the subthreshold region the drain current is non-linearly related to the gate voltage. In this
region,] ~ exp(q(Vy — Vr)/(mkpT), where g is the elementary charge and m is an empirical constant
related to the susceptibility of the device to changes in gate voltage. When a larger gate voltage is
applied and a low drain-source voltage is used, i.e. when V; > mVys 4+ V7, then the device operates in
what is termed the ‘linear region’. In this region the drain current is linearly proportional to the gate
voltage (I ~ (Vg — Vr)Vgs). With increasing drain-source voltage Vg, a ‘pinch-off” point (i.e. when
Ve < mVgs + Vip ), is reached at which the drain current approaches a constant value. This is termed

the ‘saturation region’. [30]

3.1.3. MOSFETs as Sensors

As MOSFETS can detect changes in the electric field at the oxide interface they have the capability of
being used as sensors (FET-sensors), for example to detect changes in ion concentraton such as pH
or Na™ concentration. When the surface is functionalised (i.e. coated/derivatised) with a receptor
which is specific to a (bio)chemical analyte then the FET-sensor is termed a BioFET [25]. This
type of device measures electrical properties, in contrast to many conventional biosensors which
operate on detection of the mass of the analyte [51, 52]. As a result, properties unmeasurable using
conventional biosensors can be determined, such as extracellular electric potentials from physiological
systems [16], conformational changes of the analyte [15]. An intriguing example applications are to
directly couple the device to an insect antenna in order to measure its sense of ‘odour‘ or detecting
extracellular acidification due to cellular metabolism of single-cells [25]. In summary, FET-sensors
have the potential to meet the requirements of a highly successful nanosensor such as low-cost, high

sensitivity and fast readout [21].

A FET-sensor is essentially a MOSFET in which the gate electrode is replaced by a solution containing
the analyte and binding of the analyte to the FET-sensor surface results in electrostatic ‘gating’ of
the FET. Usually a ‘reference electrode’ is placed into the solution, which provides a stable bulk
potential. Similarly to the gate electrode in conventional MOSFET devices, this voltage can be
biased, and therefore the region of operation of the transistor can be controlled via the choice of the
reference electrode voltage. This voltage is also referred to as the ‘gate voltage’, Vj, in analogy to the

gate electrode of conventional MOSFET devices. Another key difference between FET-sensors and
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MOSFETs is that there is often no p-n junction within the device, this means that the theory from
the traditional MOSFET design (Figure 3.1) is not necessarily directly transferable to FET-sensors.
For example, for silicon nanowires, the doping of the nanowire plays a minor role compared to the
doping of the source/drain terminals in determining what species (i.e. holes or electrons) are primarily
responsible for current transport [18]. FET-sensors must have a surface layer in contact with the
aqueous solution which is specific to the analyte, and therefore for pH sensing a careful choice of
oxide material is required, and for biosensing, the surface is usually chemically functionalised with
3-triethoxysilylpropylamine (APTES) in order to covalently bond a receptor such as, for example,

biotin or an antibody.

A schematic of a typical FET-sensor setup is shown in Figure 3.2. When the semiconductor layer
of FET-sensors has microscopic dimensions and is flat, it is termed a ‘planar semiconductor’ layer.
Alternatively, it can have nanoscale dimensions, for example, a nanowire (nanometre depth and width,
microscopic length) or a nanoribbon (nanoscopic depth, microscopic width and length). The principle
of operation is that changes in the electric field at the oxide-electrolyte interface induce a change in
the surface potential at this interface (Avy), assuming no competition from other effects, and that
electrostatic gating is the dominant mechanism [53], then the changes in the electric field results in a
change in the semiconductor-oxide surface potential that is equal in magnitude. An equal magnitude
shift in the threshold voltage (AVr) occurs, which is proportional to the amount of bound analyte,
and a field-effect-induced change in current occurs which is proportional to both AV and the ability

of the transistor to amplify the signal.

There are two alternative ways of measuring the output response of FET-sensors, termed potentiometric
and amperometric detection. In potentiometric detection, supporting circuitry is used to maintain a
fixed drain current though the device from drain to source (I) and the change in surface potential
or threshold voltage is obtained directly [54]. In amperometric detection, for a fixed liquid potential
(Vi) set by a ‘reference electrode’ in the liquid, the change in drain current (AI) though the device
is measured and, using knowledge of the device properties, it is possible to calculate the shift in
threshold voltage using the measured change in drain current. It is common to perform amperometric
measurements in which the gate voltage is swept across a range of values and the drain current
is measured for each gate voltage resulting in a curve on a graph of gate voltage against current
(‘I-Vy’ curve). This is performed before and after analyte addition resulting in two parallel curves
and the shift in the threshold voltage can be extracted from the resulting graph. FET-sensors can
therefore be used to directly quantify analyte binding, as the amount of bound analyte should be
directly proportional to the shift in measured AVr. Each of these methods for measuring the response
of FET-sensors is shown in Figure 3.3. A detailed discussion of the relevant changes in potential

within FET-sensor systems (as opposed to MOSFETS) can be found in Shinwari et al. [55].

It is worth noting that, in principle, the transistor component of the device is not needed for a working
sensor, i.e. changes in surface potential due to analyte binding can be measured without the transistor
simply by placing analyte upon an oxide surface and measuring the potential difference between the
oxide to a reference electrode in solution (requiring a high impedance amplifier). This is similar to
how conventional glass electrodes work for pH sensing. However, the transistor component facilitates
miniaturisation of the device, thereby providing smaller sample volumes and faster response times [21].
Moreover, the transistor component amplifies the signal and, relative to high-impedance measurements,
offers an improved signal-to-noise ratio [56] whilst removing the requirement for large and expensive

measurement equipment.

The most common and commercially successful forms of FET-sensor are ion-sensitive FETSs, which
can operate as pH sensors [21]. The mechanism of ion-sensitive FETS is simply that changes in the

concentration of ions, due to changes in the acidity of solution (H?,OJr or OH™ concentration) in the
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Figure 3.2.: Schematic representation of typical FET-sensor setups. (a) Ion-sensitive FET sensors have
an oxide membrane which is selective to binding of a small ion, for example, H' in the case of a pH
sensing IS-FET. For pH sensing IS-FETSs, changes in pH alter the acid-base equilibria present at the
oxide surface, resulting in a field-effect. An increase in pH results in an increase in deprotonation of
the surface and an increasingly negatively charged surface. (b) Biologically-sensitive FET sensors can
detect biomolecules in aqueous solution selectively due to their chemically functionalised surface which
contains receptors which are specific to the analyte biomolecule. Functionalisation of the surface usually
entails addition of a 3-triethoxysilylpropylamine (APTES) layer so as to covalently bond a receptor such
as, for example, biotin or an antibody. For FET-sensors with an ‘n-type’ (or equivelently ‘n-channel’)
semiconductor, an increasingly negatively charged surface (e.g. due to increased pH for an IS-FET or
due to binding of a negatively charged protein for a BioFET), will result in increased positive electron
hole carriers near the surface, and therefore switch the device off (no drain current). Positive charge
will bring majority carriers (electrons) to the surface via accumulation, forming a conductive channel.
For a ‘p-type’ (or equivalently ‘p-channel’) device, the response is expected to be opposite polarity.
Dimensions of the semiconductor component vary: nano-dimension structures such as nanowires and
nanoribbons (approximately nanometre thickness, micrometre surface area) are common, but some are
‘planar’ (~micrometre thickness, micrometre surface area).

case of pH-sensors, induces a change in the surface charge and thus a measurable field-effect response.
BioFETs are another type of FET-sensor that can detect biomolecules selectively in solution. The
principle behind BioFET operation is that the surface is functionalised with a receptor specific to the
target molecule and providing the target molecule is charged, binding of the target biomolecule to the

receptor will induce a field-effect response.

The first BioFET devices originated in the 1970s and were based on ion-sensitive FET technology,
however their large size resulted in a poor signal-to-noise ratio [57]. Advances in nanofabrication and
theory meant that, by 2001, BioFETs based on nanowires could be fabricated [26, 58]. The advantage
of using nanoscale devices is generally held to be that the high surface-area-to-volume ratio means
that small local changes at the surface can have a significant effect on the semiconductor carrier
concentration, with a corresponding increase in the normalised change in drain current due to binding
of molecules (i.e. the change in drain current divided by drain current prior to binding). Improved
response with increased surface-area-to-volume ratios has been supported by experiments [18, 59-61],

but the theoretical explanation is still an area of active debate [62, 63].

Nanowires have been shown to be capable of sub-picomolar detection of analyte [19, 26, 61]. Nanowires
can be fabricated using low-cost chemical vapor deposition, but their orientation can be hard to control
and therefore chemical vapor deposition was succeeded by electron-beam lithography on silicon-on

insulator (SOI) technology, which has the advantage of being fully compatible with existing CMOS



12 General Background

Amperometric Sensing Potentiometric Sensing I -V, Curve
A (Vas & Vg fixed) A (Vas, Vg & I fixed) A (Vys fixed)
Analyte addition — Analyte addition

S S / S
5 ) § £
5 £ AVoye = AV 5 .
o > (S}
o 2 o
a 2 a

>

o

> > >
Time Time Gate Voltage (V,)

Figure 3.3.: Summary of different methods of measuring FET-sensor response. The blue line represents
the response prior to analyte addition, and the green line after analyte addition. A change in surface
potential (As) upon analyte binding induces an equal change in threshold voltage of the transistor
(AVr). This results in a change in drain current (AI) through the transistor. The change in current
can be measured (amperometric sensing) or the change in threshold voltage (potentiometric sensing).
Commonly, the drain current is measured as a function of gate voltage ( ‘I — V curve’) both before and
after analyte addition, resulting in two parallel curves from which the shift in threshold voltage can be
extracted. The value of AVt is proportional to the amount of bound analyte, whereas the value of AT is
proportional to both AVp and the ability of the transistor to amplify the signal.

technology and produces a high degree of control of the nanowire geometry. Despite these advantages,
this technique can be expensive and slow, and therefore there has recently been increasing interest in
nanoribbons. Nanoribbons are up to approximately a micrometre wide but remain nanoscopically
thick. Nanoribbons have been shown to obtain comparable sensitivity to nanowires [18, 59]. Various
other nanoscale geometries have been proposed, such as stacked arrays of nanowires [64] and ‘nanobelts’

[65] but the optimal geometry remains unclear.

3.1.3.1. Reference Electrode

An ideal reference electrode ensures that the potential at the electrode-electrolyte interface is insensitive
to changes in the electrolyte solution [66]. If this is the case, then any measured change in the threshold
voltage of the transistor (AVr) can be assumed to be induced by changes in the electrolyte-insulator
interface potential (Ag). In a ‘conventional’ reference electrode, the constant activity of the reference
ion is maintained by placing the reference metal inside a reference electrode compartment connected
to the sample by a liquid junction. Unfortunately, miniaturisation of this system is problematic
and results in reference electrodes with reduced lifetimes [67] and therefore a common alternative
in the field of FET-sensing is the use of a ‘pseudo-reference electrode’ in which a bare metal wire is
used instead. Unlike conventional reference electrodes, the interfacial potential of a pseudo-reference
electrode is not known a priori, but under controlled conditions it can still maintain a stable potential.
The reference electrode can be biased or unbiased providing the gate voltage (V) in the bulk aqueous

sample, and is sometimes referred to as a ‘liquid-gate’ voltage or ‘top-gate’ voltage in the literature.

The most commonly used pseudo-reference electrodes are Ag/AgCl which is consists of a silver
electrode usually chemically or electrochemically chloridised [68]. Other noble metal pseudo-reference
electrodes such as Gold (Au) and Platinum (Pt) are sometimes used, but can have issues with drain
current instability and pH dependency [69]. Though Pt-pseudo-reference electrodes have been used in
various biosensing experiments with the biomolecule streptavidin [70-72], many experimental groups
have confirmed that Pt reference electrodes are unreliable and are therefore not recommended for
use in FET-sensing. Ag/AgCl pseudo-reference electrodes have been investigated in detail by Rajan
(2013) [73] and Rim et al. [69] through a comparison to a conventional reference electrode and it was

concluded that they can be suitable for use in biosensing experiments.
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It is often stated that a reference electrode (with corresponding liquid-gate potential, V;) is required
for a reproducible and stable signal of FET-sensors [67, 74-76]. Nonetheless, it is not uncommon for
devices to be fabricated without any reference electrode in the liquid [59, 61, 65, 77, 78] which may
be due to dielectric breakdown of the device when a voltage is applied to the reference electrode [61].

Such devices often utilise a back-gate voltage as a pseudo-reference electrode.

3.1.4. Modelling and Simulation of Field-Effect Transistors Sensors, a Complex
System

The magnitude and polarity of the overall charge of biomolecules (referred to here as ‘net-charge
arguments’) are often used to rationalise experimentally observed BioFET response [61, 79]. Unfortu-
nately, such arguments are purely qualitative, and in some examples, presented later (Section 3.1.5),

cannot even explain the experimentally observed polarity of the response.

Several attempts to improve on simple net-charge arguments have been made, but necessarily require
a model in which the geometry of the device is incorporated. Elfstrém et al. have studied the
size dependence of silicon nanowires both experimentally and using simulations. They used 2D
semiconductor simulation software (‘ISE-TCAD’) to study the semiconductor-oxide interface charge
density and concluded that, for nanowire FET sensors, the sensitivity increases with decreasing

nanowire width [18].

BioFET modelling is inherently a multi-scale problem. The stimulus for the sensor, biomolecules, are
of a length scale of a nanometre, and the device itself can be on a scale up to micrometres with the
field-effect occurring over the electrical double layer and into the surface layer of the device which can
be up to micrometre length scales. The device will respond to fluctuations in ions up to approximately
0.01 ps time-scales [80, 81] (e.g. to rearrangement of small-ions in the electrical double layer [82]) all

the way up to microsecond to minute time-scale due to protein binding [83].

Several attempts at modelling BioFET response have been made which recognize the multi-scale
nature of the problem [31, 39-41, 84]. Heitzinger et al. have developed a multi-scale model of the
electrostatics at the surface of the sensor which can be coupled with any charge transport model
in a self-consistent manner. Their method is based on homogenisation of the Poisson equation and
represented the biomolecule binding layer as a boundary layer which has both charge from biomolecules
and a dipole moment. In contrast to typical net-charge arguments, their model suggested that the
dipole moment, which can be interpreted as the orientation of biomolecules, is more important than
the net-charge of the biomolecules [39, 40].

Nair and Alam have utilised analytical solutions to the Poisson-Boltzmann equations and reaction-
diffusion equations to explain the limiting behaviour of the devices [2, 36], and, in a similar vein, a
Nature perspective article demonstrated a framework for nanosensor design based on using reaction-
diffusion kinetics to interpret experimental data [83]. While such approaches are valuable, they neglect
an explicit attempt to predict the electrostatics at the interface; a feature which would likely be

necessary in a model capable of quantitative predictions of FET-sensor response.

Some attempts to explicitly model the charges on the sensor surface due to binding of biomolecules
have been made. Baumgartner et al. [41] used a method based on homogenisation of Poisson’s
equation, and utilised the ‘PROPKA’ method for predicting the pH-dependent mean net-charge of
biomolecules [85, 86]. The PROPKA method is an empirical model for residue pK, prediction and is
discussed in more detail in Section 6.1. The work of Baumgartner et al. shows good agreement with
experimental results and although they claim not to have used fitting parameters, in selecting the best

results from a set of device parameters and in choosing an arbitrary protein functionalisation density,
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this claim seems limited at best. They concluded that the backgate voltage is an important influence
on the sensitivity of the sensor, and remark that the number of interacting parameters present in
BioFETs makes them significantly more difficult to model than traditional FETs.

Further attempts to model the direct coupling between surface electrostatics and device response have
been made by De Vico et al. [31, 84], who have proposed a complete computational methodology
for quantitative prediction of the response of nanowire BioFETs by combining the surface screening
model of Sgrensen [35] with the PROPKA method. They noted that such simulations can help
with the interpretation of experimental results. However, they found that within the literature, key
experimental parameters such as charge carrier density or the receptor density on the surface, are often
not published. This lack of knowledge about the device can make accurate quantitative predictions
difficult. The model of De Vico et al. has recently been further utilised in the work of Lloret et al. [87]
to support their experimental work studying the effect of buffer composition on FETs. Other recent
multi-scale models include that of Nozaki et al. on Schottky-barrier FET-sensors [88] and Moore et al.

on nanopore FET sensors [81].

Despite the work described in this section, a detailed understanding of FET-sensors remains elusive.
While much previous work has been done on attempting to model the device response, little has been
done on explicitly modelling the electrostatics at the surface and attempting to model the dynamics
of the processes involved on a molecular length scale, which is something that is addressed within the

research presented within this thesis.

3.1.5. Anomalous FET-sensor Results

In this section, attention is drawn to various examples from the literature in which FET-response has
provided results which are anomalous based on conventional electrostatic gating arguments, whereby
the magnitude and polarity of the protein net charge is expected to correspond to the magnitude
and polarity of FET-response. This is a key motivation for the research in this thesis, which aims to

improve understanding of the interfacial physics of BioFETs.

3.1.5.1. Neutral Molecules

There have been various reports of detection of neutral molecules via induced changes in charge at
the interface; for example, glucose-sensing has been achieved by modifying the equilibria of surface-
functionalised phenylboronic acid such that it develops a negative charge by reaction with hydroxide
ions in the water [89, 90]. Ah et al. functionalised the surface such that the presence of neutral analyte

will result in detectable specific binding of negatively charged gold nanoparticles [91].

Cahen and Naaman have reported that no change in net charge at the surface is required for a change
in the measured direct current (DC) device response, but rather only a change in dipole moment of
the molecular layer at the surface is sufficient [15]. This throws into question some of the very basic
assumptions often made about how BioFETs work. Cahen and Naaman functionalised the surface
with a monolayer of a long-chain non-polar molecule (octodecyl tricholorosilane) and then added
gaseous neutral absorbates such as O5/N,/H,0 [15]. A n-type GaAs device was used for the FET,
suggesting that a positive electric field at the surface should result in accumulation of majority carriers
and increase in device drain current [92]. Their experiment showed that, relative to pure N, gas, a
reduction in drain current was observed on the introduction of O, gas and an increase in drain current
with the introduction of H,O vapour. The authors attributed this response as due to changes in the

surface-bound monolayer dipole moment induced by the gas/vapour.
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Tarasov et al. functionalised their FET-sensor with a neutral organic molecule (octadecyldimethyl-
methoxysilane) and showed that as the functionalisation reaction proceeded there was a change in
surface potential shift. The shift was explained via a Surface Complexation Model (Section 3.3.2.1)
as due to the neutral molecule modifying the density of solvent-accessible titratable groups at the

oxide surface of the sensor [93].

Kulkarni et al. have reported detection of neutral molecules using a ‘heterodyne detection’ methodology
with FET-sensors [94]. Their methodology utilises the response generated due to mixing between
analyte-induced conductance modulation and analyte-induced alternating current (AC) excitation;

this signal is a function of the dipole moment of the molecule.

These results suggest that although it is commonly assumed that BioFETs operate on the principle
that the net-charge of a biomolecule determines both the magnitude and polarity of the BioFET
response, this result is an oversimplification. They suggest that the dynamics of electrolyte and surface
charges might be affected in such a way as to generate a direct current (DC) response, even upon
binding of a neutral molecules. Studies which involve neutral molecules have received surprisingly

little attention despite their relevance to understanding the mechanism of BioFET operation.

3.1.5.2. Reversed Response

In some cases, BioFET response is opposite in polarity to that which would be expected based on
conventional electrostatic gating arguments. As an example, streptavidin is a protein commonly used
in biosensing experiments, and has a net negative charge in physiological buffer solution at pH 7.4
(Section 6.3). Therefore upon binding of streptavidin to a FET-sensor, the response is expected to
be analogous to a ‘negative gate voltage’ from traditional MOSFET theory, and thereby cause a
decrease in drain current for an n-type device. In practice, there are many examples whereby even the
basic qualitative prediction of polarity of FET-sensor response has been incorrect, i.e. the response is

‘reversed’ relative to expectations.

Bradley et al. observed a decrease in drain current and a negative AVt upon streptavidin binding;
given that this device was a p-type device, this is opposite to that expected based on electrostatic
gating net-charge arguments [95]. The device was based upon an unfunctionalised carbon nanotube
as the channel material rather than a conventional semiconductor-oxide structure, and therefore
there is no oxide layer and it is possible for the analyte to reach direct contact with the nanotube
and bind non-specifically. For devices without oxide layers at the surface it might be possible to
explain the ‘reversed’ response in terms of the gating mechanism not being due to the field-effect,
but instead due to charge transfer. Bradley et al. used a charge-transfer mechanism to explain their
results, suggesting positive amine groups of streptavidin might be binding directly to the surface of
the nanotube resulting in effective positive gate voltage despite the net negative charge of streptavidin
[95, 96]. It should be noted that some of the experiments of Bradley et al. were performed at high
biomolecule concentration and low buffering capacity; in such cases, the bulk pH may be changed by

the biomolecule, thus bringing into doubt their validity as later discussed in Section 8.5.3.

Ishikawa et al. observed a similar phenomenon for an In, O3 semiconductor with a phosphate oxide
surface, neither of which are common choices in the field. The surface was linked to biotin via a
succinimidyl linking molecule [97]. In contrast to that predicted from net-charge arguments, upon
binding of streptavidin they observed an increase in drain current and negative shift of -14 mV for
AVr. Ishikawa observed a strong dependence of the device response to streptavidin upon changes in
ionic strength, indicating that the mechanism was electrostatic gating via Coulombic interactions,
as opposed to direct charge-transfer to the semiconductor [53]. In order to test the hypothesis that

this is due to amine groups from streptavidin, on average, oriented closer to the nanowire than the
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negative charges on the protein (a hypothesis originally proposed by Bradley et al. [95] with little
justification), De Vico et al. utilised a multi-scale simulation which accounted for the position of
charges on the protein [31]. Their simulations suggested that this explanation is not sufficient to
explain the ‘reversed’ response. De Vico et al. proposed a possible explanation based on the similar
length scale between the device used (approximately 5nm) and streptavidin [98], suggesting that the
small scale of the device might limit the extent to which it is exposed to streptavidin, stating that if
only part of the tetrameric structure of structure was ‘sensed’ then the altered charge distribution

could conceivable produce the reversed signal.

‘Reversed’ responses have been observed by Heller et al. using their carbon nanotube FETs [53].
The drain current was measured as a function of gate voltage (V) before and after treating the
sensor-surface with 1 pM of horse heart cytochrome-c (HHCC) in PBS buffer and they observed that
the resulting curves intersected, i.e. that depending on the choice of V; for this system, the opposite
response might be obtained. Heller et al. concluded that the ‘reversed’ response was due to Schottky
barrier effects (i.e. work function modulation of the contact regions) [53] and therefore this effect can

be avoided in devices that have been well-passivated to protect the contacts from the electrolyte.

Upahyay et al. utilised an InAs semiconductor device in their FET-sensor, in which the oxide surface
had non-specifically bound, biotin-functionalised Bovine Serum Albumin as the receptor for the
streptavidin. Addition of streptavidin showed the ‘expected’ signal polarity at low ionic strength,
but showed ‘reversed’ signals at high ionic strengths. They did not provide an explanation for the
‘reversed’ response [99]. In their system, a plausible explanation for the reversed response is that
varying ionic strength modified the concentration of negatively-charged biotin-functionalised Bovine

Serum Albumin on the surface.

Most biosensing systems utilise a system in which there is a silica surface functionalised with a layer
of (3-Aminopropyl)triethoxysilane (APTES) in order to link the receptor of the biomolecule to the
surface. The above examples of ‘reversed’ signals from the streptavidin literature all originate in
systems which contain distinctly different surface chemistry to this common setup but further research

is needed to identify what properties of the above systems cause this unexpected behaviour.

3.2. Electrostatics of Electrochemical Systems

Given that the ‘field-effect’ is electrostatic in origin, an introduction to some relevant electrostatic
(and electrodynamics) theory is presented in this section. For an in-depth discussion of electrostatic
theory, the reader is referred to standard texts such as that of Duffin [100]. Whilst the idea of an
‘electric potential’® is a general concept in physics, in the field of chemistry, some specific terms
have arisen such as the ‘electrostatic potential’. This section provides an introduction to relevant
terminology in chemical systems (Section 3.2.1) followed by a description of the most common models
of the electrostatics of liquid-surface systems (Section 3.2.2). Finally, as atomistic calculations are
an important part of the research presented in this thesis, an introduction to how electrostatics are

commonly evaluated in atomistic simulations is presented (Section 3.2.3).

3.2.1. Terminology

The basis of electrostatics can be seen as originating from both Coulomb’s Law and the Superposition
Principle. Coulomb’s Law describes the forces exerted between two charges, and the Superposition

Principle allows these interactions to be evaluated easily over large systems containing many charges.

20ften termed the ‘electrical potential’ in Engineering, and ‘electric potential’ in Physics
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The electric field is a useful concept which can be defined as a measure of the force that would be
exerted on a charge if it were placed at any particular point in the space of the system. A further
useful quantity is the electric potential difference, which describes the work done in moving a unit
charge from an initial position (A) to a final position (B) (V4p). Strictly speaking, only potential
differences can be measured, but if the potential of A is set to zero then the potential difference is

sometimes simply referred to as ‘the electric potential (at B)’ (V).

The previous considerations represent well-established terminology from electrostatics [100]. It should
be noted that in the field of chemistry, the term ‘electrostatic potential’ has become common to
describe a specific kind of potential difference which is useful for systems which cannot be conveniently
represented as spatially-discrete point charges. This is the case in chemical systems due to the
delocalisation of the electron density. The ‘electrostatic potential’ is exactly equal to the Coulombic
interaction energy between the unperturbed charge distribution of the system and a positive unit
charge at a distance, r [101]. Thus the term ‘electrostatic potential’ used in chemistry is essentially
an electric potential energy evaluated at the position of a charge for a system composed of molecules.
The unfortunate similarity in the terms ‘electrostatic potential’ in chemistry and ‘electric potential’
in physics have resulted in some authors using these terms interchangeably (e.g. [15]). For a more

detailed description of the ‘electrostatic potential’, see Appendix A.

3.2.2. The Electrical Double Layer

When any solid is exposed to aqueous solution, the water molecules reorientate and charges in
solution, either from autoionised water (H;O, OH™) or from electrolyte (e.g. Nat, C17), change
their arrangement in response to the surface. This phenomenon is fundamental to many fields of
science such as, electrochemistry, colloids, tribology, solid-supported catalysis and bionanotechnology
[102]. The structured arrangement of charges and oriented dipoles (e.g. oriented water molecules)
which composes the interfacial region at the boundary of an electrolyte is termed the ‘electrical double
layer’ [102]. Although the term ‘electrical double layer’ often used to describe solid-water interfaces,
the phenomenon actually occurs at all phase boundaries [102]. The term ‘double layer’ comes from
the historical models of electrified interfaces in contact with electrolyte, in which the structure was

modelled as simply two ‘sheets’ of charge.

Various commonly used models for the Electrical Double Layer are presented here as such models are
a key component of attempts to model BioFET device response. In addition, one of these models
is compared to the novel results of atomistic simulations later presented in this thesis (Section 7.3).
Many of the commonly used mathematical models for the double layers still used today were developed
in the early 20th century [103]. A detailed discussion of electrical double layer modelling can be found
in standard texts [104-107].

In spherical coordinates, the electric potential, ¢(r) due to a point charge ¢ga, (‘Coulomb Potential’)

can be written as:
q2
— 3.1
¢ Amegr’ (3.1)

where ¢€g is the permittivity of free space. The Poisson equation is a generalisation of this equation
to a volume distribution of charge density p(r) where the dielectric need not be vacuum, and has a

relative permittivity e,

v2(r) = — 27, (3.2)
€0€Er
The charge density p(r) can be expressed as a sum over all ¢ species of ion present with charge z;(= —1

or +1 in a monovalent electrolyte), where ¢;(r) is the concentration of the ion in solutions at distance
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p(r) = qzzici(r)- (3-3)

The earliest model of the double layer was the Helmholtz model which modelled the surface as a
parallel plate capacitor with the surface as one plate and the solution ions as the other. It can be
divided into two planes, the inner Helmholtz plane passes through the centres of specifically bound
ions (or adsorbed water), and the outer Helmholtz plane passes through the centres of solvated ions.

Between both planes, the electric potential varies linearly with distance.

One of the limitations of the Helmholtz model is that it neglects the thermal ‘smearing’ of ions in
solution. The Boltzmann distribution can be used to model how the concentration of ions will decay
from high concentration of surface cations near the surface to the bulk concentration, c;~,, where the
concentration of positive and negative ions in solutions is equal. The concentration of ions at a specific

distance from the surface ¢;(r) can therefore be expressed as a function of the electric potential ¢(r):

—qzip(r)

T ) (3.4)

¢i(T) = Cioo €xp(

where ky, is the Boltzmann constant. By substituting Equation 3.4 into Equation 3.3, an expression
is obtained for the charge density and inserting this charge density into the Poisson Equation

(Equation 3.2), the resulting equation is the Poisson-Boltzmann Equation:

Vo) = - P exp(—E00) (35)
This equation describes the electric potential at the interface between a charged object and the
solution, taking into account the effect of screening by counter ions, e.g. around an ion or a surface.
It can actually be thought of as a special case of a more general model which is used in many
fields - the Poisson-Nernst-Planck (PNP) model. In the PNP model, the Poisson equation is used to
describe the electrostatic potential, the gradient of which is used to drive ion motion. This is coupled
with the Nernst-Planck equations which are used to describe electrodiffusion of ions in terms of ion
concentration. The PNP equations are equivalent to the Poisson-Boltzmann equation in the case that
the ionic flux from the electrodiffusion is zero [108], which is a common assumption in the case of

equilibrated oxide-water interfaces with no convection.

Equation 3.5 cannot be solved analytically for spherical coordinates. However in the case of a charged
plane, considering the dimension in the direction of the surface normal, z, assuming a symmetric z : z
electrolyte (z; = z4 = —z_ = z) then using the mathematical identity sinh(p) = (exp(p) —exp(—p))/2,

Equation 3.5 the following expression is obtained:

d?¢p 20 . L ZeY
_— = smn ——.
dz? €0€r kyT

Integrating Equation 3.5 along the plane normal to the surface (z) yields % (which is the electric

field) and this resulting expression (not shown) can be solved analytically [104].

Debye-Hiickel Approximation

Returning to polar coordinates, as the following expressions are valid for both radial (e.g. charges
around an ion) coordinate systems and surface systems (considering only the dimension x). For the
case of low surface potentials where ¢(r) is small, i.e. |%¢¥)| < 1, the non-linear Poisson-Boltzmann
equation can be linearised replacing the exponential term with a linear term. More specifically, from

the series expansion of the form, e* =1+ x + %? -++ , a substitution of 14+ can be used (where x is
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qz%@) resulting in the Debye-Hiickel equation of ‘linearised’ Poisson-Boltzmann equation shown in

Equation 3.6:

oy - o)1 Pl
v €0y XZ: i 100 ka ) 6067‘ Z qZiCico — Z ka ) (3 6)

For a sufficiently large r, the boundary conditions of ¢(r) = 0 and ‘;—‘f = 0 apply, which correspond
to electroneutrality, such that the )", ¢zici term in Equation 3.3 is equal to zero. Under these

conditions the expression simplifies:

2.2
1 q°2; Cico
€0€r & kpT

V2(r) = [ ¢(r) = K2¢(r), (3.7)

in which x~! is the Debye length. The approximation of assuming % is small is termed the Debye-
Hiickel approximation. Despite it not being strictly valid in most situations of interest in colloid
science and electrochemistry [104], it is commonly used. One reason for this is its convenience, whereby
screening by electrolyte can be described in a simple parameter - the Debye length, which is inversely

proportional to the square root of the ionic strength.

The solution of Equation 3.7 is:
b= e ", (3.8)

where ¢ is the surface potential (¢s = ¢(r = 0)). From this expression, it can be seen that the
potential decays exponentially as a function of distance from the surface. The electric field is the
gradient of the potential, and therefore is simply F = —¢ske™"".

Surface Charge

The surface charge (o) can be related to the surface potential (¢4) by applying the condition of
electroneutrality, in which the surface charge plus the charge from the ions in the double layer must

be zero. The resulting expression is referred to as the Grahame Equation:

0 = \/8€€pCino kT sinh( 4%s )

2ky,T
The expression can be written equivalently in the form of hyperbolic cosine or exponential terms. It is

also possible to linearise this expression using the Debye-Hiickel approximation, to yield:

0 = €o€rks

Double Layer Models

In the Gouy-Chapman diffuse-charge model, the activity of ions in the double layer are treated as
exponentially decaying as a function of distance from the interface, as shown in Equation 3.8 [102].
The Gouy-Chapman model is inaccurate for highly charged double layers, in part due to the lack of a
finite-size description of the ions. In this model, at high surface potentials (high surface charges), the
counter ion concentration at the surface becomes unphysically high. Stern proposed an alternative
model which can describe systems at higher potentials, which combines the Helmholtz layer with the

Gouy-Chapman diffuse layer known as the ‘Gouy-Chapmann-Stern’ model.

The majority of BioFET models incorporate a model of the electrical double layer based on either the
Poisson-Boltzmann equation (Equation 3.5) [2, 36—45] or the linearised Poisson-Boltzmann equation
[31, 35, 84, 87] (Equation 3.7).
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3.2.3. Atomistic Simulation of Electrostatics

When performing atomistic simulations, it is often the case that a finite system is most conveniently
approximated using a periodic system. Making this approximation facilitates an emulation of ‘bulk’-like
properties which would otherwise be unobtainable. For example, when studying a surface system,
a surface ‘slab’ can be generated which is periodic in the plane of the surface, and a large vacuum
gap is inserted between its periodic images to minimise the unphysical Coulombic interactions in the

out-of-the plane direction.

Calculating Coulombic interactions in these periodic settings is a challenging problem. A coulomb
sum would require an infinite number of calculations, and the long-range nature of Coulombic forces
mean that truncation of the sum of to a finite number of atoms is still expensive. Various approaches
have been developed to calculate periodic Coulombic interactions [109], but in this thesis the 3D
periodic Ewald sum (EW3D) [110-112] was used in all periodic atomistic calculations unless otherwise
specified [113, 114]. Detailed explanations of the Ewald algorithm is provided in Frenkel and Smit
[111] and Hansen (1986) [112].

3.3. Silica-Water Processes, Structure and Dynamics

Silica and water represent two of the most abundant chemical systems on the planet, and therefore
it is unsurprising that understanding the interface between them is relevant to a wide variety of
systems such as drug-delivery [115], prebiotic chemistry [116], geochemical processes [117] and chemical
engineering [118]. Of particular relevance to this thesis, most FET-sensors incorporate a silica-water
interface and therefore understanding of this interface is important for understanding FET-sensor
design. In this section, the structure of silica surfaces is described (Section 3.3.1), followed by a
description of models of charging processes (Section 3.3.2), a summary of processes that occur at the
silica-water interface (Section 3.3.3). The dynamics of charge transport in pure water can provide
insight into the charging properties at the silica-water interface, and therefore charge transport in
pure water is described (Section 3.3.4), followed by an overview of silica-water interfacial processes
(Section 3.3.5).

3.3.1. Structure of Silica Surfaces

Due to its huge technological [119] and geological significance [120], gaining a better understanding
of the macroscopic and nanoscale behaviour of silica is a significant area of active research. For a
comprehensive review of the structure and features of silica surfaces, the reader is referred to the
review of Rimola et al [32]. Silica is a solid up to temperatures of 1600°C that consists of silicon and
oxygen, with a chemical formula of SiO5. In its crystalline form, silica is dense and periodic, such as
in the cases of Quartz, Cristoballite or Edingtonite. Silica can exist in different physical forms such its
well-known vitreous form (‘glass’) which is dense and contains short-, but not long-range-, ordering of

the molecules. Other less dense forms of silica exist such as porous sponges, aerogels and zeolites. [32]

Amorphous silica, also known as fused glass or vitreous silica, is of particular relevance to FET-sensors
as it is the structure of the interface when silica is thermally grown or hydrated for long period of
time [121], both of which are common for FET-sensors. Amorphous silica is composed of a mixture
of chemically inert hydrophobic siloxane groups (= Si-O-Si =), reactive hydrophilic silanol groups
and SiO,, ring structures. The silanol groups can be subdivided according to how many siloxane O
bonds there are to each silicon atom (Q" notation), as shown in Figure 3.4. Q! sites are not found at

the silica surface [32], and hence are not shown in Figure 3.4. Silanol groups can also be classified
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according to their chemical structure and degree of hydrogen bonding (Geminal, Isolated, Vicinal) as

is also depicted in Figure 3.4.
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Figure 3.4.: Summary of common silica nomenclature and some key features to distinguish silanol
groups experimentally. Nuclear Magnetic Resonance (NMR) Chemical Shifts and Fourier-Transform
Infrared (FTIR) Spectroscopy wavenumbers shown are from Vansant et al. [122].

On exposure to water, and over long time-scales (hours to days), surface dissolution occurs in which
siloxane bridges are attacked by water molecules forming the more reactive and hydrophilic silanol
groups (see Section 3.3.3.4). Defects at the surface can be produced thermochemically, photochemically
or mechanically, but are rapidly eliminated by water [32]. Further defects include strained siloxanes
rings such as the (SiO), defect (often referred to as ‘S2R’), three-coordinated silicon and non-bridging
oxygen sites (R=Si—0" ‘NBO’). Nonbridging oxygen sites are commonly observed in amorphous silica
after light irradiation, as evidenced by Electron Spin Resonance measurements [123]. However the
radical formed on irradiation readily accept an electron to complete their outer-shell forming silanolate
groups, meaning that when modelling the silica-water interface, they are often simply treated as

silanolate groups [123].

3.3.2. Surface Charge Modelling

When oxide surfaces are immersed in water, chemical reactions occur which result in the formation of a
surface charge via reactions with hydroxide and hydronium ions. These are either (a), already present
in water (pure water has a pH of approximately 7 at room temperature, and from the definition of
pH this means that the concentration of hydronium ions and hydroxide ions of 1 x 10~7 mol dm—3
or (b), formed due to surface-induced breaking of neutral water molecules. Silanols can be neutral
(Figure 3.4), protonated (Si-OHj ) or deprotonated (Si-O~, ‘silanolate’) and it is these functional
groups that determine this charge [124, 125]. The pH is the primary charge determining mechanism
for oxide surfaces [126], with electrolyte effects having a measurable but less significant effect on the

net charge of the oxide surface [127].

Deprotonation of silanol groups is thought to be the primary charge determining mechanism for
silica [124, 125], and also governs dissolution rates (see Section 3.3.3.4) and has direct relevance
to biosensing because the negative charges affect the binding of ions and molecules [128]. In order
to model the charging process, the most common approach utilises pK, values (Equation 3.9) to
quantify the equilibrium acidity of functional groups at the silica surface. In order to describe the
ion adsorption processes and acid-base properties of oxides ‘surface complexation modelling’ is often
used. In these models, both theoretical models of the electrical double layer (similar or identical to

those introduced in Section 3.2.2) and chemical equations to describe the reactions at the surface



22 General Background

are combined to describe empirical data such as proton-titration curves. These models have a large
number of parameters which are often determined by constraining them to the values that provide the
best fit to experimental data. Surface complexation models can be used to estimate the pK, values at

the surface.

[AT][HT]
K, = —log(K,) = -1 —_ . 3.9
b, = ~log(K,) = tog (L0 (39
In Section 3.3.2.1 the surface complexation modelling is explained in more detail and, in Section 3.3.2.2,
values of the acid-base dissociation constants at the silica surface are introduced in the context of their
measured (and simulated) pK, values; the assignment of these values has proved to be controversial

area of research for silica, compared to other oxide surfaces.

3.3.2.1. Surface Complexation Modelling

Surface complexation models (SCMs), also called site binding models (SBMs) [129], are the traditional
method used to simulate acid-base titration properties, or to model the degree of sorption of ions/solute
as a function of pH, solute concentration and ionic strength. Work in this field began as far back as
the 1950’s using simple mass law arguments [130] and, subsequently, as the importance of surface
charge in modelling titration processes became more apparent, incorporating these ideas into what

are now known as surface complexation models.

A surface complexation model is a model of the electrical double layer which gives a molecular
description of adsorption phenomena at equilibrium. An electrical double layer model, similar or
identical to that already presented in Section 3.2.2, is coupled with a description of the acid-base
reactions at the surface and ion-complexation reactions. In order to model the acid-base properties,
two models of the chemical equilibria are often considered: the 1-pK (Equation 3.10) and the 2-pK
models (Equation 3.11 & Equation 3.12). In the following chemical equations, the term ‘S’ is used to
represent a metal (or metalloid) species from a metal oxide (e.g. Si in SiO,, Al in Al,O4, Ti in TiO,
etc.).

1-pK model:
SOH™ /2 4+ H* = SOH]'/? (3.10)

The principle of this model is that only one ionisable site is represented explicitly, and that binding
of a proton increases the charge of the system by one positive unit. Physical interpretation of this
mechanism directly to atomic mechanisms are rare because these models are primarily used to predict
macroscopic surface charge, however an example interpretation could be SO~ + HT = SOH or
(2SOH)™ + 2H" = (2SOH,)*.

2 pK model:
Si-OH + H™= Si-OHF (3.11)

Si-OH = Si0O~ + H* (3.12)

Borkovec (1994) [131] highlighted how both these models are simply approximate solutions to the
many-body problem of proton adsorption at the oxide/electrolyte interface. The 2-pK model should
be interpreted as between a pair of neighbouring ionizable groups, as opposed to a single site being
consecutively protonated, as had often been assumed [131]. There are arguments in favour of each of
the 1-pK or 2-pK models respectively [132], however the mean field approximation inherent in the

1-pK model is often sufficient to fit the data for most ionisable water-solid systems [131].
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Surface complexation models represent an extensive field, and the reader is referred to textbooks such
as those by Goldberg [133] and Lutzenkirchin [134] for a more detailed review, however, a brief outline

will be given here.

Initial models considered a Stern-like model of the surface, such as the constant capacitance model
(CCM) [135], whereas later models incorporated the double layer in the form of the diffuse double layer
model (DDLM) [136] or the triple layer model (TLM) [137]. All three of these models are sometimes
referred to as ‘classic 2-pK models’ because two-step protonation of a singly coordinated surface site
is utilised (See Equation 3.11 and Equation 3.12). Later models, such as the multisite complexation
model (MUSIC) [138], and the subsequent charge-distribution multisite complexation model [139]
take into account the coordination environment of the surface, which can utilise either the 1-pK or

2-pK scheme, depending upon the implementation.

The term ‘inner-sphere complex’ is used in this field to describe adsorbed species with no intermediate
water. The constant capacitance model and diffuse double layer model both represent inner-sphere
complexes as a single surface plane, but the diffuse double layer model includes a diffuse layer extending
into solution. In the triple layer model, as in the constant capacitance model and diffuse double
layer models, inner-sphere complexes are also modelled at the surface but there is an intermediate
range between the surface and the bulk solution, whereby outer-sphere complexes can form. Multisite
complexation models use bond valence-based arguments and surface structural information in order
to incorporate preferential binding to certain chemical environments at the surface. It is based on
electrostatic arguments related to Pauling bond strengths, but does not explicitly account for surface

molecular geometry and structure. [133]

The surface site density (e.g. silanol density, in the case of silica) is a key parameter and can be
determined experimentally by a range of techniques but the results can vary by an order of magnitude
[32]. This variability can originate from differences in the surface chemistry between different oxide
preparations, but also is a result of the difficulty of accurately measuring this property with currently
available experimental techniques. This variability presents a major limitation in Surface Complexation
modelling, because the results are highly sensitive to the surface site density. Proton titration data, in
which a high-surface area of oxide is titrated with a known concentration of acid or base [140]., is most
commonly used to estimate the other parameters of the model. The values of the parameters can

differ depending on the choice of method used for their determination from experimental data [141].

Surface complexation models have been used to fit the experimental data for charge density of silica as
a function of both pH and NaCl concentration [142]. When using bond valence techniques, such as the
multisite complexation model model, there is an assumption that Si—OH near SiO™ groups will be at
a higher pK, due to electrostatic repulsion from the SiO™ [143]. This may be an oversimplification of
the underlying physics, as ab initio molecular dynamics studies suggest that deprotonated groups can

migrate across the surface [144].

3.3.2.2. Acid-base (pK,) Properties of Silica

The traditional method of studying the acid-base properties of an oxide is to perform a proton titration
in which sequentially small quantities of acid/base are added to a colloidal sample of the oxide, and
the change in pH is measured after each addition [140]. This technique can provide information on
the net surface charge, but requires high sample surface areas (e.g. colloids) and cannot provide
information on the individual chemical equilibria or structuring at the surface. Some of the most
compelling experimental evidence towards silica surface acidity and the structure of the silica-water
interface originated from sum frequency generation (SFG) and second harmonic generation (SHG)

measurements. The technique can provide measurement of the polarisation and electric field at the
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interface, and a discussion of the theory behind these measurements is presented in Appendix B. A
key limitation of this technique is that the region defined as the ‘interface’ (non-centrosymmetric
chemical environment) is not always clear, and so it not trivial to map response onto its chemical

origin using this technique alone.

The work of Ong et al. provided an important result in the field of silica-water chemistry. In their
work, they measured the second harmonic generation response of silica over a range of pH values.
Their results are presented in Figure 3.5 [145] and shows an increase in the surface-harmonic electric
field with increasing pH. The increasing pH increases both charging and water polarisation resulting

in an increased second harmonic generation response [146].
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Figure 3.5.: Second harmonic generation electric field response on fused silica as a function of solution
pH. The incoming beam was operated at 600 nm, 67° from the interface normal and the reflected SH
beam is detected at 300 nm. Data points extracted from Ong et al. [145] and linear interpolation (solid
lines) added as a visual guide.

By varying temperature and electrolyte concentration, Ong et al. showed that the observed signal
showed a good theoretical fit to a model incorporating surface charge-induced polarisation effects.
This therefore provides evidence for polarisation of water at the interface [145]. Ong et al. also argued

that second harmonic generation can be used to directly measure the surface potential..

For silica-surfaces, the assignment of pK, values has proved to be a highly controversial topic. Whilst
historically it was thought that silica exhibited a single pK, based on titration studies [32], the
aforementioned paper by Ong et al. suggested that silica has two distinct pK, values; 19% of silanols
with a pK,; of 4.5 and 81% with a pK,, of 8.5 [145]. To obtain these values they fitted a constant
capacitance model (Section 3.3.2.1) to their Surface Harmonic Generation data, and found that their

data could best be accounted for by introducing two distinct pK, values at the surface.

Further studies have suggested a pK,; and pK,, of 3+ 1 and 7 & 1 respectively [138, 147], and these
are generally accepted. Cross-polarised magic angle spinning (CP-MAS) nuclear magnetic resonance
spectroscopy [148], fluorescence microscopy [149] and evanescent wave cavity ring-down spectroscopy
[150-152] have provided further evidence for the existence of two distinct pK, values at the surface.
It therefore seems likely that the historically reported single pK, [153] may be a result of being

performed at too low resolution to resolve both pK, values.

The physical explanation for the two pK, values remains an open question. An X-ray photoelectron
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spectroscopy study by Duval et al. supported the existence of a two-stage protonation process (SiO™,
Si-OH and Si-OHj) as in the 2-pK, model [154]. However using a constant capacitance model
(Section 3.3.2.1) they assigned pK,; and pK,, quite different to those generally reported with a pK,;
and pK,, of -1 and 4 (note that, by comparison, a silica monomer pK, is 9.8). Their key results are
shown in Figure 3.6 [154]. The work of Duval et al. represents one of the few experimental techniques
theoretically capable of quantifying the concentration of surface groups as a function of pH. The
ab initio simulations of Leung et al. [144] and Rustad [155] have suggested that the silonium ion
(Si-OHY) is unlikely to have a pK, greater than one. As a result of this pK,, the silonium ion is

expected to be in negligible concentrations at pH values relevant to biosensing (pH 6-9).
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Figure 3.6.: Variation in relative density of different silica surface silanol species for Quartz, shown as
a function of bulk pH. Calculated by deconvolution of measured X-ray photoelectron spectroscopy data.
Data points extracted and replotted from [154].

The conflicting pK, values determined by X-ray photoelectron spectroscopy and second harmonic
generation serve to demonstrate the lack of understanding of this interface. In an attempt to explain
the two different pK, values observed in second harmonic generation measurements, some have
suggested that it may a result of inter-silanol hydrogen bonding [156]. In opposition to this hypothesis,
the ab initio simulations of Leung et al showed that both Q? and Q3 (geminal/vicinal and isolated)
silanols showed a pK, greater than 7. They tentatively suggest that the highly acidic pK, values
(pK, ~4.5) groups observed in experiment may be due to strained silica rings at the surface but they
also note that such ring-systems are known to be highly unstable in water or moist air [144]. A
further popular explanation for the existence of two unique pK, values at the surface is that the more
acidic sites have weakly hydrogen-bonded water associated with them, as presented schematically in
Figure 3.7. This explanation is supported by the experiments of Ostroverkhov et al. [157] and the
aforementioned simulations of Leung et al. which showed a pK, which increased with the addition of

more layers of water on the surface [144].
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Figure 3.7.: A proposed explanation for the two unique pK, values inferred from second harmonic
generation response of Ong et al. [145, 146], in which silanols associated with weakly hydrogen-bonded
waters are assigned a pK, of ~4-5 and those with strongly associated hydrogen bonds a pK, of ~9.

3.3.3. Processes at the Silica-Water Interface

The silica-water interface demonstrates a variety of complex chemical and physical processes, which
span many time-scales. This thesis covers atomistic simulations of the silica-water interface and
an appreciation of the relevant processes occurring at the surface is required for accurate set-up
and interpretation of these simulations. For a detailed discussion of the molecular structure of the
silica-water interface is in the extensive review by Rimola et al. [32]. In this section, a summary of
many of the important processes at the silica water interface are outlined in Table 3.1, and these

processes are described in detail in the following sections.

3.3.3.1. Protonation and Deprotonation

Protonation and deprotonation can be caused by interaction with an excess of protons (hydronium
ions) and deficit of protons (hydroxide ions) respectively. For all oxides, this is the primary mechanism
responsible for the experimentally observed changes in surface charge with varying pH [126]. A
hydronium ion will readily donate its proton to a silanolate group to form a silanol because this
produces a system with lower enthalpy, as shown in Table 3.1 reaction (1) from right hand side (RHS)
to left hand side (LHS). In principle, a hydronium ion could also donate its proton to a silanol as
shown in Table 3.1 equation (2), however experiments suggest (Section 3.3.2.2) that this reaction
is not common for pH values > 1 and therefore can be disregarded for this discussion. Similarly a
hydroxide ion will readily deprotonate a silanol group to form a silanolate group as this produces a
system with lower enthalpy, as shown in Table 3.1 reaction (3) RHS to LHS. These reactions can occur
either as a direct collision between the reagents, or more likely via a hydrogen bonded network of water
molecules. If the reactions occurs such that it involves H;O™ transport (protons transport) through
a hydrogen-bonded network of water then it may be referred to as the Grotthuss mechanism [172].
If the reaction occurs such that it involves OH™ transport through a hydrogen bonded network of
water then it has been described by Riccardi et al. as the ‘Proton holes’ mechanism [163]. Finally, the
aforementioned reactions can proceed in the reverse direction whereby local fluctuations in the electric
field combined with thermal motion can cause hydrolysis of water, thus reaching a system which
is higher energy based on ground-state DF'T calculations [144, 158-160, 162]. The rare-event nature

of these ‘reversed’ reactions means that, due to computational expense, they cannot be simulated
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using current ab initio techniques that proceed linearly with time and these reactions are poorly

characterised.

In view of the similarities between the hydroxyl groups of silanols (Si—OH) and water (H—OH),
silica-water chemistry has strong parallels with the chemistry of water, and the latter has received
a lot more detailed attention. For example, the analogous ‘reversed’ (LHS to RHS) reaction for
Table 3.1 (1) for water would be [173]:

autoionisation

H,O0 + H,0 OH™ +Hz0%

recombination

This mechanism is discussed in more detail along with other features of water chemistry in Section 3.3.4.

