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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Quantum-Assisted Multi-Objective Optimization of Heterogeneous Networks

by Dimitrios Alanis

Some of the Heterogeneous Network (HetNet) components may act autonomously for

the sake of achieving the best possible performance. The attainable routing performance

depends on a delicate balance of diverse and often conflicting Quality-of-Service (QoS)

requirements. Finding the optimal solution typically becomes an NP-hard problem, as the

network size increases in terms of the number of nodes. Moreover, the employment of user-

defined utility functions for the aggregation of the different objective functions often leads

to suboptimal solutions. On the other hand, Pareto Optimality is capable of amalgamating

the different design objectives by relying on an element of elitism.

Although there is a plethora of bio-inspired algorithms that attempt to address the as-

sociated multi-component optimization problem, they often fail to generate all the routes

constituting the Optimal Pareto Front (OPF). As a remedy, we initially propose an op-

timal multi-objective quantum-assisted algorithm, namely the Non-dominated Quantum

Optimization (NDQO) algorithm, which evaluates the legitimate routes using the concept

of Pareto Optimality at a reduced complexity. We then compare the performance of the

NDQO algorithm to the state-of-the-art evolutionary algorithms, demonstrating that the

NDQO algorithm achieves a near-optimal performance. Furthermore, we analytically de-

rive the upper and lower bounds of the NDQO’s algorithmic complexity, which is of the

order of O(N) and O(N
√
N) in the best- and worst-case scenario, respectively. This cor-

responds to a substantial complexity reduction of the NDQO from the order of O(N2)

imposed by the brute-force (BF) method.

However again, as the number of nodes increases, the total number of routes in-

creases exponentially, making its employment infeasible despite the complexity reduction

offered. Therefore, we propose a novel optimal quantum-assisted algorithm, namely the

Non-Dominated Quantum Iterative Optimization (NDQIO) algorithm, which exploits the

synergy between the hardware parallelism and the quantum parallelism for the sake of

achieving a further complexity reduction, which is on the order of O(
√
N) and O(N

√
N)

in the best- and worst-case scenarios, respectively. Additionally, we provide simulation

results for demonstrating that our NDQIO algorithm achieves an average complexity re-

duction of almost an order of magnitude compared to the near-optimal NDQO algorithm,

while activating the same order of comparison operators.

Apart from the traditional QoS requirements, the network design also has to consider

the nodes’ user-centric social behavior. Hence, the employment of socially-aware load



balancing becomes imperative for avoiding the potential formation of bottlenecks in the

network’s packet-flow. Therefore, we also propose a novel algorithm, referred to as the

Multi-Objective Decomposition Quantum Optimization (MODQO) algorithm, which ex-

ploits the quantum parallelism to its full potential by exploiting the database correlations

for performing multi-objective routing optimization, while at the same time balancing the

tele-traffic load among the nodes without imposing a substantial degradation on the net-

work’s delay and power consumption. Furthermore, we introduce a novel socially-aware

load balancing metric, namely the normalized entropy of the normalized composite be-

tweenness of the associated socially-aware network, for striking a better trade-off between

the network’s delay and power consumption. We analytically prove that the MODQO algo-

rithm achieves the full-search based accuracy at a significantly reduced complexity, which

is several orders of magnitude lower than that of the full-search. Finally, we compare the

MODQO algorithm to the classic NSGA-II evolutionary algorithm and demonstrate that

the MODQO succeeds in halving the network’s average delay, whilst simultaneously reduc-

ing the network’s average power consumption by 6 dB without increasing the computational

complexity.
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Chapter 1

Introduction

1.1 Motivation

Back in 1991, Weiser [4] unveiled his vision for ubiquitous computing, where most aspects

of human life would be supported by portable computing units, which he termed as “pads”.

Twenty five years later, this vision has come to fruition, since indeed our daily lives rely

on “pads”, which are commonly known as tablets and smart phones. More specifically, for

the latter, there is a prediction by eMarketer1 that their market penetration will surpass

the 2-billion mark in 2016, accounting for about 30% of the world’s population. Explicitly,

the proliferation of mobile networking devices has lead to an exponential increase in the

bandwidth requirements of this ever increasing tele-traffic load [5]. For the sake of mitigat-

ing this spectral shortage, several solutions have been advocated, such as millimeter Wave

Communications (mm-Wave) [6, 7] and Optical Wireless Communications [8, 9], which is

also often referred to as Light Fidelity (LiFi) [10]. These solutions succeed in increasing

the area spectral efficiency both by utilizing the hitherto unlicensed spectrum [5] of the

mm-Wave bands [6] as well as of the visible light bands [10] and by mitigating the in-

terference levels due the higher path-losses experienced by these bands compared to the

classic Radio Frequency (RF) frequency-region [11]. Note that the latter objective can also

be achieved in networks operating in the RF band by jointly deploying Distributed An-

tenna Systems (DAS) [12,13] as well as optimal power control. Explicitly, this deployment

minimizes the transmit power required by creating smaller virtual cells within a larger over-

sailing cell, since the mobile users tend to be located closer to the distributed antennas,

thus exhibiting a reduced path-loss.

However, the aforementioned technologies providing relatively small coverage areas have

to be deployed in conjunction with the classic cellular infrastructure for the sake of improv-

ing the over-sailing cell’s coverage, especially at the cell edges [15]. In this way, network

consisting of different and diverse smaller underlay networks is formed, which is often re-

ferred to as Hetergeneous Network (HetNet) [14]. A conceptual representation of a HetNet

1http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694

1
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Figure 1.1: Overlay cells in a Heterogeneous Network (HetNet) [14]. The bottom figure zooms
in a specific picocell of the top figure, where the mobile nodes form their own ad-hoc
femtocells facilitating multihop cooperative communications.

is shown in Fig. 1.1, where the HetNet’s coverage area is that of the large over-sailing cell,

which is termed as a macrocell. This type of cell can be illuminated by a 4G Long-Term

Evolution (LTE) [16] or even a 3G [17] base station. Hence, for the sake of improving both

the coverage quality and the area spectral efficiency several smaller cells are deployed [18],

which are termed as microcells in Fig. 1.1. These specific cells can be operating either

under the LTE Advanced (LTE-A) standard [18] or using mm-Wave communications. Of-

ten, even smaller cells are deployed, which are termed as picocells in Fig. 1.1 and may be

illuminated by using either Wireless Fidelity (WiFi) [17] or optical wireless access points.

Although the diverse mobile nodes located in the picocells’ coverage area have their

downlink served by the picocells’ base stations as seen in the bottom sub-figure of Fig. 1.1,

this may not be the case for their uplink. Naturally, since these specific nodes only have

access to restricted sources of power, their maximum allowable transmit power is tuned

accordingly for the sake of ensuring that the nodes remain active for as long as possible [19].

This may be prohibitive for establishing a direct link with the picocell base stations owing

to their excessive power requirements for reliable transmission, which do not comply with

the aforementioned power constraint. To mitigate this problem, each of the mobile nodes

can create a mobile hotspot [20] forming an even smaller ad-hoc cell, which is referred to as

an ad-hoc femtocell [15] in Fig. 1.1. Explicitly, these specific ad-hoc femtocells are capable

of serving their neighboring nodes for the sake of relaying their messages either to another

ad-hoc femtocell closer to the picocell base station or even to the base station [21], should

the respective link be sufficiently reliable. For instance, observe that the far left hand-side

node in the bottom figure of Fig. 1.1 is unable to establish a link with the picocell, since the

latter lies outside its transmission range. Therefore, it has to utilize its neighboring node

as a relay for the sake of reliably sending its message to the picocell base station, which

acts as a gateway. Naturally, specific coordination is required for supporting the femtocells’

forwarding operation [16] for the sake of maximizing the HetNet’s performance. This can
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be realized by providing an intelligent central node, which is termed as cluster head in

Fig. 1.1 and it is accommodated by the picocell base station for the sake of simplicity.

This specific multihop function [22], which facilitates both direct and indirect commu-

nication between the source and the destination nodes, is capable of potentially increasing

the area spectral efficiency [23], as the ad-hoc femtocells proliferate. In fact, multihop

user cooperation is already considered by the LTE-A standard [24]. Based on the afore-

mentioned paradigm, the HetNets’ cells can be viewed as clusters capable of supporting

multihop transmission coordinated by the respective base station. Therefore, as benefit of

this specific coordination capability, HetNets can also be treated as heterogeneous Wireless

Multihop Networks (WMHNs) [25]. Explicitly, this concept can be readily applied to all

networks ranging from Wireless Sensor Networks (WSNs) [26] and wireless ad-hoc net-

works [27] to smart grid networks [28], as long as they are comprised by nodes equipped

by the required capabilities or interfaces.

Figure 1.2: Routing in HetNets.

Based on this specific paradigm, the HetNets’ cell coordination function can be viewed

as routing through heterogeneous WMHNs, as portrayed in Fig. 1.2. Observe in this figure

that the Source Node (SN) has to transmit its message to the Destination Node (DN),

which acts as a gateway [26]. This transmission can be undertaken either by establishing a

direct link between the SN and the DN or by using a cloud of Relay Nodes (RNs). Based

on the specific network optimization criteria considered, the DN, which acts as cluster head
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as well, has to find the optimal route. Having defined our main concept, let us now proceed

by presenting the diverse optimization criteria considered.

1.2 Classical Routing Approaches

Each of the WMHN nodes attempts to optimize its performance in terms of different and

often conflicting Quality of Service (QoS) parameters, such as the Bit Error Ratio (BER),

the Packet Loss Ratio (PLR) and the end-to-end delay, while having access to a restricted

amount of power. Therefore, optimal routing is essential for satisfying the aforementioned

QoS criteria. Nevertheless, as the number of WMHN nodes involved escalates, the to-

tal number of potential routes increases exponentially, turning the routing optimization

problem into a Non-deterministic Polynomial-time hard (NP-hard) one [29], hence requir-

ing sophisticated heuristic methods. Let us now proceed by presenting the related work

carried out in the field of routing.

1.2.1 Single-Objective Routing Approaches

A plethora of single-objective studies exist in the literature [30, 31, 32, 33, 34, 19, 35, 36, 37,

38,39,40,41,42, 43], each addressing different routing aspects. In a nutshell, these specific

studies consider the optimization objectives in a single-component aggregate function in an

attempt to optimize the latter using either a heuristic or a formal systematic optimization

method. To elaborate further, several of these studies [30, 31, 32, 33] utilize Dijkstra’s

algorithm [44] for the sake of identifying the optimal routes. Explicitly, this technique is

capable of approaching the optimal routes at the cost of imposing a complexity on the

order of O(E3), where E corresponds to the number of edges in the network’s graph. For

instance, Zuo et al. [31] employed this specific algorithm for the sake of optimizing the

route’s energy efficiency in the context of wireless ad-hoc networks. Hu et al. [30] utilized

Dijkstra’s algorithm for minimizing both the power consumption and the delay, quantified

in terms of the number of hops, in socially-aware networks. Additionally, Dehghan et

al. [33] adapted this specific algorithm to the problem of cooperative routing and attempted

to maximize the route’s energy efficiency.

Additionally, the beneficial properties of convex optimization [45] have also been ex-

ploited in the context of routing optimization. To elaborate further, Dall’Anese and Gian-

nakis [34] transformed the non-convex routing problem of cognitive random access networks

into a convex one using successive convex approximations for the sake of minimizing both

the routes’ Packet Loss Ratio (PLR) [17] and the resultant outage probability. Additionally,

Yetgin et al. [19] maximized the network lifetime in the context of WSNs using a similar

approach. In fact, this specific metric encapsulates several optimization objectives [35],

such as the power consumption, the nodes’ battery levels and the route’s delay. Based

on this specific metric, Abdulla et al. [36] have maximized the lifetime of WSNs by intro-

ducing a range of Hybrid Multihop Network (HYMN) parameters. The so-called Network

Utility [37] also constitutes a meritorious single-component optimization. Apart from the



1.2.2. Multi-Component Routing Approaches 5

Figure 1.3: Some of the notable QoS criteria.

aforementioned objectives, Network Utility also takes into account the routes’ achievable

rate [38], while providing a more holistic view of the routing problem.

In contrast to the aforementioned methodology, there exist several single-component

studies, which do not lie within the aforementioned trends. To elaborate further, Zhu

et al. [39] have proposed a routing protocol that succeeds in minimizing the energy con-

sumption of Wireless Sensor Networks (WSNs) by organizing the nodes using Hausdorff

clustering [46]. Additionally, Chen et al. [40] have conceived a Hybrid Geographic Routing

(HGR) scheme for minimizing the total energy dissipation, while satisfying the end-to-

end delay constraints. Furthermore, Al-Rabayah and Malaney [41] have designed a hybrid

routing protocol for minimizing the routing overhead incurred by broken links in Vehicular

Ad-hoc Networks (VANETs). Huang et al. [42] minimized the control-channel setup cost,

while balancing the tele-traffic load among the nodes of a Software-Defined HetNet. Addi-

tionally, Yao et al. [43] proposed a routing scheme for maximizing the established routes’

secrecy, thus securing them from potential eavesdroppers.

Based on the aforementioned contributions, it is clear that the QoS optimization criteria

selected for the sake of optimizing the quality of the routes are rather diverse. As a

recap, in Fig. 1.3 we present the diverse QoS criteria considered in the aforementioned

contributions, which often entail juxtaposed constraints. Having briefly elaborated on

the single-component routing optimization techniques let us now proceed with a detailed

description of the multi-component techniques.

1.2.2 Multi-Component Routing Approaches

Despite the numerous single-objective approaches advocated in the literature, focusing

on a single requirement may unduly degrade the remaining metrics. This problem may

be mitigated [47] by using a multi-objective approach. Likewise, all the requirements

considered may be optimized jointly without the need for user-defined parameters in order

to aggregate the different design objectives [48].
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In fact, there are some comprehensive studies in the literature [29,49,50,51,52], which

investigate diverse aspects of WSNs using the multi-objective approach relying on evolu-

tionary algorithms. For example, Yetgin et al. [29] used both the Non-dominated Sorting

Genetic Algorithm II (NSGA-II) and the Multiobjective Differential Evolution Algorithm

(MODE) for optimizing the transmission routes in terms of their end-to-end delay and

power dissipation. They used the concept of Pareto Optimality [53] for evaluating the

fitness of multi-objective problems. While considering a similar context, Camelo et al. [49]

employed the NSGA-II in order to satisfy the same QoS requirements for both the ubiqui-

tous Voice over Internet Protocol (VoIP) and for file transfer. Moreover, Perez et al. [50]

used a multi-objective model for optimizing both the number of sensor nodes used in a

WSN and the total energy dissipation of the network, which allowed the minimization of

the WSN’s deployment cost. Martins et al. [51] employed a hybrid multi-objective evolu-

tionary algorithm for solving the Dynamic Coverage and Connectivity Problem (DCCP)

of WSNs subjected to node failures.

Among the evolutionary algorithms, the so-called Ant Colony Optimization (ACO)

conceived by Dorigo and Di Caro [54,55] has been extensively used for optimizing routing

problems. In the so-called Ant Network (AntNet) [55], each ant representing a legitimate

route travels from a source node (SN) to the destination node (DN), while traversing

a different number of nodes. Each ant moving from one node to another deposits an

amount of pheromone across its route depending on the heuristic value of the Objective

Function (OF) that is being optimized. To elaborate further, as the value of the OF

increases throughout the route-search, the intensity of the pheromone would increase as

well. Based on the deposited pheromone, the ant in nature are capable of sensing in binary

fashion, whether a specific route is leading up to the source of food or not. Meritorious

routes attract more ants and as additional ants choose to follow a specific link between

two nodes, the pheromone they deposit is cumulatively superimposed so that the optimal

routes would have the highest pheromone intensity. An additional factor, namely the so-

called intrinsic affinity, was introduced for avoiding premature convergence to local optima,

which particularly corresponds to the a priori probability of each solution being the globally

optimum solution.

Further extensions of the AntNet model have also been proposed. Both Golshahi et

al. [56] and Chandra et al. [57] have implemented a routing protocol using the AntNet

model; two types of agents have been used: a forward-oriented one which would seek to

explore the network and a backward-oriented one, which would perform the ACO operations

including the pheromone update and fitness-evaluation of the routes. Finally, Wang and

Wu [58] developed an ACO routing algorithm for optimizing the performance of fault

tolerant Hypercube Networks at reduced complexity by exploiting the regularities exhibited

by these networks. Additionally, Pinto et al. introduced the concept of Pareto Optimality

in [52] for conceiving a Multiobjective Max-Min Ant System (MMAS) for solving the multi-

objective mutlicast routing problem. Finally, a quantum-inspired version of the ACO

(QACO) algorithm has been proposed by Wang et al. [59]. Jiang et al. [60] invoked an

enhanced version of the QACO design for increasing the lifetime of a WSN by minimizing
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its energy consumption.

Most of the aforementioned multi-component methods advocate only two optimization

components [61]. However, involving more components results in increasing the complexity

imposed by the aforementioned methods, owing to the ever-increasing number of optimal

routes [47]. Consequently, since we will opt for incorporating more than two optimization

objectives in our studies for the sake of adopting a more holistic approach, we will need

sophisticated optimization methods for mitigating the escalating complexity. Fortunately,

quantum search algorithms provide an attractive framework for tackling this complexity

escalation, when the number of objectives is increased. We will assume that the cluster-

head of Fig. 1.2 is in possession of a gate-based quantum computer [62], which is capable

of employing these specific algorithms. Additionally, the cost of employing a quantum

computer is justified for densely populated scenarios, such as an airport terminal or a

stadium, where the classical methods may become overwhelmed.

Let us now proceed with presenting the recent advances in quantum computing.

1.3 A Leap into the Quantum World

The ever-reducing transistor size following Moore’s law is approaching the point, where

the so-called quantum effects [62] become prevalent in the transistors’ operation [63]. This

specific trend implies that the quantum-effects become unavoidable, hence rendering the

research of quantum computation systems an urgent necessity. In fact, a quantum annealing

chipset [64] is already commercially available from D-Wave2 [65, 66]. Apart from the

quantum annealing architecture, the so-called gate-based architecture [67], which relies on

building computational blocks using quantum gates in a similar fashion to classic gates, is

attracting increasing attention due to the recent advances in quantum stabilizer codes [68,

69, 70, 71, 72, 73], which are capable of mitigating the decoherence effects encountered by

quantum circuits [62]. Explicitly, the aforementioned advances provide us with a great

potential in rendering NP-hard problems, such as the multiple-objective routing problem,

tractable, since quantum systems are capable of addressing these specific problems at a

near-full-search-based accuracy, while imposing a reduced complexity by exploiting the

powerful concept of Quantum Parallelism (QP) [62]. Let us now provide a brief introduction

to some of the most popular quantum search algorithms for the sake of highlighting their

merits.

1.3.1 Introduction to Quantum Search Algorithms

The inspiration of quantum computation was provided by Feynman [74], who proposed in

1981 a novel framework for conveying information by the spin of an electron and for sim-

ulating the evolution of the quantum states. In the following year, Benioff [75] proposed a

technique of simulating quantum systems on Turing machines. Several years later, the ef-

2https://www.dwavesys.com/d-wave-two-system

https://www.dwavesys.com/d-wave-two-system
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1980

2013

Feynman [74] proposes a framework for simulating the evolution of quantum systems.

1981

Benioff [75] conceives a scheme for simulating quantum systems on Turing machines.
1982

Deutch [76] introduces an algorithm for evaluating, whether a function f : {0, 1} →
{0, 1} represents a one-to-one mapping with the aid of a single invocation of f .

1985

Deutch and Jozsa [77] extend Deutch’s algorithm to functions f : {0, 1}n → {0, 1}
for evaluating, whether the function f is balanced or constant, bringing the Quantum
Oracle gate into the limelight.

1992

Shor [78] conceives a quantum algorithm for factoring an integer into its prime factors
by substantially reducing the complexity involved.

1994

Grover [79] proposes his reduced-complexity QSA for search problems, where both the
number of solutions and the sought value are known, at a complexity on the order of
O(

√
N).

1996

Based on Grover’s QSA, Boyer, Brassard, Høyer and Tapp [80] introduce their so-called
BBHT-QSA for addressing search problems, where only the value sought is known, at a
complexity on the order of O(

√
N).1996

Durr and Høyer [81] extend the BBHT-QSA, in the form of the so-called DHA, for ad-
dressing optimization problems, where only a specific attribute is known, at a complex-
ity on the order of O(

√
N).

1996

Cleve, Ekert, Macchiavello and Mosca [82] propose the Quantum Phase Estimation

(QPE) algorithm, extending Shor’s algorithm, for estimating the phase of a specific
quantum eigenstate.

1998

Brassard, Høyer and Tapp [83] introduce the Quantum Counting Algorithm (QCA) for
counting the number of quantum eigenstates having a specific attribute.

1998

Abrams and Lloyd [84] conceive the Quantum Phase Algorithm (QPA), which evalu-
ates both the eigenvalues and the eigenvectors of a local Hamilotonian in polynomial
time.

1998

Brassard. Høyer, Mosca and Tapp [85] propose the Quantum Amplitude Estimation

(QAE) algorithm, based on the QPE algorithm and the QCA, for estimating the am-
plitude of a specific quantum eigenstate.

2000

Brassard, Dupuis, Gamps and Tapp [86] present the Quantum Mean Algorithm (QMA)
for calculating the mean value of a database.2011

Botsinis, Ng and Hanzo [87] extend the QMA, in the form of the so-called Quantum

Weighted Sum Algorithm (QWSA), for calculating the weighted sum of an unsorted
database.

2013

Figure 1.4: Timeline of quantum computing milestones.

fect of QP has been exploited by Deutch [76], who conceived an algorithm, named after him

as the Deutch’s Algorithm, for determining whether a binary function f : {0, 1} → {0, 1}
has or has not one-to-one mapping by only using a single call of the function. An exten-

sion of this algorithm, namely the so-called Deutch-Jozsa Algorithm [77], was conceived

for determining whether a function f : {0, 1}n → {0, 1} is balanced or constant. The

Deutch-Jozsa Algorithm laid the foundations for the development of the so-called Quan-

tum Oracle gates [62], which are quantum circuits implementing a generic mapping function

f : {0, 1}N → {0, 1}M and they are capable of calculating all the pairs of possible inputs-

outputs of f using a single call of f by exploiting the QP.

Based on these gates, Grover [79] has proposed a Quantum Search Algorithm (QSA),

which has been shown to be optimal by Zalka [88]. This QSA is capable of finding a desired

solution stored in an unsorted database by imposing a low complexity, which is on the order

of O(
√
N), as long as both the number of valid solutions and the solution to be found are

known to the optimization process. An even more powerful extension of Grover’s QSA has

been introduced by Boyer et al. [80] in the form of the so-called Boyer-Brassard-Høyer-Tapp

QSA (BBHT-QSA), which is applicable in the specific scenario, where the actual number of
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valid solutions is unknown, whilst imposing the same order of complexity, namely O(
√
N).

A further extension of the BBHT-QSA has been conceived by Dürr and Høyer [81], where

the Durr-Høyer Algorithm (DHA) is employed for identifying the extreme values of an

unsorted database, while imposing a low complexity, which is on the order of O(
√
N).

Subsequently, Malossini et al. [89] proposed the so-called Quantum Genetic Optimization

Algorithm (QGOA), which constitutes a steady-state GA [90, 91], in which the mating

process is enhanced by the DHA.

Furthermore, several contributions exist, which exploit the properties of the Quantum

Fourier Transformation (QFT) [67, 92]. In particular, Shor [78] has proposed a quantum

algorithm for addressing the prime integer factorization problem at a complexity on the

order of O
[

log (N)3
]

. Shor’s algorithm formed the basis for the concept of Quantum Phase

Estimation (QPE), which was proposed by Cleve et al. [82] and allowed the estimation of

the phase of a specific quantum eigenstate. This innovation led, in turn, to the concept of

both Quantum Counting Algorithm (QCA) [83] as well as to that of Quantum Amplitude

Estimation (QAE) [85]. Based on these concepts, Brassard et al. [86] proposed the so-called

Quantum Mean Algorithm (QMA) for calculating the mean of values found in an unsorted

database at a reduced complexity. Additionally, Abrams and Lloyd [84] conceived the

so-called Quantum Phase Algorithm (QPA) for the sake of evaluating the eigenvalues and

the eigenvectors of a local Hamiltonian, relying on the properties of the QFT. The QPA

operated at a complexity, which exhibited a polynomially increasing complexity with the

search-space-size, as opposed to the exponential trend of the full search. The milestones of

quantum computing are summarized in the timeline of Fig. 1.4.

1.3.2 Applications of Quantum Search Algorithms

A variety of quantum-assisted solutions [87,93,94,95,96] have been advocated in the con-

text of the classic Multi-User Detection (MUD) problem, which jointly determines the

specific legitimate symbols transmitted by each of the users supported. More specifically,

the detection only relies on the noise-contaminated received signal, on the knowledge of

the symbol constellation of each user and on their channel states. In lightly loaded, or

full-rank systems, where the sum of number of transmit antennas of all users is lower than

or equal to the number of receive antennas at the base station, low-complexity linear MUDs

exhibit an adequate performance. However, in rank-deficient systems, where the number

of transmit antennas is higher than the number of receive antennas, sophisticated non-

linear search techniques have to be employed. The optimal classic MUD is the maximum

likelihood MUD, which performs a full search for finding the specific combination of legiti-

mate symbols that minimizes the mean squared error criterion. As demonstrated in [87,93]

the specific variant of Grover’s QSA proposed by Dürr and Høyer in [81] for finding the

minimum in a database may be exploited in the MUD application considered. In [87], a

particular variant of the quantum mean algorithm proposed by Brassard et al. [86] was em-

ployed for providing soft estimates of the transmitted symbols, which relies on outputting

the probability of a specific symbol transmitted by a particular user, instead of making a

hard decision. The resultant soft symbol estimates at the output of an MUD represent the
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confidence of the MUD that a particular symbol was transmitted, which helps to substan-

tially improve the performance of the subsequent channel decoder, while allowing the base

station to perform multiple iterations exchanging soft information between the channel de-

coder and the MUD, which again improves the overall performance [97]. Still considering

the employment of quantum search algorithms in the MUD application area, in [94, 95]

the presented solution outperformed the previously proposed soft output quantum-assisted

MUD of [87] by using an algorithm relying on an amalgam of the Dürr-Høyer algorithm [81]

with classical computing. The same methodologies were also shown to perform well in non-

coherent wireless communications systems, where the channel states are not available at

the base station [96].

Grover’s QSA as well as its variants have also been combined with classical heuristic

evolutionary algorithms apart from the GA [89], such as the Repeated Weighted Boosting

Search (RWBS) [98] and the Particle Swarm Optimization (PSO) [99]. To elaborate further,

the quantum-assisted version of the RWBS has been employed by Botsinis et al. [100] in the

field of wireless communications for improving channel estimation [101,102] accuracy. The

Multi-User Transmission (MUT) process [103,104] may also benefit from quantum-assisted

evolutionary algorithms, relying on Grover’s QSA, which may be employed in the downlink

of a communications system, for preprocessing the transmitted signal for eliminating the

multi-user interference at the transmitter. More explicitly, the goal of the multi-user trans-

mission is to “pre-cancel” both the anticipated deleterious effects of the downlink channel

and of the multi-user interference by transmitting a carefully preprocessed signal instead of

each user’s original symbols, so that eventually each user will flawlessly receive the intended

legitimate symbol. This preprocessing is performed based on a perturbation vector applied

to the information symbol vector, which is found by minimizing a predetermined criterion,

such as the mean squared error anticipated at the output of each downlink receiver. In this

context, Botsinis et al. [105] proposed a quantum-assisted PSO capable of evaluating the

optimal complex values for this specific perturbation vector in the context of the downlink

of rank-deficient Non-Orthogonal Multiple Access (NOMA) systems [106].

The cluster analysis technique [107] may also be improved by Grover’s QSA, which

may be used for the vector quantization of the channel in wireless communications, where

these channel codebooks have to be shared between the base station and the mobile users,

so that the latter can feed back to the base station the estimated and quantized chan-

nel states [108]. Clustering is also used in unsupervised machine learning used for data

mining [109], as well as for diverse other applications, such as Gait Recognition [110,111].

With the aid of Grover’s QSA, a quantum-assisted k-means or k-median algorithm has been

developed [112,113] for performing low-complexity clustering, while benefiting from the re-

duced complexity of Grover’s QSA. Furthermore, Grover’s QSA may also be used in the

field of image compression, as proposed in [114] for achieving low-complexity fractal image

compression, while removing the requirement of pre-processing tools, as well as for feature

extraction from medical images [115]. Still in the context of feature extraction, a quantum-

assisted version of the classical PageRank algorithm [116,117], which ranks the web pages

based on their popularity, has been proposed by Paparo and Martin-Delgado [118]. This
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2004

2016

Dürr, Heiligman, Høyer and Mhalla [122] introduced a variant of the DHA, which iden-
tified the k-lowest values of a database, for the sake of determining as to whether a
graph is connected.

2004

Malossini, Blanzieri and Calarco [89] proposed the Quantum Genetic Optimization Al-

gorithm (QGOA), which is fundamentally a classical genetic algorithm, but with its
mating process enhanced by the DHA.

2008

Paparo and Martin-Delgado [118] conceived a quantum-assisted version of the classical
PageRank algorithm, which ranks the web pages based on their popularity.

2012

Aı̈meur, Brassard and Gambs [112] employed Grover’s QSA for the sake of performing
both k-means and k-median clustering.

2013

Botsinis, Alanis, Babar, Ng and Hanzo [94] designed a Quantum-assisted Multi-User

Detector (QMUD), which is empowered by the DHA and it is capable of performing
low-complexity Soft-Input Soft-Output Multi-User Detection (SISO-MUD) in rank-
deficient wireless systems.

2014

Du, Yan and Ma [114] employed Grover’s QSA for achieving low-complexity fractal
image compression.

2015

Botsinis, Alanis, Babar, Ng and Hanzo [100] conceived the Quantum Repeated

Weighted Boosting Search (QRWBS), which is empowered by the DHA and it is tai-
lored for joint channel and data estimation in rank-deficient wireless systems.

2016

Botsinis, Alanis, Babar, Ng and Hanzo [105] propose a quantum-assisted version of the
Particle Swarm Optimization (PSO) designed for Multi-User Transmission (MUT) in
rank-deficient Non-Orthogonal Multiple Access (NOMA) systems.

2016
Lloyd, Garnerone and Zanardi [120] applied the Quantum Phase Algorithm (QPA) to
machine learning problems either for the sake of finding Betti numbers [121], which
correspond to the numbers of connected components, holes and voids, as well as for the
finding eigenvectors and eigenvalues of the combinatorial Laplacian.

2016

Figure 1.5: Timeline of the applications of quantum search algorithms.

specific algorithm has been then been also deployed by Paparo et al. [119] in the context

of complex networks. It has been found that it takes into account the specific significance

than its classical counterpart. Additionally, Lloyd et al. [120] applied the QPA to machine

learning problems either for the sake of finding Betti numbers [121], which correspond to the

numbers of connected components, holes and voids, as well as for the finding eigenvectors

and eigenvalues of the combinatorial Laplacian.

Finally, Dürr et al. [122] proposed a variant of Grover’s QSA, which is capable of

finding the k lowest values of a function, which assumes N legitimate entries, by requiring

a complexity as low as O(
√
kN). This quantum algorithm has a complexity

√
k times

lower than that exhibited by employing the DHA, which finds the minimum of a database,

k different times. Quantitatively, this would result in a complexity of O(k
√
N). The

authors of [122] suggested the employment of this particular algorithm for finding whether

a graph of N vertices is connected for reducing the solution’s complexity.

Some of the most important applications of quantum algorithms are summarized in

the timeline of Fig. 1.5. Based on the above discussions, we may summarize that quan-

tum computing offers a well-equipped parallel-processing toolbox for rendering NP-hard

problems tractable, such as the multi-objective routing problem. For the sake of benefit-

ing from this complexity reduction offered by the quantum algorithms, we will stipulate the

fundamental assumption that the cluster heads of Figs. 1.1 and 1.2 are in possession of a

quantum computer. However, the deployment of a quantum computer may be rather costly

and hence such a deployment may be either justified in systems with an excessive number

of heterogeneous nodes, such as airports, or even aeronautical networks [123].



12 1. Introduction

1.4 Contributions

The classical computing methods mentioned in the previous section are suboptimal. To

elaborate further, not only they fail to spot all the paths that belong to the Optimal Pareto

Front (OPF) [124], but they also often mistakenly identify others which are not optimal,

since they may converge to local minima. In Chapter 4 we propose a QSA, which addresses

these problems and at the same time exploit the property of QP, resulting in a beneficial

complexity reduction. In particular, our contributions in this specific chapter, which is

based on our contribution in [1], may be summarized as follows:

1) We have proposed a novel quantum-assisted algorithm, namely the Non-dominated

Quantum Optimization (NDQO) algorithm, which optimizes the multi-objective rout-

ing problem using the exponential search algorithm of [80]. We have also improved

the latter algorithm and derived the NDQO algorithm’s complexity upper- and lower-

bounds by taking into consideration the number of classical cost function evaluations

(CFE) invoked by this algorithm.

2) We have addressed the OPF partial generation, by ensuring that all the optimal legit-

imate routes will be identified, despite imposing a reduced complexity.

3) We have characterized the performance versus complexity of the NDQO algorithm and

have demonstrated that it achieves the optimal performance at a complexity, which is

on the order of O(N3/2) in the worst-case scenario.

The NDQO algorithm presented in Chapter 4 - albeit near-optimal, when compared to

the full-search-based method - offers fruitful ground for improvement, since it is classified

as a “Hybrid Quantum-Serial Processing” algorithm. This suggests that a further reduc-

tion of its complexity is possible by exploiting the potential synergies between the QP and

the HP. Furthermore, one of its features is that its complexity is on the order of O(N) [1].

Whilst this complexity increase is indeed much more moderate than the exponentially esca-

lating Maximum Likelihood (ML) complexity, this linear complexity increase may become

prohibitive in the context of the NDQO algorithm for high dimensionality problems, where

the total number of routes is excessively high [29]. Therefore, with the goal of achieving

a further complexity reduction, we propose in Chapter 5 a novel quantum-assisted algo-

rithm, namely the Non-Dominated Quantum Iterative Optimization (NDQIO) algorithm.

Our contributions in this specific chapter, which is based on our contribution in [2], related

to the latter algorithm may be summarized as follows:

1) We have developed a novel framework both for combining quantum unitary operators

and for activating them in parallel, with the goal of achieving a further reduction in

the complexity by exploiting the synergies between QP and HP.
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2) The proposed NDQIO algorithm exploits this parallelism with the aid of the algo-

rithms of [80] and [81] for finding the optimum of a multi-objective routing problem

in WMHNs. We have also derived the algorithm’s upper and lower complexity bounds.

3) We have further reduced the complexity of the NDQO algorithm by introducing the

novel element of elitism, which allows the NDQIO algorithm to be terminated once it

concludes that the entire OPF has been identified.

4) We have characterized the performance versus complexity of the NDQIO algorithm

and have demonstrated that it achieves the full-search-based optimal performance at

a normalized complexity, which is several orders of magnitude lower than that of the

NDQO algorithm.

In Chapter 6, we will extend our network model for the sake of addressing the joint

multi-objective routing and load balancing problem of socially-aware networks. In this spe-

cific problem, the NDQIO algorithm employed in socially-oblivious networks provides us

with some clear design guidelines. Explicitly, the hybrid framework exploiting the synergy

between the QP and the HP provides a substantial complexity reduction, namely by a fac-

tor of O(K
√
N) [2], where the factor K corresponds to the number of parallel independent

quantum processes stemming from the HP, while N is the database size. Nevertheless,

as Zalka [88] pointed out, Grover’s QSA and inherently all the Grover-based QSAs, such

as the BBHT-QSA, the DHA and the NDQIO algorithm, are optimal in terms of their

complexity reduction, as long as the database entries are uncorrelated. Naturally, Zalka’s

proof of Grover’s QSA optimality provides us with a further design consideration, namely

the database correlation exploitation, as portrayed in Fig. 6.1. We note that the actual

complexity reduction offered by the database correlation exploitation strictly depends on

the optimization problem, thus its achievable complexity reduction order cannot be quan-

tified using a closed-form expression. Nevertheless, we can view this method as a means

of extracting a series of shorter uncorrelated databases from the original database, thus,

effectively reducing the database length N . Explicitly, this transfomation pushes the com-

plexity reduction offered by the hybrid HP and QP framework to its full potential. Based

on these design considerations, our contributions in this specific chapter, which is based on

our contribution in [3], related to the MODQO algorithm may be summarized as follows:

1) We propose a quantum-assisted multi-objective optimization algorithm, namely the

Mutli-Objective Decomposition-based Quantum Optimization (MODQO) algorithm,

which relies on a novel optimal decomposition framework for jointly optimizing the

routing and performing load balancing in socially-aware twin-layered networks.

2) We develop a novel framework for decomposing the joint multi-objective routing and

load balancing problem into a series of low-complexity sub-problems and we prove
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that the Optimal Pareto Front of the decomposed problem is identical to the Optimal

Pareto Front of its composite counterpart.

3) We propose a new metric for characterizing the distribution of the tele-traffic load,

namely the normalized entropy H̄ of the respective distribution, which circumvents

the biasing towards the minimum delay solution imposed by relying on the use of the

standard deviation of the respective distribution.

4) We analytically characterize the complexity imposed by the MODQO algorithm, which

is on the order of O(
√
N) and O(N

2N2
MC

MR ) for networks having NMR routers and

NMC users in the best-case and the worst-case scenarios, respectively, down from

O(N2N2
MC) imposed by the exhaustive search, with N ≫ NMR being the total number

of Hamiltonian routes between two specific users. Additionally, we demonstrate that

the average complexity of the MODQO algorithm is multiple orders of magnitude

lower than that of the exhaustive search, when considering realistic network sizes.

5) Finally, we compare the MODQO accuracy to that of the Non-dominated Sort Genetic

Algorithm II (NSGA-II) [124] operating at an identical computational complexity and

demonstrate that the MODQO algorithm is capable of improving both the delay and

power consumption by at least that of two-hop durations and at least 4 dB, respectively,

for networks having 10 mesh routers.

1.5 Report Structure

The rest of this report is structured as follows:

(a) In Chapter 2 we will first introduce all the assumptions made about our single-

source, single-destination network model. In particular, firstly we will discuss the

WMHN specifications leading to the specific choice of our optimization objectives in

Section 2.2. Then, in Section 2.3 we will provide a brief introduction to the concept

of Pareto optimality. Subsequently, we will present the state-of-the-art evolutionary

algorithms, namely the NSGA-II [124, 29] and the MO-ACO algorithm [54, 52] in

Sections 2.4 and 2.5, respectively. We note that these specific algorithms will be used

to benchmark our proposed algorithms.

(b) In Chapter 3 we will first provide an introduction to the quantum computing pos-

tulates presented in Section 3.2. Subsequently, three popular quantum algorithms,

namely Grover’s QSA, the exponential search algorithm of [80] and a quantum algo-

rithm proposed in [81] for identifying the minimum of an unsorted database, will be

discussed in Sections 3.3, 3.4 and 3.5, respectively. Note that these specific algorithms

constitute the cornerstones of the algorithms advocated in the next chapters.
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(c) In Chapter 4, we will present our first proposed solution, namely the so-called

Non-Dominated Quantum Optimization (NDQO) algorithm [1], for addressing the

multi-objective routing problem, when considering the system model of Section 2.2.

For this specific reason we will utilize the BBHT-QSA presented in Section 3.4 for

the sake of conceiving a quantum-assisted process searching for “more beneficial”

routes, thus finding the Pareto-optimal routes, whilst benefiting from the complexity

reduction offered by the QP. This specific process is presented in Section 4.3 and

it is referred to as the BBHT-QSA chain. This process constitutes the cornerstone

of the NDQO algorithm. Subsequently, the NDQO algorithm will be evaluated in

terms of its accuracy versus complexity trade-off. For the accuracy evaluation, we

will utilize the NSGA-II and the MO-ACO algorithm, presented in Sections 2.4 and

2.5, respectively, as benchmarkers.

(d) InChapter 5, we will propose in Section 5.2 a novel hybrid framework amalgamating

both QP and the so-called Hardware Parallelism (HP) for attaining a further complex-

ity reduction. Subsequently, we will apply this framework to the BBHT-QSA chain

processes of Section 4.3 and propose the so-called Non-Dominated Iterative Quantum

Optimization (NDQIO) algorithm [2] in Section 5.3 for addressing the multi-objective

routing problem, when considering the system model of Section 2.2. Explicitly, the

NDQIO algorithm benefits both from the aforementioned hybrid framework as well

as from a process, which allows the algorithm to conclude as to whether it has or has

not identified all of the optimal routes, as detailed in Section 5.3.2. Subsequently, the

NDQIO algorithm will be characterized in terms of its accuracy versus complexity.

For the accuracy evaluation, we will utilize the NDQO algorithm, the NSGA-II and

the MO-ACO algorithm, presented in Sections 4.4, 2.4 and 2.5, respectively, as our

benchmarkers. Note that the complexity imposed by the NDQIO algorithm will be

compared to that of the NDQO as well.

(e) In Chapter 6, we address joint multi-objective routing and load balancing problem

in the context of socially-aware networks. Since the system model of Section 2.2

is not directly applicable in this specific scenario, we will appropriately adapt it in

Section 6.2 in order to account both for multiple SNs as well as DNs and introduce a

socially-aware load balancing metric as a secondary objective, namely the normalized

entropy of the normalized composite betweeness. in Section 6.3.2 we will then propose

our novel algorithm, namely the Multi-Objective Decomposition Quantum Optimiza-

tion (MODQO) algorithm [3], which exploits both the NDQIO’s hybrid framework

as well as the database correlation exhibited by this scenario, as detailed in Sec-

tion 6.3.4. The complexity imposed by the MODQO algorithm will be evaluated in

Section 6.4.1, while its heuristic accuracy will be compared to that of the NSGA-II

of Section 2.4.

(f) Finally, in Chapter 7 our conclusions and future research will be presented.

Finally, the structure of this report is portrayed in Fig. 1.6.
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Chapter 2

Classical Heuristics for

Multi-Objective Routing

2.1 Introduction

As mentioned in the introductory chapter, in Section 2.2 we will first introduce the network

model considered for multi-objective routing optimization in WMHNs. In this specific

network model, we are assuming the presence of a single Source Node (SN) and single

Destination Node (DN) for the sake of assessing both the accuracy and the complexity of

the quantum-assisted solutions advocated in Chapters 4 and 5. By contrast, in Chapter 6 we

will extend this specific model for the sake of employing it in the context of multi-objective

routing in socially-aware networks. Subsequently, in Section 2.3, we will elaborate on the

concept of Pareto optimality [53], because all of our advocated quantum-assisted solutions

rely on it for the joint optimization of all the QoS criteria considered.

As it has been made plausible in the introductory chapter, the vast majority of classical

computing contributions in the field of multi-objective routing relied on a pair of popular

particular algorithms, namely the Non-dominated Sort Genetic Algorithm - II (NSGA-II)

[124,29] and theMulti-Objective Ant Colony Optimization (MO-ACO) algorithm [54,55,52].

Therefore, we will describe in detail both the aforementioned algorithms in Sections 2.4 and

2.5, respectively, and quantify their complexity for the sake of using them as benchmarkers

of our novel quantum-assisted algorithms. We note that the specific version of the NSGA-II

used is identical to the one proposed by Yetgin et al. in [29]. By contrast, the MO-ACO

had to be appropriately adapted for its employment in the multi-objective routing problem

inspired by [52] and [125]. Finally, we note that in this specific chapter we do not claim

any new contributions, since the aforementioned algorithms already exist in the literature.

Let us now proceed with the detailed portrayal of the system model considered for the

single-SN and single-DN multi-objective routing in WMHNs.

17
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2.2 Network Specifications

2.2.1 Model Assumptions

In this subsection we will elaborate on the underlying assumption of the WMHN model

considered. Let us now list these particular assumptions as follows:

• As far as the network architecture is concerned, a fully inter-connected network has

been assumed. The coverage area was assumed to be a (100×100) m2 square block.

• The relay node (RN) locations were generated using a uniform random distribution

within this area, whereas the SN and the DN were located at the two opposite corners

of this square block.

• Moreover, each route is assumed to traverse through each node at most once. There-

fore, unnecessary loops, which would result in potentially excessive delay and power

consumption, may be avoided.

• As for the interference level experienced by each node, owing to the Central Limit

Therorem (CLT) [126] the interference caused by multiple users accessing the same

channel may be treated as Additive White Gaussian Noise (AWGN). More specifically,

each node’s interference level obeys the normal distribution. The mean of this was

set to -90 dBm with a standard deviation of 10 dB.

• The DN acts as an intelligent central node collecting information concerning both

the nodes’ geo-locations and the interference levels experienced by them. For the

sake of simplicity, we have assumed that the DN node has perfect knowledge of the

aforementioned parameters. For the sake of employing the quantum algorithms of

Chapters 4 and 5, we assume furthermore that this node has access to a gate-based

quantum computer [62]. This could be realized either by having this specific type of

quantum computer installed at the DN side or by the DN having a seamless link to

this quantum computer.

• As for the optimization process, the DN collects the network’s information at a fre-

quency depending on the RNs’ velocity as well as on how fast the interference changes.

It then performs multi-objective routing optimization based on this updated informa-

tion. Let us emphasize that in the context of this treatise we have not considered the

frequency of invoking this tracking process. By contrast, we only considered random

snapshots of this network.

The rest of the system parameters are summarized in Table 2.1. An illustrative example of

the topology considered is shown in Fig. 2.1, where the formation of all the legitimate routes

is shown for an 8-node WMHN. We note that although the SN is capable of transmitting

its message towards all nodes, it is not possible for the other nodes to send their message

back to the SN, due to the previous assumptions. Therefore, the opposite of this principle

would apply for the DN.



2.2.2. Optimization Criteria 19

Figure 2.1: Exemplified network topology for an 8-node WMHN.

Table 2.1: WMHN Network Parameters

Network Coverage Area (100×100) m2 Square Block

Modulation QPSK

Mean Node Interference, µI -90 dBm

Node Interference Std, σI 10 dB

Power Consumption Model Log-Distance Path-Loss

Model with a = 3

Transmission Power 20 dBm

Carrier Frequency 1.8 GHz

Delay Unit Single Hop

2.2.2 Optimization Criteria

According to the physical layer model considered, each message transmission uses QPSK

modulation over an uncorrelated Rayleigh fading environment [11], where the Bit Error

Ratio (BER), Pe, versus the Bit-to-Noise power Ratio, Eb/N0, relationship is given by [126]:

Pe =
1

2

(

1−
√

Eb/N0

Eb/N0 + 1

)

. (2.1)

In the multiple access layer, each RN is capable of retransmitting the received messages

using the classic decode-and-forward (DAF) scheme [127]. More specifically, each node

decodes the received messages and then performs encoding and modulation in order to

forward it to the next node. As the received message may be corrupted by errors due to

erroneous detection at the previous nodes and also since QPSK is used, the channel can

be modelled by a two-stage Binary Symmetric Channel (BSC) [11] as presented in Fig.
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2.2. The RN corresponds to the intermediate node of Fig. 2.2 and the route has two BER

values, one for each of the two links established. It is possible to transform this channel

into a single-stage one, which would be described by a single overall BER Pe,12, given by:

Pe,12 = Pe,1 + Pe,2 − 2Pe,1Pe,2. (2.2)

Figure 2.2: Two stage Binary Symmetric Channel for the case of an intermediate node.

The last term in Eq. (2.2) corresponds to the propagated errors, i.e. to the errors that

were introduced by the first link and have been luckily “corrected” by the introduction of

another error within the second link. Additionally, Eq. (2.2) may be used for recursively

calculating the overall BER of a particular route.

Furthermore, another factor to be considered is the network’s delay. In the proposed

system the delays are introduced by the DAF scheme, since a finite time-duration would be

required for a RN to perform all the necessary operations before forwarding a message. For

simplicity, the service queue is assumed to have zero length, hence the messages would be

forwarded almost instantly with a short delay equal to the DAF signal processing operation

duration. Hence, the total delay of the route would be proportional to its number of

established hops.

Moreover, as far as the power consumption is concerned, only the free-space path-loss

of each link has been considered. In particular, the path loss exponent was set to α = 3.

Hence, the path-loss L of single link may be formulated as [11]:

L = PTx,dB − PRx,dB = 10α log10

(
4πd

λc

)

[dB], (2.3)

where PTx,dB, PRx,dB, d and λc stand for the transmitted power, the received power, the

distance between the nodes of a link and the carrier wavelength respectively. The trans-

mission power was set to 20 dBm for each link, while the carrier frequency was set to 1.8

GHz, which would result in a wavelength of 0.1667 m.

Last but not least, bearing in mind all the above assumptions, an N -node network may

be modeled as a graph G(E,V ) having E edges and V vertices, which is formulated as:
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vi,j =







[SNRi,j , Li,j,Di.j ]
∀i, j ∈ V : i 6= j,

j 6= 1, i 6= N,

∅ otherwise,

(2.4)

where vi.j stands for the transition weight, SNRi,j is the received SNR, Li,j denotes the

power losses due to path-loss and Di.j represents the delay of forwarding a message from

node i to node j. Additionally, the symbol ∅ in Eq. (2.4) corresponds to a transition that

is not legitimate. Moving on to the route fitness evaluation, assuming a legitimate route

x, which belongs to the set of all the possible legitimate routes S, its Utility Vector (UV)

f(x) is described by a vector formulated as:

f(x) = [Pe,x, CLx, CDx] , (2.5)

where Pe,x, CLx, CDx stand for the overall BER, the cumulative linear-domain sum of

the path-losses and the cumulative sum of the delays for route x respectively. We note

that each of the single components of the UV for Eq. (2.5) is often referred to as Utility

Function (UF). Finally, we remind that the system parameters considered are summarized

in Table 2.1.

2.3 Pareto Optimality

Since the proposed approach is a multi-objective one based on Eq. (2.5), the optimality

of the route-solution vectors should be defined. Explicitly, the evaluation of the UV used

for quantifying the performance of the WMHN network considered in Eq. (2.5) can be

undertaken with the aid of the Pareto Dominance concept [47], which is encapsulated

in Definitions 1 and 2, while the corresponding Pareto-optimality conditions are given in

Definitions 3 and 4. We note that Definitions 1 and 2 are tailored for jointly minimizing

the UFs, since our design objective is to establish the active routes with the minimum

possible average delay and power consumption. Nevertheless, they can be readily invoked

for maximization problems by substituting the “less (than)” operators by “greater (than)”.

Definition 1. Weak Pareto Dominance [47]: A particular solution x1, associated with

the UV f(x1) = [f1(x1), ..., fK(x1)], where K corresponds to the number of optimization

objectives, is said to weakly dominate another solution x2, associated with the UV f(x2) =

[f1(x2), ..., fn(x2)], iff f(x1) � f(x2), i.e. we have fi(x1) ≤ fi(x2) ∀i ∈ {1, ...,K} and

∃j ∈ {1, ...,K} such that fj(x1) < fj(x2).

Definition 2. Strong Pareto Dominance [47]: A particular solution x1, associated with

the UV f(x1) = [f1(x1), ..., fK(x1)], where K corresponds to the number of optimization

objectives, is said to strongly dominate another solution x2, associated with the UV f(x2) =

[f1(x2), ..., fK(x2)], iff f(x1) ≻ f(x2), i.e. we have fi(x1) < fi(x2) ∀i ∈ {1, ...,K}.
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Figure 2.3: A graphical example portraying the dominance relationship of the route-solutions
{xi}6i=2 with respect to the route-solution x1 for a generic Pareto-optimality problem
with K = 2 UFs.

Let us now describe the use of the weak and strong Pareto dominance, encapsulated

in Defs. 1 and 2, respectively, with the aid of a graphical example, which is shown in

Fig. 2.3. We note that the example presented in Fig. 2.3 portrays a Pareto-optimality

problem associated with K = 2 UFs. As a reference, we use the route-solution x1, which is

associated with the UV f(x1), and we will assess its dominance relationship with respect

to the route-solutions {xi}6i=2, which are associated with the UVs {f(xi)}6i=2. It is clear

that the route-solution x2 is both strongly and weakly dominated by the route-solution

x1, since we have fi(x1) < fi(x2), ∀i ∈ {1, 2}. The difference between strong and weak

Pareto dominance becomes visible, when we assess the dominance relationship between

the route-solution x3 and that of x1. Since we have f1(x1) = f1(x3), there is no strong

dominance relationship between those two route-solutions; however, x1 weakly dominates

x3, since we have f2(x1) < f2(x3). Explicitly, the solution x1 weakly dominates all the

potential route-solutions that lie in the plane defined by the boundaries [f1(x1),+∞] and

[f2(x1),+∞] including the boundaries, while it does not strongly the boundaries. As for

the rest of the route-solutions shown in Fig. 2.3, there is no dominance relationship among

x1, x4 and x5, since we have f1(x5) < f1(x1) < f1(x4), while f2(x5) > f2(x1) > f2(x4).

Finally, the route-solution x6 dominates, both weakly and strongly, the route-solution x1,

since we jointly have f1(x6) < f1(x1) and f2(x6) < f2(x1).

Definition 3. Weak Pareto-optimality [47]: A particular solution xi, associated with

the UV f(xi) = [f1(xi), ..., fN (xi)], where N corresponds to the number of optimization

objectives, is considered as weakly Pareto-optimal iff there exists no solution that strongly

dominates xi, i.e. iff ∄xj such that f(xj) ≻ f(xi).

Definition 4. Strong Pareto-optimality [47]: A particular solution xi, associated with
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the UV f(xi) = [f1(xi), ..., fN (xi)], where N corresponds to the number of optimization

objectives, is considered as strongly Pareto-optimal iff there exists no solution that weakly

dominates xi, i.e. iff ∄xj such that f(xj) � f(xi).

Figure 2.4: Distribution of the route-solutions into fronts based on the number of route-solutions
that dominate a specific route-solution for a generic Pareto-optimality problem with
K = 2 UFs.

Based on Definitions 1 and 2, it is possible to group the route-solutions based on the

number of route-solutions that dominate them. Such groups of route-solutions form fronts

in the solution space, which are often referred to as Pareto Fronts (PF). Naturally, the entire

set of Pareto-optimal route-solutions will form a single PF, since all of these route-solutions

share the characteristic of being either strongly or weakly dominated by no route-solution,

based on Definitions 3 and 4,respectively. We note that this specific front is often referred

to as the Optimal Pareto Front (OPF). A graphical example of the formation of various PFs

is presented in Fig. 2.4 for a generic minimization Pareto-optimality problem associated

with K = 2 UFs. Still referring to the same figure, observe that the curves formed by

the route-solutions of a specific PF dominate the respective curves associated with higher

rank PFs, i.e. PFs formed by route-solutions that are dominated by a higher number of

route-solutions.

Explicitly, the OPF is composed by route-solutions having UFs, which cannot be further

optimized individually without degrading the fitness of the rest of the UFs, as it can be

observed in Fig. 2.4. As far as our specific application is concerned, when considering weak

OPFs, there exist route-solutions classified as Pareto-optimal, which may have the same

metric, say in terms of their delay CD, yet exhibiting a worse performance in terms both

of their power consumption CL and of their BER Pe. Nevertheless, the route-solution that

jointly exhibits a lower power consumption and a lower BER seems to outperform the other

one, since it jointly minimizes all of the UFs considered in Eq. (2.5). This specific caveat
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is rectified by the employment of strong Pareto-optimality, since the specific route-solution

associated with a lower power consumption would dominate the other route-solution and,

hence, the latter will not be included in the respective OPF. In the context of this treatise,

we will consider weak Pareto-optimality for the design of our quantum-assisted solutions

in Chapters 4 and 5, since it constitutes a more generic and, thus, a more challenging

case in terms of its complexity owing to the increased number of Pareto optimal routes.

By contrast, in Chapter 6 we will utilize the strong Pareto-optimality, since our design

objective is to identify the specific solutions, where it is not possible to improve any of the

single UFs without degrading the rest of the UFs considered.

Based on Definitions 3 and 4 related to Pareto-optimality, it is possible to quantify

the fitness of a specific route with respect to its Pareto-optimality. Explicitly, this spe-

cific fitness is quantified using the concept of Pareto Distance, which is encapsulated in

Definition 5.

Definition 5. Pareto Distance. Given a set of route-solutions S and a particular route-

solution xi, belonging to the set xi ∈ S, its distance from the OPF may be defined as the

probability Pd of being dominated by the other solutions of S. This is formally expressed

as:

Pd(xi) =
#{f(xj)♦f(xi),∀j, i ∈ {0, 1, ..., |S| − 1}}

|S| , (2.6)

where the operator #{·} quantifies the number of times that the condition in the curly

brackets is satisfied, while the operator |·| represents the total number of elements of a set

and f(·) is the UV defined in Eq. (2.5). Additionally, the operator ♦ represents the generic

Pareto dominance comparison operator corresponding to the operators � and ≻ for strong

and weak Pareto-optimality problems, respectively.

Based on Definition 5, the Pareto Distance function Pd( ) is limited to the range [0, 1].