3.3.3.2. Intrasurface Migration

b

The ab initio molecular dynamics simulations of Leung et al. [144] showed that protons can ‘hop
from one silanol to nearby deprotonated groups either via direct proton transfer or through two to
three mediating water molecules. As a result of proton ‘hopping’, the deprotonated groups effectively
migrate across the surface. These simulations demonstrated migration of a deprotonated group over
~5A and the entire migration occurring process over ~2 ps. The variable-temperature NMR study
of Kinney et al. proposed that a slight narrowing of the spectrum on cooling could be a result of
a chemical exchange process amongst sites on the silica surface but stated that the results were
inconclusive as they may instead be due to a reduction in motional broadening [164]. In the field of
hydrogen fuel cell research, silica gels are under research as they have been shown to be capable of

shuttling proton under an applied electric field [174-176].

3.3.3.3. Non-dissociative Water Adsorption (Physisorption)

It is well established that water can physisorb to the surface of amorphous silica. The hydrophilicity of
some silica surfaces can be explained by ab initio studies which have shown that the adsorption energy
of water can be greater than the heat of liquifaction [177]. Some silica surfaces exhibit a hydrophobic
nature, in which case siloxane bridges are often invoked to explain this phenomenon because these

functional groups are hydrophohic [122] .

As introduced in Section 3.3.2.2, second harmonic generation and vibrational sum frequency generation
spectroscopy (VSFG) studies have shown that water is polarised at the silica-water interface [145,
157, 165, 166]. Sum frequency generation measurements show two distinet peaks in their spectrum,
and therefore have demonstrated two types of physisorbed water at the silica/water interface which,
in spectroscopy terminology, are termed ‘liquid-like’ or ‘ice-like’ based on the measured O—H bond
vibration frequency. There is still some debate over the explanation for the origin of these peaks. One
popular explanation is that the second harmonic generation/sum frequency generation spectra is due
to water near the surface being oriented by a strong hydrogen bonding structure [157, 166],which is
modulated with changes in pH. An alternative explanation is that the ‘ice-like’ peaks are due to water

distant from the surface being oriented by the electric field [178].

Recent work in the field includes the work of Ostroverkhov et al. [157], who used phase-sensitive sum
frequency generation to provide additional information on the orientation of the water at the surface.
Their study supported the existence of multiple different surface sites with differing pK, values and
attribute the acidity of these values to the degree of ordering of water hydrogen bonds around each
site. They also showed that with increasing pH, the orientation of water reverses from oxygen pointing
towards the surface to hydrogen pointing towards the surface, which is consistent with increasing
deprotonation leads to an increasingly negative surface charge [157]. The DFT-Molecular Dynamics

study of Gaigeot et al. supports this interpretation of the vibrational spectra, demonstrating that the
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orientation of the water hydrogen bonds to the surface can be used to explain the vibrational sum

frequency generation spectroscopy results [167].

3.3.3.4. Dissolution

A large body of publications from the geochemical community has improved understanding of the
mechanisms and rate of dissolution of silica. These findings have relevance to biosensing, as dissolution
of the oxide surface of FET-sensors will result in surface properties changing over time, and therefore

might contribute to drift in the sensor signal, or to transient responses.

The varied surface structure of silica, which is dependent upon its preparation, means that exper-
imental measurements of the rate of dissolution can deviate significantly in their magnitudes. To
illustrate this, Dove et al. [179, 180] have investigated the Quartz surface, and using data from 79
dissolution rate measurements from a range of scientists, they made a model to predict the rate
of dissolution which is valid from a pH 2-13 and of NaCl concentration 0-0.2 moldm™3. Their rate
model utilised a surface complexation model to predict the surface-site species concentrations and
used this in a simple chemical rate equation [179]. They predicted dissolution in a range of between
1 x 107 molm™2s7! to 1 x 1071 molm~2s~!, which equates to between 0.00021 molecules nm~2hr—!

and 0.21 molecules nm—2hr—!.

A combined sum-frequency generation and atomic-force microscopy study of Li and Bandara compared
the effect of nanopure water with that of a pH 10 sodium hydroxide solution upon a quartz surface.
Within 17 days they found that the surface dissolution had led to an amorphous surface. They found
that the basic solution actually led to a smoother surface than the pure water system and hypothesised
that hydroxide ions were creating either an electrostatic or chemical protective coating [181]. Perhaps
of more relevance to biosensor design, a recent review of dissolution of elemental silicon (Si) exposed
to aqueous electrolyte states that the silicon (Si) can be dissolved rapidly (nanometres per day) by an

aqueous electrolyte solution [182].

The chemical mechanism of silica dissolution in water is generally accepted to be via hydrolysis of the
siloxane bridges present at the surface, though the precise mechanism(s) and the role of hydroxide
and hydronium ions remain unclear and an active area of research. Based on the observation that
there is little change in dissolution rates as pH from pH 1.4 to pH 6, Knauss et al. infer that the role
of hydroxide and hydronium ions is negligible in this region. Beyond pH 6 they observed increasing
dissolution proportional to the reciprocal square root of the activity of protons.. The suggested that
the different rate at higher pH may be the result of a different mechanism involving hydroxide and
hydronium ions [183, 184].

Various ab initio studies have attempted to understand the mechanism of silica dissolution [184-187].
Nangia et al. [188] used DFT calculations to determine the transition state for dissolution via
hydrolysis of siloxane bridges. They compared protonated, neutral and deprotonated model clusters
and, using Transition State Theory [189], they produced a rate model which showed good agreement

with the aforementioned model of Dove et al. [179].

3.3.4. Dynamics of Pure Water

As introduced in Section 3.3.2, proton transfer from silanol groups to bulk water is thought to be
the primary charge determining mechanism for silica [124, 125]. In order to accurately model this
phenomenon, an understanding of proton transport in bulk water is therefore also required, which

will be addressed in this section. Not only this, but because water molecules possess similar chemical
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functionality to the silica oxide surface silanol groups, it is likely that proton transfer dynamics are

highly analogous.

3.3.4.1. Autoionisation

Water autoionises spontaneously, resulting in formation of hydronium (H30+) and hydroxide ions
(OH™) [190]. Experimental studies still struggle to observe this process due to their extremely rapid
occurrence. For example, in pure water exchange of protons with Hor OH™ will occur over 1000
times per second for each water molecule [173], making simulation particularly useful in this field. To
investigate the autoionisation process, Eigen and Maeyer used a pulsed applied electric field to perturb
the equilibrium concentrations of HY and OH™ and based on these results, they inferred that a single
water molecule has a mean apparent lifetime of about 11 hours before it will dissociate into OH™ and

H30" [173] as a result of local fluctuations in the electric field due to thermal motion of the water.

The ab initio molecular dynamics simulations of Geissler et al. [190] suggest that many short-lived
(~150 fs) charge-separated states may be present. The formation of a metastable charge-separated
system requires a charge separation of at least 6 A [191], from which it has been theorised that the pair
of ions may diffuse away from each other with relative ease [173]. Geissler et al. used path-integral
ab initio Car-Parrinello Molecular Dynamics (CPMD) and observed proton migration from H3O"
to an OH™ several molecules away on an approximately 100 fs time-scale, provided that there was
a hydrogen-bonded chain of water present, termed a ‘water wire’ [190, 192]. If there was no water
wire, they observed greater than 1 ps time-scales, consistent with the time-scale of water reorientation.
[193].

3.3.4.2. Proton Migration Time-Scales

The lifetime of H3O+ in water has been investigated using a reactive force field by Lockwood and
Garofalini [194]. They observed a small amount of autodissociation and recombination (‘proton
rattling’) on a 100 fs time-scale, and excluded this from their calculations by excluding OH~ 4 H;0"
recombination reactions and considering only H" 4 H,O reactions. They showed that severing of
water wires led to hydronium ions with a roughly picosecond lifetime, and demonstrated that proton
migration over long time-scales (>100ps) can be attributed to this process. Similar conclusions were

found in the investigation of proton-transport performed by Lee et al. using a reactive force field [195].

3.3.4.3. Hydronium Transport

Protons are known to have an anomalously high mobility in bulk liquid water, explanations for which
began even back in the 19th century with the theory proposed by Theodor Grotthuss [172]. Protons
are now known to transport via a conduction mechanism, sometimes referred to within the literature
as ‘structural diffusion’; but also known as the proton-hopping or the Grotthuss mechanism [172]. This
mechanism is anomalously fast compared to classical diffusion (sometimes called ‘vehicular diffusion’ in
this context) and involves the transfer of protons along water wires molecules like a ‘bucket line’. The
Grotthuss mechanism is about an order of magnitude faster than would be expected via diffusion for
a particle the size of a proton, and is limited by the rate of reorientation of the water molecules [196].
Despite a huge amount of both experimental [197] and theoretical work [198], the precise mechanism
of proton migration is still debated. It is generally thought that protons are arranged into either,
or both, of the ‘Eigen cation’ HyO," and the ‘Zundel cation’ H;O,", and that migration occurs by

interconversion of protons between these clusters.



3.3 Silica-Water Processes, Structure and Dynamics 31

Marx et al. used ab initio simulations incorporating both thermal- and quantum- fluctuations to
investigate proton diffusion in pure water [199]. They concluded that the rate of diffusion is determined
by thermally-induced hydrogen-bond breaking in the second solvation shell, and that Transition State
Theory does not apply because there is no well-defined transition state. They showed that the barrier
to proton migration in pure water is vanishingly small at <0.15kcalmol~! (kT ~0.59 kcal mol~* at
300K) and that Zundel and Eigen cations are only limiting structures, with numerous structures in
between. Finally, they showed that, at room temperature, the effect of quantum fluctuations is not
qualitatively significant. Similar studies by Schmitt et al. have shown that, on average, a proton will

‘hop’ approximately once every two picoseconds [198] .

3.3.4.4. Hydroxide Transport

The mechanism of hydroxide transport is less well understood and characterised than hydronium
transport. However, it is known that hydronium transport is approximately two times faster than
hydroxide transport due to it occurring via a different mechanism [195, 200, 201]. The mechanism
of hydroxide transport has been evidenced to occur via an intermediate cluster involving a hyper-
coordinated hydroxide ion, with four water molecules hydrogen bonded to it. This involves a greater
degree of reorientation than hydronium transport, which would explain the reduced transport rate of
hydroxide ions. This has been supported by neutron diffraction data [202] and ab initio simulations

[195, 200, 201], but the precise nature of the transport remains an active area of research.

Riccardi et al. suggested that hydroxyl-mediated proton-transfer mechanisms, which they termed
‘proton hole’ transport, are often overlooked [163]. They suggest that this may perhaps be due to the
success of the Grotthuss mechanism at explaining proton-transfer without the need for hydroxyl ions.
Using pK, values they argued that, when the pK, of both the donor and the acceptor are greater
than 7, a hydroxide dominated ‘proton hole’ mechanism is in fact more energetically favourable than
the Grotthuss mechanism. Tuckerman et al. suggest that the ‘proton holes’ mechanism has received
far less attention than the Grotthuss mechanism as a result of the (erroneous) century-old assumption
that the hydrated OH™ transport mechanism can be inferred from that of an excess proton by simply

reversing the hydrogen-bonding polarities [200].

3.3.5. Summary of Silica-Water Interfacial Processes

Based on the previous sections on silica and water, a summary of the previously presented processes
occurring at the silica-water interlace is presented here, with an emphasis on the surface charge, which

is an important property for modelling FET-sensors.

The primary factor in determining the surface charge of silica in aqueous solution is its pH . Acid-base
equilibria reactions of the silanol groups at the surface with H3OJr and OH™ result in protonation
and deprotonation reactions, respectively. At very low pH (< 2), a small concentration of Si—OH,™ is
expected at the surface but at pH relevant to biosensing (6 < pH < 9 ), the concentration of Si—OH, ™"
is negligible. The Point of Zero Charge of silica is ~2. Above pH ~2 the surface is negative, as
evidenced by zeta-potential measurements [154, 203]. Proton titration data shows a gradual increase in
surface charge with increasing pH [204]. There exists compelling evidence (second harmonic generation,
nuclear magnetic resonance spectrosopy, Florescence and X-ray photoelectron spectroscopy) for the
existence of two distinct pK, values for silanols at the surface [32]. Silica dissolves much more rapidly
at high pH, which makes the surface structure increasingly complicated and difficult to predict at
high pH.

The study of pH-dependent protonation-deprotonation has almost exclusively been in the context of

equilibrium thermodynamic models such as surface complexation models. These have the advantage of
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being easily compared and parameterised to readily available equilibrium experimental measurements
such as pH, surface site density and surface charge. In contrast to equilibrium thermodynamic models,
little experimental data exists showing non-equilibrium measurements of pH, surface site density and

surface charge. Kinetic models which incorporate the microscopic details are rare.

A key challenge to commercialisation of current FET-sensors is due to undesirable drift and noise in
the drain current response. The drift in drain current response has been associated with chemical
modification of the oxide layer [205], and so an improved understanding of the kinetics of interfa-
cial reactions is crucial, whilst noise in the response is partly due to dynamic fluctuations in the

concentration of ions at the interface [33, 80].

3.4. Atomistic Simulation of Silica

As atomistic simulations of the silica-water interface are an important part of Chapter 4 and Chapter 7
in this thesis, in this section, relevant background to atomistic modelling of silica interfaces is introduced.
A general consideration in any atomistic modelling is that the specific choice of model is a trade-off

between accuracy and computational expense.

Many FET-sensors, such as those generated by Hakim et al. [58], have a surface which consists of
silicon oxide grown by thermal oxidation of silicon. Thermal treatment of crystalline silica in air
produces an amorphous silica structure, with some crystalline regions close to the substrate [206].
Exposure of crystalline silica (e.g. Quartz) to water has been shown to produce amorphous silica over
time [181]. Given this evidence, an accurate model of silica for application in FET-sensors should

capture important properties of amorphous silica.

An important experimental observable of silica is the density of hydroxyl groups on the surface because
this quantifies the surface hydrophilicity and surface structure whilst also being strongly related to
its charging behaviour due to protonation-deprotonation reactions. Despite the complicated surface
structure of amorphous silica, it has been shown by Zhuravlev [121, 168] that the average number
of Si-OH groups per square nanometre for a fully hydroxylated surface is a physiochemical constant
of approximately 4.6 to 4.9 OHnm~2 which is independent of the procedure used to prepare the
sample. The hydroxylation degree depends in a non-linear fashion upon the pre-treatment conditions
and temperature. It has been reported by Zhuravlev that if thermal silica is pre-treated at 900°C
dehydroxylation occurs forming hydrophobic siloxanes down to roughly 3 terminal silanols [121]. When
water is introduced to the surface then rehydroxylation occurs, though for pre-treatment temperatures
above 400°C this is a slow process [207]. Given these findings, an atomistic model of the amorphous

silica-water interface should have a surface hydroxyl density in the region of approximately 5 OH nm 2.

Establishing molecular dynamics parameters suitable for the simulation of nanodevices [119] and
silica interacting with biomolecules [208-210] are a current area of research. Multi-scale attempts to
study the complex interface of water and silica have been attempted by Cheng et al. [211, 212], who
have combined Density Functional Theory simulations, classical Molecular Dynamics simulations and
continuum methods to model surface hydroxylation processes and bulk silica nanowire stress/strain

dynamics.

Due to the range of surfaces possible and the many unknowns about the precise structure of silica
surfaces, previous ab initio studies have either utilised highly idealised models based on small ‘clusters’
of silanol groups and water molecules [159, 160, 213-215] in isolation, or models based on 3D periodic
systems containing ‘slabs’ of atoms which represent the surface. An example of a ‘cluster’ and a ‘slab’

model are illustrated in Figure 3.8.
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Cluster Model Slab Model

Figure 3.8.: Illustration of an example minimal ‘cluster’ atomistic model of the silica surface (SiH;OH)
and a ‘slab’ model of the silica surface (obtained by cutting through the (101) plane of o-cristobalite.
Hydrogen is shown as grey or white, oxygen as red and silicon as yellow. Cluster models aim to emulate
the surface using a molecule containing a small selection of the atoms. Slab models use periodic boundary
conditions in the plane of the surface (x-y) to emulate the bulk-like properties of the surface. 3D periodic
boundaries are often utilised, and therefore a ‘vacuum’ layer is inserted between periodic images in the
z-direction.

Slab models can never be truly amorphous due to the periodic boundary conditions, but disorder can
be represented using a large unit cell with disorder in the structure of the unit cell. Calculations on
amorphous/disordered surface slabs require very large simulation cells and are very computationally
expensive, and therefore with only a few exceptions [177, 216-218], have only been attempted using
molecular mechanics [119, 219]. Past ab initio studies of silica tend to focus on slab models constructed
via surface cleavage from highly ordered crystalline silica such as Cristobalite [169, 170, 220-222],
Edingtonite [223-226] or Quartz [218, 227] and other silicates [228, 229]. The highly ordered surfaces
facilitate smaller unit-cells and therefore lower computational expense, with the disadvantage of being

less representative of the heterogeneity of amorphous surfaces.

When modelling silica using a slab model, after cutting/cleaving the crystal along a plane, the
generated slabs often cut through chemical bonds and it is therefore common practice to ‘passivate’
the dangling bonds with hydrogen or hydroxyl groups. In reality, upon exposure to air, freshly cleaved
silica is expected to react with moisture in the air to form hydroxyl groups, therefore the practice
of passivating the surface is physically-motivated as well as practically-motivated for this system.
As electrostatic interactions are typically evaluated using periodic boundary conditions such as the
Ewald sum [110], the slab needs to be separated from its periodic image normal to the surface by a
‘vacuum layer’ to minimise unphysical periodic interactions in the out-of-plane direction, as shown
in Figure 3.8. The thickness of this layer is chosen so as to be the minimal size required to produce

negligible interactions between slabs.
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4. Charging at the Silica-Water Interface

4.1. Chapter Introduction

In this chapter, ab initio calculations are presented which investigate surface-charging mechanisms
and energetics at the oxide-water interface. Surface charge is a key factor in determining the response
of FET-sensors because it generates a detectable change in the electric field at the interface. The
importance of this phenomenon is evident from the prevalent use of FET-sensors to detect changes
in pH, whereby acid-base reactions change the surface charge [21, 55]. Surface charging is also
fundamental to a range of phenomena such as dissolution rates [179, 180, 230] and the surface
adsorption of ions and molecules [128, 231]. Given that the silica-water interface is one of the most
common interfaces on the planet and that silica is the most common oxide-surface of FET-sensors
[232], silica was chosen as the chemical oxide to investigate for this work. The simulation approach
of utilising DFT was chosen because it can accurately describe chemical-bond breaking and forming
which is vital to describe the relevant chemistry in surface charging. DFT can be used to study
dynamics over hundreds of atoms and time-scales of the order of hundreds of picoseconds, which is

the time- and length-scale upon which individual protonation-deprotonation reactions occur.

The surface charge of silica in water is primarily determined by protonation and deprotonation
reactions of the surface silanol groups with protons and hydroxide ions. Surface charging remains a
poorly understood topic in the field of interfacial science and this is particularly the case for silica
surfaces in which the acid-base properties of the surface are somewhat controversial (as discussed in
Thesis Background Section 3.3.2). If understanding of the surface charging mechanisms and energetics
can be improved, then predictive models of the dynamics of surface charging could be made which
would provide insight into improved FET-sensor device engineering. For example, given the elementary
charge sensitivity of FET-sensors [233], surface charging dynamics likely affect the measured noise.
A key limitation to the commercialisation of FET-sensors is due to sundesirable drift in the current
response and this has been associated with chemical modification of the oxide layer [205, 234]. With
knowledge of the energetics of the transition-state(s) of the reaction, it is possible to use Transition
State Theory [189] to predict the kinetics, which would be useful in describing FET-sensor noise.

Therefore this was an initial aim of the work presented within this chapter.

In order to accurately model the surface at an atomistic resolution, a careful choice of atomistic model
must be made. As discussed in the Background Section 3.4, the silica-water interface is thought to
exist as an amorphous material with a density of hydroxyl groups of approximately 5nm~2. However,
for practical reasons, a periodic structure is often used to model the amorphous system. For this
work, the chosen model was based upon the molecular structure of the (101) surface-plane generated
from a cleavage of a-cristobalite, a polymorph of silica. This surface is attractive from the point
of view of modelling an amorphous silica surface because it has a surface density of approximately
5 OHnm™2, similar to that in fully hydroxylated silica. Furthermore, a-cristobalite has a bulk density
of 2.23 gcm ™3 [235], close to that of amorphous silica (2.20 g cm ™3 [236]). Musso et al. have conducted
a series of DFT studies on various silica polymorphs [221, 222, 237], including an investigation of
the dynamics of water upon the surface used within this study; however their study did not address

surface charging.
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In this chapter, the theory of ab initio calculations is first outlined and an initial validation study is
performed in order to ensure the parameters used in this work can provide accurate and reliable results.
The subsequent study investigated the silica-water surface-charging mechanisms and energetics and

was published in the Journal of Colloid and Interface Science.

4.2. Background: First Principles Quantum Chemistry

Calculations

A detailed introduction to First Principles calculations can be found in standard texts [238, 239]. An
introduction to ab initio quantum chemistry calculations can also be found in Appendix C. This

section provides a brief introduction to Density Functional Theory.

The principle behind ab initio calculations is that, given only the atomic numbers and coordinates
of atoms in a system, it should be possible to obtain the wavefunction of the system by solving the

time-independent Schrodinger equation:
H¢ = E¢. (4.1)

This simple but powerful equation states that by applying the Hamiltonian operator, H, to the
wavefunction, ¢, the energy, F, of the wavefunction can be obtained. In practice, such a solution
cannot be performed analytically for more than the simplest of systems, yet a variety of approximations
can be made in order to make this problem tractable to a numerical solution. The Born-Oppenheimer
approximation, in which it is assumed that the nuclear wavefunction can be separated from the

electronic wavefunction, is almost ubiquitously utilised:

ﬁelec¢elec = elec¢elec~ (42)

With the electronic wavefunction ¢eec, it is possible to predict many physical and chemical properties
of the system, including the charges on each atom, and therefore electrostatic forces. Wavefunction-
based approaches to solving Equation 4.2 include Hartree-Fock and Post-Hartree-Fock methods;
however these methods scale poorly with increasing numbers of atoms, and therefore are often too

computationally expensive for the study of more than a few tens of atoms.

4.2.1. Density Functional Theory

Density Functional Theory (DFT) represents a fundamentally different approach to this problem
which is much less computationally expensive than wavefunction-based methods and can often obtain
comparable accuracy [240]. The reduced computational cost of DFT, as compared to traditional
wavefunction-based methods, results from the problem being reduced to a much lower dimensionality.
In wavefunction-based methods, the problem of solving the Schrédinger equation involves, for an
N-electron system, integration of 4N variables (z, y, z and spin for each N electrons). Instead, DFT
solves equations based on the Schrédinger equation (Equation 4.5) in order to determine the electronic
density, n(r). The electronic density n(r) can be thought of as the probability of finding any of the N
electrons at a particular point in space r. Once n(r) is obtained, physical and chemical properties of

the system can be calculated.

Most modern DFT codes are based on the Kohn-Sham formalism, which states that Equation 4.2
can be reformulated in terms of the kinetic energy operator and a set of functionals of the density,

as shown in Equation 4.4. An exact functional is known for all but the electron kinetic energy and
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electron-electron interactions. In Kohn-Sham DFT, these ‘unknown’ terms are replaced with the
exact functional for hypothetical non-interacting electrons and an additional approximate exchange-

correlational functional (Equation 4.3) which aims to correct for ‘unknown’ interaction terms.

The Kohn-Sham formalism makes the following approximation:

Eg(r?ct + Es)iaeCt [n] _ E}r{li(;n—inter + Eélgré—inter [n] + E;Eprox [TL] (43)

In making this approximation, we imagine a fictitious system containing ‘non-interacting electrons in
a set of i Kohn-Sham orbitals, ¢;, with energy €;. Using Equation 4.2, the full Kohn-Sham equations

can thus be written as:

(Epen—inter g gron—imterip) o pexactin] 4 BOACtp] 4 ERPPIO[n))gi(r) = ¢i(r), (4.4)

or more concisely:

(5 V2 + Vicsln](1)6u(x) = ex(r), (15)

where —%2 is the kinetic energy of the system (in atomic units) and Vi is the sum of the Kohn-Sham
functionals. By solving this equation self-consistently ¢; is obtained and from this, the density n(r)

can be obtained (Equation 4.6). The density can be used to calculate physical properties of interest.

N
n(r) = Y [éi(r)l* (46)

4.2.1.1. Numerical Solutions

In order to solve these equations on a computer, the system is discretised using a basis set expansion for
@4, the choice of basis varying between DFT codes. In many DFT codes, such as CASTEP [241], this
is implemented via a plane-wave pseudopotential approach, meaning that a sum of waves are utilised
to build a numerical approximation for ¢;. The ONETEP DFT code also uses a pseudopotential

approach and uses a localised basis set capable of plane-wave accuracy [242].

Plane wave codes often operate on an infinitely periodic system, and use Bloch’s theorem in order to
reduce the problem to something computationally tractable [241]. In brief, if the nuclei are arranged
periodically, then the potential acting on them will also be periodic, and therefore Bloch’s theorem
states that the density must be periodic. The density is the magnitude of the wavefunction squared,

and therefore the density can be written as:

n(r+L) = n(r) = [¢(r)f, (4.7)

where L is any lattice vector and ¥(r) represents the wavefunction of a system. As wavefunctions are
complex functions, their magnitude is periodic but their phase might not be. The wavefunction can be
split into two components, namely the magnitude ug(r), which is fully periodic (i.e. ug(r)=ug(r+ L))
ikr

and an arbitrary phase factor e”™* which varies over all vectors k:

Yr(r) = ug(r)e®r. (4.8)

Here k is used to indicate a specific point in reciprocal space, and also as an index to label a particular
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corresponding solution. k can take values of:

k= Qn—w, n=0,+1, £2, ..., N,
L
where N is the number of unit cells (which corresponds to a very large number in even microscopic
solids). In order to find the electronic density of an infinite periodic system, the density can be
integrated over all the k vectors. The significance of this is that the problem becomes computationally
tractable by only sampling a subset of the k vectors. This process is known as k-point sampling, and

is done for each single-particle states of the Kohn-Sham Hamiltonian [243] in Equation 4.5:
n(e) = [ o@Pd = Y lon (o) (4.9
k

In the CASTEP software, each ¢ (r) is required to be orthonormal to each other and extend over the
entire simulation cell, which results in a computational cost which scales cubically with system size.
In the ONETEP software, linear scaling of computational cost with system size is achieved by using a
different approach, instead using a localised non-orthogonal basis set composed of Non-orthogonal
Generalized Wannier Functions (NGWFSs) in a pseudopotentials approach which is capable of plane-
wave accuracy [243]. Each NGWF is themselves composed of periodic cardinal sine (psinc) functions
[243]. Before a ONETEP calculation is performed, radii of the NWGFs are defined which determine

to what extent the wavefunctions are localised around the atoms.

4.2.1.2. Pseudopotentials

In both the ONETEP and CASTEP codes, the pseudopotential approximation is used. The principle
behind this approximation is that the regions where the wavefunction changes its magnitude most
rapidly are the regions that are most computationally expensive to model. These regions are near the
core of the atoms and because the wavefunction in these regions have little effect on their chemical
properties, a ‘pseudopotential’ can be defined which has much less variation near the core, but remains
identical to the full electron wavefunction for the valence electrons. A further related approximation
that is common in DFT codes is the ‘frozen core’ approximation, which assumes that the core electrons

do not participate in bonding.

9

Two common types of pseudopotential are the ‘norm-conserving’ and ‘Ultrasoft Pseudopotentials
(USPs). Norm-conserving pseudopotentials ensure that the total charge of the pseudopotentials is equal
to the all-electron wavefunction (that is, the wavefunction without the pseudopotential approximation).
In contrast, USPs relax this condition with the advantage of requiring less plane waves than the
equivalent norm-conserving pseudopotential, and the further advantage of increased transferability
to a wide-range of chemical environments. A disadvantage of USPs is that they lead to a variety of

computational difficulties in their implementation and are not implemented in the ONETEP code.

4.2.1.3. Sources of Error

Whilst DFT can produce highly accurate calculations, it is not without sources of error. Most
standard DFT software is based on four key physical approximations or limitations: Firstly, they
assume the Born-Oppenheimer Approximation by fixing the nuclei and treating them essentially as
classical particles. This is generally a very safe assumption, as the mass of the electron is significantly
smaller than the nuclei. For the case of low-mass particles such as hydrogen, it can still hold as
an approximation, but requires additional scrutiny. The second consideration is that DFT, in its

standard formalism, is a ground-state theory and so can provide little insight into systems in which
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excited electronic states are important. A third consideration with DFT is that because the density is
calculated as a sum of Kohn-Sham orbitals, the calculation will introduce some repulsion energy even
for singly occupied orbitals (i.e. an electron-electron repulsion interaction that does not exist); this is
called the ‘self-interaction error’ and because of this, DFT is not suitable for the study of systems
such as H2+ dissociation. Finally, as shown in (Equation 4.3), the largest source of systematic error

in DFT calculations is the approximate exchange-correlation functional. [244]

Many exchange-correlation functionals have been proposed in the literature, each of which performs
better or worse on certain types of system depending on the particular chemical environment. It
is therefore important that a suitable functional is chosen for the system of interest. Because only
an approximate exchange-correlation functional is used, the correlation energy does not generally
include dispersion interactions between molecules, and therefore DFT is not applicable to systems with
strong long-range dispersion interactions (e.g. coronene dimers); however, empirical functional exist
to approximate these interactions. Furthermore, for some ‘strongly correlated’” systems, e.g. systems
with partially occupied d- or f-states [244], the Kohn-Sham DFT approach (based on considering

non-interacting electrons) fails to correctly describe the electronic properties.

Beyond these physical approximations, DFT requires numerical simulation and therefore a set of
numerical approximations must also be made. Some of these are unavoidable, such as inaccuracy
due to the limit of precision of numerical integration and rounding errors. DFT calculations often
involve self-consistent field solutions to non-linear equations and the choice of tolerances for the
level-of-convergence sets a limit to the accuracy of the solution. Other inaccuracies due to numerical
approximations in DFT simulations can often be reduced by increasing the resolution of the simulation
at the cost of increased computational expense. These properties include, for example, the number of
plane waves (measured via the cut-off energy), Fast Fourier Transform (FFT) grid dimensions, the
number of k-points in CASTEP and the size of the NWGF radii in ONETEP. For the study of surface
systems, additional considerations apply: surface systems can be approximated as a periodic slab of
matter separated by a vacuum gap, and it is important that any unphysical interactions between slabs
are minimised by choosing a sufficiently large vacuum gap and that the slab is sufficiently thick to

represent the bulk to the desired degree of accuracy.

4.3. Density Functional Theory Validation Study

This section provides a detailed description of the steps taken in order to ensure the DFT calculations

were performed using a well-converged, reliable and accurate set of parameters.

In this work, various software packages were utilised. The NWChem software was used for validation on
small molecules, providing calculations using the same level-of-theory (PBE-GGA exchange-correlation
functional [245] and DFT) but at high accuracy (large basis set and tight solver-tolerances) and
without the pseudopotential approximation (‘all-electron’). DFT was performed primarily using the
ONETEP software; as previously mentioned in Section 4.2.1.1, the computational cost of ONETEP
scales linearly with the number of atoms such that systems of thousands of atoms can be approached

using DFT which would be intractable using other software.

Unless otherwise specified, all ONETEP calculations were performed using the PBE-GGA functional
[245] using ‘fine_ bl settings (see Appendix D) and an effective kinetic energy cut-off of approximately
800 eV. Unless otherwise specified, all NWChem calculations were performed using the settings listed
in Appendix D. The optimised geometry of silica slab model used in this work was validated by
comparing the results of the geometry optimisation in both CASTEP and ONETEP; both providing
good agreement with each other. The detailed methodology is described in the published work [158].
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Forces were calculated by sampling the force upon a single oxygen atom in the system. In this work,

the z-dimension refers to the direction normal to the surface plane.

In this validation study, firstly the pseudopotential approximation was validated against all-electron
calculation in order to ensure their accuracy (Section 4.3.2). Various parameters were checked for
convergence to suitable accuracy; in ONETEP, these parameters include the quantity and size of the
NGWFs (Section 4.3.3 and Section 4.3.4) and the kinetic energy cut-off (Section 4.3.5). Parameters
which are model-dependent were investigated such as the thickness of the ‘slab’ used to represent the
surface (Section 4.3.6) and, finally, the spacing between periodic images in the direction normal to

the surface (‘vacuum gap’) (Section 4.3.7).

4.3.1. Methods

In order to perform many of the tests within this validation study, all parameters are hold constant
and a single parameter is varied from a low ‘quality‘ to a high ‘quality’; then the total energy of the
system and forces within the system are calculated. The parameter is then chosen such that the forces
and energies reach the desired accuracy. In order to assist this work, and future researchers performing
simulation studies, a simple open-source tool was developed - ‘ONETEPConv’. ONETEPConv a set
of scripts, written in the Bash scripting language, which automates this process. The functionality
of ONETEPConv includes convergence testing of the kinetic energy cut-off parameter, the radius of
NGWFs and the number of NGWFs. The software can speed up calculations by re-using the result of
a previous calculation, and it can be used to collate results into sorted .csv files for later analysis. Full
documentation of the software is attached in Appendix E and the software is freely available online
(doi:10.6084/m9.figshare.4001049.v1) [246].

4.3.2. Pseudopotential Approximation

ONETEP calculations utilise the pseudopotential approximation, in which an effective potential
replaces the core electrons of the system. This has the advantage of decreased computational cost,
and can produce very accurate results provided that the pseudopotential for the system of interest is
of good quality. In order to ensure that the pseudopotentials were in good agreement with all-electron
calculations, the geometry of a small model system was calculated using ONETEP and norm-conserving
pseudopotentials, and this was compared to all-electron calculations using the NWChem software [247]
at the same level of theory. A silanolate-water cluster and a silanol-water cluster were chosen as the
model system as they represent the simplest model of the surface silanol functionality. Calculations

were performed using a 58.2 A cubic cell.

The optimised geometries of the silanol clusters and presented in Figure 4.1 with all-electron results
(NWChem calculation) overlaid with the results using the pseudopotential approximation (ONETEP

calculation).

Similar analysis was performed on a range of organic molecules, as shown in Table 4.1. In order to
quantify the difference in the structure, the Root Mean Squared Deviation (RMSD) were calculated
between the atomic coordinates of the simulations, a low RMSD corresponds to a similar structure.
This confirmed that the norm-conserving pseudopotentials are transferable to a broad range of chemical

systems and that ONETEP can accurately describe geometries of simple molecular systems.

The results above show a good agreement, with no significant discrepancies in geometry, between the

all-electron and pseudopotential calculations.
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Figure 4.1.: Overlay of all-electron (blue) and pseudopotential (red) geometry optimised structures for
small silica ‘cluster’ models: SiH;O7...H,O (left) and SiH;OH...H,O (right). Good agreement between
the geometries suggests the pseudopotentials are accurately describing the system. 3D axes are shown in
the bottom left for reference.

Molecule RMSD (A) Comment
2-methoxy-phenol 0.014 Almost identical
acetic acid 0.011 Almost identical
ammonia 0.0025 Almost identical
methyl ammonium 0.0041 Almost identical
5-aminopentan-1-ol 0.062 Minor Difference
glycine 0.24 Minor Difference
nitrate 0.066 Almost identical
SiH;OH...H,O 0.069 Minor Difference
SiH;0™..H,0 0.20 Different water orientation, similar geometry

Table 4.1.: Root Mean Squared Deviation (RMSD) between all-electron and pseudopotential geometry
optimised structures, good agreement was observed suggesting the pseudopotentials are accurately
describing the system.

4.3.3. Number of NGWFs per Atom

The default number of NGWFs for Si of four have been previously shown to be insufficient for an
accurate description of crystalline silicon, whereby nine NGWFs were required [248]. In order to test
the relevance of this finding to silica-surface chemistry, a test system involving a silanoate...water
hydrogen-bonded complex (SiH;O0™ ... H,O) was geometry optimised using NWChem and compared
to ONETEP calculations with different numbers of NGWFs. Nine NGWFs per Si did not significantly
affect the geometry (< 0.1 A change in bond length, 1 degree change in bond angles) compared to four
NGWFs per Si, however the interaction energy produced was significantly improved (as compared to
the ‘accurate’ NWChem calculation), as shown in Table 4.2. The similarity between the all-electron
calculations and ONETEP calculations also further demonstrate that the pseudopotentials are capable

of an accurate description of silanol-water interactions.

As DFT code relies upon a non-linear solver, convergence of calculations requires a reasonable choice
of solver parameters. Utilising 9 NGWFs per Siatom led to difficulties with the NGWF conjugate
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gradients optimisation for periodic silica and ‘slab’ silica models, and therefore the kinetic energy
preconditioning parameter Ky was reduced. A Kj value of 2.5 produced similar issues, but a value of
2.0 led to rapid convergence of the NGWFs. It can be seen from Table 4.2 that decreasing K did not
lead to a loss of accuracy in the interaction energy. The geometries were not significantly affected by

the change in K. 9NGWFs per Si and a Ky of 2.0 were therefore used in subsequent calculations.

Software Basis Set Ko' Interaction Energy (kJ/mol)
ONETEP 4 NGWFsper Si 3.0 -84.24
ONETEP 9 NGWFs per Si 3.0 -82.06
ONETEP 9 NGWFs per Si 2.0 -81.98
NWChem all-electron - -80.78

Table 4.2.: Convergence of the number of NGWFs per Si atom for a SiH;07... H,O system. Increasing
the number for 4 to 9 provided an interaction energy closer to the all-electron calculations. kinetic
energy preconditioning parameter.

4.3.4. Radius of NGWFs

The NGWFs radius controls the extent to which the density is localised around atoms in the ONETEP
software. The default radius of 6 Bohr was insufficient for a well-converged Self-Consistent Field
electronic minimisation of the NGWFs (i.e. the Root Mean Squared Gradient of the NGWFs was
higher than the tolerance). Increasing the NGWF radii for a silica surface slab test system showed that
system energy was converged (relative to extrapolated infinite NGWFs radius) to within approximately
0.005 eV per atom for a 9 Bohrradius. 9 Bohr has been shown to be sufficient for accurate calculations
on other systems [249], whereas larger radii begin to become prohibitively computationally expensive,

and therefore 9 Bohr was selected for use in subsequent calculations.

4.3.5. Kinetic Energy Cut-off

In the ONETEP implementation of DFT, the electronic density is expanded in terms of periodic
cardinal sine (psinc) functions. In principle, an infinite number of psinc functions is required, however
the expansion can be truncated to increase computational efficiency with a corresponding loss of
accuracy, and this is controlled via the kinetic energy cut-off parameter. This parameter determines
the approximate! maximum kinetic energy of the psinc functions. The convergence of the energy per
atom and forces (on an example atom) with respect to the kinetic energy cut-off were investigated by
performing a set of single-point energy calculations on the surface system at different kinetic energy
values, the results of which are shown in Figure 4.2. Convergence of the energy to a threshold value of
0.1eV/atom is suitable for most calculations with 0.01 eV /atom being considered very well converged
[250]. The energy and forces were converged to within 0.021 eV /atom and 0.0012eV /A respectively by

a kinetic energy cut-off of 800 eV, and therefore this cut-off was used for subsequent work.

4.3.6. Slab Thickness

Ideally, the surface would emulate the real structure of a surface, often containing thousands of atomic

layers below it. However due to computational costs, a finite slab thickness of only a few layers could

IThe precise kinetic energy cut-off is different for each dimension of the cuboidal cell and is determined by the spacing
of the grid upon which the psinc functions are placed, which in turn is dependent upon the specific dimensions of
the cell
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Figure 4.2.: Convergence of the energy per atom and forces (on an example atom) with respect to the
kinetic energy cut-off parameter. The results are normalised to results of the 1100 eV kinetic energy
cut-off. As expected, the energy decreased monotonically as a function of energy. The energy and forces
were converged to within 0.021 eV /atom and 0.0012 eV /A respectively by 800 eV.

be simulated. If the slab is too thin, its electronic properties will not be representative of the material
and therefore it was important to validate that increasing the thickness does not significantly change
the properties of the layer. A set of single-point energy calculations were run upon a fully hydrogen
passivated (top and bottom) slab of (101) o-cristobalite at different slab thicknesses. A 50 A vacuum
layer was utilised in all calculations . Depending on where the slab was cut, the terminating groups
would either be silane (Si—H) or silanol (Si—OH) groups on the top and bottom respectively. The

systems investigated are summarised in Table 4.3.

As expected from theory, the total energy decreased monotonically with increased slab thickness due
to increased electronic energy from additional atoms, as shown in Figure 4.3. The mean energy per
atom of the bulk crystal was -324.42 eV per atom; with increasing slab thickness, the energy per atom
is expected to converge towards this value. The energy per atom decreased towards the bulk value
with increasing thickness until 16 A thickness was reached, as shown in Figure 4.3. The energy per
atom will not decrease monotonically due to the differences in surface functionalisation and system
chemistry of the different slabs (Table 4.3). The energy per atom increased at 18 A indicating the
system was not completely converged; however as larger slab thicknesses become computationally
prohibitive, a compromise must be made. The forces acting upon an example oxygen atom can be
used to measure the stress induced by surface states, and therefore with increasing thickness the forces
on the atom are expected to reduce non-monotonically. A plot of the forces per atom can be found in
Appendix F. A minimum at 14 A indicated that this choice of thickness was a good compromise and
therefore this thickness was used in future work. This choice can be further justified by comparison to
other simulations in the field which generally used thinner slabs [144, 237]. This system, shown in

Figure 4.4, contains two sets of 10-membered Si-O-Si rings, or 3 ‘layers’ of Si.

4.3.7. Vacuum Gap Convergence

Ideally periodic slabs should be sufficiently distant from each other in the direction normal to the
surface such that there is negligible electrostatic interactions between them. In order to investigate

this, single point energy calculations were performed over a range of increasing vacuum spacing for
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Slab Thickness (A) Termination (Top/Bottom) Number of Atoms

8 H/S 112
10 S/S 120
12 S/H 160
14 S/S 168
16 S/H 192
18 S/S 216

Table 4.3.: Summary of Different Silica Systems of different Slab Thickness. H = silane passivated,
S = silanol passivated
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Figure 4.3.: Variation in total energy (red) and energy per atom (blue) as a function of silica slab
thickness. As expected from theory, the total energy decreased monotonically with increased slab
thickness due to increased electronic energy from additional atoms. The energy per atom is expected to
converge to the bulk energy per atom (dashed line) at infinite thickness, however the decrease is not
expected to be monotonic. It can be seen that by 18 A the energy per atom has not converged to the
bulk value, however 14-18 A thickness slabs are approaching this value.

the neutral silica slab previously described and the results are presented in Figure 4.5(a). It can be
seen from this figure that the forces and energies are converging as the periodic images of the slabs

are separated further from each other.

This study was repeated for the same system, except for one silanol being deprotonated to form a
silanolate, resulting in a system with a net negative charge. The result of this study can be seen in
Figure 4.5(b). Unexpected behaviour was observed in that the total energy of the system was not
convergent. The forces converged as would be expected, but the energy initially decreased with a 27!
relationship, then increased with a linear relationship, as can be seen from the close fit to an equation

of this form. The initial decrease z~!

in energy is that expected from Coulomb’s Law, due to reduced
Coulombic interactions between periodic images. The linear relationship, however, is an unphysical
artefact. Further analysis revealed that the linear increase in total energy of the system originates
entirely from the electrostatic energy component of the system, which in ONETEP [113], is calculated

using an Ewald summation [110].

In order to ascertain whether this artefact was an issue with the ONETEP code or a general issue

with the Ewald summation, an Ewald calculation was performed using the Accelrys Material Studio



4.3 Density Functional Theory Validation Study 45

Figure 4.4.: Neutral Silica Slab with a 14 A thickness, viewed in the xz plane (left) yz plane (right).
Silicon (yellow), oxygen (red), hydrogen (white).

Forcite code for a hydroxide molecule in the same dimensions box. The results are shown in the blue
circles of Figure 4.6, in which the same phenomenon was observed. Another set of calculations were
performed but instead of cuboidal simulation cell, a cubic simulation cell was utilised. Increasing all
dimensions of the box (x, y and z) simultaneously led to the expected Makov-Payne [251] convergence
of the Ewald energy (red circles, Figure 4.6), and therefore demonstrated that the artefact was related

to using an orthorhombic unit cell which is not neutral.

In order to understand this artefact, the Ewald summation implementation must be considered. For
infinite 3D periodic systems with a net charge, the electrostatic energy would be undefined and
therefore the Ewald summation imposes a compensating uniform background charge which reduces
the net charge to zero. In the case of charged/polarised orthorhombic unit cells, it can be shown that
extending one dimension leads to a density of compensating charge that tends towards zero, resulting in
uncompensated charge and therefore an error in the energy and forces for systems [252-254]. Yeh and
Berkowitz refer to the standard Ewald implementation as the ‘conducting boundary condition’ because
when the polarisation of system is not accounted for in the formulation, it is physically analogous
to the case when the outer boundary of the simulation has an infinite/metallic dielectric constant
[254]. Yeh and Wallgvist [253] recognised that the limitations of the standard Ewald implementation
were not well known and stated ‘..the vast majority of molecular dynamics simulations are still being
performed with the conducting boundary condition regardless whether the simulated system has a net

polarization or not..

Yeh and Berkowitza show that the error is minimal for short-range forces but increased in magnitude
for long-range forces. Correction terms to the Ewald method (‘EW3DC’) exist which compensate for
this error [252-254], but they are not widely implemented in software packages and calculations are
often performed without these corrections, which may be due to poor awareness of this simulation

artefact. In the ONETEP software, one approach to this issue could be to truncate the coulomb
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potential in the z-direction, but this functionality remains largely untested and a preliminary tests on
a simple system showed issues with the forces. An alternative solution, as suggested by Yeh et al.,
would be to apply a uniform electric field in the z-direction, which is a function of the instantaneous
z-component of the cell dipole moment. However, this functionality is not available in Forcite and

unavailable in ONETEP for dynamic or geometry optimisation simulations.

Yeh and Wallqvist showed that with increasing vacuum padding the forces from the conventional Ewald
summation approach those of the corrected EW3DC forces. They also showed that for glass-water
interfaces with a vacuum gap, the standard implementation of the Ewald sum is sufficient to provide
accurate water orientation and density [253, 254]. Spohr (1997) studied simple interfacial systems
and came to a similar conclusion, providing the vacuum padding is sufficient [255]. Therefore, the
standard implementation of the Ewald sum was utilised in this work. A vacuum gap of approximately
90 A was chosen as here the forces are converged to within approximately 0.001 ev/ A (compared to

extrapolated ‘infinite’ vacuum gap).

4.3.8. Validation Study Summary

The parameters used for DFT simulations are found in Appendix D. In summary, a model of
amorphous silica was constructed using a surface built from o-cristobalite as this model can replicate
important properties of the silica-water interface such as the silanol density. The pseudopotentials
used were validated against all-electron calculations and were shown to introduce negligible error into
the optimised geometries of a range of simple chemical systems and shown to accurately model the
interaction energy of silica-water to within 1kJ/mol of the all-electron result. The default number of
NGWFs was increased to nine for Silicon atoms and the radius of NGWFs was set to 9.0 Bohr for all
atoms. An 800eV kinetic energy cut-off was used which offered convergence of the forces to within
0.001eV/ A with respect to the kinetic energy parameter. A 14 A thick slab with silanol passivation
was used, with an approximately 90 A vacuum gap, resulting in forces converged to within 0.001 eV/ A
with respect to the vacuum gap thickness. The parameters represent an optimal compromise between
accuracy and computational expense for this system. In addition, a simple open-source utility was also
developed to enable other researchers to rapidly perform similar validation studies for the ONETEP
software [246].
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Figure 4.5.: The effect of vacuum gap thickness (between periodic images) on the energy and forces of
(a) a neutral silica slab system and (b) a negative silica slab system (-1 system charge). Calculations
performed in ONETEP. The energies and forces are normalised to the value at largest system. For the
neutral system in (a) both the energies and forces are converging with respect to the amount of vacuum
spacing as expected. However for the negative system in (b) it can be seen that although the forces are
converging, the total energy of the system has become a divergent property. A non-linear regression was
performed on the energy per atom for the negative silica slab based on the formula: ¢ + bz + ¢ where
a=242.08, b = 0.022, ¢ = —9.16 and an excellent fit (R2:0.9999) was obtained. The % component is
expected from Coulomb’s Law, however the bz linearly divergent behaviour is indicative of an artefact in
the Ewald summation method used, for an detailed explanation of this phenomenon, see Section 4.3.7.
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Figure 4.6.: Variation in the Ewald Energy of a single negatively charged hydroxide molecule in periodic
box using the Forcite software. It can be seen that when only the Z-axis was extended (blue circles)
the total energy did not converge; however when all cell dimensions were increased simultaneously

(red circles), the Ewald energy converged. This demonstrates that the simulation artefact is related to
cuboidal unit-cell usage.
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4.4. Journal Paper

The following paper upon charging at the silica-water interface was published in the Journal of Colloid

and Interface Science [158].

Acid-Base Dissociation Mechanisms and Energetics at the

Silica-Water Interface: An Activationless Process

4.4.1. Abstract

Hypothesis

Silanol groups at the silica-water interface determine not only the surface charge, but also have an
important role in the binding of ions and biomolecules. As the pH is increased above pH 2, the
silica surface develops a net negative charge primarily due to deprotonation of the silanol group. An
improved understanding of the energetics and mechanisms of this fundamentally important process

would further understanding of the relevant dynamics.

Simulations

Density Functional Theory ab initio molecular dynamics and geometry optimisations were used to
investigate the mechanisms of surface neutralization and charging in the presence of OH™ and H;0"

respectively. This charging mechanism has received little attention in the literature.

Findings

The protonation or deprotonation of isolated silanols in the presence of H30Jr or OH™, respectively,
was shown to be a highly rapid, exothermic reaction with no significant activation energy. This process
occurred via a concerted motion of the protons through ‘water wires’. Geometry optimisations of
large water clusters at the silica surface demonstrated proton transfer to the surface occurring via the
rarely discussed ‘proton holes’ mechanism. This indicates that surface protonation is possible even

when the hydronium ion is distant (at least 4 water molecules separation) from the surface.

4.4.2. Introduction

Silica and water represent two of the most abundant chemical systems, and therefore it is unsurprising
that understanding the interface between them is relevant to a wide variety of systems. Surface
charging is fundamental to a range of phenomena such as dissolution rates [179, 180, 230] and the
surface adsorption of ions and molecules [128, 231]. Chemical reactions of reactive silanol groups
(Si—OH) with Ht /OH™ are thought to be the primary surface charging mechanism for silica [105],

with electrolyte effects having a measurable but less significant effect [127].

4.4.2.1. Oxide Surface Charging

One of the most popular approaches to modelling surface proton reactions has been Surface Com-
plexation Models (SCM). One such example is the 2-pK model which assumes that the surface
state can be modelled as two consecutive protonation reactions, the equilibrium constants of which
are often obtained empirically from acid-base titration data [133, 256]. This methodology has the

advantage of being highly generalisable, but neglects any direct information obtained about the
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oxide-water interfacial structure and dynamics obtained experimentally or via simulation. While the
thermodynamic description of the 2-pK model is suitable for describing certain processes such as
ion complexation and surface dissolution [133, 134], it provides little insight into the atomic-scale
interactions which are present at water-surface interfaces and are required to understand many dynamic
interfacial processes, such as double layer formation, solvent structure, surface-charging kinetics and

non-equilibrium interfacial processes.

As the pH is increased above 241, the silica surface becomes increasingly negatively charged [257].
Silicon surface atoms (Sguf) are present as a neutral oxide that can dissociate or protonate according

to the following chemical equilibria:

k
Seuet—OH + Hy,O k: Saut—0~ +H,0T (4.10)
2

S, —OH + H;0" == §_ —OH,* + H,0- (4.11)
surf 3 T surf 2 2 .

X-ray photoelectron spectroscopy measurements have shown that significant quantities of Si—OH,"
are only present at extremely low pH (~2 or lower) [154]. High level ab initio calculations have
demonstrated the chemical instability of this species in neutral water, supporting the notion that at
conditions relevant to most applications (pH 2-14) this species is an insignificant component of the
surface composition [144]. Given this observation, Borkovec explained how the 2-pK model should be
interpreted as reactions between a pair of neighboring ionizable groups, as opposed to a single site as

has often been assumed [131].