Naturally, the routes belonging to the OPF will have the minimum possible distance, which

is equal to 0, whereas the sub-optimal routes would exhibit higher distances. Therefore,

the optimization problem takes the form of:

find x

s. t. x ∈ S, Pd(x) = 0.
(2.7)

Finally, let us define the complexity metric invoked for the quantification of the com-

putational complexity. Since the calculation of the Pareto Distance in Eq. (2.6) requires

the evaluation of the dominance operator (�), we will define the Cost Function (CF) of

our optimization problem as a single application of this operator between two solution vec-

tors. The calculation of each route-solution vector requires a single UF evaluation based

on Eq. (2.5).

Let us now apply the principles of Pareto Optimality to our WMHN model. Based on
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the definition of the route-solution vector in Eq. (2.5), we attempt to jointly optimize the

performance of our WMHN in terms of the time delay, the BER and the energy dissipation.

Since these performance metrics conflict with each other, the OPF consists of each per-

formance metric’s global minimum and the specific routes corresponding to route solution

vectors, which lie in the space defined by the global minima and they are not dominated by

any other route-solution vector. Our main interest lies in determining the latter solutions,

rather than the three global minima. For instance, the optimal route in terms of the time

delay would be the direct route from the SN to the DN without traversing through any

RNs. However, this link would potentially suffer from an excessive power dissipation, since

the distance between the SN and the DN may be long, hence leading to a low Eb/N0 as

well. Similar disadvantages may apply in the general case for all the global minima of each

parameter.

Furthermore, as mentioned in the previous section, determining all the OPF routes

provides us with useful information about the trade-offs amongst the diverse parameters

considered [47], hence resulting in a more beneficial design in terms of the various QoS

requirements. For this reason, all the legitimate routes have to be examined in terms of

their Pareto Distance for the sake of identifying those that have a Pareto Distance of zero.

Assuming that |S| = N , where N corresponds to the total number of legitimate routes, the

examination of a single route would invoke the dominance operator N/2 times on average

and N times in the worst-case scenario. The total number of legitimate routes increases

exponentially with the number of nodes Nnodes, and it is equal to [29]:

N =

Nnodes−2
∑

i=0

(Nnodes − 2)!

(Nnodes − 2− i)! . (2.8)

Since this operation is carried out for every legitimate route, the resultant average and

maximum brute force (BF) complexity, Lavg
BF and Lmax

BF respectively, are equal to :

Lavg
BF = N2/2 = O(N2),

Lmax
BF = N2 = O(N2).

(2.9)

Hence, sophisticated search methods are required for determining the OPF in polyno-

mial time. As already mentioned in Section I, this ambitious goal may be achieved with

the aid of QSAs.

2.4 The Non-Dominated Sort Genetic Algorithm II

The Non-Dominated Sort Genetic Algorithm II (NSGA-II) [124] has been designed for ad-

dressing multi-objective problems and it belongs to the family of Evolutionary Algorithms

(EAs). Naturally, there is an initial population of random candidates, which are also of-

ten referred to as individuals. They represent distinct route-solutions, which are in turn
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referred to as chromosomes. A fitness function is introduced also for multi-objective prob-

lems in the same fashion as in single-objective optimization. This operation is carried out

by sorting the route-solutions or chromosomes in the PFs using the Pareto optimality prin-

ciple. Furthermore, for the route-solutions, which belong to the same PF, a fitness function

has been introduced, namely the so-called crowding distance. Explicitly, the crowding dis-

tance quantifies the distance of a specific route-solution from its neighbors and its detailed

description will be presented in Section 2.4.1.

Algorithm 2.1 NSGA-II [124]

1: Initialize the population to P1 with Npop random individuals.
2: for g = 1 to NG do

3: Perform a non-dominated sort on Pg and output the Pareto Fronts F .
4: Calculate the crowding distance d of each individual.
5: Identify the N strongest individuals, which form the set Rg.
6: For each offspring individual perform a binary tournament selection from the set Rg

twice, one for each parent, and store the pairs to the set Sg
7: Perform crossover with probability Pc between each pair stored in Sg forming the

offspring population Cg.
8: Perform mutation with probability Pm for each individual of Cg and repair them,

storing the repaired mutated individuals in the set Cm
g .

9: Set Pg+1 = Pg∪Cm
g .

10: end for

Initially, a random population consisting of Npop individuals is sorted based on both its

Pareto Front rank as well as its crowding distance and the fittest Npop/2 individuals are

selected. To elaborate further, an individual is deemed fitter than another if the first has

a lower Pareto distance value. If they both exhibit the same value, i.e. they belong to the

same PF, the fitter individual is the one that has a higher crowding distance. Subsequently,

a pair of independent binary tournament selections [128] are activated for the sake of

constructing the mating pool ; each of these procedures selects exactly Npop/2 individuals

and includes them into the mating pool, hence creating Npop/2 pairs of individuals or

chromosomes. The crossover genetic operator is then imposed on each of the Npop/2 pairs

producing Npop/2 individuals, which are often referred to as offspring. Then the mutation

operator is applied to each of the individuals comprising the offspring. Note that we will

elaborate on the crossover and mutation operators in Section 2.4.3. For the sake of visiting

each node at most once, the potential loops are removed from the offspring population.

More specifically, should a particular offspring route be found to have visited a node twice

or more, this node is removed, hence complying with the Hamiltonian route constraint.

Finally, the offspring pool is combined with the parent population and the same process is

repeated for a number of generations. The overall process of NSGA-II is formally presented

in Alg. 2.1. The processes of crowding distance calculation, binary tournament selection

and genetic operators are presented in the next sections. Let us now proceed with analyzing

each of the sub-processes of the NSGA-II.
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2.4.1 Crowding Distance

The concept of crowding distance has been introduced in the NSGA-II as a measure of

elitism against its predecessor, namely the NSGA, where the selection between members

belonging to the same PF was carried out with the aid of user-defined variables. This

metric relies upon the principle that more remotely located route-solutions in the hyper-

plane defined by the UVs of the all the legitimate route-solutions, i.e. route-solutions that

exhibit a higher crowding distance value, have a tendency to produce offspring individuals

exhibiting a higher degree of diversity [124].

Algorithm 2.2 Crowding Distance Evaluation Method for a Single PF [124]

1: Initialize the vector I containing the crowding distance of each individual in a specific
PF to a zero vector.

2: for k←1 to K do

3: Sort the individuals according to their m-th OF and store their sorted indices to
vector i and the m-th OF sorted values to the vector Dc

m.
4: Set fmax←max{Dc

k}.
5: Set fmin←min{Dc

k}.
6: Set I(i1)←∞ and I(i|i|)←∞, where the operation |i| denotes the length of the vector

i.
7: for j←2 to |i| − 1 do

8: Set I(ij)←I(ij) +
Dc

k,j+1−Dc
k,j−1

fmax
k −fmin

k

9: end for

10: end for

11: Export the vector I and exit.

The process of evaluating the crowding distances of the route-solutions of a specific PF

is summarized in Alg. 2.2. Based on Alg. 2.2, for a specific PF the vector I of crowding

distances is initialized to zero. Then, for each of the UFs, which are assumed to be K in

total, the route-solutions are sorted in ascending order based on the specific UF. We note

that in Alg. 2.2 the vector Dk represents the sorted values of the k-th UF, the vector i

corresponds to the relative sorting indices, while fmax
k and fmin

k are the maximum as well

as minimum observations of the k-th UF, respectively. The method initializes to infinity

the crowding distances associated with route-solutions having the minimum and maximum

values in terms of the k-th UF. Subsequently, the crowding distance Ik(ij) of the ij-th route

of the PF in terms of the kth UF is formulated as follows:

Ik(ij) =
Dc

k,j+1 −Dc
k,j−1

fmax
k − fmin

k

. (2.10)

Finally, the overall crowding distance of a specific route-solution is derived by the sum of

the crowding distances {Ik(ij)}Kk=1 of the entire set of UFs. The variables of Eq. (2.10)

associated with the crowding distance evaluation are portrayed in Fig. 2.5. Last but

not least, we note that dividing the distances by the range of each UF at a specific PF

results in the normalization of the crowding distances associated with each of the UFs,

thus allowing their summation. Explicitly, Deb et al. [124] demonstrated that solutions

with higher crowding distance, which may be interpreted as solutions being more distant
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to their neighbors belonging to the same PF, are capable of producing better solutions

using the genetic operators. This could be justified by the fact that the solution diversity

is enhanced by those having higher crowding distance.

Figure 2.5: Visual representation of the crowding distance evaluation process of Alg. 2.2.

2.4.2 Binary Tournament Selection

The binary tournament selection has been introduced by Chakraborty [128] and it is uti-

lized for the sake of providing the genetic algorithm with immunity against premature

convergence. The aim of this procedure is to select Npop/4 surviving route-solutions from

a population of Npop parent individuals. To elaborate further, two solutions are selected

randomly from the entire set of Npop parent solutions and are first compared in terms

of their Pareto distance Pd, defined in Eq. (2.6); the surviving route-solution is the one

exhibiting the lowest Pd value. If they belong to the same PF, their crowding distances

are compared and hence the one associated with the highest crowding distance value is

selected as the surviving one. In the extreme case, where they are found to have the same

crowding distance value, the surviving solution is chosen randomly. The surviving solution

is appended to the parents set Sg. This procedure is then repeated Npop/4 − 1 times in

order to fill the set of surviving solutions.

In the NSGA-II (Alg. 2.1) this procedure is invoked twice, since the resultant mating

pool has to have the same size as the initial population, consisting of Npop/4 pairs. This

mating pool will be used as the input to perform the Genetic Operation Crossover, which

is presented in the next subsection.
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2.4.3 Genetic Operators

The genetic operators are responsible for creating the offspring at each generation and

they are classified into two basic types, namely crossover and mutation [29]. The first

operator creates the offspring individuals from the parent population Sg. Explicitly, the

mating pool ’s population that has been created from the two binary tournament selection

processes are used is the parents. Each of the parent chromosomes is then segmented into

two parts, as shown in Fig. 2.6(a). The first child would be created by serially concatenating

the first part of the first parent and the second part of the second parent. By contrast, the

second child is created by the first part of the second parent and the second part of the

first parent.

DA B CS DGFS H

Parent 1 Parent 2

DF CS EDGBS HA
Child 1 Child 2

Crossover Points

Original

Mutation at

Exchange

Removal

Addition

(a) (b)

E DGBS HA

DGBS HA

DGCS HA

DGBS HA C

DGS HA

Figure 2.6: The genetic operators (a) crossover and (b) mutation. Note that the nodes “S” and
“D” correspond to the SN and the DN, respectively.

As soon as the crossover operation is completed, the mutation operation is applied to

the offspring population created. This operation modifies the created population with the

aid of three equiprobable operations: exchange, removal and addition. In all three cases,

a random node is selected and one of the aforementioned operations is randomly applied

to each of the offspring individuals. To elaborate further, in the exchange operation the

selected node is substituted by another one, whereas in the removal operation it is removed

from the route. Finally, in the addition operation a new node is inserted right after the

selected node. All three processes are shown in Fig. 2.6(b). Since the offspring individual

may exhibit having loops after the genetic operators, a repair process, which removes the

potential loops, is activated for satisfying the optimization constraints, ensuring that the

routes visit the available node at most once.

2.5 Multi-Objective Ant Colony Optimization

The Ant Colony Optimization (ACO) is a bio-inspired algorithm, which was conceived by

Dorigo et al. [54] in 1996, who used a multi-agent approach for simulating the behavior of

an ant colony for solving for the Traveling Salesman Problem (TSP). To elaborate further,
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single ants may be viewed as agents, since they exhibit the following characteristics [54,55]:

• Ants have poor-to-mediocre eyesight and some tribes may be considered completely

blind.

• They are able to communicate with each other using specific hormones, referred to

as “pheromones”. These are detected by chemical sensors, which are located on the

ants’ heads.

• Each ant, in order to find the best route from its nest to the source of food, senses the

pheromones and follows the route associated with the highest pheromone intensity.

• Since an open environment is assumed, there is a probability that a perturbation

from the environment may distract the ant, which hence does not follow the route

having the highest pheromone intensity.

• The choice of route is considered independent for each ant and the pheromone trails

they leave are considered for the next generation of ants.

The algorithm simulates the behavior of the individual ants of an ant colony for lo-

cating the optimal route from their nest to food. At each stage, which is often referred

as generation, a certain number of ants sets out from their nest. Initially, in the absence

of pheromone, the ants choose their routes randomly, as shown in Fig. 2.7(a); the routes

are considered equiprobable. As they move along the routes they deposit pheromone to be

utilized by the ants of the next generations. The longer the route the lower the pheromone

intensity would be, as it tends to evaporate over time. In the next generations, the ants

choose the routes to follow randomly again; however, the probabilities of the routes are no

longer equiprobable, they depend on the pheromone intensity. Moreover, perturbations by

the environment are possible; this would mean that even though a certain route is chosen,

actually a “neighboring” one is followed. Repeating the experiment for a number of gen-

erations, the ants converge over time to the optimal route, since the pheromone intensity

increases over the generations, as seen in Fig. 2.7(b,c,d).

Dorigo’s original algorithm conceived in 1996 was then finalized by Dorigo and Di Caro

[55] in 1999. They used the same principles for adapting the algorithm to the problem of

single-objective networks’ routing optimization, introducing the concept of intrinsic affin-

ity, an additional heuristic factor. In the so called AntNet, each ant travels from the SN to

the DN, while visiting a different number of intermediate nodes. Each ant moving from one

node to another leaves an amount of pheromone across the trail, depending on the value of

the UF considered for optimization. As for the heuristic factor, the average delay per node

has been used; the node transition probability depends both on the pheromone intensity

and on the intrinsic affinity.

Some further extensions of the AntNet model have also been proposed. Both Golshahi

et al. [56] and Chandra et al. [57] implemented a routing protocol using the AntNet model;

two types of agents have been used: a forward agent, which searches for the routes, and a
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Figure 2.7: The process of converging to the optimal route.

backward agent, which performs the ACO operations. Finally, Wang and Wu [58] developed

an ACO routing algorithm for optimizing the performance of fault tolerant Hypercube

Networks at a reduced complexity by exploiting the regularities that these networks exhibit.

The above versions of the Ant Colony optimization were used for single-objective opti-

mization. However, the optimization approach adopted throughout this report is a multi-

objective one. Several variations of the Multi-Objective (MO) ACO exist [129]. Some use

a single pheromone [130,131,132] or intrinsic affinity structure [133,130,134]; the resultant

pheromone intensity would be calculated using an aggregation of the multiple objective

functions or heuristic factors, respectively. Others use multiple pheromones [133, 132, 134]

or heuristic factors [135], each for every objective function. The main difference between

these two approaches would be mainly for the pheromone case, as the pheromone update

process would differ.

2.5.1 Detailed Algorithmic Steps

Before proceeding with the detailed description of the algorithmic steps, the assumptions

made concerning the pheromone structure and the intrinsic affinity should be mentioned.

As far as the pheromone structure τ is concerned, multiple pheromone intensities have been

used, each for every UF in a similar fashion to [52]. However, during the calculation of the

route probability these values are jointly evaluated using the Pareto optimality principle

for the sake of avoiding the need for aggregate user-defined weights. As for the intrinsic

affinity, a single value is used for each route and it is related to the Pareto dominance

of the solution over the set of solutions generated. A more detailed discussion on the

intrinsic affinity and on the pheromone intensity models is made in Sections 2.5.2 and

2.5.3, respectively. Moreover, the extraction of the Pareto Fronts of each generation is

undertaken by a “master” process, which collects the unique solutions generated from the

previous and current generations at each stage and which sorts them into Pareto Fronts.

Furthermore, we have opted for limiting the pheromone levels within a specific range as
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in [136], since this choice provides the algorithm with immunity to premature convergence

to local minima. Explicitly, it forces each pheromone intensity value to reside within a

limited range, which in turn results in hitherto “unexplored” solutions being generated as

well as ensuring that the pheromones representing the local minima do not reach excessive

values, which drive the algorithm towards premature convergence. We note that for all

the MO-ACO’s results of Chapters 4 and 5 a limited range of [0.1, 1] has been used for

the pheromone values, since we observed through extensive simulations that the MO-ACO

operates efficiently.

Algorithm 2.3 Multi-Objective Ant Colony Optimization Algorithm

1: Initialize the multi-level pheromone intensities τ , the combined pheromone T and the
intrinsic affinity η.

2: Set OPF1 = ∅.
3: for g = 1 to Ξ do

4: Calculate the node-transition probabilities P .
5: Generate ζ ants according to P .
6: Evaluate the routes Rg the ants followed.
7: Perform non-dominated sort on the routes Rg∪OPFg and store the Pareto optimal

routes to OPFg+1.
8: Update the pheromone intensities τ and then the combined pheromone T .
9: end for

10: Export the vector OPFΞ+1 and exit.

The MO-ACO algorithm is formally presented in Alg. 2.3. Firstly, the initialization

procedure is invoked. During this procedure the pheromone matrix τinit is initialized to

the lower bound of the range. A similar procedure is also carried out for the intrinsic affinity

η matrix. Subsequently, the transition probability matrix P is evaluated by jointly taking

into account both the intrinsic affinity and the pheromone levels. Then, using the transition

matrix P , the routes are generated. We note that their UVs are only calculated, when the

ant has reached the DN. After the evaluation of the routes followed by the ants, both the

pheromone matrix and the intrinsic affinity vector are updated. If the termination condition

is satisfied, the algorithm terminates and exports the OPF; otherwise, it continues to the

next generation. In our specific application, the maximum affordable number of generations

has been set as the termination condition, since the algorithm has not been designed to be

“decision-directed”, thus it has no knowledge of the true OPF. An analysis of the intrinsic

affinity, the pheromone intensity and the calculation of the transition probability matrix is

discussed in Sections 2.5.2, 2.5.3 and 2.5.4, respectively.

2.5.2 Intrinsic Affinity

The heuristic factor of intrinsic affinity provides the ACO family algorithms with robustness

against converging to local minima [54]. In our specific application, we have followed a

similar approach to that of [125], where Xu et al. populated the intrinsic affinity matrix

with the distance of each bit from the bits of the Minimum Mean Square Error (MMSE)

solution. Based on Eq. (2.4), each node-transition vi,j is characterized by a specific received

SNR, power dissipation and delay. Therefore, we are able to derive a quasi-MMSE solution
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if we perform a Non-Dominated Sort (NDS) operation for each transition from a specific

node to all the possible ones, i.e. a NDS for each row of the vertices matrix V of Eq. (2.4).

After this operation, the number Ndom
i,j of the vertices that dominate a specific vertex vi,j

is derived. Note that when a vertex vi,j is equal to ∅, we assume having vi,j = [∞,∞,∞]

in the NDS process. Following a similar approach to that of [125], the intrinsic affinity

matrix η is formally written as:

η =














e−Ndom
1,1 e−Ndom

1,2 · · · e
−Ndom

1,Nnodes

e−Ndom
2,1 e−Ndom

2,2 · · · e
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2,Nnodes

...
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. . .
...

e
−Ndom

Nnodes,1 e
−Ndom

Nnodes,2 · · · e
−Ndom

Nnodes,Nnodes














, (2.11)

where each element ηi,j of the intrinsic affinity matrix corresponds to the transition form

the i-th node to the j-th one. This initialization concept is based on the fact that Pareto

optimal transitions are “rewarded”, whereas the sub-optimal transitions are “penalized”,

despite the fact that the optimal transitions do not exclusively form optimal routes. The

concept of “reward versus penalty” will be clarified in Section 2.5.4, where the calculation

of probabilities is presented. Let us now proceed by defining the pheromone intensity

initialization and update processes.

2.5.3 Pheromone Intensity

As mentioned in Section 2.5.1, we opt for using a multi-level pheromone model, so that

each of the optimization objectives corresponds to a single pheromone intensity value.

The approach followed in [52] involves a so-called aggregation function of the different

pheromones used for combining the distinct pheromone intensities into a combined one

with user-defined weighting. By contrast, we will utilize the concept of Pareto-optimality

in a similar manner as in the intrinsic affinity matrix calculation.

To elaborate further, the resultant multi-pheromone structure can be modeled as a

(Nnodes×Nnodes)-element matrix τ corresponding to all the possible node-transitions. The

matrix τ is formally expressed as follows:

τ =














τ1,1 τ1,2 · · · τ1,Nnodes

τ1,1 τ2,2 · · · τ2,Nnodes

...
...

. . .
...

τNnodes,1 τNnodes,2 · · · τNnodes,Nnodes














, (2.12)

where each element τi,j is a vector having a number of elements that is equal to the number

of UFs considered, namely 3 in our scenario based on Eq. (2.5). This is formally stated as
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follows:

τi,j =
[

τ
(1)
i,j , τ

(2)
i,j , τ

(3)
i,j

]

, (2.13)

where each element of the multi-level pheromone intensity vector depends on the BER, on

the power dissipation and on the delay of a specific route, respectively.

During the initialization process, which takes place in Step 1 of Alg. 2.3, the pheromone

intensity values τ
(k)
i,j are set to the lower bound of the selected pheromone range, which is

formally expressed as:

τki,j = τmin, ∀ i, j, k. (2.14)

Let us proceed with the pheromone update process, which is activated in Step 8 of

Alg. 2.3. During each generation, the pheromone update process is invoked as soon as

the routes are generated and their UVs are calculated. Initially, the amount of additional

pheromone ∆τ
(k)
i,j is determined. Explicitly, the range of each specific UF value is monitored

across the generations. This is necessary for an accurate evaluation of the pheromone levels,

since the algorithm sorts the solutions generated within the observed range. Assuming that

Rg is the set containing the solutions of the g-th generation, the calculation of the amount

of additional pheromone ∆τ
(k)
i,j assigned to the k-th element of the pheromone intensity

vector is equal to:

∆τ
(k)
i,j =

ζ−1
∑

n = 0

vi,j∈Rg,n

fkmax − fk(Rg,n)
(
fkmax − fkmin

)
|Rg,n|

, (2.15)

where fkmax and fkmin correspond to the maximum and minimum observed values of the k-th

UF, respectively, when taking into account all the hitherto encountered generations. Addi-

tionally, Rg,n denotes the n-th route followed during the g-th generation and it represents

a vector containing all the vertices of the specific route followed. Additionally, the function

fk(Rg,n) denotes the UF k-th objective for the route Rg,n. Moreover, the operation |Rg,n|
denotes the length of the route Rg,n in terms of vertices and its presence in the denominator

of the sum of Eq. (2.15) is justified by the fact that an equal reward quantified in terms of

pheromone intensity is given to all the vetrices vi,j forming the specific route.

Furthermore, the effect of the pheromone evaporation has to be taken into account,

when updating the pheromone levels. This is expressed by the evaporation rate ρ, which

represents the specific portion of the single-level pheromone that is being evaporated, in

other words lost across the consecutive generations. The pheromone update is carried out

using the following formula [54]:

τ
(k)
i,j = (1− ρ) τ (k)i,j +∆τ

(k)
i,j , ∀ i, j, k. (2.16)

Additionally, the concept of minimum and maximum pheromone level [136] is introduced

in Eq. (2.16), since its benefit to the MO-ACO is twofold. On the one hand, it enables the
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algorithm to escape from local extremities due to the saturation caused by the maximum

value of pheromones, while on the other hand it allows the generation of routes having low

the pheromone levels. This is formally expressed as follows [136]:

τ
(k)
i,j =







τmin , τ
(k)
i,j < τmin

τ
(k)
i,j , τmin ≤ τ (k)i,j ≤ τmax

τmax , τmax < τ
(k)
i,j

. (2.17)

Finally, since no aggregate function of the pheromone intensities having appropriate weight-

ing has been utilized, an appropriate method of combining the multi-level pheromones

should be defined. To elaborate further, the principle of Pareto optimality is employed.

Each vertex pheromone intensity vector is sorted first using the NDS, similar to the in-

trinsic affinity case and the order of dominance Ndom,τ
i,j is evaluated for each vertex of a

specific row in the matrix V . Note that this parameter is equal to the number of vetrices,

which dominate a specific vertex. Explicitly, this parameter would be equal to zero for

the lowest-rank PF vertices, since no solutions will dominate them. Then, the combined

pheromone intensity T is defined as follows [125]:

Ti,j = exp
(

−Ndom,τ
i,j

)

, (2.18)

where the index of the combined pheromone intensity Ti,j corresponds to the specific transi-

tion from the i-th node to the j-th one. The exponential function was chosen for separating

more effectively the combined pheromone intensity of different PFs.

2.5.4 Calculation of Probability and Ant Generation

Having defined the matrices of the intrinsic affinity η and the combined pheromone intensity

T , using Eq. (2.11) and Eqs. (2.12)-(2.18) respectively, the corresponding node-transition

probability matrix P is defined as follows [55]:

Pi,j =
(Ti,j)

α (ηi,j)
β

Nnodes∑

j=1
(Ti,j)

α (ηi,j)
β

, (2.19)

where α is the weight of the combined pheromone T and β is the weight of the intrinsic

affinity η. We note that the denominator of Eq. (2.19) acts as a normalization factor,

which is necessary for complying with the condition, where we have 0 ≤ Pi,j ≤ 1, ∀j. This
condition must be satisfied for each of the elements in the P matrix, so that each element

Pi,j represents the transition probability from the i-th node to the j-th.

Finally, the ant generation process is activated after the calculation of the transition

matrix P in Step 5 of Alg. 2.3. The process initially appends the SN to the route vector

Rg,n. Subsequently, the elements of the transition-probability matrix P are observed. The
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second node of the route will be chosen based on the node-transition probabilities located at

the first row of P . A pair of random numbers are cast, namely c1 and c2. The first random

number c1 controls whether the next node will be generated using the density function

imposed by the respective row of P or by random search, where all nodes’ selection obeys

a uniform distribution. To elaborate further, a random search probability Ps is defined; if

c1 > Ps, then the second node of the route vector Rg,n is cast using the rule:

Rg,n,2 = i ,
i−1∑

n=2
pn,2 < c2 ≤

i∑

n=2
pn,2 . (2.20)

Otherwise, the symbols are equiprobable, thus Eq. (2.20) is modified as:

Rg,n,2 = i ,
i−1∑

n=2

1
Nnodes−1 < c2 ≤

i∑

n=2

1
Nnodes−1

. (2.21)

If the DN is reached, the route is finalized and its UFs are calculated; otherwise, the

node generation process continues by casting a new node. However, the constraint of not

forming loops has to be satisfied as well. This is guaranteed by excluding the already visited

nodes from the generation set and by re-normalizing the probabilities of the remaining

nodes. For instance, for an 8-node network, if the temporary route vector Rg,n is (1, 2, 5),

then the eligible nodes for the fourth place would belong to the set {3, 4, 6, 7, 8}. The

re-normalization factor fnorm,i would be equal to:

fnorm,i =

Nnodes∑

j = 2

i ∈ E

pi,j, (2.22)

where E is the set containing all the eligible destinations, Eqs. (2.20, 2.21) will be trans-

formed into:

Rg,n,k =







i,
i−1∑

n = 2

n ∈ E

pj,n
fnorm,j

< c2 ≤
i∑

n = 2

n ∈ E

pj,n
fnorm,j

and c1 < Ps

i,
i−1∑

n = 2

n ∈ E

1
|E| < c2 ≤

i∑

n = 2

n ∈ E

1
|E| and c1 ≥ Ps

, (2.23)

where the operation |�| represents the number of elements in a set, Rg,n,k is the k-th element

of the route vector Rg,n and the index j corresponds to the previously generated node, i.e.

we have j = Rg,n,k−1. This process is repeated until the route is finalized by reaching

the DN. We note that the concept of random search probability has been conceived for the

quantum version of this algorithm by Wang et al. [59], where it is referred to as exploitation

probability Pe. It acts in the same way as the exchange operation of the mutation process
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of the NSGA-II and assists the algorithm in escaping from local extremities. The steps

followed to generate the routes are summarized in the flowchart of Fig. 2.8.

Start

End

Determine

Possible Nodes

No Loops
Constraint

Cast c1 ,c2

c1 < Ps
New Node is
the one?DN

Generate Node
Using the

Exported PDF

Generate Node
Assuming Equi-
probable Nodes

Append
Node to Path

Finali ez

Path

yes

no

true

false

Node Generation
using Eq. (2.23)

Figure 2.8: Flowchart of the process of creating routes at each MO-ACO generation.

Having elaborated on the routes’ generation process, let us now provide a tutorial

example for the sake of highlighting the specifics of this process. Hence, let us consider the

employment of the MO-ACO Alg. in a 5-node WMHN with its random search probability

set to Ps = 0.1. In this specific scenario we will assume that the nodes 1 and 5 are the

SN and DN nodes, respectively. Let us furthermore assume that the MO-ACO Alg. has

reached a state determined by the following transition matrix P:

P =


















0 0.093 0.150 0.135 0.623

0 0 0.680 0.295 0.025

0 0.237 0 0.396 0.367

0 0.403 0.204 0 0.393

0 0 0 0 0


















, (2.24)

where we note that the transition probabilities that are equal to zero are justified by the

fact that a route cannot revisit the current node or the SN. Additionally, there is no further

transition after visiting the DN. Therefore, the respective edges have been initialized to zero

in the intrinsic affinity matrix η.

The SN is initially appended in the route as portrayed in Fig. 2.8. Consequently, the

route x is initialized as follows:

x = {1}. (2.25)
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Subsequently, the possible transitions are determined, yielding:

E = [e1,2, e1,3, e1,4, e1,5], (2.26)

p = [0.093, 0.150, 0.135, 0.623], (2.27)

pcum = [0.093, 0.242, 0.377, 1], (2.28)

where p stands for the transition probability distribution of the next node and pcum cor-

responds to its CDF. Recall that E denotes the set of the available edges or links based

on the route x. At this stage the two random numbers, namely c1 and c2, are cast; let us

assume that we have c1 = 0.09 and c2 = 0.67. Since we have c1 < Ps the uniform transition

probability distribution will be assumed for the selection of the next node will be utilized.

Hence, Eqs. (2.27) and (2.28) will be modified as follows:

p′ = [0.25, 0.25, 0.25, 0.25], (2.29)

p′cum = [0.25, 0.50, 0.75, 1]. (2.30)

Therefore, the 3-rd edge of E will be chosen, since we have p′cum,2 < c2 < p′cum,3 in

Eq. (2.23). This edge corresponds to the 4-th node, based on Eq. (2.26), yielding the route:

x = {1→ 4}. (2.31)

Since the route has not reached the DN, namely the node associated with the index 5, a

new node has to be appended. Based on the nodes comprising x in Eq. (2.31), the possible

transitions are evaluated as follows:

E = [e4,2, e4,3, e4,5], (2.32)

p = [0.403, 0.204, 0.393], (2.33)

pcum = [0.403, 0.607, 1]. (2.34)

Subsequently, the two random numbers, namely c1 and c2, are cast once again; let us

now assume that we have c1 = 0.62 and c2 = 0.84. Since we have c1 > Ps, the PDF of

Eq. (2.33) will be utilized. Therefore, the 3-rd edge of E will be chosen, since we have

p′cum,2 < c2 < p′cum,3 in Eq. (2.23). This edge corresponds to the 5-th node, based on

Eq. (2.32), yielding the route:

x = {1→ 4→ 5}. (2.35)

Since the route has reached the DN, namely the node associated with the index 5, the route

is finalized and a new route will be generated as long as the maximum number ζ of ants

has not been reached.
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2.6 Benchmark Algorithms’ Complexities

In the previous sections we provided detailed discussions on all the sub-processes of the

NSGA-II and the MO-ACO algorithms. Let us now consider their computational complex-

ities in terms of the number of Cost Function Evaluations (CFEs), where a single CFE

represents a single Pareto dominance comparison. In this section, we will derive the as-

sociated computational complexities for the sake of using them as benchmarkers for the

proposed quantum-assisted algorithms presented in Chapters 4, 5 and 6.

As far as the NSGA-II is concerned, the computational complexity is solely contributed

by the Step 3 of Alg. 2.1 at each generation. To elaborate further, let us assume that

the NSGA-II iterates for NG generations having Npop individuals in its initial population;

the NDS process would involve N2
pop CFEs, since the number of routes which dominate

a specific route within Pg has to be calculated for every route of the Pg set. We note

that as the unit of calculation we use the number of dominance operator employments.

As for the calculation of the crowding distance of Step 4 in Alg. 2.1, assuming we have

K UFs, a sorting algorithm is used K times, once per UF. Assuming that the sorting

algorithm imposes a complexity, which is on the order of O(M log (M)) [124], the resultant

complexity quantified in terms of the number of dominance operator employments would

be O[M log (M/K)] = O[M log (M)], where M corresponds to the total number of routes

belonging to a specific PF. Nevertheless, since we are using the NSGA-II as a benchmarker

for our quantum-assisted algorithms, we may assume that the sorting algorithm is capable

of sorting the routes belonging to a specific PF imposing a complexity equal to M CFEs,

which corresponds to the lower bound of the sorting algorithms’ complexity. Therefore, at

each generation the algorithm would impose an extra Npop CFEs, hence resulting in a total

complexity of:

LNSGA−II = NG Npop(Npop + 1) > NGN
2
pop, (2.36)

across all the NG generations. Hence, we will use the lower bound for comparison with our

quantum-assisted algorithm, i.e. we have LNSGA−II = NGN
2
pop.

As far as the MO-ACO is concerned, a certain amount of computational complexity is

imposed by the intrinsic affinity calculation, by the pheromone update and by the evaluation

of the routes followed at each generation. At this stage, let us assume that the MO-

ACO is initialized to have Ξ generations and ζ ants per generation. The intrinsic affinity

initialization process of Step 1 in Alg.2.3 invokes the NDS process once per row, yielding a

total complexity of N3
nodes CFEs according to Eq. (2.11). Then, in the pheromone update

process, the calculation of the combined pheromone intensity T in Step 8 of Alg. 2.3 imposes

the same amount of complexity per generation, i.e. we have N3
nodes CFEs per generation.

Finally, the NDS process of Step 7 in Alg. 2.3 results in ζ2 CFEs per generation, yielding

a total complexity of:

LMO−ACO = Ξ
(
ζ2 +N3

nodes

)
+N3

nodes > Ξζ2, (2.37)

across all Ξ generations. Hence, we will use the lower bound for comparison with our
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quantum-assisted algorithm, i.e. we have LMO−ACO = Ξζ2.

For the sake of simplicity, we will set the number of NSGA-II individuals evaluated by

the end of each generation equal to the number of generations, i.e. we rely on NG = Npop

and Ξ = ζ. Assuming now that the maximum complexity of the NDQO algorithm is

max
{
Ltot
CFE

}
, in order to match the complexities of the quantum-assisted algorithms, the

MO-ACO and the NSGA-II will rely on:

NG = Ξ = 3

√

max
{
Ltot
CFE

}
. (2.38)

Finally, the input parameters of the NSGA-II and the ACO used in our comparative case

study are shown in Table 2.2.

Table 2.2: Input Parameters of the Benchmarking Algorithms

NSGA-II [29, 124] MO-ACO [55,52]

Number of Generations, NG
3
√

max
{

Ltot
CFE

}

Number of Generations, Ξ 3
√

max
{

Ltot
CFE

}

Initial Population Npop
3
√

max
{

Ltot
CFE

}

Number of Ants, ζ 3
√

max
{

Ltot
CFE

}

Mutation Probability, Pm 0.5 Pheromone weighting, α 1.2

Crossover Probability, Pc 0.9 Intrinsic Affinity weighting, β 0.6

2.7 Chapter Summary

In this chapter, we have discussed all the necessary assumptions needed in order to de-

fine the optimization problem, namely the network topology and the concept of Pareto-

optimality. In the next chapter, the family of quantum heuristic algorithms will be discussed

in order to complete the system’s portrayal. Additionally, we have provided detailed discus-

sions on the classical evolutionary algorithms, namely on the NSGA-II and on the MO-ACO

algorithm. In the next chapters, we will use them as benchmarks for our quantum-assisted

algorithms. Furthermore, we have derived the lower bounds of the complexity imposed by

the aforementioned algorithms. In particular, the resultant lower bounds are:

LNSGA−II = NG N2
pop,

LMO−ACO = Ξ ζ2,

where NG and Ξ correspond to the number of the generations in the NSGA-II and MO-

ACO algorithm respectively, while Npop and ζ denote initial population of the NSGA-II

and the number of ants in the MO-ACO algorithm, respectively. In the next chapters,

we will rely on the above complexities for benchmarking the quantum-assisted algorithms

against the respective classical solutions by matching the computational complexities of

all the algorithms involved. Finally, in the following chapter we will present some QSAs,

which constitute the fundamental sub-processes of our proposed algorithms.



Chapter 3

Quantum-Based Heuristics

3.1 Introduction

In this chapter we will lay the foundations, based on which our quantum-assisted algorithms

will operate. We commence with a brief introduction to Quantum Computing Postulates in

Section 3.2, which form the framework for the operation of quantum-mechanical systems.

As we will demonstrate in Section 3.2, the beneficial complexity reduction offered by quan-

tum algorithms relies upon the Quantum Parallelism (QP), which is a result of the specific

property of quantum bits (qubits), namely that they can be in the superposition of their

one and zero states. This is in stark contrast to the classical bits, which can only be in a

either one or zero. This specific property is exploited by the quantum search algorithms

conceived for finding certain entries in a database. Naturally, we have to transform our

routing problem, where the database is comprised by all the legitimate routes of Section 2.2,

into a binary combinatorial search problem for the sake of facilitating the employment of

Quantum Search Algorithms (QSAs). For this reason, we will map every route to a specific

binary index of the database using Lehmer Encoding/Decoding [137], which offers a one-to-

one mapping with the aid of factorial decomposition. The specifics of this transformation

are described in Appendix A.

Subsequently, we will elaborate on three popular QSAs, which have to be carefully

ameliorated for employment in our multi-objective routing problem. More specifically, in

Section 3.3 we will present Grover’s Quantum Search Algorithm (QSA) [79]. This specific

QSA is of utmost importance, since it features the so-called Grover operator G, which is

the cornerstone for a broad family of QSAs referred to as Quantum Amplitude Amplifica-

tion Algorithms (QAAA). However, Grover’s QSA is readily applicable in specific search

problems, where both the value sought and the number of solutions are known beforehand.

Given its importance, we will provide a low-paced 4-node WMHN tutorial example in Sec-

tion 3.3.3 for the sake of outlining its merits. Following Grover’s QSA, we will detail the

so-called Boyer-Brassard-Høyer-Tapp QSA (BBHT-QSA) [80] and the Durr-Høyer Algo-

rithm (DHA) [81] in Sections 3.4 and 3.5, respectively. Both these algorithms employ the

41
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Grover operator G and we will investigate them in detail in this chapter, since they will be

used as sub-processes in our novel QSAs. Let us now proceed by presenting the quantum

computing postulates.

3.2 Quantum Computing Postulates

In this section we will provide detailed discussions regarding the four Quantum Mechanics

postulates [62]. More specifically, the first postulate defines the state of a quantum system;

the second describes the system’s evolution over time; the third postulate formulates the

process of observing or measuring its state; the fourth postulate describes the process of

forming a composite quantum system from. individual qubits.

(a) State Space: the first postulate defines the state of a quantum system.

(b) Time Evolution: the second describes the system’s evolution over time.

(c) Measurement: the third postulate formulates the process of observing or measuring

its state.

(d) Composite Systems: the fourth postulate describes the process of forming a com-

posite quantum system from individual qubits.

Note that we will define the state of a qubit in the first postulate discussions Let us now

proceed by analyzing the specifics of each postulate.

3.2.1 State Space

Based on the first postulate [67], a quantum system’s state is formulated as follows:

|φ〉 =
M−1∑

i=0
ϕi |φi〉 = (ϕ0, ϕ1, ..., ϕM−1)

T , (3.1)

where the complex valued ϕi represents the amplitude of the basis state |φi〉 and there

are M = 2m basis states in total. The symbol |·〉 represents a quantum-domain basis

state, which is simply referred to as “ket”. The squared modulus |ϕi|2 of the amplitude

corresponds to the probability of the quantum system residing in the state |φi〉, namely the

probability of observing the state |φi〉. Naturally, the sum of theses probabilities should be

equal to unity, as encapsulated in:

M−1∑

i=0

|ϕi|2 = 1. (3.2)

Similar to the classical bit, the quantum systems’ smallest unit of information is the qubit

[62]. Explicitly, the qubit has two basis states, namely the state |φ0〉 ≡ |0〉 and the state
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|φ1〉 ≡ |1〉. Therefore, Eq. (3.1) is reduced to [67]:

|φ〉 = ϕ0 |0〉+ ϕ1 |1〉 , (3.3)

where the same normalization constraint has to be satisfied, i.e. we have |ϕ0|2 + |ϕ1|2.
Moreover, for the complex conjugate transpose of |φ〉 the notation used is 〈φ|, which is

equal to:

〈φ| = |φ〉† = (ϕ∗
0, ϕ

∗
1, ..., ϕ

∗
M−1)

. (3.4)

Since the amplitudes assume complex values, the system state’s argument would lie within

the M -dimensional Hilbert space. Furthermore, a beneficial property of quantum systems

observed from Eq. (3.1) is that given a quantum register (QR) storing m qubits, the QR

may assume allM states simultaneously, which is often termed as being in the superposition

of basis states. It is exactly this property, which the quantum algorithms exploit for the

sake of carrying out operations in parallel. Finally, note that we will elaborate on the

process of forming QRs out of the individual qubits in Section 3.2.4.

3.2.2 Time Evolution

Based on the second postulate [62], the evolution of a physical system’s state versus time

is characterized by a set of unitary transformations, which is formulated as follows:

|ψ〉 = U |φ〉 , (3.5)

where U is a unitary matrix. In other words, we have U−1 = U †, where U † is the complex

conjugate transpose of U . Equation (3.5) stems from the Schrödinger equation [62]. Uni-

tary operators are represented by linear matrices and the assumption of linearity assists in

preventing the occurrence of some “strange” phenomena such as the time travel [62] stem-

ming from non-linearities. Naturally, this property allows us to break down the operations

encapsulated in Eq. (3.5) into simpler ones using quantum gates [62], hence assisting us

in reducing the hardware complexity of quantum algorithms. In fact, there is a suite of

components having a unitary response. Some of the most common single-qubit quantum

gates, which we will utilize in our quantum-assisted algorithms in the next chapters are

the Hadamard gate H and the Rotation gate Rθ. Explicitly, their single-qubit transfer

matrices are [62]:

H =
1√
2






1 1

1 −1




 , Rθ =






cos θ − sin θ

sin θ cos θ




 . (3.6)

The Hadamard gate is primarily used for mapping the ground state |0〉 to the equal su-

perposition of the states |0〉 and |1〉, while the Rotation gate rotates the qubit state by

an angle of θ within the area defined by the eigenstates |0〉 and |1〉. These operations are
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formally expressed as follows:

|0〉 H−→ 1√
2
(|0〉+ |1〉) ≡ |+〉 , (3.7)

|1〉 H−→ 1√
2
(|0〉 − |1〉) ≡ |−〉 , (3.8)

|0〉 Rθ−→ cos θ |0〉 − sin θ |1〉 . (3.9)

Apart from these simple operations, it is possible to carry out controlled operations. A

commonly used gate belonging to this family of components is the Controlled-NOT (CNOT)

gate [67]. More specifically, this specific gate has two input qubits or QRs and it performs

the Exclusive OR (XOR) operation of its two inputs storing the output in the second qubit

or QR. Thus, it is equivalent to the classic XOR gate and its function is formulated as

follows:

|c〉 |t〉CNOT−→ |c〉 |c⊕ t〉 , (3.10)

where the state |c〉 is often referred to as the control register, while |t〉 is the target register.
In fact, the CNOT gate represents a special case of a family of quantum gates, which are

commonly known unitary operators Uf [62]. They are capable of implementing a binary

function f : {0, 1, . . . , N − 1} → {0, 1} in the quantum domain. Their quantum circuit

is shown in Fig. 3.1; due to the superposition of states of the QR |x〉1 it is possible to

carry out the function’s calculations in parallel, which is the main advantage of quantum

computing. Their operation may be formulated as follows:

|x〉1 |0〉2
Uf−→|x〉1 |0⊕ f(x)〉2 ≡ |x〉1 |f(x)〉2 . (3.11)

Note that the subscripts of the “kets” are used for distinguishing the two inputs of the QRs.

These unitary operators are the main component for the construction of Quantum Oracle

gates [62]. Therefore, the QR |x〉1 is often referred to as a Quantum Index Register (QIR),

since it points to the indices of the input states, while the second input is commonly known

as the Oracle Workspace (OW), since all the Oracle operations are carried out in this

specific QR. The unitary operators Uf play an integral role both in QSAs and in quantum

optimization algorithms, since they are capable of outputting a state constituting by the

superposition of all the possible outputs of a function f . More explicitly, its output state is

in the superposition of all the possible inputs, as it becomes plausible based on Eq. (3.11).

Therefore, these operators constitute the fundamental manipulations of QP and, which

result in a search complexity reduction.

3.2.3 Measurement Operation

Based on the third postulate [67], the quantum measurement or observation operation

is described by a set of measurement operators {Mm}M−1
m=0 , which are applied to the state

space, when the system is subjected to a measurement or observation. The index m indi-
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Figure 3.1: Quantum circuit implementing a specific function f(x); the subscripts of the “kets”
are used in order to distinguish the two input QRs and the jagged line represents the
entanglement between the two output QRs. The input QR |x〉1 can be either at one
of the N specific basis states, i.e. we have |x〉1 ∈ {0, 1}⊗ log2 N , or at the superposition

of the N basis states, i.e. we have |x〉1 = 1√
N

N−1∑

i=0

|i〉1; in the latter case, the operation

of Uf is encapsulated by Eq. (3.23).

cates that the measurement’s outcome will be equal to m and the probability p(m) of this

outcome is given upon assuming a general initial state of |ψ〉 as follows:

p(m) = 〈ψ|M†
mMm |ψ〉 , (3.12)

Explicitly, the post-measurement state of the related QR or qubit becomes [62]:

∣
∣ψ′〉 =

Mm |ψ〉
√

p(m)
. (3.13)

In the special case, where there are two basis states, namelyM0 = |0〉 〈0| andM1 = |1〉 〈1|
and an arbitrary state of the qubit |ψ〉 = a |0〉+ b |1〉, we may arrive at:

p(0) = |ψ〉M†
0M0 〈ψ| = |a|2 , (3.14)

p(1) = |ψ〉M†
1M1 〈ψ| = |b|2 , (3.15)

where the post-measurement state will respectively become equal to:

∣
∣ψ′〉

m=0
=
M0 |ψ〉
|a| =

a |0〉
|a| , (3.16)

∣
∣ψ′〉

m=1
=
M1 |ψ〉
|b| =

b |1〉
|b| . (3.17)

Observe from Eqs. (3.16) and (3.17) that the qubit collapses into a classical bit state after

the measurement operation on the computational basis of {|0〉 , |1〉}. Naturally, the same

phenomenon occurs, when measuring a QR storing multiple qubits, based on Eq. (3.13).

Consequently, the measurement operation has a deleterious effect on the QP and thus

thwarts to the quantum systems’ capability of offering complexity reduction. Hence, we

want to circumvent the invocation of the measurement or observation operation by so-

phisticated manipulation of the superimposed state of the QR. Explicitly, this specific

manipulation is carried out by the Grover operator G [79], as we will demonstrate in Sec-

tion 3.3.
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3.2.4 Composite Systems

The fourth postulate of quantum mechanics describes the state of a length K QR, which

is composed by individual QRs of length 1 or simply qubits. The resultant state can be

expressed as the tensor product of the individual register states. For instance, in case of a

QR comprised by 2 qubits |ψ1〉 and |ψ2〉, the resultant state will become [62]:

|ψ〉 = |ψ1〉1⊗ |ψ2〉2 (3.18)

= (α |0〉1 + β |1〉1)⊗ (γ |0〉2 + δ |1〉2) (3.19)

= αγ
︸︷︷︸
a00

|00〉+ αδ
︸︷︷︸
a01

|01〉 + βγ
︸︷︷︸
a10

|10〉+ βδ
︸︷︷︸
a11

|11〉 , (3.20)

where the operator ⊗ corresponds to the tensor product. Naturally, the modulus squared

of the individual amplitudes aij have to comply with the following constraint:

∑

∀i,j
|aij|2 = 1, (3.21)

for the sake of ensuring that the probability of observing the states |ij〉 sums to unity.

A notable consequence constituted by the above postulates is the “spooky” phenomenon

of quantum entaglement [67], which expresses a linkage between the single qubits of a

multiple-qubit state, when the multiple-qubit state is an entangled one. This linkage occurs

even when these single qubits are delivered to two arbitrary remote locations. Explicitly,

a composite state is referred to as entangled if it is not possible to describe the composite

state by the individual qubits, i.e. if it is not possible for Eq. (3.20) to be written in the

from of Eq. (3.18). This specific linkage among the states of the composite system has a

direct impact on the measurement operation. To elaborate further, if we assume that the

QIR of the Uf operator portrayed in Fig. 3.1 is in the superposition of all the possible N

states, i.e. we have:

|x〉1 =
∑

i

|i〉/
√
N, (3.22)

then the output of the operator Uf , considering both the QIR and the OW, will be in the

superposition of composite states. Hence, we have:

|x〉1 |f(x)〉2 =
1√
N

N−1∑

i=0

|i〉1 |f(i)〉2. (3.23)

Explicitly, Eq. (3.23) suggests that if a partial measurement [87] is carried out concerning

the QIR, then the state of the OW will also collapse to the state |f(i)〉2, assuming the

observable state |i〉1 in the QIR. A direct consequence of the quantum entanglement is the

so-called no-cloning theorem [62], which dictates that it is physically infeasible to clone the

state of a quantum system. Therefore, it imposes the constraint that only qubits having

known and/or orthogonal states may be copied. This theorem provides security in quantum

communications and it is the main facilitator behind perfect-secrecy offered by Quantum
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Key Distribution (QKD) [138,139,140,141].

3.3 Grover’s Quantum Search Algorithm

This specific QSA has been proposed by Grover [79] in the mid ’90s. It was initially

developed for finding a single solution stored in a database having uncorrelated entries,

such as a telephone book. It has been shown to be optimal by Zalka [88] in terms of

the number of database queries by matching the lower bound of database queries [142],

while guaranteeing ∼100% search success. Its optimality has been investigated analytically

by Boyer et al. in [80], where they have succeeded in deriving the upper bound of the

number of the so-called Grover iterations [142] needed for maximizing the heuristic success

probability. Moreover, they have extended its employment to the case, where multiple

solutions exist; however, in both cases the actual number t of solutions has to be known

beforehand for the sake of determining the required number of Grover iterations.

Let us now proceed with a more analytic description of Grover;s QSA. As mentioned in

the previous paragraph, Grover’s QSA relies upon carrying out multiple Grover iterations.

Explicitly, this specific iteration is equivalent to a single application of the so-called Grover

Operator G, the transfer which has a transfer matrix formulated as follows [79]:

G = HP0H
︸ ︷︷ ︸

D

· O, (3.24)

where H is the Hadamard Gate defined in Eqs. (3.7) and (3.8), while P0 represents a

quantum gate which flips the sign of all the states apart from the zero state, i.e. we have

|x〉 P0→−|x〉 if |x〉 6= |0〉. Additionally, the operator O is the quantum oracle gate, which is

capable of recognizing and “marking” the desired solutions, which are the specific solutions

that satisfy the generic constraint f(x) = δ with δ being the value sought in the search

problem to be solved. Finally, the operator D = HP0H is commonly referred to as the

Diffusion Matrix [79], which employment performs an inversion on the the state amplitudes

about average [79]. Note that the specifics of this operator will be discussed in Section 3.3.1.

Let us now proceed by analyzing the specifics of the quantum oracle gate O.

Figure 3.2: Quantum circuit of a quantum oracle O; three quantum gates are used: two Hadamard
gates H and a unitary quantum oracle Uf . This quantum circuit is also known as
phase kick-back [112] as it succeeds in altering the phase by π of the states for which
we have f(x, δ) = 1 or equivalently f(x) = δ. Note that the value δ is considered to
be predefined and, hence, it is not portrayed in the figure.

As far as the quantum oracle gate O is concerned, it utilizes the unitary operator Uf ,
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which is similar but not identical to that portrayed in Fig. 3.1. This operator implements

the binary function f(x, δ), relying on an arbitrary function f(x) : {0, . . . , N−1} → {0, 1}n,
where n corresponds to the representation accuracy of f(x) in bits, and compares the value

f(x) corresponding to the database index x against the value δ being sought, which has

the same representation accuracy in bits. The entire operation can be formulated using

the binary function f(x, δ), which has the input constituted by a particular index x of the

database and outputs 1, as and when the examined index stores the corresponding value

f(x), which is equal to the value δ being sought; otherwise, it returns 0. This can be

formally expressed as follows:

f(x, δ) =







1 f(x) = δ,

0 otherwise.

(3.25)

The quantum circuit of the oracle gate O is shown in Figure 3.2, where we can observe that

apart from the unitary operator Uf implementing the function f(x, δ) of Eq. (3.25), two

Hadamard gates H are used, one at the input and one at the output of the Uf operator’s

OW. The first Hadamard gate H acts only on the second QR, the state of which is set to

|1〉2 and it will map this state to the state |−〉2 = (|0〉2 − |1〉2) /
√
2. Since no controlled op-

erations take place, no entanglement relationship exists between the two QR cells. Viewing

the system as the composite of having the initial state |x〉1 |1〉2, the outcome of applying

the Hadamard gate H becomes:

|x〉1 |1〉2
H−→|x〉1 |−〉2 . (3.26)

The system’s QRs are then fed into the unitary operator Uf . Since Uf involves a controlled

operation, which is a modulo-2 addition (⊕) of the outcome of the binary function f(x) to

the state of the second register, the two QRs will become entangled and using Eq. (3.11)

the following system state is arrived at:

|x〉1 |−〉2 =
1√
2
|x〉1 (|0〉2 − |1〉2)

Uf−→ 1√
2
|x〉1 (|0⊕ f(x)〉2 − |1⊕ f(x)〉2) . (3.27)

At this point, let us examine the resultant state of the second QR for the two possible

values that f(x, δ) may assume. If we have f(x) = δ, then we get f(x, δ) = 1 and the state

of the second register becomes:

|− ⊕ f(x, δ)〉2 |f(x,δ)=1 =
1√
2
(|0⊕ 1〉2 − |1⊕ 1〉2) =

1√
2
(|1〉2 − |0〉2) = − |−〉2 . (3.28)

Otherwise, if we have f(x) 6= δ, then we get f(x) = 0 and the state of the second QR

becomes:

|− ⊕ f(x, δ)〉2 |f(x,δ)=0 =
1√
2
(|0⊕ 0〉2 − |1⊕ 0〉2) =

1√
2
(|0〉2 − |1〉2) = |−〉2 . (3.29)

Hence, Eqs. (3.28) and (3.28) can be combined into a single one in terms of their corre-
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sponding value f(x):

|− ⊕ f(x, δ)〉2 = (−1)f(x,δ) |−〉2 , (3.30)

where it is clear that the operator Uf modifies the phase of the second QR by π, if f(x) = δ.

Again, this kind of quantum circuits are commonly referred to in parlance as Phase Kick-

back quantum circuits [112]. Due to the entanglement of the two QRs, it is legitimate to

consider that the phase of the first QR is indeed altered, while the second one remains

intact. This is formally stated as:

|x〉1 [(−1)f(x,δ) |−〉2] ≡ [(−1)f(x,δ) |x〉1] |−〉2 . (3.31)

Hence, the system state at the output of Uf may be derived by substituting Eqs (3.30) and

(3.31) into Eq. (3.27), yielding:

|x〉1 |−〉2
Uf−→[(−1)f(x,δ) |x〉1] |−〉2 . (3.32)

At the output oracle Uf , a second Hadamard gate H is used at the second QR in order

to map its state from |−〉2 to |1〉2; however, since the inverse of Uf , namely U †
f , has not

been applied, the entanglement relationship between the two QRs will still hold and thus

the phase flip imposed on the second QR may still be regarded as if it was applied to the

first one. Hence, the oracle gate O would “mark” the intended states by flipping their

phase by π and this operation may be formulated as [79]:

|x〉1 |1〉2
O−→[(−1)f(x,δ) |x〉1] |1〉2 . (3.33)

Figure 3.3: Quantum circuit of Grover’s QSA; the Grover Operator G is applied to the initial
state |ψ〉 L times resulting in the final state |ψf 〉 which is then measured resulting, in
turn, in the exported classic state j.