Although the 2-pK model can be used to describe the average surface charge from a system-scale
perspective by considering only the reaction with hydronium ions, the surface at an atomistic scale
presents a far more complex environment in which Equation 4.11 is competing with the analogous

hydroxyl reaction show in Equation 4.12.

k
Seui—OH+OH == S_ —0 +H,0 (4.12)

ke

sur

4.4.2.2. Charge Transport in Pure Water

Given the chemical similarity between proton transfer of water-water proton transfers and of silanol-
water proton transfers, the mechanism of proton transport in pure water is relevant. In pure
water, solvated hydronium ions are transported via the Grotthuss mechanism [172] which involves
interconversion between the symmetric Zundel cation H;O," and the triply-hydrogen bonded Eigen
cation HyO, T [199, 258]. The rate limiting step for proton transfer is believed to be the reorientation
of water molecules, which necessarily involves breaking hydrogen bonds [258]. The concerted motion
of protons along a chain of water molecules is sometimes referred to as a ‘water wire’. Solvated
hydroxide ions are thought to have a different mechanism for transport than hydronium ions and
correspondingly demonstrate a lower ionic mobility [173]. This mechanism has been suggested to
involve interconversion between the square planar HyO;~ anion and the tetrahedral H,O,  anion,
with the rate limiting step being the formation of the latter [200, 201, 258].

4.4.2.3. Modelling the Silica-Water Interface

With regard to the silica-water interface, both ab initio and classical molecular modelling have been

used to describe atomistic surface charge. Many classical forcefields capable of representing negative
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charges have been developed, the majority of which require a priori knowledge of the surface charge,
treating surface charges as predefined and fixed throughout the simulation [119, 161, 209, 210, 259-264].
In order to study time-varying surface charge using molecular dynamics, a force field must be used
which can allow bond breaking and formation. Such a forcefield is usually referred to as reactive or
dissociative. The reactive force field of Rustad et al. incorporated water dissociation and led to a fully
hydroxylated surface with no surface charge [155], but was not designed to accurately represent surface
charging and only considered a short timeframe of 10 ps. The dissociative force field of Mahadevan
and Garofalini [171] was used to study formation of silanols and transfer of protons at the surface,
similarly, the Hybrid-QM /MM study of Du et al. [265] was used to model formation of silanols at
the surface, however none of these models were designed to investigate protonation-deprotonation
dynamics of surface silanols and do not discuss this aspect of their model. The reactive forcefield
‘reaxFF’, developed by Goddard III et al. [266] and applied by Fogarty et al. [267], was utilised to
study the silica-water interface. Their 600 ps dynamics implied that a fully hydroxylated surface was
produced from a freshly cleaved slab after approximately 250 ps, the concentration of silanolate groups

at the surface was not explicitly stated.

Ab initio molecular dynamics (AIMD) studies based on periodic Density Functional Theory (DFT)
have investigated protonation-deprotonation involving hydronium ions in order to calculate pK,
values [144, 162, 268] and in order to investigate dissolution mechanisms involving hydronium ions
[159, 171, 185]. DFT has shown that hydronium ions can facilitate transfer of negative charge across
the surface via the Grotthuss mechanism [144]. Mahadevan and Garofalini have noted that hydronium
ions are important in short lived proton transfer processes at the surface [171], which has been

supported by experimental observations [174-176].

Reaction of hydronium ions with silanolate groups at the silica-water interface has been shown by
Leung et al. to have no barrier along the reaction coordinate based on Potential of Mean Force
calculations [144, 162]. In agreement with this result, Liu et al. have shown that there is no energetic
barrier to acid dissociation of orthosilicic acid (Si(OH),) [162]. In contrast to silanol acid dissociation
reactions, the counterpart basic reaction shown in Equation 4.12 has received much less attention

within the literature using ab initio methods for silica surfaces.

It has long been known that the dynamics and energetics of hydroxyl-based proton transfer in pure
water differs from hydronium-based proton transfers [258], and therefore Equation 4.12 must be
considered separately from hydronium reactions (Equation 4.11) for an accurate representation of
atomic interfacial proton transfer reactions. The hydroxyl transfer reaction shown in Equation 4.12
has received little attention with respect to ab initio studies, one of the key exceptions being the work
of Xiao and Lasaga who have investigated this reaction as a possible precursor to silica dissolution
[160]. Xiao and Lasaga used SiH;OH and (HO)4Si—0—Si(OH), cluster models for the silica surface at
the HF/6-31G* level (for geometries), and their results indicated that this reaction was activationless

and exothermic.

4.4.2.4. Motivation

Understanding both Equation 4.10 and Equation 4.12 is important from two perspectives. Firstly,
adsorption of HY and OH™ is thought to be important in determining the rate of dissolution of silicates,
as indicated by Xiao and Lasaga [159]. One aim of this work is to improve on the limitations of the
work of Xiao and Lasaga by exploring the hydroxyl-transfer reaction (Equation 4.12) using a more
representative model of the silica (periodic slab), water (solvated hydroxide molecule) and a higher
level of theory via Second Order Mgller—Plesset (MP2) and DFT calculations. Secondly, an atomistic
model that has been shown to accurately describe both water dynamics and surface protonation-

deprotonation kinetics as a function of pH does not exist. Such a model is required for fundamental
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understanding of double layer dynamics, for an improved understanding of the geochemical properties
of oxides [269] and in order to interpret the response of charge-sensitive silica-water nanodevices such
as silica nano-pore Field-Effect Transistors (FETs) [81] and Ion-Sensitive and Biologically-Sensitive
FETs [263, 270]. A basic level of understanding of the available energetic barriers and mechanisms
involved in proton transfer reactions at the surface is required before such a model can be considered.
Thirdly, calculation of the transition states of these important reactions may allow a Transition State
Theory description of the kinetics of the system which can be used to interpret the results of, for
example, titration experiments. Understanding these reactions is important in the context of empirical
macroscopic models such as SCMs in interpreting the physical significance of the reactions being

modelled with empirical equilibrium constants.

In this work, DFT simulations in the form of AIMD and geometry optimisations have been used to
investigate both the acid association mechanism (Equation 4.10) and the base-dissociation reaction
(Equation 4.12) between silica and water. To our knowledge, this work represents the first ab initio
simulation of the base-dissociation reaction which goes beyond a simple cluster-model for the silica
surface, and the first ab initio simulation which explicitly explores the effect of differing solvent

structure on both Equation 4.10 and Equation 4.12.
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4.4.3. Computational Methods

Calculations were performed using DFT with the PBE-GGA exchange-correlation functional [245].
The PBE-GGA functional has been shown to produce accurate structures for crystalline silica [227].
The PBE functional is known to over-structure liquid water in dynamic simulations [271, 272] however
it can provide reasonable geometries for optimised water clusters as compared to MP2 calculations
[273, 274] and it has been used in various studies of the silica-water interface [144, 211, 237, 275].

Periodic boundary condition calculations were performed using the linear-scaling pseudopotential
DFT software ONETEP version 3.5.9.8 [242, 276]. PBE OPIUM? norm conserving pseudopotential
(NC-PPs) bundled with Accelerys Material Studio 6.0.0 were utilised in all ONETEP calculations. An
effective kinetic energy cutoff of approximately 800 €V was used for the psinc basis set [243], which is
equivalent to the energy cutoff used in conventional plane-wave DFT codes. DFT in ONETEP was
performed using self-consistent field convergence criteria whereby the RMS gradient of the NGWFs
must be equal to or less than 1.8375 x 10~% Ey, ap—3/2. Geometry optimisations proceeded using the
BFGS algorithm until the difference in energy between iterations was equal to or less than 1 x 1072 eV,
0.03eV A" and 0.001 A for the energies, forces and maximum atomic displacement respectively. Unless
otherwise stated, all calculations were performed using these settings. NWChem software version 6.3
[247] was used to perform all-electron calculations. Unless otherwise specified, these calculations
were performed using the driver module, DFT and the PBE-GGA functional. All calculations used
a total energy SCF tolerance of 10 x 1078 F}, and the aug-cc-pvtz basis set. For the data presented
in Figure 4.11, NWChem geometry optimisations were performed using the stepper module and a
0.05 A maximum displacement per iteration. Example input files used and unit conversions can be

found within the Appendix G Section 1.

In order to validate the pseudopotential used, the geometry, deprotonation energy and adsorption
energy of monomeric silanol-water and silanolate-water systems were compared with all-electron
calculations, the results of which are presented in Table 4.4 and Table 4.5 respectively. It can be seen
that there is good agreement (1-4% difference) in the calculated ONETEP NC-PPs and all-electron
energies. Optimised geometries (not shown) demonstrated excellent agreement, with bond lengths

within 0.01 A and angles within 0.1 degrees.

Deprotonation Energy AFEq gas (kJ/mol) | Monomer (AE)* | Monomer (NC-PP)S
SiH;OH/SiH;0™ 1506.4 1462.56
SiH,OH...H,0/SiH,0~...H,O 1449.967 1428.98

Table 4.4.: Deprotonation Energies AFq gas (kJ/mol) calculated as calculated as the total energy of the

deprotonated system minus the total energy of the protonated system. AE=All-electron. NC-PP=norm-

conserving pseudopotential. ¥NWChem calculation fBasis Set Superposition Error (BSSE) Corrected
SONETEP calculation

Water Adsorption Energy AFE,gs gas (kJ/mol) | Monomer (AE)* | Monomer (NC-PP)S
SiH,OH...H,0 -24.267(-23.047T) -25.18
SiH,0~...H,0 -80.78f -81.06

Table 4.5.: Water Adsorption Energy AFEads,gas (kJ/mol) calculated as Egomplex — (EHQO + Emonomer)-

AE=All-electron. NC-PP=norm-conserving pseudopotential. T NWChem calculation "BSSE corrected
"MP2 level, DZ(p,d) basis set calculation from Reference: [214] 8 ONETEP calculation

Born-Oppenheimer AIMD simulations were performed using ONETEP to investigate the proton
transfer dynamics of three water clusters (H;O", OH™ or H;0,~ ). Simulations were performed using

the same electronic and simulation cell settings as the slab geometry optimisations, but without any

2See http://opium.sourceforge.net/index.html for information about the Opium pseudopotential generation project
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geometry constraints. A 0.5fs AIMD timestep and the Nosé-Hoover thermostat (one chain, 8.8 fs
relaxation time). The water cluster was placed above the silica surface, and 200fs of molecular
dynamics was performed. A temperature of 300 K was utilised, consistent with the AIMD of Musso
et al. [237] however it should be noted that the properties of bulk water are known to be poorly

reproduced without the use of elevated temperature using this functional [271].

Implicit solvation calculations were performed using ONETEP, using a self-consistent cavity and a

fine grid scale of 3.0 in a 47.5 A cubic simulation cell with open boundary conditions [277].

Similarly to the work of Leung et al. [144], the calculations reported herein treat the nuclei classically
and it is assumed that the effects of zero point motion and tunnelling do not affect the qualitative
nature of proton transfer mechanisms. This has been shown to be the case for electron transfer and

pure water proton transport [278, 279].

Visualisation was performed using the Visual Molecular Dynamics software [280] with O-H bonds and
Si-O bonds drawn of internuclear separations of less than 1.1 A and 1.7 A respectively. Bond distances
are given in A. In some figures, hydrogen bonds have been drawn as unlabelled dotted lines using a

cutoff of 3 A and 20 degrees angles between hydrogen bond acceptors and donors.

4.4.3.1. Models

Musso et al. have performed a series of DFT studies on various silica polymorphs [221, 222, 237],
including an investigation of the dynamics of water upon a (101) cleaved plane of the silica polymorph
a-cristobalite. This surface is attractive from the point of view of modelling amorphous silica surface
due to its surface hydroxyl density of approximately 5 OHpernm2, similar to fully hydroxylated
silica [121]. Furthermore a-cristobalite itself has a bulk density (2.23 gem™ [235]) close to amorphous
silica (2.20 gem™) [236]. Therefore, a-cristobalite was chosen as a model crystal structure for the DFT

calculations.

The initial silica structure of a-cristobalite was obtained from the structures bundled with Accelrys
Material Studio 6.0.0 which was itself generated based on a paper by Dollase [281] (primitive tetragonal
P4,2,2 space group, a=b=4.978 A, ¢=6.948 A). A variable-cell geometry optimisation using the
CASTEP software [241] was performed on the primitive cell in order to obtain relaxed unit cell-
parameters for use in future calculations (a=b=>5.075 A, ¢=7.085A). For this calculation, a 900 eV
kinetic energy cutoff was utilised with a 4x4x4 k-point grid and the aforementioned NC-PPs.

Using the CASTEP relaxed crystal geometry, a supercell was created from these coordinates with
doubled lattice parameters, and this was optimised using the ONETEP software, which is a fixed-cell
dimension calculation. This produced no significant change in molecular geometry of the crystal. A
(101)-plane slab of 14 A thickness was cleaved from this crystal and passivated with a layer of hydrogen
on both top and bottom, resulting in a system of 168 atoms of isolated silanol groups. The resulting
lattice parameters were a=17.431 A, b=10.150 A, ¢=105.929 with approximately 90 A of this being
vacuum padding. The slab was relaxed using ONETEP, with no significant rearrangement of the
bulk. The optimisation resulted in a contraction of approximately 0.1 A slab thickness. The final

coordinates are shown in Figure 4.7.

The optimised silica slab (Figure 4.7) demonstrated isolated silanols with an O...O distance of 4-5 A
and the closest O...H approach distance of 4.8 A. This result deviates from that reported by Musso et
al. [237], who reported a zig-zag pattern of hydrogen bonds. However, Musso et al. comment that
these hydrogen bonds are weak and disrupted at room temperature and entirely broken in the presence
of water [237]. This was investigated by repeating the geometry optimisation using CASTEP, (1000 eV

kinetic energy cutoff, I'-point sampling of the Brillouin zone and ultrasoft pseudopotentials of Civalleri
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and Harrison [282]). This resulted in the same geometry as the previous ONETEP optimisation. This
indicates that the deviation in structure between this work and that of Musso et al. is a result of the
latter being in a different local minimum. The local minimum obtained herein provides an idealised

model of a silica surface composed of isolated silanols.

Taking the neutral slab, a proton was removed from a surface silanol (indicated with a circle in
Figure 4.7) to create a negatively charged silanolate group and the system was geometry optimised in
ONETEP. In the protonated system the in-plane Si—O bond length was 1.638 A and the out-of-plane
(Si)-(OH) bond length was 1.643 A, in the deprotonated system the in-plane Si-O bond was slightly
stretched (1.692A) and the out-of-plane Si—O~ bond was shortened (1.547 A). The geometry of the
bulk and the other surface silanols were not significantly affected by the deprotonation, demonstrating
that the silanols are truly isolated even in the deprotonated system. The surface charge density used
in this work (~0.05Si—O~ pernm?) is similar to that calculated by Behrens and Grier for a silica
plate in deionised water [124], however the surface charge density of silica is highly variable depending

on surface preparation, ionic strength and pH.

Unless otherwise specified, calculations were performed using 3D periodic boundary conditions using
ONETEP and a vacuum gap with a neutralising background charge to minimise periodic interactions.
For systems with a net charge which are also orthorhombic, it has been shown that there will be some
uncompensated neutralising background charge [252] that leads to a divergent system energy, though
the forces remain convergent. The ONETEP implementation of DFT has the advantage that there is
little computational cost to using a large vacuum gap, therefore allowing the forces within this work

to be well converged with respect to the simulation cell size to within ~0.005 eV /A.

For explicit solvent calculations, the isolated water clusters were initially optimised in vacuum.
The PBE-GGA functional was found to provide a reasonable description of the ground-state geo-
metry of simple water clusters (see Appendix G Section 2). The initial coordinates for the 11-water
(H,0™(H,0);;) and 20-water (H;OT (H,0),,) hydronium clusters mentioned in this work were ob-
tained from the work of Hodges and Wales [283] using the Kozack-Jordan potential [284] and are
candidate global minimum for a solvated hydronium ion in 11- and 20- water molecules respectively.
Experiments have shown the 20-water cluster is an unusually stable water cluster [285]. The optimised
water geometries were placed approximately 2.3 A distant from the optimised silica surface, and
relaxation energies listed in the main text are simply calculated as the energy of the entire system
(water cluster + silica) after optimisation minus the configuration they were initially placed. The
bottom half of the slab was constrained during geometry optimisations, as shown in Figure 4.7 using

stick representation.

A summary of all model systems geometry optimised in this work can be found in Table 4.6.

4.4.4. Results and Discussion

4.4.4.1. Acid-Base Dissociation Reactions of single Hydronium or Hydroxide molecules with
Silica Surface Models

In order to investigate the proton transfer described in Equation 4.10, 200 fs of AIMD were performed
on the S, O~ +H;0" system. The same initial configuration was also used in a geometry optimisation.
Similarly, in order to investigate the proton transfer reaction described in Equation 4.12, the model
system S,,,;OH + OH™ was considered. As model systems for S_ ¢, both an isolated silanol cluster
(SiH;OH/SiH;07) and a periodic silica slab (Sg,,OH/Sg,,sO~) was considered.

The initial and final coordinates of the geometry optimisation of the H3O+ system are shown in Figure

4.8a for the slab system, and Figure Appendix G Section 3 for the cluster system. Snapshots of the



56 Charging at the Silica-Water Interface

Substrate Adsorbate Figures
Silica— O~ H,0" Figure 4.8a, Figure 4.9
Silica—O~ H;0," (‘Zundel Cation’) Figure 4.12
Silica—O~ HyO," (‘Eigen Cation’) Figure 4.13
Silica—O~ H,0™"(H,0);, Figure 4.14
Silica—O~ H;07 (H,0)4 Figure 4.15, Figure 4.16, Figure 4.17
SiH,0~ H,0" ST 3a, SI 3bS, SI 5a, SI 5bf
Si(OH);0~ H,07 SI 8a
(SiH;OH)O(SiH;07) H,0" SI 7a
Silica—OH OH™ Figure 4.8a, Figure 4.10f
Silica—OH H;0,~ Figure 4.19, Figure 4.18f
Silica—OH H,0,~ Figure 4.20
Silica—OH HyO5~ SI9
SiH,OH OH™ SI 4a, SI 48, SI 6a, SI 6bt
Si(OH);0H OH™ ST 8b
(SiH;OH)O(SiH;0H) OH™ SI 7b

Table 4.6.: Geometry Optimisations were performed for the above systems at the PBE level of theory
in vacuum. AIMD was additionally performed for those systems marked with . ‘Silica’ refers to
the a-cristobalite silica surface model. SMP2 level geometry optimisation. ¥Geometry optimisations
performed using the implicit solvation model of ONETEP. ‘SI’ refers to Appendix G section.
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Figure 4.7.: o-cristobalite silica surface model, atomic coordinates from a fixed cell geometry optim-
sation in ONETEP (see Section 4.4.3.1) with orthorhombic cell parameters a=17.431 A, b=10.1504,
¢=105.929 A. Surface vectors were obtained from a bulk variable cell optimisation in CASTEP. Left image
shows the lateral view of the slab, with constrained atoms in stick representation and non-constrained
atoms as ball and stick. The right image shows a view normal to the slab with three Si-OH...O-Si
bond distances shown. In order to generate a charged silica surface slab model, the highlighted silanol
(black circle) was deprotonated and the system geometry optimised as described in the main text
(Section Section 4.4.3.1). The surface has been hydrogen passivated. Silicon atoms are shown as yellow,
oxygen atoms as red and hydrogen atoms as grey.

AIMD are shown in Figure 4.9 and a video of the AIMD trajectory can be found within Appendix G.
Both the geometry optimisation and the ATMD simulation showed a proton transfer from the H;O™
to the Si—O~ resulting in a Si—OH---H,O hydrogen bonded system, as described in Equation 4.10.
Within the AIMD simulation, proton transfer and reorientation of the H30Jr occur simultaneously,
resulting in rapid transfer within ~25 fs, with strong oscillations of the silanol O—H continuing until

the end of the simulation as the energy of the reaction is dissipated.

The initial and final coordinates of the geometry optimisation of the hydroxide system is shown in
Figure 4.8b for the slab, and in Appendix G Section 3 for the cluster model. The optimisation showed
a proton transfer from the Si—OH to the OH™, resulting in a Si—O™--H,O hydrogen bonded system
as described in Equation 4.12. Snapshots of the AIMD are shown in Figure 4.10 and a video of the
AIMD trajectory can be found within the Appendix G. Reorientation of the OH™ occurred for the
first 75fs, followed by rapid proton transfer over the next ~50fs, after which the HyO diffused 4 A

away from the now negatively charged silanolate group.
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Proton transfer during a geometry optimisation indicates that the initial encounter-pair is energetically
unstable and that there is no activation energy to the proton transfer process. Figure 4.11 shows the
energy profile for a geometry optimisation performed upon a cluster system at both the PBE-GGA
and MP2 level of theory, and on the periodic slab model of the silica surface (PBE). It can be seen that
the total energy of the system decreases smoothly and monotonically. Consistent with this observation,
using both the ONETEP and NWChem transition state search functionality, no transition state could
be identified for these proton transfer coordinates.

o o

(a) Negative silica slab with H;OT above a surface silanolate (Equation 4.10). The silanolate is protonated by
the H;O.
3

(b) Neutral silica slab with a OH™ above the surface (Equation 4.12). The silanol is deprotonated by the OH™.

Figure 4.8.: Geometry optimisation of single gas-phase water ion (OH™ or H3O") above the silica
surface. Left image of each panel shows unoptimised structure, right image of each panel shows optimised
structure.

It is possible that hydrogen bonding in geminal or vicinal silanols would introduce energetic barriers,
for example Sulpizi et al. recently published a study indicating that silanols with in-plane hydrogen
bonds of a hydroxylated quartz surface are 3 pK, units more acidic than those forming hydrogen bonds
out-of-plane with water [268]. Leung et al. have shown that highly strained sites can be significantly
more acidic [144]. Geometry optimisations using geminal and vicinal silanol cluster models (shown
in Supplimentary Information Section 3) indicated that these proton transfers remain activationless.

This work will be restricted to the study of isolated silanols.

The results thus far presented have not taken into account the effect of solvation on hydronium
and hydroxide ions, and therefore it is possible that the instability of the reactants in the above

DFT studies may be a result of neglecting these interactions. It was found that the incorporation
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Figure 4.9.: AIMD Simulation of a neutral silica slab with a H;O" above a silanolate group at the
silica surface (Equation 4.10). The silanolate group is rapidly protonated by the H;O" within the first
50 fs. Snapshots are shown at every 25 fs. Chronology proceeds starting from the first row, left to right,
then the second row, left to right.

of implicit solvent also demonstrated activationless proton transfer during geometry optimisations
of either the hydronium or hydroxide (Appendix G Section 3). The implicit solvent model cannot
explicitly incorporate the effects of water cooperativity [286] and Grotthuss proton transport [172],
and therefore solvation of the periodic silica slab model was investigated via explicit solvation, in

terms of water clusters of increasing size placed at the silica surface.

4.4.4.2. Surface Protonation in the Presence of Explicitly Solvated Hydronium

Proton transport was investigated for hydrogen-bonded water clusters at the surface via geometry
optimisations of water clusters in contact with the silica surface in vacuum. The following systems were
investigated: H;OT, H;O," (‘Zundel cation’), HyO," (‘Eigen cation’), a hydronium ion solvated in 11
water molecules (H;OT (H,0),,), and a hydronium ion solvated in 20 water molecules (H;O™ (H,0),).

See Appendix G Section 2 for images of these structures in isolation.

The initial structures and geometry optimised structures of Eigen cation and Zundel cation systems are
shown in Figure 4.12 and Figure 4.13 respectively. Both of these simulations demonstrated proton
transfer via the Grotthuss mechanism. A hydrogen bonded network between the water-cluster and

the surface was formed prior to the proton transfer.

The optimisation for the larger H;O" (H,0),; system is presented in Figure 4.14. Similarly to the
previous hydronium systems, the surface was protonated within the first few iterations which was
followed by a rearrangement of the protons in the system to stabilise the hydroxide ion produced.
Unlike the previous simulations, the resulting water cluster demonstrated some structural character
of both a Zundel cation and a H;0, dimer (Figure 4.14c), indicating that there is some charge
separation within the water cluster and that the surface has been protonated via the H3O+ anion

stabilising the deprotonation of a water molecule.

A Natural Population Analysis (NPA) (Appendix G Section 4) confirmed that the Zundel-like substruc-
ture had a Natural Charge significantly more positive that the other oxygen atoms in the simulation,

however the H;0, substructure did not show a particularly negative charge relative to other oxygens
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Figure 4.10.: AIMD Simulation of a neutral silica slab with a OH™ above a silanol at the silica surface
(Equation 4.12). The silanol is rapidly deprotonated by the OH™ with ~50fs after an initial period of
~75fs. Snapshots are shown at every 25fs. Chronology proceeds starting from the first row, left to right,
then the second row, left to right. Proton transfer occurs rapidly within approximately 25 fs.

(Appendix G Section4). Prior to optimisation, the silanolate group surface-terminal oxygen had a
Natural Charge of -1.17 and all other surface-terminal oxygens showed a Natural Charge of —1.044-0.01.
After optimisation all surface-terminal oxygens showed a Natural Charge of —1.04 + 0.01, which
indicates that the silanolate had been neutralised. NPA analysis showed that water cluster itself is
almost neutral, with a net natural charge of 4+0.04 relative to the net Natural Charge of -0.04 for the
silica slab. It can be concluded that the silica surface has been protonated, and the system neutralised.
However the water cluster has distributed itself so as to retain a structural defect analogous to a
Zundel cation. The next section uses a larger water cluster to investigate how the distance of the

hydronium ion from the surface may affect this mechanism of surface protonation.

The H,O1 (H,0),, water cluster system was studied, in which the H;O™ could be placed initially
distant from the surface or close to the surface depending on the orientation of the cluster. Figure 4.15,
Figure 4.16 and Figure 4.17 present the results of a geometry optimisation of this cluster in three
different initial orientations respectively. Conformation A, shown in Figure 4.15, initialised the
H;0" ion at a distance from the surface with the shortest path between the silanolate and H;O"
being four water molecules. Using chemical notation, the initial structure can be described as
S

the silanolate and H;O". Rotation of this water cluster relative to the surface resulted in Conformation

surt—O 7 ~(Hy0) g+ H;0T. This conformation had four water molecules in the shortest path between
B (Figure 4.16) and Conformation C (Figure 4.17) which have three and two intervening water

molecules, respectively.

Geometry optimisation of this cluster in all three Conformations A, B and C showed activationless
protonation of the silanolate surface. In Conformation A (Figure 4.15), protonation of the surface
silanolate occurred via water dissociation resulting in a substructure of water near the surface similar
to a solvated hydroxide ion (H;0, ) near the silica-water interface. NPA showed that the H;O"
remained positive compared to the rest of the water cluster, but the H;O0,™ -like substructure was
not negative. Using chemical notation, the optimised structure could be schematically drawn as
Seupt—OH~H304-+-(H,0),4--H;0™. Interestingly, the H;O™ ion in the cluster was unperturbed by

the silanolate environment, indicating that, at least at 0 K, there is a distance beyond which H30+

surf
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Figure 4.11.: Change in system energy with geometry optimisation progress. A geometry optimisation
was performed upon the systems described within Equation 4.10 and Equation 4.12 and the respective
system energy versus geometry optimisation step is shown in Figure (a) and Figure (b) respectively.
A minimal cluster silanol model was used, and the chemical system is drawn as insets within each
figure. The initial energy (y-axis) is normalised to zero. As each optimisation took a different number of
steps, for comparison the optimisation progress (x-axis) is presented, in which the optimsation has been
scaled to range from the initial structure (left of x-axis) to the fully optimised structure (far right of the
x-axis). It can be seen that in both optimisations there was a smooth, monotonic decrease in energy
upon optimisation, indicating an activationless proton transfer. Images of each geometry optimisation
can be found in Figure 4.8 within the main text for the ONETEP optimisations, and in Section 3 of
Appendix G for the NWChem optimisations.

will not recombine with the silanolate group directly (herein referred to as the ‘basin of attraction’)
which in this case occurs at 4 water molecules separation from the silanolate. In contrast, for the
optimisation of Conformation C (Figure 4.17), the initial proximity of the H;O™ facilitated complete
—OH---(H,0),;. Conformation
B showed a mechanism in between these two extremes: the optimised structure (Figure 4.16) can
be seen schematically as S, ;—OH--OH---H;0,"--(H,0),4, and again showed a Natural Charge
(Appendix G Section4) which was positive for the H;O,% substructure but not negative for the
OH™ -like substructure.

proton transfer to the silanolate, resulting in a neutral system Sg,¢

By comparing these three conformations, the ground-state basin of attraction for activationless proton
transport for isolated silanols on silica surfaces is seen to be 2-3 water molecules. The proton transfer
mechanism observed in Figure 4.14, Figure 4.15 and Figure 4.16 involves initial deprotonation of
the mediating water molecules stabilised by the hydronium ion, and resembles the ‘proton holes’
transport discussed by [163]. That is to say, these results suggest that even if the H3O+ is distant
from the surface, its presence is enough to stabilise the surrounding waters such that the surface can

be protonated without the H;OT ion losing its localised proton, as shown most clearly in Figure 4.15.

Thermal fluctuations might be expected to reduce the basin of attraction by breaking the hydrogen-

bonded water-wires required for Grotthuss mechanism-like proton transport, however, the thermal
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Figure 4.12.: Geometry optimisation of a Zundel cation (H502+) above a silanolate group at the silica
surface. As the geometry optimisation proceeds, the silanolate group is protonated by the cation (b),
resulting in two water molecules hydrogen bonded to a silanol group (c).
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Figure 4.13.: Geometry optimisation of an Eigen cation (HgO,™) above a silanolate group at the silica
surface is shown in (a). As the optimisation proceeds a proton transfer occurs such that the silanolate is
protonated by the Eigen cation (b), forming a water cluster which is hydrogen bonded to the silanol
surface (c).

energy would also allow activated proton transfer, thereby increasing the size of the basin of attraction.
It is interesting to compare these results with the results of the AIMD simulations of the water-silica
interface by Leung et al., which indicated that once the H;O" was further than 2-3 water molecules
from the surface, then the H3O+ would diffuse away without protonating the surface. This suggests
that the thermal contribution and/or screening from the bulk prevents proton transfer to the surface,
however we note that these AIMD simulations were run at elevated temperature in order to preserve
the liquid dynamics of water under the PBE functional [144].

4.4.4.3. Surface Deprotonation in Presence of Explicitly Solvated Hydroxide

In this section, AIMD simulation of the H;O, ™ cluster at the silica interface is presented, followed by
geometry optimisations of the H;O,™, HyO;~ and H,O,~ clusters at the silica interface. As discussed
in the introduction, several of these clusters are of particular interest as they have been presented in

the literature as important in the transfer of protons within pure water.
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Figure 4.14.: Geometry optimisation of a hydronium ion (shown in blue) solvated in 11 water molecules
(H307" (H,0);1) above a silanolate group on the silica surface is shown in (a). The surface is protonated
within the first few iterations, as shown in (b), forming a water network shown in (¢). The water network
contains a substructure which is structurally similar to a zundel cation (blue) and H30,~ dimer (green)
near the surface, a shown in (¢). Natural Population Analysis of the optimised system shown in (c)
can be found in the Appendix G Section 4, and demonstrates that the blue-highlighted atoms are more
positively charged than the rest of the water cluster. The green-highlighted oxygens showed a similar
Natural Charge to the rest of the water cluster.

Snapshots of the H;O,~ system AIMD simulation are shown in Figure 4.18 and a video is included
in Appendix G. From the AIMD simulation it can be seen that during the first ~50 fs the symmetric
structure of the H;O,™ anion is broken as a HyO-.. OH™ structure is formed, after which the silanol

is deprotonated within the next ~25 fs.

The geometry optimisation of the same H;O,~ system is shown in Figure 4.19. Similarly to the
previously shown isolated hydroxyl system in Figure 4.8b, geometry optimisation of the H3O,~
system resulted in deprotonation of the silanol surface by the hydroxide cluster and the formation of a

pair of water molecules hydrogen bonded to a silanolate group on the surface.

The optimisation for the H,O, system is shown in Figure 4.20. As with the previous optimisation
of the H;O,~ and OH™ systems, the H,O,~ optimisation demonstrated deprotonation of the silanol
group surface to form a silanolate group. A correlation can be observed between the number of waters
in the cluster and the resulting SiO™---HO—O hydrogen bond length between the geometry optimised
OH™, H;0,™ and H,0,  systems which showed hydrogen bond lengths of 1.60 A, 1.51 A and 1.39 A
respectively (Figure 4.8b, Figure 4.19 and Figure 4.20 respectively). This decrease in bond lengths
might well be explained as a result of positive hydrogen bonding cooperativity in which, when a
hydrogen bond forms, a redistribution of electrons within the water molecules occurs which can reuslt
in a reduction of hydrogen bond length with increasing cluster size [287]. It should be noted that this
correlation is not guaranteed as many other factors can affect hydrogen bond lengths, for example, if
the hydrogen bond conformation is nonoptimal then its strength will decrease (and thereby length
increase). Hydrogen bonds at the periphery of a cluster may be expected to show a smaller change in
hydrogen bond length [286]. This increased stabilisation of the SiO™---HO—O hydrogen bond with
increasing water cluster size is significant as this effect is often neglected in the parameterisation and
validation of classical force-fields, which are often constructed using a single water molecule interacting
with the surface [161, 288].

For the square planar HyO;~ system (Appendix G Section 3), geometry optimisation did not deproton-
ate the silanol group at the surface and the hydroxyl cluster remained stable and relatively unperturbed
by the silica surface environment, with only a slight distortion (0.1 to 0.2 A) of the hydrogen bonds
normal to the surface. The lack of proton transfer indicates that a significant activation barrier to
deprotonation was present for this system. This result is consistent with the AIMD of pure water by

Tuckerman et al., who observed no proton transfer for the more stable square planar HyO5;~ complex
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Figure 4.15.: Conformation A: Geometry optimisation of a hydronium ion solvated in 20 water
molecules (H;OT (H,0)40)] above a silanolate group at the silica surface. The H;O™ is initially separated
from the silanol by 4 water molecules (a). The hydronium ion remains stabilized by the cluster (shown
in blue) throughout the optimisation steps (b) and (c¢), remaining unperturbed by the surface. The
silanolate is protonated as the optimisation proceeds, as shown in (b), resulting in the formation of a
water cluster substructure similar to a hydroxide ion near the surface (oxygen atoms shown in green in
(b) and (c)). Natural Population Analysis showed that the blue-highlighted oxygen in the optimised
structure is significantly more positive that the other oxygen atoms, as shown in Appendix G Section 4.
The green-highlighted oxygen showed a similar Natural Charge to the rest of the water cluster.

[201, 258], and the experimental and theoretical study of Cwiklik et al. on pure water, who observed
that this structure is more stable than the H;O, " tetrahedral cluster [289].

These simulations extend the work presented by Xiao and Lasaga [160] and, to our knowledge, represent
some of the first dynamic and mechanistic ab initio descriptions of surface charging due to solvated
hydroxide at the silica/water interface. An interesting find of this study is that the SiO™...HO-0O
hydrogen bond length is strongly dependent upon the degree of solvation. Furthermore, this study
indicates that, similarly to proton transfer in pure water, deprotonation of SiOH in the presence of
OH™ demonstrates no significant activation energy, except in the case of the highly stable H,O,™

solvated cluster.

4.4.4.4. Time-Scales and Energetics

All proton transfer events observed in geometry optimisations occurred within the first few optimisa-
tion steps, indicating a strong energy gradient driving the reaction. AIMD results already presented
(Figure 4.9, Figure 4.10 and Figure 4.18) have shown these proton transfer events occur on a femto-
second time-scale (~25-100fs). This result is consistent with Car-Parinello molecular dynamics studies
on pure water, which have shown that once a water wire is formed, OH™ / H30+ recombination occurs

extremely rapidly (on a femtosecond time-scale) [190, 192].

In order to quantify the energetics of this proton transfer, all-electron calculations using NWChem
were performed upon a silica cluster model of an isolated silanol molecule (SiH;OH) and an orthosilicic
acid molecule (Si(OH),). Three different reaction schemes were considered for each reaction in which
a single additional water molecule stabilised the reactants, the full details of these calculations can
be found within the Appendix G Section5. Each different reaction scheme considers a different
combination of hydrogen bonding between the products, which can lead to large differences in the
reaction energies. Reaction energies of between -637 and -682kJ/mol for orthosilicic acid, and of
between -655 to -693 kJ/mol for silanol were calculated for Reaction Equation 4.10. Reaction energies
of between -43.5 to -105kJ/mol were calculated for orthosilicic acid, and of between -25.9 and -

142kJ/mol for silanol were calculated for Reaction Equation 4.12. For Reaction Equation 4.12; using
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Figure 4.16.: Conformation B: Geometry optimisation of a hydronium ion solvated in 20 water
molecules (H;01 (H,0)50) above a silanolate group at the silica surface. The H;O™ is initially separated
from the silanol by 3 water molecules (a). This is the same water cluster as Figure 4.15, but rotated
such that the hydronium ion (blue) is closer to the surface silanolate. As the optimisation proceeds
the silanolate is protonated by a nearby water molecule (b) and the water cluster rearranges forming a
substructure which contains what could be described as a solvated hydroxide ion (green) and a solvated
hydronium ion (blue). Natural Population Analysis showed that the blue-highlighted oxygens in the
optimised structure are more positive that the other oxygen atoms, as shown in Appendix G Section 4.
The green-highlighted oxygen showed a similar Natural Charge to the rest of the water cluster.

a (HO)3Si—0—Si(OH),(OH); model of the surface, Xiao and Lasaga calculated a reaction energy of
-232.6kJ /mol at the MP2/6-31G* level, The resulting reaction energy is likely more exothermic than
the silicic acid and silanol due to the formation of multiple hydrogen bonds in the resulting complex
[160].

These values indicate that hydronium based protonation events are significantly more exothermic than
their counterpart hydroxide deprotonation events, suggesting that the chemistry of silica deprotonation
cannot be treated as simply the reverse of protonation at an atomistic scale. These calculations also
demonstrate that both protonation and deprotonation reactions are highly exothermic; by comparison
kyT is approximately ~2.48kJ/mol at 298 K. The fast time scale and high exothermicity of this
reaction has significance for building dynamic models of surface charging, indicating that these
reaction coordinates might be modeled as diffusion-limited once a hydrogen-bonded encounter pair

has been formed.

4.4.5. Conclusions

Using AIMD and geometry optimisations, we have investigated the acid-base dissociation mechanism
for protonation and deprotonation events of isolated silanol and silanolate groups by hydronium
ions and hydroxide ions in solution. The reaction mechanism was observed to be rapid, highly
exothermic and predominantly activationless. We believe that this work is the first to go beyond
simple cluster models of the surface to study surface charging due to adsorption of solvated hydroxide

at the silica-water interface.

The acid dissociation of isolated silanols (Equation 4.10) did not demonstrate an energetic barrier to
the proton transfer, whether in the gas phase, implictly solvated or explicitly solvated using water
clusters. Simulations of the H;O" (H,0),, and H;O" (H,0),, clusters demonstrated proton transfer
via the ‘proton holes’ mechanism in which the hydronium ion stabilises water-dissociation which, in

turn, protonates the silanolate group. This mechanism has rarely been considered in the literature,
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Figure 4.17.: Conformation C: Geometry optimisation of a hydronium ion solvated in 20 water
molecules (H;O" (H,0)59) above a silanolate group at the silica surface. The H;O™m is initially separated
from the silanol by 2 water molecules (a). This is the same water cluster as Figure 4.15 and Figure 4.16,
but rotated such that the hydronium ion (blue) is closer to the surface silanolate . The closer proximity
of the hydronium ion relative to Conformation A results in proton transfer from the hydronium ion to
the silanolate group of the surface as shown in (b), ultimately producing a neutral water cluster hydrogen
bonded to a neutral silanol group, as shown in (¢). The intermediate hydroxide-like substructure is
shown in green. Natural Population Analysis showed that oxygens in the optimised structure have similar
Natural Charges, as shown in Appendix G Section 4.

but could indicate that surface protonation is possible even when the hydronium ion is distant (4

water molecules at least) from the surface.

The dissociation of isolated silanols in the presence of hydroxide (Equation 4.12) was also found to
behave as an activationless process for the cases of both the gas phase hydroxide ions and the implicitly
solvated hydroxide ions. For the case of explicitly solvated hydroxide ions, the local environment of
hydrogen bonded silanols and waters was shown to be capable of creating an energetic barrier to
deprotonation in the case of the HyO5~ anion, but showed complete or partial deprotonation for the
H3;0,~ and H,O,  hydroxide clusters. This energetic barrier to proton transfer for the HyO;™ is
consistent with the pure water simulations of Tuckerman et al. [201]. The Si—O~ ---H,O hydrogen
bond length was found to be strongly dependent upon the degree of solvation, which could have

significant implications for the accurate parameterisation of this bond in molecular dynamics force
fields.

This work suggests that proton transfer events at the isolated silanol-water interface often do not
exhibit a well-defined transition state and therefore Transition State Theory is likely inapplicable.
Furthermore, the fast time scale and high exothermicity of the reactions discussed herein shows these
hydronium /hydroxide systems will readily transfer protons, therefore surface scientists should be

cautious when simulating such systems in the context of non-reactive forcefields.

Proton transfer was shown to involve first a reorientation of the water into hydrogen bonds with the
surface group followed by proton transfer along a hydrogen bonded network of water to/from the
surface group. This indicates that proton transfer for both hydroxide and hydronium ions is likely to
be limited by the rate of reorientation of solvated hydroxide/hydronium clusters at the surface, as is

thought to be the case for proton transfer in pure water [258, 290].

In this work, the silica geometry was assumed to be regular and composed of isolated silanols, however
it is possible that the silica structure (e.g. geminal or vicinal silanols) could affect energetic barriers.
Furthermore, this study does not incorporate the electrostatic effect of counterions in the double layer

which will introduce stabilisation to negatively charged sites and can stabilise hydroxide molecules at
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Figure 4.18.: AIMD Simulation of a neutral silica slab with the H;0,™ anion above a silanol at the
silica surface (Equation 4.12). Reorientation of the system occurs for the first ~50fs from which the
silanol is deprotonated by the H3O,  within another ~25fs resulting in a water molecule hydrogen
bonded to the silanolate group. From left to right, snapshots are shown at every 25 fs.

the surface [187].

As this study has been primarily focused upon static geometry optimisation calculations and short
time-scale AIMD, it is the hope of the authors that this work will stimulate further work towards a
model of the system which is capable of accurately describing the complex and dynamic nature of
surface charging at an atomistic scale, without the need for surface-specific empirical parametrization

or computationally expensive ab initio calculations.
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Figure 4.19.: Geometry optimisation of H3O,~ above a silanol group at the silica surface. Initial
structure is shown in (a). As the optimisation proceeds proton transfer from the silanol to the H3;O,~
anion occurs, as shown in (b). Image (c) shows the optimised structure, in which the silanol has been
deprotonated.

(a) Wl

Figure 4.20.: Geometry optimisation of the H;O,~ anion above a silanol group at the silica surface.
The initial structure is shown in (a). As the optimisation proceeded, Grotthuss transfer of the proton
from the surface occurs (b) resulting in a deprotonated silanolate group in the optimised structure (c).

4.5. Conclusions and Future Perspective

A study was performed to validate the DFT calculations and a freely available tool was produced
which can assist researchers in similar studies using the ONETEP software. The subsequent DFT
study investigated the atomistic nature of protonation-deprotonation processes at the silica-water
interface. It showed that, based on ground-state electronic calculations, the hydronium and hydroxide
ions can readily protonate silanolate groups and deprotonate silanol groups respectively, whereas

water molecules will hydrogen bond (without proton transfer) to both silanol and silanolate groups.

Acid-base reactions were rapid and highly exothermic, which suggests that surface scientists should
be cautious when simulating such systems in the context of molecular dynamics simulations which
cannot describe bond-breaking and forming. The Si—O7---H,0O hydrogen bond length was found to
be strongly dependent upon the degree of solvation, which suggests that accurate parametrisation of

this bond in classical molecular dynamics simulations requires careful consideration.

Some unexpected and novel observations were made with regard to the hydrogen-bonded structure
of the water; for example, it was seen that the classical model of acid-base neutralisation by proton

transfer from acid (hydronium ion) to base (silanolate group) can be an oversimplification in hydrogen-
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bonded water clusters: the study revealed a new mechanism of protonation in which even hydronium
ions distant from the surface can protonate the surface without losing a proton, by stabilising the
dissociation of water molecules. Deprotonation via hydroxide ions was investigated, and transport via

proton holes’ was observed, which is a mechanism which is much less frequently investigated than

proton transfer via the Grotthuss mechanism.

An original aim of this work was to support the development of a predictive and computationally
inexpensive model which can capture macroscopic charging dynamics at the silica-water interface, as
this is relevant to FET-sensor response. This study highlighted that prediction of the protonation-
deprotonation kinetics at silica-water interfaces is non-trivial; one common approach to modelling
this from an atomistic-simulation would be to identify the energetics of the transition-state and then
utilise Transition State Theory to predict the kinetics. This work has shown that this atomistic
approach is likely inapplicable due to difficulties in obtaining a distinct transition state in the complex
interfacial hydrogen-bonded network at the surface. It demonstrated that the hydroxide and hydronium
ion protonation mechanisms are distinct, despite often being treated as complimentary, indicating
that a truly realistic model of protonation-deprotonation kinetics would likely need to treat these
processes distinctly. The study suggests that protonation of the surface of water can be modelled as
a diffusion-limited, activationless and highly exothermic process which is limited by reorientational
motion of the water to form a hydrogen-bonded network. The challenge in building an accurate model
of the dynamics of this process lie, however, in capturing the complexity of the energetic and entropic
barriers involved in this reorientation. The new mechanism discovered showed that even hydronium
ions distant from the surface might catalyse surface protonation, providing an additional layer of

complexity to any system-scale modelling.

Due to lack of suitable experimental methods, there is little experimental data available upon surface
charging kinetics at a molecular scale. After this work was completed, Agnello et al. published an
experimental paper investigating silica surface charging at the silica-water-metal interface. Their
experiment involved a rolling-sphere test in which a metal sphere was triboelectically charged and this
charge was measured via a capacitively coupled electrode [291]. By investigating the charging rate
(pC/s), zeta potential, surface energy and surface resistivity measurements as a function of humidity,
they concluded that the charging kinetics are affected by the environment (humidity) and surface
modification. As Agnello et al. studied the charging rate between triboelectically charged glass with
water/metal, it was not measuring the inherent charging rate of spontaneous auto-ionisation of silica
on exposure to water and therefore is not directly comparable to the work herein, however it does show
the importance of water in silica-surface charging and represents one of the few available experimental
techniques that might measure the kinetics of charging processes directly. Adding an organic film
decreased the charging rate by obstruction, and this effect could be reversed by polarising the surface
with nitrogen/oxygen plasma processing. This may have relevance to BioFET devices, in which an
organic film is often utilised to functionalise the surface prior to biosensing and would suggest that

that biofunctionalised sensors have different surface charging kinetics and thereby noise characteristics.

Whilst the work presented in this chapter has shown that the kinetics of protonation-deprotonation
are difficult to model based on the fundamental proton-transfer reactions, it may be possible to
build an empirical model which simplifies the entire multi-step process (involving water-reorientation
followed by proton transfer) into an empirical constant. With this goal in mind, the focus of the
following chapter was to find a empirically-parametrised simulation framework that might be suitable

for modelling surface-charging at macroscopic time- and length-scales.
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5. Kinetic Monte Carlo Model of Dynamic
Surface Charging

5.1. Chapter Introduction

Oxide surfaces exposed to water develop a surface charge. This charge varies spatially over the space
and in time as the oxide functional groups on the surface undergo protonation/deprotonation, as a
consequence of chemical equilibria involving water, hydronium and hydroxide ions [292, 293]. While
a detailed understanding of these equilibria can be obtained by the ab initio approaches described
previously (Section 4.2), these simulation techniques cannot describe the macroscopic time- (minutes

to hours) and length-scales (micrometres to centimetres) which are relevant to BioFET response.

Kinetic Monte Carlo (KMC) is a simulation framework that can reach macroscopic time- and length-
scales. In this chapter, KMC simulations are presented which model the fluctuations of surface charge
as a function of time and space. A motivating hypothesis for this work is that the kinetics of surface
charging are vital to understanding some of the noise characteristics of BioFET /Ion-sensitive FET
devices, in which the current flowing through the device is highly sensitive to fluctuations at the

oxide/electrolyte interface.

For this work, a model based on the well-documented ‘Ising Model’” was utilised. In this model,
the system is represented as a 2D lattice of discrete sites, where each ‘site’ corresponds to either a
protonated (s; = 1) or deprotonated site (s; = 0) [294]. The system free energy was approximated to
the electrostatic free energy of a rigid arrangement of point charges, where conformational degrees of
freedom were assumed negligible. The probability of a transition from protonated to deprotonated (and
vice versa) was determined by comparing the free energy between states (protonated/unprotonated)
per site on the lattice (proton on a oxide group) and used to assign the relative probability of this
transition. The time-scale of the transitions can be empirically parametrised such that the resulting

model predicts surface charge fluctuations as a function of time.

This is the first time that this literature model [295, 296] has been implemented in the Zacros Software
[297, 298], this software was chosen for its ability to deal with cluster expansions incorporating

long-range lateral interactions in a computationally efficiently manner. [297, 298].

In this chapter, the general theory of KMC (Section 5.2), and its implementation in the specific
model for surface charging (Section 5.2.2) are presented.. The validity of the model was tested
in a comparison with the implementation by Zarzycki (2007) [296] (Section 5.4 ) and found to be
functioning accurately (Section 5.5). The model could be used as a component in a future multi-scale

model of BioFET response.

5.2. Background: Kinetic Monte Carlo

The kinetic Monte Carlo (KMC) method is a Monte Carlo method of computer simulation used to

simulate the time evolution of processes. The algorithms underlying the KMC algorithm are known
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by a variety of other names such as residence-time, n-fold way or the Bortz-Kalos-Liebowitz (BKL)
algorithms. KMC is particularly useful for investigating the dynamics of systems in which there are
rare events occurring, because the computational speed of the simulation is limited by the slowest
event. Hence, KMC can reach much longer time scales than using other simulations techniques that
proceed linearly with time, such as classical Molecular Dynamics simulations. KMC also offers the
advantage over traditional Monte Carlo approaches that it can be used to study non-equilibrium
processes as they evolve through time. The key disadvantage of the technique is that it provides no
information of the time-scale of the elementary processes; these time-scales must be parametrised

either from ab initio calculations or experiments.

5.2.1. General Theory

An overview of the theory and implementation of KMC was published by Chaterjee and Vlachos
[299]. In brief, a founding assumption of KMC is that once a transition occurs, it stays in a potential
energy basin for a significant period of time before the next basin is visited. Following on from this, a
related assumption is that each event is independent of its history, and therefore can be modelled
using Markovian state-to-state dynamics (in which only one event can occur at a time, followed by

another event). Therefore the evolution of the system is described via the master equation:

W;-t(t) - _;kijpi(t)Jr;kﬁPj(t)’ (5.1)

where each sum is over all system states, where P;(¢) is the probability of being in state i at a given
time and where k;; describes the average escape rate constant from basin ¢ to basin j and therefore k;;
can be described as a probability of escape [300]. The KMC literature also describes k;; using other
terms such as the transition probability per unit time, microscopic rate, transition rate, jump rate
and transition probability [299] and is referred to in this chapter as the ‘microscopic rate constant’.

The system is propagated via a set of stochastic transitions which satisfy the master equation.

The average time of escape can be written as: Eescape = k;l This is often modelled by a Boltzmann
distribution for thermally activated processes. If the transition state of a chemical reaction can be
obtained, then its microscopic rate constant, k;;, can be predicted from ab initio calculations via
Transition State Theory [300].

The microscopic rate constant, k;;, has exponential decay statistics, a feature which is important in
the derivation of the KMC algorithm. To show this, first consider that from the initial assumption of
history independence, the transition probability, k, is a uniform function of time, i.e. for each short

increment in time, the system is equally likely to escape from state i to state j.

Defining the transition probability density as f(¢), which describes the probability that over a set
time dt there is a transition, then f(¢) is simply a product of the amount of time that has passed, the

current time and the uniform transition probability, k:
df(t
df(t) = —kf(t)dt = % = —kf(t). (5.2)

The solution of Equation 5.2 is:
Ft) = e,

and applying the boundary condition f(0) = k the following expression is obtained:

f(t) = ke k. (5.3)
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Equation 5.3 shows that the transition state density of history-independent processes must obey
exponential statistics [301]. Given this knowledge, if the correct rate constant ‘k’ for every fundamental
process is provided then the time dependence (‘dynamics’) of transitions can be described, which is
the goal of the KMC algorithm.