Having discussed the operation of the quantum oracle O, let us now examine Grover’s

QSA operation a little further. Its quantum circuit is shown in Fig. 3.3. First, the system

state |ψ〉 is initialized to the superposition of all the possible states; this is arranged by using

a QR in the pure state |0〉⊗n
1 , where N = 2n is the total number of the states considered

and an appropriate-size Hadamard gate H⊗n. Therefore, the initial state formation of |ψ〉
is represented as:
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|0〉⊗n
1

H⊗n

−→ |+〉⊗n
1 ≡ |ψ〉 , (3.34)

and the initial state |ψ〉 becomes equal to:

|ψ〉 = |+〉⊗n
1 =

1√
N

N−1∑

i=0

|i〉1. (3.35)

Then, the Grover Operator G is applied L times to the initial state |ψ〉, which yield the

final state |ψf 〉 formulated as:

|ψf 〉 = GL |ψ〉 =
N−1∑

i=0

ψf,i |i〉1, (3.36)

where ψf,i denotes the amplitude of the state |i〉1 and its respective probability of occur-

rence upon measurement would be |ψf,i|2. We note that the number L of G applications

will be examined in Section 3.3.2. Moreover, the steps of the QSA are summarized in

Alg. 3.1. Finally, the final state is measured using a Quantum Detector (QD) [62] and

the classic measurement outcome j is exported, which obeys the the Probability Density

Function (PDF) of:

P (j = i) = |ψf,i|2 , with
N−1∑

i=0

|ψf,i|2 = 1. (3.37)

Since the quantum oracle O calls Uf only once, the complexity of this operator quantified

in terms of the Uf queries would be equal to 1 [142]. Therefore, the complexity of QSA is

quantified in terms of the number L of G applications, since this operation would call the

oracle gate O L times. We note that the complexity of the observation or measurement

operation considered is assumed to be negligible.

Algorithm 3.1 Grover’s Quantum Search Algorithm

1: Define the Grover Operator G using (3.24).
2: Calculate the number of Grover Iterations L = ⌊π4

√

N/t⌋.
3: Apply the G operator L times starting from the initial state |ψ〉 of Eq. (3.36), resulting

in the final state |ψf 〉 = GL |ψ〉.
4: Observe |ψf 〉 in the QD and obtain |j〉.
5: Set xs ← j, output xs and exit.

3.3.1 Diffusion Matrix

In this section, we will derive an analytic formula for the elements of the Diffusion Matrix.

Assuming that the list contains N = 2n elements the Hadamard Gate takes the form

H⊗n, where H is the transfer matrix defined in Eq. (3.6) and the operation ⊗ denotes the

Kronecker Tensor Product [62]. Therefore, each element Hij of the H⊗n matrix would be

equal to [79]:

Hij =
1√
2n

(−1)i·j , (3.38)



3.3.1. Diffusion Matrix 51

where i and j denote the binary representation of the decimal numbers i and j in binary

strings of length equal to n and the operation i · j denotes the bitwise dot product of the

two binary strings. As far as the quantum oracle P0 is concerned, it will flip phases of all

the other states by π of all the states apart from the zero state |0〉⊗n, leading to a diagonal

transfer matrix P0 equal to [79]:

P0,ij =







0 i 6= j,

1 i = j = 0,

−1 i = j 6= 0.

(3.39)

Furthermore, the operator P0 can be decomposed into two matrices [79]:

P0 = −IN +R = 2 |0〉⊗n 〈0|⊗n

︸ ︷︷ ︸

R

−IN , (3.40)

where IN is the (N ×N) identity matrix and R = 2 |0〉⊗n 〈0|⊗n is defined as [79]:

Rij =







2 i = j = 0,

0 otherwise.

(3.41)

Therefore, the Diffusion Matrix D is decomposed into two separate matrices, namely D1

and D2, as follows [79]:

D = H(R + IN )H = HRH
︸ ︷︷ ︸

D1

−HINH
︸ ︷︷ ︸

D2

. (3.42)

Explicitly, the matrix D2 is equal to:

D2 = HINH = HH = HHT = IN . (3.43)

As for the matrix D1, each of its elements D1,ij is equal to:

D1,ij =

2n−1∑

k=0

2n−1∑

l=0

HilRlkHkj. (3.44)

However, since R has only a single non-zero element, which is the first element of its

diagonal, Eq. (3.44) is reduced to:

D1,ij = Hi0R00H0j = 2Hi0H0j =
2

2n
(−1)i·0+0·j =

2

N
. (3.45)

Finally, it is possible to derive each element Dij of the Diffusion Matrix applying Eqs. (3.45)
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and (3.43) into Eq. (3.42) [79]:

Dij =







−1 + 2
N i = j,

2
N otherwise.

(3.46)

Let us now define an (N × N)-element matrix P , whose elements are all equal to 1/N .

Naturally, this matrix performs an averaging operation if applied to a vector ν. To elaborate

further, the product a = Pν is a vector, the elements of which are all equal to the average

of the elements of ν. Using the matrix P , D is expressed as follows:

D = −IN + 2P. (3.47)

Finally, should D be applied to a vector ν, the outcome k = Dν is equal to [79]:

k = Dν = −ν + 2a = [a+ (a− ν)]. (3.48)

Explicitly, Eq. (3.48) indicates that the operator D performs an inversion about the average

value [79]. Assuming that the input ν of D is initially in the equal superposition of all the

possible N states and that the quantum oracle O “marks” the specific states satisfying the

condition f(x) = δ, the vector ν becomes:

νi =







1/
√
N f(i) 6= δ,

−1/
√
N f(i) = δ.

(3.49)

Based on Eq. (3.49), each element of the averaging vector ai becomes equal to:

ai =
N − 2

N
√
N
, ∀i ∈ {0, 1, ..., N − 1}, (3.50)

while after the application of D, each element of k becomes:

ki =







N−4
N

1√
N

f(i) 6= δ,

3N−4
N

1√
N

f(i) = δ.

(3.51)

Consequently, the amplitude of the marked elements will be amplified by a factor (3N −
4)/N , while the amplitudes of the other elements would be attenuated by a factor of

(N − 4)/N , since we have:

3N − 4

N
> 1 >

N − 4

N
, ∀N > 2. (3.52)

Let us now consider two tutorial examples. We assume that the total number of solutions

for the first one is N = 4, while for the second we have N = 8. Additionally, we have

f(x) = x for the operator Uf and the intended solution is set to δ = 1. Note that we have



3.3.1. Diffusion Matrix 53

expressed δ in the decimal basis. Applying Eqs. (3.49)-(3.51) in our exemplified cases we

get:

ν1,i =







1/2 i 6= 1,

−1/2 i = 1.

, a1,i =
1

4
, k1,i =







0 i 6= 1,

1 i = 1.

(3.53)

ν2,i =







1
2
√
2

i 6= 1,

− 1
2
√
2

i = 1.

, a2,i =
3

8
√
2
, k2,i =







1
4
√
2

i 6= 1,

5
4
√
2

i = 1.

(3.54)
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Figure 3.4: Amplitudes and probabilities of the states for one Grover Iteration for the cases of
N = 4 (a,b) and N = 8 (c,d); the case study involves the evolution of the amplitudes
and the respective probabilities of the states before and after the application of the
quantum oracle O (a,c) and before and after the application of the Diffusion Matrix
D (b,d).
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The theoretical results extracted from Eqs. (3.53) and (3.54) corresponding to N1 = 4

and to N2 = 8, respectively, are confirmed by the simulation results of the Fig. 3.4. It

may be readily observed from Figs. 3.4(a,c) that the application of the oracle gate O only

alters the phase of the intended state |1〉, but not the respective probabilities of the states.

The latter is carried out by the application of the Diffusion Matrix D, as it is portrayed

in Figs. 3.4(b,d), where the amplitude and, consequently, the probability of |1〉 is also

amplified, whereas the amplitudes and the respective probabilities of the other states are

reduced, as expected. Last but not least, comparing the outcome of a single application of

the Grover Operator G for the two cases, it seems that a single application is sufficient for

N1 = 4 for detecting the state |1〉 with a probability equal to unity; however, for N2 = 8

a single application of G results in detecting |1〉 with a reduced probability around 0.78.

Bearing this in mind, in the next subsection we will provide some discussions on the number

of G applications that maximize the probability of successfully detecting the valid solutions.

3.3.2 Maximizing of the Probabilty of Successful Detection

In the previous section the effect of a single Grover Iteration in the quantum system state

has been discussed and the impact of the number of G applications has been considered

with the aid of examples. In fact, this issue is of utter importance, since it is directly

related to the computational complexity of Grover’s QSA. At this point, we remind that a

single application of G involves a single CFE, which is quantified in terms of the number

of Uf activations. The tight bounds on Grover’s QSA complexity been derived by Boyer

et al. [80], while aiming for maximizing its success probability. They have also extended

the search problem to the case where multiple valid solutions exist in a database. Hence,

in this chapter we will utilize their methodology so as to derive the optimal number of G
applications, given the size of the database N and the number of valid solutions t.

Let us now define the set S containing all the possible solutions, the set S1 containing

the valid solutions and S0 as the set containing the invalid solutions, i.e. solutions where

we have f(x) 6= δ. Naturally, the sets S1 and S0 are mutually exclusive, i.e. we have

S1 ∩ S0 = ∅, while their union is equal to set S. In other words, we have S1 ∪ S0 = S.

Hence, the binary oracle function f(x, δ) of Eq. (3.25) can be modified in order to describe

the existence of multiple valid solutions as follows:

f(x, δ) =







1 x ∈ S1,

0 otherwise.

(3.55)

Let us define furthermore two eigenvectors |Ψ1〉 and |Ψ1〉; the first one consists of the

convex sum of the valid solution states, while the latter exclusively contains the invalid
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states. The states of the aforementioned eigenvectors are formulated as follows:

|Ψ0〉 =
1√
N − t

∑

x∈S0

|x〉, (3.56)

|Ψ1〉 =
1√
t

∑

x∈S1

|x〉, (3.57)

where again, t corresponds to the number of valid solutions. Therefore, assuming a pair of

real numbers kj and lj satisfying the condition tk
2
j+(N−t)l2j = 1 and using the eigenvectors

of Eqs. (3.56) and (3.57) the system state after j applications of G can be formulated as

follows [80]:

|ψj〉 ≡ Gj |ψ〉 =
√
tkj |Ψ1〉+

√
N − tlj |Ψ0〉 . (3.58)

Naturally, the amplitude kj corresponds to the amplitude of a valid solution, while lj

corresponds to the amplitude of an invalid solution. During the initialization of Grover’s

QSA , in other words for j = 0, the state ψ is initialized to the superposition of all the

available states yielding:

k0 = l0 =
1√
N
. (3.59)

After the application of the oracle O the phase of the states of the eigenvector |Ψ1〉 is
flipped by π; hence, the averaging vector a [80] right before applying the diffusion matrix

D becomes equal to:

ai = −
t

N
kj +

N − t
N

lj. (3.60)

Hence, the amplitudes kj+1 and lj+1 for the (j+1)-th iteration are derived using Eq. (3.47)

as follows [80]:

kj+1 = 2ai − (−kj) =
N − 2t

N
kj +

2(N − t)
N

lj, (3.61)

lj+1 = 2ai − lj = −
2t

N
kj +

N − 2t

N
lj. (3.62)

Therefore, a recursive formula has been derived for the calculation of the amplitudes

of both the valid and invalid solutions. At this point, let us define the angle θ as the angle

that the argument of the Grover’s QSA initial state |ψ0〉 defined in Eq. (3.36) forms with

the eigenvector |Ψ0〉 in the |Ψ0〉 |Ψ1〉 plane. Consequently, for the sake of quantifying this

specific angle, the inner product of the vectors |ψ0〉 and |Ψ1〉 is utilized, yielding:

sin θ = 〈ψ0|Ψ1〉 =
√

t

N
. (3.63)

Using standard algebraic techniques and Eqs. (3.61), (3.62) and (3.63), it is possible to

derive closed form expressions for the amplitudes, hence circumventing the employment of
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recursive formulae [80]:

kj = 1√
t
sin ((2j + 1)θ)

lj = 1√
N−t

cos ((2j + 1)θ)







, (3.64)

while the system state as a function of the number j of G applications is derived by

substituting Eq. (3.64) into Eq. (3.58) as follows:

|ψj〉 ≡ Gj |ψ〉 = sin [(2j + 1)θ] |Ψ1〉+ cos [(2j + 1)θ] |Ψ0〉 . (3.65)

Figure 3.5: Geometric representation of Grover applications; the oracle gate O results in mirroring
the system argument about the |Ψ0〉 axis, while a single application of G would shift
the phase of the system argument by 2θ counter-clockwise.

It becomes clear from Eq. (3.65) that a single G application results in shifting the system

state’s phase by 2θ in the Ψ0Ψ1 plane. The geometric representation of the QSA is shown

in Fig. 3.5, where we can observe that the oracle gate O mirrors the system state about

the axis |Ψ0〉, whereas the diffusion matrix D mirrors the outcome of O about the axis of

the initial state |ψ〉.

Having provided a closed-form relationship between the state amplitudes and the num-

ber of G applications, we may now proceed by evaluating the specific number Lopt of G
applications, which maximizes the probability of successfully detecting the correct solu-

tions during the observation of measurement operation. Based on Eq. (3.65) it becomes

clear that the detection error probability is equal to the probability of detecting the eigen-

vector |Ψ0〉. Consequently, the particular number m̃ of G applications minimizing this

specific unsuccessful search probability occurs is given by [80]:

cos2[(2m̃+ 1)θ] = 0, (3.66)
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which in turn yields:

m̃ =
π − 2θ

4θ
. (3.67)

However, this number m̃ has to be an integer. Let us now define m = ⌊ π4θ ⌋, where
|m− m̃| ≤ 1/2. Then, following the methodology proposed in [80] we get:

|(2m+ 1)− (2m̃+ 1)| ≤ 1,

|(2m + 1)θ − (2m̃+ 1)θ| ≤ θ.

However, based on the the definition of m̃ we have (2m̃+1)θ = π/2, thus yielding [80]:

|(2m+ 1)θ − π/2| ≤ θ,

| sin ((2m+ 1)θ − π/2)| ≤ | sin θ|,

cos2 [(2m + 1)θ] ≤ sin2 θ = t/N ≅ 0, when t≪ N. (3.68)

Therefore, the probability of detecting an invalid solution is minimized for L = m.

Furthermore, by exploiting θ ≥ sin θ, the optimal number Lopt of G applications is given

by [80]:

Lopt = m =
⌊ π

4θ

⌋

≤ π

4θ
≤ π

4

√

N

t
, (3.69)

Lopt =

⌊

π

4

√

N

t

⌋

. (3.70)

Eq. (3.70) indicates that Grover’s QSA imposes a computational complexity, which is quan-

tified in terms of O queries on the order of O
(√

N/t
)

, providing a quadratic complexity

reduction [79]. In fact, all the QAAAs using the operator G benefit from this substantial

reduction. Naturally, observe from Eq. (3.66) that it is possible to derive the probability

Ps of finding a valid solution as a function of the number of G applications as follows [80]:

Ps = sin2 [(2Lopt + 1) θ] , (3.71)

where we have θ = arcsin
√

t/N and Lopt corresponds to the number of G applications.

3.3.3 An Illustrative Example

Let us now provide a multiple-objective routing example for making the somewhat abstract

arithmetic examples used in the previous subsections more plausible. We will consider the

fully interconnected 4-node WMHN portrayed in Fig. 3.6, which obeys the assumptions

summarized in Table 2.1 and relies on the UV f(x) = [Pe,x, CLx]. Note that we have

utilized the first two UF of the UV of Eq. (2.5) for the sake of simplicity. In terms of this

tutorial, the evaluation of the routes is carried out through their Pareto distance Pd(x)

defined in Definition 5. We will assume that we have the perfect a priori knowledge of the
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Figure 3.6: Exemplified 4-node WMHN topology based on the system model of Table 2.1 and
relying on the UV f(x) = [Pe,x, CLx]. The associated routes as well as their their
Pareto distances are shown in Table 3.1.

number of solutions t, which is equal to t = 2 in our scenario . In the Pareto Optimality

problem defined in Eq. (2.7) we have prior knowledge of the optimal Pareto distance, which

by definition would be equal to δ = 0. Moreover, it should be noted that since the total

number of routes is equal to 5, the length of the QIR would be equal to 3 qubits, since

23 = 8 is the next integer power of 2 larger than 5. The non-existent routes, which are

marked as “N/A” in Table 3.1 are assumed to be dominated by all other routes, hence their

Pareto distance would be 1. Since we have the knowledge of t = 2, the required number of

Grover operator with the aid of applications Eq. (3.70) is given by :

L =

⌊

π

4

√

N

t

⌋

=

⌊

π

4

√

8

2

⌋

=
⌊π

2

⌋

= ⌊1.57⌋ = 1. (3.72)

Therefore, a single application of G operator is sufficient for maximizing the probability

of successfully detecting a valid solution. Based on Eq. (3.63), the angle θ is calculated as

follows:

θ = sin−1

√

t

N
= sin−1

√

2

8
=
π

6
. (3.73)

Hence, we may readily calculate the amplitudes of the states by substituting Eq. (3.73)
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Table 3.1: Routes and their Pareto distances for the 4-node WMHN of Fig. 3.6 based on the
system model of Table 2.1 and relying on the UV f(x) = [Pe,x, CLx].

Routes x Pe,x(×10−4) CLx [dBm] Pd(x) f(x, 0)

1→ 4 0 0.99 74.15 0.4 0

1→ 3→ 4 1 11.29 72.03 0.4 0

1→ 2→ 4 2 0.12 69.51 0.0 1

1→ 2→ 3→ 4 3 0.29 68.90 0.0 1

1→ 3→ 2→ 4 4 11.35 72.50 0.6 0

N/A 5 +∞ +∞ 1.0 0

N/A 6 +∞ +∞ 1.0 0

N/A 7 +∞ +∞ 1.0 0

into Eq. (3.64), which leads to:

k1 = 1√
2
sin (3π/6)

l1 = 1√
8−2

cos (3π/6)







⇔
k1 = 1√

2

l1 = 0







, (3.74)

yielding the state final state |ψf 〉 before the observation or measurement operation equal

to:

|ψf 〉 = |ψ1〉 =
(

0, 0,
1√
2
,
1√
2
, 0, 0, 0, 0

)T

. (3.75)

Thus, each of the states |2〉 and |3〉, which are Pareto Optimal, will be detected with a

probability of 0.5 each. We note that the outcome is optimal, since we have l1 = 0, resulting

in a zero probability of unsuccessful detection. Despite its optimality, there some further

issues to be considered in the context of Grover’s QSA. On the one hand, the number

t of valid solutions has to be known beforhand; otherwise, it is not possible to evaluate

the exact number Lopt of G applications. Hence, satisfying this condition is vital for the

optimality of the Grover’s QSA. On the other hand, it is not possible to guarantee that all

the routes belonging to the OPF will be identified, since the observation or measurement

operation is a random process, which depends on the state amplitudes.

3.4 Boyer-Brassard-Høyer-Tapp Quantum Search Algorithm

As discussed in Section 3.3, Grover’s QSA has the substantial limitation of requiring a

priori knowledge of both the solution value and of the number t of solutions. Even though

Brassard et al. [85] proposed a quantum algorithm for counting the number of valid solu-

tions, this process involves a rather excessive complexity overhead. The BBHT-QSA [80]

eliminates this limitation albeit the actual value of the solution still has to be known,

similar to Grover’s QSA.
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In simplified terms, the BBHT-QSA involves a number of Grover iterations. In contrast

to Grover’s QSA, the BBHT-QSA makes use of an random process which selects the number

L of G applications from an integer range of {0, ..., ⌊m⌋}, for a particular positive real

number m. Grover’s QSA is then activated L times and the measured state |j〉 is exported.
Subsequently, the algorithm checks as to whether the exported state |j〉 belongs to the set S1
of valid solutions, i.e. whether f(j, δ) = 1 is satisfied. If j ∈ S1 or the maximum affordable

number of G applications Lmax
BBHT has been exhausted, the algorithm is terminated by

exporting this particular solution. Otherwise, the integer range maximum is increased by

a factor λ – which is a real number strictly between 1 and 4/3 – and a new number of G
applications is selected from the updated range. We note that since the maximum number

of Grover iterations has been shown in Eq. (3.70) to be equal to
√
N corresponding to the

case, where only a single valid solution is present, the maximum of the range is given by

this number G applications. Consequently, each time the upper bound m of the range is

updated, it constrains the maximum of the range to be the minimum between λm and
√
N .

This process is repeated, until either a valid solution is detected or the maximum number

of Grover iterations Lmax
BBHT has been exhausted. As far as the initialization parameters

are concerned, following the approach of [85], λ is set equal to 6/5 and m is to 1. Based on

these parameters, the maximum required1 number of Grover iterations Lmax
BBHT was shown

to be [85]:

Lmax
BBHT = 4.5

√

N

t
≤ 4.5

√
N, (3.76)

where the upper bound corresponds to the case, where only a single valid solution is present

in the database. Since no knowledge of the number of solutions is provided beforehand,

the maximum affordable number of G applications is set to:

Lmax
BBHT =

⌊

4.5
√
N
⌋

. (3.77)

Observe in Eq (3.77) that the BBHT-QSA’s complexity quantified in terms of the O queries

is on the order of O(
√
N); hence, this algorithm succeeds in providing us with a substantial

complexity reduction. The detailed steps of the BBHT-QSA are shown in Alg. 3.2, while

its flowchart is portrayed in Fig. 3.7.

Algorithm 3.2 BBHT Quantum Search Algorithm [85]

1: Set m← 1, λ← 6/5 and LBBHT ← 0.
2: Choose L uniformly from the set {0, . . . , ⌊m⌋}.
3: Apply the G operator L times starting from the initial state |ψ〉 in (3.36), resulting in

the final state |ψf 〉 = GL |ψ〉.
4: Observe |ψf 〉 and obtain |j〉.
5: Update LBBHT ← LBBHT + L.
6: if f(j) = 1 or LBBHT ≥ Lmax

BBHT then

7: Set xs ← j, output xs and exit.
8: else

9: Set m← min
{

λm,
√
N
}

and go to Step 2.

10: end if

1Required for achieving ∼100% success probability.
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Figure 3.7: BBHT-QSA’s flowchart. Note that the red input block hightlights the assumption of
knowing the sought value δ.

Let us now consider again the routing problem example of Section 3.3.3, as characterized

in Table 3.1. The only difference in terms of the assumptions compared to the Grover’s

QSA example is that the actual number t of valid solutions is now unknown. During the

initialization process, λ is set to λ = 6/5, m is set to m = 1 and the maximum affordable

number of G applications to Lmax
BBHT =

⌊
4.5
√
8
⌋
= 12. In the first BBHT-QSA iteration a

random number is selected from the range of {0, 1}. Assuming that we opted for L = 0 G
applications, no G applications are used. Hence, the observation outcome is given by any of

the states, since the initial state |ψ〉 is in the equal-wighted superposition of all the possible

states. Note that the probability of successful detection is equal to Ps = t/N = 0.25. Let us

assume that the state |6〉 is observed, for which we have f(6, 0) = 0. Since f(6, 0) 6= 1 and

LBBHT = 0 < Lmax
BBHT , the range upper boundm is increased by a factor of 6/5. Therefore,

now m would be equal to 6/5; nevertheless, the integer range still remains the same, i.e.

equal to {0, 1}. Assuming now that L is chosen to be 1, the probability of successful search

after a single application of G becomes equal to 1, since the |2〉 and |3〉 states’ amplitudes

and probabilities become equal to 1/
√
2 and 1/2, respectively, based on Eq. (3.74). Hence,

let us assume that the state |2〉 is detected; since we have f(2, 0) = 1, the algorithm will

output the solution and will exit. Finally, we note that since the algorithm is probabilistic,

the actual simulation produces different outcomes each time it is invoked.
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3.5 Dürr-Høyer Algorithm

In Sections 3.3 and 3.4, we presented QSAs tailored for addressing specific search problems,

where explicit knowledge of the value sought is available. Nevertheless, when performing

optimization this is scarcely the case. Naturally, when attempting to minimize or maximize

an arbitrary function f(x), the actual optimal value f(xopt) is unknown to the optimization

process, hence making the employment of the BBHT-QSA infeasible. In classical comput-

ing, the Exhaustive Search (ES) method, often referred to as Brute-Force (BF) method as

well, compares the respective value of each possible input to an appropriately initialized

buffer, which is then updated to the hitherto best value after every comparison, resulting

in a complexity of N comparisons.

Against this background, an algorithm was proposed by Dürr and Høyer in [81] for

the sake of addressing these optimization problems, whilst imposing a complexity on the

order of O(
√
N), i.e. providing a substantial complexity reduction. This algorithm is

often referred to as the Dürr-Høyer Algorithm (DHA). The DHA is formally presented in

Alg. 3.3, while its respective flowchart is shown in Fig. 3.9. To elaborate further, the DHA

uses a buffer in the same manner as the classical ES method. However, in the DHA this

buffer is not compared to every possible input in a serial fashion. Instead, a BBHT-QSA

process is activated searching for a better solution than the buffered value. In this fashion,

the optimization problem is decomposed into a series of search problems, which can be

solved using the BBHT-QSA. If the BBHT-QSA succeeds in finding a better solution, the

buffer is updated to this specific solution and a new BBHT-QSA iteration is invoked with

its input δ set to the updated buffer value. In any other case, a new BBHT-QSA is invoked

using the same buffer input until the maximum affordable number of CFEs2 is exhausted.

Using this limit is essential for avoiding infinite loops, when reaching the finding optimal

solution. Explicitly, this limit was shown to be [81]:

LQD,max
DHA = 22.5

√
N, (3.78)

which provides us with ∼100% probability of successfully finding the optimal solution.

In terms of its implementation, the DHA iteratively invoked the BBHT-QSA, which in

turn utilizes a modified quantum oracle gate O in the sense that the buffer input has to be

updated before it is taken into account by the oracle gate. For this reason, the controlled

input unitary operator Uf is used, which invokes a binary function f(x, i) defined as follows:

f(x, i) =







1 f(x) < f(i),

0 f(x) ≥ f(i),
, (3.79)

where the input i denotes the index stored in the buffer, which is referred to as the reference

state, while x accounts for all the legitimate inputs. We note that Eq. (3.79) corresponds

to the minimization case, while for the maximization one the logical operators will have

2We have considered as a single CFE the event of applying the G operation once.
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Figure 3.8: Quantum circuit of the quantum oracle gate O, which implements the binary function
f(x, i); even though O would alter the phase of |−〉2 due to the entanglement, it
would be valid to assume that |x〉1 [(−1)f(x,i) |−〉2] = [(−1)f(x,i) |x〉1] |−〉2 [112]. These
quantum oracle gates belong to the family of Phase-Kickback Quantum Circuits [67]
since they flip the phase of some selected states.

the opposite direction. The new O quantum circuit is shown in Fig. 3.8.

Algorithm 3.3 DHA for minimization problems [81]

1: Choose a threshold index 0 ≤ y ≤ N − 1 randomly using uniform distribution.
2: Set LQD

DHA ← 0.
3: repeat

4: Define the quantum oracle implementing the binary function f(x, i) of Eq. (3.79)
and set i←y.

5: Invoke the BBHT-QSA process of Alg. 3.2 with input the function f(x, y) and output
y′ using LQD

BBHT CFEs.

6: Set LQD
DHA ← LQD

DHA + LQD
BBHT

7: if f(y′) < f(y) then
8: Set y ← y′.
9: end if

10: until LQD
DHA <

⌈

22.5
√
N
⌉

.

11: Output y and exit.

Let us now provide an example for illustrating the operation of the DHA. We note

that we will not refer to the inner BBHT-QSA iterations of the DHA in this tutorial part

for the sake of avoiding redundancy. Once again, we will consider the 4-node WMHN of

Fig. 3.6 relying on the assumptions of Table 2.1 and the multiple-objective routing example

of Table 3.1. Since we have N = 8, the DHA timeout will be set to LQD,max
DHA = 64 CFEs

based on Eq. 3.78. Naturally, in our example the function f(x) of Eq. (3.79) corresponds

to the Pareto distance function Pd(x) defined in Eq. 2.6. Assuming that the minimum

Pareto distance Pd is not known, the DHA randomly selects a route obeying a uniform

distribution from all the possible route-solutions, as stated in Step 3.3.1 of Alg. 3.3. Let

us assume that we have opted3 for y = 4, i.e. the DHA has selected the route 1→3→2→4

with Pd(4) = 0.6. Subsequently, the CFE counter is initialized to zero in Step 3.3.2, i.e.

we have LQD
DHA = 0, and a BBHT-QSA process is invoked in order to search for routes

satisfying the condition Pd(x) < Pd(4) = 0.6 in Step 3.3.4. In fact, there exist four routes,

implying that half the routes are valid solutions. In the BBHT-QSA process there will be a

50% probability according to Eq. (3.71) of finding a solution regardless of the number of G
applications. For simplicity, let us assume that a valid solution is found after LQD

BBHT = 1

3We have assumed that the route index numbering starts from the value 0.
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Figure 3.9: DHA’s flowchart.

CFEs, namely the route 1→3→4 associated with y′ = 1 and f(y′) = 0.4. The total number

of G applications is updated, i.e. we have LQD
DHA = 1 in Step 3.3 and, since Pd(1) < Pd(4)

a new BBHT-QSA process is activated in conjunction with y = 1. Observe in Table 3.1

that only two routes exist out of the eight in total with a Pareto distance less than that

of the route associated with y = 1. Hence, based on Eq. (3.71), a single G application

would be sufficient for having a 100% probability of observing a valid route-solution. In its

initialization process, the BBHT-QSA selects the number of G applications to be used from

the range {0, 1}. Let us assume that the process opts for applying L = 0 G applications.

Then, based on Eq. (3.71) the probability of observing a valid route-solution would be

equal to Ps = 0.25. Let us assume that the route with index j = 7 is observed in the

first inner BBHT-QSA iteration. Since Pd(7) ≮ Pd(0) the selection range is expanded by

a factor λ = 6/5 and the process attempts to select from the range {0, .., ⌊6/5⌋} ≡ {0, 1}.
Then, let us assume that the BBHT-QSA opts for applying the G operator L = 1 times,

which happens to be optimal. Then the route 1→2→4 with index y = 2 is observed, which

is a valid solution, since we have g(2, 1) = 1, and the BBHT-QSA exits and outputs y′ = 0.

We have LQD
BBHT = 1 CFE in Step 3.3.4. Since we have Pd(y

′ = 2) < Pd(y = 1), the

buffer value is updated in Step 3.3.8, i.e. we have y = 2. Observe now in Table 3.1 that

the new reference route index corresponds to an optimal route, since we have Pd(2) = 0.

Nevertheless, the DHA is unable to ascertain that it has found optimal and, instead, a new

BBHT-QSA process is activated in conjunction with y = 2. However, in the absence of valid

solutions the BBHT-QSA will exhaust the maximum affordable number of G applications,
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which is equal to LQD
BBHT = Lmax

BBHT = ⌈4.5
√
N⌉ = 13 CFEs and will return a random

invalid solution. This process is repeated until the DHA has reached its complexity limit.

The DHA then terminates by outputting the optimal solution stored in its buffer. Finally,

the interactions between the quantum and classical processors in the context of the DHA

used in the aforementioned tutorial are encapsulated in Fig. 3.10, while the reference route

update process is portrayed in Fig. 3.11.

3.6 Chapter Summary

In this chapter, we provided an introduction to the family of quantum search algorithms.

More specifically, the aspects of Grover’s QSA [79] have been analyzed in detail in Sec-

tion 3.3, since this algorithm constitutes the cornerstone of more sophisticated algorithms,

such as the BBHT-QSA and DHA of Sections 3.4 and 3.5, respectively. In a nutshell,

Grover’s QSA is applicable to search problems, where both the number of desired entries

and the actual desired entry value are known to the optimization process. For example,

this specific QSA is applicable to the unsorted phone book search, in which the search

process seeks for a specific person’s telephone number and it has the knowledge of how

many different telephone numbers are assigned to this specific person. Its direct extension

would be the case, where the actual number of solutions is unknown, but the desired value

(the person’s name) is still known. This problem can be solved by the BBHT-QSA [80] at

the expense of some additional CFEs to compensate for this information loss. Note that

in the context of our multi-objective routing, Grover’s QSA can be invoked in a database

containing the Pareto distances of all the legitimate routes in order to search for Pareto-

optimal routes associated with Pd(x) = 0, while having explicit knowledge of the number

of Pareto-optimal routes. The BBHT-QSA is also applicable in this scenario only requiring

knowledge of the Pareto distance value associated with Pareto-optimal routes.

The final extension, corresponding to the generalization of the search problem has been

made possible in the DHA [81], where only a specific attribute of the desired entry is known,

e.g. the fact that it corresponds to the maximum or the minimum of the database, but

no other information is available. Naturally, this reduction of the riddle requires further

additional CFEs. The DHA is readily applicable to our multi-objective routing problem,

where it searches for route-solutions that are associated with the attribute of having min-

imum Pareto distance. The basic concepts of all three algorithmsare summarized in Fig.

3.12, which provide a substantial complexity reduction. Based on Eqs. (3.70), (3.77) and

(3.78), the complexities of all three algorithms are [79,80,81]:

LGrover’s QSA ≡ Lopt =

⌊

π

4

√

N

t

⌋

= O(
√
N), (3.80)

LBBHT−QSA ≡ LQD
BBHT = 4.5

√
N = O(

√
N), (3.81)

LDHA ≡ LQD
DHA = 22.5

√
N = O(

√
N). (3.82)
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Figure 3.10: Interactions between the quantum and the classical processors in the context of
employing the DHA for minimizing the Pareto distance in the routing problem of
Fig. 3.6 and relying on Table 3.1.
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Figure 3.11: Reference route update process in the context of employing the DHA for minimizing
the Pareto distance in the routing problem of Fig. 3.6 and relying on Table 3.1.

Figure 3.12: Summary of the existing QSAs.

According Eqs. (3.81) and (3.82), the computational complexity imposed by the BBHT-

QSA and the DHA respectively, has been set to the total number of G operator applications.

This assumption in [80,81] exclusively considers the Quantum Domain (QD) CFEs, whilst

disregarding the Classical Domain (CD) ones, which are imposed in the classical checks

undertaken by the Steps 3.2.6 and 3.3.7 for the BBHT-QSA and the DHA, respectively,

as it has been mentioned by Botsinis et al. in [93] and [94]. In the next chapters, where

our quantum-assisted algorithms are presented, we will characterize both the QD-CFEs

and CD-CFEs of both the BBHT-QSA and the DHA for quantifying their upper and lower

complexity bounds in our multi-objective applications.
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Chapter 4

Non-Dominated Quantum

Optimization

4.1 Introduction

In Chapter 3, we discussed the specifics of some popular QSAs, namely Grover’s QSA [79]

and the BBHT-QSA [80] in Sections 3.3 and 3.4, respectively. Furthermore, we provided a

brief introduction to quantum-assisted optimization by presenting the DHA in Section 3.5.

We have also addressed the multi-objective routing problem using the tutorial presented in

Table 3.1 for the sake of identifying a single Pareto-optimal route. In this tutorial example,

we postulated that the quantum oracle gate O of the Grover operator G, which is defined

in Eq. (3.24), is capable of evaluating the x-th route’s Pareto distance Pd(x), which is

introduced in Definition 5, while imposing a complexity on the order of O(1). Naturally,

this assumption is unrealistic, since the evaluation of the Pareto distance Pd(x) is a rather

complex process, imposing a classical complexity on the order of O(N), should classical

computation processes be invoked for the sake of calculating the fraction of Eq. (2.6).

Fortunately, it is feasible to approximate its value for a specific route using Quantum

Phase Estimation techniques [85], such as the Quantum Mean Algorithm (QMA) [86] or

the so-called Quantum Weighted Sum Algorithm (QWSA), which was introduced in [87].

Explicitly, both the QMA and the QWSA are capable of estimating a specific route’s Pareto

distance value at a precision of l bits, while imposing a complexity on the order of O(2l).

Apart from the increased complexity imposed by the QWSA, which scales exponentially

by increasing the intended accuracy, the QWSA involves a measurement or observation

operation, the specifics of which were detailed in Section 3.2.3. Naturally, this operation

acts as a partial measurement [87] on the superimposed composite system state, which

consists of the entire set of legitimate routes as well as their respective Pareto distance

values. Consequently, the superimposed system state collapses into a pure basis state.

Explicitly, this specific operation has a detrimental effect on the QP, thus prohibiting its

potential use in conjunction with the Grover operator G.

69
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In addition to the design issues arising from the estimation of the Pareto distance, the

entire set of quantum heuristics presented in Chapter 3 is only capable of identifying a

single Pareto-optimal route. However, identifying the entire set of Pareto-optimal routes

is of great importance, since these specific routes reveal the underlying trade-offs among

contradictory optimization objectives [47]. Despite these shortcomings, the aforementioned

algorithms constitute an attractive framework due to exhibiting near-optimal accuracy

with respect to full-search-based methods, while benefiting from a quadratic complexity

reduction upon exploiting the QP. More specifically, in this chapter we present the so-called

Non-Dominated Quantum Optimization (NDQO) algorithm, which utilizes the BBHT-QSA

for the sake of identifying the entire OPF associated with the multiple-objective routing

problem in WMHNs, as defined in Eq. (2.5) using the assumptions summarized in Table 2.1.

Note that in the system model of Eq. (2.5) we opted for designing the NDQO algorithm for

the sake of addressing the weak Pareto optimality problem. Our choice can be justified by

the fact that solving the weak Pareto optimality problem is inherently more complex than

the strong Pareto optimality, since the set of strongly Pareto-optimal routes is a subset

of the set of weakly Pareto-optimal routes [47]. Hence, by addressing the weak Pareto

optimality we account for the strong Pareto optimality as well.

Having described our motivation, let us proceed by presenting an overview of this

chapter, which analyzes our contribution in [1]. Before delving into the intricacies of

the NDQO algorithm, in Section 4.2 we will first define the unitary operator Ug, which

implements a single strong Pareto dominance comparison and will be employed as the

quantum oracle gate of the Grover operator G. In Section 4.3, we will then invoke the

modified Grover operator G in the context of BBHT-QSA sub-processes, which searches

for routes that dominate a specific appropriately initialized reference route. Explicitly, our

goal is not only to disregard routes that are sub-optimal, i.e. routes that are dominated

by at least one route, but also to successively approach a single Pareto-optimal route. In

Section 4.4, we will present the NDQO algorithm and demonstrate how the entire OPF can

be identified using this series of BBHT-QSA sub-processes, followed by a 5-node tutorial

example on WHMN routing using the NDQO algorithm in Section 4.5. We will then assess

its performance in terms of it complexity and its accuracy with respect to full-search-based

methods in Sections 4.6.1 and 4.6.2, respectively. Let us now proceed with some discussions

concerning the appropriate design of the quantum oracle gate.

4.2 Quantum Oracle Design

In this section, we will present the design of the quantum oracle gate utilized within the

Grover operator G for the sake of marking the appropriate routes by flipping their phase.

Before delving into its design guidelines, we will first define the unit of computational cost,

which we will refer to as Cost Function Evaluation (CFE). Similar to the methodology

presented in Section 2.6, we will define the activation of the operator Ug as a single CFE,

implementing a Pareto dominance comparison between two routes. Calculating the Pareto

distance for each specific route is a rather demanding task in terms of the number of
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CFEs, since it would require N2 CFEs, which is equal to the classic exhaustive search

complexity. Although some complexity reduction is offered by the QMA [86], the accuracy

of the Pareto distance evaluation is affected. To elaborate further, assuming l qubits to be

in the Quantum Control Register (QCR), which is used for the parallel calculation of the

nominator in Eq . (2.6), an error ǫ ∈ O(1/l) [86] would be introduced, while increasing l

for the sake of minimizing this error would result in an excessive complexity.

This imperfection may be mitigated, if we inspect the concept of Pareto optimality in

a more meticulous manner, given in Definition 3. In fact, the calculation of the Pareto

distance itself is unnecessary. In other words, a particular route would belong to the OPF,

if and only if there is no other route which would dominate it. Under this perspective, our

problem is simplified to an existence problem and all we have to find is a route, which would

dominate the examined one. If the search is unsuccessful and, thus, there is no legitimate

route which would dominate the examined one, the latter would belong to the OPF.

Our new approach would involve “asking” the oracle gate O whether a particular route-

solution vector is dominated by the other route-solution vectors. Assuming that the par-

ticular route, which from now on will be referred to as the reference route, corresponds to

the state |i〉, let us now define the oracle function g(x, i), inspired by the one of Eq. (3.79),

which the QSA would query as follows:

g(x, i) =







1 f(x) ≻ f(i),

0 otherwise.

(4.1)

It may be observed from Eq. (4.1) that the oracle function would require two inputs: a

classic state |i〉, which would point to a specific route, and a quantum state |x〉 initialized to

the equally weighted superposition of all the states. Hence, the oracle gate O implementing

g(x, i) would map the state |x〉 to − |x〉, if and only if the respective route dominates the

reference route i. The quantum circuit of O is similar to the one of the DHA oracle, which

is shown in Fig. 3.8. However, the implementation of the unitary operator Ug would differ.

According to Eq. (4.1) and Definition 2, simultaneous comparisons have to be conducted

for the application of the strong dominance operator. This imposes an additional difficulty,

since these comparisons need to be entangled with each other. Therefore, we propose the

employment of three unitary operators Ufk , where we have k ∈ {1, 2, 3}, one for every UF

considered in the UV of Eq. (2.5). The functions fk(x, i) correspond to the less-comparison

outcome between the x-th and the i-th routes in terms of their k-th UF and they are defined

as:

fk(x, i) =







1, fk(x) < fk(i),

0, fk(x) ≥ fk(i),
(4.2)

where the function fk(x) corresponds to the k-th UF value of the x-th route. We have

opted for connecting the QCR, where the reference route is stored, and the QIR inputs

of three unitary operators Ufi in a cascade formation as shown in Fig. 4.1, where we note

that the control input |i〉1 corresponds to the index of the reference route. This formation
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Figure 4.1: Quantum circuit of the unitary operator Ug implementing the controlled operation
g(x, i), corresponding to application the dominance operator. Three unitary opera-
tors Ufi are employed, each corresponding to a single comparison between the refer-
ence path stored in the QCR and the states of the QIR in terms of the respective
optimization objective.

entangles the Local Oracle Workspace (LOW) output of each Ufi with the QIR output,

resulting in the three LOWs to be entangled with the same QIR, yielding that the LOWs

are entangled together. We note that the LOW input state used for each Ufi is the |0〉,
since we opted for mapping the binary output of g(x, i) into the LOW output. The three

LOW outputs are combined together using a 3-qubit Tofolli quantum gate [62], which

performs the intersection (AND) operation among all three LOWs and then performs a

XOR operation between the Global Oracle Workspace (GOW) input |t〉3 and the outcome

of the AND operation. Explicitly, the n-qubit Toffoli gate Tn [143] has a transfer matrix

equal to [62]:

Tn =










I2n−2 02n−2,1 02n−2,1

01,2n−2 0 1

01,2n−2 1 0










, (4.3)

where the I2n−2 sub-matrix denotes the a [(2n − 2)× (2n − 2)] identity matrix and the

vector 01,2n−2 = 0T2n−2,1 contains 2n − 2 zero elements. Furthermore, if the GOW input is

set to the |−〉 state, then the Ug operator acts as an Oracle Gate in the same way as in Fig

3.8. Therefore, for each examined route it is possible to construct a database containing

the dominance relationship of the rest of the routes with respect to the examined one.

Additionally, we note that a single activation of the oracle gate O would impose a single

CFE, since the dominance operator would be employed only once and the comparisons are

carried out serial due to the cascade formation. The function of this gate can be simulated

in a classical computer. To elaborate further, simulating the oracle gate in a classical

computer results in checking serially whether each of the legitimate routes dominates the

reference route with index i and “marking” the specific routes that indeed dominate it.

However, in this case the actual number of CFEs imposed would be equal to the number

of the legitimate routes in the absence of QP.
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4.3 The Quest for Optimal Routes

Having constructed a database containing the specific routes which dominate each route

by the application of the quantum oracle gate O, we may employ a QSA [79, 80, 112] for

finding the routes that correspond to the minimum Pareto distance. A search algorithm

succeeds in finding the specific index x in a database or the argument for which the function

g satisfies g(x, i) = δ, which is termed as the solution. As we elaborated in Section 3.3, in

a search maze of size N , Grover’s QSA [79] finds a solution with ∼ 100% probability after

O(
√
N) database queries or function evaluations, provided that the number of solutions t

is equal to t = 1. Hence, it achieves a quadratic reduction in the computational complexity,

when compared to the optimal BF search in unsorted databases. By contrast, the BBHT-

QSA [80], detailed in Section 3.4, is based on a successive application of Grover’s QSA and

finds a solution to the search problem with ∼ 100% probability, even if multiple solutions

exist, which is achieved without requiring a priori knowledge about the exact value of t.

Explicitly, the BBHT-QSA succeeds in finding a solution after 4.5
√
N database queries in

the worst-case scenario. Naturally, both in Grover’s QSA and in the BBHT-QSA, the value

δ has to be known. However, in many communication applications where the index xmin

minimizing the cost function f is required to be found, the exact value of f(xmin) cannot be

known until after all the possible CF values have been evaluated. As for the solution, the

DHA [81], detailed in Section 3.5, employs the BBHT-QSA multiple times and manages to

find xmin representing the minimum entry of a database, even if the value of that particular

entry is not known beforehand and also if we have t ≥ 1. The DHA performs a minimum

of 4.5
√
N and a maximum of 22.5

√
N database queries in the best-case and the worst-case

scenario, respectively.

In our specific application we have to find a route that dominates the reference route

in the previously constructed database. Because of the particular nature of our problem,

we know that the intended entry is equal to δ = 1 and that multiple routes may dominate

a single route. Hence, the BBHT-QSA is the most appropriate quantum algorithm for

finding a solution xs in our application. It should be noted that the DHA will also succeed

in finding a solution, since we have xs = xmin but it will introduce more unnecessary

database queries. Let us now proceed by introducing the improved BBHT-QSA used in

the NDQO and then the NDQO algorithm.

The number of solutions t of a problem does affect the number Lopt of optimal Grover

iterations. Since the BBHT-QSA [79, 87] assumes having no a priori knowledge about

the number of solutions S in the database, it employs Grover’s operator a pseudo-random

number of consecutive times in a structured way. In our routing application we have δ = 1,

but we are unaware of the number of routes t that dominate the i-th route. The BBHT-QSA

applied in our system is formally stated in Algorithm 4.1 [87]. The BBHT-QSA applies the

Grover operator L consecutive times to the initial equiprobable superposition of states in

(3.36) (Step 4.1.41) and then measures the resultant QR |xf 〉 (Step 4.1.5). The extraction

of the database’s entry that corresponds to the observed index will verify whether the

1The notation refers to Step 4 of Alg. 4.1.
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observed state |j〉 is a solution or not (Step 4.1.8). If the latter case is true, the process

described is repeated after an update of the parameters (Steps 1.11–1.16) until a solution is

found or a predetermined maximum number LQD, max
BBHT of affordable Grover iterations has

been reached. The algorithm keeps track of the total number LQD
BBHT of CF evaluations

in the Quantum Domain (QD) and the total number LCD
BBHT of CF evaluations in the

Classical Domain (CD) (Step 4.1.7). Naturally, the QD CFEs would be increased from the

total number of Grover iterations L with each BBHT-QSA iteration, and the number of

CD CFEs would are based on the check of Step 4.1.8. The function implemented by the

Oracle’s action is invoked in the CD.

An improvement the original BBHT-QSA in [80] is proposed, as detailed in Section 4.6.

To elaborate briefly, as soon as the upper limit m of the range, from which the number

of Grover iterations is selected, becomes higher than or equal to
√
N (Step 4.1.11), i.e.

higher than the value which corresponds to the worst case scenario of having only a single

solution, a bias is imposed on it for excluding the value 0 from the range (Step 4.1.13).

This stage of the BBHT-QSA is often referred as the critical stage [80], since there is at

least 25% probability of finding a solution, as long as there exists one.

By applying the BBHT-QSA to the database constructed by the oracle gate O of

Eq. (4.1), we will be able to identify a route, if there exists one, that would dominate

the input one with ∼ 100% probability, while using a number of O(
√
N) database queries.

If there is no route that dominates the input one, the BBHT-QSA will output a random

route xs,r from the search database, which could be disregarded with a simple final check.

This check, which is similar to the first check of Step 4.1.8, may be invoked after the

completion of the BBHT-QSA process for identifying at the expense of a single CFE as to

whether the index exported from the BBHT-QSA corresponds to a valid route-solution, i.e.

whether the condition g(xs,r, i) = δ = 1 is satisfied. Therefore, it is possible to avoid the

identification of false solutions stemming from a potential BBHT-QSA QD-CFE time-out.

4.4 The Non-Dominated Quantum Optimization Algorithm

Having defined the core procedure of finding a route, which dominates the examined one, we

may now proceed by presenting our proposed approach. We will exploit the observation [79]

that if there is no solution for which we have δ = 1, then O will mark no solutions and

a single application of the G operator will leave the probabilities of the routes unaltered.

Consequently, as the BBHT-QSA will not find any solutions, it will reach its time-out after

Lmax
BBHT =

⌊

4.5
√
N
⌋

Grover iterations and output a random route from the total set of

routes chosen randomly. At this point, let us check as to whether the output of the BBHT-

QSA dominates the reference route i; the i-th route will belong to the OPF if and only if

the check outcome is false, i.e. we have g(xs, i) = 0, which implies that there is no solution

dominating it. Otherwise, if the BBHT-QSA outcome dominates the solution examined,

we can proceed with checking as to whether the outcome is optimal. This action is repeated

until a Pareto-optimal route-solution is extracted, which would then terminate this chain

of BBHT-QSA activations. Note that from now on we will refer to this process as BBHT-
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Algorithm 4.1 Improved BBHT-QSA in NDQO Algorithm

1: Import reference route index i.
2: Set m← 1, λ← 6/5 and LQD

BBHT ← 0, LCD
BBHT ← 0.

3: Choose L uniformly from the set {0, . . . , ⌊m⌋}.
4: Apply the G operator L times starting from the initial state |ψ〉 in (3.36), resulting in

the final state |xf 〉 = GL |ψ〉.
5: Observe |xf 〉 in the QD and obtain |j〉.
6: Compute g(j, i) in the CD.
7: Update LCD

BBHT ← LCD
BBHT + 1 and LQD

BBHT ← LQD
BBHT + L.

8: if g(j, i) = δ = 1 or LQD
BBHT ≥ L

QD, max
BBHT then

9: Set xs ← j, output xs, L
CD
BBHT , L

QD
BBHT and exit.

10: else

11: Set m← min
{

λm,
√
N
}

.

12: if m =
√
N then

13: Choose L uniformly from the set {1, . . . , ⌊m⌋} and go to step 4.
14: else

15: Go to step 3.
16: end if

17: end if

QSA chain. Having extracted either a single or multiple route-solutions from the OPF,

it becomes possible to avoid an excessive number of CFEs by checking as to whether the

reference route-solution is dominated by the hitherto generated OPF. Explicitly, the specific

route-solutions that are dominated by the OPF generated so far have a high probability of

reaching an already generated OPF route-solution, which would imply having unnecessary

BBHT-QSA chain activations

Algorithm 4.2 NDQO Algorithm

1: Initialize solution flag vector, F , to zero.
2: Initialize OPF = ∅.
3: for i = 0 to N − 1 do

4: if Fi = 0 then

5: if ∄j ∈ OPF : f(j) ≻ f(i) then
6: Set l← i.
7: repeat

8: Set k ← l.
9: Define the oracle function g(x, k) from (4.1).

10: Invoke the BBHT-QSA with input g(x, k) and output xs.
11: Set l← xs and Fk ← 1.
12: until f(l) ⊁ f(k).
13: Append xk into the OPF .
14: end if

15: end if

16: end for

17: Output the OPF and exit.

Having provided all the necessary discussions concerning the NDQO subroutines, we

may now proceed to its detailed description relying on Alg. 4.2 as well as on the flowchart

portrayed in Fig. 4.2. We will define a binary check flag vector F which indicates whether
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Figure 4.2: NDQO algorithm’s flowchart.

a specific route has already been processed and it is initialized to an all-zero vector. Sub-

sequently, for each route we will check as to whether it has already been processed. In

this case, the specific route is checked as to whether it is dominated by the OPF already

generated in Step 4.2.5. We note that we will take into account the classical complexity

imposed by these specific dominance comparisons. If it is not dominated by the hitherto

generated OPF, then a BBHT-QSA chain is activated relying on the examined route as its

reference route. The BBHT-QSA chain will be then terminated, when a Pareto-optimal

route-solution is examined and the flags of all the routes processed by the BBHT-QSA

chain are set equal to 1. This procedure is repeated until all the legitimate routes have

been processed either by the OPF dominance check or by the BBHT-QSA chain and, thus,

all the Pareto-optimal route-solutions are exported. The goal of this procedure is to identify

the entire OPF as promptly as possible.

4.5 A Detailed 5-Node Example

Let us now provide an illustrative example portraying the main concepts of our proposed

algorithm. We will consider a 5-node network having the architecture of Fig. 4.3(a), where
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Figure 4.3: (a) Exemplified architecture for a 5-node WMHN, and (b) its optimization process using the NDQO algorithm. In this example only two UF are used
per solution for the sake of simplicity relying on the system model of Table 2.1. The routes that belong to the OPF are noted with a square marker
(�), the routes that have already been processed as intermediate points in BBHT-QSA chains and will be skipped in the serial parsing step (Step
4.2.4) are marked with a triangle (△), whereas those that have not been processed and, at the same time, are not dominated by the generated OPF
initiating a BBHT-QSA chain are marked with a circle (◦). Moreover, the route-solutions, which have not already been processed but are dominated
by the hitherto generated OPF and thus they will be skipped, are marked with a cross (×). Moreover, the indices of the routes as shown in Table 4.1
are marked in (b). Finally, the round arrows in (b) denote that a BBHT-QSA has been activated with input the respective point but in the absence
of potential route-solutions a random route is output by the BBHT-QSA, classifying the input route-solution as Pareto Optimal (Step 4.2.13). The
current problem solution is not the unique one; different solutions could be derived depending on the BBHT-QSA chain intermediate outcomes.
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the interference experienced by each of the nodes is also visible. Explicitly, the topology

of Fig. 4.3(a) has been generated based on the assumptions presented in Table 2.1. The

legitimate route-solutions produced by this setup along with their UF values are shown in

Table 4.1. We note that only the BER and the CL are taken into account for the sake of

simplifying the solutions’ graphical representation, which is shown in Fig. 4.3(b). Moreover,

the actual routes are assumed to be stored on a list in ascending lexicographical order, thus

facilitating the employment of Lehmer Encoding/Decoding [137], which is highlighted in

Appendix A. Furthermore, in Fig. 4.4 we present the probability Ps of successfully finding a

route-solution, when using Grover’s QSA, versus the number of solutions t present and the

number of G applications for our 5-node WMHN routing problem of Fig. 4.3(a). Explicitly,

the respective probabilities portrayed in Fig. 4.4 have been calculated with the aid of

Eq. (3.71).

Table 4.1: Routes along with their UFs and indices for the 5-node WMHN example of Fig. 4.3,
relying on the system model of Table 2.1.

Index i Route Pe,i (×10−4) CLi [dB] Index i Route Pe,i(×10−4) CLi [dB]

1 {1 5} 0.646 74.147 9 {1 4 2 5} 0.288 52.407

2 {1 2 5} 0.319 54.440 10 {1 4 3 5} 1.147 64.302

3 {1 3 5} 0.592 60.004 11 {1 2 3 4 5} 1.397 59.575

4 {1 4 5} 0.336 61.593 12 {1 2 4 3 5} 4.230 56.053

5 {1 2 3 5} 1.117 63.700 13 {1 3 2 4 5} 0.829 54.113

6 {1 2 4 5} 0.424 55.524 14 {1 3 4 2 5} 0.446 51.721

7 {1 3 2 5} 0.253 53.304 15 {1 4 2 3 5} 4.079 55.893

8 {1 3 4 5} 0.420 57.759 16 {1 4 3 2 5} 0.863 53.931

Moreover, all the steps carried out by the NDQO algorithm for exporting the OPF are

shown in Fig. 4.3(b), where the solution2 transitions that are facilitated by the BBHT-QSA

are represented by the arrows. Moreover, the routes that belong to the OPF are indicated

by a square marker (�). Furthermore, the points that have already been processed as

intermediate points in the BBHT-QSA chains and hence will be skipped during the serial

parsing step (Step 4.2.4) are marked by a triangle (△). Still referring to Fig. 4.3(b), those

points that have not been processed and, at the same time, are not dominated by the

generated OPF initiating a BBHT-QSA chain are marked with a circle (◦). Additionally,

the points that have not yet been processed but are dominated by the generated OPF and

thus are skipped are marked by a cross (×). Moreover, the transitions that are carried out

by the BBHT-QSA chains of Steps 4.2.6 – 4.2.11 are indicated by arrows. Additionally,

arrows of different color has been used for each BBHT-QSA chain. Let us now proceed

with a more detailed description of the NDQO algorithm.

The algorithm will initialize the binary check flag vector F to a vector of zeros and the

OPF to an empty set (∅), according to Step 4.2.2. Then, the 1st route of Table 4.1, {1 5},
is checked. Since its flag value is equal to zero and the OPF set is empty, the BBHT-QSA

process of Alg. 4.1 is initiated with this specific route as its reference route. The legitimate

successful outputs of the BBHT-QSA, i.e. the solutions that dominate {1 5}, are located

2We define a solution as an output route of the BBHT-QSA that dominates the input one.
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Figure 4.4: Probability Ps of successfully finding a solution versus the number of solutions t and
the number of Grover iterations Lopt for the database of Table 4.1, based on Eq. (3.71).

The number of Grover iterations Lopt is varied in the range {0, 1, ..,
√
N}; the upper

bound of the range corresponds to the optimal number of Grover iterations, where
only a single solution is available. In our example, we have

√
N =

√
16 = 4.

within the rectangle of Fig. 4.3(b) which has the solution argument and the zero point of

coordinates as its opposite corners, as indicated by the doted lines. Our database length

is equal to N = 16, while the number of present solutions, which are located within the

aforementioned rectangle, is equal to t = 7. Each of these solutions will have the same

probability of becoming the single output. According to Fig. 4.4, the optimal number of

G applications would be for Lopt = 3, which gives a 88.45% probability of finding a route-

solution that dominates the direct route. The BBHT-QSA process initializes the upper

bound of the Lopt selection range to m = 1 (Step 4.1.2) and the specific Lopt value is

chosen from the set {0, 1}. Assuming that Lopt = 0 is chosen, based on Eq. (3.71), the

probability of successfully finding a solution would be equal to Ps = 43.75%. The quantum

algorithm then observes its QIR (Step 4.1.5) and outputs j = 13, i.e the route {1 4 3 2 5}.
A check is then performed whether the 13th route dominates the direct one (Step 4.1.8),

which is unsuccessful, since Pe,1 < Pe,13 and CL1 < CL13 and hence g(13, 1) = 0. Then

parameter m is increased to m = λm = 6/5 (Step 4.1.11) and the upper bound is modified

to ⌊m⌋ = ⌊6/5⌋ = 1, while the range remains the same as in the previous iteration, i.e. the

parameter Lopt will be selected from the set {0, 1}. At this point, assuming that Lopt = 1

is chosen, the probability of successfully finding a route-solution that dominates the input

one would be equal to Ps = 68.36%. Let us assume that the output of the BBHT-QSA is

the 3rd route (i = 3), {1 3 5}, of Table 4.1. Once again, this route will be checked whether

it dominates the input route and since it lies within the rectangle of Fig. 4.3(b), it will

indeed dominate it. The transition between the direct route and the third one is noted

using a blue colored arrow in Fig. 4.3(b).

Subsequently, the input solution flag value is set to F1 = 1 and, hence, a new BBHT-

QSA process is invoked having as its input the output of the previous BBHT-QSA. Again,

the successful BBHT-QSA outputs will be located within the rectangle defined by the

new reference route and the center of coordinate axes as its opposite corners; after the

completion of the BBHT-QSA of Alg. 4.1, the flag value of the input route is set to one,
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i.e. to F3 = 1. Following a similar procedure as in the first BBHT-QSA iteration, the

algorithm outputs the 14th route, {1 3 4 2 5}, of Fig 4.3(b) which dominates the input

and happens to be a Pareto Optimal solution. A BBHT-QSA will be invoked with this

route as its input and since no solutions would exist which dominate the new reference,

the BBHT-QSA will reach its time-out after at a minimum of LQD, max
BBHT Grover operator

G applications and it will hence output a random route-solution selected from the set of

all the legitimate ones. Upon applying the dominance operator to the BBHT-QSA output,

its response will become false, which would indicate that no point dominating the input

route exists, which, in turn, would imply that the route belongs to the OPF. Hence, the

route with index i = 14 in Fig. 4.3(b) is appended to the OPF. Moreover, its flag value

will be set to F14 = 1. This transition is noted in marked Fig. 4.3(b) with the blue round

arrow, since the NDQO algorithm will return to the input route-solution and classify it as

optimal.

Then, the second route with index i = 2 of Table 4.1 will be checked (Step 4.2.3). Since

we have F2 = 0 and this route is not dominated by the route with index i = 14 (Steps 4.2.4

and 4.2.5), the BBHT-QSA process of Alg. 4.1 will be initiated with the second route as its

input. The possible successful outcomes of the BBHT-QSA would be the 7th (i = 7) and

the 9th (i = 9) routes with 50% probability, both of which happen to be Pareto Optimal.

Following the same process as the very first BBHT-QSA activation, we may now assume

that the 9th route is the output of the BBHT-QSA, and since it will indeed dominate the

input route, the flag value of the input route is toggled to F2 = 1. The respective transition

is noted in Fig. 4.3(b) using a red arrow. A new BBHT-QSA process will be invoked with

the 9th route of Fig 4.3(b) as its input, which would exhaust the maximum number of

G applications, therefore outputting a random solution from the solution space. Hence,

the 9th route is incorporated into the OPF and its flag value will be modified accordingly.

This operation corresponds to the round red arrow seen in Fig. 4.3(b). Afterwards, the

3rd route will be skipped, because we have F3 = 1. Additionally, the rest of the routes

until the 7th route of Fig. 4.3(b) will be discarded as they are dominated by the 9th route

and, thus, are not Pareto Optimal (Step 4.2.5). As for the 7th route, since it has not been

processed (F7 = 0) and will not be dominated by any solution due to the fact that it is

Pareto Optimal, the BBHT-QSA process of Alg. 4.1 will be invoked with its input given

by this route. This process will exhaust the maximum number of G applications and will

hence output a random solution, thus leading to appending the 7th route-solution to the

OPF. Moving back to Fig. 4.3(b), this step corresponds to the round green arrow. Finally,

the rest of the solutions will be discarded, since albeit they have not been processed, they

will be dominated by the OPF generated.

During the exemplified description of the NDQO algorithm, we have not quantified the

complexity imposed by the NDQO in terms of the number of CFEs. Thus, we will elaborate

on this issue in the next section, where a variety of performance metrics will be introduced.
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4.6 Computational Accuracy versus Complexity

In this section, we will provide simulation results concerning the accuracy of the NDQO

algorithm versus its complexity. Before delving into the presentation of the results, the

complexity of the classical BF algorithm should be quantified. In the classical domain,

each route is compared to all the other legitimate routes for determining whether it is

dominated by any solutions. Based on Eq. (2.9), this would impose a complexity on the

order of O(N2). However, this operation, which we will refer to as naive-BF, would find the

OPF route-solutions along with sorting all legitimate routes into PFs. The latter operation

is not performed by our proposed algorithm, making their comparison rather unfair.

For the sake of fairness, we will also use another version of the BF, which exports

only the OPF, as formally presented in Alg. 4.3. This specific algorithm functions in the

same fashion as the NDQO algorithm presented in Alg. 4.2. The only difference would be

that a BF serial search is used instead of the BBHT-QSA chains for identifying whether

a solution is optimal. The actual complexity of this BF method is random and would

explicitly depend on the number of OPF route-solutions and on their order of appearance

in the solution space. Therefore, due to the complex structure of the WMHNs examined we

will derive its complexity using Monte Carlo simulations and compare it to the respective

complexity of the NDQO algorithm for the same WMHN setups. Moreover, both the upper

and the lower bounds of this BF method may be derived. The upper bound corresponds

to the rather unrealistic case, where all the legitimate routes are optimal. In this case, the

direct route would require N CFEs for its determining whether or not a route-solution is

optimal, the second route in the database will require in turn (N + 1) CFEs, since it will

be checked against the OPF generated, which consists of a single solution. Finally, the last

one will be checked against all the solutions forming part of the OPF, which would consist

of (N − 1) route-solutions and another N CFEs would be required for its identification as

an optimal route-solution. Therefore, the resultant maximum complexity may be derived

by exploiting the following property of the sum of arithmetic series as:

Lmax
BF = N2 +

N−1∑

i=0

i = N2 +
N

2
(N − 1) =

3

2
N2 − 1

2
N. (4.4)

Hence, the upper bound of the BF complexity is still on the order of O(N2). On the other

hand, assuming that there is only a single optimal path, which happens to be the first in our

database, namely the direct route, the BF method would require N CFEs for classifying

this route as an optimal one (Steps 4.3.5-4.3.12) and another (N − 1) CFEs for classifying

the rest of the routes as suboptimal. As a result, the lower bound of the BF complexity is

equal to:

Lmin
BF = 2N − 1 = O(N). (4.5)

Therefore, the BF method would involve a complexity on the order of O(N) and O(N2)

for the best- and the worst-case scenario, respectively.

Additionally, we note that the simulation results presented in this section have been
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Algorithm 4.3 BF method

1: Initialize OPF = ∅.
2: for i = 0 to N − 1 do

3: Set f ← 0
4: if ∄j ∈ OPF : f(j) ≻ f(i) then
5: for k = 0 to N − 1 do

6: if f(k) ≻ f(i) then
7: Set f ← 1 and terminate inner loop.
8: end if

9: end for

10: if f = 0 then

11: Append i into the OPF .
12: end if

13: end if

14: end for

15: Output the OPF and exit.

generated using the Monte Carlo simulation method and they have been averaged over

108 runs. Finally, since we had no quantum computer at our disposal, the simulations of

the QSAs were carried out using a classical cluster. Explicitly, since the quantum Oracle

O calculates in parallel the UF vectors of all the legitimate routes in the QD, they were

pre-calculated. We note that this results in an actual complexity higher than that of the

BF method. Therefore, the deployment of the NDQO in a quantum computer is essential

for observing a complexity reduction stemming from the QP. Hence, in our simulations,

we have made the assumption of employing a quantum computer for our algorithm and we

count the total number of O-activations for quantifying the NDQO algorithm’s complexity.

This number would be the same for both classical and quantum implementations. Let us

now proceed by characterizing the complexity of the NDQO algorithm.

4.6.1 NDQO Complexity Performance

Within the BBHT-QSA iterations, each quantum oracle application would result in a single

QD-CFE, whereas the validation check of Step 4.1.43 would require a single CD-CFE. We

note that the complexity of a single CD-CFE and of a single QD-CFE are assumed to be

identical for simplicity. The total complexity Ltot
NDQO may be derived as the sum of the

number of G applications LQD
NDQO, that of the total classic comparison activations within

the BBHT-QSA iterations LCD
NDQO and that of the comparisons with the route-solutions of

the already generated OPF LOPF
NDQO, yielding:

Ltot
NDQO = LQD

NDQO + LCD
NDQO + LOPF

NDQO. (4.6)

Therefore, in order to derive both the upper and lower bounds of complexity in terms

of the number of CFEs in both the quantum and classic domains, we have to consider

two extreme cases, which are identical to the ones considered for the BF method. For the

3We remind that the notation refers to Step 4 of Alg. 4.1.
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lower bound, we will assume that the optimization problem has only a single solution, which

happens to be the first route in the solution database, namely the direct route. The NDQO

algorithm will exhaust the maximum affordable complexity of LQD, max
BBHT =

⌊

4.5
√
N
⌋

for the

first route and the rest of the routes will be discarded, since they will be dominated by the

first one. Since we are examining the lower bound, each of the terms in the sum of (4.6)

needs to be minimized. In terms of LQD
NDQO, only the first route will invoke the BBHT-QSA

process which will reach the maximum number of G applications and the lowest possible

number would be:

LQD, min
NDQO =

⌊

4.5
√
N
⌋

+ 1 > 4.5
√
N. (4.7)

Hence, the minimum number of the G applications would be for LQD, min
NDQO = 4.5

√
N . As for

the CD-CFEs, we could can a greedy approach in order to find the associated minimum

value: we may assume that the maximum number of G iterations ⌈m⌉ is selected in Step

4.1.2. In this way, the maximum number of G applications will be reached with as few

CD-CFEs as possible. Under this perspective, we would get:

LQD,min
NDQO −1
∑

i=0

λim ≥ LQD, max
BBHT ≡ 4.5

√
N, (4.8)

where λ and m are the BBHT-QSA initialization parameters. Therefore, in order to find

the minimum value, all that has to be done is to solve Eq. (4.8) in terms of Nmin
QD , yielding:

LCD,min
NDQO = logλ

(

4.5
λ− 1

m

√
N + 1

)

+ 1. (4.9)

As for the comparisons with the hitherto generated OPF, all the routes except for the

first one will be dominated by the direct route leading to LOPF, min
NDQO = N − 1 and hence all

but the first routes will be discarded. Finally, the lower bound of the NDQO algorithm’s

complexity may be expressed as:

Ltot,min
NDQO = 4.5

√
N + logλ

(

4.5 λ−1
m

√
N + 1

)

+N

= O(N).

(4.10)

Consequently, the lower bound complexity of the NDQO algorithm is on the order of O(N)

providing a quadratic speed-up down from O(N2).

As far as the NDQO algorithm’s upper bound of complexity is concerned, we will

consider the extreme case, where all the routes are Pareto-optimal. Naturally, having that

many route-solutions in the OPF would result in excessive an excessive number of CFEs

in the sub-process of the NDQO algorithm, where a particular route-solution is examined

to ascertain whether it is dominated by the OPF generated. Hence, a restriction should

be imposed on the grounds that this process should not exceed the BBHT-QSA maximum

number of activations. To elaborate further, since the BBHT-QSA involves in the worst case

4.5
√
N CFEs in the quantum domain, it is reasonable to impose an upper bound also on the
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number of the classic domain CFEs, which may be set to the number of comparisons with

the generated OPF for maintaining the number of classic CF evaluations. In our approach

this upper bound was set to the BBHT-QSA time-out of LQD, max
BBHT = 4.5

√
N . Therefore, if

the length of the generated OPF is higher than or equal to the BBHT-QSA time-out, the

examined solution will not be compared to the generated OPF and a BBHT-QSA chain will

be invoked directly, since it would involve fewer CF evaluations. Under this perspective,

the number of CD-CFEs due to OPF comparisons would be upper bounded by:

LOPF, max
NDQO =

4.5
√
N∑

i=1

i = 2.25
√
N
(

1 + 4.5
√
N
)

. (4.11)

Based on Eq. (4.11) the upper bound involves a complexity on the order of O(N). As

for the BBHT-QSA, an additional restriction should be imposed. There exists an extreme

case, when only zero G applications are selected to be applied. In this case, since the

time-out is quantified in terms of the number of oracle queries, there is an extremely low

probability that the algorithm will fall into an infinite loop, where L = 0 is continuously

chosen in Step 4.1.2. This event would yield an upper bound of infinity. In fact, the effect

of this exceptional case could be mitigated. Upon reaching the critical stage4 [80] of the

algorithm, a valid solution would be output with a probability equal to 25%. Hence, it may

seem reasonable to exclude from the range the specific event of “choosing” 0 G applications

for avoiding the infinite loop trap. Additionally, the probability of success upon reaching

the critical stage will remain unaltered. Under this perspective, the worst case scenario,

as far as the CD-CFEs of the inner BBHT-QSA iterations are concerned, would be to

“choose” L = 0 in Step 4.1.3, until the critical stage (condition in Step 4.1.12) is reached

and where L = 1 is selected in Step 4.1.13 4.5
√
N − 1 times, or in other words until we are

a single QD-CFE away from the time-out condition, and at
√
N G applications during the

last iteration, following a greedy approach. Consequently, this operation will be repeated

for each solution yielding a complexity of:

LCD, max
NDQO = N

(

logλ
√
N + 4.5

√
N
)

, (4.12)

LQD, max
NDQO = N

(

5.5
√
N − 1

)

. (4.13)

Finally, the upper bound of the NDQO algorithm’s complexity may be quantified by sub-

stituting Eqs. (4.11-4.13) into (4.6), yielding:

Ltot,max
NDQO = 10N

√
N +N logλ

√
N + 9.125N + 2.25

√
N

= O(N
√
N)

= O(N3/2).

(4.14)

4The critical stage will be reached at exactly
⌈

logλ
√
N

⌉

BBHT-QSA iterations [80].
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Figure 4.5: Complexity of the NDQO algorithm compared to that imposed by the BF method
of Alg. 4.3; the mean number of CFEs is shown along with the upper and the lower
bounds, as they were derived in Eqs. (4.10) and (4.14). They are compared to the
naive-BF complexity as well as to the upper and lower bounds of the BF method of
Alg. 4.3, based on Eqs. (5.24) and (5.25), respectively. Both the NDQO algorithm’s
and the BF method’s average complexities are presented using box plots; the upper
and lower bounds of the boxes correspond to the 75% and 25% quartiles, respectively.
In addition, the observed maximum and minimum complexity values are presented
using horizontal lines. The mean complexity results have been averaged over 108 runs
for WMHNs based on the optimization problem of Eq. (2.7) relying on the UV defined
in Eq. (2.5) and on the assumptions of Table 2.1.

Therefore, the upper bound would involve a complexity on the order of O(N3/2), which is

still lower than that of the classical BF, which is O(N2).

The average complexity of the NDQO algorithm E
[

Ltot
NDQO

]

is shown in Fig. 4.5 for

WMHNs consisting of Nnodes = 2 to Nnodes = 9 nodes. Recall that the Pareto optimality

routing problem of Eq. (2.7) is associated with the UV of Eq. (2.5) relying on the as-

sumptions in Table 2.1. These average complexities are also compared to both the upper

and the lower bound of Eqs. (4.14) and (4.10) respectively, as well as to the respective

complexity of the classical BF algorithm, as they were derived in Eqs. (5.24) and (5.24).

The average complexity of the NDQO algorithm is presented in Fig. 4.5 with the aid of

boxes surrounding the bold dots and having different aspect ratios in order to portray its

stochastic nature. Explicitly, the upper and lower edges of the box boundaries at each

WMHN size represent the 25% and 75% quartiles, while the vertical bars correspond to

the maximum and minimum value of Ltot
NDQO found by our simulations. Observe in Fig. 4.5

that, naturally, the interquartile distance will increase as the number of WMHN nodes
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increases. In fact, the increase in the total number of routes would entail a higher variation

in the number of routes belonging to the OPF yielding a higher variation in the number

of BBHT-QSA time-outs needed in order to check the entire solution space. Additionally,

the average NDQO complexity tends to be closer to its upper bound for WMHNs up to

Nnodes = 5 nodes. This could be justified by the fact that, since three optimization ob-

jectives were used in our case based on Eq. (2.5), the OPF would be formed by at least

three routes, namely one for the minimum of each objective. Furthermore, the 4-node and

5-node WMHNs involve N = 5 and N = 16, routes in total respectively based on Eq. (2.8),

hence then approach the worst case scenario. However, as the network size is increased,

the ratio of the number of optimal routes over the number of the total legitimate ones will

decay, hence approaching the lower bound.

Furthermore, it may be observed from Fig. 4.5 that the NDQO tends to require less

CFEs than the classical BF method for WMHNs having more than Nnode = 6 nodes.

Explicitly, the NDQO algorithm becomes more efficient for realistic practical databases,

where a complexity reduction would be achieved by the use of the BBHT-QSA quantified in

terms of the QD-CFEs. This is achieved, if the BBHT-QSA’s complexity is lower than that

of its respective classical BF counterpart, which would serially check whether there exists

a route-solution that dominates the examined one, implying that the minimum required

size of a database should satisfy the condition of Ltot
BBHT < N , where Ltot

BBHT corresponds

to the complexity imposed by a single BBHT-QSA activation. Based on Eqs. (4.7) as well

as (4.9) for the lower bound and on Eqs. (4.13) as well as (4.12) for the upper bound, the

respective complexities of a single BBHT-QSA activation will be equal to:

Ltot,min
BBHT = 4.5

√
N + logλ

(

4.5
λ− 1

m

√
N + 1

)

+ 1, (4.15)

Ltot,max
BBHT = 10

√
N + logλ

√
N − 1. (4.16)

Therefore, based on Eqs. (4.15) and (4.16), the minimum database required size for

achieving a complexity reduction would be N best
min > 39 and Nworst

min > 123 routes for the

best- and the worst-case scenarios, respectively. In our routing application, this condition

becomes valid for the best-case scenario in WMHNs having six or more nodes, where the

total number of routes is N = 655, whereas in the 4-node and 5-node WMHNs it would

be equal to N = 5 and N = 16 routes, respectively, according to Eq. (2.8). Hence, we

observe in Fig. 4.5 that some complexity reduction is offered by the NDQO lower bound

for WMHNs consisting of seven nodes.

Moreover, as far as the complexity upper bound is concerned, the condition for achieving

a complexity reduction by the BBHT-QSA is satisfied for WMHNs having seven or more

nodes. This may be verified by the change in trend of the upper bound complexities

observed in Fig. 4.5 for the WMHNs consisting of Nnodes = 7 nodes. Explicitly, the upper

5A database of N = 128 entries is used for the 6-node WMHN, since the database length has to be
explicitly a power of 2 due to the binary nature of qubits.
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bound of the NDQO algorithm is seen to impose a lower complexity quantified in terms of

CFEs compared to the BF and the naive-BF methods. Furthermore, we observe in Fig. 4.5

that the BF method’s complexity upper bound imposes a higher number of CFEs compared

to the naive-BF one, owing to the number of excessive dominance comparisons invoked by

Step 4.3.4. As for the NDQO lower bound, where the only optimal route is the direct one,

we will achieve a better performance with respect to the BF method for WMHNs having

more than four nodes.

Additionally, as for the average complexity, observe in Fig 4.5 that the same aver-

age complexity is imposed for both the average NDQO algorithm and the BF method for

WMHNs consisting of six nodes. This is justified by considering the fact that even though

a beneficial complexity reduction is offered by the BBHT-QSA chains, there is a compu-

tational overhead which is imposed by padding our database so that it has a size equal to

a power of 2. Hence, the NDQO algorithm has a slightly higher average complexity than

the BF method. On the other hand, a substantial complexity reduction of about 50.5% is

offered on average for a 7-node WMHN, while for the 8-node and 9-node WMHNs we have a

complexity reduction of about 78.6% and 89% respectively, and it increases as the WMHN

becomes larger. This complexity reduction may be translated into a routing-latency re-

duction of 202%, 466% and 908% for WMHNs consisting of seven, eight and nine nodes,

respectively.

Last but not least, a substantial complexity reduction is offered by the NDQO algo-

rithm compared to the naive-BF method for WMHNs consisting of five or more nodes.

According to Fig. 4.5, a complexity reduction of about an order of magnitude is offered by

the NDQO algorithm for 6-node WMHNs, which is increased to several orders of magnitude

for WMHNs supporting more than six nodes.

4.6.2 NDQO Computational Accuracy

Before delving into the related NDQO accuracy discussions, the three metrics of computa-

tional accuracy that were used should be defined. To begin with, the optimization accuracy

may be quantified by the distance from the OPF, which is equal to the average Pareto dis-

tance E[Pd(x)] of the OPF exported from the true OPF. Assuming that the exported OPF

routes form a set SOPF having a length of
∣
∣SOPF

∣
∣, the average Pareto Distance E[Pd(x)]

from the OPF becomes:

E[Pd(x)] =
∑

x∈SOPF

Pd(x)

|SOPF| . (4.17)

Its physical interpretation is given by the average probability of a route belonging to the

hitherto generated OPF being dominated by the rest of the legitimate routes. Inherently,

if the generated OPF consists exclusively of routes of the true OPF, which is generated

by the BF method, the value of this metric would be equal to zero. On the other hand,

should the OPF consist of suboptimal points, its value will be bounded by the range (0, 1].

Consequently, it becomes plausible that as its value decays and tends to zero, the generated
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OPF approaches the true OPF.

Additionally, the accuracy may also be quantified in terms of the average normalized eu-

clidean distance between the exported routes, that are erroneously included in the exported

OPF, and the specific routes of the true OPF that are closer to the particular erroneous

one and they dominate them at the same time. Assuming an exported route xi from the

OPF and another xj , which corresponds to its counterpart from the true OPF, the related

error function e(xi) can be formulated as:

e(xi) =
1√
K

√
√
√
√

K∑

k=1

(
fk(xi)− fk(xj)

fk(xj)

)2

, (4.18)

where K is the total number of UFs. From this perspective, the average error E[e(x)]

would be equal to:

E[e(x)] =
∑

x∈SOPF

e(x)

|SOPF| . (4.19)

This metric has the advantage that its value becomes independent from the distribution

of the routes within the higher-rank Pareto Fronts. This is desirable, because there may

exist route-solutions, which would potentially belong to a suboptimal PF, which is pretty

close to the OPF, while their solution vectors are rather distant from those of their OPF

counterparts. However, its value in Eq. (4.19) would inherently depend on the actual values

of the route solution vector. This is in contrast to the average Pareto distance. Explicitly,

the value of Eq. (4.19) would be bounded by the range [0, 1].

The third metric considered is what we refer to as the Optimal Pareto Front Completion

C, which is defined as follows. Let us that the optimization process has generated the set

SOPF of Pareto-optimal routes of length equal to
∣
∣SOPF

∣
∣, while the truly Pareto-optimal

routes form the set STOPF, which we will refer to as the true OPF (TOPF), and that the

sub-optimal routes not belonging to the true OPF form the set SOPF
e with SOPF

e ⊆ SOPF,

the Optimal Pareto Front Completion C may be defined as:

C =

∣
∣SOPF

∣
∣−
∣
∣SOPF

e

∣
∣

|STOPF| , (4.20)

where
∣
∣STOPF

∣
∣ is the length6 of the TOPF. Naturally, this metric is bounded to the range

[0, 1] and should the entire true OPF be successfully generated it will be equal to unity.

Having defined these metrics, let us now carry out a comparative study. We will consider

the Pareto-optimal routing problem of Eq. (2.7) associated with the UV of Eq. (2.5).

Subsequently, we will evaluate the OPF generated by the NDQO algorithm and compare

its accuracy to that of the NSGA-II and of the MO-ACO algorithm, which are presented

in Sections 2.4 and 2.5, respectively. For the NSGA-II and the MO-ACO the evaluation of

6The length of a PF may be defined as the number of route-solutions, which it consists of.
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the hitherto generated OPF will be provided at the end of each generation process. As for

the NDQO algorithm, there is no notion of generations, hence the evaluation process will

be invoked each time a route is included to the OPF (right after Step 4.2.13). However,

since the total number of CFEs required by the BBHT-QSA chains is a rather stochastic

process upper bounded by Lmax
BBHT CFEs as defined in Eq. (4.16), the evaluation process

will be activated at different Ltot
NDQO values. We will assume that between these evaluation

processes the aforementioned accuracy metrics remain constant, which results in a sum of

step functions for each simulation. We can then extract a continuous distribution of these

metrics versus the number of CFEs by performing an averaging operation. The simulation

parameters of the NSGA-II and of the MO-ACO algorithm are presented in Table 2.2,

where the parameter Ltot
CFE corresponds to the maximum complexity observed in terms of

the number of CFEs imposed by the NDQO algorithm in our simulations. Explicitly, we

have set Ltot
CFE equal to 1728, 6859 and 25852 CFEs for WMHNs consisting of 6 and 7

nodes, respectively, based on Fig. 4.5.

The accuracy metrics are shown in Figs. 4.6, 4.7 and 4.8 for 6-node, 7-node and 8-

node WMHNs, respectively. For all the WMHNs considered, as far as the average Pareto

distance E[Pd(x)] is concerned, it becomes clear from Figs. 4.6(a), 4.7(a) and 4.8(a) that

the NDQO algorithm exhibits a far better performance than the NSGA-II and the MO-

ACO algorithm. Explicitly, observe in Fig. 4.7(a) that for the 7-node WMHNs the NDQO

performs optimally for 502 CFEs and then the average Pareto distance E[Pd(x)] would

be about 10−8. Additionally, the same effect is visible from Fig. 4.6(a) for the 6-node

WMHNs scenario, where the NDQO performs optimally for 288 CFEs. The order of these

values suggests that our NDQO algorithm attains a near-optimal performance compared

to the BF method, while its complexity is about an order of magnitude lower than the

complexity of the BF method for the 7-nodes WMHNs, according to Fig. 4.5. Moreover,

according to Figs. 4.6(a), 4.7(a) and 4.8(a), the computational accuracy in terms of the

average Pareto distance is several orders of magnitude lower than that of both the NSGA-II

and of the MO-ACO algorithm. It should be noted that the associated errors of the NDQO

algorithm arise from the inclusion of suboptimal route-solutions into OPF. To elaborate

further, the BBHT-QSA involves a small arbitrary error [80], which would imply that there

is a slight possibility that a BBHT-QSA time-out will result in a suboptimal route owing

to its inability to find another dominating route, which results in misinterpreting it as the

optimal one. However, the inclusion of the entire true OPF route set is guaranteed, because

all the routes will be explicitly considered. This leads to a generated OPF which consists

of all the true OPF routes along with with some low-probability suboptimal ones.

This trend is shown in Figs. 4.6(c), 4.7(c) and 4.8(c) in terms of their Optimal Pareto

Front Completion C. More specifically, observe in Fig. 4.7 (c) that although the NSGA-

II and the MO-ACO algorithm fail to converge to unity, the NDQO algorithm succeeds

in exporting all the routes consisting the true OPF after 5575 CFEs, yielding a 234.22%

and 1906.30% improvement for our 7-node WMHN compared to the BF and the naive-BF

methods, respectively. This gain is further increased the number of nodes increases. This

property of the NDQO algorithm is of great importance, since it enables the reconstruc-
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tion of the OPF by invoking a classical NDS for discarding the erroneous route-solutions.

Nevertheless, this operation would require additional CFEs. This action cannot be invoked

for our benchmarking algorithms, since their completeness does not converge to unity and,

consequently, they will fail to export all the true OPF route-solutions. As for the 8-node

WMHNs, observe in Fig. 4.8(c) that the NDQO algorithm succeeds in identifying the entire

OPF after 25852 CFEs, yielding a 540.82% and 14981.30% improvement against the BF

and the naive-BF methods, respectively, On the other hand, it is clear from Fig. 4.6 (c) that

the entire true OPF is explicitly identified after 1583 CFEs for 6-node WMHNs, yielding

the same complexity as the one of the BF method, as it can be seen in Fig. 4.5, yet we

need to stress out that the NDQO still outperforms the performances in terms of C of the

NSGA-II and the MO-ACO algorithm for 6-node WMHNs.

As far as the average error E[e(x)] is concerned, identical trends to these seen for the

average Pareto distance are observed in Figs. 4.6(b), 4.7(b) and 4.8(b); however, the value

of this metric is higher than that of the E[Pd(x)]. Quantitatively, they are on the order

of 10−5 for WMHNs considered. This error is about four orders of magnitude lower than

the the respective error of both the NSGA-II and the MO-ACO algorithm. Explicitly, our

proposed algorithm has a near-optimal accuracy, since each generated OPF route would

differ from the closest true OPF, which would potentially dominate it, by about 0.001%.

Last but not least, note that there is a discrepancy between the value of the average

error and that of the average Pareto distance. Explicitly, a relatively low Pareto distance

value does not imply having an average error on the same order of magnitude. This is

justified by the fact that a specific suboptimal route-solution that has been erroneously

included in the OPF by any of the NSGA-II, MO-ACO and NDQO Algs. might belong to

a rather low rank PF, i.e. to a PF whose routes are dominated by a relatively low number of

route-solutions. By contrast, there is a high probability that this specific suboptimal route

exhibits a relatively high average error, since the Pareto-optimal route, which dominates

it, exhibits far lower UFs. In a nutshell, we can surmise that the trend is the same for

both metrics. However, the two metrics give different information about the OPF. More

specifically, the Pareto distance demonstrates the rank of the identified OPF with respect to

the TOPF. By contrast, the average error demonstrates the average potential improvement

in terms of the UFs that the TOPF offers, when compared to the identified OPF.

4.7 Chapter Summary

In this chapter we have presented our contribution in [1]. In particular, we have proposed

a near-optimal algorithm for multi-objective routing in WMHNs using Pareto Optimal-

ity. The theoretical upper and lower complexity bounds of the NDQO algorithm have

been analytically derived, yielding a complexity between O(N) and O(N
√
N). This im-

plies a significant CFE reduction compared to the classical BF method, which exhibits

a complexity on the order of O(N2) in the worst-case scenario. Naturally, this complex-

ity reduction becomes more significant, as the number of nodes increases. As far as its

accuracy is concerned, we have demonstrated that the NDQO algorithm exhibits a near-
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optimal performance whilst attaining several orders of magnitude better accuracy than the

state-of-the-art classical evolutionary NSGA-II and MO-ACO algorithms.

Despite the substantial reduction in computational complexity achieved by the NDQO,

while retaining a near-optimal performance, when compared to the BF method, the NDQO

algorithm seems to provide some room for improvement. To elaborate further, its main

issue lies in the fact that the serial processing of the routes, invoked in Step 4.2.3, imposes

a complexity equal to N CFEs, which is substantially high for densely populated WMHNs.

This issue leads to the need of implementing a sophisticated method with reduced com-

plexity for finding the next initial route-solution that initiates a BBHT-QSA chain, which

will in turn reduce the lower bound potentially below O(N).

Moreover, serially processing all the legitimate routes imposes an additional obstacle.

Explicitly, this process is stochastic and hectic in certain cases, where there is a need for

invoking the NDQO algorithm with a certain number of CFEs. Then, there is no guar-

antee from the characterization of this algorithm how many OPF route it would generate.

Therefore, this process oughts to be improved so that it becomes iterative, giving in turn

the NDQO an iterative nature. Additionally, we have mentioned in the Subsection 4.6.2

that the NDQO is capable of identifying the entire true OPF, as it can be observed from

Figs. 4.6(c), 4.7(c) and 4.8(c). This provides us with motivation for employing a reduced-

complexity mechanism for repairing the OPF generated by the NDQO algorithm, resulting

in optimal an performance at the expense of some additional CFEs.

Finally, the issues arising from the characterization of the NDQO algorithm provide us

with all the necessary motivation for improving the existing algorithm, while ensuring that

its function will be iterative. These improvements are discussed in detail in the next chapter,

where we present the so-called Non-Dominated Quantum Iterative Optimization (NDQIO)

algorithm, which utilizes hybrid synergy of both the QP and the hardware parallelism.
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Figure 4.6: Perfomance comparison between the NDQO and the state-of-the-art benchmarking
algorithms NSGA-II and MO-ACO for 6-node WMHNs in terms of (a) the Average
Pareto Distance E[Pd(x)], (b) the Average ErrorE[e(x)] and (c) Optimal Pareto Front
Completion E[C]. For the sake of fairness, the comparisons are made in terms of the
number of CFEs for all the algorithms examined. The number of agents has been set
equal to the number of the generations for both the NSGA-II and the MO-ACO, which
in turn is equal to the cubic root of the maximum NDQO complexity. Therefore, they
will be set to 12 for 6-node WMHNs. The results have been averaged over 108 runs
for WMHNs based on the optimization problem of Eq. (2.7) relying on the UV defined
in Eq. (2.5) and on the assumptions of Table 2.1. Finally, the rest of the simulation
parameters for both the NSGA-II and the MO-ACO are presented in Table 2.2.
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Figure 4.7: Perfomance comparison between the NDQO and the state-of-the-art benchmarking
algorithms NSGA-II and MO-ACO for 7-node WMHNs in terms of (a) the Average
Pareto Distance E[Pd(x)], (b) the Average Error E[e(x)] and (c) Optimal Pareto Front
Completion E[C]. For the sake of fairness, the comparisons are made in terms of the
number of CFEs for all the algorithms examined. The number of agents has been set
equal to the number of the generations for both the NSGA-II and the MO-ACO, which
in turn is equal to the cubic root of the maximum NDQO complexity. Therefore, they
will be set to 19 for the 7-node WMHNs. The results have been averaged over 108 runs
for WMHNs based on the optimization problem of Eq. (2.7) relying on the UV defined
in Eq. (2.5) and on the assumptions of Table 2.1. Finally, the rest of the simulation
parameters for both the NSGA-II and the MO-ACO are presented in Table 2.2.
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Figure 4.8: Perfomance comparison between the NDQO and the state-of-the-art benchmarking
algorithms NSGA-II and MO-ACO for 8-node WMHNs in terms of (a) the Average
Pareto Distance E[Pd(x)], (b) the Average ErrorE[e(x)] and (c) Optimal Pareto Front
Completion E[C]. For the sake of fairness, the comparisons are made in terms of the
number of CFEs for all the algorithms examined. The number of agents has been set
equal to the number of the generations for both the NSGA-II and the MO-ACO, which
in turn is equal to the cubic root of the maximum NDQO complexity. Therefore, they
will be set to 30 for 8-node WMHNs. The results have been averaged over 108 runs
for WMHNs based on the optimization problem of Eq. (2.7) relying on the UV defined
in Eq. (2.5) and on the assumptions of Table 2.1. Finally, the rest of the simulation
parameters for both the NSGA-II and the MO-ACO are presented in Table 2.2.



Chapter 5

Non-dominated Quantum Iterative

Optimization

5.1 Introduction

As we pointed out in Section 4.7, the NDQO algorithm exhibits some limitations, which

do not allow the complexity reduction to reach its full potential. More specifically, we

have mentioned that serially processing all the legitimate routes provides us with an ex-

plicit asymptotic lower bound on the order of O(N), where N denotes the total number of

legitimate routes. This lower bound makes the employment of the NDQO algorithm grad-

ually more infeasible, as the number of nodes that populate the WMHN increases, leading

to an exponential increase in the total number of legitimate routes. For example, for a

12-node WMHN, based on Eq. (2.8) the resultant number of legitimate routes becomes

N = 224 = 16, 777, 216, making its multi-objective routing optimization solely feasible by

employing sub-optimal heuristic algorithms such as the NSGA-II [29] and the MO-ACO [52]

of Sections 2.4 and 2.5, respectively. Clearly, the BF method cannot be applied due to its

excessive requirements in both computations and memory. Therefore, our main challenge

is to further reduce the computational complexity, so that the lower bound tends to a lower

order, such as O(
√
N), which corresponds to the complexity imposed by Grover’s QSA,

as presented in Section 3.3.2. This may be achieved by converting the serial search into a

predominantly parallel quantum-assisted sub-process.

In addition to this computational complexity reduction, our algorithm has to perform

optimally in terms of its heuristic accuracy. Therefore, based on the fact that the NDQO

algorithm is able to identify the entire true OPF by reaching a Pareto Completion Ratio

C equal to unity based on Figs. 4.6(c), 4.7(c) and 4.8(c) of Section 4.6.2, we have to

employ an OPF self-repairing process for addressing this issue. However, this process would

impose an additional amount of CFEs, which would be traded for the sake of attaining am

increased accuracy. Moreover, we intend to structure our new algorithm so that it exhibits

an iterative nature. This design requirement is of great importance for the case, when a

95
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time- or power-dissipation constraint is imposed in conjunction with a requirement for the

minimum number of identified OPF route-solutions.

Furthermore, another issue that has not been considered in Section 4.7 is how route-

processing is being conducted. Explicitly, there are several contributions [144,145,146,147,

148,149,150], which use another realm of parallelism, namely that of the Hardware Paral-

lelism (HP), for achieving a complexity reduction, while addressing the routing problem.

The complexity reduction offered by HP has been mainly enabled through the use of Graph-

ics Processing Units (GPU) [151] architectures for general purpose programming [152] apart

from Central Processing Units (CPU). As for the routing problem, Han et al. [144] intro-

duced a hybrid GPU-CPU concurrent framework for routers, which offered a substantial

complexity reduction in the context of the global routing problem. Additionally, both Mu

et al. [145] and Zhao et al. [146] proposed their routing algorithms, which were tailored

for Internet Protocol (IP) routers having GPU architectures. In a similar context, namely

that of the Travelling Salesman Problem (TSP), Uchida et al. [148] conceived a parallel im-

plementation of the Ant Colony Optimization (ACO) algorithm, while Cekmez et al. [149]

deployed a parallel version of the GA, both for addressing the TSP problem using GPUs.

Consequently, prior to setting the design goal for our new algorithm, we will present a

brief overview of the prevalent processing techniques used for solving combinatorial prob-

lems. In particular, these techniques may be classified into three major categories [87], -

namely serial processing, parallel processing relying on hardware parallelism and quantum

processing relying on quantum parallelism - as portrayed in Fig. 5.1, which might be visu-

alized for the sake of simplicity using the paradigm of unlocking a specific lock. We note

that in Fig. 5.1 the keys symbolize the set of routes, while the event of inserting a specific

key in the keyhole represents processing the corresponding route.

In serial processing the full set of available keys has to be checked sequentially for

each keyhole to ascertain as to whether they do or do not unlock the door. This type of

processing is referred to as “Pure Serial Processing” in Fig. 5.1. The employment of graphics

processing units in routing [145,146,147,148,149] has unveiled a new perspective, where all

the keys can be simultaneously inserted into identical keyholes for unlocking the door; this

type of process is referred to as “Pure Parallel Processing” in Fig. 5.1. Nevertheless, there

are practical cases, where the parallel processes have to be synchronized [144, 148, 149],

leading to an inevitable decomposition of the task into a series of carefully coordinated

parallel steps. This type of processing is referred to as “Hybrid Parallel-Serial Processing”

in Fig. 5.1, where the consecutive doors denote the decomposition of the task.

Subsequently, quantum processing has been brought to the limelight, as a benefit of

the advances in quantum computing [74, 75, 76, 77, 79, 80, 81, 78, 82, 83, 85, 89, 86]. In fact,

there are algorithms relying solely on the philosophy of QP [76, 77, 79, 78, 83], such as

Grover’s QSA presented in Section 3.3, which are classified as “Pure Quantum Processing”

in Fig. 5.1. Explicitly, a “quantum” keyhole is represented as an elaborate single lock

having multiple keyholes for portraying the principles of the QP [62]. On the other hand,

some other quantum algorithms, such as the BBHT-QSA [80], the DHA [81] and the NDQO

algorithm [1] presented in Sections 3.4, 3.5 and 4.4, respectively, decompose the overall task
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Figure 5.1: Pure processing categories along with their respective hybrid cases. The example used
in the illustation was inspired by [87].

into sequential sub-problems, which are individually handled with the aid of the QP. This

decomposition is inherently necessary, since these algorithms involve the measurement or

observation operation [67], which terminates the quantum processes by collapsing the effect

of the QP [62]. This type of processing is termed as “Hybrid Quantum-Serial Processing”

in Fig. 5.1. Additionally, some independent processes may be simultaneously invoked for

the sake of achieving either a further complexity reduction by benefiting both from the QP

and from the HP, or a more coherent entanglement [62] of the outputs of the independent

processes. This specific case is referred to as “Hybrid Parallel-Quantum Processing” in

Fig. 5.1. Nevertheless, further decomposition of the overall task into sequential steps may

be inevitable due to the measurement or observation operations that the task may involve.

Therefore, this latter type of processing involves a synergy of all the potential processing

types and it is hence referred to as “Hybrid Parallel-Quantum-Serial Processing” in Fig. 5.1.
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This hybrid case will be our lead for designing the quantum oracle gates of our new

algorithm, namely for Non-Dominated Quantum Iterative Optimization (NDQIO). The

discussions regarding quantum oracles benefiting from the HP are presented in Section 5.2.

Subsequently, we will elaborate on the NDQIO’s algorithmic step in Section 5.3. We note

that in this chapter we will consider the same network model as that used in Chapter 4,

namely the Pareto optimality problem of Eq. (2.7) using the UV defined in Eq. (2.5)

and complying with the specifications of Table 2.1. In addition to these assumptions, we

consider the case of weak Pareto optimality presented in Definition 3, as in the NDQO

algorithm of Chapter 4. We will then utilize the same 5-node WMHN used in the tutorial

of Section 4.5 for the sake of presenting a low-paced tutorial on the NDQIO algorithm’s sub-

processes in Section 5.4. Finally, we will analytically characterize the complexity imposed

by the NDQIO algorithm and evaluate its heuristic accuracy in Sections 5.5.1 and 5.5.2,

respectively. Note that we will compare the NDQIO algorithm’s heuristic search to that

of the NSGA-II, the MO-ACO and the NDQO algorithms of Sections 2.4, 2.5 and 4.4,

respectively. Let us now proceed with a detailed description of the HP-empowered quantum

oracle gates, which we will utilize in the NDQIO algorithm.

5.2 Parallel Oracle Design

In the introduction of this chapter, we have mentioned that it is possible to perform inde-

pendent quantum operations in parallel. However, we pointed out that an entanglement

control process is necessary for the synchronization of independent quantum processes. Be-

fore delving into the details of the design process, let us provide a brief description of the

quantum entanglement phenomenon [153]. For this reason, let us assume a unitary oper-

ator Uf , which implements a binary function f(x) : {0, 1, . . . , N − 1}→{0, 1}, as shown in

Fig. 5.2. We note that the unitary operator Uf is similar to that presented in Fig. 3.1; their

difference relies upon the fact that the OW quantum register is initialized to the arbitrary

state |t〉2. Additionally, let us consider that the QIR input |x〉1 is set to the superimposed

state:

|x〉1 =
1√
N

N−1∑

n=0

|n〉 , (5.1)

Figure 5.2: Quantum circuit of a unitary operator Uf implementing a binary function f(x) :
{0, 1, . . . , N − 1}→{0, 1}. The non-staight lines between the QIR and OW outputs
denote quantum entanglement of their states.

where {|n〉}N−1
n=0 corresponds to all the possible inputs of the function f(x), Then, the
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unitary operator Uf would have the following effect on the input states:

|x〉1 |t〉2
Uf−→|x〉1 |t⊕ f(x)〉2 =

1√
N

N−1∑

n=0

|n〉1 |t⊕ f(n)〉2. (5.2)

The outcome of Eq. (5.2) is indeed a superposition of composite states. Let us now

provide an example to portray the concepts of these states. Assuming that we have N = 4

and t = 0 and that the function f(x) is defined as follows:

f(x) = mod 2(x), x ∈ {0, 1, 2, 3}, (5.3)

based on Eq. (5.3), the Eq. (5.2) is then transformed into:

|x〉1 |t〉2
Uf−→|x〉1 |0⊕ f(x)〉2 =

1

2

3∑

n=0

|n〉1 |t⊕ f(n)〉2 (5.4)

=
1

2
|0〉1 |0〉2 +

1

2
|1〉1 |1〉2 +

1

2
|2〉1 |0〉2 +

1

2
|3〉1 |1〉2 (5.5)

=
1

2
(|0〉1 + |2〉1) |0〉2 +

1

2
(|1〉1 + |3〉1) |1〉2 (5.6)

At this stage, let us assume that we attempt to perform a measurement on the QIR

output, i.e. that we attempt to observe the output of the register |x〉1. This type of

observation is often referred to as partial measurement [87]. Based on Eqs. (3.12) and

(5.5), the probability p(n) of observing the state |n〉1, where we have n ∈ {0, 1, 2, 3}, is

equal to:

p(n) =
∑

∀y∈{0,1}

∣
∣
∣a|n〉1|y〉2

∣
∣
∣

2
= 1/4, ∀n ∈ {0, 1, 2, 3}, (5.7)

where a|n〉1|y〉2 corresponds to the amplitude of the composite state |n〉1 |y〉2. Based on Eqs.

(3.16), (3.17) and (5.5), the post-measurement product |qnew〉 is equal to [87]:

|qnew〉|n=0 =

∑

∀y∈{0,1}
a|0〉1|y〉2 |0〉1 |y〉2
√

p(0)
= |0〉1 |0〉2 , (5.8)

|qnew〉|n=1 =

∑

∀y∈{0,1}
a|1〉1|y〉2 |1〉1 |y〉2
√

p(1)
= |1〉1 |1〉2 , (5.9)

|qnew〉|n=2 =

∑

∀y∈{0,1}
a|2〉1|y〉2 |2〉1 |y〉2
√

p(2)
= |2〉1 |0〉2 , (5.10)

|qnew〉|n=3 =

∑

∀y∈{0,1}
a|3〉1|y〉2 |3〉1 |y〉2
√

p(3)
= |3〉1 |1〉2 . (5.11)

If we assume the observable |n〉1 and take into account the Eq. (5.3), the above Eqs. can
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be grouped into a single one, which is equal to:

|qnew〉|n =
a|n〉1|f(n)〉2 |n〉1 |f(n)〉2

√

p(n)
= |n〉1 |f(n)〉2 . (5.12)

Observe in Eq. (5.12) that although a partial measurement has been conducted on the QIR,

the OW register also collapses to the respective classical state depending on the outcome

of Eq. (5.3), due to the linkage caused by quantum entanglement introduced by Uf .

Moving on to the design of the NDQIO algorithm oracle gates, let us now assume that we

have K different unitary operators Ufk , where we have k ∈ {1, . . . ,K}. We have mentioned

in the introduction of this chapter that we opt for fully parallelizing our independent

quantum procedures. Thus, let us assume that we activate these unitary operators in

parallel, as portrayed in Fig. 5.3. We note that the QIR input is set equal to the equal

superposition of all the possible inputs, i.e. we have:

|x〉k,1 =
1√
N

N−1∑

n=0

|n〉k,1. (5.13)

Hence, the input state |yin〉 of the parallel formation of these unitary gates is equal to:

|yin〉 =
1√
NK

N−1∑

n=0

|n〉1,1 |t〉1,2 . . .
N−1∑

n=0

|n〉k,1 |t〉k,2 . . .
N−1∑

n=0

|n〉K,1 |t〉K,2 . (5.14)

Subsequently, applying the parallel formation of the unitary operators {Ufk}Kk=1 into the

input state of Eq. (5.14) results in the following output state |yout〉:

|yout〉 =
1√
NK

N−1∑

n=0

|n〉1,1 |t⊕ f1(n)〉1,2 . . .
N−1∑

n=0

|n〉k,1 |t⊕ fk(n)〉k,2 . . .
N−1∑

n=0

|n〉K,1 |t⊕ fK(n)〉K,2 .

(5.15)

The output state |yout〉 of Eq. (5.15) is clearly not an entangled composite state, since the

Figure 5.3: Unitary operators implementing the functions {fk(x)}Kk=1 in parallel.
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output states of different unitary operators are not correlated in the absence of quantum

entanglement. This setup poses a strong limitation, since it is not possible to combine the

operator outputs together in the same fashion as the NDQO quantum oracle of Fig. 4.1,

where a Tofolli gate [62] was used for this reason. However, if the input QRs
{

|x〉k,1
}K

k=1
are indeed entangled together, the output state |yout〉 becomes equal to:

|yout〉 =
1√
N

N−1∑

n=0

|n〉1,1 |t⊕ f1(n)〉1,2 . . . |n〉k,1 |t⊕ fk(n)〉k,2 . . . |n〉K,1 |t⊕ fK(n)〉K,2 .

(5.16)

Observe now that the output state |yout〉 of Eq. (5.16) is indeed an entangled composite

state and, thus, it is possible to combine the outputs
{

|t⊕ fk(n)〉k,2
}K

k=1
in the same fashion

as in the NDQO oracle gate using a Toffoli Gate [62]. We remind that the n-qubit Toffoli

gate T [143] has been defined in Eq. (4.3). In our specific scenario, each operator Ufk has a

single-qubit LOW output and the GOW is also comprised of a single qubit, while the UV

of Eq (2.5) is comprised by K = 3 UFs. Therefore, we will use a 4-qubit Toffoli gate, i.e.

we have n = 4 qubits in Eq. (4.3).

Having this observation as our motivation, let us now proceed by presenting the par-

allel implementation of the strong dominance operator. More specifically, we propose the

employment of the unitary operator Ug′ , the quantum circuit of which is shown in Fig. 5.4.

Its main difference to the unitary operator Ug of the NDQO algorithm, which is presented

in Fig 4.1, lies in the use of CNOT gates right before the input of the unitary operators Ufk

that implement the low-comparison-check. By contrast, in the unitary operator Ug Fig. 4.1

the QIR and QCR outputs of the unitary operator Ufk are fed forward to the Ufk+1
opera-

tor. These CNOT gates are employed for the sake of entangling the states of both the Global

Quantum Control Register (GQCR) and the Global Quantum Index Register (GQIR) to

the respective local ones, i.e to the Local Quantum Control Registers (LQCRs) and to the

Local Quantum Index Registers (LQIRs), for creating entangled composite states. Their

employment is essential for forming the entangled composite state:

|y〉outLOW =

N−1∑

x=0

|f1(x, i)〉1,3 |f2(x, i)〉2,3 |f3(x, i)〉3,3 (5.17)

at the LOW outputs. In the absence of entanglement, the respective LOW output state

will be:
∣
∣y′
〉out

LOW
=

N−1∑

x1=0

N−1∑

x2=0

N−1∑

x3=0

|f1(x1, i)〉1,3 |f2(x2, i)〉2,3 |f3(x3, i)〉3,3 , (5.18)

making the implementation of the dominance operator infeasible.

With the entanglement achieved by the employment of the series of the CNOT gates,

the Ug′ operator has identical effect as the Ug operator, i.e. we have:

N−1∑

x=0

|i〉1 |x〉2 |t〉3
Ug,Ug′−→

N−1∑

x=0

|i〉1 |x〉2 |t⊕ g(x, i)〉3 , (5.19)
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Figure 5.4: Parallel implementation of the domincance operator used in NDQIO algorithm, when
considering 3 UFs.

where the function g(x, i), which is defined in Eq (4.1), corresponds to the strong Pareto

dominance comparison between the route associated with the index x and the reference

route associated with the index i. Consequently, if we set the GOW register to the state

|0〉3, the Ug′ operator would return the outcome of the dominance operator and store it in

the GOW output. Otherwise, if the GOW register is set to the state |−〉3, then the Ug′

operator operates identically to the Grover’s QSA Quantum Oracle Gate O, flipping the

phase of the route-solutions, which satisfy the condition of having g(x, i) = 1. Furthermore,

the main improvement of the new design relies on the fact that we have achieved parallel

activation of the unitary operators Ufk .

As for the computational complexity imposed by the Ug′ operator, we will utilize two

distinct complexity metrics, namely the parallel complexity and the sequential complexity.

To elaborate further, the parallel complexity considers the degree of hardware parallelism

in the quantum circuits and it is deemed to be commensurate with the circuit’s normalized

time execution. As for the sequential complexity, it does not take into account the degree

of parallelism offered by the quantum circuit’s architecture. Hence, the latter is deemed to

be commensurate with the circuit’s normalized power consumption. Both these complexity

metrics rely on the number of CFEs. As for the definition of a single CFE, we will assume

that a single CFE is imposed by a single activation of the Ug shown in Fig. 4.1 both in the

parallel and in the sequential complexity domains. Note that we have opted for this specific

definition for the sake of complying with the complexity analysis of both the Ug operator

and of the NDQO algorithm presented in Sections 4.2 and 4.6.1, respectively. Based on

the aforementioned assumptions, the Ug′ operator requires a single CFE in terms of its

sequential complexity, since the same number of K Ufk operators is activated as in the

Ug operator. By contrast, due to the parallel activation of the Ufk operators within the

Ug′ operator of Fig. 5.4, a single activation of the Ug′ imposes a parallel complexity equal

to 1/K CFEs. In our specific application, namely in the Pareto optimaltiy problem of
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Eq. (2.7) associated with the UV of Eq. (2.5), we have set K = 3, since the UV considered

consists of 3 UFs. We note that for the sake of simplicity we have assumed that both the

series of CNOT gates and the Toffoli gate consume negligible power compared to the Ufk

operators and that their response time is negligible. Having presented our novel parallel

oracle design, let us now proceed with our detailed discussions of the NDQIO algorithm.

5.3 Non-Dominated Quantum Iterative Optimization

Our ultimate target is to reduce the lower bound of the complexity below the O(N) com-

plexity dependence, yielding a further reduction of the average complexity. Therefore, we

have revisited the framework presented in Section 4.4 with the objective of conceiving a

hybrid design relying both on hardware parallelism and on quantum parallelism. More

specifically, we will introduce a low-complexity initialization process for identifying the

globally optimal routes, along with a sophisticated quantum-assisted process for finding

new and potentially optimal routes. Furthermore, we have introduced an OPF Self-Repair

(SR) process, which discards the suboptimal routes that have been erroneously included

in the OPF, hence providing the NDQIO with an improved accuracy compared to the

near-optimal NDQO algorithm’s accuracy, as it can be readily verified from Figs. 4.6(a,b),

4.7(a,b) and 4.8(a,b).

The NDQIO algorithm is formally stated in Alg. 5.1, where each distinct block is an-

notated using a comment starting with the character “#”. Additionally, we provide its

flowchart, which is shown in Fig. 5.5. In a nutshell, the NDQIO algorithm initializes

the OPF to an empty set during Step 5.1.1 and then invokes the initialization process of

Steps 5.1.3-6, where the DHA is activated as many times as the number of optimization

objectives for the sake of identifying the globally optimal routes in terms of each objec-

tive. Subsequently, the iterative part of the algorithm is activated. At each iteration of

Steps 5.1.8-30, the algorithm initially searches for a route, which is not dominated by the

hitherto generated OPF using the BBHT-QSA process of Step 5.1.12. Should it succeed in

identifying an appropriate route, it activates the BBHT-QSA chain of Steps 5.1.20-25, in

the same fashion as the one in the NDQO algorithm. After the completion of the chain, the

OPF Self-Repair (OPF-SR) process is invoked in Steps 5.1.27-28, where the routes of the

OPF generated so far are checked to ascertain, whether they are dominated by the optimal

route identified by the current iteration of the BBHT-QSA chain of Steps 5.1.20-25. The

algorithm terminates and outputs the OPF, when the BBHT-QSA fails to identify a new

potentially optimal route as formally defined by the condition of Step 5.1.30, concluding

that there exists no other Pareto optimal route. Last but not least, we note that all the

single-objective comparisons as well as the dominance operator activation have been car-

ried out using the same quantum unitary operators as those used for forming the QSAs

quantum oracles; the only difference relies upon the fact that in the OW register the input

is initialized to the |0〉 state. Therefore, in constrast to the NDQO algorithm formally

presented in Alg.4.2, in the NDQIO algorithm there is no distinction between the CD- and

the QD-CFEs, since they are exclusively undertaken in the QD. Let us now proceed with
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Figure 5.5: NDQIO algorithm’s flowchart.

our detailed discussions on each distinct sub-process of the NDQIO algorithm.