These assumptions describe a system in which the dynamics can be simulated as stochastic process,
using Markovian state-to-state dynamics in which only one event can occur at a time, followed by
another event. This type of process is well-known in the field of Mathematics as a ‘Poisson Process’
[302]. A useful property of Poisson processes is that a large number of them will have the same
behaviour as the sum of the components, i.e. the transition probability density for the whole system,

F(t), can be written as:

F(t) = Re™ Tt (5.4)
where
N
i=1

The core principle of the KMC algorithm is to perform transitions between states whilst ensuring
that the transition probability density for the whole system (Equation 5.4) is satisfied. To perform
this stochastically, Equation 5.4 can be sampled using pseudo-random values drawn with the correct
probability distribution. i.e. uniform deviates, u, (‘random’ numbers in the range 0 to 1) can be

generated such that Re~ %! = u. The resulting time between transitions is therefore:

(5.5)

5.2.1.1. Kinetic Monte Carlo Algorithm

Any algorithm which uses Equation 5.5 is generally termed a KMC method. There are many variations
of KMC algorithms with differing efficiencies; a common implementation of the KMC algorithm is as

follows:
1. Set the time as ¢t = 0.

2. Generate a list of all the rates k; of all possible transitions in the system.

—Ea
Example: For a thermally activated process, generate k via k = Ae®™7T | where A represents
collision frequency, F, is the activation energy and kT is the Boltzmann constant multiplied

by Temperature.

3. Calculate the cumulative function R = 22:1 k; for i =1,...,n where N is the total number of

transitions
4. Obtain a uniform deviate u € [0, 1]
5. Find the event to carry out transition ¢ by finding the ¢ for which R; 1 < uR < R;
6. Carry out transition ¢

7. Find all possible transitions in the system and recalculate all of their k; (if they have changed

due to the transition)
8. Update the time with ¢ =t + At where At = —%

9. Return to step 1
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5.2.2. Specific Model of Surface Charging

In this section, the application of the KMC algorithm to surface-charge modelling and the specific

model used in this work is described and discussed.

An ‘Ising Model’ [294] is the basis of the model used in this work. In this model, the system is
represented as a discrete 2D lattice of sites in which each is one of two states: either protonated (s; = 1)
or deprotonated (s; = 0). This formalism has the advantage that there are many freely available
software packages which can evaluate Ising Hamiltonians on regular lattices with high computational
efficiency. The Ising model was also a natural choice given that protonation-deprotonation is assumed
to be pairwise additive. Although experimental evidence of this assumption is not available, because
charges are microscopically distant (approximately a nanometre apart at pH 7.4 for silica surface
charge in water [32]), the electrostatic force is assumed to be the dominant interaction which is well
known to be additive via the Superposition Principle. A further assumption is that the surface charges
are localised. This is a justifiable assumption for oxides, as the surface charge is believed to be localised

on hydroxyl functional groups at the surface [303].

The surface charge, o, is a key experimental observable that the model can provide, calculated as:

g = eNS (quH + QVacant(l - GH)) ) (56)

where Ng is the surface site density of hydroxyl groups, and fy is a value between 0 and 1 representing
the proportion of the lattice with charged groups, e is the elementary charge and ¢; represents the
charge of site 7. For simplicity, the 1-pK model (Section 3.3.2.1) is used, in which ¢; is equal to
g = +0.5 and Gyacant = —0.55 [133].

The probability of a transition is calculated by calculating the difference in the system energy before
and after a transition (protonation/deprotonation). In order to calculate the system energy, the

following Ising model Hamiltonian is used:

.1
H=— E Wi Sq + 5 E 1% (I‘,’j)SiSj, (57)
i i,j7#1

where: each sum goes over all sites ¢ within the entire lattice; p; is the chemical potential of each site
and s; is the ‘spin’ variable for each site, which represents whether the site is protonated (s; = 1) or
deprotonated (s; = 0). W (rj;) represents the pairwise interaction energy between sites ¢ and j, and is
calculated within this work using the equation derived by Borkovec et al. for the electrostatic free

energy of interaction of two point charges at planar surface-electrolyte interfaces [131, 295, 304, 305]:

62 e~ hTij

€ a 1\? e
=+ —) |- 5.8
2mep€w  Tyj + 27meg (es + new> r?’,] (5.8)

)

W(rij) = qiq;

In Equation 5.8, ¢ is the permittivity of free space and €,, is the dielectric constant of bulk unperturbed
water. Point charges g¢;, q; are treated as being buried in a interfacial layer with dielectric constant,
€5, at a distance a away from the electrolyte. In this work a = 1A €, = 80.0 and ¢, = 3. & is the
reciprocal Debye length which was given in Section 3.2.2. Equation 5.8 has previously been applied as
part of both equilibrium Monte Carlo [126, 306-312] simulations and MC simulations by Zarzycki and
Rosso [296, 313] where their model of the pH/surface-potential relationship of the hematite-electrolyte
interface agreed with experimental data [306]. This KMC approach was used by Zarzycki and Rosso to
explain the empirical observation that there are two characteristic relaxation times in proton-titration

experiments [313].

Note that W(|r; —r;|) > 0, such that increased surface protonation (s, = 1) will result in a more
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positive contribution from the W(r;;) term, and therefore a higher energy surface from the Ising

Hamiltonian (Equation 5.7).

The chemical potential is defined as p; = u$ + kyT'In(a;), where u? is the chemical potential in its
standard state. For the purpose of the work in this chapter, its choice is arbitrary and so taken to be
zero. a; is activity of protons, which is related to both the chemical equilibrium present and the bulk
activity of protons:

pi = kpTIn(10)(pK; — pH), (5.9)

where pKi is the microscopic equilibrium constant of the group given that all other sites are deproton-

ated and pH is defined as in Equation 5.10:
pH = —log,, an (5.10)

The charge of each site ¢; and the microscopic pKi will depend upon the choice of model for the
chemical equilibrium at the oxide surface. It can be seen from the Ising Hamiltonian (equation
Equation 5.7) that decreasing the pH will increase the chemical potential of protons and therefore

produce a lower energy surface.

The probability of a transition in the KMC scheme is related to the enthalpy change of the Hamiltonian
of the system for that transition, e.g. for protonation:

AHprotonation — H(Sl — 1) _ H(Sl — O)’

i.e. the probability of protonation will be related to More specifically, the functional form of this

relationship is a Boltzmann distribution where:

Tlprotonation — min(l, 1467AH)7 (511)

and

Tdeprotonation _ 1/rfrotonati0n' (5.12)

(2

protonation
i

other terms have often used interchangeably, as discussed in Section 5.2). The minimum function in

In these expressions, r is the probability of protonation (the term ‘transition rate’ and various
Equation 5.11 simply ensures that the probability of protonation does not exceed 1 (100% chance).
‘A’ is an empirical parameter which can be used to parametrise the time-scale of each elementary
process (in this system, there are only two elementary processes - protonation and deprotonation);

without this, the KMC algorithm would operate in arbitrary time.

In summary, it has been shown that the KMC algorithm involves selection of a time between events
which is done stochastically, but is appropriately weighted by its respective probability of occurring
(Equation 5.5). The most likely transition, and therefore the most frequent, will occur from a high-
energy surface to a low-energy surface but the stochastic nature of the Monte Carlo algorithm means
that it is entirely possible for a transition to occur that makes the system go from lower energy to
higher energy. Hence, as in a real system, surface charge fluctuations over time occur, as opposed to
rapidly equilibrating to a constant surface charge. This feature can be used to improve modelling
the noise characteristics of FET-sensors as literature FET-sensor noise-modelling has neglected these
dynamics, instead focused either on modelling noise within the semiconductor, or due to biomolecule
motion [34, 314] and coupling of the electrolyte to the device [33, 80].
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5.3. Model Validation: Methods

In order to validate the model, the simulation was performed in arbitrary time (i.e. no parameterisation

—2 using the

for the time-scale of elementary processes, A = 1) with a surface site density of 1.0nm
same settings as used by Zarzycki (2007) [296] . Lateral interactions were truncated to a maximum
of the fifth nearest neighbour interactions, (i.e. 3.0nm distance in the simulation). Zacros version
1.02 was used for this work. The Zacros software framework is well-suited for this particular KMC
model because, in this software, the parallel efficiency improves with the number of nearest neighbour
interactions [298] which means that the range of interactions can be extended to a longer-range at
low computational expense. A simple 1-pK model is used (Section 3.3.2.1), in which the charges
on each group are 4+0.5 or—0.5 for protonated and deprotonated sites, respectively. The intrinsic
pK, of the oxide functional group was set to 10. In the Borkovec model for the electrostatic free
energy (Equation 5.8), the following parameters were used: ¢ = 0.1nm, d = 1.0nm and ¢, = 3.
Kk = 2.3255nm ™!, based on a 0.5 M 1:1 room temperature electrolyte. Periodic boundary conditions

were employed.

The lattice configuration was initialised to empty (no bound protons) and the simulation was run
until 25 Monte Carlo (arbitrary) time units had passed, which provided a surface coverage which
fluctuated around a single value, assumed to be in equilibrium. A snapshot of the final configuration

at pH 10 is shown in Figure 5.1.
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Figure 5.1.: Snapshot of KMC lattice after 30782 KMC Steps or 25 Monte Carlo Units of time. Each

grey circle represents an unoccupied site (deprotonated) and red circle a proton bound site (protonated).
Site spacing of 1.0nm ™2, pH=10.

5.4. Model Validation: Results

In this section, results of the KMC model are presented for comparison to the results of Zarzycki
(2007) [296] to provide evidence that the model functioned as intended.
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In order to analyse the results of the KMC simulation, a plot of the fractional coverage (proportion of
sites occupied with protons) versus time was generated, as shown in Figure 5.2. This type of plot has
a simple relationship to the predicted surface charge, as per equation Equation 5.6. Although surface
charge is an experimental observable, the model was not parametrised (pK; and A) so as to match
an experimental system, but instead is used here to validate the KMC model against the result of
Zarzycki (2007) [296].

10 (a) KMC Model (this work) 10 (b) KMC Model (from Zarzycki)
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Figure 5.2.: Plot of surface coverage, ¢g(t) (proportion of sites occupied with protons), against arbitrary
time over a range of pH (7-10). pK;=10. The left-hand graph (a) is from the work described herein,
whereas the right-hand graph (b) shows data which was extracted from Zarzycki (2007) [296]. Notably,
at each of pH, the equilibrium coverage values in the two KMC studies are almost identical. In the 1-pK
model used here, when the equilibrium coverage reaches ¢ .q = 0.5, the Point of Zero Charge is reached.
The Point of Zero Charge in the two KMC studies are both in agreement, providing a Point of Zero
Charge between pH values of 8 and 9.

In order to analyse the kinetics of the plot, Zarzycki calculated the non-linear relaxation function
(¢o(t)) and relaxation time (7p), which are defined as: [315]:
< 6(t;pH) — 0(teq; pH) >

Po(t) = < 0(0; pH) — O(teq; pH) > and 79 = /0 Po(t) dt, (5.13)

where 6(t; pH) is the surface coverage (proportion of sites occupied with protons) and 6(teq; pH) is the
coverage at the time in which the simulation has equilibrated. The relaxation time, 7y, refers to the
KMC ‘time’ for the system to equilibrate from its initial configuration. A plot comparing the results
obtained in this work with those of Zarzycki (2007) [296] is shown in Figure 5.3.
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Figure 5.3.: Plot of the non-linear relaxation function (obtained using 6(¢; pH) = 0(25; pH)) against
arbitrary time at pH 7, 8 and 9 for a system with pK;=10. The left-hand graph (a) is from the work
described herein, whereas the right-hand graph (b) is data extracted from Zarzycki (2007) [296]. Both
the KMC model within this work (a) and the model of Zarzycki (b) show an decrease in relaxation time,
Ty , calculated using Equation 5.13 (see Section 5.5 for discussion) with increasingly alkaline pH, but
the two models different in the shape of the non-linear relaxation function.
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5.5. Model Validation: Discussion

This work is the first time a KMC model based on the model of Zarzycki [296, 307-309] has been
implemented in the Zacros software, and has been validated by comparison to the original literature
model. The coverage-time plot shown in Figure 5.2 shows the simulated changes in the dynamics
of surface protonation as a function of pH using both the Zacros implementation and the original
implementation. It can be seen from Figure 5.2 that there is close agreement between them [296],
predicting the same coverage value as the time tends towards infinity (equilibrium coverage). Another
important property of the model is the Point of Zero Charge, an experimental observable that is
defined as the pH at which the net charge of the surface appears to be zero [316]. In the 1-pK model,
when the coverage is 8 = 0.5, the net charge of the surface is zero. From Figure 5.2, the point of zero
charge observed both in this work and that of Zarzycki was between pH 8 and pH 9, supporting that

the model used in this work was functioning correctly.

A plot of the non-linear relaxation function was used to calculate the time-scales involved in reaching
the equilibrium state, shown in Figure 5.3. The two models differ in the shape of their non-linear
relaxation functions: the non-linear relaxation function of this work shows a higher (steeper) initial
gradient with increasingly alkaline pH, whereas the model of Zarzycki shows the opposite trend in
initial gradient. Although, for example, the pH 7 result has a very steep initial gradient, it takes the
longest time to reach equilibrium (with 79 = 0) of the three pH systems shown. This difference in
the shape of the non-linear relaxation function might be due to Zarzycki performing their simulation
with additional constraints such as, for example, surface heterogeneity, which they consider later in
their paper but do not reference with respect to their result shown in Figure 5.3(b). Alternatively, it
is possible that it is due to differences in the implementation of the KMC algorithm; Zarzycki did
not use the Zacros software but instead utilised their own custom-written code which is not publicly

available for comparison.

Relaxation times 7y were calculated using Equation 5.13 by integrating each non-linear relaxation
curve up to the time of equilibration. For the KMC model presented within this work (a), the time of
equilibration was taken to be teq = 3.5, resulting in an equilibrium coverage, 7y, of 0.82, 0.62 and 0.39
for pH7, pH8 and pH 9, respectively. For the Zarzycki model, if the time of equilibration is taken as
the longest time available from their published data: t.q = 1.9, then 7y is calculated to be 0.26, 0.12
and 0.10 for pH7, pH 8 and pH 9 respectively. Their pH 8 and pH 9 results may have equilibrated by
teq = 1, therefore the 79 was also calculated at toq = 1 and were found to be 0.09 and 0.10 for pH 8
and 9 respectively. Considering either te, values (1 or 1.9), it was found that 7y = 0.1 for both pH
8 and 9 systems. Based on these calculated equilibration times, 7y, it can seen that both the KMC
model in this work (in Figure 5.3(a)) and the model of Zarzycki (in Figure 5.3(b)) show a decrease

in relaxation time with increasingly alkaline pH.

Overall, agreement with the literature is sufficient to conclude that the model used in this work
is performing correctly. Predictive use of the model in the context of FET-sensors requires two
empirical parameters, the pK; and the prefactor, A. The pK,; describes the free energy of the
reactions, and experimental measurements of the pK; for oxide-surfaces are available within the
existing literature, although there is controversy over the values for silica surfaces, as discussed in
the Thesis Background Section 3.3.2.2. The prefactor, A, describes an empirical parameter for the
time-scale of each elementary process (in this system, there are only two elementary processes -
protonation and deprotonation), without which, the KMC algorithm operates in arbitrary time (as
was the case in this validation study). Once parametrised, the model can describe the length- and
time-scales relevant to biosensor experiments. Accurate data for this parameter is not currently

available from the existing literature, as the focus is mostly on equilibrium physics, rather than
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the time-dependent physics required here. This might be obtainable using techniques such as the

pressure-jump relaxation method [317] or a ‘rolling-sphere’ test [291].

5.6. Conclusions and Future Perspective

The model presented in this work, and related models, have been used in the literature to provide a
link between the microscopic theory of protonation reactions and the experimental proton-titration
data [296, 307-309]. In this work, a new implementation of a literature KMC model was produced
using the Zacros software package. The model is capable of modelling changes in surface charge over
macroscopic time (up to days) and length scales (up to micrometres) for an oxide-electrolyte interface.
Although the values of the non-linear relaxation function differed slightly between this model and that
of Zarzycki, the same trend with pH was observed. The equilibrium surface coverage and Point of Zero
Charge were in excellent agreement with the model of Zarzycki, suggesting the model is functioning

correctly.

Existing models of FET-sensor noise have neglected to consider the dynamics of surface charging, and
once suitable experimental data is available for parameterisation of the model, it can be used as a

component of a multi-scale FET-sensor model.
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6. Modelling the Net Charge of Proteins

6.1. Chapter Introduction

BioFET sensors operate by detecting changes in the electric field at the oxide-water interface due
to the binding of charged biomolecules to receptors on the surface. As a result of this, the charge
of biomolecules is important for parametrising most models of BioFET response [2, 39, 44, 59]. The
distribution of charge within a biomolecule is non-trivial to measure and predict because, like for
aforementioned surfaces, it is a non-linear function of pH and ionic strength. Further, it can be
modified by the local chemical environment, for example, the charge may differ between its bound or

unbound form or due to conformational changes [86].

Proteins are zwitterions under biosensing conditions, typically performed in the pH range 6-8; only
at extreme conditions of very low pH (pH <« 2) are the carboxyl groups neutralised or of very high
pH (pH > 10) are the amine groups neutralised. The charge of the protein can be experimentally
characterised at least in part via its isoelectric point (pI), when the pH is equal to the pI then the
mean net charge on the protein is zero. If a static electric field is applied to a medium containing

proteins, the pI can be measured as the pH at which the electrophoretic mobility is zero [318].

The pl is very similar to the concept of Point of Zero Charge (PZC) earlier discussed (Section 5.5) in
the context of surface protonation-deprotonation reactions. Importantly, electrophoresis measurements
are unable to provide information on the spatial distribution of the charge on the biomolecule. In
contrast, X-ray crystallography can provide information on the precise spatial arrangement of the
atoms within the crystallised-form of the protein, this is often referred to as an X-ray structure.
However, the resolution of X-ray structures of proteins is usually insufficient to resolve hydrogen
atoms and therefore cannot reliably obtain the protonation state/charge of functional groups [319].
Nuclear Magnetic Resonance (NMR) spectroscopy can provide information on the pK,, and therefore
charge, of individual amino acids within a native protein, however, the process involves deconvolution
of multiple titration events and therefore can be ambiguous [320]. As a consequence of the difficulty
in obtaining accurate experimental data relevant to the required application (e.g. bound-state or
unbound-state of the protein, pH and ionic strength), simulation is often used to calculate the pK, of

each group.

Accurate modelling of biomolecule charge has relevance not only to biosensing, but also drug design
[86] and bioengineering [321] which has led to many models being developed for this purpose [322]. In
the work presented here, protein charge is estimated using the PROPKA model [85, 86], a popular
semi-empirical model for calculating the pK, of amino acids in proteins [85]. The PROPKA algorithm
considers the pK, of the groups as the sum of the empirically measured pK, for a small model amino
acid plus a semi-empirical computed shift (ApK°™P). This shift is based on the atomic coordinates
within the 3D structure (usually obtained from X-ray crystallography experiments). ApK{o™P is
composed of solvation terms, hydrogen bonding terms and a charge-charge interaction term; these are
computed using simple distance functions, with distance/angle functions for the backbone hydrogen
bonded terms. This methodology has been shown to be able to predict pK, values to approximately
+1 of experimental values [322]. Unlike other many other pK, prediction methodologies, PROPKA
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does not solve the Poisson-Boltzmann equation and, as a result, no parameter is required to describe
the ‘effective’ dielectric constant for the protein/solvent. Also as a result of this, PROPKA does not

provide predictions as a function of ionic strength [323].

With knowledge of this mean net-charge on proteins, and assuming a fixed density of bound biomolecules
bound to the sensor surface, it is possible to calculate a value for the change in surface charge density
upon biomolecular binding which is used in many BioFET response models. Therefore, in this
chapter, the net charge of two proteins are modelled an antibody-antigen system (Section 6.2) and

streptavidin-biotin system (Section 6.3), both of which are relevant to biosensing experiments.

6.2. Study 1: Antibody (TNF-a) Charge Modelling

6.2.1. Introduction

Colleagues within the University of Southampton have been working on designing novel low-cost,
disposable BioFET devices for biomedical diagnostic applications [58, 232, 324-327] and collaborating
with the Sharp Corporation on this goal. In order to validate their sensor, a model biosensing system
was chosen which has direct clinical relevance - biosensing of the antigen Tumor Necrosis Factor-o
(TNF-o). TNF-a is an inflammatory cytokine which is important in acute inflammation and a diverse
range of signalling events [328] and therefore represents an important biomarker which has been used

in many biosensing studies [58, 329, 330].

The motivation for the work in this section (Section 6.2) was to provide the net charge at the pH of
biosensing for this antibody-antigen system, a crucial parameter in many BioFET models [2, 39, 44, 59].
The results of this study were utilised by Sharp Corporation as part of their modelling efforts.

In the experimental work of the industrial collaborators, a BioFET surface was functionalised with the
anti-TNF-o antibody and the BioFET could detect the binding of the protein antigen, TNF-a, when
it is captured by the antibody. As the protein charge is affected by its environment, the variation of
the protein charge between unbound to bound form is an important property and so calculations were

also performed to investigate this phenomenon.

Although the precise structure (X-ray or NMR) of anti-TNF-a used in the experimental work were
unavailable, several anti-TNF-a monoclonal antibodies have been commercially developed, and data
is readily available for their structures. For example, X-ray structures of the F,, binding regions of
Imfliximab (Remicade®) [328] and Adalimubab (Humir®) [331] are available. Both these structures
were used in the analysis, on the assumption that they have similar structures to the anti-TNF

antibody used in the experiments.

In its native form, TNF-a is believed to present as a trimer, and it has been resolved as a trimer in its
X-ray structure [332], but at subnanomolar concentrations, TNF-o has been reported to dissociate into
its monomeric components [333, 334]. X-ray structures show that TNF-o binds to anti-TNF-u either
as a dimer to the antibody Imfliximab [328] or as a monomer to the antibody Adalimubab [328, 331].

6.2.2. Computational Methodology

Three X-ray structure coordinates were obtained from the RCSB Protein Data Bank [335]. The
TNF-o protein structure was in its trimeric form (PDB ID: 1TNF) [332]. The other two structures
were of TNF-o protein complexed with the antibody Imfliximab (PDB ID: 4G3Y) [328] and with
the antibody Adalimubab (PDB ID: 3WD5) [331]. The MOE 2013.08 Software [336] was utilised to
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perform calculations using the frequently used PROPKA algorithm [85, 86]. Charges on the individual
amino acids were set using the Henderson-Hasselbalch equation [337] based on their calculated pK,

values.

Infliximab binds to a TNF-a trimer in the X-ray structure but in order to provide a comparison to
Adalimubab, which binds to a TNF-a monomer, the Infliximab structure was stripped down to a

monomeric Antibody-TNF-o: TNF-a complex.

All structures were prepared as follows: All explicit water molecules were deleted and the MOE
protein preparation tool was used to cap any unterminated groups not resolved in the X-ray structure.
The ‘Amber10:EHT’ forcefield was used, with reaction-field implicit solvation. The ‘Protonate3D’
algorithm [336] was run using pH 7.4 and 0.1 M ionic strength and the protein was geometry optimised
with a harmonic potential restraint of 0.5 A deviation, so as remove energetically unfavourable contacts
between atoms originating from error in the X-ray structure atomic coordinates. Finally the ‘protein
properties calculator’ was used, which implements the PROPKA algorithm to rapidly calculate the

total charge as a function of pH.

Figure 6.1 shows a cartoon of the experimental system, and ribbon representation of the X-ray

structures (after preparation) used to calculate net charges.

6.2.3. Results and Discussion

The net charge on the TNF-a protein in its monomeric and trimeric form are presented in Figure 6.2
showing a variation in charge of between 40 e to —60 e (elementary charge) as the pH ranged from pH
3 to pH 13 and a net charge of between 1e and —2e as the pH ranged from pH 6 and pH 8. This
suggests that over the pH range that many biosensing experiments are performed (around pH 7.4),
there is a very small charge on the protein. The calculated pl for the trimer was 6.4, which is in

reasonable agreement with the experimentally determined pI of 5.08 [329].

For the numerical biosensor model described in the introduction of this study (Section 6.2), the
sensitivity of the biosensor is a function of the magnitude of the charge near the surface. In this model,
a higher net charge is desirable for optimum biosensing response and therefore the results suggest
extreme pH conditions would be ideal for biosensing. However this recommendation is only based on
the charge on TNF-o whereas, in practice, large changes in pH away from physiological pH conditions
will often denature the protein or alter solubility, resulting in reduced binding affinity. The effects
of electrolyte concentration are also neglected in this model, which would have a significant affect
on the screening of the biomolecule charges, and also be a function of pH [338]. Further, net charge
arguments used within this simple biosensor model have been shown to be insufficient to predict
biosensor response, as for example, the spatial distribution of charges will affect the electric field at

the biosensor surface [31].

The biosensor works by detecting changes in signal upon binding, and therefore it is relevant to
consider also how the charge already present at the surface (Surface/Anti-TNF-o charge) will be
modified by the binding of the TNF-a. A fully resolved X-ray structure for the whole of Anti-TNF-o
is unavailable, however an X-ray structure is available for the binding region (F,;, fragment). The

change in charge of this region upon binding to the TNF-a protein was calculated.

The net change in charge of the TNF-o/antibody system was taken as simply the total charge of the
antibody Fap...TNF-a complex minus the sum of the charges on isolated TNF-a-monomer and the

uncomplexed F,}, antibody charge, as expressed below:

ACharge = (Fap...TNF,) — (Fap + TNF,).
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A plot of the net change in charge for the Infliximab and Adalimubab proteins is presented in
Figure 6.3. A broad similarity between the two antibody systems was observed but the differences
suggest that for accurate quantitative prediction of the change in charge on complex formation, it
would be recommendable to obtain an X-ray structure for the specific antibody being used in the

study.

Using simple net charge arguments, these calculations predict that a weak BioFET response will
be seen close to pH8 and pH10 for Infliximab/TNF-a binding and Adalimubab/TNF-o binding
respectively. For both systems, highest response is predicted in highly acidic (pH<4) or basic (pH>11)
conditions, which is unfortunate from the perspective of BioFET sensing because at these pH values

the protein may be unstable or inactive as it is far from physiological conditions.

6.2.4. Conclusions

This study presents simple calculations which provide an estimation of the charge of the antigen in
solution and as a trimer. At physiological pH ranges (6 < pH < 8), the results showed that the net
charge is relatively insensitive to changes in pH and demonstrated a low-magnitude charge. More
extreme pH values led to sharp increases in the magnitude of net charge of the antigen. This can
be used to make informed decisions about the choice of experimental pH, although the protein may

denature or become insoluble at more extreme pH values.

This study has also provided simple calculations which indicate that differences in structure between
different commercially developed forms of the same antibody (anti-TNF-a ) can have a significant
effect on the optimum pH for biosensing experiments, with a variation of 2 pH units for the predicted
point-of-no-signal between the Infliximab and Adalimubab structures. Although these calculations
suffer from many limitations, they provide a simple-to-perform estimate from which to make informed
decisions regarding an input parameter, the ‘magnitude of charge on the biomolecules’ This parameter
can be used in most existing models of BioFET response within the literature [2, 39, 44, 59] to
estimate the change in surface charge density upon biomolecule binding, and was subsequently used

by industrial collaborators (Sharp Corporation).
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Figure 6.1.: (a) The protein TNF-a is proposed to exist as a trimer in solution, as shown in both a
schematic depiction of the three subunits and the X-ray structure (PDB ID: 1TNF) represented using
ribbons [332]. (b) A schematic of the antibody functionalised surface with a monomeric TNF-a protein
complexed. (c) Ribbons are used to represent the X-ray structures used in this work, which include
the Fap, region in complex with a monomeric TNF-o protein complexed. The Infliximab anti-TNF-a
structure [328] differs slightly from the Adalimubab anti-TNF-o structure [331]. The two antibodies also
bind to the antigen at different epitopes (i.e. binding sites). Infliximab has its trimeric antigen truncated
to monomeric form, as discussed in the main text. The green dotted box(es) contain the modelled region
i.e. the surface and core of the antibody were not modelled in this work.
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Figure 6.2.: Simulated variation in the net charge of the TNF-a protein, as a function of pH, for both the
trimer (blue, solid) and the monomer (red, dashed). The inset shows the full pH range investigated. The
monomer was prepared by removing two monomers from the trimer structure and geometry optimising
the resulting structure.
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Figure 6.3.: Simulated change in the system charge due to ‘binding’ calculated as the net charge of the
complex minus the sum of the net charges of the free monomer and free antibody. Both Infliximab (blue,
solid) and Adalimubab (red,dashed) are shown. Using simple net charge arguments, a larger net change
is expected correspond to a larger response by a BioFET sensor.
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6.3. Study 2: Protein (Streptavidin) Charge Modelling

6.3.1. Introduction

Streptavidin is commonly used as a model protein in biosensing studies [339] and the ability to detect
streptavidin is often used as the initial proof-of-concept for new biosensor designs [59, 78, 340]. The
relevance of streptavidin extends beyond a useful model system, as, for example, Gupta et al. have
shown that streptavidin has direct clinical relevance in capturing biotinylated interferon vy (MIG),
which is a biomarker for several inflammatory and autoimmune disease states [341]. As BioFETs can,
in principle, detect the electric field generated by a single elementary charge [233], even small changes
in the electrodynamic properties of streptavidin might be detectable, making an understanding of its
charge properties important. Surprisingly, despite its common usage in BioFET experiments and most
other biosensors [339], a rigorous description of its expected charge as a function of pH is not available.
Furthermore, many authors do not report the commercial origin of their streptavidin sample under
the assumption that it is not relevant to its charging-properties [19, 70, 99, 342]; in this chapter, this

assumption is shown to be a false assumption.

Streptavidin is a tetrameric protein composed of four identical subunits, each with a high-affinity
binding site for its ligand, biotin [343]. Strong chaotropic agents (6M urea) result in its dissociation

into a dimeric form [344].

Streptavidin is known to have a near-neutral pl; however the reported range of pl values are quite
large. For example, Green reported that truncated streptavidin has a pl of 5-6 [345-347]. The pI of
streptavidin is reported by Sivasankar et al. as approximately 6.3 [348]. Rockland inc.™, which sells
commercial samples of streptavidin, reports a pl of 5-6 [349] whereas Thermo Scientific Pierce™ sell a
recombinant, modified, form of streptavidin with a pl of 6.8-7.5. This variation in pl may be due to
variation in the biomolecular structure and the difficulty in accurate pl measurement, and highlight the
importance of reporting the source of streptavidin samples for both reproducibility and interpretability
of BioFET results.

Further, surface-bound streptavidin can have different properties to the free protein. The pl of
surface-bound streptavidin has been measured by the Surface Force Apparatus (SFA) experiments of
Sivasankar et al. [348], their analysis resulted in a calculated pI of 5.0-5.5. This value may be an
underestimate due to neglecting the contribution from the underlying layer. However, a similar, more
recent study by Almonte et al. using Atomic Force Microscopy (AFM) calculated a pI of 5.0 +/-
0.5 [350], in good agreement with Sivasankar et al.. These studies might suggest that surface-bound

streptavidin is slightly more negatively charged than when in bulk solution.

The net charge of streptavidin was also modelled by De Vico et al. [31] but their study did not
present the charge as a function of pH; at pH 7.4 they calculated a charge of —8.49 ¢ per tetramer.
Windbacher et al. [45] state the charge of streptavidin is —5 e but do not provide their methodology.
Neither studies consider how structural variation in streptavidin affects the net charge. Lloret et al.
used PROPKA to model the charge of streptavidin as a function of pH predicting a charge of —4e
and —b e for the ‘folded’ and ‘unfolded’ protein, but do not state what structure they used or how it
was prepared [87]. This study aims to provide a more detailed analysis of streptavidin charge as a

function of pH and structure.

6.3.2. Computational Methodology

The X-ray structure for streptavidin complexed with biotin was obtained from the RCSB Protein
Data Bank (PDB ID: 1STP) [98]. The coordinates of this X-ray coordinates contain the monomeric
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form of streptavidin which is be constructed into the tetramer using appropriate symmetry within the
crystal. The MOE 2013.08 Software was used for charge calculations [336].

The structure contains a biotin ligand, which has a carboxyl group. However, in a typical biosensing
experiment, this carboxyl group would usually not be present. This is because the biotin is covalently
immobilised to a surface via its carboxyl group and a long hydrocarbon linker. Hence, in this model
the carboxyl group of the biotin was replaced with a methyl group, making it a neutral molecule as
would be the situation in a biosensor. Water was removed in all systems and, in order to generate the
structure without its ligand, the biotin ligand was removed and the protein minimised using the same
restraints as in the previous section (Section 6.2). The same methodology as Section 6.2 was also

used to prepare the structures and calculate the net charges.

6.3.3. Results and Discussion

The simulated net charge for the streptavidin protein, as a function of pH, is shown in Figure 6.4.
The stable tetrameric protein, in complex with biotin, showed a simulated pI of 5.04. As expected,
on removal of the neutral biotin molecule, the net charge of the protein was insignificantly affected,
showing a similar calculated pl of 5.01. This pl is in good agreement with experiments which show
pl values in the range 5-6, suggesting the model is performing accurately. Strong chaotropic agents
have been reported to result in streptavidin dissociation into its dimeric form [344], therefore for
comparison, the highly solvated monomeric streptavidin structure was also studied. The pl of the
monomer was calculated to be 5.66 (with and without the ligand bound), showing a slightly more

negative net charge at physiological pH.

At pH 7.5, the tetramer was negatively charged with a net charge of approximately —7.20 e, which is
the middle of the predictions of the De Vico et al., of —8.49e [31], Windbacher et al. of —5e [45].
and Lloret et al. of —4e to —5e [87].

The full sequence of streptavidin, as encoded by the native gene which is naturally expressed in the
bacterium Streptomyces avidinii, is presented in Figure 6.5, with residues that are often charged shown
as coloured and underlined. The blue highlighted region is unlikely to be present in any commercial
sample of streptavidin used for biosensing experiments as it is a signalling region that is removed in
vivo [351]. The structure of streptavidin can vary between commercial preparations due to processing
steps which result in artificial truncation of the protein. This has been done, for example, in order to
increase the protein solubility [352]. In 1990, Green stated that most, but not all, commercial samples
of streptavidin were truncated [347]. Since then, residues 15-159 of the native gene were used to
express a recombinant form (i.e. artificially expressed in a non-natural bacterium) of streptavidin with
increased solubility in the bacterium Escherichia Coli, and some modern commercial preparations of
streptavidin! are this recombinant form, adding further possibilities for variability between different

commercial preparations [353].

With regard to X-ray crystallography studies, Weber et al. reported that they were unable to crystallise
non-truncated streptavidin, but successfully crystallised a truncated form of streptavidin, the structure
of which was used in this work and is highlighted in green in Figure 6.5 [98]. Analysis of the sequence
revealed that, depending on where in the sequence streptavidin is truncated, it is likely to differ in net

charge by up to several elementary charges.

le.g. Sigma-Aldrich (Product Id: S067, CAS Number 9013-20-1 MDL number MFCD00082035)
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Figure 6.4.: Simulated variation in the net charge of streptavidin versus pH. Three systems were
considered: The protein as tetramer in a complex with biotin (red, dashed), with the ligand removed
(blue, dash-dot), and, finally, the monomeric form without ligand which is multiplied by four for
comparison (green, solid). The inset shows the net charge as a function of pH over the full pH range
(2-13). The change in charge due to binding of biotin can be seen by comparing the blue and red curves,
and was negligible as expected for a small neutral ligand. Streptavidin is stable in its native tetrameteric
form however the monomer is shown as an example of the case of dissociation extreme conditions. The
monomer has a slightly different titration curve due to its increased solvation.

6.3.4. Conclusions

Depending on the commercial origin of streptavidin, its structure, and hence charge can vary, a fact
which has been little appreciated within the BioFET literature. Given the ability of BioFET devices
to, in principle, detect elementary charges, this has significant consequences for the comparability and

reproducibility of biosensing experiments in which different streptavidin samples are used.

The pH-dependent charge of streptavidin was presented based on a truncated X-ray structure of
streptavidin. The predicted pl was 5.04 which is in good agreement with experimental measurements
which find a pl of between 5-6. The net charge at approximately pH 7.4 is relevant to biosensing
conditions, and showed a net charge of —7.20 ¢, for streptavidin, which is in between the predictions

available within the literature of —4 e and —8.49e.
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Figure 6.5.: Full sequence of streptavidin from the work of Argarana et al. [351]. The blue region (1-24)
corresponds to the N-terminus signalling region that is likely removed in vivo. The green highlighted
region (37-157) corresponds to the truncated-structure that was resolved in the X-ray crystal structure
published by Weber et al. [98] (PBD ID: 1STP) and used in the simulation of net charges presented
here. Pahler et al. [352]truncated streptavidin such that residues residues 37-163 were present (i.e. green
and yellow regions). At pH 7, residues that based on the intrinsic pK, of the individual amino acid are
usually positively charged (red) or negatively charged (purple, black box outline) are both underlined.
This analysis shows, for example, that the streptavidin used by Weber et al. is likely to be 1e more
negative than the net charge of the streptavidin of Péhler et al., due to the positive lysine residue (K)
labelled 160 in the figure. Weber et al. comment that the termini are likely flexible or disordered [98],
suggesting that the intrinsic pK, of the amino acids for the non-highlighted and yellow regions are likely
reliable.

6.4. Conclusions and Future Perspective

Streptavidin, the most common model protein used in BioFET sensing experiments, as well as in
most other biosensors, was investigated by collating literature for the measured sequence and pl of
different samples. The analysis showed that the net charge of streptavidin can vary between different
commercial sources of the protein, which has consequences for the reproducibility and comparability of
biosensor experiments in which the commercial source is not reported. These results will be submitted
for publication as part of a novel meta-analysis of the streptavidin-sensing BioFET literature, the

results of will be presented in Chapter 8.

In this chapter, two biomolecule interactions (antigen/antibody and biotin/streptavidin) both relevant
to BioFET sensing experiments were chosen as model systems and their net charges were calculated
as a function of pH. BioFET response is dependent upon the electric field change at the interface
upon binding of biomolecules. As a result of this, based on simple net charge arguments, the polarity
and magnitude of the net change of charge corresponds to the expected polarity and magnitude of
BioFET response. These simple net-charge arguments are commonly invoked to explain BioFET
response, but are likely an oversimplification of the relevant physics. In practice, the relevant electric
field is also a function of the position of charges upon the molecules on the biomolecule. De Vico et al.
are one of few authors in this field to explicitly incorporate the contribution that the orientation and
position of charges within a biomolecule might have [31], and the multi-scale BioFET response model
of Heitzinger et al. also supports the notion that the position and orientation of charges are vital in
modelling FET-response [37, 39, 40]. In the following chapter, simulations are presented which suggest
that magnitude of the electric field is primarily determined, not by the magnitude of the charge on the
biomolecule or its orientation, but instead by its influence on the surrounding counter-ion dynamics

and orientational water polarisation.
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7. Electrical Double Layer Dynamics at the

Silica-Water Interface

7.1. Chapter Introduction

In results presented thus far, focus has been devoted to modelling the presence (or absence) of charges
at oxide-water interface, with little explicit consideration of the dynamics and structure of ions within
the electrical double layer. These properties are vital to improving fundamental understanding of
biosensing [31, 342, 354], but also drug-delivery [115], prebiotic chemistry [116], geochemical processes

(e.g. dissolution reactions [117]) and chemical engineering (e.g. water desalination [118]).

Literature BioFET response modelling is almost exclusively based upon the mean-field Poisson-
Boltzmann equation [2, 35-45]. This model treats the charge introduced by the biomolecule as
smeared out in an infinitely thin surface charge and therefore cannot accurately describe the changes in
electrical double layer structure (and therefore electric field and sensor response) induced by binding of
charged macromolecules. Sometimes the Poisson-Boltzmann model is modified to attempt to account
for this ‘biomolecule layer’ as an ion-permeable membrane modelled via a Donnan potential [355-358]
or an ion partition energy function [359-361]. Whilst these approaches can in some cases improve
predictions from the model, they still neglect effects such as water polarisation, ion-ion correlations
and finite-size effects. Given the limitation of current models, in the work presented here, classical

Molecular Dynamics simulations were performed which can simulate all of these effects.

In this work, the term Molecular Dynamics, or MD, is used to refer to the simulation of the motion
of atoms using classical physics. Distinction is made between other potential uses of the word, for
example Born-Oppenheimer Molecular Dynamics (BOMD) in which the forces are computed using
DFT, or to give another example, the dynamics of molecules observed in spectroscopic experiments.
In MD simulations, chemical bond breaking/forming and electronic polarisation cannot be predicted,
however, MD simulations can reach the time-scales required to study how ion dynamics are perturbed
in the presence of surface charges and biomolecules. MD can also be used to investigate much
larger systems spanning tens of thousands of atoms. Questions which are intractable using Poisson-
Boltzmann approaches can be addressed, for example, ‘how does the presence of a biomolecule affect

the time-dependent fluctuations in the electric field?’

Maekawa et al. [263, 264] investigated the interfacial electrostatic potential at the silica-electrolyte
interface. Their experimental work demonstrated a change in BioFET response on addition of
increasing concentrations of monovalent electrolyte, and their MD simulations suggested that this
effect can be explained as due to strong orientational polarisation of water induced by a compact Stern-
like layer of cations at the silica surface. In the work presented within this chapter, the motivation
was to extend this investigation to include: (a) how highly charged macromolecules can influence the
structure and dynamics of the electrical double layer, and (b) to investigate how electrolyte systems
containing multivalent ions behave, the latter of which has received relatively little attention within
the atomistic simulation literature, despite their physiological [362, 363] and technological importance
[361, 364, 365].
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In order to study the behaviour of a charged macromolecule in the electrical double layer, DNA
was chosen as the model system as it is well-studied both experimentally [366] and theoretically
[367-369] and it has direct relevance to biosensing experiments [361]. A large body of work has been
focused on the development of a set of MD parameters which can accurately describe the forces and
energies (‘forcefield’) of DNA, and therefore its dynamics [367, 370]. Similarly, given its technological
relevance, various forcefields specialised for the simulation of silica-electrolyte systems have been
developed [119, 208-210]. In this work, the COMPASS II forcefield [114, 371] was used in order to
retain comparability with the simulations of Maekawa et al. and because it has been parametrised to
accurately describe ion-water interactions, and both organic and inorganic systems, making it suitable
for interfacial dynamics. Further discussion of the motivation and validation of the choice of model

system can be found within the publication in Section 7.3.

7.2. Background: Classical Molecular Dynamics Simulations

A detailed discussion of molecular dynamics is beyond the scope of this work, but several excellent
resources are available in this field [372, 373]. A brief overview of the simulation technique is provided

here:

Newton’s second law of motion, shown in Equation 7.1, provides a major basis for MD simulations.
Given an initial set of atomic positions, r;(t = 0), for each atom 4, integration of Equation 7.1 provides
the atomic positions as a function of time. The force acting on each atom due to all other atoms in the
system, at a time ¢, is written as F;(¢). This can be expressed as the molecular mass, m, multiplied by

the acceleration it is experiencing, a;(t), where its acceleration is itself a function of its position, 7;(t):

9%r;(t)
o2

The force can be expressed as the negative gradient of the potential energy (F;(r;) = —A;V(rN 1))

N

where r*" is the complete set of 3N atomic coordinates:

B oV (rN t) 0%r;(t)
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In MD, the potential energy expression, V, is parametrised empirically, or semi-empirically, using
ab initio methods to describe the atomic interactions and is referred to as a ‘forcefield’. Sometimes
confusingly, the terms ‘potential’ and ‘energy’ are often used interchangeably in this field even though
they differ by a factor of the charge of an electron; when using atomic units however, as done here,

they are equivalent [374].

The potential energy expression is usually divided into an additive sum of intramolecular and
intermolecular terms:

V= Vvintramolecular + ‘/intermolecular

The bonded terms are usually expressed using a simple harmonic potential with corresponding force
constant(s), k, similar to a spring. For bond lengths, the potential is a function of the distance between
two atoms, and for bond angles, it is a function of the angle between three atoms. The energy of
twisting a bond (torsion energy) is often modelled by a simple periodic function between four atoms.

The relevant equations are summarised in Equation 7.2, where r.q, and 0.4 are the equilibrium bond
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length, ¢;;1; is the dihedral angle, and -, is a phase which is either 0 or 7.

‘/intramolccular =

> kj(rs — req)? (7.2)
bonds B
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bend angles
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torsion angles m
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For the simplest forcefields, pair-wise interactions are used to represent intermolecular interactions.
Between molecules, the attractive interaction potentials for: (a) permanent dipole-permanent dipoles
(Keesome), (b) permanent dipole-induced dipoles (Debye), and (c¢) instantaneously induced dipoles
(Dispersion/London) all decay as 5. Collectively these terms are therefore often grouped into a ‘Van
der Waals’ attraction term [375]. The short-range repulsion due to the Pauli exclusion principle (i.e.
overlapping electron orbitals) is often modelled as a potential that decays as T%, resulting in the
commonly used Lennard-Jones potential, were o and €4 represents the radius of the minimum of the

potential well, and the depth of the potential well, respectively:

Vintermolecular, yDW = 4€4 [(0)12 - (0>6} . (7.3)

r T

Finally, electrostatic interactions are incorporated via Coulomb’s Law, whereby each atom is assigned
a single elementary charge (i.e. £1le) or partial charge (e.g. —0.82¢). Analytical evaluation of
the pairwise sum is highly computationally expensive for large numbers of atoms and therefore, for
periodic systems, numerical evaluation of this in periodic systems can be performed via various
methods (Section 3.2.3).

Once the potential energy function has been defined, the equations of motion must be numerically
integrated. The most common algorithm for this integration is via iterative finite-difference approaches
such as the Verlet and Velocity Verlet algorithms [372].

The choice of thermodynamic ensemble is a final, and important, consideration in MD simulation. A
detailed explanation of thermodynamic ensembles is beyond the scope of this overview [111]. In short,
for a given number of molecules (N) in the simulation, the practice of maintaining a constant energy
(E) in a fixed volume (V) represents the simplest ensemble and is referred to as the microcanonical or
‘constant-NVE’ ensemble. Although simple to implement, it does not provide many useful properties
as the energy of the system is constrained. As a result of this, a commonly used ensemble known
as the canonical ensemble constrains the number of molecules, the temperature (T) and the volume
(‘constant-NVT’). This complicates the implementation as an algorithm is needed to maintain the
temperature. In real experiments, temperature can be maintained by exchange of heat between the
sample and a ‘heat bath’, i.e. a thermal reservoir which has a heat capacity much larger than the
sample, such that when places in contact with the sample the temperature of the reservoir is not
significantly changed. Most successful NVT schemes utilise a similar principle which is termed a

‘thermostat’.

Most biosensing experiments are done at atmospheric pressure, with the volume of the sample free
to expand and contract. It is common to try and model this situation using MD simulations. In
order to keep the pressure (P) constant in simulation (NPT, isothermal-isobaric ensemble), a barostat
is required in addition to the thermostat. In general, the ensemble is chosen to suit the required

thermodynamic properties whilst minimising computational complexity [374].

The primary source of error in any MD simulation originates from the parameterisation of the
forcefield. This can be performed using experimental data or ab initio calculations, although usually a

combination is used. Further sources of error originate from the numerical integration of the equations
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of motion. This is particularly a problem for long time-scales, as small errors in the integration will
accumulate. Similar errors to those already discussed for ab initio are also present, such as errors

introduced in computationally efficient evaluation of the electrostatic interactions.

7.3. Journal Paper

This following research involving molecular dynamics simulations of the electrical double layer was
published in the journal Physical Chemistry Chemical Physics (PCCP) [376].

Dynamic Behaviour of the Silica-Water-Bio Electrical Double

Layer in the Presence of a Divalent Electrolyte

7.3.1. Abstract

Electronic devices are becoming increasingly used in chemical- and bio- sensing applications and
therefore understanding the silica-electrolyte interface at the atomic scale is becoming increasingly
important. For example, Field-Effect Biosensors (BioFETs) operate by measuring perturbations
in the electric field produced by the Electrical Double Layer due to biomolecules binding on the
surface. In this paper, explicit-solvent atomistic calculations of this electric field are presented
and the structure and dynamics of the interface are investigated in different ionic strengths using
Molecular Dynamics simulations. Novel results from simulation of the addition of DNA molecules and
divalent ions are also presented, the latter of particular importance in both physiological solutions
and biosensing experiments. The simulations demonstrated evidence of charge inversion, which is
known to occur experimentally for divalent electrolyte systems. A strong interaction between ions
and DNA phosphate groups was demonstrated in mixed electrolyte solutions, which are relevant to
experimental observations of device sensitivity in the literature. The bound DNA resulted in local
changes to the electric field at the surface; however, the spatial- and temporal- mean electric field
showed no significant change. This result is explained by strong screening resulting from a combination
of strongly polarised water and a compact layer of counterions around the DNA and silica surface.
This work suggests that the saturation of the Stern layer is an important factor in determining BioFET
response to increased salt concentration and provides novel insight into the interplay between ions

and the electrical double layer.

7.3.2. Introduction

Silica and water form some of the most abundant chemical systems and understanding the interface
between the two is important for a large range of applications such as biosensing [31, 342, 354],
drug-delivery [115], prebiotic chemistry [116], improved fundamental understanding of geochemical
processes (e.g. dissolution reactions [117]) and chemical engineering (e.g. water-desalination [118]).
The precise structure and dynamics of this interfacial region, including the Electrical Double Layer

(EDL) remains elusive, despite over a century of extensive study [106, 377-380].

Addition of charged macromolecules to oxide surfaces results in a perturbation of the EDL which
cannot be accurately described by conventional mean-field models. In this work, electrolyte and
biomolecule dynamics were studied with atomistic resolution, providing a detailed description of

the electric field generated at the interface. DNA was chosen as an example of a highly-charged
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macromolecular polyelectrolyte which is both well-characterised and has relevance to a range of
biotechnology applications. In addition, divalent ions were included, which are known to have a strong
influence on the structure of the EDL, important to silica dissolution processes [180] and prominent in
physiological solutions [363] but despite this, have received surprisingly little attention in the atomistic

simulation literature..

One application of this work is in improving understanding of the mechanism-of-action of a promising
class of biosensors, termed Biologically-sensitive Field-Effect Transistors (BioFETs). These sensors
operate by detecting changes in the electric field within the EDL as a result of biomolecule binding,
as shown schematically in Figure 7.1. Reliable and quantitative prediction of changes in the electric
field due to biomolecule adsorption, and hence BioFET response, is currently difficult primarily due
to the complexity of the EDL.

Not only has the presence of divalent ions recently been shown to increase BioFET sensitivity
[361, 364, 365], but the electric field and ion-dynamics at the interface are thought to be crucial in

determining Field-Effect Biosensor response.

Electrolyte Solution

Reference Electrode

Silica

Source | Channel  Drain @

il

Semiconducting

° Channel

e

Electric Field Variation
- Conducting Channel
-> Detection

Figure 7.1.: Schematic of BioFET operation. Biomolecules can alter the electric field at the interface,
resulting in a measurable change in conductance of the channel. Many factors: surface charge; biomolecule
charge; biomolecule orientation; surface dipole; ionic strength; and pH, can affect the interfacial electric
field.

7.3.2.1. Importance of EDL Structure and lon Dynamics in the interfacial region

The most commonly discussed hypothesis for BioFET response is via detecting changes in the electric
field due to changes in the ‘surface’ concentration of ionised groups forming the EDL or charges around
biomolecules [84]'. The interfacial region is thought to be significantly affected by biomolecules; for
example the orientation of biomolecules is thought to be important in determining sensor response
[31, 37] . The EDL structure in turn can be affected by dense biomolecule layers through ion-exclusion;
mathematical models incorporating ion-exclusion effects have been shown to describe experimental

signal measurements of DNA hybridisation better than more conventional EDL models [361].

However, another more recently hypothesised mechanism of detection is via detecting changes in EDL dipole moment
in absence of changes to the surface concentration of ionised groups (e.g. surface charge) or free charges (e.g.
electrolyte ions or charged biomolecules like DNA) at the surface. This notion is supported by the experiments of
Cahen et al. which showed FET response on addition of neutral organic monolayers, or simply oxygen-water vapour
[15]. The importance of the dipole moment of the surface has been supported by the simulations of Heitzinger et al.
based on the mean-field solution of the Poisson Equation [40]. This effect could be caused by electronic polarisation
of neutral molecules at the silica-water interface.
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Recent experimental work recognises the importance of ion dynamics in BioFET engineering, with
deterministic information extracted from BioFET signals in the frequency domain of the response
[314, 361, 381] which has been explained as a result of adsorption-desorption noise of biomolecules
[382] and perturbed charge fluctuations in the EDL [34]. Chung et al. recently performed a particle-
based simulation in which charged spherical particles approach the FET-surface [383]. In their work,
the noise levels increased as the particles approached, and the results strongly suggest that the
thermal-Coulombic motion of ions gathered around the particles induce the Lorentzian shapes in
the noise spectrum. Experiments have shown a decrease in low frequency noise with increased ionic
strength due to increased screening competition between the EDL and the semiconductor device [33].
Heitzinger et al. suggested a different trend for DNA-sensing, in which they calculated an increase in
the standard deviation of the FET channel current with ionic concentration due to an increasingly
variable orientation of the DNA [37]. These studies show that addition of a biomolecule, such as DNA,
can affect EDL dynamics to the extent that a response can be observed in the frequency domain that

is not apparent in the time-domain, even under high ionic strength conditions.

Experiments are not able to unambiguously decouple the signal noise originating from the semiconductor
device and the EDL region in the electrolyte solution. Most current EDL theories used in the BioFET
engineering field are based on equilibrium, mean-field solutions of the Poisson-Boltzmann Equation.
These models offer the advantage of low computational cost and can be accurate for low ionic strength
and low surface-charge systems. However, for BioFET systems, this is rarely the case and finite-size
steric effects render the Poisson-Boltzmann equation inaccurate without modification. Modern advances
in computational power have enabled the exploration of more detailed atomistic models of the structure
and dynamics of the silica-water(-bio) interface [32] via both classical [210, 260, 263, 264, 384—388]
and ab initio Molecular Dynamics (MD) [144, 158, 187, 237, 389).

This work presents MD simulations of EDL Structure and Ion Dynamics in the interfacial region to
investigate how a) increased ionic strength and b) addition of DNA perturbs the electric field and

charge density at the silica-water interface.

7.3.2.2. Divalent lons

Physiological samples often contain divalent cations such as Mg?*™ and Ca?" which serve important
biological functions. For example, diffusely associated divalent cations are thought to have a significant
effect on reducing the internal stress in DNA/RNA due to screening of the negative charges on the

phosphate backbone, as evidenced by experiment [362, 363] and simulation [390, 391].

Divalent ions are also known to be important in the phenomenon of charge inversion, in which the
first diffuse layer in the EDL contains more counterions than needed to compensate for surface charge,
which is then balanced by a second co-ion layer. This phenomenon has been attributed to two (non
mutually-exclusive) mechanisms. One mechanism is via ’specific adsorption’ of ions, via forces such as
chemical bonding or water-mediated interactions [392]. The other mechanism is via many-body ion-ion
correlations, in which the chemical potential near the surface is reduced due to spatial correlations
between discrete ions, with the electrostatic interactions outweighing the entropic cost of forming such
a highly correlated system [392, 393]. Atomic Force Microscopy (AFM) has measured the effects of
charge inversion at the silica-water interface using trivalent and quadrivalent ions at low concentrations
(<11M) [394]. These experiments did not demonstrate charge inversion for Mg**; however, it would
be expected that divalent ions would require a higher concentration than trivalent ions. Edel and de
Mello have measured the streaming current for silica nanochannels and Mg?" counterions, observing

charge inversion for concentrations exceeding approximately 400 mM [395].

From the perspective of BioFET biosensing, the importance of adding divalent and multivalent
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salts has also been shown. Jayant et al. have recently shown a significant enhancement in DNA-
hybridisation sensitivity upon addition of trace amounts of multivalent salt (Mg2+ or 003+) to a
low-concentration NaCl background buffer [359-361]. In their work, a background of 1 mm NaCl was
used for hybridisation of ssDNA, and it was found that addition of the complementary strand in 1 mMm
NaCl with 100 pm Mgt produced a 350 + 150% increase in potential shift relative to the control.
They found that this effect was only significant when the initial concentration of monovalent salt
was low, which supports an ion-competition mechanism. Modelling the DNA as a membrane, they
putatively assigned the signal to a combination of (a) increased ion-exclusion of multivalent ions and

(b) increased DNA-condensation in the presence of multivalent ions [361].

Other authors support the notion that multivalent salts can have a significant effect on BioFET signal,
for example, Rica et al. have observed an increase in DNA hybridisation on addition of multivalent
salt (spermidine) and observed a corresponding FET signal indicative of charge inversion at 10 um
spermidine. The signal changed polarity at higher concentrations of spermidine, which they attribute
to increased screening of the charge inverted DNA molecule [364]. Shul’ga et al. have reported an
almost 100% increase in glucose-sensitive enzyme-FET signal on addition of 0.1 M MgCl, which they
attribute to divalent cations affecting the rate of charge transfer of the enzyme substrate oxidation
[365].

Despite the importance of divalent ions, a monovalent electrolyte is typically assumed in MD simulations
of hydrated surface-biomolecule systems or mathematical modelling of BioFET signals. Sakata et al.
[263, 264, 384, 385] have recently used MD simulations to investigate the EDL structure and dynamics
for hydrated silica-water [264, 384] and hydrated silica-DNA systems [385]. This paper extends this
work to investigate the effect of divalent Mg®™ ions upon the structure and dynamics of the EDL at

this technologically important interface.

7.3.3. Computational Methods

Figure 7.2(a) shows a schematic diagram of the simulation domain used in this work. The solid base
was modelled as the (100) surface of alpha-quartz (SiO,) with dimensions of 49.130 A x 54.050 A,
and a depth of 16.5 A. At open-circuit potential and biosensing conditions (usually 5 < pH < 9),
silica-water interfaces are negatively charged and therefore the upper surface was defined with a ratio
of one fifth SiO~/SiOH (0.2Cm™~2), as discussed further in the Appendix H Section 1. The surface
charge was then neutralised with Na™ to produce an electroneutral unit-cell and a solvent box was

put into contact with this surface, similar to the method of Zhang et al. [388].

Solvent boxes were prepared with an initial density of 1gecm ™2 and a vertical height of approximately
73 A. Three different solvent boxes were considered: 0M electrolyte (salt free, corresponding to
deionised water); approximately 0.2 M ionic strength electrolyte; and approximately 1 M ionic strength
electrolyte, each containing a 1:1 molar ratio of NaCl to MgCl,. The system was geometry optimised
for 5000 steps and then NVT dynamics [372] were performed at 300 K for 3 ns. Dynamics were
performed with the Nosé-Hoover thermostat using a Q ratio of 0.01 [372].

For comparison, three further systems were prepared at each ionic strength, incorporating DNA
neutralised with Na™. DNA was constructed and chemically bonded to the surface following the
method of Maekawa et al. [385] and consisted of a d(AAAAAAAAAA) decamer with a complementary
base-T strand and a net charge of —19 e. The DNA was superimposed onto the solvent box, the DNA
was kept fixed and a 5000 step geometry optimisation was performed for the three cases. Then, water
molecules within the DNA were removed and electrolyte ions moved from inside to outside of the DNA.
A further 5000 step geometry optimisation and 100 ps of NVT dynamics were performed in order

to further relax the system. Similarly to Luan et al. [396], ionic strengths were calculated using the
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number of electrolyte ions counted beyond those required to neutralise the silica and DNA. The volume
of the liquid system (without DNA and after geometry optimisation) was used for this calculation
with the result that stated ionic strengths (0.2 M/1 M) are only estimates. Systems referred to as 0 M
contain no added electrolyte in the solvent box, but are electroneutral due to Na™ associated with
the surface layer and DNA. A summary of each the composition of each model is given in Table 7.1
and images of the initial configurations of the DNA systems at varying ionic strength are shown in

Figure 7.2.

In the simulations, the COMPASS II 1.2 forcefield was used. This forcefield has been parametrised
predominately using ab initio data for a wide range of condensed systems; both organic and inorganic
systems and on a range of ionic liquids [114, 371]. In this forcefield, the charges are the same as in
the COMPASS 1 forcefield (see for reference the previous work by Maekawa et al. [263, 264, 385]),
with the exception of the phosphate group on DNA molecules. For this functional group, the
COMPASS 1II defaults were used; -0.3 for the sugar-linking oxygens, -0.822 for the non-linking
oxygens (=0 and -O7) and +0.9246 for phosphorus atoms resulting in a total charge of -1 for each
[RCH,PO,C(H)R| substructure. Ewald summation was used for the electrostatic interactions with
a 4.184 Jmol threshold and an atom-based summation with a 12.5 A cutoff for the van der Waals
interactions. Unless otherwise specified, all analysis was performed over the mean of the last 1 ns

with 1 ps windows.

The self-diffusion coefficient, D, was calculated using the Einstein relation. The mean squared
displacement (M SD), defined as [r;(t) — 7;(to)]?, where r;(t) is the position of an ions at time t. The
Einstein relation shows that the M.SD increases linearly over time as shown in (Equation 7.4), where
d is the dimensionality of the system (=3 in this work) and ¢y can be any time point as only relative
time differences are considered [397].

([ri(t) — ri(to)]?)

D= ) (7.4)

Therefore self-diffusion coefficient was calculation by linear regression of the M SD against time.

The residence times of molecules coordinated with ions was calculated as per the definition of Impey

et al. [398], based on the rate of decay of the time-correlation function with the parameter t* =0 .

The electric field was calculated in this work from the electrostatic forces on a test charge evaluated
using two methods: coulomb summation and Ewald summation. In the Ewald sum, the calculation is
periodic in x,y and z, whereas in the coulomb summation method, a finite supercell is used. Details of
these methodologies can be found in the Appendix H Section 2, each of which have advantages and
disadvantages. Briefly, the Coulombic sum method has error from truncation of the full periodicity of
the system to a finite sum, and the Ewald sum has error from the contribution of periodic interactions
in the z-direction and from the introduction of a non-uniform compensating background charge for
orthorhombic unit-cells [252].

7.3.4. Forcefield Verification

An accurate description of ion dynamics and structure is fundamental to simulations of charge dynamics
in the EDL. The COMPASS II forcefield [114] was utilised in this study as it has been parametrised
using a wide range of experimental data, including both organic compounds and biochemically relevant
ions in the condensed phase. One important requirement of the forcefield is that it describes the
solvation of ions accurately. In order to validate the forcefield, initial simulations of the interaction

between the Mg®™ and Na™ cations, and water were performed.
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Element OmM 200 mM 1000 mM O mM & DNA 200 mM & DNA 1000 mM & DNA

0 8902 8850 8654 8724 8653 8494

H 13171 13067 12675 12830 12688 12370
Si 1200 1200 1200 1200 1200 8494
cl 0 18 87 0 6 87
Mg 0 6 29 0 6 29

Na  0(33) 6(33) 29 (33) 0 (33) [19] 6 (33) [19] 29 (33) [19]

Table 7.1.: Total number of atoms of each element in each simulation. For the 'Na’ row, the first
number shown is the number of Na™ ions in the solvent box, the number of round brackets is the number
of ions initalised as ion pairs with silanolate ions at the surface, and the number is square brackets is the
number of ions initialised to neutralise the DNA phosphate groups.

(a) Z~ 1184 (b) (C)
Vacuum
Z=90A
Z=1754 .
Z~1654 basmla
Z=04

Figure 7.2.: System summary. (a) Side-on schematic of the simulation cell. (b, ¢, d) Initial configuration
of the 0 mM, 200 mM and 1 M ionic strength systems with DNA. Mg?* = Purple, Nat = Green, Cl~
= Yellow, O = Red, Si = Gold. Mg-coordinated water drawn as transparent. DNA drawn as stick
representation. Videos of each trajectory can be found in the Appendix H.

Figure 7.3 shows a plot of the coordination number for each ion with respect to pure water (oxygen
atoms), as well as snapshots of the equilibrium solvation sphere around the (a) Mg*" and (b) Na™
cations. The calculated coordination number of Mg?Twas approximately 6, in good agreement with
neutron scattering data [399], whereas for Na™ the coordination number was approximately 5 which
is in agreement with neutron scattering of 4.9 + 1 [400] and ab initio MD of 4.6 [401]. The Mg®"
cation showed a more ordered solvation sphere than Na™, demonstrated by the initial steep rise and
flat region of the curve for the first compared to the second. The secondary peak in the curve shows
evidence of a structured secondary solvation sphere. The difference in structure between the ions is
due to the smaller ionic radii and stronger Coulombic attraction of Mg®™ resulting in a much tighter,

more ordered solvation sphere.

Another test parameter for the forcefield is the diffusion coefficient; the values for C1~ , Na™, Mg®" and
H,O are presented in Table 7.2. The calculated diffusion coefficient for water and ions overestimates
the experimental value by a factor of approximately 2, which is consistent with other common water
forcefields such as TIP3P and is a consequence of the well-known difficulty of accurately capturing
water dynamics in empirical forcefields. Agreement within 2- to 3- fold is considered reasonable for
diffusion coefficients [402]. It is promising that the relative diffusivity of the ions is in good agreement

with experiment, suggesting qualitatively correct dynamics.

Lastly, the calculated radial distribution function of Mg®*/Na™ ions to H/O atoms in bulk water
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Figure 7.3.: Comparison of the water structure around Mg?*and Na™ in pure water. Ion-O Coordination
number (cumulative number of oxygen atoms) for a single Mg®" (blue) and Na™ (green) in pure water.
There is an initially steep rise for Mg?T followed by an extended flat region, indicating that there is a
highly ordered first solvation shell resulting in a radial region where oxygen is absent. Na™ by comparison
has a more labile first solvation shell, with less distinct regions occupied by the oxygen atoms. The
coordination number for Mg®" is 6.2 in agreement with the expected octahedral coordination. For Na™
the coordination number is in the range 4.8-5.5, the lower coordination to Na™ is expected due to the
less efficient packing around the molecule. The curves also show evidence of a second ordered region
for Mg?® compared to Na®. Shown insets are representative snapshots of the first hydration shell of
Mg?"(a) and Na™ (b) also demonstrating the difference in ordering of the water molecules. Mg**shows
a tighter binding octahedral structure, as opposed to the more diffuse NaTion. Snapshots were taken
from the system after 2ns of NVT MD. All molecules shown with atoms within 3.5 A of the ion, bond
lengths (A) shown in black.

is shown in Figure 7.4. The coordination number previously shown in Figure 7.3 was calculated as
the integral of this RDF, assuming a fixed box-volume based on the last frame of analysis. Excellent
agreement is seen between the simulated RDF peak position for Mg?*-O and Mg®"-H versus neutron
scattering experiments; however, exact agreement is not expected due to the higher concentration of

the experimental data.

7.3.5. Results and Discussion

The main aim of the work presented in this paper was to investigate the interfacial EDL structure
in a range of ionic strengths, with and without the presence of DNA as an example biomolecule.
Simulations were performed using 0 mM, 200mM & 1000 mM ionic strength 1:1 MgCl, to NaCl
electrolyte, with and without DNA. Videos of each of these molecular dynamics simulations can
be found in the Appendix H. The simulation results were analysed in sections to examine: ion
dynamics in the interfacial region and comparison with accepted Double Layer models; variation of

EDL structure with ionic strength; and the effect of the inclusion of the DNA molecule.

7.3.6. lon Dynamics at the Silica-Water interface

Understanding ion dynamics at the silica-water interface is vital not only for improved biosensor design
but also in other fields such as geochemistry, where Na™ and Mg®™ may be important in dissolution

reactions [117], and chemical engineering for the improved design of water-desalination processes [118].
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System Simulated D Literature D
1 x107° cm?s7! 1 x107°cm?s7!
Na®™ 0.2M in Water 4.1 1.3 (expt.*) [403]
Mg?t 1 M MgCl, 1.3 0.71 (expt.*) [403] 0.50 (expt) [404] 0.60-0.79} [405]
Cl™ 1 M MgCl, 3.6 2.0 (expt.* ) [403] 1.4 (expt.) [404] 2.4-2.61 [405]
H,0O Bulk Water 5.9 [263] 2.3 (expt.) [406] 5.2-7.0F [407]

Table 7.2.: Simulated COMPASS II forcefield diffusion coefficients compared to literature data. The
Na™t/Mg?T/Cl™ diffusion coefficients were calculated using the COMPASS 1T forcefield at 300 K (with at
least 500 ps NPT equilibration) extracting the MSD gradient with respect to time over 8 ps and substituting

this into Equation 7.4. The simulation cell was approximately 46.5 AS, and contained 20 Mg?™ and 40 C1~.
The COMPASS II forcefield, like the widely used TIP3P model of water, overestimates the diffusion
coefficient of water by approximately two fold from experiment, likely resulting in the overestimation of
D for the ions. This disagreement reflects the difference in concentration between simulation results and
experiment, and the difficulty of accurately parameterising the dynamics of water in a simple empirical
forcefield; however, the relative ion diffusivities are in good agreement with experiment . * Extrapolated
to infinite dilution. { Simulated using TIP4P and OPLS forcefield at very low ionic strength. {Simulated
using TIP3P forcefield .

7.3.6.1. Si—O~ [Na™(H,0),] Interfacial Structure

The simplest interfacial system, representing deionised bulk water or a concentration of 0 mM, contains
the silica surface with sodium ions neutralising the negatively charged silanols. In order to investigate
the structure of the interface at this and higher ionic strengths, as in the previous section, the radial
distribution functions (Appendix H Section 3) and coordination numbers (Figure 7.5) were calculated

for both silanolate-Na™ and silanolate-water(H).

For the 0mM case, the RDF demonstrated that for the silanolate groups, the mean O - .. Hyater
hydrogen bond length was 1.25-2.0 A and each silanolate was coordinated to 2-3 water molecules. The
silanolate-Na™ coordination number increased with increasing ionic strength, resulting in coordination
numbers of 0.95, 1.03 and 1.10 for 0 mM, 200 mM and 1000 mM respectively, as shown in Figure 7.5(a).
The increased concentration of cations did not affect the ionic bond length or result in multiple sodium
ions per silanolate, but did result in a slight reduction in silanolate-water (hydrogen) coordination
resulting in coordination numbers of 2.83, 2.67 and 2.5 for 0 mM, 200 mM and 1000 mM ionic strength
respectively, as shown in Figure 7.5(b). One explanation for this is that Na™ accumulation near the

interface results in increased displacement of interfacial water.

The residence time of water molecules to silanolate groups was calculated to be 80 ps (based on
a silanolate to hydrogen distance cutoff of 3.5A) and showed no dependence on ionic strength.
This indicates that with increasing interfacial ionic concentration, the water dissociation rate is not

significantly affected (Appendix H Section4).

In conclusion, increasing ionic strength reduced the equilibrium water coordination to silanolate

groups, but the water-silanolate kinetics were not significantly affected.

7.3.6.2. Silica-Na™ Dissociation

The dissociation of NaTions, initialised in contact with the silanolate ions, was examined by observing
individual ions and calculating their MSD over time. In all three simulations of the silica-electrolyte
interface (9ns simulation time total), only 2 desorption events were observed, one for the 0 mM system
after 600 ps and one for the 1 M system after 1700 ps. In both cases, the dissociation mechanism was
the same. Examining the desorption event in the 0 mM system in more detail, the calculated diffusion

coefficient for the dissociating ion and the roughly linear increase in MSD with time were typical of a



100 Electrical Double Layer Dynamics at the Silica- Water Interface

25 8
— Mg-O 7 —— Mg-H
20 o Mg-O (expt.) 6 o Mg-H (expt.)
15 —— Na-O _ 5 —— Na-H
S =
10 s
A 3
5 2
1
0 0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Radial Distance (A) Radial Distance (A)

Figure 7.4.: Simulated (red/blue) Mg®t-O (left) and Mg**-H (right) Radial Distribution Function
(RDF) in bulk water, compared to experimental (green) data for Mg®*t. For the simulations, 268
water molecules and 1 ion (Mg2+/ Na™ respectively) were prepared in an approximately 20 A box, NPT
molecular dynamics were performed with 2ns equilibration and a 8 ns production period over which
the RDF was calculated. The neutron scattering data was obtained from Bruni et al. [399] and is
measured at 1:83 MgCly:H,0O concentration. Excellent agreement is seen between the simulated RDF
peak position for Mg?™ RDFs versus experiment; however, exact agreement is not expected due to the
higher concentration of the experimental data. Na™ shows a smaller first peak due to its lower water
coordination number and shows a more diffuse RDF for its second peak due to its weaker interaction
with water. Na™ is also in good agreement with experiments; neutron diffraction data for Na¥ puts the
first RDF peak at 2.35 A for oxygen and the first peak at 2.91 A for H [400]. These results suggest the
COMPASS 11 forcefield is accurately describing the equilibrium ion-water structural properties.

unbound stochastic ion (shown in Appendix H Section 5). The mechanism of dissociation is shown in
Figure 7.6 and was a result of Na™ displacement by a fourth water molecule. This resulted in a highly
solvated silanolate (coordination number of 4) compared to the average silanolate-water coordination
number of 2.5. Sodium desorption kinetics may therefore require a two-step mechanism involving

hypercoordination of the silanolate followed by desorption into the bulk.

7.3.6.3. Residence Time of the First Hydration Shell of Sodium

The ionic strength of the solution can affect the solvation dynamics of the ions and therefore the
structure of the EDL. In order to quantify the characteristic time-scale that a water molecule remained
coordinated with Na™t, two systems were considered: the condensed surface layer (< 5A from the
surface) and the bulk (> 5 A from the surface). The calculated residence time was approximately
20ps and 12 ps for the surface and bulk respectively, with a slight dependence on ionic strength
(Appendix H Section 6). The demonstrated increase in residence time at the surface suggests a more
kinetically-stable solvation sphere for surface-coordinated ions, and is likely a result of the structuring
of water and ions found at the interface. Residence times on the order of picoseconds are consistent
with other studies of Na™ hydration [408].

7.3.6.4. Magnesium lon Dynamics

When free magnesium ions approach DNA| it is currently unknown whether the phosphate groups of the
DNA displace any of the six Mg*"-coordinated water molecules. Several experiments suggest that Mg*"
retains its solvation shell [366], for example, if Mg?T-DNA direct binding was strongly favourable, then
Mg?* would be expected to be resolved in X-Ray crystal structures of DNA. Furthermore, fluorescence

and thermal melting experiments show no indication of Mg*" directly bound to the DNA [409)].

For the duration of all simulated systems presented in this paper, the Mg(aq)2+ ions retained their octa-

hedral water coordination sphere, essentially remaining a single hexahydrated cluster, [Mg(HQO)ﬁ]%,
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Figure 7.5.: Silanolate- coordination number as a function of 0 mM, 200 mM and 1000 mM ionic strength
for silica-water systems. (left) Silanolate-sodium coordination number 0.95, 1.03 and 1.10 for 0 mM,
200 mM and 1000 mM respectively (right) Silanolate-water (hydrogen) coordination number 2.83, 2.67 and
2.5 for 0mM, 200 mM and 1000 mM ionic strength respectively. Increasing ionic strength resulted in an
increase in sodium ion coordination to silanolate ions and corresponding decrease in water coordination.
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Figure 7.6.: Mechanism of dissociation of Na™ from the silica surface. Snapshots taken from the 1 M
system. At 646 ps water molecules (labeled 1-3) and the Na®t (green) were bound to the silanolate ion
(large red sphere). Water 4 was loosely associated with a SiO™ -.. H,O distance of 2.39 A. Over the next
picosecond, Water 4 bound to the silanolate (SiO~ -.. H distance of 1.49 A) resulting in dissociation of
the Na™. The Na™ then remained within 5 A of the silanolate (second solvation sphere) for 40 ps before
diffusing into the bulk.

therefore supporting the notion that Mg®" does not directly coordinate to the DNA. However, NMR
experiments have measured a mean water-Mg?'residence time of 1.5 ps [410] and therefore, micro-
second time-scale molecular dynamics simulations would be required to sample the full configuration

space of the solvent shell.

As discussed, magnesium ions are particularly important in nature and biological systems. Mg?"
is known to specifically adsorb to some oxides surface with the extent being highly surface and pH
dependent[411, 412]. In this work, only on a few occasions did the magnesium ions remain near
(<10 A) the surface. In the 1M simulation, a Mg*" that was initialised near the surface remained
near the surface for the first 1.5ns and then adsorbed to a specific site, as shown in Figure 7.7. This
was the only example observed of stable (> 500 ps residence time) adsorption of Mg?" to the silica
surface, and is the result of the formation of a hydrogen bonded network between two silanolate
groups. This result contrasts with the CP/MAS NMR experiments of d’Espinose de la Caillerie et
al. which suggested that Mg?** forms direct Si-O-Mg bonds to the surface [413]; this disagreement

may be because their system does not contain sodium ions at the surface. These results suggest that
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magnesium ions do not readily displace silanolate-bound sodium ions, and that Mg*" interacts with

the surface via its solvation shell.

W &

Figure 7.7.: Adsorption trajectory of an Mg?Tcation at the silica-electrolyte (1 M ionic strength)
interface. Silica and Mg®" coordinating waters are shown from a snapshot taken at 3 ns. Silanolate
groups are shown as black spheres. Hydrogen bonds to the surface are shown with black dotted lines.
The trajectory of the Mg®" is shown as a time-colored line (red-white-blue) from approximately 750 ps
(red) to 3ns (blue). The blue cluster represents the Mg®™ reaching a stable adsorption site, the ion
reached the site after 1.7 ns and remained there until the end of the simulation (1.3 ns duration). The
Mg?*did not bond directly with the negatively charged silanolate groups, instead forming a hydrogen
bonded complex via its hexahydrate solvation sphere.
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7.3.7. Poisson-Nernst-Planck (PNP) Double Layer Model

Direct experimental measurement of the distribution of interfacial charge is not available [388], however
simulation of the EDL using a continuum model provides a theoretical comparison for expected ion
distribution. Due to the high-surface potentials expected at oxide surfaces at the silica-water interface,
linearisation of the Poisson-Boltzmann equation is invalid and so the full Poisson-Nernst-Planck
equation [414] is solved here with a Stern layer, in a simple Gouy-Chapman-Stern (GCS) model
[415] for a mixture of Mg*", Na™ and Cl~. The details of this model are described in Appendix H

Section 7.

The surface potential boundary condition was set to be equivalent to the surface charge density
in the MD simulation of 0.2Cm™2 (see Appendix H Section 1 and Section 7 for further discussion);
for example, for the same ionic concentrations as the 1M mixed-valency MD system, a surface
potential of 190 mV was used. This surface potential is in quantitative agreement with experimental
measurements at the silica-water interface [416]. At this surface potential, the ions have reached
their bulk concentration within ~1 nm from the surface, independent of ionic strength (Appendix H
Section 7).

The GCS has many limitations in high concentration systems. The dielectric constant of water will
not be 80 near the surface due to the stronglocal interactions. Also, correlated motion between ions is
not incorporated, which can be particularly important for systems containing divalent ions [392]. A
further, well-known limitation of the GCS model is that it does not describe finite-size effects and

cannot describe the adsorption of ions to specific sites on the surface or ion-water interactions.

In the GCS, high surface potentials can result in extremely high concentrations < 1 A from the surface,

which is physically unrealistic? due to steric constraints. By increasing the Stern layer thickness,

2The maximum concentration possible (cmax = a~3 where a is the ionic radius) given steric constraints is 25 M to
207 M for 2-4 A cations respectively.
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the maximum concentration in the system is reduced, however it is possible to consider extensions
to this models to better treat finite-size effects, for example, Kilic and Bazant [414] have presented
a model which replaces the Stern layer with a layer of ¢4, cations, or Brown et al. [417] have
presented a model incorporating hydration repulsion interactions which produced a Stern-like layer.
These approaches share some findings in common, namely there is expected to be a high cationic
concentration within ~1 nm of the surface under these surface conditions, followed by the smooth
decay into the bulk [388].

In Figure 7.8, the 1 M MD simulation results are compared to the GCS model. As expected, both
give the result that the bulk concentration is reached within approximately 1 nm and there is a high
cationic concentration within a few angstroms of the surface in a Stern-like layer. The simulations
showed that, as discussed previously, strongly favourable solvation of the Mg** ions resulted in them
being distributed roughly evenly through the solvent and not displacing the sodium ions at the surface,
with only a small accumulation of ions at the surface (Figure 7.8). This result is in good agreement
with experimental observations for Mg®™ ions around DNA molecules in which the bound state is
characteristic by almost complete hydration and free translation and rotational mobility [418]. These

results provide a description that cannot be obtained from the GCS formalism.

These results might help to interpret the experimental results of Jayant et al. demonstrating an increase
in DNA hybridisation sensitivity upon addition of trace amounts of divalent salt to a monovalent
electrolyte system [361]. In their paper, this effect was modelled using a Poisson-Boltzmann model
modified to include the effect of variable ion-permitivity due to a biomolecule layer. The results
presented here suggest that the double-layer structure for Mg?™ containing electrolyte may not be
adequately described by the Poisson-Boltzmann model. This discussion will be extended to the effect
of DNA later.

Concentration (M)

Figure 7.8.: Concentration as a function of z-distance from the surface for the 1M system (solid
lines) compared to the Gouy-Chapman-Stern (GCS) model with a 0.5 A Stern-layer at 190 mV surface
potential (dotted lines). The horizontal lines show the uniform bin size for which the concentration was
calculated, and the vertical error bars show the Standard Error of the Mean (SEM). The maximum Na™
concentration was 9.5 M and 1.6 M for the MD and GCS results respectively. The atomistic simulation
corresponds well with the theory for the bulk concentration, and predicts a high concentration Stern-layer
within a several angstroms of the surface. The Mgt concentration however is much more diffuse
than predicted by the GCS because Mg** did not displace sodium ions from the Stern-layer; such
atomistic-chemical effects cannot be described within the GCS formalism.
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7.3.8. Effect of lonic Strength on Electrical Double Layer

The effect of increasing the ionic strength on the interfacial charge distribution is shown in Figure 7.9 (A).
The cumulative charge is plotted as a function of the distance from the unit-cell origin in the z-direction,
this figure was obtained as an integral of the average charge distribution (shown in Appendix H Sec-
tion 8). By plotting the cumulative charge, the zero-charge value corresponds to the position at which
the double layer has fully compensated the surface charge. The charge due to silanolate ions is shown
at z=17-18 A. There is strong similarity between the charge profiles for all ionic strengths and shows
positive peaks at 18.5 A and 21.5 A, and negative peaks at 20.7 A and 23.0 A. These peaks are caused
by oriented water molecules; with positive/negative pairs corresponding to layers of oriented water.
The similarity between the different ionic strengths indicates that the water is orienting primarily as a

result of the surface charge Si—O~ /Na™ layer, as opposed to as a result of the diffuse layer of ions.

The distribution of the diffuse-layer charge (> 3 A from the surface) due to the ions can be seen more
clearly by plotting the same function but excluding charges from water atoms, as seen in Figure 7.9 (B).
With increasing ionic strength, an increase in cationic charge at the interface was observed which
overcompensates the surface charge up to around ~1.5nm from the surface (z=30 A). This was due to
a significant increase of Na™ and Mg®" ions within a few angstroms of the surface, outweighing the
cumulative charge from increased chloride ion density in the bulk. This effect is sometimes referred to
as charge inversion and is known to occur for multivalent electrolytes near highly charged surfaces
and highly charged molecules such as DNA [391]. In this work, the charge inversion 1.5 nm from the
surface was observed to be roughly proportional in magnitude to the ionic strength change (five-fold

increase in ionic strength showed a five-fold increase in charge).

The orientation of the water with respect to the normal of the surface is shown in Figure 7.9 (C).
With increasing ionic strength, orientational water polarisation increased. The water orientated
H-down towards the negatively charged silica surface near the surface; this oxide-surface induced
water polarisation is a well-known phenomenon [145, 157]. As expected, the water becomes isotropic
as the bulk is reached.

In the high ionic strength simulations (0.2M & 1M), the water reoriented at 19-30 A so as to be
H-up towards chloride ions with oxygen towards the interfacial Mg*" and Na®. MD simulations
of the wet-charged interface in the literature have demonstrated water polarisation in monovalent
electrolytes [264, 419]. However, the simulations presented here showed that for high ionic strengths,
the accumulation of negative charge in the 35 A to 40 A region resulted in a secondary layer of H-down

orientated water.

In conclusion, with increasing ionic strength, the equilibrium interfacial charge distribution was found
to be primarily determined by the water structure around the silanolate and sodium ions at the
surface, rather than as a result of the diffuse layer of ions. Charge accumulation and inversion were
observed, however, water polarisation lowered the electrostatic energy of the system so as to produce
a charge distribution (and therefore potential profile and electric field) which was independent of ionic

strength.

7.3.8.1. Local Electric Field in the Electrical Double Layer

In the literature, it has been shown in simulations that increased salt concentration led to positive
charge accumulation near to the surface due to rearrangement of ions, partially compensated by oriented
water at the Stern-like layer directly above the surface [264]. By taking the average charge density of
atoms and solving the Poisson equation, a decrease in the calculated potential in the interfacial layer

was observed. A uniform compensating background charge maintained electroneutrality.
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In contrast, in the work presented here, the surface was initialised with a layer of compensating
sodium ions; which represents an electroneutral system on the length-scale of the simulation domain.
At high ionic strengths this is supported by both theory (Section 7.3.7) and experiment [420]. For
the low ionic strength (‘OmM’) system, this assumption may no longer hold, however the system
provides a control against which to contrast the effect of increasing ionic strength. No increase in the
interfacial charge density was observed with increasing the ionic strength of the bulk (Figure 7.9 (A)
and Appendix H Section 8); this can be explained by the fact that the surface layer was initialised
saturated with a 1:1 ratio of counterions. The presence of counterions in the Stern-like layer meant
that cation accumulation (Figure 7.9 (B)) was necessarily weaker than the systems of Maekawa et
al., and was completely compensated by water polarisation. This observation has significance for
interpreting the response of Field-Effect Transistor-sensors which demonstrate a change in signal
with changing ionic strength [263]; if many silanolate groups are ion-paired with cations or sterically
obstructed from cation binding, e.g. proteins, an amorphous surface, then an increase in ionic strength
is predicted to correspond to a weaker change in surface-charge accumulation and therefore device

response.

A competing factor that could influence device response that is not considered in this work is the
effect of variable surface charge. Titration experiments suggest that increasing ionic strength results
in an larger apparent negative surface charge, which may be due to altering the chemical equilibrium

of the silanol groups [421].

7.3.9. DNA and the Double Layer

A key aim of this work was to investigate the effect of including DNA molecules on the structure of the
interfacial EDL, the electric field and therefore BioFET response. It should be noted that this work
does not attempt to provide a detailed analysis of DNA-ion pairing and DNA conformational dynamics,
since this topic has received much attention within the literature to date [366, 390, 422, 423].

7.3.9.1. Effect of DNA on Electrolyte Structure

The counterion atmosphere around DNA is an area of extensive research, in which it has been proven
that there is a closely associated layer of counterions bound to the DNA regardless of their bulk
concentration. The ions in this layer are referred to as ‘condensed ions’ in the theory of Manning[418]
(Onsager-Manning-Oosawa condensation). For concentrations less than approximately 1 M excess NaCl,
76% of the phosphate groups of 8-DNA are calculated to be compensated Nat within ~10 A of the DNA
surface[424] which has been confirmed to within 10% by NMR experiments [425]. For S-DNA in excess
MgCl, at low concentrations, 44% of phosphate groups are calculated to be compensated by Mg?+
(88% charge neutralisation) [418], this percentage charge neutralisation is supported experimentally
by Dialysis-monitor titration experiments in which addition of Mg®"to 1:1 salt resulted in 85-85%
neutralisation [426, 427], and ion condensation has been observed via NMR for divalent ions such as
cobalt- and manganese- polyphosphate systems [428]. In mixed electrolyte, NMR experiments have

shown Mg?" can displace DNA-bound Na™t [429].

For the MD simulations presented in this paper, there was significant structuring of the water
surrounding the DNA whencompared to the simulations in absence of DNA (Appendix H Section9).
The RDF of the 1M DNA-electrolyte system is shown in Figure 7.10, and shows that the DNA
phosphate backbone attracted a structured counterion cloud in which sodium ions were associated
closely with the phosphate groups at approximately 3 A distance, and formed a secondary more diffuse

layer at approximately 6 A. Consistent with the literature [418], the magnesium ions were bound



106 Electrical Double Layer Dynamics at the Silica- Water Interface

to phosphate groups via hydrogen bonding through the solvation shell; the exception was a single

magnesium ion that was initialised in contact with a phosphate group..

The percentage of ions per phosphate group was calculated by inspection of the phosphate-ion
coordination number shown in the inset of Figure 7.10. Values of 76% and 42% for Na™ and Mg**
respectively, were calculated following the methodology of Young et al. [430, 431], in which the
second inflection point in the RDF curve was used. These values are in excellent agreement with both
the Manning condensation theory predictions and experiment, for non-mixed electrolytes NaCl and
MgCl, solutions at low concentrations. It can be noted that, given the divalence of magnesium ions,
each phosphate group has +1.69 e counterion charge within approximately 6 A, which is evidence of
charge inversion around the DNA. This is a phenomenon that is expected for multivalent systems at
high concentrations[393] and is not described by Manning condensation theory, although more recent

revisions of the theory have attempted to incorporate these effects [432].

Continuing from before, in the work of Jayant et al. [361] the enhanced FET-signal was attributed to
a combination of (a) increased ion-exclusion of multivalent ions and (b) increased DNA-condensation
in the presence of multivalent ions. The simulations presented here show no evidence of Mg?" ion-
exclusion in the DNA layer, suggesting that the previous observed increase in signal in multivalent
salt was due to other effects, such as Mg*" induced DNA-condensation onto the surface as supported
by other MD studies, which discussed Mg®" induced DNA aggregation [391].

7.3.9.2. Effect of DNA on the Surface Potential and Electric Field

The experimental response of BioFET devices is still poorly understood, due to a lack of understanding
of the interfacial electric field. BioFETs are capable of detecting single molecules suggesting that
even fluctuations in the electric field over nanoscale dimensions can be detected [72, 433]; despite the

atomistic length-scale, there have been few atomistic studies which investigated this behaviour.

The full set of data from the simulations of the charge, potential and electric field in the interfacial
region for all six cases, with and without DNA, is shown in Appendix H Section 8 for ease of comparison.
In the simulations, DNA did not produce a strong effect on the time-average charge distribution of the
systems. This might be seen as a counter-intuitive result given that the DNA has a negative charge,
however the mechanical flexibility of the DNA-Na™ system means that the time-averaged charge of

DNA with respect to the surface normal, is expected to be small at any bulk ionic strength.

The electrostatic potential (relative to the silica substrate at 0V) calculated from this charge distribu-
tion, demonstrates that the potential change at the surface (Apnat = YpNA (Zsurf) — PnoDNA (Zsurt))
on the addition of DNA was on the scale of millivolts, for example, at the position of the silanolate
groups (Zsur=17 A), At =-18 mV, -0.5 mV and -37 mV for 0 mM, 200 mM and 1 M systems respectively.
This is of the same order of magnitude as surface potential change measurements for biomolecule-oxide
systems [97, 434], however these changes were highly sensitive to the choice of surface coordinate and

therefore cannot be taken as accurate prediction of surface potential change due to DNA.

Due to natural thermal fluctuations, this mean potential is variable. In order to explore this variability
over time due to DNA, the long-range electric field in to the EDL was calculated by measuring the
electric field on a test charge 1 A below the base of the silica. Figure 7.11 shows the z-component
of the electric field as a function of time for all six cases. No significant difference was found
between the electric field for the 0mM (M = —0.00604, SD = 0.00986) and the 0 mM DNA
system (M = —0.00596, SD = 0.0102) based on an independent samples t-test (¢£(2999) = —0.306,
p = 0.759). For the higher ionic strength systems, a small but statistically significant change (200 mM
system: p=5 x 107°1; 1 M system: p =7 x 10727 ) in electric field was observed upon addition of DNA
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([E(DNA)—E(noDNA)]~0.002 V/A). If this change was a result of the DNA itself and not a result of
noise, it would be expected that this response would be strongest in the 0 M system due to lowest
ionic screening. Interestingly, the control 0 mM systems showed a 30-40% greater standard deviation
in the electric field than the higher ionic strength systems; this indicates that bulk electrolyte may

play a role in dampening transient fluctuations in the surface potential.

As discussed previously (Section 7.3.8.1), increasing ionic strength is expected to increase the surface
potential [264]. The incorporation of an unsaturated Stern-like layer (silanolate groups at the surface
without ion paired cations), produced an electric field which was screened as a result of bulk electrolyte
and a compensating background charge introduced by the Ewald summation [264]. In order to compare
these simulations with the work presented in this paper, the mean electric field was calculated (shown

in the figure in Appendix H Section 10).

In addition, for the simulations presented in this paper, there was no compensating background charge
and the system was neutralised by a Stern-like layer and the bulk electrolyte, resulting in a more
compact double layer and therefore a weaker electric field by comparison. No trend in electric field
change upon ionic strength increase was observed, in contrast to the strong changes in electric field
for the unsaturated Stern layer systems of Maekawa et al. (AE;y\y_jov &~ 0.02 V/A) [264]. This
comparison suggests that the electrolyte structure within several angstroms of highly-charged interfaces
has a far more significant effect on the electric field, and therefore BioFET response, than biomolecule
net-charge/orientation. This also emphasises the importance of developing atomistic models with a
realistic description of the Stern layer in order to obtain quantitative atomistic prediction of surface

potential.

Finally, for nanowire BioFETs, with small cross sections in the semiconducting region, and a corres-
pondingly high sensitivity, the spatial variation of the field is crucial in understanding the response
rather than a smeared out average approximation of the behaviour of an artificial one-dimensional
system [31, 435, 436]. The spatial variation in the electric field at the surface of the silica was
investigated for the control system (‘0 mM’) and is shown in Figure 7.12. This demonstrated that
the DNA is having an effect on the local electric field at the surface; however screening from the
condensed sodium ions and polarised water reduced the field such that the field perturbation due to

DNA was weak compared to thermal noise.

These conclusions suggest that, with a compact neutralising Stern-like layer on the silica surface and
around the DNA phosphate groups, that the electric field due to addition of DNA and ionic strength
changes is negligible compared to thermal noise. The most likely explanation for this is that the double
layer is more diffuse than determined by these simulations. Over time-scales not currently reachable
within this MD model, a more diffuse layer might be formed via sodium ions in the Stern-like layer

dissociating due to water- or DNA- induced displacement.
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Figure 7.9.: (a) Cumulative charge as a function of distance normal to the silica surface for 0 M, 0.2 M
and 1M systems, this figure is calculated based on cumulative sum of charges in 0.01 A thick slabs
parallel to the xy plane. The negative cumulative charge 16-19 A was due to silanolate groups at the
surface. The subsequent peaks were due to oriented water around the Stern-like layer of electrolyte
at the surface. The positive peaks were dominated by hydrogen atoms from water, and the negative
peaks by oxygen atoms from water. (b) The same calculation with water charges are excluded. At ~3 A
from the surface (z=~19 A), zero cumulative charge was reached due to sodium and magnesium cations
neutralising the surface charge. At high salt ionic strength there was a net positive cumulative charge
4-15A from the surface (z=20-30 A), sometimes called ’charge inversion’ or ’concentration polarisation’.
The inset shows the longer range interactions. For the 1 M case, the increased positive accumulated
charge near the surface induced a negative layer at 30-40 A due to chloride ions. (c) The mean orientation
of water dipoles (cos(0)) relative to the silica-surface normal, as a function of the z-distance from the
surface, using 1 A bins. A negative value indicates the water hydrogens are pointing towards the silica
surface, positive that they are pointing away, and 0 indicates either parallel to the surface or isotrophic
orientation. Within a few angstroms of the surface (z=15-19 A) the water molecules are oriented H-down
towards the silanolate groups. Further from the surface, with increasing with ionic strength, the water
increasingly orientates H-up towards the chloride ions in the double layer and O-down towards the
cations in the Stern-like layer. For high ionic strengths, at ~18-23 A from the surface (z=35-40 A), the
accumulation of chloride anions was sufficient to orientate water H-down, as shown in the inset. As
expected, the water became isotropic as the bulk was reached.
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Figure 7.10.: RDF for the phosphate groups of DNA to Mg?" (blue) and Na®t (green) respectively,
taken from the 1 M silica-DNA system. Nat bound to the phosphate group directly, as seen by the peak
at 3 A. The coordination number is shown as an inset, Mg?* interacted primarily with the DNA through
hydrogen bonding of their hexahydrate solvation shell (~5 A distance).
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Figure 7.11.: 500 ps moving average of the electric field (z-component) of a test charge 1A below the
silica substrate as a function of time, calculated using Ewald summation. For each system, the mean
electric field, E., is shown in the legend and drawn as a colored line, and the standard deviation, o, is
shown in the legend. The addition of DNA did not produce a significant change in E, field for the 0 mM

systems but demonstrated a small, statistically significant change for higher ionic strength.
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Figure 7.12.: Weighted electric field (z-component) as a function of space in the xy plane at z = 17A
for the ‘0 mM’ system without DNA (left) and with DNA (right). The weighted electric field is the
electric field divided by its standard deviation, which acts to filter out highly variable thermal noise. The
electric field is calculated using the coulomb summation method, taking the mean of the z-component of
the field (1 ps frames over the last 100 ps) on a grid of test charges and displayed as a linear interpolated
heat map. In the each figure, regular patterns of negative and positive field are due to the regular
arrangement of silanolate and ion-paired sodium ions respectively. In the DNA system (right), DNA
atoms close to the surface are shown as a transparent overlay, with negative phosphate atoms shown as
orange spheres. The positive region at y =~ 35 A is due to the positive hydrogen atom on the carbon
linker and the negative regions at y ~ 18 A and y ~ 25 A are due to the negative charges of the DNA
phosphate atoms, showing the DNA is having a local effect on the electric field. The magnitude of the
electric field due to the DNA is low due to screening from condensed sodium ions and polarised water.
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7.3.10. Conclusions

To the best of the knowledge of the authors, this work presents the first classical molecular dynamics
investigation of the bare silica-water interface incorporating magnesium ions, and provides a novel
atomistic analysis of the effect of ionic strength and DNA on the electric field and EDL structure
at these technologically important interfaces. In this work, Molecular Dynamics simulations were
performed using 0 mM, 200 mM & 1000 mM ionic strength 1:1 MgCl, to NaCl electrolyte, with and
without DNA.

As discussed, understanding ion-dynamics at the silica-water interface is important for a range
of systems. The simulations presented here demonstrate that increased ionic strength reduces
the equilibrium water coordination to silanolate groups without significantly affecting the water-
silanolate kinetics. Sodium ion surface-desorption kinetics required a two-step mechanism involving
hypercoordination of the silanolate followed by desorption into the bulk. Sodium ions demonstrated
a more kinetically-stable solvation sphere when coordinated to the silica-surface, relative to when

positioned in the bulk. This was due to the structuring of water at the interface.

Direct experimental measurement of the distribution of interfacial charge is not available [388] and
therefore the MD simulation results were compared to a continuum Poisson-Boltzmann model and
revealed good agreement with regard to double-layer thickness and sodium ion accumulation. Mg*"
did not accumulate significantly at the interface, instead distributing more diffusely than predicted by
the Poisson-Boltzmann model. This was as a result of the strong solvation of Mg®™ meaning it could

not readily displace Na™ bound to the surface not described by the Poisson-Boltzmann formalism.

Fundamental understanding of the interfacial charge distribution and electric field is vital to under-
standing the mechanism of action of Field-Effect Transistor (FET)-sensors. Increasing ionic strength
was shown to result in charge inversion due to cation accumulation, an effect which is observed
experimentally for divalent ions. The charge inversion 1.5nm from the surface was observed to be
roughly proportional in magnitude to the ionic strength change (five-fold increase in ionic strength
showed a five-fold increase in charge). This suggests that charge inversion can begin at lower ionic
strengths than those measured by Edel and de Mello [395].

The results demonstrate that the equilibrium interfacial charge distribution was primarily determined
by the water structure around the silanolate and sodium ions at the surface, rather than as a result of
the diffuse layer of ions. Furthermore, the electrolyte structure within several angstroms of highly-
charged interfaces had a far more significant effect on the electric field, and therefore FET-sensor
response, than biomolecule net-charge/orientation. This supports the theory that the mechanism
of action of FET-sensor is via modification of the surface chemistry (e.g. altering silanol/silanolate
chemical equilibria) rather than the traditional picture based on directly sensing the electric field of
the biomolecule [342].

As discussed, modelling of the FET-sensor response due to biomolecules is inhibited by a lack of
understanding of the interfacial electric field and ion distribution in the presence of biomolecules. The
results showed that with DNA present, there was minimal effect of the DNA due to water polarisation
and strong screening by the condensed layer of electrolyte. The first calculation of the time-varying
electric field for these systems was presented and, by comparison to a low ionic strength control,
showed that bulk electrolyte plays a role in dampening transient fluctuations in the electric field and

therefore device response.

These results have relevance to interpreting the experimental results of Jayant et al. [361] which
demonstrated an increase in DNA hybridisation sensitivity upon addition of trace amounts of divalent

salt to a monovalent-electrolyte system, attributed to ion-exclusion from the DNA region and/or DNA
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aggregation. The simulations presented here showed no evidence of ion-exclusion from the DNA region
and suggests that both (a) the Poisson-Boltzmann model may not be capable of accurately describing
the EDL in the presence of mixed electrolyte, and (b) a mechanism other than ion-exclusion, such as

DNA aggregation, explains the observed increase in response.

The results also emphasise the role of the Stern-like layer in understanding the response of FET
sensors. Changes in the surface charge density (density of silanolate and condensed ions) would be
expected to alter the electric field significantly, but in this work, surface charge is effectively fixed due
to the long time-scale of cation desorption and no chemical reactions. Future work will address this
limitation by varying the surface charge on the surface of the model, which can be compared directly
with existing experimental titration data [416]. This will allow quantification of the extent to which
the Stern-like layer modulates the electric field and therefore improve fundamental understanding of

Sensor response.

7.3.11. Supplementary Data

Data supporting this study are available from the University of Southampton repository in Appendix H
and at:
http://dx.doi.org/10.5258 /SOTON /401018

7.4. Conclusions and Future Perspective

This study investigated the behaviour of a silica-water mixed electrolyte (NaCl : MgCl,) interface
in the absence or presence of a highly-charged polyelectrolyte. Whilst many atomistic simulations
have investigated the silica-water interface, surprisingly little attention has been given to solutions
containing divalent ions given their importance in physiological solution [427, 437]. Divalent ions
are known to have a strong influence on the structure of the EDL, be important to silica dissolution

processes [180] and are prominent in physiological solutions [363].

The results showed that at nanosecond time-scales, magnesium ions do not displace sodium ions at
the silica-water interface. This result can be explained in terms of the highly favourable solvation
of magnesium ions, and has relevance to understanding surface-dissolution and the electrical double
layer in a range of fields such as geochemistry [117] and nanotechnology [412]. In agreement, with
experimental studies, divalent ions resulted in charge inversion within the electrical double layer.
Increasing ionic strength reduced the equilibrium water coordination to silanolate groups, but the

water-silanolate kinetics were not significantly affected.

With regards to biosensing, the simulations showed the unanticipated result that DNA did not induce
a significant change in the spatial- and temporal- mean electric field. Comparison to the simulations
of Maekawa et al. demonstrated that the polarisation of water around a Stern-like layer of cations,
contributes to a strong reduction in the (long-range) electric field originating from the surface charge
and DNA. These results suggest that BioFET response may be dominated not by the net charge of
biomolecules, as traditionally thought, but instead by their ability to perturb the Stern-like layer of

cations at the interface.

BioFET experiments have shown that changes in surface potential as small as ~10 mV can been
measured [70, 78]. A finding of the work presented in this chapter was that the calculated change in
surface potential due to biomolecule presence was highly sensitive to the choice of atomic coordinates
from which the ‘surface’ was defined; making direct comparison to measured shifts non-trivial. A

range of experimental work has provided the measurement of the interfacial potential at silica-water


http://dx.doi.org/10.5258/SOTON/401018

7.4 Conclusions and Future Perspective 113

surfaces as a function of pH [416] and also the surface charge density as a function of pH [32]. Using
this experimental data, the link between the surface potential calculated in atomistic simulations and
the experimental measurement might be obtained. This merits further investigation, and future work
will study the relationship between the surface charge, Stern-like layer density and the electrostatic

potential at the interface.

In the following chapter (Chapter 8), a model biomolecular system is used as part of a meta-analysis of
the literature which aims to ascertain to what extent biomolecules can change the interfacial potential,

and how biosensor design might be improved in light of this.
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8. Quantitative Analysis of FET-Sensor
Literature Data: From pH Sensing to

Biosensing

8.1. Chapter Introduction

In the previous chapters, the physics at the oxide-water interface has been investigated from individual
charging-reactions over femtosecond time-scales to rearrangement of water and ions in the electrical
double layer over nanoseconds. These microscopic details provide insight into the physics underlying
the mechanism of FET-sensor response, but in order to improve BioFET design, results from the
experimental system should also be considered. Therefore in this chapter, a critical review and
quantitative analysis was performed based on available experimental literature for real BioFET devices.
Analytical modelling was performed, based on the drift-diffusion equations, in which the change in
experimentally measured drain current was used to calculate the change in surface potential as a
result of biomolecule binding. This provided information on the macroscopic device length-scales

(nanometers to micrometers) over experimental time-scales (minutes to equilibration of the device).