5.3.1 Initialization Process

In the NDQO algorithm, which is formally stated in Alg. 4.2, no initialization process has

been used; instead, the algorithm considers by default the first index of the legitimate

route list as the first reference route and then initiates a BBHT-QSA chain. Despite the

reduction offered by the hardware parallelization, the power consumption remains the same

as that of the NDQO algorithm, as we demonstrated in Section 5.2. In fact, it is possible

to achieve the same reduction in the power consumption as well by using the DHA for

identifying the globally optimal routes in terms of each objective. To elaborate further,

a single unitary operator Ufk , which is defined in Eq. (4.2), is used for implementing a

comparison in terms of the k-th objective, yielding a reduction in the sequential complexity

per DHA activation, which is proportional to the number of optimization objectives. In

fact, assuming K optimization objectives, this sequential complexity reduction results in

identifying K OPF routes, while consuming the same amount of parallel and sequential

complexity as in a single NDQO BBHT-QSA chain, which would only identify a single
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Algorithm 5.1 Non-Dominated Quantum Iterative Optimization Algorithm

1: Set OPF ← ∅.
2: # Initialization Process:
3: for k = 1 to K do

4: Invoke the DHA of Alg. 5.2 with input function fk(x, i), where i is the index of a
random legitimate route, and output xs.

5: Append xs to the OPF .
6: end for

7: # Iterative Step:
8: repeat

9: # Backward BBHT-QSA Step:
10: Set F ← 0 and T ← 0.
11: repeat

12: Invoke the BBHT of Alg. 4.1 with input the function G(x,OPF ) defined in
Eq. (5.20) and output xs.

13: if G(xs, OPF ) = 1 then

14: Set F ← 2 and T ← 1.
15: else

16: Set F ← F + 1.
17: end if

18: until F = 2
19: if T = 1 then

20: # BBHT-QSA Chain:
21: repeat

22: Set i← xs.
23: Define the oracle function g(x, i) from (4.1).
24: Invoke the BBHT-QSA of of Alg. 4.1 with input g′(x, i) and output xs.
25: until f(xs) ⊁ f(i).
26: # Self-Repair Mechanism:
27: Discard the routes from the OPF that are dominated by the i-th one.
28: Append i to the OPF.
29: end if

30: until T = 0.
31: Export the OPF and exit.

OPF route. More explicitly, a single DHA activation imposes the same amount of parallel

complexity, when compared to a single NDQO BBHT-QSA chain, while it simultaneously is

also offering a sequential complexity reduction by a factor of 1/K. We note that in our case

study we have considered K = 3 optimization objectives according to Eq. (2.5). However,

the application of the DHA is limited to identifying only globally optimal routes in terms

of a single objective and not the Pareto optimal routes in general. Hence, the number of

DHA activations is strictly limited to a maximum K routes. Additionally, we note that

we have used an improved version of the DHA, which has been initially proposed in [94],

and terminates the algorithm as soon as the BBHT-QSA fails to spot a legitimate solution,

while exhausting its maximum affordable number of G applications. This improved version

of the DHA is formally stated in Alg. 5.2.
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Algorithm 5.2 Improved Durr-Høyer Algorithm [94]

1: Choose a reference index 0 ≤ y′ ≤ N − 1 randomly from the uniform distribution.
2: Set LQD

DHA ← 0.
3: repeat

4: Set y ← y′.
5: Define the quantum oracle implementing the binary function fk(x, i) of Eq. (4.2)

and set i←y.
6: Invoke the BBHT-QSA process of Alg. 4.1 with input the function fk(x, y) and output

the index y′, using LQD
BBHT CFEs.

7: Set LQD
DHA ← LQD

DHA + LQD
BBHT .

8: until fk(y
′, y) 6= 1 or LQD

DHA ≥
⌈

22.5
√
N
⌉

9: Output y and exit.

5.3.2 Seeking the Next Optimal Route

After the completion of the initialization process we will acquire an OPF consisting of k

OPF routes, where we have k ∈ {1, 2, ...,K}. The maximum value of k = K corresponds to

the case, where each objective is optimized by finding different routes, while the minimum

value of k = 1 corresponds to the case, where only a single optimal route-solution exists,

which is globally optimal for all the objectives considered. In the latter case, based on

Definition 2, the true OPF will solely be comprised of this route. Nevertheless, since

the BBHT-QSA and, inherently, the DHA exhibit a small but non-negligible probability

of failing to identify a valid solution [80], the algorithm has to ensure that there are no

unidentified Pareto optimal routes.

In the NDQIO algorithm, we have avoided the serial processing of the routes by em-

ploying a BBHT-QSA for finding the next potentially Pareto optimal route, hence achiev-

ing some complexity reduction. To elaborate further, our algorithm searches for route-

solutions, which are not dominated by the OPF generated so far. Explicitly, the poten-

tially Pareto-optimal route-solutions should satisfy the condition G(x,OPF ) = 1, where

the function G(x,OPF ) is defined as follows:

G(x,OPF ) =







1, ∄j ∈ OPF : g(j, x) = 1

0, otherwise

=

|OPF |
⋂

j=1

[1⊕ g(j, i)]. (5.20)

For this reason, we can use our novel operator Ug′ for checking as to whether a route is

or is not dominated by a reference route. This is realized by performing a swap between

the states stored in the GQCR and the GQIR resulting in the state |t⊕ g(i, x)〉3 at the

GOW output of the Ug′ operator. In this case, we initialize the GOW input to the state

|t〉3 ← |1〉3, while the respective GOW output becomes |1⊕ g(i, x)〉, resulting in invoking

the non-dominance operator. Explicitly, based on Eq. (4.1) the binary function g(i, x)

returns whether the i-th route does or does not dominate the x-th route and the operation

[1⊕ g(i, x)] corresponds to the binary complement1 of this function, implementing the

1It returns whether the x-th route is dominated by the i-th one.
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non-dominance operator. Additionally, since the OPF is comprised of multiple routes, we

Figure 5.6: Quantum circuit of the BBHT-QSA unitary operator UG used in the BBHT-QSA
Oracle of Step 5.1.12 . Each activation of the UG operator would impose 1/3 CFEs
in execution time domain due to the parallel activation of the unitary operators Ug′

as well as the parallel activation of the Ufk operators within each Ug′ . In the power
consumption domain, a single activation of the UG imposes as many CFEs as the
number of reference routes considered, i.e. the number OPF routes that have been so
far generated.

have to use multiple Ug′ operators, each having a different OPF route as the reference

route. Subsequently, using the novel framework presented in the Subsection 5.2, we can

still achieve the parallel activation of the Ug′ operators by employing the series of CNOT

gates for entangling the LQIRs state with the state of the GQIR at the input of the Ug′

operators along with a (k + 1)-qubit Toffoli Gate, assuming having k reference routes, as

portrayed in Fig. 5.6. As for the complexity imposed by a single activation of the UG

operator, it may be deemed to impose a parallel complexity equal to 1/k CFEs2 due to

the parallel activation of the Ug′ unitary operators, which in turn activates the Ufk unitary

operators in parallel. As for the sequential complexity imposed by the UG operator, a single

activation of this specific operator imposes as many CFEs as the number of reference routes

considered, which corresponds to the number of OPF routes that have been generated so

far.

Moving on to the BBHT-QSA for identifying a specific route, which potentially belongs

to the OPF, the UG operator of Fig. 5.6 is used with its GOW register initialized to the

state |−〉k+2 and a BBHT-QSA is invoked with the OPF routes generated so far as reference

ones, as stated in Step 5.1.4 . By contrast, should the GOW register be initialized to the

state |0〉k+2, the operator UG returns the non-dominance outcome at the output of the

GOW register. Hence, we will utilize this initialization for performing the CD checks of

the BBHT-QSA. Again, the BBHT-QSA exhibits a small but non-negligible probability

2We note that we have assumed that a single CFE corresponds to the activation of the serial unitary
operator Ug of the NDQO algorithm.
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of failing to identify a valid solution [80], while exhausting the maximum number of G
applications. We have mitigated this effect by repeating the BBHT-QSA process for one

more additional iteration (Steps 5.1.16 and 5.1.18), for the sake of avoiding the premature

termination of the NDQIO algorithm. Explicitly, an erroneous timeout would terminate

unexpectedly the NDQIO algorithm, leading to its inability to identify the entire OPF.

After identifying a potential OPF route, we may employ a BBHT-QSA chain (Steps 5.1.20-

26) as in the NDQIO algorithm. The only difference lies in the employment of the Ug′

operator in the respective quantum Oracle gate, which provides the sub-process with a

complexity reduction by a factor of 1/K in the execution time domain, albeit no reduction

in the power consumption domain. Let us now proceed with the detailed description of the

OPF-SR process.

5.3.3 Self-Repair Process

Searching for the next potential route guarantees that the exported route xs,2 will not be

dominated by the OPF generated so far, as ensured by the check performed in Step 5.1.13.

Consequently, the route xs,1 identified by the BBHT-QSA chain in conjunction with the

initial reference route xs,2 being as optimal, will not be dominated either based on Def-

inition 2. However, the event when xs,1 may dominate one or more routes of the OPF

is not mutually excluded due to the dominance operator being non-commutative. Conse-

quently, there may exist suboptimal routes that have been erroneously included into the

OPF, owing to a BBHT-QSA failure. Hence, we may readily check whether there is any

OPF route from the previous iterations, which is dominated by the identified OPF route of

the current iteration, and discard it from the OPF. This check may be implemented using

the Ug∗ operator. The global registers ought to be initialized to:

|i〉1 ← |xs,2〉1 , |x〉2 ← |OPFj〉2 , |t〉3 ← |0〉3 . (5.21)

Then, we only have to observe the state of the GOW register output. This process is

repeated for all the routes belonging to the OPF, as it was formally stated in the loop of

Step 5.1.28. This repair process ensures that the NDQIO algorithm performs at its best

attainable accuracy in terms the average Pareto distance E[Pd], as long as the entire true

OPF has been identified. Moving on to the consideration of the computational complexity

imposed by the OPF-SR process, assuming that the multiple DHA activations provide us

with k OPF routes and that the total number iterations carried out by the algorithm is

equal to NOPF , then in the first iteration we will have to invoke the Ug′ operator k times,

while in the second iteration it will be activated (k + 1) times and so on, yielding a total

number of CFEs that is equal to:

LP
SR=

1

K

NOPF−1
∑

i=k

i=
1

2K
(N2

OPF − k2 −NOPF + k), (5.22)

LS
SR=

NOPF−1
∑

i=k

i=
1

2
(N2

OPF − k2 −NOPF + k), (5.23)
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where LP
SR and LS

SR correspond to the parallel and the sequential complexities, respectively.

5.4 A Detailed 5-Node Example

Having provided all the necessary discussions about the NDQIO algorithm’s sub-processes,

let us now provide an illustrative example for portraying the main concepts of our proposed

algorithm. The exemplified WMHN structure is shown in Fig. 5.7(a), where the same 5-

node WMHN structure is utilized as that of the tutorial example presented in Section 4.5.

Following a similar approach to that of Section 4.5, we will solely utilize two UFs for each

route-solution, namely the BER and the CL, for facilitating the graphical representation of

the route-solutions. Furthermore, the solution vectors and their respective indices, which

correspond to all the legitimate routes, are presented in Table 4.1, while their graphical

representation is shown in Fig. 5.7(b).

Additionally, we present all the necessary steps undertaken by the NDQIO algorithm

in Fig. 5.7(b), where the route-solution transitions realized by the DHA or the BBHT-

QSA chain activations are represented with the aid of arrows. Distinct colors have been

used for representing the different sub-processes. In particular, as noted in the top legend

of Fig. 5.7(b), the first and the second DHA activation transitions are annotated with red

and blue arrows, respectively, while the BW-BBHT-QSA process and the BBHT-QSA chain

transitions are indicated by green dashed and straight arrows, respectively. Moreover, the

routes that belong to the OPF are marked by a square marker (�), the routes that initiate

either a BBHT-QSA chain or a DHA activation are marked by a triangle (△), while the

route-solutions output by each DHA or BBHT-QSA chain iteration, which are used as the

new reference routes in the next iteration, are marked by a circle (◦). Still referring to

Fig. 5.7(b), the boundaries of the space, where valid route-solutions lie, are annotated by

the long- and short-dashed lines. Let us now proceed with a more detailed description of

the NDQIO algorithm’s operation. We note that in terms of this tutorial example, the

reader is assumed to be familiar with the concepts of the BBHT-QSA process.

Initially, the NDQIO algorithm sets the OPF set containing the optimal route-solution

indices to an empty set, as formally stated in Step 5.1.1. Then, the algorithm’s initialization

process takes place (Steps 5.1.3–6), where the global minima are determined in terms of each

optimization objective. To elaborate further, in this tutorial example we try to minimize

both theBER and the CL, for the sake of simplicity, and, thus, we haveK = 2 in Step 5.1.3.

Therefore, we will activate the DHA process (Step 5.1.4) of Alg. 5.2 twice, i.e. once for

each objective. Firstly, a DHA process is activated for minimizing the route’s BER. More

particularly, according to Step 5.2.1, a random route is chosen as the initial reference one

and, then, a BBHT-QSA process is activated seeking a potential route-solution, which

exhibits a lower BER. Let us assume that the initial reference route chosen is the one

with index i = 3, i.e. the first DHA has chosen the route {1 3 5} according to Table 4.1,

which is annotated with the red triangle (△) marker in Fig. 5.7(b). The arguments of

the valid route-solutions of the BBHT-QSA process lie below the red horizontal long- and

short-dashed line that crosses the argument of the route with index i = 3 in Fig. 5.7(b).
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Let us assume that the BBHT-QSA process outputs the route with index i = 6, i.e. the

route {1 2 4 5} according to Table 4.1, which is marked with a red circle in Fig. 5.7(b).

Observe in Table 4.1 that the BER exhibited by the route with index i = 6 is lower

than that exhibited by the reference route with index i = 3, i.e. we have Pe,6 < Pe,3 and,

thus, after the completion of the BBHT-QSA process invoked by the DHA in Step 5.2.5,

the reference route will be updated to the BBHT-QSA output (Steps 5.2.7-8). Then, a

new BBHT-QSA process is activated searching for a route with a lower BER that that of

the reference one. Observe in Fig. 5.7(b) that the valid route-solutions lie below the red

horizontal long- and short-dashed line that crosses the argument of the route with index

i = 6. Therefore, the valid route-solution indices belong to the set {2, 4, 7, 8, 9} and the

BBHT-QSA process is capable of identifying any of them with equal probability. Let us

assume that the output of the BBHT-QSA process is the route with index i = 9, i.e. we

have y′ = 6 in Step 5.2.5, and the reference route is updated, since we have Pe,9 < Pe,6

according to Table 4.1. Still referring to Fig. 5.7(b), observe that the new reference route

is indeed a Pareto optimal one. Nevertheless, the DHA process is unable to identify the

route’s property, since it is solely seeking a route with the minimum BER. Therefore, a

new BBHT-QSA process is activated with the aid of the updated reference route, in which

the only eligible output is the route with index i = 7, i.e. the route {1 3 2 5}. Hence,

assuming that the BBHT-QSA process of Step 5.2.6 successfully identifies the latter route,

the reference route is once again updated (Steps 5.27-8) and a new BBHT-QSA process

is activated. Observe in Fig. 5.7(b) that the new reference route is indeed an optimal

one in terms of its BER, hence, the BBHT-QSA will exhaust the maximum number of

affordable G applications in the absence of valid solutions. Since in the design of the

improved DHA of Alg. 5.2 we have set a single BBHT-QSA time-out as the termination

condition (Steps 5.2.8, 12), the DHA exits and identifies the route associated with i = 7 as

the optimal one in terms of its BER performance. Then, the NDQIO algorithm appends

the DHA output to the OPF set in Step 5.1.5.

Then, a new DHA process is activated in search of the route, which is optimal in terms

of CL. A new reference route is selected randomly among all the legitimate ones according

to Step 5.2.1. At this stage, let us assume that the route associated with the index i = 16

is eventually selected, i.e. the route {1 4 3 2 5}, which is marked in Fig. 5.7(b) with the

blue triangular marker. Then, a BBHT-QSA process is activated seeking a route exhibiting

a lower CL than that of the reference route (Step 5.2.5). Observe in Fig. 5.7(b) that the

valid route-solutions lie at the left-hand side of the vetrical blue long- and short-dashed

line crossing the reference route and, in particular, the valid route-solutions have indices

that belong to the set {7, 9, 14}. Assuming that the BBHT-QSA process outputs the route

associated with the index i = 14, i.e. the route {1 3 4 2 5}, a new BBHT-QSA process is

activated by updating the reference route, since the output route exhibits a lower CL than

the reference one (Steps 5.2.7-8). The new reference route is the optimal one in terms of

its CL performance, as portrayed in Fig. 5.7(b). Consequently, the BBHT-QSA process

activated with this route being its input will exhaust the maximum number of affordable

G applications, resulting in the input route’s identification as the optimal one through
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Figure 5.7: (a) Exemplified architecture for a 5-node WMHN, and (b) its optimization process using the NDQIO algorithm. In this example only two UFs are
used per route-solution, for the sake of simplicity. The routes that belong to the OPF are marked by a square marker (�), the routes that initiate
either a BBHT-QSA chain or a DHA activation are marked with a triangle (△), while the route-solutions output by each DHA or BBHT-QSA chain
iteration, which are used as the new reference routes in the next iteration, are marked with a circle (◦). Moreover, the indices of the routes as shown
in Table 4.1 are marked in (b). Finally, the circural arrows in (b) denote that a BBHT-QSA has been activated with the respective route as its
input, yet in the absence of potential route-solutions a random route is output by the BBHT-QSA, classifying the input route-solution as being Pareto
Optimal (Step 5.1.25). The portrayed solution is not a unique one; different solutions could be derived depending on the DHA or BBHT-QSA chain’s
intermediate outcomes. Finally, note that the 5-node WMHN architecture portayed in (a) is identical to the architecture considered in Fig. 5.7(a),
where the NDQO algorithm is invoked, for the sake of comparison.
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Steps 5.2.7-12. After this operation, the DHA exits and outputs the identified optimal

route, which is then incorporated into the OPF by the NDQIO algorithm (Step 5.1.5).

After the completion of the second3 DHA, the initialization process ends and the it-

erative process (Steps 5.1.8-30) is activated. In the first part (Steps 5.1.10-18) of the

NDQIO algorithm’s iterative process, which is referred to as the Backward BBHT-QSA

Step (BW-BBHT) in Alg. 5.1, a BBHT-QSA process is activated, which seeks a specific

route-solution that is not dominated by the hitherto generated OPF and thus may poten-

tially be a Pareto-optimal one. Explicitly, the arguments of the valid route-solutions lie in

the area containing the center of the axes and bounded by the green long- and short-dashed

lines, as portrayed in Fig. 5.7(b), where it is visible that the only eligible route-solution is

the route associated with the index i = 9. We note that the BBHT-QSA process exhibits

a slight probability of failing in terms of identifying a valid solution4. For this reason, this

sub-process of the NDQIO algorithm has been designed to repeat the BBHT-QSA process

in case of an unsuccessful search (Steps 5.1.15-18), which would prematurely terminate the

NDQIO algorithm, hence substantially reducing the probability of an unsuccessful search.

At this stage, let us assume that the BBHT-QSA process is able to identify the legitimate

route-solution, which is no other than the route having the index i = 9, i.e. the route

{1 4 2 5}.

Sequentially, the BBHT-QSA chain process of Steps 5.1.20-25 is activated in the same

fashion as in the NDQO algorithm presented in Alg. 4.2, with the reference route being

the output of the BW-BBHT-QSA sub-process, which is the route with index i = 9.

The BBHT-QSA chain process seeks a route-solution, which dominates the reference one.

Nevertheless, observe in Fig. 5.7(b) that the initial reference route of the BBHT-QSA

chain process is indeed a Pareto optimal route, i.e. there exists no route that dominates

it. Therefore, the BBHT-QSA chain will activate only a single BBHT-QSA process, which

will exhaust the maximum number of affordable G applications in the absence of valid

route-solutions and hence will terminate the chain, according to condition of Step 5.1.25.

Subsequently, the OPF self-repair sub-process of Step 5.1.27 is invoked, where the hitherto

generated OPF routes are checked as to whether they are dominated by the Pareto optimal

route-solution spotted by the BBHT-QSA chain. Should any of the route-solutions be

dominated by the BBHT-QSA chain’s output route-solution, they would be disregarded,

since they would be suboptimal. In our example, the route-solution with index i = 9 does

not dominate any of the already generated OPF routes according to Fig. 5.7(b) and thus

the OPF remains intact.

After the completion of the OPF self-repair sub-process, the BBHT-QSA output route-

solution is incorporated into the OPF and the iterative process of Steps 5.1.8-30 is repeated.

Moreover, it is visible from Fig. 5.7(b) that the OPF, which is comprised of the routes-

solutions associated with indices {7, 9, 14} is identical to the TOPF. Hence, we conclude

that the NDQIO algorithm has identified the entire TOPF. However, the NDQIO algorithm

has no knowledge of this fact at this stage. By contrast, the BW-BBHT-QSA sub-process

3Assuming K optimization objectives, the initialization process ends right after the completion of the
K-th DHA.

4This occurs when this solution is present in the examined database.



5.5. Computational Accuracy versus Complexity Discussions 113

of Steps 5.1.10-18 is once again activated, where both the BBHT-QSA processes invoked

by the NDQIO algorithm will exhaust the maximum number of G applications in the

absence of valid route-solutions. This double time-out process would signal to the NDQIO

algorithm that the entire OPF has been identified. Finally, the NDQIO algorithm exports

the OPF identified and then exits. We note that we have made no mentioning of the

NDQIO algorithm complexity, which is the subject of our discussions in the next section.

5.5 Computational Accuracy versus Complexity Discussions

In this section, we will characterize our novel algorithm both in terms of its computational

complexity and its accuracy. As benchmarking algorithms, we will employ the quantum-

assisted NDQO algorithm, the BF method as well as the NSGA-II and the MO-ACO

algorithms, which are presented in Algs. 4.2, 4.3, 2.1 and 2.3, respectively. Let us now

proceed with quantifying the complexity imposed by the NDQIO algorithm.

5.5.1 NDQIO Complexity

In contrast to the NDQO algorithm’s complexity characterization, which was presented in

Section 4.6.1, we will characterize the complexity imposed by the NDQIO algorithm, which

is presented in Alg. 5.1, both in terms of its parallel and sequential complexities. Explicitly,

these metrics depend on the number of the Ug operators, which is defined in Eq. (4.1). We

note that the parallel and sequential complexities imposed by the NDQO are identical due

to the absence of hardware parallelism. Hence, relying on the assumption that the operators

{Ufk}Kk=1 defined in Eq. (4.2) impose the same parallel and sequential complexity for all

k ∈ {1, . . . ,K}, we may derive the upper and the lower bounds of the NDQIO algorithm

by examining both the worst- and the best-case scenarios considered in Section 4.6.1 for

the NDQO algorithm. As far as the BF method is concerned, its parallel and sequential

complexities are identical in terms of the number CFEs, since no hardware parallelism is

used. Hence, for these two extreme cases, the respective upper- and lower-bounds of the

BF method are quantified in terms of the number of CFEs as follows [1]:

Lmax
BF = N2 +

N−1∑

i=0

i =
3

2
N2 − 1

2
N = O(N2), (5.24)

Lmin
BF = 2N − 1 = O(N). (5.25)

Let us now proceed with characterizing the NDQIO algorithm. For its lower bound, we

will assume a scenario, where a single Pareto-Optimal route exists, namely the direct

route and all the activated BBHT-QSA processes impose the minimum possible number

of CFEs. Explicitly, they impose Lmin
BBHT CFEs as defined in Eq. (4.15). Let us assume

that during the initialization all the DHA processes, which are activated in Step 5.1.4, have

their reference route initialized to the direct one in Step 5.2.1. Then, their first invoked

BBHT-QSA process formulated in Alg. 4.1 will exhaust the maximum affordable number
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of G applications in the absence of valid route-solutions. This results in terminating the

respective DHA process of Alg. 5.2, hence imposing a complexity of:

Lmin
NDQIO,init ≡ Lmin

DHA

= Lmin
BBHT + 1

= 4.5
√
N+logλ

(

4.5λ−1
m

√
N + 1

)

+2

= O(
√
N)

(5.26)

in terms of the number of Ufk activations, where the unitary operators Ufk are defined in

Eq. (4.2).

Therefore, if we take into consideration that the each Ufk activation imposes 1/K CFEs

in both domains and that K DHA processes are activated during the initialization process

of Alg. 5.1, the complexity imposed by the NDQIO initialization process in both domains

is equal to:

LP,min
NDQIO,init = Lmin

NDQIO,init, (5.27)

LS,min
NDQIO,init = Lmin

NDQIO,init. (5.28)

Subsequently, the iterative process of Alg. 5.1 is activated. Nevertheless, since there

exist no routes that are not dominated by the direct one, the BBHT-QSA process of

Alg. 4.1 that seeks a new potentially optimal route will reach its time-out twice and exit,

hence imposing a complexity of:

Lmin
NDQIO,iter = 2(Lmin

BBHT + 1)

= 9
√
N+2 logλ

(

4.5λ−1
m

√
N + 1

)

+4

= O(
√
N)

(5.29)

in terms of Ug′ activations. Thus, the resultant parallel and sequential complexities imposed

by the iterative NDQIO process become:

LP,min
NDQIO,iter =

1

K
Lmin
NDQIO,iter, (5.30)

LS,min
NDQIO,iter = Lmin

NDQIO,iter. (5.31)

The SR process of Steps 5.1.27-28 will not be activated, since no OPF route has been

identified by the the BBHT-QSA process, which is invoked at Step 5.1.12. Therefore,

the total parallel complexity imposed by the NDQIO algorithm is derived by adding up
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Eqs. (5.27) as well as (5.30), resulting in:

LP,min
NDQIO,tot =

K+2
K

[

4.5
√
N + logλ

(

4.5 λ−1
m

√
N + 1

)

+ 2
]

.

= O(
√
N).

(5.32)

Equivalently, the total sequential complexity imposed by the NDQIO algorithm is derived

by adding up Eqs. (5.28) as well as (5.31),

LS,min
NDQIO,tot = 3

[

4.5
√
N + logλ

(

4.5 λ−1
m

√
N + 1

)

+ 2
]

.

= O(
√
N).

(5.33)

Observe in Eqs. (5.32) and (5.33) that the minimum execution time and power consumption

imposed by the NDQIO algorithm in both domains is on the order of O(
√
N).

As for the upper bound, we will consider the case, where all the routes are Pareto-

Optimal and the BBHT-QSA processes impose the maximum possible complexity of Lmax
BBHT ,

as quantified in Eq. (4.16). Under this assumption, each DHA process imposes the maxi-

mum possible number of Ufk activations, when it activates precisely five BBHT-QSA chains,

since we have:

4LQD,max
BBHT <22.5

√
N<5LQD,max

BBHT , (5.34)

where LQD,max
BBHT = 5.5

√
N − 1 corresponds to the maximum number of QD complexity

in terms of Ufk activations imposed by a single BBHT-QSA activation. Therefore, the

maximum complexity Lmax
DHA imposed by the DHA is equal to:

Lmax
DHA = 5(LBBHT + 1) = 50

√
N + 5 logλ

(√
N
)

. (5.35)

Consequently, the parallel and the sequential complexities imposed by the initialization

process are equal to:

LP,max
NDQIO,init=K

1

K
Lmax
DHA=50

√
N+5 logλ

(√
N
)

, (5.36)

LS,max
NDQIO,init=K

1

K
Lmax
DHA = 50

√
N+5 logλ

(√
N
)

, (5.37)

which was quantified as a function of the number of CFEs, resulting in an OPF constituted

by exactly K routes. Moving on to the NDQIO iterative process (Steps 5.1.8-30), we will

assume that the BBHT-QSA searching for a new potentially optimal route, fails during the

initial activation but succeeds during the second one in identifying a valid route-solution.

Furthermore, since all the routes are optimal, the BBHT-QSA chain will activate a single

BBHT-QSA, which in turn exhausts the maximum affordable number of QD-CFEs, in the

absence of valid solutions. Therefore, during each iteration precisely 3 BBHT-QSA pro-

cesses will be activated. Explicitly, the complexity-dependent power consumption imposed

by the BBHT-QSA that seeks a new potential route increases as the number of iterations

increases, which is a consequence of increasing in the number of OPF routes used as ref-
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erence routes. Hence, the maximum parallel and the maximum sequential complexities

imposed by this process of Steps 5.1.10-19 are equal to:

LP,max
NDQIO,BW = 1

K

N∑

k=K

[2(Lmax
BBHT + 1)]

= N−K
K

[

10
√
N + log λ(

√
N)
]

,

(5.38)

LS,max
NDQIO,BW =

N∑

k=K

[2k(Lmax
BBHT + 1)]

=
(
N2 −K2

)[

10
√
N + log λ(

√
N)
]

,

(5.39)

as a function of the number of CFEs, respectively, while those imposed by the BBHT-QSA

chains of Steps 5.1.21-25 are equal to:

LP,max
NDQIO,chain = 1

K

N−1∑

k=K

(Lmax
BBHT + 1)

= N−K−1
K

[

10
√
N + log λ(

√
N)
]

,

(5.40)

LS,max
NDQIO,chain =

N−1∑

k=K

(Lmax
BBHT + 1)

= (N −K − 1)
[

10
√
N + log λ(

√
N)
]

,

(5.41)

respectively. Subsequently, the OPF-SR process of Steps 5.1.25-39 will be activated pre-

cisely (N−K) times, imposing parallel and sequential complexities formulated in Eqs. (5.22)

and (5.23), respectively, upon substituting NOPF = N and k = K, hence we have:

LP,max
NDQIO,SR=

1

K

N−1∑

i=K

i=
1

2K
(N2 −K2 −N +K), (5.42)

LS,max
NDQIO,SR=

N−1∑

i=K

i=
1

2
(N2 −K2 −N +K), (5.43)

respectively. Following a similar approach to the lower bound derivation, the upper bound

of parallel complexity imposed by the NDQIO algorithm is derived by adding together

Eqs. (5.36), (5.38), (5.40) and (5.42), resulting in:

LP,max
NDQIO,tot =

2(N−K)−1
K

[

10
√
N + logλ

(√
N
)]

+ N2−K2−N+K
2K ,

= O(N2).

(5.44)

Equivalently, the upper bound of the sequential complexity is derived by adding up Eqs. (5.37),
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(5.39), (5.41) and (5.43),

LS,max
NDQIO,tot =

(
N2 −K2 +N −K + 4

) [

10
√
N + logλ

(√
N
)]

+ N2−K2−N+K
2 ,

= O(N2
√
N).

(5.45)

Observe in Eqs. (5.44) and (5.45) that the resultant execution time and power con-

sumption upper bounds are on the order of O(N2) and O(N2
√
N), respectively, which are

higher than O(N
√
N) imposed by the NDQO algorithm, based on Eq. (4.14). Explicitly,

this additional cost is justified by the increased elitism introduced by the NDQIO algorithm

compared to the NDQO algorithm. To elaborate further, the NDQIO algorithm is capable

of curtailing its operation upon detecting that there are no unidentified OPF routes. In the

worst-case scenario, this imposes complexities on the orders of O(N2) and O(N2
√
N) in the

execution time and the power consumption domains, respectively. By contrast, in the best

case-scenario, the lower bound is on the order of O(
√
N) in both domains. Additionally,

the OPF-SR process imposes a complexity on the order of O(N2) in both domains in the

worst-case scenario, while no complexity is imposed in the best-case situation. Therefore,

the complexity reduction achieved by the NDQIO algorithm is inherently related to the ra-

tio of the total number NOPF of the OPF routes over the total number N of the legitimate

routes considered.

The average complexities of the NDQIO, of the NDQO algorithms and of the BF method

along with their respective upper and lower bounds in the parallel and the sequential com-

plexity domains are shown in Figs. 5.8(a) and 5.8(b), respectively, for WMHNs consisting

of Nnodes = 2 to Nnodes = 9. We note that the respective complexities of the NDQO

algorithm and of the BF method will be identical in both domains, since they do not rely

on any hardware parallelism techniques. As far as the upper bounds of the parallel com-

plexity are concerned, observe in Fig. 5.8(a) that the NDQIO algorithm involves the same

order of complexity as the NDQO algorithm, when considering Nnodes = 2 to Nnodes = 7

nodes. This is justified by the fact that for WMHNs having more than Nnodes = 7 nodes

the term predominantly governing the respective complexity is the N2 term, while for less

densely populated WMHNs the upper bound is governed by the term 20
KN
√
N based on

Eq. (5.44). Hence, the order of the parallel complexity’s upper bound of the NDQIO al-

gorithm for Nnodes < 7 nodes is reduced to O(N
√
N), matching the order of the NDQO

algorithm’s upper bound. We note that in our case study we have assumed three opti-

mization objectives, i.e. we have K = 3. Moreover, for WMHNs consisting of more than

Nnodes = 7 nodes, we observe in Fig. 5.8(a) that the NDQIO upper bound is lower than

those of both the naive-BF and of the BF methods due to the complexity reduction by

a factor of 1/K offered by the hardware parallelism owing to the employment of the Ug′

operator. On the other hand, the NDQIO algorithm’s upper bound of the sequential com-

plexity is definitely governed by the term 10N2
√
N . Consequently, observe in Fig. 5.8(b)

that it involves a several orders of magnitude higher sequential complexity than that of the

benchmarking algorithms used for WMHNs having more than Nnodes = 3 nodes. We note

that for WMHNs having either Nnodes = 3 or Nnodes = 2 nodes, the NDQIO upper bound
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Figure 5.8: Evolution of (a) parallel and (b) sequential complexities of the NDQIO algorithm
compared to the respective values imposed by the BF method of Alg. 4.3 and the
NDQO algorithm of Alg. 4.2. They are also compared to the naive-BF complexity as
well as to the upper and the lower bounds of the aforementioned algorithms. Explicitly,
BF method’s upper and lower bounds are defined in Eqs. (5.24), (5.25), respectively,
while those of the NDQIO algorithm are defined in Eqs. (4.10) and (4.14). For the
NDQIO algorithm the respective bounds in terms of its parallel complexity are given
in Eqs. (5.32) and (5.44), while those in terms of its sequential complexity are defined
in Eqs. (5.33) and (5.45). Additionally, the average complexities are presented using
box plots; the upper and lower bounds of the boxes correspond to the 75% and 25%
quartiles, respectively. In addition, the maximum and minimum observed complexity
values are presented using horizontal lines. The mean complexity results have been
averaged over 108 runs. Note that the all the aforementioned algorithms have been
deployed for identifying the OPF of the weak Pareto optimality problem of Eq. (2.7)
associated with the UV of Eq. (2.5) relying on the assumptions of Table 2.1.

matches its lower bound, since in these cases the total number of routes is less than that

of the number of objectives, which makes the iterative process unnecessary.

As for the NDQIO algorithm’s parallel complexity lower bound, observe in Fig. 5.8(a)

that the NDQIO algorithm provides some complexity reduction compared to the bench-

marking algorithms for WMHNs having Nnodes = 6. Explicitly, based on Eqs. (4.10) and

(5.32), the NDQIO algorithm begins to outperform the NDQO, when the total number of

routes is higher than Nroutes = 22 routes, yielding that the this reduction becomes visi-

ble for WMHNs having Nnodes = 6, where the total number of legitimate route is equal

to N = 65. In the sequential complexity domain, some complexity reduction is achieved

for Nroutes > 134 routes, corresponding to 7-node WMHNs, as shown in Fig. 5.8(b). Ad-
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ditionally, the NDQIO lower bound indicates a complexity reduction of several orders of

magnitude, as demonstrated in Figs. 5.8(a,b).

Moving on to the average complexity in terms of the parallel complexity, observe in

Fig. 5.8(a) that the NDQIO algorithm outperforms the NDQO for the WMHN sizes con-

sidered. In particular, for WMHNs having Nnodes = 4 and Nnodes = 5 the sequential com-

plexity imposed by the NDQO algorithm is almost twice as high as that of the NDQIO,

since the latter benefits from the hardware parallelism design. However, specifically for

4-node WMHNs it imposes a higher complexity than that of the BF method, since the

NDQIO does not benefit from the complexity reduction offered by the QP for small search-

spaces as we elaborated on Section 4.6.1, solely relying on the complexity reduction offered

by the parallel oracle design. As soon as the complexity reduction of the QP becomes

significant, which occurs for WMHNs associated with Nnodes ≥ 6 nodes, the average com-

plexity imposed by the NDQIO algorithm becomes several orders of magnitude lower than

that of the NDQO algorithm and that of the BF method, as portrayed in Fig. 5.8(a).

We note that this complexity reduction becomes more significant as the number of nodes

increases, since the complexity reduction offered by the quantum algorithms is improved

as the search-space is increased [80,87]. As for the NDQIO algorithm’s average sequential

complexity, observe in Fig. 5.8(b) that it outperforms the BF method for WMHNs having

Nnodes = 8 or more, while in the special case, where we have Nnodes = 7 the two algorithms

impose a sequential complexity of the same order. Compared to the NDQO algorithm,

the NDQIO imposes about 2.5 times the respective complexity of the NDQO algorithm for

WMHNs having four to seven nodes, while for more nodes the complexity imposed decays

to about twice that of the NDQO algorithm.

Therefore, we conclude that both the NDQO and the NDQIO exhibit about the same

order of sequential complexity, while at the same time the NDQIO algorithm offers a sub-

stantial parallel complexity reduction of several orders of magnitude. This observation

unveils a trade-off. Explicitly, based on Figs. 5.8(a,b) the NDQIO algorithm offers about

ten times lower parallel complexity at the expense of doubling the number of Ug′ activa-

tions compared to the NDQO, for WMHNs having eight or more nodes. Explicitly, this

additional 100% sequential complexity overhead stems from the escalating number of OPF

routes included in the BW-BBHT-QSA process of Step 5.1.12. Hence, every BW-BBHT-

QSA iteration requires a higher number of Ug′ , due to the inclusion of more reference

routes, albeit this is achieved without increasing the respective parallel complexity, owing

to the parallel activation of the U ′
g operators. However, we expect this 100% in sequential

complexity overhead to gradually diminish as the ratio of the number of OPF routes over

the total number of routes decreases due to the WMHN becoming more densely populated

by nodes. This trend can be inferred from Figs. 5.8(a,b), by observing that both the aver-

age execution time and the average power consumption exhibit a larger distance from their

respective upper bounds, as the number of nodes in the WMHN increases.

Furthermore, we may observe in Fig. 5.8(b) that the average sequential complexities of

the NDQIO and NDQO algorithms become similar, as the number of nodes associated with

the WMHN increases. Therefore, a critical question arises, whether the NDQIO algorithm
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would asymptotically approach the average sequential complexity of the NDQO algorithm

or whether it would outperform it. For this reason, let us conduct a further case study,

where we will determine both the parallel and the sequential complexity of the algorithms

in terms of the number NOPF of the optimal routes belonging to the OPF.

As far as the NDQO algorithm is concerned, its BBHT-QSA chains impose a complexity

identical to that of the DHA, since the BBHT-QSA chain constitutes an extension of the

DHA for multi-objective problems. Since precisely NOPF BBHT-QSA chain processes will

take place, the resultant complexity imposed by this process is equal to:

LNDQO,chain = NOPFLDHA. (5.46)

For the serial parsing step, let us stipulate the further assumption that the routes initiating

a BBHT-QSA chain are distributed uniformly within the route-database and that - on

average - the routes require a dominance comparison with half the routes of the hitherto

generated OPF. Consequently, a BBHT-QSA chain is invoked for every N/NOPF routes

and the resultant complexity becomes:

LNDQO,sp =
N

NOPF

NOPF∑

i=1

i

2
=
N(NOPF + 1)

4
. (5.47)

Hence, the overall complexity imposed by the NDQO algorithm is derived by adding up

Eqs. (5.46) and (5.47) yielding:

LNDQO = NOPF

(

LDHA +
N

4

)

+
N

4
. (5.48)

Since the DHA and inherently the BBHT-QSA chain impose a complexity on the order of

O(
√
N), the NDQO complexity will be on the order of O(NOPFN), based on Eq. (5.48).

As for the algorithm’s normalized execution time and power consumption, they will be

identical to the complexity imposed, since the NDQO algorithm does not involve hardware

paralellism.

Let us now proceed by characterizing the average parallel and sequential complexities

imposed by the NDQIO algorithm. The NDQIO algorithm invokes the DHA K times, per

objective, plus (NOPF −K) times a BBHT-QSA chain for the rest of the Pareto-optimal

routes, yielding a parallel complexity and sequential complexity of:

LP
NDQIO,chain =

NOPF

K
LDHA, (5.49)

LS
NDQIO,chain = (NOPF + 1−K)LDHA, (5.50)

respectively. We note that the terms LP
NDQIO,chain and LS

NDQIO,chain correspond to the

parallel complexity and to the sequential complexity, respectively, which are imposed by

both the BBHT-QSA chain and the initialization process. Additionally, the parallel and

sequential complexities imposed by these processes is on the order of O(NOPF

√
N). Sub-
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sequently, let us consider the worst-case scenario for the backward-oriented BBHT-QSA

process, where two BBHT-QSA search processes are activated, yielding an unsuccessful

output from the first, whilst the second succeeds in identifying a potentially optimal route.

This process is activated (NOPF − K + 1) times, resulting in a parallel complexity and

sequential complexity equal to:

LP
NDQIO,BW = 1

K

NOPF∑

i=K
(2LBBHT ) ,

= 2(NOPF−K+1)
K LBBHT ,

(5.51)

LS
NDQIO,BW =

NOPF∑

i=K
(2iLBBHT ) ,

=
(
N2

OPF −K2 +K +NOPF

)
LBBHT ,

(5.52)

respectively. Therefore, since the BBHT-QSA complexity is on the order of O(
√
N) in terms

of oracle queries, parallel and sequential complexities of the backward BBHT-QSA process

is on the order of O(NOPF

√
N) and O(N2

OPF

√
N), respectively. As for the SR process, the

execution time and power consumption imposed have been derived in Eqs. (5.22) and (5.23),

respectively. Hence, the overall parallel complexity imposed by the NDQIO algorithm is

derived by adding together Eqs. (5.22), (5.49) and (5.51), resulting in:

LP
NDQIO = 1

2KN
2
OPF + 1

K

(
LDHA + 2LBBHT − 1

2

)
NOPF+

+(1−K)
[
2
KLBBHT + 1

2

]
.

(5.53)

Similarly, the overall sequential complexity is derived as a result of the addition of Eqs. (5.23),

(5.50) and (5.52), yielding:

LS
NDQIO =

(
1
2 + LBBHT

)
N2

OPF +
(
LDHA + LBBHT − 1

2

)
NOPF+

+(1−K)
(
LDHA + LBBHT + 1

2K
)
.

(5.54)

Observe in Eqs. (5.53) and (5.54) that the amount of the overall parallel complexity

and that of the sequential complexity imposed by the NDQIO algorithm are on the order

of O(NOPF

√
N) and of O(N2

OPF

√
N), respectively, as opposed to those imposed by the

NDQO, which are both on the order of O(NOPFN). Hence, a further investigation on the

order of the number NOPF of optimal routes in terms of the total number N of legitimate

should be carried out. For this reason, let us assume that all the QD processes impose

the maximum possible complexity, i.e. we set LDHA = Lmax
DHA and LBBHT = Lmax

BBHT , as

defined in Eqs. (5.35) as well as (4.16) and investigate the number of Pareto-optimal routes

for which the NDQIO algorithm succeds in outperforming the NDQO one, where we have:

LNDQO > LP
NDQIO, (5.55)

LNDQO > LS
NDQIO, (5.56)
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Figure 5.9: Normalized execution time and power consumption boundaries, where the NDQIO
algorithm outperforms the NDQO one. The average number NOPF of optimal routes
based on our simulation setup is portrayed with the black squares WMHNs consisting
of 5 until 12 nodes. The results have been averaged over 108 runs. Note that the curve
of the average number E[NOPF ] of OPF routes corresponds exclusively to the weak
Pareto optimality problem of Eq. (2.7) associated with the UV of Eq. (2.5) relying on
the system model of Table 2.1.

for the parallel complexity and the sequential complexity, respectively. The solution of

Eq. (5.55) for the parallel complexity is portrayed in Fig. 5.9 using a blue line. Observe

that the boundary is constant and equal to unity, demonstrating that the condition of

Eq. (5.55) is satisfied for every NOPF in the range of 1 ≤ NOPF ≤ N . Hence, the NDQIO

algorithm outperforms the NDQO in terms of their parallel complexity regardless of the

number N of the WMHN nodes and of the number NOPF of Pareto-optimal routes, which

is verified in Fig. 5.8(a). On the other hand, the corresponding sequential complexity

boundary is shown in Fig. 5.9 by the red line. Hence, the latter is then compared to the

average number E [NOPF ] of Pareto-optimal routes, which were exported from our WMHN

Pareto-optimality routing problem of Eq. (2.7) - associated with the UV of Eq. (2.5) relying

on the system model of Table 2.1 - for WMHNs having between five and twelve nodes, in

order to ascertain whether they are lower than the respective bound. In fact, observe in

Fig. 5.9 that the average number of optimal routes lies above the sequential complexity

bound for WMHNs having up to 11 nodes. However, there is a crossover in Fig. 5.9 between

the sequential complexity bound and the average number of OPF routes for the 12 nodes,

indicating that the NDQIO algorithm will eventually outperform the NDQO in terms of

the sequential complexity as well for WMHNs having 12 nodes or more.
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5.5.2 NDQIO Computational Accuracy Performance

Having characterized the NDQIO algorithm in terms of its complexity imposed and its

power consumption, let us now examine the algorithm’s performance in terms of its Average

Pareto Distance E[Pd] and the Average Pareto Completion Ratio E[C], as they were defined

in Eqs. (4.17) and (4.20), respectively. The latter metric corresponds to the specific portion

of the TOPF identified by the respective optimization method.

Table 5.1: Number of individuals per generation and number of generations of the NSGA-II and
the MO-ACO algorithm, based on Table 2.2.

Number of Nodes
Number of generations and of individuals per generation

Parallel Complexity Matching Sequential Complexity Matching

6-node WMHNs 12 19

7-node WMHNs 19 29

8-node WMHNs 30 49

Let us now describe the evaluation process used for the NDQIO algorithm. When using

a similar approach to that involved for the NDQO algorithm as described in Section 4.6.2,

the iterative process does not necessarily impose the same number of CFEs, due to the

stochastic nature of the BBHT-QSA [80]. Hence the evaluation process will be invoked

each time a route is appended to the OPF. This event occurs right after the initialization

process and after the completion of the iterative process, i.e. right after Steps 5.1.6 and

5.1.33 , respectively. However, since the total number of CFEs required by both of the

DHAs of the initialization process, the BBHT-QSAs of the iterative process are rather

random processes, the evaluation process will be activated at different complexity values.

We will assume that between these evaluation processes the metrics remain constant, which

results in a sum of step functions for each simulation. We can then extract a continuous

distribution for these metrics versus the number of CFEs by performing an averaging

operation in each respective domain. Additionally, for the evaluation of the accuracy in

terms of the parallel complexity we have matched the complexity both of the NSGA-II and

of the MO-ACO algorithm to that of NDQO algorithm’ maximum complexity observed from

the simulations. By contrast, in the sequential domain case-study we we have matched

the complexity both of the NSGA-II and of the MO-ACO algorithm to that of NDQIO

algorithm’ maximum sequential complexity observed from the simulations. These specific

parameters of the NSGA-II and the MO-ACO algorithm are shown in Table 5.1.

These metrics are shown in Figs. 5.10, 5.11 and 5.12 for 6-node, 7-node and 8-node

WMHNs, respectively. As far as the average Pareto distance E[Pd] is concerned, observe

in Figs. 5.10(a,b), 5.11(a,b) and 5.12(a,b) that the NDQO algorithm performs optimally

for 282, 502 and 929 CFEs for 6-node, 7-node and 8-node WMHNs, respectively, in both

parallel and sequential complexity terms. It also exhibits an almost constant average Pareto

distance E[Pd], which is on the order of 10−8. By contrast, the NDQIO algorithm exhibits

an initial average Pareto distance E[Pd], which is on the order of 10−4 and is then reduced
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Figure 5.10: Perfomance comparison between the NDQIO and the NDQO algorithms and for 6-node WMHNs in terms of the Average Pareto Distance E[Pd]
(a,b) and Optimal Pareto Front Completion Ratio E[C] (c,d) in vesus the parallel complexity (a,c) and the sequential complexity (b,d). The results
have been averaged over 108 runs and they correspond to the weak Pareto optimality problem of Eq. (2.7) associated with the UV of Eq. (2.5) relying
on the system model of Table 2.1. The parameters of the NSGA-II and the MO-ACO algorithm are presented in Tables 5.1 and 2.2.
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Figure 5.11: Perfomance comparison between the NDQIO and the NDQO algorithms and for 7-node WMHNs in terms of the Average Pareto Distance E[Pd]
(a,b) and Optimal Pareto Front Completion Ratio E[C] (c,d) in vesus the parallel complexity (a,c) and the sequential complexity (b,d). The results
have been averaged over 108 runs and they correspond to the weak Pareto optimality problem of Eq. (2.7) associated with the UV of Eq. (2.5) relying
on the system model of Table 2.1. The parameters of the NSGA-II and the MO-ACO algorithm are presented in Tables 5.1 and 2.2.
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Figure 5.12: Perfomance comparison between the NDQIO and the NDQO algorithms and for 8-node WMHNs in terms of the Average Pareto Distance E[Pd]
(a,b) and Optimal Pareto Front Completion Ratio E[C] (c,d) in vesus the parallel complexity (a,c) and the sequential complexity (b,d). The results
have been averaged over 108 runs and they correspond to the weak Pareto optimality problem of Eq. (2.7) associated with the UV of Eq. (2.5) relying
on the system model of Table 2.1. The parameters of the NSGA-II and the MO-ACO algorithm are presented in Tables 5.1 and 2.2.
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as the number of the iterative NDQIO steps increases. To elaborate further, as the NDQIO

algorithm invests in more CFEs, i.e. more iterative steps, the number of identified OPF

routes increases and as the self-repair process is invoked at the end of each iterative step, the

probability of identifying an optimal route that dominates a suboptimal one erroneously

included in the OPF increases. Consequently, the average Pareto distance E[Pd] drops

as the number of CFEs increases, as portrayed in Fig. 5.11(a,b). More specifically for

7-node node WMHNs, observe in Fig. 5.11(a) that the NDQIO algorithm outperforms

the NDQO algorithm after about 1672 CFEs in the parallel complexity domain and then

after a total of 2008 CFEs the E[Pd] becomes equal to zero, providing our algorithm

with optimal performance in terms of this metric. The same holds for the sequential

complexity, where the NDQIO algorithm outperforms the NDQO one after about 8753

CFEs and then after a total of 13394 CFEs the E[Pd] becomes equal to zero, as portrayed

in Fig. 5.11(b). For 6-node and 8 WMHNs, observe in Figs. 5.10(a,b) that the NDQIO

algorithm begins to outperform the NDQO algorithm after 482 and 2016 CFEs in the

parallel and sequential complexity domains, respectively, while it exhibits an infinitesimally

low Pareto distance after 482 and 2016 CFEs, respectively. A similar trend is observed in

8-node WMHNs as well, where the NDQIO algorithm begins to outperform the NDQO

algorithm after 4985 and 32 986 CFEs in the parallel and sequential complexity domains,

respectively, while it exhibits an infinitesimally low Parato distance after 7098 and 58 657

CFEs, respectively, as portrayed in Figs. 5.12(a,b). As far as the NSGA-II and the MO-

ACO algorithm are concerned, observe in Figs. 5.10(b), 5.11(b) and 5.12(b) that their

associated Pareto distance decreases by an order of magnitude, when their complexity

is matched to the maximum sequential complexity observed by the NDQIO algorithm,

when compared to Figs. 5.10(a), 5.11(a) and 5.12(a), where their complexity is matched

to the maximum observed by the NDQO algorithm. Despite this substantial increase,

both the NDQIO and the NDQO algorithms exhibit a Pareto distance that is lower by

a factor of several orders of magnitude. Hence, both the the NDQIO and the NDQO

algorithms provide a better Pareto distance versus complexity trade-off, when compared

to their evolutionary benchmarkers.

Moving on to the NDQIO algorithm’s performance appraised in terms of the average

Pareto Completion Ratio E[C], this is portrayed in Figs. 5.10(c,d), 5.11(c,d) and 5.12(c,d)

for 6-node, 7-node and 8-node WMHNs, respectively. As far as the parallel complexity

is concerned, observe in Figs. 5.10(c), 5.11(c) and 5.12(c) that the NDQIO algorithm’s

completion probability converges to unity after 559, 2025 and 7260 CFEs, as opposed

the 1583, 5575 and 25852 CFEs imposed by the NDQO algorithm, for 6-node, 7-node

and 8-node WMHNs, respectively. This yields a further parallel complexity reduction of

about 64.68%, 63.68% and 71.91%, respectively. By contrast, in the sequential complex-

ity domain, the NDQIO algorithm achieves a completion probability of unity after 3372,

14651 and 63338 CFEs, respectively. This imposes an additional sequential complexity of

113.01%, 125.71% and 145%, respectively, compared to the NDQO algorithm. Moreover,

observe in Figs. 5.10(d), 5.11(d) and 5.12(d) that the NDQIO requires fewer CFEs to pro-

duce the first OPF routes in terms of the minimum sequential complexity than the NDQO

algorithm. This is a benefit of using the DHA in the initialization process, which is capable
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of identifying as many OPF routes as the number of the optimization objectives, hence

imposing an overall parallel and sequential complexity equal to a single BBHT-QSA chain

in the NDQO, which is capable of identifying a single OPF route. However, as the number

of OPF routes identified increases, the sequential of the BBHT-QSA seeking new potential

OPF routes increases. Explicitly, the NDQO algorithm becomes more efficient after about

632, 1274 and 2391 CFEs for 6-node, 7-node and 8-node WMHNs, respectively, as shown

in Figs. 5.10(d), 5.11(d) and 5.12(d). By contrast, both the NSGA-II and the MO-ACO

fail to converge to unity, despite the additional complexity invested due to their matching

to the maximum sequential complexity observed by the NDQIO, as seen in Figs. 5.10(d),

5.11(d) and 5.12(d). Naturally, due to their evolutionary probabilistic structure they are

unable to ensure the identification of the entire set of Pareto-optimal, hence yielding that

they are less accurate for the complexity budgets considered than the NDQIO and the

NDQO algorithms.

5.6 Chapter Summary

In this chapter, we have proposed a novel hardware parallelization framework for quantum

processes, which offers some further complexity reduction in addition to that provided by

QP. Based on this framework, we have developed a novel algorithm as an improvement to

the existing NDQO algorithm. Due to the hardware parallelization, we have distinguished

the complexity imposed by the novel algorithm in two distinct domains, namely the parallel

complexity and the sequential complexity domains, and we have then analytically derived

the upper and lower bound of complexity in both domains, which is on the order of O(
√
N)

in both domains for the best-case scenario and on the order of O(N
√
N) and O(N2

√
N) for

the worst-case scenario in the execution time and power consumption domains, respectively.

Additionally, we have analytically characterized the average complexity as a function

of the number NOPF of Pareto-optimal routes, demonstrating that for the weak Pareto

optimality of Eq. (2.7), which is associated with the UV of Eq. (2.5) and relies on the

system model of Table 2.1, the NDQIO algorithm is capable of identifying the entire OPF,

whilst providing a substantial parallel complexity reduction, when compared to the NDQO

algorithm of Chapter 4. As for the NDQIO algorithm’s sequential complexity, we have

demonstrated that it will provide a sequential complexity reduction for WMHNs having

more than 11 nodes as well, when compared to the NDQO algorithm. More specifically, for

the WMHNs considered, namely those consisting of 5 to 9 nodes, the NDQIO algorithm

exhibits an optimal performance, profiting from almost an order of magnitude of parallel

complexity reduction compared to the NDQO algorithm, while imposing the same order of

sequential complexity.



Chapter 6

Multi-Objective Routing and Load

Balancing for Social Networks

6.1 Introduction

Based on a recent report conducted by Shareholic1, 31.24% of the overall network traffic in

2014 has been generated by Online Social Networks (OSN), such as Facebook and Pinterest,

while having an increase of about 10% compared to the previous year. Additionally, from

a slightly different perspective, namely from that of the Internet of Things (IoT) [154],

networked devices perpetually proliferate [155, 156] and they also tend to exhibit social

behavior [157, 158]. Explicitly, the information flow among the IoT nodes follows a social

pattern. For instance, a networked refrigerator would share no relationship with a net-

worked TV. By contrast, the latter would share a social relationship with smart-phones or

tablets.