Whilst the commercial application of FET-sensors for pH sensing has already been realised [21],
their commercialisation for biomolecular sensing is hindered by a poor understanding of how to
optimise device design for reliable operation and high sensitivity. In part, this stems from the
highly interdisciplinary nature of the problems encountered in this field, in which a knowledge
of biomolecular-binding kinetics, surface chemistry, electrical double layer physics and electrical
engineering are required. Whilst many reviews in the field of BioFET research exist, they all compare

disparate analytes, making quantitative comparisons impossible.

In this chapter, a quantitative analysis and critical review was performed comparing FET-sensor data
for pH-sensing with data for sensing of biomolecular streptavidin binding to surface-bound biotin
systems. Streptavidin is the most commonly used model protein, and the importance of this system
for biosensing applications has already been outlined (Chapter 6). This critical review is the first to
provide a systematic, quantitative comparison of BioFET results for a single biomolecular analyte.
This review also highlights factors that can influence the response yet have not always been fully

appreciated, thereby resulting in sub-optimal experimental design.

For pH sensing, the oxide material is shown to play a dominant role in determining the surface
potential shift per pH. This means that the normalised change in drain current, often referred to as
‘sensitivity’, can be improved by optimising only two parameters - the oxide material at the surface and
the transistor ‘quality’. An important motivation for this work was therefore to investigate whether a

similar trend holds for biomolecular BioFET experiments.
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8.2. Background: FET-sensor Characterisation and Performance

Metrics

8.2.1. Reference Electrode

An ideal reference electrode provides a stable reference potential which is independent of changes in
the solution, and can also be biased in order to control the properties of the transistor in a similar
way to the gate electrode of a MOSFET transistor, as outlined in Section 3.1.3.1. As previously
introduced, the liquid gate voltage, V;, set by the reference electrode is often stated to be required for
a reliable and stable signals. Nonetheless, it is not uncommon for devices to be fabricated without
a reference electrode in the liquid [61, 65, 77, 78, 438] and instead, a voltage is applied through the
substrate, which acts as a pseudo-reference electrode and is referred to as a ‘back-gate’ voltage (Vi)
[73].

8.2.2. Threshold Voltage

The threshold voltage (V1) can be qualitatively described as the gate voltage at which the device
turns ‘on’, i.e. a significant drain current flows through the device. More quantitatively, it is defined
in MOSFET theory as the gate voltage that causes the potential at the surface of the semiconductor
to reach significant inversion; ‘significance’ being judged to be the point at which the concentration of
charges in the inversion layer (Section 3.1) are much greater than the impurity concentration in the
semiconductor substrate [30]. Binding of analyte to the surface of a FET-sensor results in a change
in the oxide-electrolyte surface potential which is equal to the change in surface potential at the
semiconductor-oxide interface. Consequently, the measured shift in threshold voltage, AVy, is directly
proportional to analyte binding, assuming that the transistor is operated under an electrostatic-gating

mechanism [53].

An example of a violation of the assumption of electrostatic gating would be when the metal contacts to
the semiconductor are not well-passivated and therefore insufficiently protected from direct interaction
with the analyte. This can result in changes to the metal-semiconductor work function and thereby
a signal which is not originating from an electrostatic gating mechanism [53, 439, 440]. Heller et al.
have described how plots of the drain current (/) against the reference electrode voltage (V;), herein

referred to as ‘I — V, graphs’ can be used to as a tool to identify the mechanism of FET operation [53].

8.2.3. Subthreshold Region

In a traditional MOSFET, when the gate voltage is less than the threshold voltage (V; < V) and the
semiconductor is only weakly inverted, the drain current is usually referred to as the ‘subthreshold
current’ and the device is said to be operating in the ‘subthreshold region’. This region is often used for
FET-sensors [60, 73, 441, 442] as the drain current increases exponentially with the shift in threshold

voltage:

B0~ Ve)), )

Iocexp( SS

where ‘SS’ is the ‘Subthreshold Slope‘ - a parameter which measures the susceptibility of the transistor

to generate a change in drain current for a change in the gate voltage (V) [30].

If a larger gate voltage is used and the drain current is low (i.e. when Vg > mVgys + Vi, where m is a
constant related to the Subthreshold Slope [30]), then the change in drain current becomes linearly

dependent upon changes in the threshold voltage and this region is referred to as the ‘linear region’
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[443]. Parasitic resistance occurs when analyte-insensitive regions of the device contribute significantly
to the resistance; this is low in the subthreshold region as the semiconducting channel resistance is
much higher than the parasitic resistance in this region [324]. Upon sensing analyte, the change in
drain current divided by the initial drain current is a common measure of sensor performance (as
discussed in Section 8.2.4) and is optimal when the device is operated in the subthreshold region.
This has been shown both experimentally [232, 441] and theoretically, based on the drift-diffusion
equations [73].

Rajan et al. defined signal-to-noise ratio as the ratio of the change in drain current to the measured
low frequency noise of the system. Most literature supports that the signal-to-noise ratio is optimal in
the subthreshold region [53, 70, 441, 444], but the work of Rajan et al. has shown that the region
of optimal signal-to-noise can be device-dependent [53, 73, 441, 442, 444, 445]. The disagreement
with other devices in the literature was explained as due to their device having a different regime of
mobility fluctuation noise [446]. Not all publications are carried out in the subthreshold region (as
shown in the summary table of literature in Appendix J), which might be due to lack of awareness
of the significance of this region, or it may be because the signal-to-noise was indeed found to be

suboptimal in the subthreshold region for a given device.

8.2.4. Device Characterisation, Performance Parameters and Metrics

FET-sensors operate on the principle that binding of analyte to the sensor surface results in a change
in surface potential (Ay) via electrostatic gating. This induces an equivalent change in the device
threshold voltage, which can be measured via the transistor as an amplified signal in the form of
a change in the drain current. By measuring the variation in drain current (I) as a function of
the reference electrode potential (Vy), the change in threshold voltage (AVr) and the change in
drain current (AI) can be measured. Either of these properties are termed device ‘response’ here.
From these measurements, metrics important for characterising FET-sensors can be calculated. Two
commonly used metrics, the ‘Subthreshold Slope’ and Normalised Change in Current, are illustrated

in Figure 8.1 and described and discussed in this section.

The Subthreshold Slope is defined as the ‘change in gate voltage (V) required to reduce the subthreshold
current I by one decade’ [447]. The Subthreshold Slope provides a measure of the transistor quality in
terms of its susceptibility to respond to changes in the gate voltage. The reciprocal of the Subthreshold
Slope is called the ‘gate voltage swing’ or ‘subthreshold swing’ [447]. The Subthreshold Slope can
be extracted from the log(I) — V, by measuring the inverse of the slope of the constant-gradient
region (assuming constant drain current and backgate voltage). The lower limit that the Subthreshold
Slope can reach in a classical FET is theoretically bounded to be no lower than ~59mV/dec at room

temperature [30].

The field of research requires the definition of appropriate quantitative and clearly-defined metrics in
order to properly compare the performance of BioFET sensors and their ability to detect and quantify
analytes. Particularly so, as publications in this field have not consistently used well-defined, and
standardized nomenclature or parameters. Authors in the field of BioFET research have sometimes
quantified sensor performance using a definition of the word ‘sensitivity’ which differs from the TUPAC
definition. For example, some authors refer to the absolute change in current as ‘sensitivity’. More
frequently, the change in current divided by the initial current is referred to as the ‘sensitivity’. Neither

of these metrics provide reference to the change in analyte concentration.
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Figure 8.1.: Schematic log(I) — V; graph showing the subthreshold region for an n-type FET, Vas #0
and a gate voltage sweep before (blue line) and after (green line) interaction with an added negatively
charged analyte, with currents Ip and Ilanaiyte, respectively. The direction of response shown is typical
of analytes such as streptavidin (at pH 7.4) or a change to more alkaline pH. There is a parallel shift
in the log(I) — Vi curves such that, at constant I, the corresponding shift in threshold voltage AVr
can be measured. Assuming electrostatic gating, AVt is equal in magnitude to the change in surface
potential at the oxide-electrolyte interface, and can therefore be used for quantitative sensing of analyte
binding. At constant V5 there is a shift in current response (AI), which can be divided by the initial
current to produce the Normalised Change in Current, Inorm. The measured Subthreshold Slope (SS) is
approximately constant in the subthreshold region.

8.2.4.1. IUPAC Definitions

TUPAC defines ‘sensitivity’ as a metric of the specific response as a function of the analyte concentration.
More specifically, it is defined by IUPAC as ‘the slope of the calibration curve’. TUPAC defines the
calibration curve as ‘the functional (not statistical) relationship for the chemical measurement process,
relating the expected value of the observed (gross) signal or response variable to the analyte amount.

The corresponding graphical display for a single analyte is referred to as the calibration curve’. [448]

The TUPAC definition of sensitivity is not a measure of the ability to detect the minimal amount of an
analyte, and therefore another relevant metric is the Limit of Detection which ITUPAC defines as the
smallest measure that can be reasonably detected for a given analytical procedure, and is expressed as
a concentration or quantity. More specifically: ‘The limit of detection, expressed as the concentration,
cy,, or the quantity, qr,, is derived from the smallest measure, x,, that can be detected with reasonable
certainty for a given analytical procedure. The value of xy, is given by the equation x; = Tp; — ksp;,
where Tp; is the mean of the blank measures, sp; is the standard deviation of the blank measures, and

k is a numerical factor chosen according to the confidence level desired. [448]

8.2.4.2. Analysis of Sensitivity

The TUPAC definition of sensitivity incorporates two elements: the measurement of a specific response,
and its dependence upon analyte concentration. Within the BioFET literature there is inconsistency
or absence in both aspects. So the analysis required a careful examination of the presented data to
evaluate the data quality and conclusions, and to use a clear set of nomenclature and criteria for any

comparisons. These are outlined below.
Here the symbol I,,o.1, is used to refer to the Normalised Change in Current, which is defined as:

If*[07|A[|
Iy, Iy’

Inorm -

(8.2)
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where If and Iy are final and initial values of the current, respectively.

Although some publications have simply used the absolute measured change in current from the device
(AI) as the readout, this metric results in a large device-to-device variation and therefore the practice
of normalising the current (AI/I)) has become common since it reduces this variation [97]. The
change in current (AI) can either be positive or negative, and consequently the Normalised Change in
Current, Iyorm, also has an associated sign. Some authors (e.g. [70]) reported the Normalised Change
in Current without this sign which makes the polarity of the measured change ambiguous, and because
the polarity of this response is related to the polarity of the electric field at the interface, this can

obscure a key result of the experiment.

In the subthreshold region, using the MOSFET drift-diffusion equations, the shift in threshold voltage
(due to analyte binding) can be related to the Normalised Change in Current as: [232, 449]:

AV =

In(10) In(Znorm + 1) = SS(logq o (Inorm + 1)). (8.3)
This can be used to calculate the expected magnitude of the Normalised Change in Current for a given
analyte. For example, considering the case of an ideal n-type transistor with a Subthreshold Slope
of 59mV /dec, and an analyte that induces a shift in threshold voltage of 10.39 mV, the calculated
Normalised Change in Current is approximately -33%. For the equivalent analyte, but for a p-type
semiconductor, the calculated change in I,o, is +50%. A negative I and a positive o, are
qualitatively different, this is because a current that is decreasing is ‘bounded’ by zero and therefore
a maximum of —100% is possible, whereas an increasing current has no mathematical upper limit

for the Normalised Change in Current, I\

norms and it is referred to in this chapter as ‘unbounded’

to indicate that is always positive, and can reach large positive values. In the subthreshold region,
direct comparison an unbounded signal from one device (i.e. with an n-type semiconductor) with the

bounded signal of another (i.e. with a p-type semiconductor) is uninformative.

In order to compare the signal between devices based on different semiconductors, the change in
current can be normalised by the current obtained either before the response (Iy) or after the response
(It) , whichever is lower, these lowest and highest values are referred to as liow and Inign respectively.
If divided by This results in a Normalised Change in Current which is always positive and ‘unbounded’
with no mathematical upper limit. The differences between the unbounded and bounded Normalised
Change in Current are illustrated schematically in Figure 8.2. Note that, for consistency with the

quantitative analysis of the literature performed by Sun et al. [232] for pH sensing, I\ = was used in

norm
this analysis. It would be equivalently possible to compare the ‘bounded’ change in current, whereby

the current is normalised by the higher of the before/after binding current (I;,.,)-

norm

Normalised Change in Current is a commonly used metric in the field and its value is a function of the
amount of bound analyte as well as the sensors ability to amplify response. This can be problematic
from the perspective of biosensor design, because if an experiment is performed on a very poor sensor
with a high concentration of bound analyte, then the resulting I,o,m value can be the same as that
measured by an experiment on a good sensor with a very low concentration of bound analyte. The
response per 10-fold increase in concentration of analyte is a more useful biosensor figure-of-merit
and is similar to the [TUPAC definition of sensitivity [448]. In the BioFET literature, the Normalised
Change in Current is often calculated based on the change in drain current after the introduction of
an arbitrary concentration of analyte. In contrast, in the pH sensing literature, it is often defined
over a single pH unit (i.e. per 10-fold increase in concentration of analyte). In the analysis presented
within this chapter, a metric which is similar to the ITUPAC definition will be used in which the
Normalised Change in Current per 10-fold increase in concentration is presented (e.g. % per unit pH

or % per 10-fold increase in streptavidin concentration). Within this work, this metric will referred to
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Figure 8.2.: Schematic of the change in current upon sensing a negatively charged analyte by an n-type
semiconductor (left) and p-type semiconductor (right) is shown. The device is assumed to operating in
the subthreshold region. The values shown are calculated using Equation 8.3 assuming an ideal device
(59 mV /dec) and an analyte which can induce a shift in the threshold voltage of 10.39 mV. The polarity
of the response is reversed between the two types of semiconductor, and therefore the Normalised Change
in Current is different between an n-type semiconductor and a p-type semiconductor. The Normalised
Change in Current is often obtained by Inorm = AI/Iy, where Iy is the initial current prior to analyte
addition. In a sensing experiment, the lowest value of the current recorded is referred to here as Iiow
and the highest value as Inigh. The change in current can be instead normalised by Iiow instead of Io,
resulting in the ‘unbounded‘ Normalised Change in Current (I;f,.,). An alternative method would be to
normalise by Inigh (Inorm). Inspection of the above figure illustrates that in order to compare the sensing
results for a particular analyte between devices of different semiconductor, the Normalised Change in
Current must be calculated consistently (i.e. I}, cannot be directly compared to |I;omm|).

as ‘Sensitivity’ due to its similarity to the ITUPAC definition and is rigorously defined in the Methods
(Section 8.3).

Other than its use in producing a figure-of-merit, there are important reasons as to why measurement
of the response as a function of analyte concentration is useful in the context of biosensors. The affinity
(i.e equilibrium dissociation constant, Kg4) of an analyte binding to a sensor can be estimated by
fitting the concentration-dependent response data to an appropriate binding model [72]. Further, the
concentration at which the response saturates can be used to estimate the density of bound molecules
[59].

Performance metrics have also been discussed by Rajan et al.[73, 450], who highlighted a few examples
from the literature of concentration-response curves for BioFETs over different analytes and stress the
importance of considering, not only the ITUPAC sensitivity, but also the signal-to-noise ratio which they
define as the ratio of absolute drain current change to low frequency noise. At this time, unfortunately,
most BioFET data is reported without noise analysis or sufficient repeats to obtain an estimate of the
statistical uncertainty of measurements, and so quantitative estimation of this signal-to-noise ratio or
TUPAC Limit of Detection is rare. Given these limitations, the analysis presented in this chapter uses
the Normalised Change in Current per 10-fold increase in analyte concentration (‘Sensitivity’) as a

performance metric to compare sensing results between different experiments.
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8.2.5. Effect of lonic Strength on Sensing Performance

The ionic strength of the buffer in which the analyte is presented can affect biosensing response in
several ways: apart from any affect on the affinity of the interaction, it can modify the extent to
which the charge of the biomolecule affects the charge in the semiconductor via electrostatic screening

(Section 8.2.5.1) and it can modify the surface charge or chemistry (Section 8.2.5.2).

8.2.5.1. Electrostatic Screening

Phoshate Buffered Saline (PBS), i.e an aqueous solution of 138 mM NaCl, 2.7mM KCl in 10 mM
sodium phosphate at pH 7.4 [87], is often utilised in biosensing experiments. It is often referred to in
this field as 1X PBS in order to contrast it to diluted forms, for example, 0.1X PBS which is a 10-fold
dilution [87]. 1X PBS has an ionic strength of approximately 160 mM, which is comparable to that in

many physiological situations, and so is particularly relevant to biosensing studies.

The Debye length is a characteristic length scale for electrostatic screening by electrolytes in the Debye-
Hiickel model of the electrical double layer (introduced in Chapter 7). One way of understanding the
physical significance of the Debye length is to consider an ion as a point charge in a bulk electrolyte.
Counterions surround the ion due to electrostatic attraction and thermal motion, and the Debye

length is the radial distance at which the total compensating charge density is maximal [107].

Consideration of Debye length can be useful for BioFET experimental design. In high ionic strength
solutions, the Debye length is short and therefore if the analyte, which is bound to the surface of
the sensor, is a large biomolecule then it is likely to contain charges which are several Debye lengths
away from the sensor surface and therefore have no significant effect on the surface potential of the
sensor and consequently no measurable response. Dilution is often performed to reduce the ionic
strength of the solution and extend the Debye length; however, this can cause ancillary issues such as
a reduction in buffering capacity and instability of the biomolecule in solution [451] or reduced affinity
of the biomolecule-target interaction, although the latter is not the case for the biotin-streptavidin
interaction [87]. For PBS dilutions of 1X, 0.1X and 0.01X, the calculated Debye lengths are 0.76 nm,
2.41nm and 7.61 nm respectively. Stern et al. demonstrated a significant BioFET response for binding
of streptavidin in solution to biotin on the sensor at 0.01X PBS, but no significant response at 1X PBS.
Approximating streptavidin as ~5 nm from the surface [98], they found that this result agrees with
the Debye-Hiickel theory. [61]

8.2.5.2. Surface Chemistry

The surface chemistry can change at different ionic strengths, resulting in alteration of the response.
For oxide surfaces, the ‘surface charge’, which is calculated from potentiometric titration data, is
known to be a function of ionic strength [452, 453]. Further, Tarasov et al. have used silicon nanowire
FETs with highly pH sensitive HfO, or Al,O4 surfaces and shown clearly that at fixed pH, changes
in electrolyte concentration can have a significant response [454]. They observed a linear increase in
response with increasing pH in the pH range 2-10 (AVy = 56 +3mV/pH). At pH 6, they observed
that electrolyte concentration has negligible effect on response below 10 mM, but that above 10 mM
the response rapidly increased to ‘Nernstian’ [455] response (59 mV for every 10-fold increase in KCl
concentration). Their empirical model attributes this to pH independent selective adsorption of anions,

possibly via chloride ion adsorption to the surface displacing surface-bound water molecules.

These empirical observations are supported by the molecular dynamics simulation study by Criscenti

et al. [456]. Experimentally, Maekawa et al. did not observe significant FET response to addition
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of electrolyte on silica surfaces with concentrations up to 1M of NaCl, but upon increasing the
concentration above 1 M there was a significant increase in response corresponding to roughly 30 mV
for every 10-fold increase in NaCl concentration [264]. Maekawa et al. performed molecular dynamics
simulations to investigate this [263, 264] but in direct contrast to Criscenti et al. did not observe
significant water displacement by chloride ions. The simulation work of Maekawa et al. did however
predict a decrease in surface potential with increasing ionic strength, which is in agreement with
their experimental results. In their simulations, reorientational water polarisation dominated the
surface potential, and increased electrolyte concentration reduced the surface potential, suggesting
that ion-induced water reorientation was the cause of the surface potential drop. In summary, whilst
the conclusions from atomistic simulations are under debate, experiments show ionic strength can

have a significant effect on BioFET response.

8.2.5.3. Recent Developments

An alternative mode-of-operation of FETs has been proposed which has the possibility of offering
enhanced Sensitivity for devices whilst retaining the use of high ionic strength solution. It may also
be beneficial for systems in which there is an undesirable ‘drift’ in the measured drain current that is
not related to the analyte. In this mode-of-operation, which was first proposed in the 1990s with the
work of Schasfoort et al. [22, 457] and recently demonstrated for detection of poly-l-lysine [458], a
sudden change in ionic strength change is made (‘ion-step’) and the initial non-equilibrium response
is measured before the system fully equilibrates. By using this transient response of the system,
biomolecules can potentially be detected in higher ionic strength buffers to that using conventional
‘equilibrium’ sensing experiments. Speculative reasons for the lack of wide-spread adoption of this
methodology may be due to the additional step required for biosensing, thus making the resulting

mode-of-operation less commercially appealing, lack of awareness, or lack of reproducibility.

8.3. Methods

This analysis is focused upon pH-sensing and streptavidin/biotin interactions on FET devices, operating
in the subthreshold region. Data from this region was chosen because it provides the optimal Normalised
Change in Current (as introduced in Section 8.2.3) and there is less availability of concentration-
dependent streptavidin-sensing measurements in the linear region. Where available, the Subthreshold
Slope was directly extracted from the streptavidin literature, and where this was not reported explicitly

it was extracted manually from I — V, graphs.

As discussed in Section 8.2.4, when comparing Normalised Change in Current between devices of
different semiconductor type (p- or n-) type, normalisation simply using the ‘initial” drain current in
time is insufficient. In all results presented in this chapter, the change in drain current was normalised

by the lower drain current (/joy) to give the parameter I

norm-*

v Iigh — low A

norm - ’
I low I low

(8.4)

where Ipign is the higher value of the drain current, whether it be before or after a change in
concentration of analyte. As an example, for streptavidin on an n-type device, the drain current
will decrease after addition of streptavidin and therefore I, will be the drain current after addition
of streptavidin and Iy;zn before addition. This retains consistency with the quantitative analysis of
the literature performed by Sun et al. [232] for pH sensing. Many publications only provide the

change in response due to addition of (an arbitrary concentration) of streptavidin, and therefore the
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Normalised Change in Current per 10-fold increase in concentration of analyte could not be calculated

for such papers, only the Normalised Change in Current, I

norm*

For publications which present
streptavidin-sensing data as a function of concentration of streptavidin, it is possible to calculate the
Normalised Change in Current for a 10-fold increase in streptavidin concentration, and equivalently for
pH sensing, the response due to a change of 1 pH unit was used (Equation 5.10). This was repeated
for each 10-fold increase in concentration available within the paper, resulting in a set of I,orm,i for
each ¢ changes in drain current. Finally, the ‘Sensitivity’ was calculated from the geometric mean
of Normalised Change in Currents (Inorm,i) Over n measurements each performed at a 10-fold higher

concentration than the previous:

1

ﬁlrtrm,i) n . (85)

Sensitivity = (
i=1

Here the metric in Equation 8.5 will be referred to as ‘Sensitivity’, and is similar to the IUPAC
definition of sensitivity [448].

In this calculation, the value of Al used in calculating each I,omm,; was taken to be between each
subsequent measurement, as opposed to an initial control drain current and each measurement. A
mean is used so as to calculate the representative value of I;,o.m, per-unit-analyte. A geometric mean

was used as it is more appropriate than the arithmetic mean for ratios/percentages [459].

Not all publications presented their data both unambiguously and with completeness. Hence, sometimes
paper-specific assumptions had to be made for this analysis, and these assumptions are explained in

detail in Appendix I.

A table summarising published works to-date which detect streptavidin using a BioFET device can
be found in Appendix J. A total of twenty distinct experimental systems were identified. Seven of
these devices were operated in the linear region of FET operation and were not included in the this
quantitative analysis as explained in Section 8.3. Five publications either did not report the region of

operation or did not provide sufficient data for analysis and were excluded.

8.4. Results

Data obtained from nine publications on streptavidin binding to biotin-coated FET-Sensors is shown in
Figure 8.3. The Normalised Change in Current, I}

norm?

is plotted against the device Subthreshold Slope.
The data was obtained from experiments which were not all performed at the same concentration
of streptavidin and at more than one ionic strength. Where experiments were performed at several
concentrations of streptavidin, or at differing ionic strength, this is indicated in the figure. For
experiments performed at a higher concentration of streptavidin, there is a higher density of bound
analyte (until the sensor surface is saturated) and there is a corresponding increase in the Normalised
Change in Current (If ).

norm

This increase in Normalised Change in Current with concentration can be seen in measurements on
the graph for which measurements at several concentrations were available, the relative concentration
used being indicated via the size of the marker symbol. No clear relationship between the Normalised
Change in Current and Subthreshold Slope was observed. High ionic strength can reduce response

and therefore increasing ionic strength is indicated in Figure 8.3 with a thicker marker outline.

Each solid curve shown in Figure 8.3 shows the calculated shift in threshold voltage for a given
Subthreshold Slope and I

orm (Equation 8.3), therefore it can be seen that most measurements

correspond to a shift in the threshold voltage, AV, of approximately 5mV to 165 mV.
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Figure 8.3.: Measured ‘unbounded’ Normalised Change in Current (I}, versus measured Subthreshold
Slope for sensing operating in the subthreshold region. [19, 59, 70, 71, 460, 461] The shape of marker
symbol corresponds to the type of device: 3D nanowire stack = @, nanoribbon = *, nanobelt = W
planar = 4, nanowire = A. The size of the marker symbol is proportional to the log(concentration)
of streptavidin used. The vertical lines joining some markers corresponds to a series of measurements
under different concentrations . A thicker outline of a marker symbol indicates an experiment made
under high ionic strength, where the maximum ionic strength was 1X PBS and the minimum 0.01X PBS.
The dashed line shows the theoretical lower limit of the Subthreshold Slope of 59 mV /dec available to
classical FETs at room temperature. The solid grey lines are isocontours calculated by inserting the
shift in threshold voltage, AVr, into Equation 8.3, the value inserted is labelled upon each line. i.e. for
a data point on top of a line, it represents its calculated shift in threshold voltage and therefore the
calculated change in surface potential. The results of Buitrago et al. [462] and Cui et al.[78] are likely
to be an underestimate and overestimate respectively for the reasons given in the Appendix I; a more
detailed explanation of the data extraction, the marker thickness, and a replot with a linear x-axis can
be found in Appendix I. A clear relationship between I\, and Subthreshold Slope is not apparent.

In order to improve the comparability between measurements performed at different concentrations,
the Sensitivity was calculated and plotted in Figure 8.4. Unfortunately many published BioFET
experiments were performed with only a single analyte concentration, making the calculation of
Sensitivity impossible. Sun et al. [232] published a collation of pH sensing data, using a metric
equivalent to Sensitivity, and this data is included in Figure 8.4 and Figure 8.5 for comparison to the

biosensing data.

As shown in Figure 8.4, the Sensitivity values ranged between 2% and 60% per 10 fold increase in
Streptavidin, whereas the pH Sensitivity values varied between 1% and 600% per pH. Therefore, on
the basis of available streptavidin sensing data, it can seen that a streptavidin-sensing Sensitivity
comparable to optimal pH sensing results has not been obtained. The pH sensing data showed a shift in
threshold voltage which was consistent for a particular oxide material, whereas the streptavidin-binding
data showed no clear trend in threshold voltage shift. In order to better visualise the calculated shift
in threshold voltage, the Subthreshold Slope of each data point and corresponding Sensitivity value
was inserted into Equation 8.3 to obtain the calculated shift in threshold voltage per 10-fold increase
in analyte concentration for that measurement. This was then used to plot Figure 8.5. In this figure,
isosurfaces calculated using Equation 8.3 are drawn from red to blue for values of the Sensitivity

increasing in 1% increments in the range 1-150%.
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Figure 8.4.: The relationship between Sensitivity and Subthreshold Slope, for measurements obtained
within the subthreshold region. Both streptavidin sensing [19, 59, 61, 70, 460] (@) and pH sensing data
(%) [232, 441, 449, 463-469] are shown. The Subthreshold Slope from the data of Stern et al may not
be accurate and two points are shown to represent the range of uncertainty in the Sensitivity value
(see for details Appendix I). Dielectrics have a shift in threshold voltage per change in pH unit that is
~33mV/pH for SiO; and ~59 mV /pH for HfO,. Curves calculated using Equation 8.3 for a threshold
voltage shift per 10 fold increase in analyte concentration of 33 mV and 59 mV are shown using solid lines.
The dashed line indicates the theoretical lower limit of the Subthreshold Slope at room temperature of
59 mV /dec available to classical FETs. Details of method used to obtain the data and a replot of the
same data but on a linear x-axis can be found in Appendix I.
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Figure 8.5.: The relationship between the calculated shift in threshold voltage per 10-fold increase
in analyte concentration and measured Subthreshold Slope, for measurements obtained within the
subthreshold region. This is a replot of the experimental data shown in Figure 8.4, but in this figure,
the shift in threshold voltage per 10-fold increase in analyte concentration is calculated by inserting both
its Subthreshold Slope and Sensitivity into Equation 8.3. Both streptavidin sensing [19, 59, 61, 70, 460]
(®) and pH sensing (X) results [232, 441, 449, 463-469] are shown. Isocontours are drawn, using
Equation 8.3, in 1% increments using values of the Sensitivity between 1% (red) and 150% (dark
blue), with >150% being shown as a pale blue region. The theoretically optimal Subthreshold Slope of
59mV /dec is shown as a dashed line. Equation 8.3 predicts that with a Subthreshold Slope of 59 mV /dec,
it is impossible to obtain greater than ~100% Sensitivity with a shift in threshold voltage < 10 mV
per 10-fold increase in analyte concentration, and this can be seen graphically within the figure. The
calculated data for Stern et al. has high uncertainty, as discussed in the Appendix I, with a calculated
shift in threshold voltage per 10-fold increase in streptavidin concentration of 150-250 mV, therefore their
data is not shown on this scale. Details of method used to obtain the data and a copy of the plot with a
linear x-axis can be found in Appendix I.
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8.5. Discussion

8.5.1. Detection at High lonic Strength

The Normalised Change in Current versus measured Subthreshold Slope for streptavidin-sensing
experiments from various literature sources were collated and presented in Figure 8.3. The isocontours
drawn allow inspection of the (calculated) shift in threshold voltage (AVr). Assuming electrostatic
gating, then the shift in threshold voltage is directly proportional to the change in surface potential
and therefore the amount of surface-bound analyte. The maximum calculated shift in threshold
voltage corresponds to approximately 165 mV. If these systems are saturated at maximal density of
streptavidin, it indicates the maximum surface potential shift possible for this system. Oxide surfaces
demonstrate characteristic changes in surface potential per unit of pH and therefore it is possible to
consider what analogous pH sensing stimulus would result in the same AV observed in streptavidin
sensing experiments. For silica, a shift from pH4 to pH 9.5 would correspond to a surface potential
shift with a magnitude of ~165mV (~30 mV /pH in this region), and proton titration experiments
of an amorphous silica suspension show that the surface charge density varies by about 0.15 Cm ™2
through this range [204]. This suggests that streptavidin binding can change the surface potential by

a comparable magnitude to that which occurs upon large pH changes.

Given that some of these experiments were performed at high ionic strength (~160mM), these
significant changes in the electrostatic potential at the interface disprove early assumptions about
BioFET operation. For example, Bergveld (1996) [470] used the Debye-Hiickel model of the electrical
double layer (Section 3.2.2) to argue that large biomolecules cannot be detected at high ionic strengths,

having written:

‘The resulting double layer, with a thickness of the Debye length, is of the order of 1 nm
thick in moderate electrolyte concentrations. Beyond this distance no external electric
field exists. Hence the idea that a layer of charged molecules at the surface of an ISFET
modulates the electric field in the gate oxide should definitely be forgotten.

In the Debye-Hiickel model, the Debye length is ~1 nm at ~160 mM ionic strength and yet streptavidin
has been detected at this ionic strength by various authors [19, 341, 471]. Even providing the Debye-
Hickel model can describe the system accurately (an assumption that this thesis contests), the flaw
in this argument remains two-fold: firstly, the Debye length is not a hard cut-off beyond which no
electrostatic effect is felt because the screened Coulombic interactions reach to infinity! and only
become negligible at a region of approximately 1-3 Debye lengths. Secondly, the argument assumes
that the molecules are rigid and bound in a fixed orientation, whereas in reality they are flexible and
dynamic and therefore some orientation of the analyte can bring the molecular charges closer to the

surface than other orientations [472].

8.5.2. Biomolecule Sensitivity Compared to pH Sensitivity

A large degree of the variability in the response illustrated in Figure 8.3 is due to the variety of
concentrations of analyte used between different experiments. The measured Sensitivity versus
measured Subthreshold Slope for streptavidin-sensing experiments were presented in Figure 8.4. A
low Sensitivity (3-60%) was observed for all streptavidin-sensing experiments as compared to pH
sensing (which show Sensitivity up to 600%), despite the excellent Subthreshold Slopes obtained in

many of the BioFET devices. This can be explained as a consequence of the fact that none of the

n the Debye-Hiickel model for the electrode-electrolyte interface the surface potential ¥, = ¥oe™*® therefore the
electric field E; = —tore™ %
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biosensing experiments demonstrated both the high shift in surface potential and low Subthreshold
Slope that is required for a high change in Sensitivity. It should be noted that the low Sensitivity of
2% seen in the study of Buitrago et al. [19] may be simply a consequence of the response not being
measured at equilibrium, as in Buitrago (2014) it was stated that analyte was ‘immediately washed
away by PBS’ [462].

The data shown in Figure 8.5 shows that most oxide surfaces demonstrate surface potential shifts
as a function of pH which are above approximately 25 mV /pH. As this value is a shift per 10-fold
increase in analyte (pH=-log([H"]), this can be contrasted to streptavidin sensing experiments, which
showed both: (a) a greater variation in possible shifts in threshold voltage per 10-fold increase in
streptavidin concentration and, (b) some shifts of less than 15mV. If a device has a shift in threshold
voltage per 10-fold increase in streptavidin concentration that is this low, it can be clearly seen in
Figure 8.5 that it is theoretically impossible to obtain greater than approximately 75% Sensitivity.
This form of analysis can be used to inform BioFET design; it suggests that if a device shows a low
threshold voltage shift per 10-fold increase in analyte, then design focus should be put upon enhancing

the change in surface potential by optimising the surface chemistry.

8.5.3. Biomolecule-induced versus pH-induced Threshold Voltage Shifts

The calculated shift in threshold voltage per 10-fold increase in analyte concentration can be seen most
clearly in Figure 8.5. For pH sensing, the results showed a shift in threshold voltage per pH which was
consistent with the material of the oxide, as previously observed in the literature [232]. Specifically,
despite the fact that the pH sensing results are from disparate literature sources, they show highly
consistent threshold voltage shifts of ~30mV/pH (SiO,) and ~60 mV /pH (HfO,). The physical origin
for these material-consistent surface potential shifts can be explained in terms of surface complexation
models (Section 3.3.2.1), which were first introduced by Yates et al. [473] and later refined by Healy
et al. [474]. In these models, an increased density of hydroxyl groups on the surface corresponds to an
increase in surface potential shift per unit pH [455, 475]. This theory is supported by experimental
work which has shown that blocking hydroxyl groups on the surface with organic functionality can
reduce the surface potential shift per pH [93, 455, 476].

Given the ability of Surface Complexation Models to explain the shift in threshold voltage for pH
sensing data, it is plausible a similar mechanism can explain much of the variation in biosensing data.
In pH sensing, the density of analyte receptors is described by the density of hydroxyl groups at
the oxide surface, whereas for streptavidin-biotin biosensing the density of analyte receptors is the
density of biotin available at the sensor surface. Using analogous arguments to those used in Surface
Complexation Models, an intuitive hypothesis is that the shift in threshold voltage per 10-fold increase
in analyte concentration is primarily limited by the density of receptors (and therefore bound-analyte)

on the surface.

In order to investigate this hypothesis the density of bound molecules was estimated by making some
simple assumptions and utilising the concentration at which the sensor response saturates (cmax)-
Due to the (untypically) high affinity of the streptavidin-biotin interaction, in which the affinity has a
K4 =~ 1fM [72], if the concentration of analyte at the surface is much greater K4 then, based on the
Langmuir isotherm model, approximately 100% of streptavidin will be in its surface-bound form at
equilibrium [477].

Taking the work of Elfstrom et al. as an example, given their sample volume, V5, of 200 nL solution
and concentration, ¢max, of 0.5n1M, the total number of molecules in the solution (=c¢maxVio1) can be
obtained. Assuming all molecules bind to the surface and that they bind homogeneously, then the bound

density, p, will simply be cpax Veol divided by the functionalised area exposed to analyte, A, (10 mm?).
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From this calculation, the surface density of biomolecule is calculated to be 0.015 molecules/nm?.
This can be compared with the maximum streptavidin density, pmax, theoretically possible for
streptavidin, assuming each molecule occupies 25 nm? [98] which is equivalent to 0.04 molecules/nm?.
This comparison suggests that the surface-bound density for the device of Elfstrom et al. is close to
ideal, suggesting a sufficiently high density of biotin receptors on the surface to efficiently capture
streptavidin. Under the hypothesised Surface Complexation-like Model, a large shift in threshold
voltage per 10-fold increase in concentration of streptavidin is therefore expected. It can be seen
in Figure 8.5, that for the work of Elfstrom et al. there was a ~50mV shift in threshold voltage
per 10-fold increase in streptavidin concentration, which is large compared to the majority of other
streptavidin measurements and pH sensing measurements shown. This supports the hypothesis that
the biosensing shift in threshold voltage per 10-fold increase in streptavidin concentration is largely

determined by the density of surface receptors.

In addition to receptor density (discussed above) as one factor that may affect the threshold voltage
shift, there are many other potential factors which could explain the observed differences between pH-
sensing and biosensing experiments. Several factors relate to the surface and its chemistry. Figure 8.6
shows a schematic which attempts to summarise possible differences in the surface chemistry, and
therefore measured surface potential shifts, between pH and biosensing experiments. Each of these

factors are explained in the following paragraphs.

pH Sensing System
AVrpn = 20 — 40 mV/pH AVrpn = 40 — 60 mV/pH
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Biomolecular Sensing System
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H* + « Non-specific biomolecule binding
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functionalisation chemistries

* Variable biomolecule structure between
commercial preparations

Ap > Ly

[

OX|de OX]de * Biomolecular orientation
* High ionic strength electrolyte * Low ionic strength electrolyte
* Low biomolecule intrinsic charge * High biomolecule intrinsic charge
* Low receptor density * High receptor density

Figure 8.6.: Comparison of factors influencing the surface potential in a pH sensing experiment (above)
with those in a biomolecular sensing experiment (below). The systems on the left and right have a low
and high receptor density, respectively. Receptors for pH sensing are hydroxide groups, whereas for
biomolecular detection specific receptors (shown as yellow wedges) are required. For pH sensing, the
receptor density is the determining factor the change in surface potential, and therefore the shift in
threshold voltage per pH AVr pu. In contrast, for biomolecular systems, many more factors can affect
the shift in threshold voltage per 10-fold increase in concentration of analyte, AV ;a}. The net charge
of the biomolecular system (shown as green circles) can influence response. The Debye length (Ap) is
compared to the distance of the analyte from the surface (La) on the figure, which can significantly
affect BioFET signal. 7eq is used to refer to the typical time-scale to equilibration.

Firstly, the shift in threshold voltage per 10-fold increase in analyte concentration for biosensing
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may be lower than that for a 10-fold increase in H" concentration in pH sensing simply because
transport of the biomolecule to the surface and the subsequent reaction can take long times to
equilibrate compared to the equilibration of the acid-base reactions relevant to pH sensing. For
example, considering diffusive flux, it can be shown that a typical nanowire-based geometry has an
expected response time on the order of an hour for a fM concentration of analyte with a diffusion
constant of 150 pm?s™—! typical of single-stranded DNA about 20 base-pairs long [478]. In contrast,
the diffusion constant for H' is orders of magnitude higher due to Grotthuss transport, which was
introduced in Section 3.3.4%2. In contrast to pH sensing, the limitations imposed by mass transport,
binding kinetics and device-geometry choices must be considered when designing for optimal response
[73, 83, 477].

Secondly, the concentration of biomolecular analyte available to bind to the surface may be lower
than that expected based on the initially added bulk concentration due to binding to non-sensitive
regions of the device, an issue which is often caused by non-specific binding but can also occur if the
receptor chemistry used on the sensor surface is elsewhere in the device. Non-specific is particularly
problematic for nanoscale dimension devices in which the biosensitive regions of the device can have a

small surface area relative to the total exposed surface area [460].

Thirdly, from the results shown in Chapter 6, variation between different experiments may occur
due to different commercial preparations of the same biomolecule having different electrodynamic

properties.
Fourthly, in principle, the biomolecular orientation can affect the response [31, 472].

A final consideration is that of the buffering capacity of the solution. Lloret et al. measured the change
in pH of bulk solution using a pH microelectrode in response to addition of streptavidin. This showed
that addition of 1pM streptavidin to 0.01XPBS (i.e. containing 1.627 mM ionic strength, pH 7.4)
resulted in a change of 0.5 pH units [87]. In contrast, at 1X PBS the shift in pH was negligible as
expected from its high buffering capacity. If this result is found to be reproducible, the significance of
this cannot be understated; for example, for a typical PBS concentration of 0.01X, and a typical SiO,
surface in the pH 5-9 region (AVy = 30mV /pH response), this 0.5 pH unit shift due to streptavidin
addition would correspond to a non-specific response of AVt = 15mV. This would be on the same
order of magnitude as many measured streptavidin signals, as shown in Figure 8.3. It is noteworthy
that the practice of using minimal buffering capacity and high biomolecule concentration (added in
a single aliquot) is not uncommon [96, 97, 341, 449, 460, 479]. A simple solution is to ensure low
concentrations of analyte are used; this also puts the experiment closer to the application of medical
diagnostics in which biomolecules often must be detected at low-concentrations from blood samples, or
alternatively to use a solution which can obtain lower ionic strengths than PBS for the same buffering

capacity, for example, using just the Sodium Phosphate component of the PBS buffer. [87]

This quantitative analysis of the literature suggests that in order to optimise BioFET Sensitivity,
device-design should focus upon simultaneous optimisation of the device Subthreshold Slope and
the electrolyte-oxide surface chemistry. Taking the device geometry as an example, much literature
is focused upon the investigation of new device-geometries which might offer enhanced Sensitivity,
however this analysis showed that using a simple planar transistor, Wen et al. [480] achieved a
comparable streptavidin Sensitivity to the work of Stern et al. [61] who utilised a nanoribbon. The
nanobelt arrays of Liu et al. [460] and Cheng et al. [65] showed even lower Sensitivity values. The
commonly stated assumption that increased surface area-to-volume ratio increases Sensitivity is the

rationalisation for much of the focus in publications on building new nanoscale dimensions devices

?Detection of changes in pH can also involve a detection of changes in OH~ (Section 3.3.4), and therefore the time
taken to sense a single HT is non-trivial to calculate, as it non-linearly related to the acid-base chemical equilibria in
the system
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[18, 59—61]. This assumption is still subject to debate, with some authors suggesting that the nanoscale
dimensions offer increased Sensitivity via a different mechanism [62, 481] or not generally applicable
to all structures [63]. While the analysis presented in this chapter suggest that device geometries
may not be the limiting factor in Sensitivity enhancement, increasing surface-area-to-volume ratios
of the device geometry may provide benefits in terms of signal-to-noise enhancement or improved

biomolecule binding kinetics, whilst smaller-size devices offer increased portability.

8.6. Conclusions and Future Perspective

Whilst numerous reviews in the field of BioFET research have been published, they have generally
provided examples of devices across a range of analytes, making direct comparison of Sensitivity near
impossible. This review provides the first comprehensive analysis of the FET-sensor response due to a
single biomolecular analyte. Streptavidin-sensing was primarily chosen as a model system due to its
general wide spread usage and well-understood (bio)chemistry. This was contrasted with pH sensing,

which is a better understood application of FET sensors, and has already been well-characterised.

For pH sensing, it is known that the Sensitivity can be increased by optimising the transistor design
such as to have a low value of the Subthreshold Slope and by choosing an oxide material which has a
large shift in surface threshold voltage per pH such as HfO,. In contrast to pH sensing Sensitivity,
the analysis of the literature which was presented in this chapter revealed that streptavidin-sensing
Sensitivity showed no clear dependence on Subthreshold Slope, with a much greater variation in the
shift in threshold voltage per 10-fold increase in streptavidin concentration between devices, even
for the same oxide material. Even with a poor choice of oxide material on the surface (e.g. SiO, is
poor due to its relatively low characteristic shift in threshold voltage per pH of ~33 mV /pH), good pH
sensing Sensitivity can be obtained without an optimal (~59 mV /dec Subthreshold Slope) transistor.
This study shows that the same design-strategy does not hold for biosensing, because, for example, a
poorly functionalised biosensor surface will always have negligible Sensitivity regardless of the choice of
oxide. This addressed one of the original motivations of this work to investigate whether optimisation
strategies that had been employed for pH sensors would be directly transferable to optimisation of
biomolecular sensing. The analysis presented suggested that Subthreshold Slope improvement is not
as likely to be as beneficial for biosensor optimisation as it is for pH sensing because the limiting

factor for Sensitivity is often the surface chemistry.

The variability in the shift in threshold voltage per 10-fold increase in analyte concentration for
biosensing responses was greater than that found for pH sensing responses. This higher variability
can be explained by a variety of factors. pH models predict the most important factor in influencing
this shift is the density of analyte-receptor at the surface, and therefore this may be an important
factor determining the variability in biomolecular response. Further, the effects of ionic strength and
buffering capacity in biosensing are much more pronounced than for pH sensing due to the biomolecule
distance from the surface, and due to the ability of the biomolecule to change the pH of the buffer.
Additional variability in biosensing threshold voltage shift per 10-fold increase in analyte concentration
can originate from loss of biomolecule due to non-specific binding. This is particularly problematic for
nanoscale dimension devices in which the biosensitive regions of the device can have a small surface
area relative to the total exposed surface area. A fundamental source of variability can originate from
the biomolecule itself; depending on the particular commercial preparation of a biomolecule such as
streptavidin, the structure and isoelectric point and thus sensing response of the biomolecule can vary
(Section 6.3).

In conclusion, the analysis presented in this chapter suggests that in order to optimise BioFET

Sensitivity, device design optimisation should focus upon the Subthreshold Slope of the device and the
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electrolyte-oxide surface chemistry. For example, even using an ideal classical transistor (Subthreshold
Slope=x 59mV /dec), if the surface is poorly functionalised then it is will have a low Sensitivity. Devices
even of simple (microscopic) planar geometry were shown capable of obtaining comparable Sensitivity
to more elaborate nanodevice geometries (such as nanowires), suggesting nanoscale device design is

not a requisite for high biomolecular Sensitivity.

By measuring the response-curve as a function of analyte concentration, researchers are provided with
important information for device design: the saturation point of the curve can indicate the density of
bound analyte, the response per 10-fold increase in analyte concentration can provide a figure-of-merit
for the device and by fitting the curve to an appropriate binding model, the binding affinity of the
analyte to its receptor can be estimated. Simple calculations can be used to estimate the density of
bound analyte based on the concentration at which the sensor response saturates, and both this value
and measurement of the shift in threshold voltage per 10-fold increase in analyte concentration can
be useful in determining whether Sensitivity enhancement efforts are limited by surface chemistry or

transistor performance.

As highlighted in this chapter, biosensor design is a highly interdisciplinary field. Understandably,
this has led to lack of appreciation of the importance of reporting parameters such as the commercial
origin of the biomolecule used, the value of the Subthreshold Slope of the device and proper controls
to ensure that the response is due to specific binding of the biomolecule. Some common pitfalls
were highlighted: Firstly, many experiments have been performed without a reference electrode in
the liquid, which is a requirement for a reproducible and reliable response. Secondly, the practice
of reporting only the absolute value of the Normalised Change in Current without the polarity can
lead to ambiguity in interpreting the results of experiments. Finally, many BioFET experiments are
performed at high concentration of biomolecules with deliberately low buffering capacity solution
(diluted buffer), which could result in a significant non-specific response due to changes in the bulk

pH of the solution and experiment reproducibility.

Many of these limitations are similar to those that have been encountered for other emerging biosensing
technologies. The current ‘gold standard’ for label-free biosensing is Surface Plasmon Resonance (SPR)
biosensors. In a highly extensive review published in 2005, Rich and Myszka analysed 1113 articles
(103 reviews, 1010 papers) and discussed common issues within the Surface Plasmon Resonance
biosensor literature such as: authors only considering high concentrations of analyte, response being
normalised inappropriately or the data was reported in insufficient detail [482]. Surface chemistry
optimisation has played an important part of Surface Plasmon Resonance biosensor development [483].
In principle, BioFET devices have the potential to surpass Surface Plasmon Resonance biosensors due
to their ability to detect low-mass analyte and the lack of requirement for additional optical equipment
(which can be high cost and low throughput). As highlighted in this chapter, currently advances in
the field of BioFET research are being obstructed by the lack of consensus upon which quantitative
metrics (i.e. figure-of-merit) should be used to compare devices, as a result, most published studies
can only be compared qualitatively. Despite these limitations, BioFET research is a rapidly advancing
field in which novel device design and operation methodologies are constantly being developed which

increase the viability of BioFET devices for commercial use.
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9. Research Conclusions

Most models describing FET-sensor response have relied upon mean-field assumptions which neglect
the multi-scale nature of the system. Even qualitative predictions of FET-sensor response remain
challenging. Many examples exist of FET-sensor measurements which cannot be explained using
conventional electrostatic-gating arguments. These arguments were originally developed to explain

MOSFET response, as opposed to FET-sensor response.

In this work, the interfacial physics of FET-sensors were modelled using a variety of simulation
techniques with different length- and time-scales, with the aim of both improving understanding of
the underlying electrodynamics at the surface of the sensor (the oxide-water interface), and improving
BioFET device design. The following outline summarises the structure of the thesis, starting with
microscopic simulations and ending with modelling of the entire (macroscopic) BioFET systems. As
FET-sensors detect changes in the electric field induced by changes in surface charge, in Chapter 4,
Density Functional Theory was used to model the microscopic charging processes at the silica-water
interface over an approximately one nanometre length-scale over hundreds of femtoseconds. In
Chapter 5, Kinetic Monte Carlo simulations were performed, which are capable of modelling the
kinetics of these charging processes over much longer length- and time-scales (e.g. micrometre and

seconds), at the expense of microscopic detail of the mechanisms involved.

BioFET sensors not only detect changes in the electric field induced by surface-charge modification, but
crucially can also detect changes in the electric field induced by the introduction of biomolecular charge.
Therefore, in Chapter 6, a semi-empirical model was used to estimate the charge of typical biomolecules
used in biosensing experiments, TNF-a and streptavidin. In Chapter 7, classical Molecular Dynamics
simulations were used to model the dynamics of charges at the silica-water-biomolecule interface over
several nanometres, which is a sufficient length-scale for the study of typical small biomolecules such
as DNA oligomers. The simulations were performed over nanosecond time-scales, which is sufficient
to accurately describe water reorientation dynamics and to study the effect of ion- and biomolecule-
dynamics on the electric field. Finally, in Chapter 8, a quantitative analysis of experimental BioFET
results for the detection of Streptavidin was performed. This study used the MOSFET drift-diffusion
equations to relate reported changes in measured drain current to changes in surface potential, and
therefore provided a description of the surface potential behaviour at the oxide-water-biomolecule

interface over macroscopic (i.e. experimental) length- and time-scales.

Charging at the Silica-Water Interface

Despite decades of study, the detailed structure and dynamics of the oxide-water interface, which is
present in many FET-sensors, remain elusive. Acid-base reactions are established to be the dominant
charge-determining process, and the literature has primarily focused upon quantification of these
reactions via study of their equilibrium structure, for example in the measurement of the pK, of silanol
groups at the silica surface. Small changes in pH can be detected by FET-sensors, and therefore the
dynamics of these acid-base reactions is expected to be important in modelling FET-sensor noise. In
order to build a dynamic model of the system, first an improved understanding of the energetics and

mechanisms of surface charging at the silica-water interface must be obtained.
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In Chapter 4, Density Functional Theory calculations were used to investigate charging at this
interface. A model of amorphous silica was constructed using a surface built from a-cristobalite as this
model can replicate important properties of the silica-water interface such as the silanol density. The
pseudopotentials used were validated against all-electron calculations and were shown to introduce
negligible error into the optimised geometries of a range of simple chemical systems and shown to
accurately model the interaction energy of silica-water to within 1kJ/mol of the all-electron result.
The chosen parameters represent an optimal compromise between accuracy and computational expense
for this system. Additionally, a simple, freely available, open-source tool was created which can help

automate the process of convergence-testing when using the ONETEP software.

The results of the study showed that the protonation of isolated silanols in the presence of H;OT
exhibit a highly rapid, exothermic reaction with no significant activation energy. In the simulations,
this process occurred via a concerted motion of the protons through hydrogen-bonded water molecules
known as ‘water wires’. Geometry optimisations of large water clusters containing hydronium ions
(H;0™ (H,0),; and H;OT (H,0),,) at the silica surface demonstrated proton transfer to the surface
occurring via the rarely discussed ‘proton holes’ mechanism. This mechanism is when a hydroxyl
ion mediates the transfer of a proton from the proton donor (a hydronium ion) to an acceptor (the
surface). This study also identified a novel mechanism of surface protonation in which even those
hydronium ions distant (4 water molecules at least) from the surface, without losing a proton, can

protonate the surface by supporting the dissociation of water molecules.

The dissociation of isolated silanols in the presence of hydroxide ions was also investigated using
several cluster systems and also found to behave as an activationless process for the cases of both
the gas phase hydroxide ions and the implicitly solvated hydroxide ions. For the case of explicitly
solvated hydroxide ions, in the case of the HyO;™ anion, the local environment of hydrogen bonded
silanols and waters was shown to be capable of creating an energetic barrier to deprotonation, but
showed complete or partial deprotonation for the H;0,~ and H,O,~ hydroxide clusters. In support
of this result, a similar energetic barrier has been observed for proton transport of HyO;™ in the pure
water simulations of Tuckerman et al. [201]. These findings demonstrate the microscopic complexity
of the acid-base equilibria present at the silica-water interface. Whilst the study of proton transfer
in pure water has received considerable attention, given that silica and water are some of the most
abundant materials on the planet, this work highlights the need for a greater focus on research into

silica-water chemistry.

The short time-scale and high exothermicity of these reactions shows that these hydronium/hydroxide
systems will readily transfer protons, and therefore surface scientists should be cautious when simulating
such systems in the context of non-reactive forcefields. The Si—O~---H,O hydrogen bond length
was found to be strongly dependent upon the degree of solvation, which suggests that accurate

parametrisation of this bond in classical molecular dynamics simulations requires careful consideration.

Currently, problems of undesirable drift and noise in the response are key limitations of FET-sensors
which are likely to be a result of surface-charging acid-base reactions. The kinetics of these acid-base
reactions are therefore important to understanding the response of FET-sensors, which can, in principle,
detect surface-charge changes as small in magnitude as an elementary charge. A common methodology
for obtaining the kinetics of a chemical reaction is via Transition State Theory, but this work suggested
that proton transfer events at the isolated silanol-water interface often do not exhibit a well-defined
transition state and therefore dynamic modelling using Transition State Theory is likely inapplicable.
Considering the future of the field, given that the rate-limiting step is the formation of a suitable
hydrogen-bonded water network, predictive modelling of the kinetics of surface-charging reactions
over large length- and time-scales requires a model that incorporates the probability of formation of a

suitable hydrogen-bonded network.
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Kinetic Monte Carlo Model of Dynamic Surface Charging

For a given surface-water interface, it might be possible to accurately model surface charging dynamics
simply by empirically parameterising the kinetics of surface charging reactions into a set of constants.
Given this motivation, in Chapter 5, a Kinetic Monte Carlo model was produced, which is capable of
describing protonation-deprotonation events over the macroscopic time- and length-scales relevant to
FET-sensor operation. The model presented in this work, as well as related models, have been used
within the literature to provide a link between the microscopic theory of protonation reactions and
the experimental proton-titration data. In this work, a new implementation of this literature KMC
model was produced using the Zacros software package, in which the parallel computational efficiency
improves with the number of nearest neighbour interactions, facilitating the study of large systems in
a computationally efficient manner. This Kinetic Monte Carlo model was based on a framework in
which the electrostatic free energy of protons binding to an oxide surface is considered in the context

of a Poisson-Boltzmann model for the electrolyte interface.

The key predictions of the model from this work (time-scale and equilibrium surface coverage) were in
good agreement with the literature model, and it could be used as part of future multi-scale BioFET
modelling efforts. Limitations in the field primarily stem from the difficulty in obtaining experimental
kinetic data for microscopic protonation-deprotonation events, which make accurate parametrisation

of the time-scale of microscopic protonation-deprotonation events difficult to obtain.

Modelling the Net Charge on Proteins

BioFET sensors operate by detecting changes in the electric field at the oxide-aqueous interface due
to the binding of charged biomolecules to receptors on the surface. As a result of this, the charge
of biomolecules is important for parametrising most current models of BioFET response which are
based on the Poisson-Boltzmann equation. Using simple net-charge/electrostatic gating arguments,
the magnitude and sign of the charge of a biomolecule is expected to correspond to the magnitude

and polarity of BioFET response to the binding of that biomolecule.

The distribution of charge within a biomolecule is non-trivial to measure and predict because it is a
non-linear function of pH and ionic strength and can be modified by the local chemical environment.
In Chapter 6, the net charge on the biomolecules was calculated using the semi-empirical PROPKA
model which uses the positions of atoms within the protein to predict their charge, as a function of
pH.

In Study 1 (Section 6.2) a typical antibody-antigen system, that of anti-TNF-a (which, in a device,
would be attached to the biosensor surface) binding to the antigen TNF-a in solution, was investigated
by calculating both the net charge of the analyte (antigen) and the change in net charge on protein
binding to the receptor (antibody). This particular system was chosen because it was of interest to
industrial (Sharp Corporation) and academic collaborators, for whom the net-charge calculations
would be of value, but also because it is an important biomarker for inflammatory response and

therefore a typical biomolecular system for biosensing applications.

At physiological pH ranges (6 < pH < 8), the results showed that the net charge of the antigen
is relatively insensitive to changes in pH and demonstrated a low magnitude charge (|q| < 4e).
More extreme pH values led to sharp increases in the magnitude of net charge of the antigen. Such
information can be used to make informed decisions about the choice of pH for BioFET-sensing
experiments, although there are also practical limitations, for instance the protein can denature or

become insoluble at more extreme pH values.
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Based on simple net-charge arguments, the differences in structure between different commercially
developed forms of the same antibody (anti-TNF-o) were shown to have a significant effect on the
expected optimum pH for biosensing experiments, with a variation of 2 pH units for the predicted
point-of-no-signal between the two commercial antibody structures investigated. The calculated net
charge on the protein can be used in most existing models of BioFET response within the literature
[2, 39, 44, 59] to estimate the change in surface charge density upon biomolecule binding, and was

subsequently used by the industrial collaborators (Sharp Corporation).

In Study 2 (Section 6.3), the net charge of streptavidin, an archetypal model protein in biosensing,
was investigated. Many authors do not report the commercial origin of their streptavidin sample
under the assumption that it is not relevant to its charging properties, however this assumption was
shown to be false via a review of experimentally reported pl values which showed a range of pl values
between 5-7.5 for solution-phase streptavidin, with surface-bound streptavidin showing pl values
at the lower range (pI = 5). Further, it is not uncommon for different commercial preparations of
streptavidin to have different structures and therefore analysis of the sequence of the native gene
was used to highlight the potential for variation in the charge of streptavidin based on either natural
or artificial variation in its structure. This variability in streptavidin charge demonstrates that it is
important that authors report the origin of the sample (i.e. how was it expressed - is it recombinant

or native? Was it artificially truncated by the vendor?) in order to ensure reproducible results.

Surprisingly, despite its common usage in BioFET experiments and most other biosensors, a rigorous
description of the expected charge of streptavidin as a function of pH was not available in the literature.
In novel simulations using the PROPKA model based on a truncated X-ray structure of streptavidin,
the pH-dependence of the charge on streptavidin was predicted. The predicted pl was 5.04 which is in
good agreement with experimental measurements, which found a pl of between 5-6. The net charge
at approximately pH 7.4 is relevant to biosensing conditions and for streptavidin this was calculated to
be —7.20 ¢, which is in the middle of the predictions available within the literature that range between
—5e and —8.49e.

The calculated net charge provides a simple-to-calculate estimate from which to make informed
decisions regarding an input parameter (the ‘magnitude of charge on the biomolecules’) for usage
within many models of biosensor response. This approach is insufficient to accurately capture the
complexity of the relevant physics, and various simulations over the last decade have suggested that
net-charge arguments are insufficient for accurate modelling of BioFET response [31, 37, 39, 40].
In order to more accurately describe the electric field change induced by the biomolecule, a model
that can capture the spatial arrangement of charges in the system would be required. To model the

time-dependent response of the device (e.g. noise or ‘drift’), a dynamic model would also be required.

As presented in Section 3.1.5, an additional open-research question in this field is related to the
unexplained phenomenon in which neutral molecules can induce a change in BioFET response.
Responses have also been observed with opposite polarity to that expected based on net-charge
modelling arguments. In both these cases (neutral molecules and ‘reversed’ signals), net-charge
modelling arguments are fundamentally insufficient to explain FET-sensor response. This further
supports the notion that a model is required which goes beyond net-charge modelling, for example, by

incorporating the spatial arrangement of charges in the system.

Electrical Double Layer Dynamics at the Silica-Water interface

An electrical double layer is present at all liquid-solid interfaces, and therefore its structure and
dynamics have relevance to a broad range of fields, from geochemistry to chemical engineering. With

regards to BioFET research, the electrical double layer is often modelled using mean-field approaches
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based upon the Poisson-Boltzmann equation. These models treat the biomolecule as a uniform,
infinitely thin layer or modify the Poisson-Boltzmann equation to attempt to describe the biomolecules
as a membrane. Such models are fundamentally limited by an inability to model finite-size effects,
ion-ion correlations and water polarisation, all of which are likely to be important in generating the
detected changes in electric field on biomolecule binding. Classical Molecular Dynamics is a simulation

technique that can model these effects and was used in this work.

In Chapter 7, classical Molecular Dynamics simulations were performed to study the silica-water
interface in different ionic strengths. Novel results from simulation of the addition of DNA molecules
and divalent ions were also presented, the latter of particular importance in both physiological solutions
and biosensing experiments. Divalent ions have received surprisingly little attention in the literature
by the atomistic simulation community in the context of oxide-water interfaces, but the interaction of
divalent ions with DNA systems in bulk solution has been characterised using both experiments and

simulations.

Direct experimental measurement of the interfacial charge distribution is not available and therefore the
MD simulation results presented in Chapter 7 were compared to a continuum Poisson-Boltzmann model
and revealed good agreement with regard to double-layer thickness and sodium ion accumulation.
Mg?* did not accumulate significantly at the interface, instead distributing more diffusely than
predicted by the Poisson-Boltzmann model. This result can be explained in terms of the highly
favourable solvation of magnesium ions, and has relevance to the understanding of interfacial processes
such as surface-dissolution, which has been proposed in the literature to be catalysed by magnesium
adsorption [117]. In agreement, with experimental studies, divalent ions resulted in charge inversion
within the electrical double layer, 1.5 nm from the surface. The magnitude of the charge inversion was
approximately proportional to the ionic strength change (five-fold increase in ionic strength showed a
five-fold increase in charge). This suggests that charge inversion can occur at lower ionic strengths

than those previously measured by experimental work within the literature.

Increasing ionic strength reduced the equilibrium water coordination to silanolate groups, but the
dissociation rate of water molecules to silanolate groups was not significantly affected. Sodium ion
surface-desorption kinetics required a two-step mechanism involving hypercoordination of the silanolate
followed by desorption into the bulk. Sodium ions demonstrated a more kinetically-stable solvation
sphere when positioned at the silica-surface relative to when positioned in the liquid bulk. This was
due to the structuring of water at the interface. These results, originating from explicit ion-water

interactions, cannot be described by the commonly used Poisson-Boltzmann formalism.

Modelling of FET-sensor response due to biomolecules is currently inhibited by a lack of understanding
of the interfacial electric field and ion distribution which occurs in the presence of biomolecules. In
the MD simulations presented in Chapter 7, the first calculation of the time-varying electric field
for these systems was presented. By comparison to a low ionic strength control, this calculation
showed that bulk electrolyte plays a role in dampening transient fluctuations in the electric field and
therefore device response. The bound DNA resulted in local changes to the electric field at the surface;
however, calculation of the spatial- and temporal-mean electric fields showed no significant change.
This unanticipated result was explained as due to strong screening originating from a combination of
strongly polarised water and a compact ‘Stern-like’ layer of Na® around the DNA and silica surface.
The conclusion that water polarisation in the Stern-like layer can compose a major part of the electric
field originating from the biomolecular-silica-water interface, suggests that BioFET response might
be determined primarily by the ability of the biomolecule to modify the Stern-like layer, as opposed
to its ‘net charge’ as traditionally thought. With regard to the understanding and optimisation of
BioFET sensors, this result would suggest that even neutral or low net-charge biomolecules are able

to be detected if they can disrupt the Stern layer, as the net charge of the biomolecule is not the
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dominant causal component of the response. It also suggests that optimal surface chemistry design

would require a surface system in which electrolyte ions are only weakly bound to the surface.

Experiments have shown that BioFET sensors can detect changes in surface potential as small as
approximately 10mV. A finding of the work presented in this chapter was that calculation of the
change in surface potential due to biomolecule was highly sensitive to the choice of atomic coordinates
from which the ‘surface’ was defined; making direct comparison to measured shifts problematic. A
range of experimental work however has provided measurements of the interfacial potential and surface
charge density at silica-water surfaces as a function of pH. Using this experimental data, the link
between the surface potential calculated in atomistic simulations and the experimental measurement
might be obtained. This merits further investigation, and future work will study the relationship

between the surface charge, Stern-like layer density and the electrostatic potential at the interface.

With regards to modelling BioFET response, the simulation technique used in this study is not able
to model how biomolecules modify the surface protonation-deprotonation equilibria. Looking to the
future of the field, a more accurate model of BioFET response would account for changes in the
protonation state of the surface due to biomolecule binding, but the work presented in Chapter 5
is potentially a first step in this field. For the equilibrium properties, models are already available
which can predict changes in the protonation state due to the local chemical environment (such as
that used in Chapter 6) but they are generally restricted to biomolecular systems in aqueous solution,

as opposed to interfacial systems.

Quantitative Analysis of FET-Sensor Literature Data: From pH Sensing to
Biosensing

Whereas IS-FETs have achieved commercial success as pH sensors, BioFETs remain unsuitable due to
a lack of reliable-detection capability and stable response. Whilst many reviews exist in the field of
BioFET research, they compare disparate surface-bound molecules, surfaces, analytes and experimental
conditions, making quantitative comparisons near impossible. In Chapter 8, a critical review was
presented which is the first to provide a systematic, quantitative comparison of BioFET results for a
single biomolecular analyte. Streptavidin-sensing was chosen as the model system, primarily due to
its common usage in biosensing experiments and well-understood (bio)chemistry. Streptavidin-sensing
data was contrasted with pH sensing, which is a simpler-to-perform and hence well-understood and

well-characterised application of FET sensors.

The signal-to-noise ratio is a desirable figure-of-merit, but it is rarely presented in published sensing
data, instead, the presented data is often only sufficient to extract the Normalised Change in Current
(Inorm) as a metric of the signal, with the ‘noise’ values unreported. Analysis was performed by
comparing available streptavidin-sensing and pH-sensing data for both the Normalised Change in
Current per 10-fold increase in analyte concentration (‘Sensitivity’), and the shift in threshold voltage
(AVr) per log-unit of analyte, as a function of the Subthreshold Slope. For pH sensing, the oxide
material is known to play a dominant role in determining the surface potential shift per pH. As a
result of this, current pH sensing Sensitivity enhancement strategies are dominated by the choice
of oxide material and transistor optimisation. Even an affordable and easy to fabricate oxide (e.g.
Si0,, as opposed to HfO,) can demonstrate a high AVy per pH (~33mV/pH) which means that
high Sensitivity can be obtained even without an optimal Subthreshold Slope (~59mV /dec). For
pH sensing applications of FET-sensors (i.e. IS-FETS), a clear strategy for device-optimisation for

increased Sensitivity is available.

In contrast to pH-sensing Sensitivity, the analysis of the literature presented in this chapter showed

that streptavidin-sensing Sensitivity does not have clear dependence on Subthreshold Slope, with
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much more variable values of AV per 10-fold increase in analyte concentration between devices, and
in some cases very low (< 10mV per 10-fold increase in analyte concentration). This addressed one of
the original motivations of this work to investigate whether optimisation strategies that had been
employed for pH sensors would be directly transferable to optimisation of biomolecular sensing. The
analysis presented suggested that Subthreshold Slope improvement is not as likely to be beneficial for
biosensor optimisation as it is for pH sensing because the surface chemistry can reduce the Sensitivity

of biosensors (which may have no sites available for analyte binding) more than that of pH sensors.

The variability in threshold voltage shifts due to streptavidin-binding to the biotin sensor surface, as
compared to due to changes in pH, was explained as a result of a combination of factors. The most
important factor is proposed, in this work, to be due to variation in the functionalised receptor site
density between sensor surfaces. This was evidenced by the success of receptor-site density models
in rationalising pH sensing results. Further, based on the results of Elfstrom et al., it was shown
in Chapter 8, how simple analysis of the concentration at which the sensor saturates is useful in
estimating the relative density of surface-bound biomolecules. This simple strategy could be used by

researchers to decide whether to focus their efforts on surface chemistry- or transistor- optimisation.

The increased variability in published threshold voltage shifts relative to pH sensing can also be due
to other factors: One factor is a consequence of the fact that the effects of ionic strength and buffering
capacity in biosensing are much more pronounced than for pH sensing. At high ionic strength, a
charge which is distant from the surface will not be sensed. As a result of this, the relatively large
distance of the charges on the biomolecule from the surface, compared to protons binding to an
oxide surface (in which the charge of the proton is in contact with the surface), results in more
pronounced dependence of the shift in threshold voltage on the ionic strength for biosensing compared
to pH sensing. Further, acid-base reactions of the amino acids on the biomolecule can change the
pH of the buffer, or potentially disrupt the oxide-water acid-base equilibria, and therefore biosensing
systems show a more pronounced dependence of the threshold voltage on the buffering capacity of the
aqueous solution. A further factor which introduces variability into the measured threshold voltage
shift originates from a loss of biomolecule from aqueous solution due to non-specific binding. This is
particularly problematic for nanoscale devices in which the biosensitive regions of the device can have
a small surface area relative to the total exposed surface area. In Section 6.3 it was also shown that a
fundamental source of BioFET response variability can originate from the biomolecule itself, because
depending on the particular commercial preparation of a biomolecule, as was found for streptavidin,

the structure and isoelectric point of the biomolecule can vary.

A key conclusion of this analysis is that in order to optimise BioFET sensitivity, device-design
optimisation should focus upon simultaneous optimisation of the device Subthreshold Slope and the
electrolyte-oxide surface chemistry. For example, even an ideal classical transistor (Subthreshold
Slope~ 59 mV /dec) with a low-density of receptors on the surface will show a small change in surface
potential and therefore a small Normalised Change in Current and Sensitivity. Optimised response
requires a large change in surface potential, for example, via a high density of receptors on the surface.
Devices even of simple (microscopic) planar geometry were shown capable of obtaining comparable
Sensitivity to more elaborate nanodevice geometries (such as nanowires), suggesting nanoscale device

design is not a requisite for high biomolecular Sensitivity.

Measurement of the sensor-response as a function of analyte concentration (i.e. pH) is common
in the pH sensing community. This measurement is effectively the same as the IUPAC definition
of sensitivity. Yet despite this, in the BioFET-sensing community, measurement of response as a
function of biomolecular concentration is still uncommon. In this work it was argued that equivalent

measurements are a vital figure-of-merit for comparing BioFET devices.

The critical review Chapter 8 highlights how biosensor design requires interdisciplinary input and
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understanding. Lack of this has led to underappreciation of the importance of reporting parameters
such as the precise nature of the biomolecules used, the value of the Subthreshold Slope of the device
and proper controls to ensure that the response is due to specific binding of the biomolecule. Some
common pitfalls were highlighted: Firstly, many experiments are performed without a reference
electrode in the liquid, which is required for reproducible and reliable response. Secondly, the practice
of reporting only the absolute value of the Normalised Change in Current without the polarity can lead
to ambiguity in interpreting the results of experiments. Finally, many BioFET experiments have been
deliberately performed at high biomolecule concentrations and low buffering capacity solutions (diluted
buffer) to increase the signal and apparent sensitivity. However, not only is this non-physiological, but
is also likely to result in significant non-specific responses due simply to changes in the bulk pH of the

solution.

Many of these limitations and pitfalls are similar to those that were encountered when other biosensing
technologies were emerging. For example, for surface plasmon resonance (SPR) biosensors, many
authors originally reported their data with insufficient detail for reproducibility and reliability, and it
took many decades before a standardised framework of experimental design and performance-metrics
was established. BioFET performance is currently usually quantified via the Normalised Current
Change, which neither describes the relationship between signal and concentration, nor the minimum
detectable concentration (or amount) of an analyte. Once reliable figures-of-merit for BioFET devices
have become established, progress in optimising BioFET sensors for practical usage in the field should

proceed more rapidly and with more reliability.

Despite these limitations, BioFET research is a rapidly advancing field in which novel device design
and operation methodologies are constantly being developed which increase the viability of BioFET
devices for commercial use. An example of a promising recent advance is the discovery of the ability to
detect biomolecules using a characteristic change in the BioFET frequency response [34, 63, 314, 383]
or detecting the transient signal upon a step-wise change in ion concentration [458]. These techniques
offer the potential of reducing noise and to circumvent the requirement of low ionic strength buffers to

achieve sufficient magnitude of signal.

Multi-Scale Simulation and Future Perspective

In this section, a perspective on the future of FET-sensor simulation is provided, highlighting literature

that is exemplary of current open research questions within the field.

FETs are relatively well understood as solid-state devices, whereas FET-sensors are much less well
understood due to the complexity introduced by the aqueous media and surface chemistry, including
surface ionisation and ion dynamics. A key challenge of modelling FET-sensors has been that the
time-scales of interest span far longer than their solid-state counterparts. For example, the time-scales
involved range from approximately 1072 to 10 seconds for biomolecule binding events compared to
approximately 10712 seconds for the changes in conductivity of the sensor. In this work, disparate
simulation techniques were employed to investigate the interfacial physics across the many-scales of
the problem, from individual surface charging reactions, to ion dynamics in the electrical double layer
and finally to the modelling of the surface potential changes experimentally measured using BioFET

devices.

Often modelling of BioFET response is performed via mean-field Poisson-Boltzmann approaches in
which response caused by binding of the biomolecule to the sensor surface is modelled as the equilibrium
response to the introduction of a uniform sheet of charge. These models have been unsuccessful

in explaining many aspects of BioFET response, and the work within this thesis suggests that the
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contribution of acid-base equilibria kinetics and ion dynamics has been hitherto underestimated. A
reliable model of FET-sensor response requires an accurate description of the electric field across
the disparate time- and length-scales involved. One promising methodology for such a simulation
framework is via Brownian Dynamics simulations. For example, in the multi-scale model of Asenov et
al. [80, 81], Brownian Dynamics simulations were used to explicitly model the effect of ion dynamics
on FET-sensor response. They used the model to improve understanding of the drain current noise
originating from the ion-dynamics, however it was not applied to biomolecular systems. In future
work in this field, such a model could be used to investigate the effect of biomolecule binding on the
device noise. Furthermore, as their models lacks a description of noise originating from the acid-base
equilibria at the surface, this would be an informative extension to this model. This extension could be
implemented either as an equilibrium model of surface charging via traditional surface complexation
models, or as a dynamic model using a Kinetic Monte Carlo model such as that presented in this

thesis.

The lack of a reliable model for BioFET response has resulted in experimental work in the field
which is performed with limited rational design. Some general principles have emerged to improve
BioFET response, such as reducing the amount of screening of the analyte-charges by lowering the
ionic strength of the electrolyte and operating in the subthreshold region for maximum normalised
change in current. Nonetheless, many design principles remain disputed due to a lack of consensus
on the underlying physical mechanism. For example, maximising the surface-area-to-volume ratio
has been shown to increase device response (Section 3.1.3). The theoretical explanation, however,
remains disputed and the literature review within this thesis (Chapter 8) showed similar Sensitivity
for a range of devices of significantly different surface-area-to-volume ratios. Improved understanding
of the relationship between device nanostructure and response therefore represents one of the most
important research questions for device design, and in the coming years, multi-scale simulations will

likely provide a tool to address this.

As introduced in Chapter 7, analysis of the BioFET noise has been shown in the literature to be
another strategy for improving BioFET response. More specifically, biomolecules have been shown to
be capable of producing a distinctive change in BioFET noise, such that frequency-mode detection
can be used for improved detection capability [314, 361, 381]. This observation has been proposed
to be a result of thermal noise of ions associated with the biomolecule [34], but prediction of the
characteristic frequency at which this occurs remains an open research question. In a recent 2016
publication by Chung et al., a simple particle-based dynamic model was used to evaluate the effect
of charged spheres (representing biomolecules) on ion dynamics and therefore FET-noise [383]. The
noise levels increased as the charged spheres approached the surface, and the results strongly suggest
that the thermal-Coulombic motion of ions gathered around the particles induce the Lorentzian
shapes in the noise spectrum. With increased understanding of the precise relationship between
biomolecule structure and noise-response, research in this field should provide another tool for rational

enhancement of BioFET response.

It has been proposed in the literature that the issue of drain current drift (i.e. a monotonic change
in drain current over time) in FET-sensor response is a result of chemical modification of the oxide
surface on exposure to aqueous solution [205, 234]. Chemical modification could occur via acid-base
reactions at the surface, or penetration of ions through the surface dielectric. The issue of drain-current
drift remains a common problem for FET-sensors, and a multi-scale model of device response could
be used to investigate the details of how these phenomena affect FET-sensor response, and therefore

provide rational design guidelines for the optimal dielectric surface of FET-sensors.

In conclusion, modelling BioFET response is an inherently multi-scale problem, and in order to address

the open questions in the field of BioFET design, future work will require suitable multi-scale models
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to address current limitations in understanding.
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A. Appendix: Terminology - Electrostatic
Potential

The term ‘electrostatic potential’, a concept related to the electric potential difference, has become
popular within the field of computational chemistry. A summary of the meaning and use of electrostatic
potential in biochemical molecular modelling has been published by Politzer et al. [484], for which
Politzer states that the electrostatic potential V(r) at any point r can be rigorously defined by
considering a static nuclear environment whereby nuclei, A, of charge Z4 are located at positions R,
with electrons at positions r and an electronic density function p(r):

. Z _ p(r’) r
V(r)—zA: & /|r,_r|d : (A1)

A — Tl

In this expression, the first term represents the contribution of the nuclei and can be evaluated exactly.
The second term represents the contribution of the electrons, and can only be approximated. It
can be determined either experimentally by diffraction methods [101] or using quantum mechanical
calculations [484]. V() is exactly equal to the Coulombic interaction energy between the unperturbed
charge distribution of the system and a positive unit charge at r [101].

Other methods of calculating the electrostatic potential exist, such as substituting p(r) into the
Poisson equation (Equation 3.1) and evaluating the resulting integrals either approximately or exactly
[485]:

Politzer describes the electrostatic potential as [484]:

...a real physical property, as evidenced by the fact that it can be determined experimentally.
It is rigorously and unambiguously defined by Equation A.1 and has a clear physical
meaning: it expresses the net electrical effect of the electrons and nuclei of a system in the
surrounding space.

A useful derived quantity can be formed by taking the gradient of the electrostatic potential; the
resulting vector field, referred within this report as the ‘electrostatic field’, is a specific case of the
electric field, E, relevant to atomic systems which represents the force per unit charge at all points in
space due to Coulombic interactions with the nuclei and electrons.
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B. Appendix: Sum Frequency Generation and
Second Harmonic Generation Background

The dielectric silica layer on the surface of many BioFETs has an unusual acid-base behaviour. Some
of the most compelling experimental evidence towards silica surface acidity and the structure of
the silica-water interface originated from sum frequency generation and second harmonic generation
measurements.

Second harmonic generation is a non-linear optical process which can be used to study interfaces.
In second harmonic generation measurements, two input high intensity lasers are focused such that
they overlap at the surface. The input photons annihilate each other and result in a generated
output beam with a frequency ws which is the sum of the two input lasers with frequencies w; and ws
(Equation B.1).

hwg = hOJQ + hW1 (Bl)

In sum frequency generation spectroscopy, one of the input lasers is held at a constant visible
wavelength whilst the other is varied through the infrared range, and the output beam is measured
with a detector. This facilitates measurement of the vibrational spectra at the interface. Second
harmonic generation is a special case of sum frequency generation measurement whereby w; = wp = %,
and is easier to perform experimentally as only one input laser is required.

The input beam induces polarisation at the interface Ps, which leads to a coherant surface response
FEs,. Importantly, the measured intensity is a function of the incident electric field E,, and the
second-order susceptibility of the surface x(, which is itself related to the interfacial molecular
composition and orientation of the target system. Under the electric-dipole approximation (ignoring
multipoles and magnetic moments) x® is only non-zero in non-centrosymmetric media, meaning
this technique selectively measures interfacial regions. Increasing intensity of the measured response
suggests an increasingly net polar orientation of molecules at the surface [486]. The intensity is also
modulated by a third order susceptibility x(*) due to the electric field from charged sites at the surface.
Taking this into consideration the intensity can be expressed as:

Esy x Py, = XPE, E,, + X®E, Eo,Eo + ..., (B.2)

where Ej is the static electric field in the interfacial region. A key limitation of this technique is that
the region defined as the interface is not always clear, and so it not trivial to map response onto its
chemical origin using this technique alone.

In main text (Section 3.3.2.2), the work of Ong et al. is referred to [145], in which they measured
the second harmonic generation response of silica over a range of pH values. By varying temperature
and electrolyte concentration, Ong et al. showed that the observed signal cannot be explained using
simply the x(® term, and showed a good theoretical fit to a model incorporating the x term due to
surface charge-induced polarisation effects. This result therefore provides evidence for polarisation of
water at the interface [145]. More explicitly, in order to calculate Pa,, they removed the significant
contribution of the x(?) term by subtracting the signal from the neutral surface (pH 2) from the
fully charged surface (pH 13), leaving only the contribution from x® and higher order terms. They
then fitted a ‘Constant Capacitance Model’ to the data, in which the data could best be fitted by
introducing two distinct pK, values at the surface as discussed in the main text (Section 3.3.2.2).
Ong et al. also argued that second harmonic generation can be used to directly measure the surface
potential [145].
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C. Appendix: Introduction to Density
Functional Theory

The following report was prepared solely by myself as part of an MSc-level component to my 4-year
integrated PhD programme. It provides an introduction to DFT and electronic structure theory
to the non-specialist. The full report, including a subsequent DFT study of the silica-biomolecule
interface is available online at the University of Southampton repository: http://eprints.soton.
ac.uk/401427/


http://eprints.soton.ac.uk/401427/
http://eprints.soton.ac.uk/401427/
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I. NOTES

This research report is split into two sections. The first
section is that of an overview of the theory that I have
learned as a crucial part of this IRP, as my knowledge of
Quantum Chemistry in Simulation work was poor beforehand.
The second section focuses on some work I have performed
in replicating a paper which investigates the properties of
the Amino Acids/Silica surface interface. This system was
chosen to be simple so as to ensure I am familiar with
the principles, and gain some experience with simulation
in this area. This work could lay a foundation for further
work on more Complex Systems, whereby the interactions of
many components are investigated, for example, studying the
properties of entire proteins on surfaces, or incorporating the
interaction of networks of water molecules on the system. The
interface between biological molecules and inorganic surfaces
is currently poorly understood, and of great importance in
areas such as Bionanotechnology (e.g. biosensors [1], [2] and
drug-delivery [3]). Furthermore, it is believed the first organic
molecules may have been catalyzed by inorganic surfaces, and
therefore understanding this interface has relevance to under-
standing the mechanism behind the formation of primordial
life [4].

II. QUANTUM MECHANICS

Throughout the 20th Century it became evident that a new
theory was required which would reconcile the differences
between classical models and experiments in the microscopic
world. Experiments such as the famous Young’s interference
experiment lead to the discovery that matter could no longer
considered as simply particles or waves, but rather must be
considered as wave-particles at very small length scales. As
a result, new discipline, Quantum Mechanics was required.
Quantum Mechanics is a branch of physics that describes the
phenomena observed at microscopic scales. From Quantum
Mechanics we can obtain the fundamental laws of Chemistry,
and thereby an understanding of the properties of materials and
biological molecules. For example, Quantum Mechanics can
be used to aid in silico predictions of drug-affinity for proteins;
and therefore has important applications in the Pharmaceutical
industry.

In Classical Mechanics, the state of a particle’s character-
istics, such as position and energy can be measured precisely
and deterministically. In Quantum Mechanics this is no longer

the case, and the only deterministic factor is the probability
distribution of an observable. A wavefunction can describe a
chemical system (several molecules), a single molecule or a
single wave-particle (e.g. an electron, or photon). According to
the correspondence principle, the laws of Classical Mechanics
are simply the result of a statistical average over the quantum
properties of a large number of particles [5].

The material discussed throughout the theory section of
this report can be found within most textbooks in the area
of Quantum Chemistry, of which the works of Atkins and
Friedman [6] is particularly good, and also that of Szabo and
Ostlund [7].

Quantum Mechanics describes the state of a system not
through its position and energy, but through an abstract
property called the *Wavefunction’,ip. An axiom of Quantum
Mechanics states that the wavefunction fully characterises all
properties of a chemical system and, once ¢ is known, we can
determine any property of interest by applying the appropriate
operator O:

<0 >= /@*Og@dz. (1

The wavefunction has no direct physical interpretation,
however the probability of finding a chemical system is the
integral of |¢* | over all space, or simply the integral of |¢|?
for real wavefunctions.

III. SCHRODINGER EQUATION

Once the wavefunction of a molecule is known, any ob-
servable property of interest can be calculated ab initio,
which means ’from first principles’ based on the axions of
quantum mechanics, without fitting to experimental data. The
wavefunction can be determined from the (non-relativistic)
time-independent Schrédinger equation:

Hyp = By, )

This seemingly simple but powerful equation states that by
applying an the Hamiltonian operator to the wavefunction,
the resulting eigenvalues are the total energy of the system
described by the wavefunction. In order to find other prop-
erties, such as the dipole moment or kinetic energy, different
operators are used. The Hamiltonian operator is an important
operator, and is a sum of contributions from the inter electronic
repulsion, internuclear repulsion, electronic and nuclear kinetic
energies and the electron-nucleus attraction.
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Except in the simplest of cases (e.g. atomic hydrogen), the
time-independent Schrodinger equation cannot be solved ana-
lytically, and as such normally only an approximate solution
can be obtained using numerical computations. Furthermore
various approximations must be utilised in order to make
these computations feasible. In order to solve Equation 2
for many electron problems, an important assumption that is
made is the Born-Oppenheimer approximation; because the
electrons move much faster than the nuclei, is often a very
good approximation to assume that the nuclear kinetic energy
can be dealt with separately to the electronic energy, and added
as a classical term at the end of the calculation. As such we
are concerned with solving the electronic time-independent
Schrodinger:

Helec(pelec - Eelec@elec» (3)

for each set of fixed nuclear coordinates. In order to

consider this problem mathematically, Figure 1 demonstrates
the relevant vectors describing the coordinate system.

Electron 1

r-r
Nucleus Electron 2
O (origin of coordinates)
Figure 1. Schematic of the Electronic Problem for a Helium atom showing

the various coordinate vectors relevant to electronic calculations.

The total electronic energy Hamiltonian operator f[elec can
be written in Atomic Units as:

Nejec 1
2 2
Hepee = — Z §vr;
i=1
Netee Mnue Z4
i=1 A=1 ri—Ral
Netee Neiee 1
+ |r._r.|’ (4)
i=1 =i ' J

where the first is the electron kinetic energy operator, the
second term is the electron-nuclear attraction (where Z is the
atomic number of the nucleus A) operator, and is the electron-
electron repulsion operator.

In summary, the Schrodinger equation can be numerically
solved to provide an approximation to the molecular elec-
tronic wavefunction by solving Equation 3 and the resulting
wavefunction can be used to determine determine electronic
properties of the system. These methods are often based

on ’Hartree-Fock’ theory (Section IV-C). Remarkably, this
approach can be performed almost' entirely from first prin-
ciples (Cab initio’) whereby only the atomic numbers and
initial coordinates of the nuclei are provided. In an attempt
to provide reduced computational cost at the expense of
accuracy, another common approach (’Semi-Empirical’) to is
to replace the electronic Hamiltonian (Equation 4) with a
highly parametrized empirical expression. In both cases, it is
a challenging task to compute chemically accurate energies
to within about 5 kJmol™! [6]. Finally, Density Function
Theory (DFT) is a popular branch of quantum chemistry which
approaches the problem of calculating molecular properties
from an entirely different perspective. In DFT properties are
calculated as functional of the electronic density. Figure 5
summarises the various methodologies. This report will outline
Hartree-Fock methods and briefly introduce DFT.

IV. HARTREE-FOCK MOLECULAR ORBITAL THEORY
A. Representing the Wavefunction

The aim of this section is the present the notation used
to approximate a molecular wavefunction. We can describe a
single electron through via its spatial coordinates (r = z,y, z)
and its spin w, we denote these four coordinates as x. The
wavefunction for a single electron can therefore be expressed
as a spin orbital,y(x), which is a product of the spatial
wavefunction (r) and a spin function a(w) or B(w) to
represent spin up and spin down respectively.

Y(r)a(w)
X(x) = q or . 5)
Y(r)B(w)

The mathematical function expressing a spin orbital is not
known, however the properties of them are known. Figure 2
summaries the notation for one electron wavefunctions. The
mathematical function for a spatial orbital is typically a basis
set expansion of any arbitrary function ¢; most often Gaussian
or Slater type functions, as further discussed in Appendix and
shown in Equation 6.

M
U(r) =) Cuidu(r). ©)
p=1

We have shown that the molecular wavefunctions ¢(x), can
be numerically approximated as functions of spin orbitals
(Equation 7).

p(x) = ¥ (x(x)) (7

The exact wavefunction ¢ we desire could be approximated

(P) in several ways. For example, it could represented as
a simple product of one electron wavefunctions (’Hartree-
Product’), e.g. for two electrons :

W(x1,x2) = xi(x1)x;(X2)- (®)

loften with a small empirical correction to increase accuracy
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1 | 0,
| »” ‘
Xi(x1) Xj(x2)

PirDalw) hir;)B )

Figure 2.  Each electron can be described via its spin orbital (x;). For
restricted closed shell configurations, the spatial function is considered the
same for both electrons, and the only difference between the two spin orbitals
is the spin function. This is as shown above (’Restricted Hartree-Fock’).
For open shell configurations, separate spatial functions are used (’open-shell
Hartree-Fock’), this can be for just the the open-shell orbitals (restricted) or
for all orbitals (Cunrestricted’).

However such a representation has various issues. Firstly a
wavefunction should not distinguish between electrons (in the
Hartree-Product, x;is always associated with ;) and secondly
it does not satisfy the antisymmetry principle (Equation 9). An
antisymmetric wavefunction is one where the interchange of
the coordinate x (both space and spin) of any two electrons
results in a change in the sign of the wavefunction:

U(x1,%x2) = —U(x2,X1). 9)

These principles can be incorporated into the expression for ¥
with the use of Slater Determinants, e.g. for the two electron
case above:

1 Ixi(xa) xg(xa)
U(x1,%xz2) = V2 |xi(x2)  xj(x2)

It can be seen that this obeys the antisymmetry principle
because exchanging the positions of electrons (interchanging
two rows of the determinant) changes the sign of the de-
terminant. The spin orbitals no longer distinguish between
electrons. Furthermore, the antisymmetry principle also leads
to the concept of the Pauli Exclusion principle, because
two electrons cannot occupy the same spin orbital, as the
determinant becomes zero. In general, the Slater determinant
has N electrons occupying N spin orbitals:

xi(x1)  xi(x1) Xr(x1)

Xi(x2)  xj(x2) Xk (x2)
¥(x1,X2..XxNn) = A : : . , (D)

xi(xn) X (xn) Xi(x)

where A = LN.Note also there is one other impor-
tant difference from the Hartree-product. In the Hartree-
product, electrons are uncorrelated i.e. the probability of

finding electron-one in dz;at x;and electron-two in dxsat Xo
is was just the average of the product of the probabilities.
This is unphysical, and the well known Van der Waal forces
are an effect of this correlation. For the Slater Determinant,
because the antisymmetry principle must be satisfied if the
position of two electrons are exchanged, the motion of parallel
spins must be correlated; the Slater Determinant introduces
“exchange correlation” for parallel spins. A limitation of the
Slater determinant is that it completely neglects description
of any electron correlation of unparalleled spins. The simplest
(and consequently least accurate) antisymmetric wavefunction
which can be used to describe the ground state of an N-electron
system is a single Slater determinant.

B. The Variational Principle

An important principle in all quantum chemistry calcula-
tions is the Variational Principle. This principle states that the
total energy of any well-behaved, normalised wave function
will always be higher than the ground state of the system.
As a result, the Hamiltonian of a single Slater determinant
approximation of the wavefunction U gp will always be above
the ground state of the system:

€= <xp|ﬁf|\p> > e (12)

Therefore, by varying ¥(x), we know that any reduction in
total energy corresponds to a better approximation of the true
ground state wavefunction of the system.

C. Hartree-Fock Self-Consistent Field method (SCF)

We are seen that we are interested in determining the
approximate wavefunction for the system W, which can be
expressed, in the simplest case, as a single determinant. From
the Variational Principle (Section IV-B), we know that the
best wave function of this form can be obtained by varying
the choice of spin orbitals in the Slater determinant in order
to minimise the energy. This optimal configuration of spin
orbitals can be obtained by applying solving the Hartree-Fock
equations for each spin orbital (x;):

Fl)x(xi) = ex(xi),

where f is the *Fock-Operator’ :

13)

F(i) = h+o"F (i)

1 ]\/I%u(i ZA
=—-V2 — e R T ( 14
2 ' Az::l |ri—Ra| o) 14

The first term is the kinetic energy of each electron, the
second term is the Coulomb attraction of the electron to the
nucleus and the final term is average potential experienced
by the ith electron, as a result of interactions with other
electrons. Electron-electron interactions are key to accurate
descriptions of wavefunctions. The Hartee-Fock assumption
deals with electron-electron interaction by accounting for them
in an ’average’ way, and an unfortunate consequence of this
assumption is that does not entirely account for electron
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correlation. v#¥ comprises of a Coulomb operator, which

pseudo-classically can be seen to represent electron-electron
repulsion, and an exchange operator which is a purely quantum
effect which is a consequence of the antisymmetry principle
(equation 9).

The set of M simultaneous Hartree-Fock equations which
must be solved are known as the 'Roothaan equations’. As
each ’field’ seen by an electron depends on every other elec-
tron, the equation must be solved iteratively using a procedure
called Self-Consistent Field (SCF) method.The principle is
simple; an initial guess of the spin orbitals is made, and
from this the average field is calculated (v™'F'). This is then
used to solve the eigenvalue equation 13 and obtain new
spin orbitals from which the procedure can be repeated until
convergence of energy is reached. For an N-electron system,
the N lowest energy spin orbitals are then used to construct
a single Slater determinant wavefunction for the system as
shown in Equation 11. This lowest energy configuration is the
Hartree-Fock approximation W/'F" of the true wavefunction
ground state. Figure 3 depicts an overview of the process.

Make initial guess of

wavefunction ¥

Calculate v

Covergence?
Solve

F(i)x(x;)=e(x;)

to obtain new y(x;)

Figure 3.
Procedure.

Flowchart summarising the Hartree-Fock Self-Consistant Field

D. Accuracy of the Hartree-Fock method and Post-Hartree-
Fock methods

As with any ab initio method for determining a many-
electron wavefunction, the resulting wavefunction WA is
the result of several approximations, and therefore in any
practical implementation will not be exact. Approximations
include the Born-Oppenheimer Approximation and the neglect
of relativistic effects, and neglect of of electron correlation for
electrons of opposite spin. The accuracy of the wavefunction,
and therefore Energy may be improved by increasing the

number of basis functions, with diminishing returns up until
the "Hartree-Fock limit’.

Many improvements have been made to the Hartree-Fock
method since its conception, and these improved methods
often collectively referred to as 'Post-Hartree Fock” methods.
These methods incorporate the effect of electron correlation
for electrons of opposite spin. A popular post-Hartree-Fock
methodology is called ’full Configurational Interaction’ (full
CI). This method considers the excited states of the molecules
in order to better represent the wavefunction of the system.In
short, the an exact wavefunction ¢ can be expressed as a
linear combination of all the infinite symmetry adapted Slater
determinants. Therefore to reach the exact solution (up to
the Born-Oppenheimer approximation), an infinite number of
basis sets would be needed and an infinite number of Slater
determinants, as shown in Figure 4, and a compromise be-
tween accuracy and efficiency must be made. Another widely
used post-Hartree-Fock methodology is that of Mgller—Plesset
perturbation theory, which treats electron correlation as a
perturbation of the Fock operator [8].

Although Hartree-Fock and Post-Hartree-Fock methods are
still widely used today, they require the computation of many
two-electron integrals, which leads to poor scaling in time with
the number (V) of basis sets (HF methods scale at around N*
or higher). As an increased number of basis sets is needed
to describe an increased number of atoms, this means that
systems of many atoms are highly intensive, and computations
beyond several hundred atoms are likely infeasible.

1000 | Hartree-Fock Limit
E Exact Limit
= 800 4 —
B
c
T
« 600 -
‘@
1]
[- ]
% 400 -
3
a
g€ 200 |
=]
2 Full ClI
0 T T T 1
1 10 100 1000 10000

Number of Slater Determinants

Figure 4. Graph showing how accuracy of Hartree-Fock methods increases
with either increasing Slater Determinants or increased number of Basis
Functions. When the number of basis functions is complete in describing
the system, and all states have been considered as Slater Determinants, the
exact solution (up to the Born Oppenheimer Approximation) will be attained.

E. Calculating Molecular and Electronic Properties from the
Wavefunction

Once the wavefunction for the system has been determined,
the electronic properties (e.g. dipole moment, charge density
etc.) can be obtained trivially by applying the correct operator
as shown in Equation 1. In order to obtain molecular ge-
ometries, thermodynamics properties (e.g. Gibbs Free energy,
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entropy) and predict spectroscopic properties (bond vibration
frequencies, chemical shifts etc.) a Potential Energy Surface
(PES) must be constructed, which describes how the energy
of the system as a function of the atomic positions. A PES
is generated by combining information from the electronic
wavefunction with the nuclear wavefunction using the Born-
Oppenheimer Approximation. Figure 5 depicts this schemati-
cally. Further information on PES can be found within many
Quantum Chemistry textbooks [6], [7], [9].

V. DENSITY FUNCTIONAL THEORY

Density Functional Theory (DFT) represents a very different
approach to obtaining molecular and electronic properties
which is not based on the concept of first finding spin orbitals
x as in Hartree-Fock calculations. DFT uses the concept of
electronic probability density, as shown in Equation as its
fundamental unit, not the wavefunction - which brings sev-
eral advantages, such as being more experimentally relevant.
Furthermore, whilst the wavefunction of an N-electron system
depends on 4N variables (z,y,z,w for each of N electrons), the
density just depends on 3 variables (x,y,z) and therefore does
not increase in complexity for larger systems.The popularity of
DFT can be explained in part because it can include electron
correlation, as in Post-Hartree-Fock methods, whilst being less
computationally demanding (scaling as N3 to the number of
basis sets, compared to [NV 4 for Hartree-Fock methods). The
electron density n(r) can be thought of as the probability of
finding any of the IV electrons at a particular point in space,
r:

n(r) = Nel/---/|<p(x1,x2...xNel)|2 dx;dxs...dxn,, .
(15)

Although DFT has existed since the 1920’s, it was not until
the 1960’s, whereby a formal proof Hohenberg and Kohn,
showed that for a single ground state probability density,
all corresponding ground-state electronic properties can be
uniquely determined, for example; for a given density, there is
a corresponding electronic energy; it is said that the electronic
energy is a functional® of density [10]. This remarkable proof
is considered one of the most significant developments in
quantum theory since the development of Schrodinger Equa-
tion in 1926 as it allows us to tackle the Electronic Problem
from a difference angle. Unfortunately the Hohenberg-Kohn
theorem does not tell us the form of the functional; originally
there was a focus on ’pure’ or ’orbital-free’ DFT, which
attempts to compute the energy of inferacting electrons as a
functional of density. However, pure DFT is limited by the
poor quality of these approximations, in particular for the
kinetic energy functional.

In 1965, Kohn and Sham developed a novel DFT method
which solved this issue, by utilising fictitious non-interacting
one-electron spatial orbitals as a tool to approximate the
kinetic energy functional [11]. A detailed discussion of DFT
is beyond the scope of this report, however the reader can find
an excellent introduction by Atkins and Friedman [6]. In short,

2A functional takes a function as input and outputs a number

Kohn-Sham DFT has become an important part of many DFT
calculations. Using this principle, the electron density of an
N electron system can be obtained as simply a sum of spatial
orbitals squared:

N
n(r) =3 [i(r)P, (16)
i=1

The spatial orbitals required to construct the density can
be determined as follows. Firstly, the expression for the total
energy function for the system is formulated, comprising of
functionals for the non-interacting Kohn-Sham Kinetic En-
ergy and the other energy components (Coulombic, Nuclear-
Electron and Exchange-Correlation). Secondly, this functional
is minimised analytically resulting in the following expression

(5 V2 + Vies )y (1) = 5950

Finally, equation 17 is solved an Self-Consistent Field
approach, similar to that described in Figure 3, which yields
the KS-orbitals. The density can the then be obtained using
equation 16. Vg is an “effective potential” which allows
us to generate a density equal to the real system from the
fictions system of non-interacting electrons. It is composed
of a set of known functionals representing the the nucleus-
electron attraction and electron-electron repulsion. An exact
expression for the exchange-correlation potential is unknown,
and an approximation for the exchange-correlation potential is
therefore used. Many functionals have been proposed in the
literature, each with different advantages and disadvantageous,
and it is therefore important that a suitable functional is chosen
to suit the properties of the system. Once the density is known,
electronic properties of the system can be calculated provided
an appropriate functional of the density is known.

a7)

A. Linear-Scaling DFT

Considering one of the limiting factors in the progress of
Quantum Chemistry has long since been its high computa-
tional expense, much work has gone into finding methods
which scale better with the number of basis sets (and thereby
atoms), whilst retaining accuracy. Whilst conventional cubic
scaling DFT has been traditionally limited to systems of less
than around 100 atoms (and similarly for ab initio Hartree-
Fock methods), various linear scaling algorithms have recently
been developed. One such example is the ONETEP (Order-
N Electronic Total Energy Package) program, which scales
linearly with both the number of atoms and processors [12].
Linear scaling methods often gain this increases in scaling by
exploiting the fact that systems with a distinct band-gap show
electronic localization due to exponential decay of electron
density as the distance from the atom increases.

B. Accuracy and Limitations of DFT

Despite many improvements, a common limitation of DFT
when used alone is that it cannot accurately describe Van der
Waals dispersion forces, as these require accurate modelling
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of electron correlation. As a result, systems where dispersion
forces are important often require additional corrections. Fur-
thermore, as described earlier, DFT requires an approximation
(e.g. Local Density Approximation or Generalised Gradient
Approximation) for the exchange-correlation functional, which
is often a significant source of error. In general, DFT calcula-
tions can perform at similar or better accuracy when compared
to Post-Hartree-Fock methods, however for all ab initio calcu-
lations it remains a challenge to compute chemically accurate
energies to within about 5 kJmol~! [6].

VI. SUMMARY

This report has considered some of the most widely used
methods of calculating properties of chemical systems from
first principle: Hartree-Fock, Post-Hartree Fock and Density
Functional Theory. The flowchart in Figure 5 summarises the
commonly used methodologies for determining first principles
properties of chemical systems. In order to make significant
progress on this problem for many-electron systems we must
adopt the Born-Oppenheimer approximation, which treats the
electronic and nuclear wavefunction as separable. Hartree-
Fock methods attempt to numerically approximate the elec-
tronic wavefunction, from which electronic properties can
be derived by applying the appropriate quantum mechanical
operator. The Hartree-Fock method neglects important elec-
tron correlation and so Post-Hartree-Fock methods attempt
to incorporate electron correlation with the cost of increased
computational expense.