Explicitly, the nodes’ social behavior combined with their increased number results in a

paradigm shift as to how the networks are designed and maintained [159], leading to encap-

sulating Social Network Analysis (SNA) [160] tools into the network’s design. From this

perspective, networks, which are often comprised by remote nodes having limited power,

ought to configure their end-to-end links for satisfying diverse and often coflicting Quality-

of-Service (QoS) criteria, such as the Bit-Error-Ratio (BER), the Packet-Loss-Ratio (PLR),

total power dissipation or the overall delay. This requires the joint optimization of the afore-

mentioned QoS criteria. As a further aspiration, Boldrini et al. pointed out in [161] that

optimal multihop routing is more beneficial for socially aware networks than for the socially

oblivious ones.

The authors of [162,163,164,165,166,167,168] advocated routing schemes, where both

the specific QoS criteria and SNA-aided design are considered. To elaborate further, Bulut

and Szymanski [165] proposed a routing scheme in the context of Delay-Tolerant Networks

(DTN) for maximizing the associated routing efficiency by grouping theMobile Users (MU)

1https://blog.shareaholic.com/social-media-traffic-trends-01-2015/
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into clusters based on their contact history. Furthermore, Hui et al. [167] conceived a novel

algorithm, namely the so-called BUBBLE algorithm, which exploits the social networking

metrics of the centrality [169] routinely used in the community detection [170] for the sake of

performing socially aware multi-cast routing in the context of DTNs. In a similar context,

namely that of Vehicular Social Networks (VSN), Xia et al. [168] employed Bee Colony

Optimization (BCO) in the form of the so-called BEEINFO packet forwarding scheme for

the sake of maximizing the associated packet delivery ratio.

Apart from the above-mentioned routing schemes considering SNA-related metrics,

some contributions utilize the structure of a twin-layer composite network [171], where

the top layer characterizes the users’ social relationships, hence it is often referred to as an

Online Social Network (OSN). By contrast, the bottom one is constituted by the techno-

logical network. To elaborate further, in [172], each MU is assumed to communicate with

its contacts with a probability that is inversely proportional to their respective geographic

distance [173], while the technological network relies on a grid-based network. The same

OSN layer has been deployed in [174] in conjunction with a mobile multi-cast network

and a hybrid routing scheme has been proposed for the sake of improving the content dis-

semination among members of the same community. Additionally, epidemic routing [175]

has been deployed [176,177] in this specific cross-layer design, where the nodes allow their

messages to “flood” their newly discovered contacts by mimicking the spread of a disease

in a community. This scheme has a low complexity and a low delay, but it tends to use an

excessive amount of resources, because multiple copies of the packets are allowed to flood

the network.

Apart from optimal routing, the new socially aware design paradigm has to account

for the nodes’ social selfishness [178]. Explicitly, the nodes’ social selfishness stems from

their tendency to select specific routes for the sake of optimizing a specific utility, while

being oblivious to the potential degradation of the overall network’s performance inflicted

by their particular choice [179, 180]. Naturally, the nodes’ selfish route selection leads to

the creation of bottlenecks in the network flow, especially for the case of nodes having a

high centrality. This requires socially-aware load balancing [181,182,183].

Both the NDQO and the NDQIO algorithms presented in Chapters 4 and 5, respec-

tively, provide us with some clear design guidelines for the sake of addressing the joint

multi-objective routing and load balancing problem of socially-aware networks. Explicitly,

the hybrid framework exploiting the synergy between the QP and the HP provides substan-

tial complexity reduction by a factor of O(K
√
N) [2], where the factor K corresponds to

the number of parallel independent quantum processes stemming from the HP, while N is

the database size. Nevertheless, as Zalka [88] pointed out, Grover’s QSA and inherently all

the Grover-based QSAs, such as the BBHT-QSA, the DHA and the NDQIO algorithm, are

optimal in terms of their complexity reduction, as long as the database entries are uncorre-

lated. Naturally, Zalka’s proof of Grover’s QSA optimality provides us with a further design

consideration, namely the database correlation exploitation, as portrayed in Fig. 6.1. We

note that the actual complexity reduction offered by the database correlation exploitation

strictly depends on the optimization problem and, thus, its achievable complexity reduction
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Figure 6.1: Eligible techniques of reducing the computational complexity. Explicitly, QP is capa-
ble of reducing the number of database calls from N on the order of O(

√
N), where N

is the database length, while HP exhibits a complexity reduction on the order of O(K),
where K denotes the number of independent parallel processes. Finally, although the
database correlation exploitation is problem-dependent and its complexity reduction
cannot be readily quantified, it tends to rearrange the database into an uncorrelated
one, substantially reducing the complexity imposed by both QP and HP, based on
Zalka’s [88] proof of Grover’s QSA optimality.

order is denoted by O(?) in Fig. 6.1. Nevertheless, we can view this method as a means

of transforming the database into a series of shorter uncorrelated ones, thus, effectively

reducing the database length N for pushing the complexity reduction offered by the hybrid

HP and QP framework to its full potential.

In Chapters 4 and 5 we have developed a quantum-assisted framework for solving the

Pareto-optimal routing problem in the context of WMHNs. More specifically, the system

model of Eq. (2.7) associated with the UV of Eq. (2.5) and relying on the assumptions

presented in Table 2.1 is oblivious of any network planning metrics, when balancing the

tele-traffic load among the RNs, since it treats each of the potential pairs of SNs and DNs

independently. Furthermore, optimizing the routes’ integrity by using their expected BER

as the optimization metric, which is recursively evaluated with the aid of Eq. (2.2), is

rather impractical. Explicitly, near-capacity codes [184] are indeed capable of reducing the

uncoded BER to infinitesimally low levels, as long as it does not exceed a specific threshold

P th
e . Therefore, the routes’ integrity optimization is transformed into a connectivity prob-

lem, where a specific node is able to transmit its packet to another node, as long as this

BER constraint is satisfied, hence ensuring a seamless transmission. In addition to this
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modification, for the sake of ensuring its practicality, we will consider a twin-layer network

model, which consists of an Online Social Network (OSN) layer as well as a technological

Wireless Mesh Network (WMN). Explicitly, this twin-layer network model is capable of en-

capsulating the nodes’ social behavior, thus enabling the employment of SNA-aided joint

cross-layer multiple-objective routing and load balancing optimization. We will elaborate

on the specifics of the twin-layer model considered in Section 6.2. Subsequently, in Sec-

tion 6.3, we will present our joint multiple-objective routing and load balancing scheme,

namely the Multi-Objective Decomposition Quantum Optimization (MODQO) algorithm,

which benefits both from the quantum-assisted framework of Chapters 4 and 5 as well as

from the database correlation of the individual routes forming the Pareto-optimal route-

combinations. Then, in Section 6.4 we will analytically characterize the complexity imposed

by the MODQO algorithm and evaluate its performance with respect to the NSGA-II. Note

that we have not employed the MO-ACO, since it is not directly applicable for the compos-

ite joint multiple-objective routing and load balancing problem presented in Section 6.2.3.

Note that this chapter is based on our contribution in [3].

Let us now proceed by discussing the network model considered for our socially-aware

application.

6.2 Network Specifications

We have considered a twin-layer network, which is shown in Figs. 6.2 and 6.3. To elaborate

further, the network is comprised by a set of NMC users, which from now on will be

referred to as Mesh Clients (MCs) and by a set of NMR wireless Mesh Routers (MRs).

The latter form the backbone of a Wireless Mesh Network (WMN), which supports the

communications among the MCs. The WMN constitutes the bottom layer of our network.

Explicitly, the WMN layer is reminiscent of the network model considered in Chapters 4

and 5 relying on the assumptions of Table 2.1. On the other hand, the MCs are assumed

to exhibit a specific social behavior and, hence, they form an OSN, which incorporates the

upper layer of our network.

The locations of both the MCs and of the MRs are assumed to be random, obeying a

uniform distribution within a (100× 100) m2 square block, which is the network’s coverage

area we considered for this scenario. We note that the chosen coverage area is just an

example and a larger area of (1× 1) km2 - such as a university campus or an airport

terminal - could have been readily considered; however, we have chosen this relatively

small area for the sake of approaching the fully-interconnected network scenario, making

the routing problem more challenging. Additionally, each of the MCs is exclusively served

by its closest MR, as denoted by the gray arrows in Figs. 6.2 and 6.3.

As far as the packet dissemination process is concerned, we have assumed that the

source and destination nodes belong exclusively to the set of MCs. Therefore, the MRs of

the WMN layer can only act as intermediate relays forwarding the packets of the source

MC to the destination MC. Furthermore, the communication between MCs is only feasible
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via MRs. For instance, let us consider the case, where MC1 has to send a packet to MC3.

Despite the fact that in Fig. 6.2 MC1 and MC3 are pretty close to each other, their commu-

nication can only be realized through MR1 and MR3. Hence, the shortest route in terms

of the number of hops that the packet can follow is the route MC1 →MR1 →MR3 →MC3.

We note that our twin-layer network parameters are summarized in Table 6.1.

Having defined the basic topology of the twin-layer network considered in our case

study, let us now proceed with a brief description of the two layers comprising the network.

Figure 6.2: Exemplified topology with NMC = 4 MCs and NMR = 4 MRs for the twin-layer
network considered. In the OSN layer the arrows among the MCs manifest their
friendship status, whereas in the WMN layer the resective arrows correspond to links
satisfying the QoS criteria. The gray-colored arrows denote the association of each
MC with a specific MR.

6.2.1 OSN Layer

As we have mentioned in the previous subsection, the MCs exhibit social behavior increasing

the probability of their communication with a specific set of other MCs. This set of MCs

is often referred to in WSN terminology as friends. Hence, the MCs’ friendship status

can be modeled by the binary friendship matrix FMC that defines the set of MCs being

friends to a specific MC. Naturally, the friendship matrix FMC is symmetric, with all the

elements of its diagonal being equal to zero. Equivalently, since each MC is associated with

a specific MR, a binary friendship matrix FMR may be defined in the context of MR as

a cross-layer metric. The elements FMR,ij of the latter matrix indicate whether MRi and

MRj are associated with a pair of MCs having a friendship relationship. We note that the

FMR matrix is also symmetric; however, its diagonal elements may not be strictly equal

to zero, corresponding the scenario where two friendly MCs are associated with the same

MR.

As for generating the FMC matrix, we have utilized the well-studied social relationship

of the Karate Club for the sake of practicality, which was proposed by Zachary [185] and

is portrayed in Fig 6.4. To elaborate further, the MCs are randomly generated similarly
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Figure 6.3: Presentation of the two layers of Fig. 6.2. In the OSN layer the arrows among the
MCs manifest their friendship status, whereas in the WMN layer the resective arrows
correspond to links satisfying the QoS criteria. The gray-colored arrows denote the
association of each MC with a specific MR.

to the members of the Karate Club, while the sole constraint imposed is that of having

a connected social graph for the sake of avoiding the potential isolation of certain MCs.

In this way, packet dissemination emerging from a specific MC to the rest of the MCs is

enabled, regardless of whether they have a friendship relationship by forwarding a packet

in a friend-by-friend basis.

As mentioned in the introduction, the social behavior of the MCs provides us with the

capability of employing SNA tools for analyzing the performance of socially-aware networks.

In fact, the betweenness centrality Bsin metric has been proposed by Freeman in [186] for

quantifying the information flow of each node MRk of the WMNs. In this context, each

node has been considered to have a social friendship with the specific nodes it can reliably

communicate with using a single hop. The betweenness centrality metric actually quantifies

the usage of each node MRk as an intermediate relay. Explicitly, the betweenness centrality

Bsin is defined as [186]:

Bsin(MRk) =
M∑

i = 1

i 6= k

M∑

j = 1

j 6= i, k

gMRi,MRj(MRk)

gMRi,MRj

, (6.1)

where gMRi,MRj (MRk) represents the number of times the node MRk is involved in the

shortest routes - in terms of the number of hops - spanning from the node MRi to the node
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Figure 6.4: Complete karate club social relationship [185] used for determining the social relation-
ship of the MCs in the OSN layer.

MRj , while gMRi,MRj denotes the number of the optimal routes and M corresponds to

the total number of MRs. We note that the normalized betweenness centrality B̄sin(MRk),

defined in Eq. (6.2), corresponds to the probability of MRk being used as a relay and it is

formulated as:

B̄sin(MRk) = Bsin(MRk)/
M∑

i=1

Bsin(MRi). (6.2)

We can adapt the betweenness centrality to the context of twin-layer networks by defin-

ing the so-called composite betweenness centrality. For the latter, the friendship relationship

is defined in a rather generic manner. To elaborate further, since the links between MCs

that share a friendship are established on an exclusive basis, the composite betweenness

centrality calculation is restricted to these specific routes. Therefore, the composite be-

tweenness centrality Bcom(MRk) is defined as [30]:

Bcom(MRk) =

NMC∑

i=1

NMC∑

j = 1

j 6= i

gMCi,MCj (MRk)

gMCi,MCj

FMCi,MCj , (6.3)

where FMCi,MCj denotes the friendship relationship between MCi as well as MCj and it

is equal to the element of the i-th row and the j-th column of the FMC matrix. Addition-

ally, the term gMCi,MCj(MRk) corresponds to the number of optimal routes between MCi

and MCj involving MRk as an intermediate relay2, while gMCi,MCj is the total number of

2Note that if an MC is associated with an MR, the participation of this specific MR in the MC’s routes
is not taken into account.
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optimal routes for the same source and destination pair. Equivalently to the normalized

betweenness centrality, the normalized composite betweenness centrality B̄com(MRk) quan-

tifies the probability of a specific MRk being used as an intermediate relay, in the context

of the socially-aware network considered. The latter metric is defined as:

B̄com(MRk) = Bcom(MRk)/
M∑

i=1

Bcom(MRi). (6.4)

The vector B̄com contains the probability distribution of the specific MRs being used

as intermediate relays. Therefore, instead of optimizing a specific parameter, such as the

sum-rate considered in [187], we can readily manipulate this distribution by selecting the

appropriate routes. To guarantee fairness in terms of the forwarded tele-traffic load amongst

the MRs, we will consider as the desired set of route-solutions, the specific set of routes

having a normalized composite betweenness B̄com that approaches the uniform distribution.

A direct approach of equally distributing the relayed load amongst the MRs would

be to minimize the standard deviation σB̄com
of the normalized composite betweenness.

Explicitly, minimizing σB̄com
yields a minimization in the discrepancy among the MRs’

tele-traffic-load. Nevertheless, there exist cases, where none of the active routes utilizes

intermediate MRs, which results in an all-zero normalized composite betweenness distri-

bution, i.e. we have B̄com(MRk) = 0, ∀k ∈ {1, . . . , NMR}. This kind of distribution yields

a standard deviation equal to σB̄com
= 0, which is optimal; however, these route-solutions

often exhibit poor performance in terms of their power consumption or BER.

Therefore we will propose a novel metric, namely the normalized entropy H̄(B̄com) of

the normalized composite betweenness, which is defined as follows:

H̄(B̄com) =
H(B̄com)

log2(NMR)
, (6.5)

where H(B̄com) corresponds to the Shannonian entropy, which is defined as follows [188]:

H(B̄com) =

NMR∑

k=1

B̄com(MRk) log2[B̄com(MRk)]. (6.6)

We note that the normalization factor of Eq. (6.5) is used to make the normalized en-

tropy value independent of the number of MRs, NMR and bounds its value to the range

[0, 1]. Explicitly, the entropy of a distribution can be viewed as a metric of proximity of

a specific distribution to the uniform one. This could be justified by the fact that the en-

tropy of a specific distribution is inversely proportional to the Kullback-Leibler divergence

DKL(B̄com||U) [189], where U denotes the uniform distribution of NMR events. This is

formally expressed as follows [190]:

H(B̄com) = log2(NMR)−DKL(B̄com||U), (6.7)
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where the Kullback-Leibler divergence DKL(B̄com||U) is defined as [190]:

DKL(B̄com||U) =

NMR∑

k=1

B̄com(MRk) log2

[
B̄com(MRk)

U(MRk)

]

. (6.8)

Explicitly, it has been proven by Hobson [191] that the Kullback-Leibler divergence con-

stitutes an appropriate metric of the difference between two different distributions. Hence,

based on Eq. (6.8) the value of the divergence for the distributions B̄com and U is bound to

the range [0, log2(NMR)]. The upper bound of this region denotes complete divergence of

the examined distributions, while its lower bound yields a perfect convergence of the two

distributions. This can equivalently be translated into normalized entropy H̄(B̄com) terms,

where the perfect matching of the normalized composite betweenness distribution and the

uniform one is achieved, when we have H̄(B̄com) = 1, whereas they are uncorrelated when

H̄(B̄com) = 0. This metric circumvents the problem of the all-zero normalized composite

betweenness distribution, since in this case its normalized entropy is equal to H̄(B̄com) = 0.

Therefore, efficient load balancing relies upon the maximization of the normalized entropy,

leading to the optimization problem in terms of the active routes S formulated as:

argmax
∀S

H̄
[
B̄com(S)

]
. (6.9)

Observe that the optimization problem of Eq. (6.9) is unconstrained, and hence it does not

take into account any other QoS criteria, such as the network delay or power consumption.

This results in the route-solutions defined by Eq. (6.9) that either exhibit excessive delay or

excessive power consumption or cannot be established at all owning to a maximum transmit

power violation. In fact, the aforementioned QoS criteria, which stem from the WMN layer,

are presented in the next subsection. From a cross-layer optimization perspective, they will

be encapsulated in Eq. (6.9) in the form of a set of constraints, for the sake of guaranteeing

an optimal performance in terms of the QoS criteria considered.

6.2.2 WMN Layer

As mentioned at the beginning of this section, the WMN layer is constituted by that

specific set of the MRs, which facilitate communications among the MCs by forwarding the

respective packets, as portrayed in the bottom layer of Fig. 6.3. Their locations are random,

which is typical for an ad hoc deployment, but then are considered to be stationary. By

contrast the MCs are mobile. Additionally, a rather strong Line-of-Sight (LoS) component

[11] is assumed to be encountered by each MR to MR link and, thus, only the link’s path-

loss is taken into account. The path-loss Li,j for a link between MRi and MRj is calculated

using the classic Path-Loss Model of Eq. (2.3), which is formally expressed as [126]:

Li,j ≡
P t
i,j

P r
i,j

= L0

(
di,j
d0

)α

, (6.10)
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where α corresponds to the path-loss exponent. Explicitly we set α = 3, where di,j is the

Euclidean distance between MRi and MRj , while L0 denotes the reference path-loss at

the reference distance d0 = 1 m and P r
i,j and P t

i,j denote the transmitted and received

power, respectively. The reference path-loss L0 is quantified using the free-space path-loss

formula [11] of:

L0 =

(
4πd0fc
c

)2

, (6.11)

where fc is the carrier frequency, which is set to fc = 2.4 GHz, complying with the IEEE

802.11b/g protocol [192] and c is the speed of light.

As far as the forwarding scheme is concerned, we have utilized the Decode-and-Forward

(DF) scheme [12] in the same fashion as in the network model considered in Chapters 4 and

5 relying on the assumptions of Table 2.1, due to the scheme’s capability of encapsulating

the routing information into the packet header. In this context, the modulation scheme

adopted was QPSK [126]. As for the transmission environment, the links among the MRs

are subjected to only Additive White Gaussian Noise (AWGN), while the links between

the MCs and their associated MRs are established for transmission over Rayleigh Fading

channels [11]. Additionally, we have adopted an adaptive power control scheme, where each

link, either between two MRs or between MCs and their associated MRs, can be successfully

established as long as the link’s Bit Error Ratio (BER) is lower than a certain threshold P th
e .

This constraint is imposed for the sake of guaranteeing that the packets are successfully

recovered from the intermediate MRs, hence mitigating the need for retransmission. In our

scenario, we have set this BER threshold to P th
e = 10−2, which corresponds to the uncoded

BER of each link, because powerful state-of-the-art channel coding schemes a capable of

further reducing the BER to infinitesimally low values [126]. Therefore, at each link we

will attempt to match the link BER value to that of its threshold, hence minimizing the

potential interference experienced by the rest of the nodes owing to excessive interferences.

This yields an equivalent Signal to Noise plus Interference Ratio (SINR) threshold γthi,j,

which is equal to:

γthi,j =
P r
i,j

N0 + Imax
=







2(1−2P th
e )2

1−(1−2P th
e )2

i or j are MCs,

Q−1
(
P th
e

)
otherwise,

(6.12)

where the function Q−1(·) corresponds to the inverse of the Q-function, N0 is the thermal

noise power and Imax is the maximum tolerable interference power level. The thermal noise

power is set to N0 = −114 dBm, corresponding to a bandwidth of W = 1 MHz. Therefore,

based on Eqs. (6.10) and (6.12) the transmit power P t,req
i,j required for satisfying the BER

threshold is equal to:

P t,req
i,j = Li,j(N0 + Imax)γ

th
i,j . (6.13)

We have imposed a further constraint regarding the actual transmitters’ maximum

power level P t,act
i,j . In fact, it is considered to be upper-bounded to P t,act

max = 20 dBm, which

is a typical value for the IEEE 802.11b/g protocol. Based on this constraint, we can define
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Table 6.1: Twin-Layer Network Parameters

Description Parameter

Coverage Area (100×100) m2 Square Block

Number of MRs NMR = {5, 6, 7, 8, 9, 10} MRs

Number of MCs NMC = {2, 4, 8, 16} MCs

Social Relationship Karate Club Members [185]

Max. Trans. Power P t,act
max = 20 dBm

Carrier Frequency fc = 2.4 GHz

Trans. Bandwidth W = 10 MHz

AWGN PSD N0 = −174 dBm/Hz

Reference Distance d0 = 1 m

Path-loss Exponent α = 3

Modulation QPSK

BER Threshold P th
e = 0.01, uncoded

Max. Tol. Interfernce Imax = {−83.96,−83.06,−82.25,
−81.61,−81.01,−80.25} dBm

Avg. MR Degree {3.28, 3.81, 4.26, 4.72, 5.08,

5.32} MRs

the adjacency matrix A as follows:

ai,j = u(P t,req
i,j − P t,act

max ), (6.14)

where ai,j corresponds to the element of the matrix A located at the i-th row and the

j-th column, while u(·) is the Heaviside function defined in [193]. Therefore, the actual

transmitted power P t,act
i,j required for establishing the link between the nodes i and j is

equal to:

P t,act
i,j = P t,req

i,j /ai,j . (6.15)

Based on Eq. (6.15), the cost in terms of power for the link spanning from the i-th node to

the j-th one will be equal to the power required for achieving a BER equal to the threshold

value should the required power be less or equal to the maximum transmit power value.

Otherwise, the cost is set to +∞, implying that the link cannot be established.

As far as the maximum tolerable interference power level Imax is concerned, it is defined

as the maximum interference level that allows the MRs to establish at least a single link with

the rest of the WMN with a probability of 99%. Therefore, its value can be determined

from the CDF of the connectivity of MRs versus the value of Imax, which is shown in

Fig. 6.5, while the corresponding average number of potential connections for each MR,

which is termed as their average degree, are presented in Fig. 6.6. Explicitly, observe in
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have been averaged over 106 runs.
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Fig. 6.5 that the Imax value decreases as the WMN becomes more densely populated by

MRs due to the inherent decrease in the minimum distance between the MRs. As for their

degree corresponding to Imax, it increases as the number of MRs increases ; however, the

WMN becomes more sparsely connected than the fully-connected case scenario. The latter

justifies the employment of a routing scheme, since a heuristic method has to be employed

for identifying the realizable routes, i.e. routes consisting of links that can be established,

based on the adjacency matrix A.

Having defined the physical layer parameters of the WMN layer, let us now proceed

by defining our multiple-objective optimization problem. Firstly, let us consider the set

of Nr active routes S =
[
x(1), . . . , x(i), . . . , x(Nr)

]
, where x(i) is the i-th active route and

corresponds to a unique pair of MCs. Note that the active routes are a subset of the feasible

routes, which are determined by the MCs’ social relationship matrix. To elaborate further,

the set of active routes contains one-way routes from all the possible pairs of MCs. This
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is justified by our assumption of having coupled uplink and downlink. For instance, let us

assume that MCi and MCj have a social relationship; in the active routes’ set Sact only the

route from MCi to MCj or vice versa is present, whilst its reverse will be active in the next

timeslot. By contrast, both routes from MCi to MCj and from MCj to MCi are considered

feasible. Since each MC is associated with a unique MR, each active route is defined as

follows:

x(i) = [MCk,MRl, . . . ,MRm,MCn] , (6.16)

where the i-th active route corresponds to a transmission from MCk to MCn, while the

source and destination MCs are associated with MRl and MRm, respectively. As our first

objective, we will consider the average route delay D̄, which is quantified as follows:

D̄(S) =

Nr∑

i=1

D(i)(S)

Nr
, (6.17)

where S is the set of the active routes andD(i)(S) corresponds to the delay of the i-th active

route. For the sake of simplicity, we have chosen to quantify the latter as the number of

hops incorporated by the route x(i). Hence, the route delay D(i)(S) is formulated as follows:

D(i)(S) =

|x(i)|−1
∑

j=1

(

a−1

x
(i)
j , x

(i)
j+1

)

, (6.18)

where the factor
∣
∣x(i)

∣
∣ denotes the number of nodes involved by the route x(i), while x

(i)
j

corresponds to the route’s j-th node. Observe in Eq. (6.18) that the sum of the inverse

of the adjacency matrix elements guarantees that all the route’s links can be established.

Otherwise, the route delay will be set to D(i)(S) = +∞, hence classifying the route x(i) as

infeasible. We note that the nodes’ specific buffer packet length could be readily encapsu-

lated in Eq. (6.18) in order to account for delays the imposed by buffered packets.

Apart from the average delay D̄, we have also considered the routes’ average power

consumption P̄ , which is quantified as follows:

P̄ (S) =
Nr∑

i=1

P (i)(S)

Nr
, (6.19)

where P (i)(S) corresponds to the power consumption of the route x(i), which is in turn

formulated based on Eq. (6.15) as follows:

P (i)(S) =

|x(i)|−1
∑

j=1

P t,act

x
(i)
j , x

(i)
j+1

. (6.20)

Observe in Eq. (6.20) that the adjacency matrix elements a−1

x
(i)
j , x

(i)
j+1

are taken into account

in Eq. (6.20) with the aid of Eq. (6.15). Explicitly, a route comprised by links that cannot

guarantee satisfying the BER threshold will require a power set to P (i)(S) = +∞, based
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on Eq. (6.20). This is in line with the route’s delay, which is at the same time set to +∞.

Therefore, we have encapsulated the BER constraint in both of our optimization objectives,

which we will refer to as Utility Functions (UF). Based on these UFs let us now define the

optimization Utility Vector (UV), which we will use for jointly optimizing both the average

delay and the average power consumption, as follows:

f(x(1), . . . , x(Nr)) ≡ f(S) = [D(S), P (S)] . (6.21)

Observe that the UV of Eq. (6.21) consists of two optimization components, namely the

average delay and the average power consumption, which is in contrast to the UV of

Eq. (2.5), consisting of three components, additionally considering the route’s BER as

well. Explicitly, the routes’ BER has also been considered in Eq. (6.21) in the form of an

optimization constraint, which exclusively opts for routes exhibiting an infinitesimally low

BER, i.e. routes having near-perfect integrity.

6.2.3 Multiple-Objective Optimization Model

Based on Definitions 3 and 4, the OPF is composed by route-solutions having UFs, which

cannot be further optimized individually without degrading the fitness of the rest of the

UFs, as it can be observed in Fig. 2.4. As far as our specific application is concerned,

when considering weak OPFs relying on Definition 3, there exist route-solutions classified

as Pareto-optimal which may have the same metric, say in terms of their average delay

D̄, yet exhibiting a different performance in terms of their average power consumption

P̄ . Nevertheless, the route-solution that exhibits lower average power consumption seems

to outperform the other one, since it jointly minimizes both UFs. This specific caveat is

rectified by the employment of strong Pareto-optimality, which is in contrast to the weak

Pareto-optimality considered in Chapters 4 and 5, since the route-solution associated with

lower average power consumption would dominate the other route-solution. Hence the

latter will not be included in the respective OPF. Based on this observation, we will utilize

the concept of strong Pareto-optimality for the sake of constraining the load balancing

problem, which is formulated in Eq. (6.9). Consequently, our optimization problem is

formulated as follows:

SOPF = argmax
∀Si∈Slegit

H̄(B̄com(Si)),

subject to ∄j : f(Sj) � f(Si),

(6.22)

where SOPF represents the optimal active route allocation based on our constrained opti-

mization problem and Slegit corresponds to the set containing all the potential sets of active

routes, which are strictly comprised by individual Hamiltonian routes, i.e. by routes that

visit each of the MRs at most once. In a nutshell, the optimization problem of Eq. (6.22)

attempts to distribute the intermediate relay tele-traffic load among the MRs as close as

possible to the ideal uniformly distributed load, whist ensuring that the associated net-
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work performance is Pareto-optimal in terms of its average delay and power consumption.

Explicitly, the optimization problem of Eq. (6.22) is a four-component problem, jointly

taking into account the routes’ BER, their average delay, their average power consumption

and the route-combinations’ normalized entropy of their associated normalized betweeness.

The routes’ integrity quantified in terms of their BER is considered with the aid of the

adjacency matrix A, defined in Eq. (6.14), hence solely considering valid routes, namely

those having a lower BER than the BER threshold P th
e .

Let us now characterize the Pareto optimality problem of Eq. (6.22) in terms of its

complexity. For the sake of verifying as to whether a single set of active routes satisfies

the Pareto optimality constraint of Eq. (6.22), we have to perform precisely N Pareto

dominance comparisons, where N corresponds to the total number of Hamiltonian routes,

as defined in Eq. (2.8). Let us now assume that the total number of pairs of source and

destination MCs is exactly Nr = |S|. Then the total number Ntot of active routes-sets is

given by:

Ntot = NNr =

[
NMR−2∑

i=0

(NMR − 2)!

(NMR − 2− i)!

]Nr

. (6.23)

Since it can be observed in Eq. (6.23) that the total number of the active routes-set Ntot in-

creases exponentially with the number of MRs NMR, our constrained optimization problem

defined in Eq. (6.22) is classified as NP-hard. Consequently, sophisticated quantum-assisted

methods are required for tackling the escalating complexity, hence rendering the optimiza-

tion problem of Eq. (6.22) tractable. Let us now proceed by presenting a 12-node tutorial

example, which we will solve using the exhaustive search method, for the sake of providing

further insights into the operation of our socially-aware network model considered.

6.2.4 A 12-Node Tutorial Example using Exhaustive Search

In the context of this tutorial, let us consider the twin-layer network comprised by NMR = 7

MRs and NMC = 5 MCs, which relies on the topology portrayed in Fig. 6.7, where the

association of each of the MCs to their respective MR is represented by the dashed lines

connecting each of the MCs to their closest MR. We may consider this topology as a random

snapshot of our general network topology, where the MCs are mobile, whilst the MRs are

considered to be static. Note that this joint routing and load balancing optimization process

has to be repeated at a frequency depending on the MCs’ speeds. Nevertheless, we have

not investigated this aspect in the context of this treatise.

The transmission power matrix P t,act defined in Eq. (6.15) for the exemplified topology

of Fig. 6.7 is shown in Table 6.2, where we can observe that the transmission power levels

of several links are set to infinity, indicating that the specific links are infeasible. We note

that the elements of the transmission power matrix P t,act in Table 6.2 are quantified in

dBm. Naturally, the transmission power of the links among the MCs is set to infinity, since

they cannot directly communicate with each other, only through their associated MRs.

Additionally, observe in Table 6.2 that for the links established between a specific MC

and the MRs, there exists only a single link having a finite transmission power, owing to
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Table 6.2: Transmission power matrix P t,act quantified in dBm for the exemplified topology of
Fig. 6.7.

src\dst MC1 MC2 MC3 MC4 MR5 MR1 MR2 MR3 MR4 MR5 MR6 MR7

MC1 Inf Inf Inf Inf Inf Inf Inf 5.89 Inf Inf Inf Inf

MC2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf -6.89 Inf

MC3 Inf Inf Inf Inf Inf Inf 5.15 Inf Inf Inf Inf Inf

MC4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf -7.97

MC5 Inf Inf Inf Inf Inf Inf Inf Inf Inf 10.96 Inf Inf

MR1 Inf Inf Inf Inf Inf Inf 11.59 14.87 12.31 -5.35 14.57 13.71

MR2 Inf Inf 5.15 Inf Inf 11.59 Inf Inf Inf 7.77 Inf Inf

MR3 5.89 Inf Inf Inf Inf 14.87 Inf Inf 13.53 16.08 2.48 17.24

MR4 Inf Inf Inf Inf Inf 12.31 Inf 13.53 Inf 15.27 7.64 -0.78

MR4 Inf Inf Inf Inf 10.96 -5.35 7.77 16.08 15.27 Inf 16.53 16.39

MR6 Inf -6.89 Inf Inf Inf 14.57 Inf 2.48 7.64 16.53 Inf 13.12

MR7 Inf Inf Inf -7.97 Inf 13.71 Inf 17.24 -0.78 16.39 13.12 Inf

the constraint that a specific MC can only connect to the rest of the network through its

closest MR. As far as the links among the MRs are concerned, recall that according to

Table 6.1 the links requiring a transmission power of infinity are unable to satisfying the

BER threshold of P th
e = 10−2 at the maximum transmission power P t,act

max = 20 dBm.

Having presented the specifics of the tutorial example WMN layer, let us now proceed

by elaborating on the details of its OSN layer. As we have mentioned in Subsec. 6.2.1, the

MCs exhibit an identical social relationship to that of the members of a Karate Club, which

is portrayed Fig. 6.4. Based on this relationship, we have randomly picked 5 Karate Club

members, whose social relationship can be encapsulated in the following MC friendship

matrix FMC:

FMC =


















0 1 1 1 1

1 0 0 0 1

1 0 0 0 0

1 0 0 0 0

1 1 0 0 0


















, (6.24)

where we can observe that the MC1 shares a social relationship with all the remaining

MCs, MC2 shares a social relationship with MC1 and MC5, MC3 and MC4 share a social

relationship solely with MC1, while MC5 has a social relationship with both MC1 as well

as MC2. This social relationship of the MCs is visually portrayed in Fig. 6.8. Based on the

friendship relationship FMC of Eq. (6.24), we will consider in this tutorial the following set
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Figure 6.7: Exemplified twin-layer network topology with NMC = 5 MCs and NMR = 7 MRs for a
coverage area of (100× 100) m2 square block. The association of a specific MC with a
specific MR is annotated using the dashed lines. The presence of a central inteligence
cluster head node is assumed, albeit not portrayed in this figure.

Sact of active source and destination pairs:

Sact =







MC2 → MC1

MC1 → MC3

MC4 → MC1

MC5 → MC1

MC2 → MC5







. (6.25)

In our scenario, there exists N = 326 Hamiltonian routes between each specific source

and destination MCs, based on Eq. (2.8), while there exist about Ntot = N5 ≃ 3.682 · 1012
legitimate route-combinations in total, based on Eqs. (6.23) and (6.53). The exhaustive

search method relies upon evaluating each of the legitimate route-combinations for the

sake of checking as to whether they are strongly Pareto-optimal, hence satisfying the con-

straint of Eq. (6.22). Subsequently, if a specific route-combination is identified as being

strongly Pareto-optimal, the value of the normalized entropy of its associated normal-

ized composite betweeness is evaluated as well, aiming for identifying the specific route-

combination that maximizes this utility. Therefore, the exhaustive search has to carry out

N2
tot weak Pareto-dominance checks just for identifying the strongly Pareto-optimal route-

combinations, plus NOPF single-objective comparisons for determining the maximum nor-

malized entropy route-combination, where NOPF is the number of strongly Pareto-optimal
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Table 6.3: Pareto-optimal route-combinations identified by the exhaustive search for the socially-
aware network of Fig. 6.7 corresponding to the OPF seen in Fig. 6.9. The individual
routes SOPF

MC,i,j in the second column are defined in Table 6.5.

ID Route-Combination, S D̄(S) P̄ (S) H̄[B̄com(S)] max{H̄ [B̄com(S)]} argmax{H̄ [B̄com(S)]}
SOPF
1 SOPF

MC,1,1, S
OPF
MC,2,1, S

OPF
MC,3,1, S

OPF
MC,4,1, S

OPF
MC,5,1 16.62 3.20 0.000 0.000 SOPF

1

SOPF
2 SOPF

MC,1,1, S
OPF
MC,2,3, S

OPF
MC,3,1, S

OPF
MC,4,1, S

OPF
MC,5,1 16.00 3.40 0.000 0.000 SOPF

1

SOPF
3 SOPF

MC,1,1, S
OPF
MC,2,3, S

OPF
MC,3,1, S

OPF
MC,4,1, S

OPF
MC,5,1 15.63 3.60 0.327 0.327 SOPF

3

SOPF
4 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,3, S

OPF
MC,4,1, S

OPF
MC,5,1 15.29 3.80 0.534 0.534 SOPF

4

SOPF
5 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,3, S

OPF
MC,4,1, S

OPF
MC,5,4 15.04 4.00 0.488 0.534 SOPF

4

SOPF
6 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,3, S

OPF
MC,4,4, S

OPF
MC,5,4 14.81 4.20 0.638 0.638 SOPF

6

SOPF
7 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,3, S

OPF
MC,4,4, S

OPF
MC,5,2 14.64 4.60 0.679 0.679 SOPF

7

SOPF
8 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,3, S

OPF
MC,4,2, S

OPF
MC,5,2 14.45 5.00 0.675 0.679 SOPF

7

SOPF
9 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,2, S

OPF
MC,4,4, S

OPF
MC,5,4 14.64 4.40 0.656 0.679 SOPF

7

SOPF
10 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,2, S

OPF
MC,4,2, S

OPF
MC,5,4 14.46 4.80 0.674 0.679 SOPF

7

SOPF
11 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,2, S

OPF
MC,4,2, S

OPF
MC,5,2 14.26 5.20 0.665 0.679 SOPF

7

Figure 6.8: Visual representation of the MCs’ social relationship, based on Eq. (6.24).

route-combinations.

The strongly Pareto-optimal routes exported by the exhaustive search are portrayed

with the aid of the square markers in Fig. 6.9 along with the route-combinations belonging

to the 100 lowest-rank PFs, which are represented by the dot markers. We note that we

have opted for including only the 100 lowest-rank PFs in Fig. 6.9 for the sake of simplic-

ity. Still referring to the same figure, the specific route-combination that maximizes the

normalized entropy of its associated normalized composite betweenness is denoted by the

diamond marker. Additionally, a more detailed presentation of the strongly Pareto-optimal

route-combinations is included in Table 6.3, where the Pareto-optimal route-combinations

SOPFi are sorted according to their order of being identified as being as Pareto-optimal

by the exhaustive method. We note that the database of the route-combinations is con-

structed by combining the databases combining the individual routes’ databases, which

are in turn constructed by storing the respective routes in lexicographical ordering using

Lehmer encoding [1]. Hence, we are able to observe in Table 6.3 the evolution of the maxi-
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Figure 6.9: Solution space of the route-combinations of the socially-aware network of Fig. 6.7 in
terms of their average power consumtpion P̄ ,quantified in dBm per route, and their
average delay D̄, quantified in number of hops per route. For the sake of simplicity,
we have opted for only portraying the 100 lowest-rank PFs.

mum value of the normalized entropy observed by the exhaustive search, which converges to

its maximum value for the seventh route-combination SOPF7 of Table 6.3. Observe in this

table that although the maximum value is observed after identifying seven Pareto-optimal

route-combinations, the exhaustive search has to identify the entire set of Pareto-optimal

route-combinations to classify this value as the maximum observed.

Before delving into the presentation of our proposed algorithm, we provide a brief intro-

duction to the existing quantum search and optimization algorithms, which will constitute

the building blocks of our novel algorithm.

6.3 Design Methodology

Based on the parallel complexity of the NDQIO algorithm quantified in terms of the number

of dominance comparisons, which is defined in Eq. (5.53) invoking the NDQIO algorithm

for the optimization problem of Eq. (6.22) impose a parallel complexity, which is on the

order of O(NOPFN
Nr/2), where N corresponds to the total number of Hamiltonian routes

from a specific pair of source and destination MCs, defined in Eq. (2.8). Naturally, this

is significantly lower than O(N2Nr) imposed by the exhaustive search. This complexity

reduction, albeit substantial, may not be sufficient for near-real-time applications, when

the nodes’ locations rapidly change over time. In fact, Zalka [88] has proven that Grover’s

QSA is optimal in terms of the number of CFEs imposed by the algorithm. Since Grover’s

QSA has been the most popular technique in the family quantum amplitude amplifica-

tion algorithms [80, 81, 112], which includes the NDQIO algorithm, we cannot achieve a

complexity reduction more than that of a factor on the order of O(
√
N).

Having said this, all the QSA-based algorithms are totally oblivious of the optimiza-

tion problem’s structure, and hence they are incapable of exploiting the correlation of the

elements in a database. Consequently, our design objective is twofold: on the one hand,
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we have to transform our composite optimization problem into a series of independent sub-

problems, which exhibit a potentially uncorrelated search space; on the other hand, we have

to develop a reduced-complexity quantum-assisted process for merging the results of the

respective sub-processes, whilst minimizing the potential complexity overhead of the merg-

ing process. Naturally, this approach confines the initial search space considered, hence

yielding a substantial complexity. Additionally, note that we have opted for designing our

novel quantum-assisted algorithm with the goal of minimizing the parallel complexity. Re-

call from Section 5.2 that this specific type of computational complexity may be deemed to

be commensurate with the algorithms’ normalized time execution. Therefore, we minimize

the algorithm’s normalized execution time by minimizing its parallel complexity. This is

of utter importance in a dynamic network, such as the socially-aware network relying on

the assumptions of Table 6.1, where the algorithm’s input parameters fluctuate. Explicitly,

an extensive normalized time execution reduces the algorithm’s heuristic accuracy owing

to outdated input parameters. Despite this design consideration, we will characterize our

novel algorithm’s performance in terms of its sequential complexity as well, which is deemed

to be commensurate with the algorithms’ normalized power consumption.

Having defined our algorithmic design targets in broad terms, let us now proceed with

a tutorial example using the exhaustive search for the sake of a better understanding of

the the joint routing and load balancing optimization problem, defined in Eq. (6.22).

6.3.1 Weak Pareto Dominance Operator

Before delving into the aforementioned transformation specifics, we will introduce the uni-

tary operator Ugw , which carries out a single weak Pareto dominance comparison and will

be used as the Oracle gate of the Grover operator G deployed in our proposed algorithm.

Due to the universality of the quantum gate-based computation [62], we have to derive a

binary function for implementing the weak Pareto dominance operator. For this reason,

let us define the comparison functions f•k (x, i) in terms of the k-th objective as follows:

f•k (x, i) =







1, fk(x)•fk(i),

0, otherwise,

(6.26)

where the operator • is the generic comparison operator corresponding to the operators ≤,
=, < etc. Note that the set of f•k (x, i) functions is the generalization of the binary less

comparison function fk(x, i) defined in Eq. (4.2). This comparison function is implemented

by the quantum unitary operator Uf•
k
defined as follows:

|x〉 |i〉 |t〉
Uf•

k−→|x〉 |i〉 |t⊕f•k (x, i)〉 , (6.27)

where the quantum registers |x〉, |i〉, |t〉 are often referred to as Quantum Index Regis-

ter (QIR), Quantum Control Register (QCR) and Oracle Workspace (OW), respectively [1].

The application of Uf•
k
results in entangling the states of the aforementioned registers.
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We may readily create the binary expression of the weak dominance comparison using

the generic comparison functions of Eq. (6.26). Based on Definition 1, the x-th route will

be dominated by the reference route associated with the i-th index, provided that we have

f≤k (x, 1) = 1, ∀k ∈ {1, . . . ,K}, while at the same time we have ∃k ∈ {1, . . . ,K} so that

f<k (x, 1) = 1 is satisfied. Explicitly, the second requirement is that we have to exclude

the specific route-solutions validated by the first requirement but have their UFs equal

to the respective of the i-th route-solution, i.e. we have f=k (x, i) = 1, ∀k ∈ {1, . . . ,K}.
Consequently, the weak dominance comparison function gw(x, i) is defined as follows:

gw(x, i) =
K⋂

k=1

f≤k (x, i) ⊕
K⋂

k=1

f=k (x, i) ≡







1, f(x) � f(i)

0, otherwise.

(6.28)

Having expressed the weak Pareto dominance comparison function gw(x, i) as a function

of the f•k (x, i) function, we may readily employ the Uf•
k
operators for constructing the

quantum circuit of the Ugw operator, which is presented in Fig. 6.10. Observe in this figure

that a series of CNOT gates [62] are used for the sake of entangling both the input QIR and

input QCR to the respective local quantum registers of each of the {U≤
fk
}Kk=1 and {U=

fk
}Kk=1

operators. Explicitly, the route-solutions’ indices are stored in form of their superposition

in the input QIR, while the index of the reference route-solution is stored in the QCR. As

for the {U≤
fk
}Kk=1 and {U=

fk
}Kk=1 operators, they implement the comparison functions defined

in Eq. (6.26) with respect to the k-th UF. Subsequently, all the local OW registers states

of the {U≤
fk
}Kk=1 operators are combined by the Toffoli gate T [62, 2], which performs an

exclusive-OR (XOR) between the input OW register |t〉3 and the intersection product of

the states of all the local OW registers. Therefore, after the first Toffoli gate the composite

quantum system state is formulated as:

|x〉1 |i〉2
∣
∣t′′
〉

3
= |x〉1 |i〉2

∣
∣
∣
∣
∣
t⊕

K⋂

k=1

f≤(x, i)

〉

3

. (6.29)

A second Toffoli gate is then used for the sake of combining the local OW registers of the

{U=
fk
}Kk=1 operators. Hence, the resultant composite quantum system state is equal to:

|x〉1 |i〉2 |t′〉3 = |x〉1 |i〉2
∣
∣
∣
∣
t⊕

K⋂

k=1

f≤(x, i) ⊕
K⋂

k=1

f=(x, i)

〉

3

,

= |x〉1 |i〉2 |t⊕ gw(x, i)〉3 .
(6.30)

Explictly, Eq. (6.30) proves that the circuit of Fig. 6.10 implements the weak dominance

comparison function gw(x, i).

As for the circuit’s complexity quantified in terms of the number of CFEs, we will still

consider a single CFE as the complexity imposed by the strong Pareto dominance operator

of Fig. 4.1, which consists of a series of Uf<
k

operators serially connected, for the sake

of continuity. Therefore, assuming that both the CNOT and the Toffoli gates have an
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Figure 6.10: Quantum circuit of the unitary operator Ugw implementing the weak Pareto domi-
nance comparison.

instant response as in Section 5.2 and that the Uf•
k
comparison operators impose identical

complexity, the parallel complexity imposed by the quantum circuit of Fig. 6.10 is equal

to 1/K CFEs. This is justified by the parallel activation of the Uf•
k
operator through

the employment of the synergistic framework between the QP and the HP, which was

introduced in Section 5.2 and it is comprised by the series of CNOT gates and the Toffoli

gates at the Uf•
k
comparison operators’ input and output, respectively. Finally, the weak

Pareto dominance comparison imposes 2 CFEs in terms of its sequential complexity. This

is justified by the fact that the number of Uf•
k
comparison operators is doubled compared

to the comparison operators used in the strong Pareto dominance comparison circuits

presented in Figs. 4.1 and 5.4.

At this point, let us emphasize that in the context of this treatise the proposed Ugw

operator will be used as the Oracle gate in the NDQIO algorithm’s sub-processes, so that

the algorithm becomes capable of identifying the OPF formed by strongly Pareto-optimal
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route-solutions.

6.3.2 Multi-Objective Decomposition Quantum Optimization

As we mentioned in the introduction of this section, our design objective for the proposed

algorithm is to transform the problem to a series of sub-problems having databases ex-

hibiting the minimum amount of correlation among their elements. By a close inspection

of Eqs. (6.17) and (6.19), which correspond to the average route delay and power consump-

tion, respectively, we can conclude that both UFs considered in the constraint of Eq. (6.22)

share the same generic form of:

fk(S) = fk(x
(1), x(2), . . . , x(Nr)) =

Nr∑

n=1

ak,nfk(x
(n)), (6.31)

where S denotes the set of Nr active routes, x(n) corresponds to the n-th active route and

ak,n is a constant, which may be different for each UF but obeys the constraint ak,i > 0.

In our scenario, we have ak,i = N−1
r for both UFs and ∀i ∈ {1, . . . , Nr}. This specific form

of the UFs can be exploited in the context of Pareto-optimality problems for reducing the

search space, based on Proposition 1.

Proposition 1. Let us assume having Nr independent strong Pareto-optimality problems,

each associated with the UVs fn(x
(n)) =

[
f1(x

(n)), . . . , fK(x(n))
]
, where K corresponds to

the number of UFs, and that their OPF solutions form the sets
{
SOPF
n

}Nr

n=1
. Let us further-

more consider the composite Pareto-optimality problem of their convex combination, which

is associated with the utility vector f(S) = f(x(1), . . . , x(Nr)) =

[
Nr∑

n=1
a1,nf1(x

(n)), . . . ,
Nr∑

n=1
aK,nfK(x(n))

]

,

with ak,n > 0 ∀n ∈ {1, . . . , Nr} and ∀k ∈ {1, . . . ,K}, and that the OPF solutions of this

problem form the set SOPF. The set SOPF is a subset of the union of the sets
{
SOPF
n

}Nr

n=1
,

i.e. we have:

SOPF ⊆
Nr⋃

n=1

SOPF
n . (6.32)

Proof. Let us assume that the solution S = [x(1), . . . , x(j), . . . , x(Nr)] of the composite

Pareto-optimality problem is Pareto-optimal and that the independent solutions {x(n)}
are Pareto-optimal in their respective independent problems except for the solution x(j),

which is suboptimal in its respective independent problem. Hence, there exits a solution

x′(j) such that fj(x
′(j)) � fj(x

(j)), i.e. we have:

fk(x
(j)) ≥ fk(x′(j)), ∀n ∈ {1, . . . ,K}. (6.33)

Therefore, if we multiply Eq. (6.33) by the factor ak,j and add the terms ak,nfk(x
(n))
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associated with n 6= j, we will have ∀k ∈ {1, . . . ,K}:

Nr∑

n=1

ak,nfk(x
(n))≥

Nr∑

n = 1

n 6= j

ak,nfk(x
(n)) + ak,jfk(x

′(j)), (6.34)

which can be written in the following compact form:

fk(S) ≥ fk(S′), ∀k ∈ {1, . . . ,K} (6.35)

where S′ = [x(1), . . . , x′(j), . . . , x(Nr)]. Additionally, since x′(j) strongly dominates the solu-

tion x(j), we have that ∃k′ ∈ {1, . . . ,K} such that:

fk′(x
(j)) > fk′(x

′(j)). (6.36)

If we now multiply Eq. (6.36) by the factor ak′,j and add the terms ak′,nfk′(x
(n)) with

n 6= j, we will have for this specific k′:

Nr∑

n=1

ak′,nfk′(x
(n))>

Nr∑

n = 1

n 6= j

ak′,nfk′(x
(n)) + ak′,jfk′(x

′(j)), (6.37)

which can be written in the following compact form:

∃k′ ∈ {1, . . . ,K} : fk′(S) > fk′(S
′). (6.38)

Hence, observe that Eqs. (6.35) and (6.38) encapsulate the two critical conditions so

that f(S′) � f(S), based on Definition 1, yielding that the initial assumption of having

S ∈ SOPF is invalid. Hence, we have S = [x(1), . . . , x(Nr)] ∈ SOPF only if x(n) ∈ SOPF
n ,

∀n ∈ {1, ..., Nr}. Therefore, all members of SOPF are contained in the union of the sets
{
SOPF
n

}Nr

n=1
, hence proving the claim of Eq. (6.32).

We note that the inverse of Proposition 1 does not apply, since there may exist solu-

tions, which are composed by Pareto-optimal solutions in all the respective independent

problems, but are suboptimal in the composite problem. Despite this limitation, Proposi-

tion 1 provides us with useful insight into a potential transformation of our search space

for sake of reducing the total number Ntot of sets of active routes considered, which was

defined in Eq. (6.23).

Explicitly, we do not have to consider all the possible sets of active routes S; instead,

we only have to identify the routes belonging to the union of the OPFs of all the active
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pairs of source and destination MCs. This actually constitutes a divide and conquer ap-

proach, since the sub-problems created for finding the OPF of a specific pair of source

and destination MCs are independent of each other, yielding a reduction in the total com-

plexity required by the exhaustive search, which is on the order of O(NrN
2), down from

O(N2Nr ). Nevertheless, the solutions identified are not Pareto-optimal as yet, as we know

based on Proposition 1; we still need a process for identifying the composite OPF SOPF

from the union of the OPFs of the independent sub-problems
{
SOPF
n

}Nr

n=1
, which yields

an additional overhead on the order of O(N̄2Nr
OPF) in terms of complexity imposed by the

exhaustive search, where N̄OPF corresponds to average number of Pareto-optimal routes

for each of the sub-problems. Therefore, the total complexity imposed by the exhaustive

search using this transformation method is on the order of O(NrN
2 + N̄2Nr

OPF), which is far

less than O(N2Nr ), assuming that O(N̄OPF)≪ O(N).

Explicitly, the exhaustive search method is far from efficient, despite the use of the

search space transformation method, which was analyzed in the previous paragraph. For

this reason, we will exploit the hybrid hardware and quantum parallelism offered by the

NDQIO algorithm for further reducing the complexity of both the search space transfor-

mation step and the merging step, which will be referred to from now on as the inner

step and outer step, respectively. The flowchart of our proposed algorithm, namely the

Multi-Objective Decomposition Quantum Optimization (MODQO) algorithm, is shown in

Fig. 6.11, where it can be observed that the execution of the algorithm is comprised by

four distinct sub-processes or blocks.

To elaborate further, since our routing algorithm requires a centralized quantum-computer

the presence of a cluster head is assumed, which monitors and controls the dissemination

of the packets throughout the network. For the sake of performing optimal joint routing

and load balancing, the cluster head needs to gather all the necessary data for constructing

FMR, FMC, ZMR, ZMC and IMC , corresponding to the MRs’ friendship matrix, the MCs’

friendship matrix, the MR locations, the MC locations and the MC to MR association

vector, respectively. This information is essential for accurately evaluating the routes’ UVs

and, in the context of this treatise, we will assume perfect estimation of the aforementioned

parameters at the cluster head. This process is shown in Block 1 of Fig. 6.11.

Subsequently, the cluster head performs the inner step optimization, as described by

Block 2 of Fig. 6.11, where the routing table SOPF
MC containing the Pareto-optimal routes of

all the active source and destination MC pairs, which are identified independently through

a NDQIO sub-process, based on Alg. 6.1. The routes contained in SOPF
MC are then combined

through several iterations for producing the SOPF set, which contains the Pareto-optimal

route-combinations in terms of the network’s average delay and average power consumption.

This process constitutes the outer step of the MODQO algorithm and it is denoted by

Block 3 of Fig. 6.11 and it is detailed in Alg. 6.2. Finally, the MODQO algorithm outputs

the identified OPF routing table SOPF along with the solution Sopt ∈ SOPF that maximizes

the normalized entropy of the normalized composite betweenness distribution. We note

that we do not have to invoke a new search process for the latter; instead, during the last

iteration of Alg. 6.2, the normalized entropy value of the normalized composite betweenness
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Start

(1) The cluser head fetches
all the required information
from FMC, ZMR, ZMC and
IMC to construct the FMR.

(2) Inner Step: In-
voke Alg. 6.1 for gen-
erating the MC OPF
routing tables SOPF

MC .

(3) Outer Step: Invoke
Alg. 6.2 for iteratively

merging and optimizing the
MC OPF routing tables

SOPF
MC for identifying SOPF.

(4) Output SOPF and
Sopt = argmax

S∈SOPF

{H̄ [B̄com(S)]}.

Stop

Figure 6.11: Multi-Objective Decomposition Quantum Optimization (MODQO) algorithm
flowchart. We note that the in parentheses numbers at the begining of each block
correspond to the identification number of each block.

distribution of each SOPF element is evaluated as long as the specific set of active routes is

identified as Pareto-optimal. It is then compared to the maximum hitherto observed value

and this value is updated, should the observed value be greater than the maximum value

observed so far. This process imposes a further overhead in terms of complexity equal to

the number
∣
∣SOPF

∣
∣ of elements comprising the OPF.

Having presented an overview of the MODQO algorithm let us now provide some further

discussions regarding the inner (Block 2) and the outer (Block 3) steps in Subsections 6.3.3

and 6.3.4, respectively.

6.3.3 Building the MC Routing Tables

During the inner step, our design objective is to construct the routing table SOPF
MC for all

the active pairs of source and destination MCs. The formal statement of the inner process
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introduced in Block 2 of Fig. 6.11 is presented in Alg. 6.1. We note that the n-th element

SOPF
MC,n of the routing table SOPF

MC , which appears in Alg. 6.1, contains the Pareto-optimal

routes of the n-th pair of source and destination MCs, while SOPF
MC,n,k corresponds to the

k-th identified Pareto-optimal route of SOPF
MC,n.

Algorithm 6.1 Inner Step of the Multi-Objective Decomposition Quantum Optimization
(MODQO) algorithm, introduced in Block 2 of Fig. 6.11.

1: # Building MR Routing Table SOPF
MR :

2: Set SOPF
MR ← [ ].