In contrast, DFT methods utilise the the electron density
as the fundamental quantity, from which electronic properties
can be derived by evaluating an appropriate functional of
the density. DFT methods incorporate an approximation for
the electron correlation via a exchange-correlation functional.
Once electronic properties have been obtained from either
DFT or Hartree-Fock methods, information from the nuclear
wavefunction can be used to calculate a large range of
structural (e.g. geometry optimisation) and thermodynamic
properties (e.g. entropy). These properties can be used to
support experimental evidence, and to provide information
which is difficult or impossible to obtain experimentally.

As computer become more powerful, and advances in quan-
tum chemistry techniques improve, more accurate calculations
can be obtained and larger systems can be studied. While
traditionally ab initio calculations have been limited to small
numbers of atoms, advances such as Linear Scaling DFT have
facilitated the study of entire materials and macromolecules
such as proteins. Many systems on the interface between
biomolecules and inorganic materials demonstrate complex
interactions which are currently poorly understood despite
numerous experimental studies; ab initio calculations may be
used to provide improved understanding of these systems, as
further discussed in the second part of this report.

VII. APPENDICES

1) Basis Sets: As we are interested in computing numerical
approximations to the spatial orbital ¥ (r), a method of dis-
cretising the system is required. This is achieved via a basis

set expansion, whereby each spatial orbital is represented as
a linear combination of M basis functions:

M
b) =3 Clidy(r).

p=1

We are free to choose any basis set. Ideally they should
be complete, meaning that they can represent any molecular
orbital. Increasing the number of basis functions increases the
accuracy of the spatial orbital (with diminishing returns), how-
ever a small number is usually possible due to the computation
required for large basis sets. The choice of basis functions is
often done using a Linear Combination of Atomic Orbitals
(LCAO); the mathematical functions of each atomic orbital
(¢,,) are known within the literature, and the correct linear
combination (i.e. the values of C,;) can be determined by
solving the Hartree-Fock equations (Section IV-C) or, in the
very simplest of cases, by symmetry alone. These principles
are exemplified in Appendix VII-A.

A. Appendix 1 - Example of possible choice of spatial orbitals
for a Hy Molecule

We could choose the basis sets (¢) from the atomic orbitals
of each Hydrogen. For Hy a linear combination of the two
atomic orbitals ¢1(r) and ¢o(r) will form a gerade t; and
ungerade 1o:

1 = [2(14 S12)] 7% (¢1 + )

o = [2(1 4 S12)] 7% (¢1 + ),

where Si2 is the overlap integral which describes the extent
to which the two wavefunctions overlap, and is equal to J;; if
the basis sets are orthogonal:

Sip = / $1dydr, (18)

and the basis functions are known:

In this example we need not apply Hartree-Fock to determine
the coefficients C},; as symmetry has been used to determine
them as [2(1 + Sy2)]~1/2.
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Figure 5. Flowchart summary of widely used quantum chemistry methodologies for first principles calculations of the properties of chemical systems.
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D. Appendix: Density Functional Theory
Parameters

D.1. ONETEP parameters

Unless otherwise specified, all ONETEP calculations were performed using the PBE-GGA functional
[245] using ‘fine_ bl’ settings and an effective kinetic energy cutoff of approximately 800 €V.

// fine_Dbl’ settings:

NGWF _THRESHOLD ORIG 0.0000018375
ELEC_ENERGY TOL 0.001 eV

MAXIT NGWF_CG 100

MINIT LNV 10

MAXIT LNV 10

MAXIT PEN 3

PEN_PARAM 4

MAXIT HOTELLING 100
SPINPOLARIZED FALSE

GEOM. METHOD CARTESIAN

GEOM._MAX ITER 100

GEOM._ENERGY TOL 0.0000100000 eV
GEOM._FORCE_TOL 0.0300000000 "eV/ang"
GEOM._DISP_ TOL 0.0010000000 ang
DO_PROPERTIES TRUE

//NGWF Parameters:
//NGWF per atom: default
//NGWF Radius of approximately 9

In the final publication simulations were run using a new parameter set, which is the similar to the
above except that the NGWF per Si atom was increased to 9 and the NGWF radius was taken as
exactly 9.0.

D.2. NWChem parameters

Unless otherwise specified, all NWChem calculations were performed using these settings:

basis "ao basis" cartesian print
* library aug—cc—pvtz
END

dft
direct
tolerances accCoul 10
tolerances tol rho le—12
tolerances radius 35.0
tolerances tight
grid xfine
convergence energy le—8
mult 1
XC xpbe96 cpbe96
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mulliken
decomp
print geometry
end
driver
default
maxiter 100
end

task dft optimize
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E. Appendix: ONETEPConv Documentation

The following documentation is for the ONETEPConv software, an open-source utility which is freely
available online (doi:10.6084/m9.figshare.4001049.v1).

Benjamin Lowe
University of Southampton

10/03/15

E.1. What is ONETEPConv?

ONETEPConv a set of scripts, written in the Bash scripting language, aimed to make the calculation
of Energy and Force convergence data more automated.

To have confidence in any DFT calculation it is important that the calculation is run with sufficient
accuracy for the purpose required. At the most basic level, this can be done via comparing the
convergence of properties such as the Total System Energy or Forces with respect to varying the
resolution of the basis set.

By providing ONETEPConv with an example .dat file, ONETEPConv will generate duplicates of
this input .dat file, each time varying one parameter of the basis set to form a ‘convergence sweep’.
ONETEPConv has the following features:

o .dat file generation:

— Varying equivalent Kinetic Energy Cutoff (Parameter: ‘CUTOFF_ENERGY”)
— Varying Radius of the NGWFs per species (Parameter in: %block__species section)
— Varying Number of NGWFs per species (Parameter in: %block species section)

o To speed up sweeps, ONETEPConv supports resuming calculations (reuse_ calculations T) from
the result of previous calculations (reading .dkn and .tighbox_ ngwfs)

¢ Results analysis:

— Collates the resulting data into sorted .csv files ready for analysis

E.2. Usage

1. Place a template .dat file into /input/
a) Ensure the .dat contains a geometry which is not fully geometry optimised because non-zero
forces are required to investigate force convergence
b) Ensure the .dat file is a Single Point Energy calculation with ‘WRITE_FORCES T’

c) Ensure the .dat file has ‘WRITE_DENSITY_ PLOT F’ as writing these files required
unnecessary computation and space requirements.

d) Do not use a high quality basis set in the template, as it will be used for all calculations. It
is sufficient to use a low quality basis set and observe the effect of increasing each parameter
(kinetic energy cutoff, ngwf radius, number of ngwfs) respectively.

2. Place the .recpots norm-conserving pseudopotentials that you would like to use into the /recpots/
folder
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3. Configure ONETEPConv by editing ./input/settings.conv
4. Run ONETEPConv from the root directory:

./conv__generate.sh

a) This will generate .dat files in the ./cutoff, ./num_ngwfs and ./ngwf radius folders
respectively

5. Within each subdirectory, run ONETEP manually. You may wish to use a script similar to the
provided ‘run__jobs.sh’.

6. Extract the results of ONETEPConv into sorted CSV files by running;:

./ extract_to_csv.sh

a) This will generate .csv files in the ./cutoff, ./num_ngwfs and ./ngwf radius folders
respectively, containing both energies (Ha) and forces (Ha/Bohr) for each result.

E.3. ONETEPConv Settings

These can be edited within ./input/settings.conv

e clean: T/F

Remove all input files in subfolders generated from previous runs

e reuse calculations: T/F

Reuse a density kernel and NGWFs found in ./input/. This will copy these files into the
respective folders, and ensure they are read in by the .dat file. Speeds up the calculations in
principle. Note that for this to be enabled, you must have already performed a Single Point
Energy calculation and placed the .dkn and .tighbox_ngwfs into ./input. If this is set to T,
ensure you set READ_TIGHTBOX NGWEFS T and READ_DENSKERN T in your initial
.dat file. If this is set to, ensure that this is not the case.

Kinetic Energy Cutoff Sweep Settings

e min cutoff: X.
[float] [units=eV]

For the Kinetic Energy Cutoff scan, this is the starting (minimum) value of the Kinetic Energy

Cutoft
e cutoff_ spacing: x.
[float] [units=eV]

This is the spacing between each Single Point Energy calculation for the Kinetic Energy Cutoff
sweep.

e cutoff number of SPE: X

[integer ]

This is how many Single Point Energy calculations will be performed, starting from $min_ cutoff
defined above

— i.e. max_ cutoff=($min_ cutofl)+
($cutoff_spacing*$cutoff _number_of SPE)

NGWF Radius Sweep Settings

e min NGWF radius: X.
[float] [units=Bohr]

Starting NGWF radius for the sweep
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¢ NGWF_radius_ spacing: X.

[float] [units=Bohr]

Spacing between each Single Point Energy calculation
¢ NGWF_radius_number of SPE: b'e

integer
[ ger |

This is how many Single Point Energy calculations will be performed, starting from $min_ NGWF _ radius
defined above.

— i.e. max NGWF _radius=($min  NGWF _radius)+
(SNGWF _radius_ spacing*$NGWF _radius_number_ of SPE)

NGWF Quantity Sweep Settings

e increased_ngwfs: X
[integer |

The NGWFs quantity sweep will begin with the number defined in the initial.dat file. Each
additional Single Point Energy calculation will increase the number of NGWFs by 1.

e per_element: T/F
Setting this to True will mean that the ‘%block_species’ parameters (NGWF radius/quantity)
will be varied on a per_species basis. This is the default behavior. Setting this to False will

vary all species parameters simultaneously, which could be useful for quickly investigating what
range of parameters may be required.

E.4. Setting up ONETEP Calculations

See http://www2.tcm.phy.cam.ac.uk/onetep/Main /Utilities for a variety of useful scripts.

— For example, ‘dat2bounds’ calculates the width of your system including NGWF radii,
and based on this provides a suggestion as to what a sensible box size might be for either
a periodic vacuum padded cell or an open boundary condition simulation (e.g. Implicit
Solvent).

¢ Along with Cutoff Energy, and NGWF parameters, you must also ensure that the SCF conver-
gence is small enough for the calculation accuracy required (NGWF_THRESHOLD_ORIG)

o For calculations involving a periodic slab (x,y direction) which is vacuum separated (z direction),
it is important to test the convergence of the slab thickness with respect to your properties of
interest.

o If SCF Convergence is taking many iterations, one option is to try a smaller kinetic energy
preconditioning parameter ‘K ZERO’ (e.g. setting it to 2.5 ay 1), however it is important to
ensure that the accuracy of your calculations is still maintained.

¢ As a rule of thumb for new users of ONETEP, the following parameters usually fall in the below
range, depending on the required accuracy of the calculation:

— NGWEF radius: 7 Bohr to 10 Bohr
— Cutoff energy: 700 eV to 1200 eV

— Usually this would match the valence chemistry e.g. 1 for Hydrogen or 4 for Oxygen. You
may need to increase this in some cases, e.g. Silicon crystal required 9 NGWFs for an
accurate description (see doi:10.1063/1.2796168).
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F. Appendix: Density Functional Theory Slab
Thickness Validation
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Figure F.1.: Convergence study investigating the choice of ‘slab’ thickness in the silica model. Slab
Thickness is plotted against the Forces per atom, showing a minima at 14 A. This thickness was utilised
in subsequent calculations. The forces per atom were calculated using an example oxygen atom. The
properties were calculated using a single point energy calculation using 'fine_bl’ ONETEP parameters.
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G. Appendix: Paper 1 Supplementary
Information

Supplementary Information for ‘Publication Acid-Base
Dissociation Mechanisms and Energetics at the Silica-Water
Interface: An Activationless Process’

Throughout the main text joules were used to express energy and angstroms to express lengths,
however in Computational Methods Section, the units of Bohr (ag), hartree (Ey) and electron volts
(eV) were given for input parameters to the simulation software which operate under these units
systems.

lag = 0.529177211 A

l1eV = 1.602177 x 10719J

1E, = 4.359744 x 10718 J

Videos of the ab initio molecular dynamic simulations can be found at doi:10.5258/SOTON/401050.

G.1. Input Files

Please find data such as compiler versions, software versions, and example input files at the following
link: doi:10.5258/SOTON/401050.

G.2. Optimisation of Water Clusters

A 50 A periodic box was used to optimise water clusters using the ONETEP software with an
approximately 800 eV cutoff and the PBE-GGA functional. Consistent with the literature, it was found
that the PBE-GGA functional provided a reasonable description of simple water molecule geometries,
as shown in Table G.1. For example, it has been shown that on 9 different small water clusters, that
average RMSD with regard to MP2 calculations was 0.032 A for the average O-O distance [487]. The
PBE functional is however well known to systematically over-structure liquid water (see main text,
Computational Methods Section).

System (system O-H bond length H-O-H angle
charge)
| hydroxide (-1) [ 0.97A (0.958 A simulation gas [488]) | - \
y water (0) \ 0.97 A (0.96 A[489] expt. gas) \ 104.0° (104.5°[489] expt. gas) \
hydronium (+1) [ 0.99 A (1.00 A expt. aq. [490] or 0.961 A [ 111.7° (106.7° expt. aq. [490] or 114.7°
simulation gas. [488]) simulation gas [488])

Table G.1.: Calculated geometric parameters for an isolated hydroxide ion, water and hydronium ion
in vacuum. Literature values shown in brackets. expt.= experiment. gas=gas phase. aq.=aqueous
phase

The images in Figure G.1 show the optimised structures of solvated hydronium ions. Similarly the
images in Figure G.2 show the optimised structured of solvated hydroxide ions.


http://doi:10.5258/SOTON/401050
http://doi:10.5258/SOTON/401050
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v
1.03
/ 111.88

/1.53

0.97
Eigen cation (HyO,"). The hydronium O-H Zundel cation (H5O,"). The hydrogen in the
length is 1.03 A (0.98 A 6-31G** RHF [488]) middle is separated by 1.21 A symmetrically,
and the H-bond distance is 1.53 A (1.61 A 6- and the remaining H-O lengths are 0.97A .
31G** RHF [488]) with a 111.9° H-O-H angle This shows excellent agreement with the high
(106.7° aq. expt. [490]) level multi-configurational SCF calculations

of Muguet who showed lengths of 1.18 A and
0.95 A respectively [491].

Figure G.1.: Optimised solvated hydronium clusters. H-O-H Angles shown in blue, O-H bond lengths
shown in black.
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0.97 103.01 102.49 0.97

Optimised H305 anion. The hydrogen in the
middle is located asymmetrically between two
oxygen atoms at a distance of 1.21 A from
the leftmost oxygen and 1.26 A from the right-
most oxygen. The H-O-H angles are 103° and
102° from left to right. This gives a relat-
ively poor agreement with calculations at the
MP2/aug-cc-pVDZ level which show a greater
asymmetry of 1.42 A and 1.09 A from left to
right [492] however it is thought that, simil-
arly to the Zundel cation, the proton resonates
between the two oxygen atoms. X-Ray crys-
tallography has resolved the proton as sym-
metrically located between the oxygens [493].

H7O,; anion. The hydrogen bond length is
1.58 to 1.61 A. This structure is consistent with
calculations at the B3LYP/6-31+G(2d,2p)
level [494].

HyOj5 anion. This structure is consistent with
calculations at the B3LYP/6-31+G(2d,2p)

level [494].

Figure G.2.: Optimised Solvated Hydroxide clusters. H-O-H Angles shown in blue, O...H distances
shown in black. The lengthening of the hydrogen bonds to the OH™ with increasing solvation is
consistent with the BBLYP/6-31+G(2d,2p) calculations of Novoa et al. [494].

G.3. Optimised Water/Surface Model Systems

This section shows the initial and optimised structures of various water-silica model systems.

G.3.1. Cluster Models

Geometry optimisations using DFT (PBE-GGA) and MP2-level calculations in NWChem were
compared for a simple silanol monomer system reacting with OH~/H;0" | as shown in Figures

Figure G.3 and Figure G.4.
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2.7

(a) NWChem (PBE) (b) NWChem (MP2)

Figure G.3.: Geometry optimisation of a SiH;OH ... H;0" using NWChem. Each left hand image
shows the initial structure, with the optimised structure on the right. The captions shows which
software and functional in used brackets. Activationless protonation of the silanolate was observed,
with the MP2 geometry in good agreement with the PBE geometry, but with slightly shorter (0.11 A)
hydrogen bond lengths than the PBE simulation.
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0.97 0.972 0.96
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(a) NWChem (PBE) (b) NWChem (MP2)

0.98

Figure G.4.: Geometry Optimisation of SiH3OH-..OH™ using NWChem. Each left hand image
shows the initial structure, with the optimised structure on the right. The captions shows which
software and functional the simulation was run using. Activationless deprotonation of the silanol was
observed, with the MP2 geometry in good agreement with the PBE geometry, but with slightly longer
(0.03 A) hydrogen bond lengths than the PBE simulation.

The implicit solvent model of ONETEP was used to study these proton transfers for the model silanol
system, as shown in Figures Figure G.5 and Figure G.6.

- 0.99
W 0.97
0.99 0.99 V

S0 R .
(@) | | v ¢ |

(a) ONETEP (vacuum, PBE) (b) ONETEP (implicit solvent, PBE)

Figure G.5.: Geometry optimisation of a SiH;OH-..H;0" using ONETEP in vacuum, shown in
(a) and in implicit solvent, shown in (b). The addition of implicit solvation had little affect on the
geometry beside a slight shortening of the hydrogen bond by 0.2 A. Activationless protonation of the
silanolate was observed.
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(a) ONETEP (vacuum, PBE) (b) ONETEP (implicit solvent, PBE)

Figure G.6.: Geometry Optimisation of SiH3OH -.. OH™ using ONETEP using in vacuum, shown in
(a) and in implicit solvent, shown in (b). The addition of implicit solvation had no significant affect

on the geometry. Activationless deprotonation of the silanol was observed.

Whereas isolated silanols are the focus of this study, vicinal and geminal silanols were briefly examined,
as shown in Figures Figure G.7 and Figure G.8.

165

M

(b) (SiH;OH)O(SiH;0H) .. OH™

(a) (SiH;OH)O(SiH,07) .. H,0F

Figure G.7.: Geometry optimisation of a water ion (OH™ or H30™) encounter-paired with a minimal
silanol dimer model of a vicinal silanol. Activationless proton transfer is observed, similar to the case
of isolated silanols. Calculation performed in NWChem/PBE-GGA.

~—-1.84,

(a) Geometry optimisation of Si(OH);O0~ -.. H;0™ (b) Geometry optimisation Si(OH), -..OH~

Figure G.8.: Geometry optimisation of a water ion (OH™ or H30™") encounter-paired with a minimal
silicic acid monomer model of a geminal silanol. Activationless proton transfer is observed, similar to
the case of isolated silanols. Calculation performed in NWChem/PBE-GGA.

G.3.2. Hydroxide lon Above Neutral Surface

Geometry optimisation of the stable HyO5™ cluster at the silica surface did not show proton transfer,

as discussed in the main text and shown in Figure G.9.



196

Appendix: Paper 1 Supplementary Information

Figure G.9.: Geometry optimisation of HqOg~

R

/1.74

1.73 %
' 1.53

(b)

above silanol group at the silica surface using the

ONETEP software. Initial structure show in (a), and optimised structure in (b). Deprotonation of
the silanol did not occur as a due to the well-known high stability of the HgO;~ ion. The silanol OH
is stretched from 0.96 A to 1.01 A, and there is an assymetry intoduced into the hydrogen bonding

pattern of the HgO5™

square-pyramidal structure.

G.4. Natural Population Analysis showing Natural Charges

In the main text, a silanolate group on the silica surface is protonated by the solvated hydronium
during a geometry optimisation. The natural population analysis of the geometry optimised (after
proton transfer) structures is shown here in Figure G.10. Prior to optimisation, the silanolate group
surface-terminal oxygen had a Natural Charge of -1.17 and all other surface-terminal oxygens showed
a Natural Charge of —1.04 4+ 0.01. After optimisation all surface-terminal oxygens showed a Natural
Charge of —1.04 £ 0.01, which indicates that the silanolate had been neutralised.
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Figure G.10.: Natural Population Analysis showing the Natural Charge of the oxygen atoms of the
water molecules above the silica surface. FEach structure is taken from the optimised structure shown
in the main text. Oxygen atoms are colored according to their Natural Charge on a linear red, white,
blue color scale between -1.00 and below (red) to -0.88 and above (blue). Silicon atoms are shown as
yellow and hydrogen atoms as grey.
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G.5. Reaction Energies

In order to obtain an estimate of the reaction energies for Equation 1 and Equation 3 from the main
text, three reaction schemes were considered for each reaction upon a model orthosilicic acid system
[Si(OH),] and silanol system [SiH;OH], these reaction schemes are shown in Figure G.11. The first
reaction scheme considers products which involve single water molecule physisorption to the surface,
the second reaction considers the case of no water physisorption to the surface, and the third reaction
considers both molecules being physisorbed (one to the surface, and one to the other water molecule).
The results are presented in Figure G.12, and it can be seen that all these reactions are highly
exothermic, with the SiR;O0™ protonation reactions in the presence of hydronium being significantly
more exothermic than the SIROH deprotonation reaction in the presence of hydroxide (R=0H, H).
All-electron (PBE/aug-cc-pvtz) calculations were performed in NWChem, and reaction energies were
found to underestimate the reaction energies as calculated by Leung et al. (CCSD(T)/aug-cc-pVDZ
corrected for basis set incompleteness) by approximately 12 kJ/mol.

Hydronium/SiR;0~ (Equation 1 in main text):

SiR;0~ + H,0-..H;0" — SiR;0H - .. H,0 + H,0 (G.1)
SiR;0™ + H,0-..H;0" — SiR;0H + H,0 .. H,0 (G.2)
SiR;0~ + H,0-..H;0" — SiR;0H-..H,0-.. H,0 (G.3)

Hydroxide/SiR;O0H - (Equation 3 in main text):

SiR4OH + H,O-..OH™ — SiR,0™-H,0 + H,0 (G.4)
SiR4OH + H,0-..OH™ — SiR,0~ + H,0-.. H,0 (G.5)
SiR;OH + H,0-..OH™ — SiR40 ™ +H,0--H,0 (G.6)

Figure G.11.: List of Reaction Schemes considered for each of the surface charging and neutralisation
reactions described in the main text.
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Reaction R Uncorrected Reaction Energy BSSE Correction + ZPE Correction
Equation G.1 OH -653.5 -650.9
Equation G.1 H -661.6 -660.7
Equation G.2 OH -638.9 -637.2
Equation G.2 H -656.5 (-650.3) -654.8
Equation G.3 OH -693.8 -682.1
Equation G.3 H -707.3 -693.2
Equation G.4 OH -114.5 [-127.7] -104.9 [-118.3]
Equation G4 H -95.91 -88.30
Equation G.5 OH -53.41 [-64.89] -43.49 [-56.15]
Equation G.5 H -35.78 (-36.30) -25.91
Equation G.6 OH -172.3 -153.3
Equation G.6 H -159.2 -141.8

Figure G.12.: Table of Reaction Energies (kJ/mol) calculated using the PBE-GGA functional and
aug-cc-pvtz basis set in NWChem. The uncorrected energy is the calculated using electronic energy of
each system, and the correct energy is calculated using Basis Set Superposition Error (BSSE) calculated
using the counter-poise method, combined with Zero Point Energy (ZPE) correction. Energies in
round brackets indicate those calculated by Leung et al. [144] using CCSD(T)/aug-cc-pVDZ energies
corrected for basis set incompleteness. Energies in square brackets are those calculated using ONETEP
using the settings described in the main text (PBE functional), using a cubic cell with spherical
truncation of the coulomb potential to remove periodic interactions between images. The reactions are

highly exothermic, by comparison k,T at 298 K is ~2.48 kJ /mol.
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H. Appendix: Paper 2 Supplementary
Information

Supplementary Information for ‘Dynamic Behaviour of the
Silica-Water-Bio Electrical Double Layer in the Presence of a
Divalent Electrolyte’

Authors: B. M. Lowe, Y. Maekawa, Y. Shibuta, T. Sakata, C-K. Skylaris, and N. G. Green,

In the interest of reproducibility, the molecular dynamics trajectories (.xyz files), videos of the
trajectories, analysis code and analysis data are openly available from the University of Southampton
repository at: http://dx.doi.org/10.5258/SOTON /401018

H.1. Surface Charge Density

The surface charge density used in these simulations of 0.2Cm~2 corresponds to pH 5.5 according
to the XPS experiments of Duval et al. on Quartz [154]. However, accurate quantification of silica
surface charge is complicated by the strong ionic strength dependency and variability depending on
silica surface preparation. For example, some studies correlate this surface charge density to pH 8.5-9.5
based on 0.1 M ionic strength [495, 496]. Emami et al. [386] estimates at 0.1-0.3 M this surface charge
density would correspond to silica at pH greater than 9 or quartz at pH between 7 and 9. This work
utilised a (100) alpha-quartz (SiO,) surface.


http://dx.doi.org/10.5258/SOTON/401018
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H.2. Electric Field Calculation Methodology

For electric field calculations within the main text, post-processing of the trajectory was performed
to calculate the electric field at the position of a test charge. Two methods were utilised, each with
advantages and disadvantages.

H.2.1. Coulomb Summation

In the Coulomb Summation method (e.g. Figure 12, main text) a non-periodic super-cell was extracted
containing the unit cell and its 9 closest neighbours in the x-y plane. A finite-coulomb sum over all
atoms to a —1 e test charge was used to obtain the electrostatic force and thereby the electric field at
the test charge coordinates. This method allows neglect of the field introduced by periodic images in
the z-axis and is computationally cheap for calculating the electric field across a plane.

Figure H.1 shows the electric field on a test charge centered 1A below the silica slab using the
Coulomb Summation method.

—— 0mM £,=-0.015, 0=0.009 —— 200 mM E.=-0.015, =0.006 1000 mM E,=-0.015, 0=0.006
—— 0mM DNA E.=-0.015, 0=0.010 ~ —— 200mM DNA £,=-0.017, 0=0.006 ~ —— 1000 mM DNA £,=-0.017, 5=0.006
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Figure H.1.: Electric Field of mixed valency systems from this work, calculated via finite-coulomb
summation for a test charge centered 1 A below the slab, included in the calculation are the 9 adjecent
periodic xy images.
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H.2.2. Ewald Summation

The other method utilised was an Ewald sum (e.g. Figure11 , main text), which provides accurate
treatment of periodic electrostatic interactions, but suffers from high computational expense and error
introduced by the non-uniform compensating background charge introduced with the test charge for
orthorhombic systems [252]. A test charge near the base of the cell will experience electrostatic forces
dominated by the periodic image in the z-direction, therefore, for these calculations, an extra unit cell
of vacuum padding was introduced to reduce this contribution. The Ewald sum was implemented

using the open source software Pysic 0.6 (https://github.com/thynnine/pysic/) and the following
parameters:

real cutoff=10

k_ cutoff=0.8999999999999999
sigma=3.3333333333333335
epsilon=0.00552635

2
o . e
Where epsilon is in units of {.

Figure H.2 shows the electric field on a test charge centered 1 A below the silica slab using the Ewald
Summation method.

—— 0mM E,=-0.0060, 7=0.010 —— 200 mM E,=-0.0059, 0=0.006 1000 mM E,=-0.0069, 7=0.006
—— OmM DNA E,=-0.0060, =0.010 ~ —— 200mM DNA E_=-0.0084, =0.007  —— 1000 mM DNA F.=-0.0087, 0=0.006
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Figure H.2.: Electric Field of mixed valency systems from this work, calculated via Ewald summation
for a test charge centered 1 A below the periodic slab.
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H.3. Silanolate coordination numbers
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Figure H.3.: Silanolate-[atom] Radial Distribution function (RDF) as a function of 0 mM, 200 mM and
1000 mM ionic strength for silica-water systems. (a) Silanolate-Na* RDF, each silanolate showed an
average of 1.6-2.3A O-..Na ion-pair distance (b) Silanolate-Water (H) RDF, each silanolate showed
an average of 1.25-2.0 A O-..H hydrogen bond length. These figures were integrated and scaled
appropriately to obtain the coordination numbers displayed in the main text Figure5. Increasing
ionic strength resulted in an increase in sodium ion coordination to silanolate ions and corresponding
decrease in water coordination.

H.4. Residence Times of Si—O~ -.. H,O
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Figure H.4.: Residence time of water to silanolate groups at the silica surface as a function of ionic
strength. The coloured region around each line represents the standard deviation of the mean based
on three separate samplings 100 ps apart, starting at 2 ns. No significant effect on the residence time is
observed due to changes in ionic strength, with a fixed residence time (1/e) of approximately 80 ps. The
residence time of water molecules around a silanolate ion was calculated from the Time Correlation
Function calculated as per the definition of Impey et al. [398] with a t,psence=0 and the solvation
sphere defined based on the second RDF peak shown in Figure5, i.e. hydrogen atoms within 3.5 A.
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H.5. Diffusion Coefficient of Dissociating Na™
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Figure H.5.: Plot of the Mean Squared Displacement (MSD) as a function of time for Na™t in a
simple interfacial system (0 mM system), shown as a dashed line, compared to bulk water shown as
a solid line. Both systems show a roughly linear increase in MSD which is characteristic of a freely
diffusing system. The diffusion coefficients were calculated (Equation 1, main text) from the MSD
as 4.02 x 107° cm?s™! and 3.24 x 107% cm?s™? for the interfacial dissociating ion and bulk systems
respectively. A 1 ps interval was used for the MSD calculation. Bulk water simulation performed using
20 A cubed simulation cell.
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H.6. Residence time of Na* ... H,0
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Figure H.6.: The residence time of water molecules around sodium ions as a function of ionic strength
for the interfacial systems. The system is divided into two regions, the surface being z < 224, i.e.
within ~5 A of the surface, and the bulk being the rest of the system. Calculated from the Time
Correlation Function calculated as per the definition of Impey et al. [398] with a t,psence=0 and the
solvation sphere defined based on the second RDF peak shown in Figure5 (main text) i.e. hydrogen
atoms within 3.5 A. The time correlation function represents the average number of water molecules
which haven’t been exchanged with the bulk solvent, i.e. 1 represents the initial state and 0 represents
all ions completely exchanging their initial solvation sphere. The coloured region around each line
shows the standard deviation of the mean based on three separate samplings 100 ps apart, starting at
2ns. The residence time (1/e) can be seen to be approximately 20 ps at the surface and approximately
11 ps in the bulk, with a slight dependence on ionic strength. The demonstrated increase in residence
time at the surface suggests a more kinetically stable solvation sphere for surface coordinated ions, and
is likely a result of the structuring of water and ions found at the interface.

Appendix: Paper 2 Supplementary Information
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H.7. Poisson-Nernst-Planck Theory

The PNP model utilised in this work is an extension of the 1D model provided by COMSOL
Multiphysics® for diffuse double layers, modified to incorporate Mg*' mixed electrolyte [497]. The
fluxes (N;) of the ions are obtained by solving the Nernst-Plank equation:

Ni = —DchZ- - umzle02V¢7

where the concentrations ¢; where ¢ =Naglyg with respective charges z; of +1, -1 and +2. D; is the
diffusion coefficient, ,, ; the mobility (s.mol/kg), F the Faraday constant and ¢ the electric potential
in the electrolyte phase.

From conservation of mass:

V- N; =0.

For the potential, Poisson equation states:

V- (=€eV¢) = p,

where € is the permittivity, which is the vacuum permittivity multiplied by the relative permittivity of
the medium (gqe,) and p is the charge density, which depends upon the ion concentration according
to:

p = F(2NaCNa + 2MgCMg — ZCICCI)-

With regard to boundary conditions, the bulk is grounded (¢(bulk) = 0) and at the bulk position,
the ion concentrations are set to their bulk values, whereby the positive and negative ions have equal
concentration. At the surface, a Stern layer is incorporated, which extends to Ag. The numerical
simulation 1D domain spans from Ag to z = bulk, therefore z = 0 represents the outer Helmholtz
plane (OHP), for which the following boundary condition is satisfied:

n-(—eVe)= — 76((251\;[\57 ¢)

Where ¢ is the electrode/surface potential, ¢ is the electrolyte potential at = 0 and n is the vector
normal to the surface (i.e. x-direction in this 1D model).

Therefore surface charge density o is obtained over the Stern layer as (simple capacitor):

(o — )

As

The parameters used in these simulations can be found in Table H.1.

The effect of ionic strength at 190 mV surface potential can be found in Figure H.7, independent of
ionic strength, the bulk concentration is reached within ~1 nm.
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Mg, 0.1 M
Mg, 1 M
Mg, 10 M
Na, 0.1 M
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2 e CLOAM
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Figure H.7.: GCS model, calculated concentration profile of ions relative to bulk concentration
(C = Cy), as a function of distance from the surface at a surface potential of 190mV. Bulk ionic
strengths of 0.1 M, 1M and 10 M are shown. Calculated using parameters in Table H.1 . Independent
of ionic strength, the bulk concentration is reached within ~1 nm.

Parameter Value Units
Cl, i (Bulk C1™ concentration) 0.745251724 mol/dm3
Mgy, (Bulk Mg*t Cation concentration) 0.248417241 mol/dm3
Nay, " (Bulk Na™ concentration) 0.248417241 mol/dm3
Ipuix (Tonic Strength of Bulk) 0.5(4Mgy, 2T +Nay 1 T +Cly ) -
D¢ (Diffusion Coefficient) 2x 1077 m?/s
D4 (Diffusion Coefficient) 0.71 x 107 m?/s
Dy, (Diffusion Coefficient) 1.3 x107° m?/s
Relative permittivity of water (g,) 78.5 1
Maximum mesh element size: bulk (Cell length),/20 m
Maximum mesh element size: electrode (Debye Length)/100 m
Cell length (Debye Length)*10 m
o 0.19 v
To(Temperature) 298.15 K
Viherm(Thermal voltage) RT,/F A%
Debye length Sqrt(EOehzo*mherm/(QF*Ibulk)) -
0.5 x 1077 m

Stern layer thickness
Table H.1.: Parameters used in GCS calculations. The mobility constants were calculated via the

Einstein relation.
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H.8. Average Charge Distribution and Electric field

In this paper, the average charge distribution as a function of distance from the silica surface was
calculated, as shown Figure H.8. The cumulative sum of this curve is plotted in the main paper
Figure9. In order to calculate the potential, the 1D Poisson Equation was solved using the average
charge distribution, and the electric field was calculated as the gradient of this curve, both of which
can also be found in Figure H.8.

4.2
4.0
2 38 a
£ 34 —
* 32 N
3.0
15 — 0mM
10 —— 0OmM&DNA
°§ 05 — —T — 200 mM
T o ' p— = —— 200mM&DNA [
£ 40 1000 mM
b 1000 mM & DNA
-2.0
17 18 19 20 21 22 23 24 25 26 27 28

Figure H.8.: The mean charge density as a function of distance normal to the silica surface, note that
Figure9 (main text) is the cumulative sum of this curve. Potential calculated by solving the Poisson
equation using the charge density in the top figure. The Gauss—Seidel method was used with Neumann
boundary conditions at the base of the silica (zbase=0 Z\) and at zpyuc=80 A, which was considered the
bulk, thereby providing a relative potential within the system. The solution was converged such that
successive iterations of the surface potential (¢(zbuik)-1(z = 16.86)) were within a tolerance of le-6 V.
An additional constraint required convergence of the each point with its previous iteration to be within
le-5V for the entire system and remain so for over 5000 iterations. The potential shown was then
referenced to the minimum potential in the system due to a layer of atoms in the fixed silica substrate,
which offers a consistent reference potential between all the simulations. The electric field is calculated
as a the gradient of the potential. Calculated based on the mean charges in 0.01 A thick slabs parallel
to the xy plane.
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H.9. Effect of DNA on Water Orientation

The negative charge on the DNA phosphate groups is expected to orientate the water in its environment,
much like the silica surface charge. A plot of the water orientation with respect to the silica surface
is shown in Figure H.9, the DNA significantly affects the water orientation at the surface. For the
200 mM /1000 mM systems, the DNA linker was more extended and the perturbation due to the DNA
can therefore be seen at a greater distance from the surface than for the 0 mM system.

% 02 — 0 mM
~ — - 0mM & DNA
= 200 mM
-04 — = 200 mM & DNA
—— 1000 mM
— - 1000 mM & DNA
-0.6

20 30 40 50 60 70 80 90

Figure H.9.: The mean orientation of water dipoles (cos(f)) relative to the silica surface normal, as
a function of the z-distance from the surface, using 1 A bins. Increased ionic strength led to a layer
of water at 20 A which oriented towards the chloride ions, as discussed in Figure 9(C) (main text) and
the work of Maekawa et al. [264]. Dashed lines show the corresponding system incorporating DNA; it
can seen that DNA is disrupting the orientation of water across the system, particularly in the case of
low ionic strength. The standard error of the mean was negligible near the surface due to the strongly
oriented water but 0.05 4 0.01 for all cos(#) past 20 A.

H.10. Electric Field in NaCl

0.58
0.57

0.56

Electric Field (V/A)

0.55 i

0.54
-1 0 1 2 3 4 5 6

Concentration (M)

Figure H.10.: Electric Field of monovalent interfacial silica-water systems from Maekawa et al. as
a function of ionic strength[264]. Calculated via Ewald summation for a test charge 1A below the
periodic slab. Error bars show the standard error of the mean.
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I. Appendix: Meta-analysis of FET-sensors

I.1. Paper-specific Details

This meta-analysis involved extraction of data for many literature sources. Some of the papers reported
their data with some ambiguity, and therefore in this appendix paper-specific notes are provided which
explain any assumptions made and any notes regarding uncertainty of the literature data.

Stern et al.

Two data points were shown for the streptavidin sensing result of Stern et al. [61]; these are not
two separate experiments but one experiment. In their work, the biosensing current response was
normalised by ‘pre-addition average current’, but it is ambiguous whether this was done after each
addition, or normalised to the original addition and therefore two possible (unbounded) Sensitivity
values were calculated 59% and 33%; only one of which is correct.

The SS for these data points is also uncertain because the SS for the device used for biosensing was not
reported. Current-Potential curve in the paper was at a different back-gate voltage to the biosensing
experiments, with the unfunctionalised pH sensing data at V;,=-33 V, which, based on the IV graph,
corresponds to the onset of the linear region, and V4, =-20V for the biosensing experiments. As the
pH sensing is the linear regime, it cannot be used to infer the SS, and as the I-V characteristics of
the functionalised device are not provided, the SS cannot be accurately obtained. The SS of the dry
unfunctionalised device was available (1.21V/dec).

Buitrago et al.

Buitrago et al. [19] did not allow the system to fully equilibrate as their system was immediately
washed with buffer[462], so their Sensitivity is underestimated.

Elfstrom et al.

For the work of Elfstrém, the concentration of 1 x 10® M measurement was excluded as the sensor
response was deemed to have saturated, showing a less than a 1% increase in sensitivity with a 10-fold
increase in sensitivity.

The region of operation was not specified for the work of Elfstrom et al. [59] however personal
communication received suggested that it was in the subthreshold region [498]. Furthermore, their
device was operated without a reference electrode, which is generally believed to be required for a
well-defined signal.

Wen et al.

For the work of Wen et al. [70], the SS was obtained from their Figure 2 of 0.19V/dec has an error
of +/- 0.1V /dec due to the curvature of their I-V characteristic, whilst they report 3.208 dec/V
(0.3117V /dec).

It is unclear whether the Iy used in their sensitivity values is from before any streptavidin was added
or after the previous addition of streptavidin, however if it was the former then the linear sensitivity
values would increase monotonically therefore it was assumed that it is the latter.

It is unclear whether their sensitivities calculated in their work are I} I . In their Figure4 they
give negative values suggesting I ., but in their table they give positive values. In this work it was
assumed they were all calculated as | I .., and so their values were converted to I} . for comparison

in the graphs presented in the thesis.

Dual et al.

The work of Duan et al. [72] is assumed to be in the linear region given the perfectly linear current-
voltage characteristic in their Figure 2a and their discussion of the linear region in the supplementary
information. As only subthreshold region data is presented in the thesis, the data of Duan et al. is
not included.
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Sarkar et al.

Within the work of Sarkar et al. [449], it is unclear what precise conditions are used in their Figure 4
subfigures. In Figure4a, the results were likely obtained at ~pH 7.4 because PBS was used, but the
device was operated in the linear region so not included in the work presented in this thesis. They
show data in highly acidic conditions in a different subfigure. The data in their Figure 4f was obtained
in the subthreshold region, however their work does not specify the pH at which this was operated.
As a result, the pH may be significantly different and thereby the charge on streptavidin different to
other work performed at ~pH 7.4. Because of these limitations, their data was not included in the
analysis presented within the thesis.

Shalev et al.

For the work of Shalev et al. [499], the current response was provided in their Figure 11 as a function
of drain-source voltage (Vgs) and the calculated ), varied between ~50-170% depending on the
choice of Vgs. The highest value of 170% (at the lowest drain-source) voltage, was presented in the
main text.

The buffer was ‘50 mM phosphate buffer’: it is ambiguous whether this is PBS or sodium phosphate.
For the work presented in the thesis, it was taken as equivalent to ~0.3X PBS (where 1X PBS has an
ionic strength of 162.7 mM [87]).

1.2. Graphs with linear x-axis

This appendix presents the same graphs shown in the main text but with linear x-axis.
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Figure I.1.: Same as Figure 8.3 in main text, but with a linear x-axis as opposed to logarithmic
shown in the main text.
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Figure I.2.: Same as in Figure 8.4 main text, but with a linear x-axis as opposed to logarithmic
shown in the main text.
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Figure 1.3.: Same as Figure 8.5 in main text, but with a linear x-axis as opposed to logarithmic
shown in the main text.
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1.3. Notes on Figure 8.3 within the Main Text

For Figure 8.3, the ionic strength of each paper was shown by the marker outline thickness. If this was
PBS, the dilution was noted (e.g. 1X = 1, 0.1X =0.1). If the buffer was not PBS, the dilution factor
for a PBS solution with equivalent ionic strength was used. Finally, each data point was assigned one
bin based on its dilution value using the following intervals: [0,0.2500001, 0.50001,1.00001, infinity],
resulting in each measurement being assigned a bin from low to high ionic strength. The marker
width was chosen such that the thickest was the highest ionic strength.
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Author Semiconductor  Semiconductor Device Buffer SAv SAv Vendor Electrode Mode of
Material Surface Geometry Conc. (pseudo or Operation
(Device Functionalisatio (nM) conventional) for
Behaviour) n Biosensing

Nanowire 1 mM NaP; No liquid electrode,
(pH 9) read via back-gate
with 10 mM

NaCl.

Si (p-type)

Stern®

Shalev’ | SOI (n-type) APTMS Nanoribbon ~ 50mM 20 ? Ag/AgCl (custom, Subthreshold
“phosphate pseudo)
buffer”
NaPi?/PBS?

Wen' ¢

Sarkar” | MoS: (n-type) HfO-APTES Nanocrystals  0.01X PBS 0.00010 ? Ag/AgCl (pseudo?) Linear,
and 10000 Subthreshold
and Saturation

Buitrago® '’

Liu"" | a-Si SOI (n-type) SisN-APTMS Nanobelt 0.001X PBS  (0.015, 1.5, Alexa Fluor® 488  Ag/AgCl (pseudo?) Subthreshold
(flow) 3 log Streptavidin

intervals) (Invitrogen) with
0.1% TWeen20

Cheng"

Ishikawa | intrinsic In203 (n- Phosphonic acid- Nanowire 0.0001X, 100 ? Ag/AgCl Linear
type) based 0.01X and (conventional'’)
1X PBS

Elfstrom'
17

Lee'” | AIGAN/GaN (n- TAu/Ni-SAM-SAv Planar EG-  1X PBS 0.996 Sigma Aldrich Ag/AgCl Linear
type) (no biotin) FET (conventional,
commercial RE-5B
BASi)
Martinez”
Duan | SOI (p-type) APTES Nanowire ~0.01X PBS 10 Rockland ? material, Linear
(2015)* equiv. (1 Immunochemical ~ commercial Harvard
mM Apparatus “Miniature

Reference”

Duan
(2012)*

Oxide-BSA-biotin-
SAv

Upadhyay® | Intrinsic InAs (n- Nanowire 100 Linear

type)

0.03X, 0.3X,
3X i NaP;

Ag/AgCl
(conventional)

Gupta®!

Star®

Carbon nanotube PEI/PEG passivation CNT ~0.1X PBS Streptavidin (from  No liquid electrode,

(p-type) and biotin (0.01 M Streptomyces read out via back-gate
functionalisation PBS) avidinii, Sigma

Chemicals)

with/without,

Gold label

Bradley®

Kang® | AlGaN/GaN (n-

type)
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Summary Table of Streptavidin BioFET literature with quantitative response data available. The device behaviour refers to the 14V,
response in the region used for sensing i.e. n-type means decrease in current with decrease (negative change) in gate voltage. For the
Streptavidin Concentration (SAv), the data is sometimes presented as (initial, final, n) where n represents the number of intermediate
concentrations separated by log intervals. “No liquid electrode” is used to refer to devices with no electrode in the liquid. SOI= Silicon on
Insulator, NaP; = Phosphate Buffer. PBS = Phosphate Buffered Saline. EG-FET = Extended-Gate FET, CNT=Carbon Nanotube. * shows
characteristics of a Schottky barrier, metal oxide semiconductor field effect transistor. ¥ On the EG I Reported as 30 mM sodium phosphate
buffer as 1 X, whereas by convention this would be 3 X. $ Not reported in paper, but in thesis®®. ¥ Linear region of operation inferred from
constant slope of Is-V, with linear y-axis. Read out via backgate inferred from statement that top gate was fixed for sensing

measurements, and sensing measurement shows sweep of “V,”. # Assuming 53 kDa molecular weight of streptavidin
References for Summary Table of Streptavidin BioFET Literature:

1. Cui, Y., Wei, Q., Park, H. & Lieber, C. M. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and
Chemical Species. Science 293, 1289-1292 (2001).

2. Stern, E. et al. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445, 519-522 (2007).

Shalev, G. et al. Standard CMOS Fabrication of a Sensitive Fully Depleted Electrolyte-Insulator-Semiconductor Field Effect Transistor
for Biosensor Applications. Sensors 9, 4366-4379 (2009).

4. Wen, X. et al. High sensitivity AlGaN/GaN field effect transistor protein sensors operated in the subthreshold regime by a control gate
electrode. Appl. Phys. Lett. 99, 043701 (2011).

5. Wen, X., Gupta, S., Nicholson, T. R., Lee, S. C. & Lu, W. AlGaN/GaN HFET biosensors working at subthreshold regime for
sensitivity enhancement. Phys. Status Solidi C 8, 2489-2491 (2011).

6. Wen, X. et al. Improved Sensitivity of AlGaN/GaN Field Effect Transistor Biosensors by Optimized Surface Functionalization. IEEE
Sens. J. 11, 1726-1735 (2011).

Sarkar, D. et al. MoS2 Field-Effect Transistor for Next-Generation Label-Free Biosensors. ACS Nano 8, 3992-4003 (2014).

8. Buitrago, E. et al. Electrical characterization of high performance, liquid gated vertically stacked SINW-based 3D FET biosensors. Sens.
Actuators B Chem. 199, 291-300 (2014).

9. Buitrago, E. et al. Attomolar streptavidin and pH, low power sensor based on 3D vertically stacked SINW FETs. in Proceedings of
Technical Program - 2014 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA) 1-2 (2014).
doi:10.1109/VLSI-TSA.2014.6839691

10. Buitrago, E. et al. Functionalized 3D 7 #x00D7;20-array of vertically stacked SINW FET for streptavidin sensing. in Device Research
Conference (DRC), 2013 71st Annual Supplement, 1-2 (2013).

11. Liu, H. H., Lin, T. H. & Sheu, J.-T. Enhancement of detection by selective modification of silicon nanobelt field-effect transistors via
localized Joule heating. Sens. Actuators B Chem. 192, 111-116 (2014).

12. Cheng, Y. et al. Functionalized SnO2 nanobelt field-effect transistor sensors for label-free detection of cardiac troponin. Biosens.
Bioelectron. 26, 4538-4544 (2011).

13. Ishikawa, F. N. et al. A Calibration Method for Nanowire Biosensors to Suppress Device-to-Device Variation. ACS Nano 3, 3969-3976
(2009).

14. Ishikawa, F. Applications of one-dimensional structured nanomaterials as biosensors and transparent electronics. (University of
Southern California, 2009).

15. Elfstrom, N., Karlstrom, A. E. & Linnros, J. Silicon Nanoribbons for Electrical Detection of Biomolecules. Nano Lett. 8, 945-949
(2008).

16. Elfstrom, N. & Linnros, J. Biomolecule detection using a silicon nanoribbon: accumulation mode versus inversion mode. Nanotechnology
19, 235201 (2008).

17. Elfstrom, N. Silicon Nanowires for Biomolecule Detection. (Royal Institute of Technology, 2008).

18. Linnros, J. Personal Communication. (2016).

19. Lee, H. H. et al. Fabrication and Characterization of an Extended-Gate AlGaN/GaN-Based Heterostructure Field-Effect Transistor-
Type Biosensor for Detecting Immobilized Streptavidin-Biotin Protein Complexes. Sens. Mater. (2015). doi:10.18494/SAM.2015.1092

20. Martinez, M. T., Tseng, Y.-C., Gonzalez, M. & Bokor, J. Streptavidin as CNTs and DNA Linker for the Specific Electronic and Optical
Detection of DNA Hybridization. J. Phys. Chem. C 116, 22579-22586 (2012).

21. Duan, X. et al. Functionalized Polyelectrolytes Assembling on Nano-BioFETSs for Biosensing Applications. Adv. Funct. Mater. 25,
2279-2286 (2015).

22. Duan, X. et al. Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. Nat. Nanotechnol.
7, 401-407 (2012).

23. Upadhyay, S. et al. Indium arsenide nanowire field-effect transistors for pH and biological sensing. Appl. Phys. Lett. 104, 203504
(2014).

24. Gupta, S. et al. Detection of clinically relevant levels of protein analyte under physiologic buffer using planar field effect transistors.
Biosens. Bioelectron. 24, 505-511 (2008).

25. Star, A., Gabriel, J.-C. P., Bradley, K. & Griiner, G. Electronic Detection of Specific Protein Binding Using Nanotube FET Devices.
Nano Lett. 3, 459-463 (2003).

26. Bradley, K., Briman, M., Star, A. & Griiner, G. Charge Transfer from Adsorbed Proteins. Nano Lett. 4, 253-256 (2004).

27. Kang, B. S. et al. Electrical detection of immobilized proteins with ungated AlGaNGaN high-electron-mobility Transistors. Appl. Phys.
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Nomenclature

AIMD

C-USP

DFT
FET

FET-sensor

FTIR
H-Bond
IS-FET
KMC

M-P

M-USP

NGWEFs

NMR
pKa
PZC
SFG
SHG

SS

Usp

Vd s

Ve

MOSFET
MD

Vr

ab initio Molecular Dynamics

Civeralli and Harrison Ultrasoft Pseudopotentials designed for Generalised Gradient
Approximation functionals.

Density Functional Theory
Field Effect Transistor

Field Effect Transistor-based Sensor - This term includes all types of FET-based
sensors such as BioFETs and IS-FETs

Fourier Transform Infrared

Hydrogen Bond

Ton-Sensitive Field Effect Transistor Sensor
Kinetic Monte Carlo

Norm conserving psuedopotential which are included with Acclerys Material Studio
6.0.0.

Ultrasoft Pseudopotentials which are included with Acclerys Material Studio 6.0.0
designed for the PBE functional.

Nonorthogonal Generalized Wannier Functions - The basis set in ONETEP is
composed of these Functions, expanded as a set of periodic cardinal sine functions

Nuclear Magnetic Resonance

Acid- Base Dissociation Equilibrium Constant
Point of Zero Charge

Sum Frequency Generation

Sum Harmonic Generation

Subthreshold Slope - Parameter quantifying the ability of a Field Effect Transistor
to transduce a change in gate voltage to a change in drain current

Ultrasoft Pseudopotentials
Drain Current (Current from the source to the drain)
Drain Voltage (i.e. voltage between drain and source)

Gate Voltage (either of a MOSFET gate electrode, or from a Reference Electrode in
a FET-sensor)

Metal-oxide-semiconductor field-effect transistor
Classical molecular dynamics simulations

Threshold Voltage
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