3: for i = 0 to NMR do

4: for j = i+ 1 to NMR do

5: if FMR,i,j 6= 0 then

6: Invoke the NDQIO process of Alg. 5.1 with source node the MRi and destination
node the MRj and store the OPF routes to SOPF

MR,i,j and the reciprocal of these

routes to SOPF
MR,j,i.

7: end if

8: end for

9: end for

10: # Building MC Routing Table SOPF
MC :

11: Set SOPF
MC ← [ ] and n← 0.

12: for i = 0 to NMC do

13: for j = i+ 1 to NMC do

14: if FMC,i,j 6= 0 then

15: Set n← n+ 1, l← IMC,i and m← IMC,j.
16: if l 6= m then

17: for k = 1 to

∣
∣
∣SOPF

MR,i,j

∣
∣
∣ do

18: Set SOPF
MC,n,k = [MCi, S

OPF
MR,l,m,k,MCj].

19: end for

20: else

21: Set SOPF
MC,n ← [MCi,MRl,MCj ].

22: end if

23: end if

24: end for

25: end for

26: Export the SOPF
MC and exit.

Based on the assumption that the MRs operate in full-duplex with the aid of a sufficient

number of orthogonal spreading codes and channels both in the frequency domain, we are

ready to independently address each of the routing sub-problems for a specific pair of source

and destination MCs. Explicitly, this specific assumption provides us with the upper bounds

of the twin-layer network’s achievable performance. Additionally, we can achieve a further

reduction in the complexity imposed by the inner step, if we exploit the fact that each of

the MCs is assigned to its closest MR. Based on this allocation scheme, different source

MCs assigned to the same MR have identical sets of Pareto-optimal routes leading to the

specific destination MCs that are also assigned to the same MR. Therefore, we can directly

perform the routing optimization directly among the MRs based on their friendship matrix

FMR, hence constructing the respective routing table SOPF
MR . This process is performed in

Steps 6.1.3-9, where the NDQIO process of [2, Alg. 4] is activated in Step 6.1.6, as long as
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the source MRi and destination MRj share a social relationship, i.e. we have FMR,i,j 6= 0. In

this way, we have managed to reduce the number of NDQIO activations to ||FMR||2 /2 from

||FMC||2 /2, where the ||·||2 operator corresponds to the power-2 norm of a matrix [193].

After successfully constructing the MR routing table SOPF
MC , the cluster can readily

construct the respective MC routing table SOPF
MC from SOPF

MC , the active MC association

vector IMC to MRs and the MC friendship FMC in Steps 6.1.11-25. The exception of

the source and destination MCs that are associated with the same MR is examined in

Step 6.1.16. Naturally, should the source and destination MCs be associated with different

MRs, the MODQO algorithm will rely on the MR routing table to construct the Pareto-

optimal set of MC routes, as shown in Step 6.1.18. Otherwise, the two MCs are directly

connected through their associated MR without the inclusion of intermediate MRs based

on Step 6.1.21, since there exists no other valid Hamiltonian route that does not traverse

the specific MR twice.

Finally, we note that should half-duplex and a finite number of either orthogonal codes

or orthogonal channels be considered, our MODQO algorithm will still be applicable; how-

ever, a further constraint has to be imposed regarding the priority of each active route.

This leads to a modified inner step, where the MC routing table is directly constructed,

rather than exported from the respective MR routing table SOPF
MR .

6.3.4 Merging the MC Routes

Having identified the Pareto-optimal routes SOPF
MC,i for each individual active pair of source

and destination MCs, we now have to combine the routes for identifying the network’s

Pareto-optimal sets of routes in terms of the network’s average delay and its average power

dissipation. Naturally, the conceptually simplest method of combining the individual routes

would be to consider them jointly. Therefore, assuming Nr active pairs of source and

destination MCs having on average N̄OPF Pareto-optimal routes, the resultant complexity

imposed by the exhaustive search is equal to:

Louter
ES = N̄2Nr

OPF. (6.39)

Observe in Eq. (6.39) that the complexity imposed by the exhaustive search increases

exponentially, as the number of active routes increases. By contrast, when an NDQIO

process is utilized, the resultant complexity quantified in terms of the number of CFEs will

be on the order of O(N̄Nr
OPF), owing to the complexity reduction offered by the QP, based

on Eqs. (4.15), (5.35) and (5.53). Explicitly, this problem is NP-hard, since it belongs to

the class of Multi-Objective Knapsack Problems [194]. Hence, for the sake of efficiently

identifying the Pareto-optimal route-combinations, a heuristic approach has to be adopted.

In fact, the solution space formed by the combinations of the independent of the sub-

problems Pareto-optimal routes can be portrayed as the irregular trellis diagram [195] of

Fig. 6.12. Explicitly, an irregular trellis diagram is utilized, since the trellis paths can

reach different total number of states at the n-th stage, which is denoted by
∣
∣
∣SOPF

MC,n

∣
∣
∣. Still
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Figure 6.12: Trellis diagram of the merging process solely using the CM method.or the outer step
optimization. We note that at each stage only

∣
∣SOPF

∣
∣ routes continue propagating

towards the End node, as denoted by the dotted arrows, while traversing precisely
∣
∣SOPF

MC,i

∣
∣ nodes at the i-th step.

referring to Fig. 6.12, a specific trellis path representing a particular route-combination is

formed once a trellis transition traverses a specific trellis node, which correspods to a specific

route. For instance, at the 3rd stage of Fig. 6.12 a trellis path visiting the trellis nodes

SOPF
MC,1,2, S

OPF
MC,2,1 and SOPF

MC,3,5 represents the particular route-combination formed by the

second identified Pareto-optimal route of the first active pair of source and destination MCs,

the first identified Pareto-optimal route of the second active pair of source and destination

MCs and the fifth identified Pareto-optimal route of the third active pair of source and

destination MCs.

Owing to the irregular trellis structure of the outer problem, we may readily employ the

classic Viterbi Algorithm [196]. However, we have to modify it so that it becomes applicable

for multi-objective Cost Functions (CF), since it has been initially designed for single-

objective CFs in the context of decoding Forward Error Correction (FEC) schemes [97].

Explicitly, we have proven in Proposition 1 that a route-combination is potentially Pareto-

optimal, when all of the routes comprising the route-combination are Pareto-optimal in

their respective individual sub-problems. Naturally, due to the specific form of the utility

functions of the UV defined in Eq. (6.31) it is possible to group n sub-problems into a

smaller composite sub-problem x, which is defined as follows:

x =
[

x(1), . . . , x(n)
]

, (6.40)

while its k-th respective UF is given by:

fk(x) =

n∑

i=1

ak,nfk(x
(i)). (6.41)
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Figure 6.13: Trellis diagram of the merging process solely using the QM method for the outer
step optimization. In the same fashion as in Fig. 6.12, only

∣
∣SOPF

∣
∣ routes con-

tinue propagating at the next trellis stage, as denoted by the dotted arrows, while
traversing precisely

∣
∣SOPF

MC,i

∣
∣ nodes at the i-th step.

Based on Eq. (6.40) the composite problem’s solution S is now defined as follows:

S =
[

x, x(n+1), . . . , x(Nr)
]

, (6.42)

and based on Eq. (6.41), the route-combination S has a k-th UF that attains the form of

Eq. (6.31). This is the critical condition for Proposition 1 to be valid and, hence, we have:

SOPF ⊆ SOPF
(n) ∪

(
Nr⋃

i=n+1

SOPF
MC,i

)

, ∀n,Nr ∈ N∗, (6.43)

where we have n ≤ Nr and SOPF
(n) corresponds to the OPF of the Pareto-optimality routing

sub-problem with route solutions having the form x =
[
x(1), . . . , x(n)

]
. Naturally, if we

have n = Nr, Eq. (6.43) is reduced to SOPF = SOPF
(Nr)

, while if we set Nr = n+1, Eq. (6.43)

is transformed into the following recursive closed form:

SOPF
(n+1) ⊆ SOPF

(n) ∪ SOPF
MC,n+1, (6.44)

where the equality of the sets is satisfied, as long as the set SOPF
MC,n+1 consists of a single

Pareto-optimal route, i.e. we have
∣
∣
∣SOPF

MC,n+1

∣
∣
∣ = 1.

Explicitly, Eq. (6.44) provides us with a reduced-complexity optimal merging method for

the sake of iteratively combining the OPF SOPF
MC,n of each stage to form the network’s overall

OPF SOPF. To elaborate further, at the n-th horizontal step or stage of Fig. 6.12 we only

have to consider the arrival of hitherto Pareto-optimal route-combinations for the previous

(n− 1) stages, i.e. the route-combinations belonging to the set SOPF
(n−1). Subsequently, these

routes visit each of the nodes of the n-th stage, thus constructing the set SOPF
(n−1) ∪ SOPF

MC,n

of route-combinations. Since the OPF of the n-th stage route-combinations SOPF
(n−1) is a

subset of SOPF
(n−1) ∪ SOPF

MC,n we will have to identify the new OPF for the sake of discarding
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the sub-optimal routes and, thus, confining the search space for the sake of reducing the

complexity imposed without degrading the associated accuracy. As far as the initialization

of the OPF of route-combinations is concerned, it is set to SOPF
(0) = [ ], which represents an

empty set. The aforementioned iterative process is repeated until the route-combinations

have encapsulated routes from all the active pairs of source and destination MCs. The

intermediate products of this iterative process are portrayed in Fig. 6.12 with the aid of

dotted arrows; these arrows demonstrate the routes that horizontally propagate at the next

stage.

In a nutshell, this iterative process resembles the classic Viterbi Algorithm [196, 197],

since they both attempt to reduce the search space using a series of iterations. The most

notable difference in our approach compared to the classic Viterbi Algorithm is that the

number of propagating routes in our scenario is variable and it depends on the number
∣
∣
∣SOPF

(n)

∣
∣
∣ of the Pareto-optimal route-combinations at the n-th stage. Therefore, the com-

plexity of this method quantified in both domains, which will be referred to from now on

as Classical Merging (CM) method, is bounded by:

Louter
CM,min = (Nr − 1)N̄4

OPF = O(NrN̄
4
OPF), (6.45)

Louter
CM,max =

Nr∑

n=2

N̄2n
OPF =

N̄
2(Nr+2)
OPF − N̄4

OPF

N̄2
OPF − 1

= O(N̄
2(Nr+1)
OPF ), (6.46)

where N̄OPF corresponds to the average number of OPF in the independent sub-problems,

while Louter
CM,min and Louter

CM,max are the lower and upper bounds of the CM method. The lower

bound of Eq. (6.45) corresponds to the best-case scenario, where the number of route-

combinations that propagate across the irregular trellis stages is equal to the number of

the respective states at the specifc trellis stage, i.e. equal to
∣
∣
∣SOPF

MC,n

∣
∣
∣ for the n-th stage,

while the upper bound of Eq. (6.46) is encountered in the worst-case scenario, where all

the possible route-combinations are Pareto-optimal. Observe in Eqs. (6.45) and (6.46) that

although the CM method imposes a substantially lower amount of complexity in the best-

case scenario than the exhaustive search, in the worst-case scenario the CM method actually

imposes a higher complexity, owing to the design assumption of having sub-optimal route-

combinations that will be eliminated during the intermediate stages. In the next section

we will provide the critical condition for the CM to outperform the exhaustive search.

Furthermore, we can readily empower the CM method with the quantum-aided frame-

work of Section 5.2, which was invoked in the inner step, for the sake of achieving a further

reduction in the parallel complexity imposed by the outer step. A naive approach would

be to invoke the NDQIO algorithm at each stage; however, this approach would only be

efficient for a high number of route-combinations, whilst its potential application would

impose a higher parallel complexity than the convetional CM method. For the sake of

circumventing this problem, we have introduced an additional degree of freedom for the

NDQIO process. In particular, we have designed the NDQIO sub-process to be capable of

jointly considering multiple stages of the irregular trellis, set to an optimal number of stages

nopt, as it is portrayed in Fig. 6.13. We note that from this point on this process will be
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referred to as the Quantum Merging (QM) process. Observe in Fig. 6.13 that the NDQIO

process jointly considers the route-combinations formed by the OPF sets
{

SOPF
MC,n

}nopt

n=1
, as

marked by the dashed-line-bordered rectangle.

Based on this, we have to define the selection criterion regarding the value of the

parameter nopt, which would allow the NDQIO sub-process to impose a lower parallel

complexity than the CM method. For this reason, let us first define a metric for quantifying

the complexity imposed by the CM. Explicitly, for accurately quantifying the complexity

imposed by the CM method, the number of Pareto-optimal route-combinations has to be

known prior to the optimization. Since the optimization process is incapable of estimating

the number of Pareto-optimal route-combinations at each stage without actually solving the

respective Pareto-optimality sub-problems, we will attempt to approximate the complexity

imposed by the CM method using its lower bound. Hence, we set the number of Pareto-

optimal route-combinations at each stage equal to the number of nodes of that stage. Based

on this assumption, the reference complexity Lref
CM imposed by the CM method quantified

in terms of the trellis stage index n is equal to:

Lref
CM(n) =

|SOPF
MC |∑

n=2

∣
∣SOPF

MC,n−1

∣
∣
2 ∣
∣SOPF

MC,n

∣
∣
2
. (6.47)

Based on the same assumption and Eq. (5.53), we are capable of deriving the upper

and lower bounds of the parallel complexity imposed by the NDQIO algorithm, when n

stages are considered jointly. Explicitly, the aforementioned bounds of parallel complexity

quantified in terms of the number of CFEs are equal to:

Lref
QM,min(n) = (2K)−1

∣
∣
∣SOPF

MC,n

∣
∣
∣

2
+K−1

{

Lmin
DHA[N̂(n)]+

+2Lmin
BBHT[N̂(n)]− 1

2

} ∣
∣
∣SOPF

MC,n

∣
∣
∣+

+(1−K)
{

2
KL

min
BBHT[N̂(n)] + 1

2

}

,

(6.48)

Lref
QM,max(n) = (2K)−1

∣
∣
∣SOPF

MC,n

∣
∣
∣

2
+K−1

{

Lmax
DHA[N̂(n)]+

+2Lmax
BBHT[N̂(n)]− 1

2

} ∣
∣
∣SOPF

MC,n

∣
∣
∣+

+(1−K)
{

2
KL

max
BBHT[N̂(n)] + 1

2

}

,

(6.49)

where Lmin
BBHT[N̂(n)] and Lmax

BBHT[N̂ (n)] correspond to the lower and upper bounds of the

complexity imposed by the BBHT-QSA for a database of N̂(n) elements, as defined in

Eqs. (4.15) and (4.16), respectively, whereas Lmin
DHA[N̂(n)] and Lmax

DHA[N̂ (n)] are the respec-

tive complexity bounds of the DHA, which are defined in Eqs. (5.26) and (5.35), respec-

tively. Additionally, recall that the parameter K represents the number of utility functions

considered, which is set equal to K = 2 utility functions in our scenario. We note that the

database length N̂(n) is quantified in terms of the number n of joint stages considered by
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the NDQIO algorithm as follows:

N̂(n) =

n∏

i=1

∣
∣SOPF

MC,i

∣
∣. (6.50)

We note that we are using the upper and lower bounds of complexity for the NDQIO

algorithm due to the stochastic nature of both the DHA and of the BBHT-QSA. Having

derived these bounds, we may now assess the criteria for an efficient deployment of the

NDQIO algorithm. Our ultimate design target is to determine at each iteration the optimal

number nopt of joint stages for ensuring that the NDQIO algorithm outperforms the CM

method, while imposing the lowest possible complexity. Therefore, the optimal value nopt

occurs at the specific trellis stage, where the lower bound of the complexity reduction with

respect to the CM is maximized. This can be formulated as follows:

nopt = argmax
n∈{1,...,|SOPF

MC |}

{

Lref
CM(n)

Lref
QM,max(n)

}

. (6.51)

Nonetheless, we should also ensure that the NDQIO process achieves a beneficial complexity

reduction compared to the partial CM method, for this optimal value of nopt. Explicitly,

this can be verified by comparing the lower bound Lref
QM,max(nopt) of the complexity imposed

by the NDQIO algorithm to the respective value Lref
CM(nopt) of the CM method: should the

NDQIO lower bound for the specific value of nopt derived by Eq. (6.51) be lower than that

of the CM method, then we may conclude that the NDQIO process is potentially capable

of outperforming the CM method. Otherwise, it is clear that the CM method should be

invoked. At this point, we would like to point out that we have opted for utilizing the lower

bound of the NDQIO’s average complexity, since it tends to be closer to average case, when

compared to its upper bound counterpart, as presented in [2].

Algorithm 6.2 Outer Step of the Multi-Objective Decomposition Quantum Optimization
(MODQO) algorithm, introduced in Block 3 of Fig. 6.11.

1: Sort SOPF
MC in terms of their number of OPF routes in ascending order.

2: Initialize SOPF ← SOPF
MC,1 and remove SOPF

MC,1 from SOPF
MC .

3: repeat

4: Calculate LCM(n), Lref
QM,min(n) and L

ref
QM,max(n), defined in (6.47), (6.48) and (6.49)

respectively, ∀n ∈
{
1, . . . ,

∣
∣SOPF

MC

∣
∣
}
.

5: Evaluate nopt from Eq (6.51).
6: if Lref

QMmin(nopt) < Lref
CM(nopt) then

7: Consider jointly the solutions formed by merging SOPF and {SOPF
MC,n}

nopt

n=1 and acti-

vate a NDQIO process of Alg. 5.1 storing the identified OPF to SOPF and removing
the elements {SOPF

MC,n}
nopt

n=1 from SOPF
MC .

8: else

9: Consider jointly the solutions formed by merging SOPF and SOPF
MC,1 and store the

identified OPF by exhaustive search to SOPF, removing SOPF
MC,1 from SOPF

MC .
10: end if

11: until
∣
∣SOPF

MC

∣
∣ > 0.

12: Export the SOPF and exit.



162 6. Multi-Objective Routing and Load Balancing for Social Networks

Based on this framework, which relies on a synergistic hybrid of classical and quantum

optimization, let us now describe the outer step of the MODQO algorithm, which is formally

presented in Alg 6.2. Prior to constructing the irregular trellis structure of Fig. 6.13, we have

to sort the MC Pareto-optimal routing tables {SOPF
MC,n}Nr

n=1 based on their number
∣
∣
∣SOPF

MC,n

∣
∣
∣

of the independent Pareto-optimal routes, as it is shown in Step 6.2.1. This can be justified

by the fact that the number of route-combinations will eventually increase, as more stages

of the trellis diagram are examined. Naturally, this sorting is consistent with the design

assumption that the number of Pareto-optimal routes at the end of each stage is equal to the

number of the specific states at that trellis stage. Subsequently, the set of Pareto-optimal

route-combinations SOPF is initialized to the first set SOPF
MC,1 of Pareto-optimal routes in the

MC routing table, which is then removed from SOPF
MC in Step 6.2.2 followed by the iterative

process of Steps 6.2.3-11. This iterative process is invoked for the sake of determining as to

whether a single NDQIO activation is capable of imposing a lower complexity than the CM

method for the same number of trellis stages. Hence, the more efficient method is activated

at each iteration. To elaborate further, the respective reference complexities are quantified

in terms of the trellis stage index n and the its optimal value nopt with respect to the

maximum complexity reduction achieved by the QM over the CM method in Steps 6.2.4-5,

respectively. Should the algorithm conclude that the QM method is potentially capable of

operating at a lower complexity than the CM, nopt stages are considered jointly with the

Pareto-optimal route-combinations SOPF gleaned from the previous iterations in Step 6.2.7;

it then updates the OPF route-combinations SOPF and removes the encapsulated stages

from the MC routing table. Otherwise, a single CM iteration is applied, i.e. the first

set SOPF
MC,1 of the MC routing table is jointly considered with the SOPF gleaned from the

previous iterations and Alg. 6.2 removes the set SOPF
MC,1 from the MC routing table after

updating the OPF of route-combinations SOPF in Step 6.2.9. We note that a single CM

is applied, rather than nopt for the sake of allowing the algorithm to iteratively calibrate

itself for all the potential outcomes of all Pareto-optimal route-combinations.

For the sake of simplicity, we have not included the specific process, appearing in Block 4

of Fig. 6.11, which identifies the specific Pareto-optimal route-combination Sopt exhibiting

the maximum value of the normalized entropy of the normalized composite betweenness.

In fact, this specific process can be incorporated during the last iteration of Alg. 6.2, where

the normalized entropy H̄[B̄com(S)] of the normalized composite betweenness is evaluated,

when a route-combination is identified as being Pareto-optimal. This value of H̄[B̄com(S)]

is then compared to the maximum observed H̄max value, which is updated depending on

the comparison outcome. In this way, we can reach the optimal route-combination Sopt

with respect to the optimization problem of Eq. (6.22) by imposing a modest overhead of
∣
∣SOPF

∣
∣ CFEs.

6.3.5 A 12-Node Tutorial Example using MODQO

Having fully described the MODQO algorithm’s the inner and the outer sub-processes, let

us now elaborate on its function with the aid of a low-paced tutorial example. We note

that the following tutorial assumes knowledge of the NDQIO algorithm. Therefore, the
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readers new to this subject should refer to the tutorial section of [2]. Additionally, we will

assume an identical twin-layer network to that of the tutorial using the Exhaustive Search

presented in Sec. A.4.

Based on the friendship matrix FMC of Eq. (6.24), the MCs’ locations ZMC, the MRs’

locations ZMR and the MCs to MRs association vector IMC, which are shown in Fig. 6.7,

the cluster head invokes the MODQO algorithm seen in Fig. 6.11. Firstly, based on Block 1

of the MODQO flowchart seen in Fig. 6.11 the MR friendship matrix FMR is constructed,

whose elements indicate which pairs of MRs are associated with MCs that share a social

relationship. In our scenario, the MR friendship matrix FMR is equal to:

FMR =

























0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 1 1 1

0 0 0 0 0 0 0

0 0 1 0 0 1 0

0 0 1 0 1 0 0

0 0 1 0 0 0 0

























, (6.52)

where we can observe that the MR1 and MR4 share no social relationship with the rest

of the MRs, since they are not associated with any of the MCs. To elaborate further,

MR2 and MR7 shares a social relationship only with MC3, MR3 in turn shares a friendship

relationship with MR2, MR5, MR6 and MR7, since it is associated with the social by-

minded MC1, while MR5 and MR6 share a social relationship both with each other and

with MR3. The MRs’ social relationship is visually portrayed in Fig. 6.14.

After the construction of the MR friendship matrix FMR, the MODQO algorithm pro-

ceeds with its inner step, according to Block 2 of the MOQDO flowchart seen in Fig. 6.11.

In this step, the MODQO algorithm initializes the MR routing table to an empty ma-

trix based on Step 6.1.2. It then acts on the upper triangular part of the FMR matrix

by activating a NDQIO sub-process in Steps 6.1.3-9 for the sake of identifying the entire

set of Pareto-optimal routes between MRi and MRj as long as FMR,i,j = 1, i.e. MRi

and MRj have a social relationship. We note that the NDQIO sub-process activates the

weak Pareto dominance operator Ugw portrayed in Fig. 6.10. Based on Eq. (6.52) for

our scenario, the NDQIO sub-process will be activated ||FMR||2 /2 = 5 times, namely for

the elements FMR,2,3, FMR,3,5, FMR,3,6, FMR,3,7 and FMR,5,6, thus exporting the sets of

Pareto-optimal routes SOPF
MR,2,3, S

OPF
MR,3,5, S

OPF
MR,3,6, S

OPF
MR,3,7 and SOPF

MR,5,6, respectively. The

aforementioned OPFs constituting the MR routing table along with their associated utility

functions, namely their delay D(x) quantified in terms of the number of established hops

and their power consumption P (x) quantified in dBm, are presented in Table 6.4. Recall

that the notation SOPF
MR,i,j,k of Table 6.4 represents the k-th Pareto-optimal route identified



164 6. Multi-Objective Routing and Load Balancing for Social Networks

Figure 6.14: Visual representation of the MRs’ social relationship, based on Eq. (6.24). Note that
the gray arrows indicate the association between a specific MC and a specific MR.

by the NDQIO sub-process for producing the OPF SOPF
MR,i,j, which in turn corresponds to

the set of Pareto-optimal routes spanning from MRi to MRj and vice versa.

Subsequently, the inner process of the MODQO algorithm builds up the respective MC

routing table SOPF
MC based on the MR routing table SOPF

MR of Table 6.4, on the MC to MR

association vector IMC and on the MC friendship matrix FMR, which in our scenario is

quantified in Eq. (6.24). We note that in the context of this current treatise, we have

assumed that only the routes spanning from a specific MCi to another specific MCj are

active during a transmission period, but not the reverse of these routes. The latter are

considered to be activated during the next transmission period, when the first ones are

inactive. In our scenario, the set Sact of active source and destination pairs considered is
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Table 6.4: MR routing table SOPF
MR exported by Alg. 6.1.

ID Route, x D(x) P (x)

SOPF
MR,2,3

SOPF
MR,2,3,1 MR2 → MR1 → MR3 2.00 16.55

SOPF
MR,2,3,2 MR2 → MR5 → MR1 → MR4 → MR6 → MR3 5.00 14.90

SOPF
MR,2,3,3 MR2 → MR5 → MR1 → MR6 → MR3 4.00 15.65

SOPF
MR,2,3,4 MR2 → MR5 → MR1 → MR3 3.00 15.68

SOPF
MR,3,5

SOPF
MR,3,5,1 MR3 → MR5 1.00 16.08

SOPF
MR,3,5,2 MR3 → MR6 → MR4 → MR1 → MR5 4.00 13.96

SOPF
MR,3,5,3 MR3 → MR6 → MR1 → MR5 3.00 14.88

SOPF
MR,3,5,4 MR3 → MR1 → MR5 2.00 14.92

SOPF
MR,3,6

SOPF
MR,3,6,1 MR3 → MR6 1.00 2.48

SOPF
MR,3,7

SOPF
MR,3,7,1 MR3 → MR7 1.00 17.24

SOPF
MR,3,7,2 MR3 → MR6 → MR4 → MR7 3.00 9.25

SOPF
MR,3,7,3 MR3 → MR6 → MR7 2.00 13.48

SOPF
MR,5,6

SOPF
MR,5,6,1 MR5 → MR6 1.00 16.53

SOPF
MR,5,6,2 MR5 → MR1 → MR4 → MR6 3.00 13.64

SOPF
MR,5,6,3 MR5 → MR1 → MR6 2.00 14.62

equal to:

Sact =







MC2 → MC1

MC1 → MC3

MC4 → MC1

MC5 → MC1

MC2 → MC5







, (6.53)

where we can observe that the number Nr of active pairs of source and destination MCs is

equal to:

Nr =
||FMC||2

2
=
∣
∣Sact

∣
∣ = 5. (6.54)

Based on the active set Sact defined in Eq (6.53) and on the association vector IMC,

which is portrayed with the aid of the dashed lines in Fig. 6.7, the MODQO algorithm
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Table 6.5: MC routing table SOPF
MC after Step 6.2.1.

ID Route, x D(x) P (x)

SOPF
MC,1

SOPF
MC,1,1 MC2 → MR6 → MR3 → MC1 3.00 7.68

SOPF
MC,2

SOPF
MC,2,1 MC4 → MR7 → MR3 → MC1 3.00 17.56

SOPF
MC,2,2 MC4 → MR7 → MR4 → MR6 → MR3 → MC1 5.00 10.95

SOPF
MC,2,3 MC4 → MR7 → MR6 → MR3 → MC1 4.00 14.20

SOPF
MC,3

SOPF
MC,3,1 MC2 → MR6 → MR5 → MC5 3.00 17.61

SOPF
MC,3,2 MC2 → MR6 → MR4 → MR1 → MR5 → MC5 5.00 15.54

SOPF
MC,3,3 MC2 → MR6 → MR1 → MR5 → MC5 4.00 16.20

SOPF
MC,4

SOPF
MC,4,1 MC1 → MR3 → MR1 → MR2 → MC3 4.00 17.19

SOPF
MC,4,2 MC1 → MR3 → MR6 → MR4 → MR1 → MR5 → MR2 →

MC3

7.00 15.80

SOPF
MC,4,3 MC1 → MR3 → MR6 → MR1 → MR5 → MR2 → MC3 6.00 16.42

SOPF
MC,4,4 MC1 → MR3 → MR1 → MR5 → MR2 → MC3 5.00 16.45

SOPF
MC,5

SOPF
MC,5,1 MC5 → MR5 → MR3 → MC1 3.00 17.55

SOPF
MC,5,2 MC5 → MR5 → MR1 → MR4 → MR6 → MR3 → MC1 6.00 16.16

SOPF
MC,5,3 MC5 → MR5 → MR1 → MR6 → MR3 → MC1 5.00 16.73

SOPF
MC,5,4 MC5 → MR5 → MR1 → MR3 → MC1 4.00 16.76

attempts to construct the respective MC routing table SOPF
MC in Steps 6.1.11-25. In par-

ticular, for the routes from MC2 to MC1 associated with MR6 and MR3, respectively,

the set SOPF
MC,3,6 consisting of a single route will be utilized, with the order of its nodes

reversed, and the source and destination MCs are appended at the start and the end of

the Pareto-optimal route, as stated in Step 6.1.18. The same process is repeated until the

Pareto-optimal routes of the entire set of active source and destination pairs have been

constructed forming the MR routing table SOPF
MC .

The construction of the MC routing table SOPF
MC denotes the end of the MODQO inner

step presented in Alg. 6.1. Then, the MODQO algorithm invokes its outer step, which is for-

mally defined in Alg. 6.2. Initially, the MODQO outer step sorts the elements {SOPF
MC,n}5n=1

of the MC routing in ascending order according to their number
∣
∣
∣SOPF

MC,n

∣
∣
∣ of the Pareto-

optimal routes in Step 6.2.1. The sorted MC routing table associated with our scenario

along with the routes’ delay and power consumption is presented in Table 6.5, where the
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notation SOPF
MC,i,j is used, denoting the j-th Pareto-optimal route of the set SOPF

MC,i, which

in turn corresponds to the Pareto-optimal routes’ set for the i-th active pair of source

and destination MCs. The MODQO algorithm then initializes the set SOPF of Pareto-

optimal route-combinations to the first set of element in the MC routing table, i.e. we have

SOPF = SOPF
MC,1, and it then removes this element from the MC routing table, according to

Step 6.2.2.

Subsequently, observe for the MODQO outer step’s iterative process of Steps 6.2.3-11

that the route-combinations’ OPF SOPF contains routes from all the active pairs of source

and destination MCs, as encapsulated by Step 6.2.11. During the first iteration, the

MODQO outer procedure assesses the maximum achievable complexity reduction offered

by the NDQIO algorithm by jointly considering multiple stages. After the initialization the

MC routing table consists of four elements, namely the elements {SOPF
MC,n}5n=2 of Table 6.5.

According to Step 6.2.4, the reference complexity Lref
CM(n) quantified in terms of the num-

ber of CFEs as a function of n encapsulated stages imposed by the CM method based on

Eq. (6.47) is equal to:

Lref
CM(n) =







9, n = 1,

90, n = 2,

234, n = 3,

490, n = 4,

(6.55)

while the upper bound of the reference complexity Lref
QM,max(n) quantified in terms of the

number of CFEs as a function of n encapsulated stages imposed by the QM method based

on Eq. (6.49) is equal to:

Lref
QM,max(n) =







59, n = 1,

405, n = 2,

777, n = 3,

2016, n = 4.

(6.56)

Therefore, based on Eqs. (6.55) and (6.56) the lower bound of the complexity reduction

offered by the NDQIO with respect to the CM method as a function of n encapsulated

stages is equal to:

Lref
CM(n)

Lref
QM,max(n)

=







0.1525, n = 1,

0.2222, n = 2,

0.3012, n = 3,

0.2431, n = 4.

(6.57)

Therefore, it is clear from Eq. (6.57) that the lower bound of the complexity reduction
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offered by the NDQIO algorithm with respect to the CM method is maximized for nopt = 3

joint stages.

Having exported the optimal number nopt of the joint stages to be considered by the

NDQIO algorithm, the MODQO outer step has to assess as to whether the NDQIO algo-

rithm is indeed capable of outperforming the CM method for this specific optimal value.

This action is undertaken by Step 6.2.6, where the lower bound of the complexity imposed

by the NDQIO algorithm is compared to that of the CM method. More particularly, for

our scenario we have:

Lref
QM,min(nopt) = 123 < 234 = Lref

CM(nopt). (6.58)

Therefore, based on Eq. (6.58) the MODQO outer step concludes that NDQIO may

potentially impose a lower number of CFEs than the CM method, and activates it for

nopt = 3 stages, according to Step 6.2.7, thus invoking the process portrayed in Fig. 6.13 and

the stages examined are then removed from the MC routing table. At the end of the NDQIO

process the MODQO outer step reaches the end of the fourth stage in Fig. 6.13 and, thus,

the set SOPF of the route-combinations is updated to the OPF exported by the NDQIO

process, which in turn constitutes the set3 SOPF
(4) of the surviving route-combinations of

the fourth stage in the irregular trellis of Fig. 6.13. These eight route-combinations along

with their respective average delay and their respective average power consumption are

presented in Table 6.6, where the route-combinations are represented using the IDs from the

first column of Table 6.5 containing the MC routing table. For instance, the first surviving

route-combination SOPF
(4),1 of the fourth stage is translated using Table 6.5 as follows:

SOPF
(4),1 =







MC2 → MR6 → MR3 → MC1,

MC4 → MR7 → MR3 → MC1,

MC2 → MR6 → MR5 → MC5,

MC1 → MR3 → MR1 → MR2 → MC3







. (6.59)

Subsequently, the eight surviving route-combinations contained in the set SOPF
(4) continue

their propagation to the final stage of the irregular trellis diagram of Fig. 6.13. A new

iteration of the MODQO outer step is invoked and the reference complexities quantified in

terms of the number of CFEs are evaluated during Step 6.2.4, as follows:

Lref
CM(n) = 1024, n = 1, (6.60)

Lref
QM,max(n) = 1563 n = 1, (6.61)

Lref
QM,min(n) = 291 n = 1, (6.62)

where the maximum complexity reduction offered by the NDQIO algorithm with respect to

3In general, the notation S
OPF
(n) corresponds to the surviving route-combinations of the n-th trellis stage.
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Table 6.6: Surviving route-combinations S of the outer step.

ID Pareto-optimal Route-combinations P̄ (S) D̄(S) H̄ [B̄com(S)] max{H̄[B̄com(S)]} argmax{H̄[B̄com(S)]}
Initialization SOPF

(1)

SOPF
(1),1 SOPF

MC,1,1 7.68 3.00 N/A

Iteration 1: NDQIO encapsulates 3 joint stages

SOPF
(4),1 SOPF

MC,1,1, S
OPF
MC,2,1, S

OPF
MC,3,1, S

OPF
MC,4,1 16.35 3.25

N/A

SOPF
(4),2 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,2, S

OPF
MC,4,2 13.63 5.00

SOPF
(4),3 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,3, S

OPF
MC,4,1 14.48 4.00

SOPF
(4),4 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,3, S

OPF
MC,4,4 14.15 4.25

SOPF
(4),5 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,3, S

OPF
MC,4,2 13.89 4.75

SOPF
(4),6 SOPF

MC,1,1, S
OPF
MC,2,3, S

OPF
MC,3,1, S

OPF
MC,4,1 15.51 3.50

SOPF
(4),7 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,2, S

OPF
MC,4,4 13.90 4.50

SOPF
(4),8 SOPF

MC,1,1, S
OPF
MC,2,3, S

OPF
MC,3,3, S

OPF
MC,4,1 14.99 3.75

Final Iteration: NDQIO encapsulates 1 stage

SOPF
(5),1 SOPF

MC,1,1, S
OPF
MC,2,1, S

OPF
MC,3,1, S

OPF
MC,4,1, S

OPF
MC,5,1 16.62 3.20 0.000 0.000 SOPF

(5),1

SOPF
(5),2 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,2, S

OPF
MC,4,2, S

OPF
MC,5,2 14.26 5.20 0.665 0.665 SOPF

(5),2

SOPF
(5),3 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,3, S

OPF
MC,4,1, S

OPF
MC,5,4 15.04 4.00 0.488 0.665 SOPF

(5),2

SOPF
(5),4 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,2, S

OPF
MC,4,4, S

OPF
MC,5,4 14.64 4.40 0.656 0.665 SOPF

(5),2

SOPF
(5),5 SOPF

MC,1,1, S
OPF
MC,2,3, S

OPF
MC,3,1, S

OPF
MC,4,1, S

OPF
MC,5,1 16.00 3.40 0.000 0.665 SOPF

(5),2

SOPF
(5),6 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,3, S

OPF
MC,4,4, S

OPF
MC,5,2 14.64 4.60 0.679 0.679 SOPF

(5),6

SOPF
(5),7 SOPF

MC,1,1, S
OPF
MC,2,3, S

OPF
MC,3,1, S

OPF
MC,4,1, S

OPF
MC,5,1 15.63 3.60 0.327 0.679 SOPF

(5),6

SOPF
(5),8 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,3, S

OPF
MC,4,1, S

OPF
MC,5,1 15.29 3.80 0.534 0.679 SOPF

(5),6

SOPF
(5),9 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,2, S

OPF
MC,4,2, S

OPF
MC,5,4 14.46 4.80 0.674 0.679 SOPF

(5),6

SOPF
(5),10 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,3, S

OPF
MC,4,4, S

OPF
MC,5,4 14.81 4.20 0.638 0.679 SOPF

(5),6

SOPF
(5),11 SOPF

MC,1,1, S
OPF
MC,2,2, S

OPF
MC,3,3, S

OPF
MC,4,2, S

OPF
MC,5,2 14.45 5.00 0.675 0.679 SOPF

(5),6
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the CM method is achieved for nopt = 1, in the absence of any other stages. Additionally,

since the lower bound of the NDQIO reference complexity Lref
QM,min is lower than that of

the CM method, a NDQIO process is activated for encapsulating the final stage into the

eight surviving route-combinations and, thus, updating the OPF of the route combinations

to SOPF = SOPF
(5) . Naturally, since we have nopt =

∣
∣SOPF

MC

∣
∣ = 1, the outer step concludes

that this is the final stage. Hence, the normalized entropy of the normalized composite

betweenness H̄[B̄com(S)] is calculated after the identification of a Pareto-optimal route-

combination by the NDQIO algorithm and a record of the route-combination exhibiting

the highest H̄[B̄com(S)] value is kept. For this reason, the normalized entropy of the

normalized composite betweenness values of the Pareto-optimal route-combinations are

exclusively included in the last three columns of Table 6.6, where we can observe that the

Pareto-optimal route-combination is the SOPF
(5),6 one, which is translated using Table 6.5 as

follows:

SOPF
(5),6 =







MC2 → MR6 → MR3 → MC1,

MC4 → MR7 → MR4 → MR6 → MR3 → MC1

MC2 → MR6 → MR1 → MR5 → MC5

MC1 → MR3 → MR1 → MR5 → MR2 → MC3

MC5 → MR5 → MR1 → MR4 → MR6 → MR3 → MC1







. (6.63)

Finally, the MOQDO algorithm outputs the specific route-combination SOPF
(5),6 that ex-

hibits the highest load balancing metric along with the entire set SOPF of Pareto-optimal

route-combinations, as described in Block 4 of the MODQO flowchart seen in Fig. 6.11.

By a close inspection, the eight routes of the last stage are identical to those of Table 6.3

exported by the exhaustive search.

6.4 Accuracy versus Complexity Discussions

Having provided a detailed description of the MODQO algorithm in the previous section,

let us now assess it performance in terms of both its complexity imposed and its accuracy

in terms of the optimization metrics considered.

6.4.1 Complexity

As it can be observed in the MODQO flowchart of Fig. 6.11, the MODQO algorithm’s

operation is constituted by two distinct steps, namely the inner and outer steps. Therefore,

we have to characterize the complexity associated with each step independently for the

sake of characterizing the total complexity imposed by the MODQO algorithm. Let us

commence with the characterization of the MODQO inner step complexity.
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6.4.1.1 Inner Step

As far as the inner step is concerned, the NDQIO algorithm, defined in [2, Alg. 4], is

activated by the cluster head in Step 6.1.6 precisely ||FMR||2 /2 times, namely once per

two friendly MRs. This is justified by the fact that we can utilize the Pareto-optimal routes

spanning from MRi to MRj for constructing the Pareto-optimal routes emerging from MRj

to MRi by inverting the sequence of the nodes at the cost of no additional CFEs. Therefore,

the total number NNDQIO of the NDQIO process activations is equal to:

NNDQIO =
||FMR||2

2
, (6.64)

while the respective lower and upper bounds are equal to:

Nmin
NDQIO = 1, (6.65)

Nmax
NDQIO =

NMR(NMR − 1)

2
, (6.66)

where the lower bound Nmin
NDQIO corresponds to the best-case scenario, and the MCs are

associated with only two different MR. By contrast, the upper bound Nmax
NDQIO occurs in

the worst-case scenario, where each of the MRs shares a friendship relationship with all the

rest of the MRs. Therefore, the complexity Linner
MODQO quantified in terms of the number of

CFEs imposed by the MODQO inner step is equal to:

Linner
MODQO =

||FMR||2 LNDQIO

2
, (6.67)

where the complexity LNDQIO imposed by a single NDQIO algorithm activation has been

quantified in Eqs. (5.53) and (5.54) for its parallel and sequential complexities, respectively,

in terms of the number of CFEs. We note that Eq. (6.67) corresponds to the general case of

the complexity imposed by the MODQO algorithm’s inner step. Explicitly, we can readily

derive the lower and upper bounds of the parallel complexity using Eqs. (6.65) and (6.66)

as follows:

LP,inner,min
MODQO (NOPF) = LP,min

NDQIO(NOPF) = O(NOPF

√
N), (6.68)

LP,inner,max
MODQO (NOPF) =

NMR(NMR−1)
2 LP,max

NDQIO(NOPF),

= O(N2
MRNOPF

√
N),

(6.69)

where NOPF corresponds to the number of Pareto-optimal route-solutions of each inde-

pendent sub-problem and N is the total number of legitimate routes between two MRs as

defined in Eq. (2.8). As for the sequential complexity’s lower and upper bounds character-

izing the MODQO algorithm’s inner step, they can be derived using Eqs. (6.65) and (6.66),

respectively, as well as Eqs. (5.54) and (6.67) as follows:

LS,inner,min
MODQO (NOPF) = 2LS,min

NDQIO(NOPF) = O(N2
OPF

√
N), (6.70)
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LS,inner,max
MODQO (NOPF) = NMR(NMR − 1)LS,max

NDQIO(NOPF),

= O(N2
MRN

2
OPF

√
N).

(6.71)

We note that the minimum complexity imposed by the NDQIO algorithm in both domains

can be derived by considering that both the BBHT-QSA and the DHA sub-processes im-

pose the minimum possible amount of complexity, namely Lmin
BBHT and Lmin

DHA defined in

Eqs. (4.15) and (5.26), respectively. Equivalently, the NDQIO algorithm’s maximum com-

plexity in both domains is derived by considering that both the BBHT-QSA and the DHA

sub-processes impose the maximum amount of complexity, namely Lmax
BBHT and Lmax

DHA de-

fined in Eqs. (4.16) and (5.35), respectively.

Observe in Eq. (6.75) that the upper bound of the complexity imposed by the MODQO

algorithm becomes independent of the number NMC of MCs, since it solely depends on the

number NMR of MRs. Naturally, as the number of MCs increases the number of friendly

MRs per MR also increases up to a maximum of the total number of MRs.

Additionally, it is possible to derive the upper and lower bounds of the number NOPF of

Pareto-optimal routes specifically for our scenario. Explicitly, the lower bound corresponds

to the best-case scenario, where a single Pareto-optimal route exists for all the possible

pairs of source and destination MCs. By contrast, the upper bound of the number NOPF

of Pareto-optimal routes corresponds to the worst-case scenario, where a single Pareto-

optimal route exists for all the possible values of the delay due to the utilization of the

weak Pareto dominance operator of Definition 1. Since the delay has been quantified

in terms of the number of hops, its maximum value is encountered when all the MRs

participate in the route establishment, i.e. we have Dmax(x) = NMR + 2 hops, while its

minimum value corresponds to the case where there are no intermediate MR involved in

the route construction, i.e. we have Dmin(x) = 3 hops. This range provides us with at

most Dmax(x)−Dmin(x) = NMR − 1 possible delay values. Therefore the upper and lower

bounds of the number of Pareto-optimal routes are quantified as follows:

Nmin
OPF = 1, (6.72)

Nmax
OPF = NMR − 1. (6.73)

Consequently, we may readily derive the strict upper and lower bounds of the MODQO

inner step parallel complexity by substituting the bounds of Eqs. (6.72) and (6.73) into

Eqs. (6.68) and (6.69), respectively. Hence, the resultant strict MODQO inner step lower

bound of its parallel complexity is equal to:

LP,inner,min
MODQO = LP,min

NDQIO(1) = O(
√
N), (6.74)
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while the respective strict upper bound of its parallel complexity is equal to:

LP,inner,max
MODQO = NMR(NMR−1)

2 LP,max
NDQIO(NMR − 1),

= O(N3
MR

√
N).

(6.75)

Additionally, we may derive strict bounds of the MODQO inner step sequential complexity

by substituting the bounds of Eqs. (6.72) and (6.73) into Eqs. (6.70) and (6.71), respectively.

Consequently, the resultant strict MODQO inner step lower bound of its parallel complexity

is equal to:

LS,inner,min
MODQO = 2LS,min

NDQIO(1) = O(
√
N), (6.76)

while the respective strict upper bound of its parallel complexity is equal to:

LS,inner,max
MODQO = NMR(NMR − 1)LS,max

NDQIO(NMR − 1),

= O(N4
MR

√
N).

(6.77)

Based on this analysis, let us now proceed by presenting the average MODQO inner

step complexity in both domains quantified as a function of the number of CFEs for twin-

layer networks consisting of NMR = {5, 6, . . . , 10} MRs and NMR = {2, 4, 8, 16} MCs, which

are shown in Figs. 6.15(a) and 6.15(b) for the parallel and sequential complexities, respec-

tively. In these figures, the MODQO algorithm’s average inner step parallel and sequential

complexities are compared both to their lower and upper bounds. Recall that as they were

quantified in Eqs. (6.74) and (6.75) for the parallel complexity and in Eqs. (6.76) and (6.77)

for the sequential complexity. They will also be compared to that average parallel and se-

quential complexities imposed by the exhaustive search. We note that both the exhaustive

search and the MODQO algorithm have been deployed and their complexity was averaged

over identical twin-layer network structures. Observe in Figs. 6.15(a,b) that the MODQO

algorithm’s average complexity increases exponentially with the number NMR of MRs in

both domains. Nevertheless, both the parallel and the sequential complexities increase with

a substantially lower gradient than the respective average complexities imposed by the ex-

haustive search. More specifically, for the parallel complexity presented in Fig. 6.15(a),

the MODQO inner step achieves a significant complexity reduction even for twin-layer

networks comprised by as few as NMR = 5 MRs, where the MODQO algorithm imposes

a parallel complexity, which is four times lower than that of the exhaustive search, while

the parallel complexity imposed by the MODQO algorithm’s inner step becomes about

six orders of magnitude lower than that of the exhaustive search for twin-layer networks

consisting of NMR = 10 MRs. A similar trend is also observed for the sequential complexity

in Fig. 6.15(b), where the MODQO algorithm imposes a twice lower sequential complex-

ity than that of the exhaustive search for twin-layer networks associated with NMR = 5

MRs, while this sequential complexity reduction reaches to several orders of magnitude for

twin-layer networks associated with NMR = 10 MRs.

Additionally, both the parallel and the sequential complexities quantified in terms of
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Figure 6.15: Average MODQO inner step (a) parallel and (b) sequential complexities quanti-
fied as a function of the number of CFEs for twin-layer networks consisting of
NMR = {5, 6, . . . , 10} MRs and NMC = {2, 4, 8, 16} MCs. The MODQO inner step
complexity is compared to that of the exhaustive search and to its respective upper
and lower bounds in both domains. Note that the lower and upper bounds of the
parallel complexity are defined in Eqs. (6.74) and (6.75), respectively, whereas the
respective bounds of the sequential complexity are defined in Eqs. (6.76) and (6.77).
The average complexity results have been averaged over 108 runs for twin-layer net-
works based on the optimization problem of Eq. (6.22) relying on the UV defined in
Eq. (6.21) and on the assumptions of Table 6.1.

the number of CFEs imposed both by the MODQO inner step and by the exhaustive search

increase almost proportionally to number of MCs as the the number NMC of MCs increases.

Naturally, as NMC increases, the average number of friends of each of the MRs increases,

since the associated number of active pairs of source and destination MCs increases. This

results, in turn, in an increase in the number of the NDQIO process activations, hence

yielding an increase in the MODQO’s inner step complexity in both domains. Nevertheless,

this rate of increase slows down as the network becomes more densely populated by MCs,

slowly tending to the upper bounds of Eqs. (6.75) and (6.77) for the parallel and sequential

complexities, respectively, where all the MRs share a social relationship with all the rest of

the MRs.
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6.4.1.2 Outer Step

As far as the complexity imposed by the MODQO outer step is concerned, we first quantify

that of the CM method, which constitutes the upper bound of our proposed QM process.

For this reason, let us make the additional assumption that the number of Pareto-optimal

route-combinations increases by a factor ρ after each state. This can be formally formulated

as follows:
∣
∣
∣SOPF

(n)

∣
∣
∣ = ρn−1N̄OPF, (6.78)

where N̄OPF corresponds to the average number of Pareto-optimal routes on the inde-

pendent sub-problems, while SOPF
(n) is the set of Pareto-optimal route-combinations after n

stages of the irregular trellis diagram. We note that it is possible to fully characterize N̄OPF

with the aid of statistical analysis of offline data. Thus, we can estimate the complexity

imposed. Based on Eq. (6.78), we can quantify the complexity in terms of the number of

CFEs imposed by the CM method in both domains as follows:

Louter
CM = 2

Nr∑

n=2
ρ2(n−1)N̄4

OPF = N̄4
OPF

ρ2Nr−ρ2

ρ2−1
,

= O(ρ2Nr N̄4
OPF),

(6.79)

where the complexity Louter
CM corresponds both to the parallel complexity and to sequential

complexity imposed by the CM method, since no parallelization technique is used. Explic-

itly, the upper bound of the factor ρ, for which the CM method is capable offering beneficial

complexity reduction compared to the exhaustive search, is given by:

ρ < N̄
2Nr−2
2Nr−1

OPF . (6.80)

Consequently, the CM method is capable of offering a complexity reduction, as long as the

number of Pareto-optimal route-combinations increases by a factor that is slightly less than

N̄OPF, based on Eq. (6.80).

Having characterized the CMmethod in terms of its parallel and sequential complexities,

let us now proceed with the characterization of our proposed QM method. To begin with,

we will assess the complexity reduction achieved by the QM method compared to that

of the CM one at a single iteration of the QM method. For this reason, we ought to

investigate the dynamics behind the selection of the number nopt of joint stages. Note that

we will initially focus on the parallel complexity, since it constitutes the sole criterion for

the selection of the number of joint stages in the irregular trellis of Fig. 6.13. In general,

the parallel complexity quantified in terms of the number of CFEs imposed by the NDQIO

process during a single iteration, where the NDQIO initiates from the n-th trellis stage and
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considers nopt joint stages, is equal to:

LP,outer
QM (n, nopt) = (2K)−1ρ2(n+nopt−1)N̄2

OPF+

K−1
[

LDHA(ρ
n−1N̄

nopt+1
OPF ) + 2LBBHT(ρ

n−1N̄
nopt+1
OPF )− 1

2

]

ρn+nopt−1N̄OPF+

+(1−K)
[

2
KLBBHT(ρ

n−1N̄
nopt+1
OPF ) + 1

2

]

,

(6.81)

with its order being equal to:

LP,outer
QM (n, nopt) =







O(ρ2nN̄2
OPF), nopt = 1,

O
[

ρ(3n+2nopt−3)/2N̄
(nopt+3)/2
OPF

]

, nopt > 1.

(6.82)

As for the respective sequential complexity, it can be expressed using Eq. (5.54) as

follows:

LS,outer
QM (n, nopt) = 2

{[
1
2 + LBBHT(ρ

n−1N̄
nopt+1
OPF )

]

ρ2(n+nopt−1)N̄2
OPF +

+
[

LDHA(ρ
n−1N̄

nopt+1
OPF ) + LBBHT(ρ

n−1N̄
nopt+1
OPF )− 1

2

]

ρn+nopt−1N̄OPF+

+ (1−K)
[

LDHA(ρ
n−1N̄

nopt+1
OPF ) + LBBHT(ρ

n−1N̄
nopt+1
OPF ) + 1

2K
]}

,

(6.83)

with its order being equal to:

LS,outer
QM (n, nopt) = O

[

ρ(5n+4nopt−5)/2N̄
(nopt+5)/2
OPF

]

. (6.84)

Furthermore, the respective complexity imposed by the CMmethod, based on Eq. (6.79),

is equal to:

Louter
CM (n, nopt) = 2

n+nopt−1∑

n′=n

ρ2(n
′−1)N̄4

OPF

= 2N̄4
OPF

ρ2(n+nopt)−ρ2n

ρ−1 ,

= O(ρ2(n+nopt)N̄4
OPF).

(6.85)

Explicitly, we have to estimate the value of the optimal number nopt of stages to be con-

sidered by the QM method. Naturally, we can derive the orders of the respective reference

complexities by setting ρ = 1 in Eqs. (6.85) and (6.82), yielding:

Lref
QM(n, nopt) = O

[

N̄
(nopt+3)/2
OPF

]

, (6.86)

Lref
CM(n, nopt) = O(N̄4

OPF), (6.87)

where it is clear that the CM method’s order of reference complexity is constant, whilst

the QM method’s complexity increases as the number nopt of joint stages increases. In

fact, after nopt = 5 stages the order of the QM method reference complexity becomes equal

to that of the CM method, implying that the NDQIO process will no longer offer any
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complexity reduction. Based on this dynamic, we can conclude that the optimal value of

the number of joint stages considered by the NDQIO process, which provides the maximum

possible complexity reduction is nopt = 1 stage. Therefore, the total parallel complexity

LP,outer
MODQO and imposed by the QM method of Alg. 6.2 is equal to:

LP,outer
MODQO =

Nr∑

n=1
LP,outer
QM (n, 1),

=
Nr∑

n=1
O(ρ2nN̄2

OPF),

= O
[

N̄2
OPF

ρ2(Nr+1)−ρ4

ρ2−1

]

= O
[
ρ2(Nr+1)N̄2

OPF

]
,

(6.88)

while the respective sequential complexity LS,outer
MODQO is equal to:

LS,outer
MODQO =

Nr∑

n=1
LS,outer
QM (n, 1),

=
Nr∑

n=1
O(ρ(5n−1)/2N̄3

OPF),

= O

[

N̄3
OPFρ

− 1
2
ρ5(Nr+1)/2−ρ2

ρ
5
2 −1

]

= O
[
ρ5(Nr+1)/2N̄3

OPF

]
.

(6.89)

Hence, based on Eqs. (6.79) and (6.88) the QM method achieves a parallel complexity

reduction, which is on the the order of O
(
ρ−2N̄2

OPF

)
, when compared to the CM method,

as long as we have ρ < N̄OPF. We note that if we have ρ = N̄OPF, then the QM method

will match the complexity order of the CM method. Furthermore, the QM method offers a

sequential complexity reduction factor, which is on the order of O
[
ρ(Nr−3)/2N̄OPF

]
, when

compared to the CM method, based on Eqs. (6.79) and (6.89). More specifically, the QM

gradually outperforms the CM method in terms of its sequential complexities, as long as

the following condition is satisfied:

ρ < N̄
2/(Nr−3)
OPF . (6.90)

Let us now compare the QM method to the case, where we invoke the NDQIO algorithm

by jointly considering all the trellis stages. Explicitly, a single NDQIO iteration invoked

for all the stages would result in a parallel complexity that is equal to:

LP,outer
NDQIO = LP,outer

QM (1, Nr),

= O
[

ρNrN̄
(Nr+3)/2
OPF

]

,

(6.91)
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while the respective sequential complexity becomes:

LS,outer
NDQIO = LS,outer

QM (1, Nr),

= O
[

ρ2NrN̄
(Nr+5)/2
OPF

]

,

(6.92)

by setting n = 1 and nopt = Nr in Eqs. (6.82) and (6.84), respectively. Observe in Eq. (6.91)

that the QM method offers a parallel complexity reduction on order of O(N
Nr/2
OPF ρ

−Nr),

when compared to that of a single NDQIO activation that jointly considers all the stages.

Consequently, the QM method outperforms the NDQIO algorithm that considers jointly

all the trellis stages in terms of their parallel complexities, as long as we strictly have the

following asymptotic bound for the surviving route-combinations’ growth factor ρ:

ρ <
√

NOPF. (6.93)

Additionally, based on Eqs. (6.92) and (6.89), the QMmethod offers a sequential complexity

reduction factor on the order of O
[

ρ−(Nr+5)/2N̄
(Nr−1)/2
OPF

]

, while the respective asymptotic

bound is quantified as follows:

ρ < N
Nr−1
Nr+5

OPF . (6.94)

For the sake of demonstrating the benefits of the QM method both against the single

NDQIO algorithm activation for all the stages and against the CM method, we have to

statistically characterize the factor ρ for our scenario. Explicitly, the average number N̄OPF

of Pareto-optimal routes in the MC routing quantified as a function of the number NMR of

MRs is shown in Fig. 6.16. Observe in this figure that the average number lies far below

the NDQIO parallel asymptotic bound of Eq. (6.93) and it is inversely proportional both

to the number of MCs and to the number of MRs. This is justified by the fact that the

number of Pareto-optimal route-combinations increases at a lower rate compared to the

number of active routes, i.e. compared to the number of stages in the irregular trellis

diagram of Figs. 6.12 and 6.13, both of which increase proportionally to the number of

MCs. Additionally, an increase in the number of MRs results in an increase in the value

of ¯NOPF and, thus, the number of states per trellis stage; however, the number of Pareto-

optimal route-combinations tends to grow slower, hence, reducing the order of the factor ρ

with respect to N̄OPF as the number of MRs increase.

As far as the NDQIO sequential asymptotic bound is concerned, observe in Fig. 6.16

that the bound increases, as the MCs proliferate owing to the inclusion of more active

routes. Explicitly, the bound of Eq. (6.94) is monotonically increasing in terms of the

number Nr of active routes, approaching unity as Nr approaches infinity. Observe in the

same figure that for a sufficient number of MCs, namely for NMC ≥ 8, the OPF growth

factor ρ is lower than the respective bound, as seen in Fig. 6.16. However, below this value

some anomalies can be observed. This specific trend implies that the QM method offers

some sequential complexity reduction, when compared to the NDQIO algorithm. Hence,

we expect the QM method’s sequential complexity reduction to increase as the number
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Figure 6.16: Order of the surviving route-combinations’ growth factor ρ versus the average num-
ber N̄OPF of Pareto-optimal routes in the MC routing table for twin-layer networks
comprised by NMC = {4, 8, 16} MCs and NMR = {5, . . . , 10} MRs. The order is
compared to the NDQIO parallel asymptotic bound, the NDQIO sequential asymp-
totic bound as well as the CM method sequential asymptotic bound, defined in
Eqs. (6.93), (6.94) and (6.90), respectively. Note that both the NDQIO and the CM
method sequential asymptotic bounds depend on the number of MCs and thus the
respective color code of the bottom legend is used. The network model relies on the
optimization problem of Eq. (6.22) and on the assumptions of Table 6.1. The results
have been averaged over 108 runs.

of MCs increases, since the bound tends to approach unity. At the same time the OPF

growth factor ρ decays even further, as it can be verified in Fig. 6.16, resulting in an increase

of the respective gap. As for the CM method’s sequential complexity bound, observe in

the same figure that for twin-layer networks having NMC = 8 MCs, the argument of the

OPF growth factor ρ lies above this specific bound but the OPF growth factor ρ tends to

asymptotically approach the bound as the number NMR of MRs increases. Additionally,

for twin-layer networks having NMC = 16 MCs, observe in Fig. 6.16 that for twin-layer

networks having less than 9 MRs the OPF growth factor ρ lies slightly above the respective

bound. However, a crossover occurs for twin-layer networks having NMR = 9 MRs, while

for twin-layer networks associated with NMR = 10 MRs the argument of the OPF growth

factor ρ lies below the bound, indicating that the QM method offers a sequential complexity

reduction over the CM method.

Moving on to the upper and lower bounds of the complexity imposed by the MODQO

algorithm’s outer step, we will consider two extreme scenarios. In the best-case scenario, we

assume that the number of Pareto-optimal route-combinations at the n-th stage is equal

to the average number of Pareto-optimal routes per stage, hence, we have ρ = 1. We

have assumed furthermore that all the quantum processes impose the minimum possible

complexity in terms of CFEs. As for the lower bound of the number Nr of active routes,
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since we have assumed that all of the MCs share a social relationship with at least another

MC, we have:

Nmin
r = NMC. (6.95)

Therefore, the lower bound of the parallel complexity imposed by a single iteration using

the QM method as a function of the average number N̄OPF of Pareto-optimal routes may

be expressed using Eq. (6.81) as follows:

LP,outer
QM,min(N̄OPF) = (2K)−1N̄2

OPF +K−1
{
Lmin
DHA(N̄

2
OPF)+

+2Lmin
BBHT(N̄

2
OPF)− 1

2

}
N̄OPF+

+(1−K)
{

2
KL

min
BBHT(N̄

2
OPF) +

1
2

}
,

= O(N̄2
OPF).

(6.96)

Equivalently, the lower bound of the sequential complexity imposed by a single iteration

using the QM method can be expressed using Eqs. (6.83) as follows:

LS,outer
QM,min(N̄OPF) = 2

{[
1
2 + Lmin

BBHT(N̄
2
OPF)

]
N̄2

OPF +

+
[
Lmin
DHA(N̄

2
OPF) + Lmin

BBHT(N̄
2
OPF)− 1

2

]
N̄OPF+

+ (1−K)
[
Lmin
DHA(N̄

2
OPF) + Lmin

BBHT(N̄
2
OPF) +

1
2K
]}
,

= O(N̄3
OPF).

(6.97)

Hence, based on Eq. (6.96) the lower bound of the MODQO outer step’s parallel complexity,

quantified in terms of the number of CFEs and as a function of the average number N̄OPF

of Pareto-optimal routes, is equal to:

LP,outer
MODQO,min(N̄OPF) =

Nmin
r∑

n=2
LP,outer
QM,min(N̄OPF),

= (NMC − 1)LP,outer
QM,min(N̄OPF),

= O(NMCN̄
2
OPF),

(6.98)

while the respective the lower bound of the MODQO outer step’s parallel complexity is

expressed using Eq. (6.104) as follows:

LS,outer
MODQO,min(N̄OPF) =

Nmin
r∑

n=2
LS,outer
QM,min(N̄OPF),

= (NMC − 1)LS,outer
QM,min(N̄OPF),

= O(NMCN̄
3
OPF).

(6.99)

Consequently, observe that based on Eq. (6.72) the lower bound of the MODQO outer

step’s parallel and sequential complexities occurs when the average number of Pareto-
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optimal routes is strictly equal to NOPF = 1 for all the routes. However, in this particular

case no CFEs are required for constructing the single Pareto-optimal route-combination,

since there is only a single possible route-combination, yielding:

L
{S,P},outer
MODQO,min = 0. (6.100)

We note that the same lower bound is valid for the CM method as well, yielding:

Louter
CM,min = 0. (6.101)

Subsequently, let us now derive the strict upper bound of the MODQO outer step com-

plexity. For this reason, we will consider the worst case scenario, where all the potential

route-combinations identified by the MODQO inner step are Pareto-optimal. In this sce-

nario, the surviving route-combinations’ growth factor is set to ρ = N̄OPF. Additionally,

the maximum number Nmax
r of the active pairs of source and destination MCs occurs in

the case, where all the MCs share a friendship relationship with each other. Nevertheless,

as the number NMC of MCs increases, so does the probability of two MCs being associated

with the same MR. This results in a single Pareto-optimal route and, thus, in a single state

in the respective stage of the irregular trellis diagram, where no CFEs are required for en-

capsulating it in the set of Pareto-optimal route-combinations. Therefore, the upper bound

of the number of active pair of source and destination MCs that require at least a single

CFE for their processing and for their inclusion in the Pareto-optimal route combinations

is derived as follows:

Nmax
r =

1

2

[

(NMC(NMC − 1)−
⌊
NMC

NMR

⌋]

= O(N2
MC). (6.102)

As for the upper bound LP,outer
QM,max(n, N̄OPF) of the parallel complexity imposed by a single

iteration using the QMmethod as a function of the average number N̄OPF of Pareto-optimal

routes at the n-th stage of the irregular trellis diagram, it is derived a follows:

LP,outer
QM,max(n, N̄OPF) = (2K)−1N̄2n

OPF +K−1
[
Lmax
DHA(N̄

n
OPF)+

+2Lmax
BBHT(N̄

n
OPF)− 1

2

]
N̄n

OPF+

+(1−K)
[
2
KL

max
BBHT(N̄

n
OPF) +

1
2

]
,

= O(N̄2n
OPF),

(6.103)
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while the respective upper bound of the sequential complexity is expressed as:

LS,outer
QM,max(n, N̄OPF) = 2

{[
1
2 + Lmin

BBHT(N̄
n
OPF)

]
N̄2n

OPF +

+
[
Lmin
DHA(N̄

n
OPF) + Lmin

BBHT(N̄
n
OPF)− 1

2

]
N̄n

OPF+

+ (1−K)
[
Lmin
DHA(N̄

n
OPF) + Lmin

BBHT(N̄
n
OPF) +

1
2K
]}
,

= O
(

N̄
5n/2
OPF

)

.

(6.104)

Based on Eq. (6.103), the upper bound LP,outer
MODQO,max(N̄OPF) of the MODQO outer step’s

parallel complexity, which is quantified in terms of the number of CFEs and as a function

of the average number N̄OPF of the Pareto-optimal routes, is formulated as follows:

LP,outer
MODQO,max(N̄OPF) =

Nmax
r∑

n=2
LP,outer
QM,min(n, N̄OPF),

= O

[

N̄
2(Nmax

r +1)
OPF −N̄4

OPF

N̄2
OPF−1

]

,

= O(N̄
2N2

MC
OPF ),

(6.105)

whereas the respective upper bound of its sequential complexity is expressed with the aid

of Eq. (6.104) as:

LS,outer
MODQO,max(N̄OPF) =

Nmax
r∑

n=2
LS,outer
QM,min(n, N̄OPF),

= O

[

N̄
5(Nmax

r +1)/2

OPF −N̄5
OPF

N̄
5/2
OPF−1

]

,

= O(N̄
5N2

MC/2
OPF ).

(6.106)

Consequently, the upper bounds L
{P,S},outer
MODQO,max of the MODQO outer step’s complexity

are encountered, when the average number of Pareto-optimal routes is strictly equal to

NOPF = NMR − 1 for all the routes. Then, based on Eq. (6.73), we have:

LP,outer
MODQO,max = O

(

N
2N2

MC
MR

)

, (6.107)

LS,outer
MODQO,max = O

(

N
5N2

MC/2
MR

)

. (6.108)

The respective upper bound of the CM method is derived by setting ρ = N̄OPF = NMR−1

in Eq. (6.79), yielding:

Louter
CM,max = O

(

N
2N2

MC
MR

)

. (6.109)

Consequently, both the QM method and the CM method impose the same order of parallel

complexity in the worst-case scenario, matching the exhaustive search complexity. Explic-

itly, in the worst-case scenario there will be no complexity reduction for either of these

methods. By contrast, the QM method imposes a complexity order, which is a factor of

N
N2

MC/2
MR higher than that of the QM method. We note though that this specific scenario
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hardly occurs in the light of the ρ parameter trend shown in Fig 6.16, which decreases as

the number NMC of MCs increases.
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Figure 6.17: Average MODQO outer step (a) parallel and (b) sequential complexities quanti-
fied as a function of the number of CFEs for twin-layer networks consisting of
NMR = {5, 6, . . . , 10} MRs and NMC = {2, 4, 8, 16} MCs. The MODQO outer step
complexity is compared to that of the exhaustive search, that of the CM method
and to the lower bound of the NDQIO algorithm invoked jointly for all the available
stages. The mean complexity results have been averaged over 108 runs for twin-layer
networks based on the optimization problem of Eq. (6.22) relying on the UV defined
in Eq. (6.21) and on the assumptions of Table 6.1.

The average parallel and sequential complexities quantified in terms of the number of

CFEs of the MODQO outer step are shown in Figs. 6.17(a) and 6.17(b), respectively, for

twin-layer networks consisting of 5 to 10 MRs and of 2, 4, 8, and 16 MCs. The MODQO

outer step complexities, which are represented by the solid lines in Figs. 6.17(a,b) and de-

noted as “MODQO with QM”, are compared both to the respective average complexities of

the CM method, corresponding to the dotted dotted lines and referred to as “MODQO with

CM”, as well as to the respective lower bounds of the NDQIO process considering all the

trellis stages jointly, which is marked by dashed lines and finally to the respective average

complexities imposed by the exhaustive search, which are represented by the dashed and

dotted lines. In general, observe that the outer step parallel and sequential complexities of

all the methods examined increases exponentially, as the number of MCs increases, whereas
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the respective gradient is substantially reduced, when the number of MRs increases. This

is justified by the fact that the average number of Pareto-optimal routes increases almost

linearly with the number of MRs, while the total number Nr of active source and destina-

tion MCs, which is the exponent of the complexity function, increases almost quadratically

with the number of MCs, as it may be inferred based on Eqs. (6.39), (6.79), (6.88) and

(6.91).

For networks having 2 MCs, we can observe in Figs. 6.17(a,b) that all the methods

considered impose identical parallel and sequential complexities, since a single stage is

encountered and no merging takes place. Explicitly, this specific complexity is directly

determined by the number of Pareto-optimal routes between the two MCs, since the al-

gorithm has to identify the particular route that exhibits the highest value in terms of

the normalized entropy of its associated composite betweenness. Naturally, the merging

process imposes non-negligible complexity for networks having 3 or more MCs.

Let us now consider the parallel complexity of the aforementioned algorithms. For the

scenario ofNMC = 4 MCs, we can clearly observe in Fig. 6.17(a) that the proposed MODQO

outer step design, namely the one that invokes the QM method, imposes a lower number of

CFEs that its counterparts. More specifically, for networks consisting ofNMR = 10 MRs the

MODQO outer step relying on the QM method imposes about half the complexity imposed

by the CM method and less than a third of the exhaustive search as well as a third of the

NDQIO algorithm’s lower bound. We note that for this NMC value, the exhaustive search

imposes a lower complexity than the minimum required by the NDQIO, which is indeed

expected owing to the rather low total number of route combinations, hence not allowing

the QP to excel. This trend is reversed however for networks with a higher number of MCs.

More specifically for NMC = 8, the MODQO outer step operates at a 2 times to 3.5 times

lower complexity than that of the CM method for larger networks having 5 and 10 MRs,

respectively, as seen in Fig 6.17(a). More dramatically, it imposes a complexity that is two

and four orders of magnitude lower than the lower bound of the NDQIO algorithm and than

the average exhaustive search complexity. Finally, for networks having NMC = 16 MCs,

the MODQO outer step imposes almost 6 times lower number of CFEs than that of the

CM method for NMR = 10 MRs and several orders of magnitude less than the exhaustive

search and the lower bound of the NDQIO algorithm.

In a nutshell, we expect the parallel complexity reduction offered by the QM method of

the MODQO outer step to increase even further, as the number of MCs increases. Recall

that this complexity reduction offered by the QM method of the MODQO outer step is

on the order of O
(
ρ−2N̄2

OPF

)
when compared to the CM method, based on Eqs. (6.79)

and (6.88). Explicitly, as the numbers of MRs and MCs increase, the average number

N̄OPF of Pareto-optimal routes increases, while the surviving route-combinations’ growth

factor ρ decreases with respect to N̄OPF, as we demonstrated in Fig. 6.16, which drives the

associated complexity reduction to even higher levels.

As for the sequential complexity of the aforementioned algorithms, observe in Fig. 6.17(b)

that for the scenario of NMC = 4 MCs the proposed MODQO outer step offers a complexity

reduction by a factor of two against the NDQIO algorithm’s lower bound. Explicitly, this
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complexity reduction is improved as the number of MCs increases, as seen in Fig. 6.17(b).

Explicitly, this ever reduced sequential complexity demonstrates the effect of the database

correlation, which our proposed MODQO outer step exploits. By contrast, for the scenario

of NMC = 4 MCs the exhaustive search imposes almost half the complexity of the MODQO

outer step for networks having 5 MRs, while this discrepancy seems to decrease as the num-

ber of MRs increases, ultimately imposing almost the same sequential complexity as the

proposed MODQO outer step for networks having 10 MRs. However, this trend is reversed

for networks having more than 4 MCs, since the MODQO outer step offers a sequential

complexity reduction of several orders of magnitude. Additionally, observe in Fig. 6.17(b)

that for the scenario of NMC = 4 MCs the MODQO outer step imposes almost twice the

complexity of the CM method for networks having 5 to 10 MRs. This gap between the

proposed MODQO outer step and the CM method tends to subside for networks associated

with a higher number of MCs. More specifically for networks having NMC = 16 MCs, the

proposed MODQO outer step begins to offer a beneficial complexity reduction compared

to the CM method for networks having more than 8 MRs. This trend is consistent with

that of Fig. 6.16, where the growth factor ρ remains below the bound of Eq. (6.94). Based

on this specific trend, we expect the MODQO outer step to offer an increasing complexity

reduction compared to the CM method, as both the MCs and the MRs proliferate.

6.4.1.3 Total Complexity

Having characterized both the inner and the outer steps of the MODQO algorithm, let us

now provide some further insights into the total complexity trends quantified in terms of the

number of CFEs. Explicitly, the MODQO algorithm’s total complexity as a function of the

average number N̄OPF of Pareto-optimal routes and of the surviving route-combinations’

growth factor ρ is derived as follows:

L
{P,S},tot
MODQO = L

{P,S},inner
MODQO + L

{P,S},outer
MODQO + ρNr−1N̄OPF, (6.110)

where Linner
MODQO and Louter

MODQO correspond to the complexity imposed by the MODQO al-

gorithm’s inner and outer steps, respectively, while the last factor ρNr−1N̄OPF is equal to

the number of Pareto-optimal route-combinations at the termination of the QM procedure.

This specific factor accounts for the selection of the route-combination S exhibiting the

highest value of normalized entropy for its normalized composite betweenness H̄[B̄com(S)]

at the very last iteration of the QM method. Consequently, we may readily derive the lower

and upper bounds of the total parallel complexity associated with the best- and worst-case

scenarios, respectively, as follows:

LP,tot
MODQO,min = O(

√
N), (6.111)

LP,tot
MODQO,max = O(N3

MR

√
N +N

2N2
MC

MR ), (6.112)

where Eq. (6.111) is derived by substituting Eqs. (6.74) and (6.100) into Eq. (6.110), while

Eq. (6.112) is derived by substituting Eqs. (6.75) and (6.100) into Eq. (6.110). Equivalently,
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the respective lower and upper bounds of the total sequential complexity are given by:

LP,tot
MODQO,min = O(

√
N), (6.113)

LP,tot
MODQO,max = O(N4

MR

√
N +N

5N2
MC/2

MR ), (6.114)

where Eq. (6.113) is derived by substituting Eqs. (6.76) and (6.100) into Eq. (6.110), while

Eq. (6.114) is derived by substituting Eqs. (6.77) and (6.100) into Eq. (6.110). Therefore,

a significant complexity reduction in both domains is achieved even for the worst-case

scenario as opposed to the naive exhaustive search, which would check every legitimate

route-combination, constituted by all the possible Hamiltonian routes, and would impose a

complexity on the order of O(N2N2
MC) with O(N)≫ O(NMR). Additionally, the MODQO-

CM method, which incorporates first the MODQO inner step and then the CM method

as its outer step, exhibits the same upper and lower bounds of parallel as those of the

MODQO algorithm, based on Eqs. (6.46) and (6.45). Nevertheless, since the MODQO

algorithm’s lower bound of parallel complexity is based on no complexity being imposed

by its outer step, the MODQO algorithm’s total parallel complexity is upper bounded by

that of the MODQO-CM algorithm.

Both the MODQO and the MODQO-CM algorithms’ average parallel complexities

quantified in terms of their imposed number of CFEs are presented in Fig. 6.18(a) for

networks consisting of 5 to 10 MRs and of 2, 4, 8, and 16 MCs. The parallel complexities

of these two algorithms are compared to that of the exhaustive search, which carries out

two separate exhaustive search procedures, namely one for the inner and one for the outer

step as represented by the black dashed and dotted lines. We note that in Fig. 6.18(a) the

MODQO algorithm is labeled as “MODQO using QM” and its average total complexity

portrayed with a blue solid line, whilst the MODQO-CM algorithm is labelled “MODQO

using CM” and its average total complexity is portrayed by a dotted line. For networks

having NMC = 2 MCs, there will be a single active source and destination MC pair, hence

the MODQO and the MODQO-CM algorithms impose an identical number of CFEs, which

is more than four orders of magnitude below the exhaustive search procedure’s average total

complexity. Indeed, this complexity advantage increases even further as the number of MRs

increases. This is justified by the fact that their respective outer step requires no CFEs to

identify the Pareto-optimal route-combinations in the presence of a single trellis stage. As

the number of MCs increases, the complexity reduction offered by the MODQO algorithm

with respect to the MODQO-CM increases. More specifically, observe in Fig. 6.18(a) that

for networks having NMC = 4 MCs, our proposed MODQO algorithm imposes 3% fewer

CFEs than the MODQO-CM. Explicitly, in this case the order of both algorithms’ com-

plexities is governed by that of the inner step, which is one order of magnitude higher than

that of the algorithms’ outer steps, as seen in Figs. 6.15 and 6.17(a).

This effect can be observed for networks comprised by a higher number of MCs as

well, yielding an interesting trade-off. Explicitly, for networks having NMC = 16 MCs,

observe in Fig. 6.18(a) that the MODQO algorithm offers an almost constant complexity

reduction factor of 2.5 compared to the MODQO-CM alg. for NMR values up to 8 MRs.
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Figure 6.18: Average MODQO outer step (a) parallel and (b) sequential complexities quantified
as a function of the number of CFEs for twin-layer networks consisting of NMR =
{5, 6, . . . , 10} MRs and NMR = {2, 4, 8, 16} MCs. The MODQO average complexity
is compared to that of the exhaustive search and that of the MODQO using the
CM method. The mean complexity results have been averaged over 108 runs for
twin-layer networks based on the optimization problem of Eq. (6.22) relying on the
UV defined in Eq. (6.21) and on the assumptions of Table 6.1.

However, for larger networks the complexity reduction is gradually eroded due to the steep

rise in the inner step’s complexity, which dominates the total complexity. This drives the

MODQO total complexity to an asymptotic convergence woth that of the MODQO-CM, as

the number of MRs increases. However, based on Fig. 6.18(b), in practical scenarios, where

the total numberNMC of MCs is significantly higher than NMR, the MODQO algorithm will

outperform the MODQO-CM in terms of the required number of CFEs and the complexity

reduction offered by the MODQO will increase as the number of MCs increases, which is

owing to a better exploitation of the QP.

Finally, as far as the sequential complexity is concerned, observe in Fig. 6.18(b) that

for the examined networks associated with 5 to 10 MRs and with 2, 4 , 8 and 16 MR, the

MODQO algorithm imposes roughly the same sequential complexity as the MODQO-CM.

This is justified by the fact that their inner step complexity, which is identical for both

algorithms, is the predominant factor of the total sequential complexity. More specifically,

for networks having less than 16 MCs the MODQO-CM method offers a slight complexity
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reduction, while for the scenario of 16 MCs this trend changes, since the MODQO algorithm

imposes a slight complexity reduction for networks having more than 9 MRs. However, since

we have demonstrated in Section 6.4.1.1 that the inner step complexity is upper bounded,

we can surmise that the MODQO algorithm is capable of offering a significant sequential

complexity reduction for a sufficiently high number MRs and MCs.

6.4.2 Accuracy

Having fully characterized the MODQO algorithm in terms of its complexity, let us now

proceed by assessing its accuracy. Explicitly, we have analytically proven that the search

space transformation relying on Proposition 1 attains a full-search-based accuracy and

it has been demonstrated in Section 5.5.2 that the NDQIO algorithm approaches a full-

search-based accuracy as well. Consequently, we can surmise that the MODQO algorithm

also exhibits a full-search-based accuracy. Therefore, instead of comparing the MODQO

algorithm’s accuracy to that of the naive exhaustive search, we will use as a benchmark

algorithm the state-of-the-art multi-objective evolutionary algorithm, namely the NSGA-

II [124, 29], which we discussed in Section 2.4. Note that we have opted out of comparing

the MODQO to the MO-ACO implementation presented in Section 2.5, since our inten-

tion was to directly address the composite problem without decomposing it. Explicitly,

our forthcoming case study will examine as to whether the MODQO algorithm strikes an

efficient accuracy versus complexity trade-off, when compared to the NSGA-II. For this

reason, we will compare these algorithms’ accuracy to each other, when both operate at

the same complexity, quantified in terms of CFEs.

We note that we have adapted the NSGA-II presented in Section 2.4 so that it can

benefit from the search space transformation of Proposition 1. To elaborate further, we

have assumed that each of the individuals is constituted by multiple chromosomes, each

corresponding to a Hamiltonian route for a specific pair of source and destination MCs.

Furthermore, during the mating process independent crossover and mutation operations are

performed for each of the chromosomes. For the sake of simplicity, we have assumed that

the number Npop of individuals per generation is equal to the number Ngen of generetions,

i.e. we have:

Npop = NG, (6.115)

yielding a total complexity in terms of the number of CFEs, which is equal to:

LNSGA-II = N3
pop, (6.116)

since the non-dominated sort requires precisely N2
pop CFEs for Npop generations. The

simulation parameters considered for the NSGA-II are presented in Table 6.7, where the

number Npop of individuals was set to match the maximal total parallel complexity of the

MODQO algorithm observed throughout the simulations characterized in Fig. 6.18. Note

that we have opted for rounding up the number of individuals Npop to the next number

divisible by 4, since we have to produce two mating pools, each having Npop/4 individuals.
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The rest of the parameters values have been optimized through extensive simulations and

they were found to differ from the optimal values of Table 2.2 corresponding to the single

source and single destination scenario.

Table 6.7: NSGA-II Simulation Parameters

Parameter Value

Number of individuals, Npop

{8, 8, 8, 12, 16, 20} for NMC = 2 MCs

{12, 12, 12, 16, 16, 20} for NMC = 4 MCs

{16, 16, 20, 20, 28, 28} for NMC = 8 MCs

{24, 28, 28, 36, 36, 36} for NMC = 16 MCs

Crossover Probability, Pc 0.8

Mutation Probability, Pm 0.1

6.4.2.1 Accuracy Comparison

Ideally we would have to compare the MODQO algorithm and the NSGA-II in terms of

the average of the identified OPF formed by the Pareto-optimal route combinations as far

as the average network delay and the average network power consumption are concerned.

However, the visualization of the OPF would complicate the representation of the results

rendering the related trends rather opaque. For the sake of simplifying the presentation

of the results, we will assess both algorithms’ performance by providing the simulation

results for the Pareto-optimal solutions having four distinct characteristics. First, we have

to assess the networks’ limits in terms of the WMN QoS criteria considered, namely the

average minimum network delay min{D̄(S)} and the average minimum network power

consumption min{P̄ (S)}. In addition to these metrics, we will provide the Pareto-optimal

solutions of the maximum normalized entropy of the normalized composite betweenness

max{H̄[B̄com(S)]} and compare it to the one exhibiting the minimum standard deviation

of the normalized composite betweenness min{σB̄com
} for the sake of assessing the proposed

load balancing strategy.

Let us now proceed by jointly assessing the MODQO performance in terms of the QoS

criteria considered for the WMN layer, namely the average network delay performance

D̄ per route quantified in terms of the number of established hops and average network

power consumption P̄ per route in dBm. The aforementioned metrics are portrayed in

Figs. 6.19 and 6.20 for networks having 5 to 10 MRs for 2, 4, 8 and 16 MCs. As far

as the delay is concerned, observe in Fig. 6.19 that the minimum delay achieved by the

MODQO algorithm slightly increases, as the number NMR of MRs increases, regardless of

the number of MCs considered. This is justified by the fact that as the number of MRs

increases, the probability of two specific MCs being associated with the same MR decreases,

hence reducing the probability of establishing a connection with the minimum possible delay

of two hops. On the other hand, the minimum power consumption portrayed in Fig. 6.20

is governed by a pair of conflicting dynamics. To elaborate further, as the number NMR
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Figure 6.19: Average network delay performance D̄ per route in terms of the number of established
hops for both the MODQO algorithm and the NSGA-II for networks having from 5 to
10 MRs and associated with (a)NMC = 2 MCs, (b)NMC = 4 MCs, (c) NMC = 8 MCs
and (d) NMC = 16 MCs. The NSGA-II initialization parameters are presented in
Table 6.7. The results have been averaged over 108 runs for twin-layer networks based
on the optimization problem of Eq. (6.22) relying on the UV defined in Eq. (6.21)
and on the assumptions of Table 6.1.

of MRs the distances between the MRs decrease, hence the shorter links require a lower

power, while if the probability of two MCs being associated with the same MR decreases,

this virtually increases the average distance among the MCs quantified in terms of the

number of hops. The latter is justified by the fact that the MCs tend to be associated

with their closest MRs; however, this does not necessarily imply that the MR association is

optimal in terms of the routes’ power consumption, since an MR that is closest to the source

MC can potentially be located further away from the destination MC, hence increasing in

the average power consumption.

As for the load balancing metrics, namely the maximum normalized entropy of the

normalized composite betweenness distribution and minimum standard deviation of the

specific distribution, which are denoted by max{H̄} and min{σ}, respectively, observe in

Figs. 6.19 and 6.20 that they both lie between the two extreme strategies, regardless of

the number of MCs considered as well. Additionally, we can observe in Fig. 6.19 that the

specific min{σ}-strategy that minimizes the standard deviation of the composite between-

ness distribution seems to be biased towards the minimum-delay solution. This trend is

more distinguishable for lower number of MCs, namely for 4 and 8 MCs of Figs. 6.19(a,b),

respectively. It is justified by the fact that this strategy considers to be optimal that spe-

cific route-combination, which utilizes no intermediate MRs in the construction of all the
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Figure 6.20: Average network power consumption P̄ per route in dBm for both the MODQO
algorithm and the NSGA-II for networks having from 5 to 10 MRs and and associated
with (a) NMC = 2 MCs, (b) NMC = 4 MCs, (c) NMC = 8 MCs and (d) NMC = 16
MCs. The NSGA-II initialization parameters are presented in Table 6.7. The results
have been averaged over 108 runs for twin-layer networks based on the optimization
problem of Eq. (6.22) relying on the UV defined in Eq. (6.21) and on the assumptions
of Table 6.1.

routes. By contrast, while in the absence of such a route it will identify as optimal the same

route-combination as that of the particular strategy aiming for maximizing the normalized

entropy, yielding max{H̄}. This explains the trend that the min{σ}-strategy exhibits lower

average delay in Fig. 6.19 and a higher average power consumption in Fig. 6.20 than those

of the max{H̄}-strategy for networks having less than 8 MRs. By contrast, for a higher

number of MRs the performance of the min{σ}-strategy asymptotically converges to that

of the max{H̄}-strategy. Explicitly, as the number NMR of MRs increases, the probability

of forming a Pareto-optimal route-combination without the involvement of intermediate

MRs decreases, since the MCs tend to become more distant in terms of the number of

hops, as the network becomes populated by more MRs.

Additionally, we can observe both in Fig. 6.19 and in 6.20 that the proposed maximum-

entropy strategy yielding max{H̄} exhibits an average delay that is about 0.3 hops lower

than that of the strategy minimizing the average power consumption, namely min{P̄},
for networks having NMR = 5 MRs associated with 8 and 16 MCs. This performance-

discrepancy widens, as the number of MRs increases, reaching a reduction of 0.5 hops

for networks having NMR = 10 MRs. Naturally, this reduction comes at a cost of about

0.3 dB in terms of the average power consumption, as observed in Fig. 6.20. Explicitly,

this delay reduction exhibits an underlying trade-off among the max{H̄}, the min{P̄} and
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the min{D̄} strategies: the normalized composite entropy asymptotically converges to the

uniform distribution, as and when more MRs become involved as intermediate relays and

reaches its minimum divergence for the route-combination of the max{H̄} strategy. From

this point onwards, an increase in the number of MRs results in the central MRs becoming

bottlenecks, hence driving the normalized composite entropy further away from the uniform

distribution. However, for networks associated with 2 and 4 MCs, observe in Figs 6.19(a,b)

that this delay-gap remains almost constant, as the number of MRs increases and it is equal

to about 0.2 and 0.3 hops, respectively. For these relatively low numbers of MCs, the total

number of route-combinations is rather low, offering less flexibility in the selection of the

max{H̄} route-combination.

As for the NSGA-II performance we can observe that it fails to converge to the Pareto-

optimal route-combinations of the MODQO algorithm for networks having 16 MCs. More

specifically, based on Fig. 6.19(d) and 6.20(d), we can clearly observe that the route-

combinations of all four strategies identified by the NSGA-II are dominated by the respec-

tive ones identified by the MODQO algorithm for networks having more than NMR = 7

MRs. More specifically for networks having NMR = 10 MRs, the MODQO algorithm

achieves a power-reduction of at least 4 dB and a delay-reduction of at least 1.5 hops at

the same number of CFEs, as seen in Fig 6.19(d). For networks having less than 16 MCs,

the NSGA-II becomes “less sub-optimal” as the number of MCs decreases. Therefore, we

may conclude that our proposed MODQO algorithm exhibits a better performance versus

complexity trade-off associated with identifying the Pareto-optimal solutions, when both

the number of MRs and that of MCs increases.

Subsequently, the evaluation to the networks’ load balancing performance is character-

ized in Figs. 6.21 and 6.22 in terms of the normalized entropy of the normalized composite

betweenness distribution and the distribution’s standard deviation, respectively. In a nut-

shell, we can observe that a more efficient load balancing is performed, as the number

of MRs and that of the MCs increase, owing to the increasing number of Pareto-optimal

combinations. The specific strategy minimizing the average network delay constitutes an

exception. On the one hand it exhibits the lowest value of H̄(B̄com) yielding that its respec-

tive route-combinations’ B̄com distribution deviates more substantially from the uniform

distribution, based on Fig 6.21. On the other hand, as we can observe in Fig. 6.22, this

specific strategy exhibits a lower standard deviation for the B̄com distribution in networks

having NMR = 5 MRs, owing to the inclusion of direct routes relying on no intermediate

relays, which in turn exhibit zero standard deviation. However, as the number NMR of

MRs increases, the probability of these specific routes being identified as Pareto-optimal

decreases, yielding an increase in the associated standard deviation, which then obeys

similar trends to the rest of the strategies. This standard deviation trend is observed in

Figs. 6.22(c,d) for the min{σ} strategy, where the standard deviation is seen to increase for

networks having up to 7 and 8 MRs associated with 16 and 8 MCs, respectively. It then de-

creases, as the number of MRs increases further. By contrast, in networks associated with

2 and 4 MCs this metric increases with the number of MRs, according to Figs. 6.22(c,d).

We note that the respective values of H̄(B̄com) seen in Fig. 6.21 for the route-combinations
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Figure 6.21: Average normalized entropy of the normalized composite betweenness H̄[B̄com(S)]
for both the MODQO algorithm and the NSGA-II for networks having from 5 to 10
MRs and associated with (a) NMC = 2 MCs, (b) NMC = 4 MCs, (c) NMC = 8 MCs
and (d) NMC = 16 MCs. The NSGA-II initialization parameters are presented in
Table 6.7. The results have been averaged over 108 runs for twin-layer networks based
on the optimization problem of Eq. (6.22) relying on the UV defined in Eq. (6.21)
and on the assumptions of Table 6.1.

selected by this strategy are lower than those of both the max{H̄} and max{P̄} strategies.
This exhibits a poorer resemblance to the uniform distribution of the min{σ} as well as to
the max{H̄} and max{P̄} strategies.

Finally, as far as the NSGA-II algorithm is concerned, we can observe two different

trends in Figs. 6.21 and 6.22. For networks associated with 2 and 4 MCs, where the

NSGA-II approximates more accurately the Pareto-optimal route combinations, they ex-

hibit a a poorer load balancing capability than the MODQO algorithm’s max{H̄} strategy,
based on Figs 6.21(a,b) and 6.22(a,b). By contrast, for networks having 8 and 16 MCs

they exhibit a far better load balancing performance than the MODQO algorithm for all

the strategies examined. This is justified by the fact that the route-combinations exported

by the NSGA-II do not comply with the constraint of Eq. (6.22), since the Pareto-optimal

route-combinations identified the NSGA-II are sub-optimal in comparison to the respec-

tive ones identified by the MODQO algorithm. This results in an excessive involvement

of MRs for the sake of approximating the uniform distribution, which leads to both an

excessive delay and an excessive power consumption. Based on this fact, we can infer that

load balancing tends to degrade both the average network delay and the average power

consumption. Naturally, based on the problem formulation in Eq. (6.22), load balancing

is imposed as a secondary optimization objective, whilst the constraint of Eq. (6.22) con-
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Figure 6.22: Average standard deviation of the normalized composite betweenness σB̄com
(b) for

both the MODQO algorithm and the NSGA-II for networks having from 5 to 10
MRs and associated with (a) NMC = 2 MCs, (b) NMC = 4 MCs, (c) NMC = 8 MCs
and (d) NMC = 16 MCs.. The NSGA-II initialization parameters are presented in
Table 6.7. The results have been averaged over 108 runs for twin-layer networks based
on the optimization problem of Eq. (6.22) relying on the UV defined in Eq. (6.21)
and on the assumptions of Table 6.1.

stitutes the primary optimization criterion, since it forces the optimization to additionally

perform load balancing, while explicitly considering Pareto-optimal route-combinations.

6.5 Chapter Summary

In this chapter, we have proposed an optimal quantum-assisted algorithm, namely the

MODQO algorithm, for addressing the joint multi-objective routing and load balancing

problem in socially-aware networks. The MODQO algorithm benefits from both a frame-

work exploiting the synergies between the QP and HP, which is inherited by the NDQIO

algorithm as well as from the novel database transformation framework advocated. The

latter succeeds in transforming the strongly correlated database into a series of weakly

correlated ones, where the QP and HP synergistic framework exploits the optimality of

Grover’s QSA [88]. Additionally, we have analytically proven that this transformation has

no negative impact on the MODQO accuracy. Furthermore, we have introduced a novel

socially-aware metric for characterizing the load balancing, namely the normalized entropy

of the normalized composite betweenness distribution. We have also demonstrated that

it succeeds in mitigating the biasing towards the minimum delay solution incurred by the
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employment of the standard deviation of the respective distribution. Furthermore, we have

characterized the computational complexity in terms of the number of CFEs imposed by

the MODQO algorithm. In fact, the parallel complexity is on the order of O(
√
N) and

O(N
2N2

MC
MR ) for networks having NMR MRs and NMC MCs in the best- and the worst-case

scenarios, respectively. Additionally, the respective upper and lower bounds of the sequen-

tial complexity are on the order of O(
√
N) and O(N

5N2
MC/2

MR ) in the best- and the worst-case

scenarios, respectively. Explicitly, we have achieved a significant complexity reduction com-

pared to the exhaustive search, which is on the order of O(N2N2
MC), with N ≫ NMR being

the total number of Hamiltonian routes between a pair of specific users. Additionally, we

demonstrated using extensive simulations that the average complexity of the MODQO algo-

rithm is multiple orders of magnitude lower than that of the exhaustive search. Finally, we

have compared the MODQO algorithm’s accuracy to that of the NSGA-II [124,29], which

constitutes the state-of-the-art for socially-oblivious networks. More specifically for a sce-

nario where the network is sufficiently densely populated by MCs, i.e. we have NMC = 16

MCs and have demonstrated that our proposed MODQO algorithm is capable of improv-

ing both the delay and the power consumption by about 2 hops and 4 dB, respectively,

for networks having 10 routers, when compared to the NSGA-II. This trend suggests that

the MODQO algorithm exhibits a better complexity versus accuracy trade-off than the

NSGA-II.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this treatise we have developed a variety of quantum-assisted algorithms, namely the

Non-Dominated Quantum Optimization (NDQO) algorithm [1], the Non-Dominated Quan-

tum Iterative Optimization (NDQIO) algorithm [2] and the Multi-Objective Decomposition

Quantum Optimization (MODQO) algorithm [3] for the multi-objective optimization of

routing in Heterogeneous Networks (HetNets) [14]. In fact, the aforementioned algorithms

constitute an extension of the well-established quantum optimization framework [79,80,81]

to Pareto optimality problems, where the concept of Quantum Parallelism (QP) [62] is

exploited for the sake of achieving near-full-search-based search accuracy at the expense of

a substantially reduced complexity. In a nutshell, our contributions, which are illustrated

in Fig. 7.1, constitute an extension of the existing quantum-assisted optimization frame-

work of Fig. 3.12 to multi-objective optimization problems relying on the concept of Pareto

optimality [47].

As a first case-study for the multi-objective optimization of HetNets, we have considered

the multi-objective routing problem of Wireless Multi-Hop Networks (WMHNs) [25], where

a single source node transmits its message to a single destination node, while utilizing a

cloud of mobile relays, as detailed in Section 2.2. For this specific application, we initially

proposed in Chapter 4 the NDQO algorithm, which achieves a substantial complexity

reduction compared to the Brute-Force (BF) search by using a sophisticated quantum-

assisted process, namely the so-called Boyer-Brassard-Høyer-Tapp Quantum Search Al-

gorithm (BBHT-QSA) chains introduced in Section 4.3 for determining as to whether a

specific route is Pareto optimal, while being capable of approaching the Pareto optimal

routes in case of a sub-optimal route. We have also demonstrated with the aid of Figs. 4.6,

4.7 and 4.8 that the NDQO algorithm exhibits a near-optimal performance approaching

that of the full-search-based method, while imposing a complexity on the order of O(N)

and O(N
√
N) in the best- and the worst-case scenario, respectively. This is significantly

lower than the complexity of O(N2) imposed by the BF method. Furthermore, in Sec-

tion 4.6.2 we have compared the NDQO algorithm’s accuracy to those of a pair of popular

197
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Figure 7.1: Extension of Fig. 3.12 based on our contributions in this report.

multi-objective evolutionary algorithms, namely to that of the Non-dominate Sort Genetic

Algorithm II (NSGA-II) [124, 29] and that of the Multi-Objective Ant Colony Optimiza-

tion (MO-ACO) [52], which have been discussed in Sections 2.4 and 2.5, respectively. We

have demonstrated with the aid of Figs. 4.6, 4.7 and 4.8 that the NDQO algorithm is

capable of ensuring the identification of the entire set of Pareto-optimal solutions, while

exhibiting an almost negligible error-floor, which is several orders of magnitude lower than

that of the NSGA-II and of the MO-ACO algorithm, while imposing the same complexity.

However, when the number of mobile relays is high, the multi-objective routing problem

cannot be realistically solved by the NDQO algorithm, even when considering its best-case

scenario.

This observation is as our main motivation in Chapter 5, where we have introduced an

improved algorithm, namely the NDQIO algorithm. Explicitly, this specific algorithm is ca-

pable of exploiting the hybrid synergies between Hardware Parallelism (HP) and Quantum

Parallelism (QP) based on the framework we developed in Section 5.2. Note that due to the

presence of HP we have classified the complexity imposed by the NDQIO algorithm into two

separate domains, namely the parallel and the sequential complexities, as detailed in Sec-

tion 5.2. Based on this framework, in Section 5.3.2 we have introduced an element of elitism

into our new algorithm, enabling the NDQIO algorithm to terminate its operation, once it

concludes that all the Pareto-optimal routes have been identified. This element of elitism

allows the NDQIO algorithm to a substantial parallel complexity reduction when compared

to the NDQO algorithm. Explicitly, the NDQIO algorithm imposes a parallel complexity

on the order of O(
√
N). In addition to the aforementioned meritorious attributes, we have

also employed a process for pushing the NDQO algorithm’s error-floor to infinitesimally low

levels by protecting the Optimal Pareto Front (OPF) against the inclusion of sub-optimal

routes by relying on the identification of the entire set of Pareto-optimal routes. This

specific process is termed as the OPF Self-Repair (OPF-SR) process and it is discussed

in Section 5.3.3. Nevertheless, the sequential complexity of the worst-case scenario is in-
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creased by the above particular set of improvements, leading to a sequential complexity on

order of O(N2
√
N). Furthermore, we have demonstrated in Section 5.5 that the NDQIO

algorithm exhibits a full-search-based accuracy associated with an infinitesimally low error-

floor, while imposing a parallel complexity of about an order of magnitude lower than that

of the NDQO algorithm for 9-node WMHNs. This is attained at the cost of twice the

sequential complexity, when compared to that of the NDQO algorithm. Explicitly, based

on Fig. 5.9 this parallel complexity reduction is deemed to be further increased in more

densely populated WMHNs. Based on the same figure, the NDQIO algorithm’s sequential

complexity approaches that of the NDQO algorithm, as the relays proliferate, whilst the

NDQIO algorithm is expected to exhibit a beneficial sequential complexity reduction for

WMHNs associated with more than 12 nodes.

As discussed in Section 5.2, the parallel and sequential complexities may be deemed to

be commensurate with the normalized execution time and the normalized power consump-

tion of the algorithm. Therefore, a normalized execution time versus normalized power

consumption trade-off emerges. To elaborate further, the NDQIO algorithm is more ap-

propriate for applications, where the relays are moving at a high vehicular speed, yielding

a swift change in the network specification parameters and hence having a low normalized

execution time is crucial for maintaining optimal routing. In this case, the NDQO algo-

rithm would fail to export the Pareto-optimal solutions, since the real network parameters

would diverge from the specific ones considered in the optimization problem. On the other

hand, there are WMHNs applications, where the number of nodes is less than 12 and they

are stationary or slowly moving. In this specific scenario, the WMHN parameters do not

drastically fluctuate over time and thus the NDQO algorithm’s employment is more appro-

priate, since it would contribute to increasing the WMHN’s lifetime, due to the reduced

normalized computational power requirement compared to that of the NDQIO algorithm.

In Chapter 6, we have opted for including an additional objective into the HetNet’s

optimization, namely that of load balancing. For this specific reason, we adapted our net-

work model so that it considers multiple source and destination nodes as well as exploiting

an element the element of social awareness [159], as discussed in Section 6.2. Therefore, in

this chapter we have introduced a novel quantum-assisted algorithm, namely the MODQO

algorithm [3], for the sake of addressing the joint multi-objective routing and load balancing

problem in the context socially-aware networks. The MODQO algorithm relies both on the

hybrid synergy between the QP and the HP and on a novel framework that we developed

in Section 6.3.4 for transforming the composite search space into a series of less-complex

spaces. Consequently, the MODQO algorithm also benefits from a third complexity re-

duction source, namely that of the database correlation exploitation. Explicitly, we have

shown in Proposition 1 that the Pareto-optimal route-combinations are exclusively com-

prised by individually Pareto-optimal routes. Consequently, we only have to consider the

set individually Pareto-optimal routes for identifying the Pareto-optimal combinations, as

portrayed in Figs. 6.12 and 6.13. This further improves the complexity reduction offered by

the QP [88], since the series of smaller search spaces appear to have a significantly reduced

correlation. Additionally, we have developed a novel quantum-assisted heuristic method
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for iteratively identifying the route-combinations formed by the individual Pareto-optimal

routes of these smaller search spaces, which was termed in Section 6.3.2 as MODQO algo-

rithm’s outer step and its is discussed in Section 6.3.4. Explicitly, we have demonstrated

with the aid of Fig. 6.17 that the aforementioned quantum-assisted iterative process offers

a substantial complexity reduction, when compared to employing the NDQIO algorithm

for the longer-dimensional composite problem. This specific finding is of utter importance,

since it provides us with specific guidelines as to when the employment of full-search-based

quantum algorithms is beneficial. Naturally, their employment becomes more beneficial,

when the database considered becomes more uncorrelated, as observed in Fig. 6.17.

Additionally, we have introduced a novel socially-aware load balancing metric in the

context of the joint multi-objective routing and load balancing problem, namely the nor-

malized entropy of the normalized composite betweeness defined in Eq. (6.5). Based on

Figs. 6.19 and 6.20, we have demonstrated that this metric succeeds in mitigating the bias

towards the minimum-delay solution, which is imposed by using the standard deviation

of the normalized composite betweeness. Finally, we have compared the MODQO algo-

rithm’s performance to that of the NSGA-II. Based on Figs. 6.19–6.22, we have concluded

that when the NSGA-II identifies sub-optimal route-combinations in terms of their average

delay and power consumption, the load balancing performance quantified in terms of both

metrics considered becomes better than that of the MODQO algorithm. On the other hand,

when the NSGA-II approaches the Pareto-optimal route combinations, its load balancing

performance becomes worse than that of the MODQO algorithm. This specific trend un-

veils a trade-off, namely the load balancing versus optimal routing trade-off. Explicitly, the

network’s load balancing performance improves, when the routing becomes more and more

sub-optimal, since including more intermediate nodes drives the load distribution closer to

uniform distribution.

7.2 Future Work

Apart from the aforementioned quantum-assisted multi-objective algorithms, which we de-

signed in the context of routing or load balancing, there are various others, such as the

Quantum Genetic Optimization Algorithm (QGOA) [89] and the Quantum Search Heuris-

tics (QSH) [198] algorithm. Therefore, we have in our possession a variety of quantum

algorithms to address our main problem, which is that of conceiving a quantum-assisted

holistic network optimizer for achieving near-capacity performance in HetNets. However,

in our quest for this optimizer we have to address several problems besides the routing and

the load balancing problems. Therefore, our future work will be focused on the following

issues:

(a) In Chapter 6 we investigated how to exploit the underlying correlations in the database

for the formation of the Pareto-optimal routes. The Pareto-optimal routes’ formation

also exploit the database correlation. In fact, several studies [199, 200] transformed

the single-component routing optimization problem into a dynamic programming
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problem by creating a trellis diagram. This specific structure is in line with MODQO

algorithm’s outer step described in Section 6.3.4, hence it could be readily exploited

for the sake of extending the aforementioned single-component framework to a multi-

objective technique by using the concept of Pareto optimality.

(b) A rather promising application for Pareto optimality problems can be identified in the

field of user-centric networking [22,201,202]. Explicitly, the cluster head may readily

assume a multi-component Utility Vector (UV) comprised by each user’s QoS criteria.

Consequently, our NDQO and NDQIO algorithms [1,2] become readily applicable in

these problems.

(c) Our network models used in Sections 2.2 and 6.2 may be enriched by introducing

the principle of network coding [203, 204, 205] into our HetNet paradigm and design

a quantum-assisted scheduler in the same fashion, as our quantum-assisted MODQO

and NDQIO algorithms [3].

(d) Apart from network coding, the network model may be revisited in the context of

cooperative energy harvesting [206]. To elaborate further, an energy buffer [207,

208] as well as a memory buffer [209, 210] could be considered at every node for

supporting opportunistic forwarding. In this specific scenario, our quantum-assisted

multi-objective algorithms may be readily invoked for the sake of investigating the

achievable rate versus energy efficiency trade-off [211].

(e) As an extension to our joint multi-objective routing and load balancing, we may em-

ploy our multi-objective framework constituted by the MODQO, the NDQIO and the

NDQO algorithms for addressing the problem of proactive caching [212,213,214,30].

In proactive caching the packets are buffered in the nodes by carefully considering

their popularity for the sake of reducing both the delay and the power consumption,

which is reminiscent of our multi-objective routing problem. Additionally, this spe-

cific case study could be undertaken with the aid of machine learning [215]. In fact,

Kapoor et al. [216] have recently proposed a model for quantum perceptrons, which

may constitute beneficial building blocks for quantum-aided neural networks. There-

fore, it would be worth investigating as to whether our quantum-assisted solutions

adapted to this context.

(f) Our quantum-assisted framework operates under the assumption of error-free quan-

tum circuits. In fact, we have only investigated the effect of imperfect quantum

circuits [73] in the context of Grover’s algorithm. Therefore, as an extension we

could invoke Quantum Error Correction (QEC) codes [68,70,72] for the BBHT-QSA

and the DHA leading to powerful multi-objective algorithms.

(g) Finally, our advocated quantum assisted solutions could be adapted to localization-

aided networking problems [217,218,219,220,221,222].
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Appendix A

Routing Problem Transformation

into Binary Combinatorial Search

using Lehmer Encoding and

Decoding Processes

A.1 Introduction to Lehmer Coding

It has been argued in Section 3.2 that quantum systems comprised by qubits have an

inherently binary nature. Consequently, the multiple-objective routing problem has to be

transformed into an equivalent binary combinatorial problem. This transformation becomes

feasible, when each of the routes is mapped into an individual binary index. However, an

appropriate transformation pattern has to be defined, so that the inverse transformation is

also feasible. The latter is of utter importance, since the superimposed binary states have

to be directly mapped into their respective routes using unitary transformations.

Since we have imposed the constraint of having Hamiltonian routes, implying that each

node is to be traversed at most once, each route can be viewed as a permutation of the

RNs involved, with the source and destination nodes being appended at the beginning and

the end of the route, respectively. For this reason, we will rely on Lehmer Coding [137]

as a benefit of its capability of encoding a permutation into its respective index in the

factoradic1 computational basis. Explicitly, we can then map the respective indices in the

factoradic computational basis to binary indices. This enables the employment of unitary

operators Uf , portrayed in Fig. 3.1, which decode the routes’ indices in an online fashion in

parallel by exploiting the QP and then evaluate each of the components of UV considered

in Eq. (2.5). Note that all the unitary operators Ufk , defined in # in the next chapters,

1The factoradic number system is a mixed radix numeral system used for describing permutations,
where the i-th digit from the right has the base i, implying that this specific digit must be strictly less than
i and that its value is multiplied by (i1)!.

203
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incorporate Lehmer Decoding for the sake of determining from each route’s binary index

the directed set of nodes creating the route.

Having described our motivation for employing Lehmer code, let us proceed with its

detailed description. Assuming a random permutation σ = [σ0, ..., σn−1] of n elements, its

Lehmer Encoding Le(σ) is defined as follows [137]:

Le (σ) =
[
Le (σ)0 , ..., Le (σ)n−1

]
, (A.1)

where each element of Le(σ) is defined as:

Le (σ)i = #{j > i : σj < σi}. (A.2)

Explicitly, the operator #{·} corresponds to the number of elements that satisfy the state-

ment inside the curly brackets, as defined in Definition 5. Hence, the term Le (σ)i corre-

sponds to the number of elements belonging to the permutation σ that are placed at the

right of σi and at the same time they are less than σi. Naturally, each element Le (σ)i is

bounded to the range {0, 1, .., n− i}, since the number of elements to the right of σi is equal

to n− i.

A.2 Lehmer Encoding Example

Let us now elaborate on the specifics of Lehmer encoding with the aid of a brief tutorial

example. Therefore, let us consider the route SN→RN5→RN2→RN3→RN1→RN4→DN

of an 8-node WMHN. Since the SN and the DN are not taken into consideration, the

respective permutation σ in terms of the RNs’ zero-initialized indices is equal to:

σ = [4, 1, 2, 0, 3]. (A.3)

In order to calculate the encoding, Eq. (A.2) is utilized. Hence, starting from the far left

element of the permutation vector σ of Eq. (A.3) and moving to right, the Lehmer-encoding

Le(σ)i is equal to the number of elements σj associated with j > i, i.e. with the elements to

the right σi, that are less than σi. Subsequently, the elements σj with j > i that are greater

or equal than Le(σ)i are reduced by 1. The detailed process of calculating the Lehmer-

encoded vector Le(σ) for our tutorial example is shown in Table A.1, while a summarized

version is following:

4 1 2 0 3

4 1 1 0 2

4 1 1 0 1

4 1 1 0 0

4 1 1 0 0

. (A.4)



A.2. Lehmer Encoding Example 205

Hence, the Lehmer-encoded vector Le(σ) is equal to:

Le(σ) = [4, 1, 1, 0, 0]. (A.5)

Table A.1: Detailed steps of the Lehmer encoding process for the example of (A.3).

Step Notes

1.1 4 1 2 0 3 Fetch the first element.

1.2 4 1 2 0 3 Calculate the number of the smaller elements to the right;

hence, L(σ)1 = 4.

1.3 4 1 2 0 3 Reduce by one the elements to the right that are

greater or equal; in this case no element is reduced.

1.4 4 1 2 0 3 Set the inspected element equal to L(σ)1 = 4.

2.1 4 1 2 0 3 Fetch the second element.

2.2 4 1 2 0 3 Calculate the number of the smaller elements to the right;

hence, L(σ)2 = 1.

2.3 4 1 1 0 2 Reduce by one the elements to the right that are

greater or equal; the elements 2 and 3 will be reduced

by one.

2.4 4 1 1 0 2 Set the inspected element equal to L(σ)2 = 1.

3.1 4 1 1 0 2 Fetch the third element.

3.2 4 1 1 0 2 Calculate the number of the smaller elements to the right;

hence, L(σ)3 = 1.

3.3 4 1 1 0 1 Reduce by one the elements to the right that are

greater or equal; the element 2 will be reduced

by one only.

3.4 4 1 1 0 1 Set the inspected element equal to L(σ)3 = 1.

4.1 4 1 1 0 1 Fetch the fourth element.

4.2 4 1 1 0 1 Calculate the number of the smaller elements to the right;

hence, L(σ)4 = 0.

4.3 4 1 1 0 0 Reduce by one the elements to the right that are

greater or equal; the element 1 will be reduced

by one only.

4.4 4 1 1 0 0 Set the inspected element equal to L(σ)4 = 0.

5.1 4 1 1 0 0 Fetch the fifth element.

5.2 4 1 1 0 0 Calculate the number of the smaller elements to the right;

hence, L(σ)5 = 0.

5.3 4 1 1 0 0 Reduce by one the elements to the right that are

greater or equal; there a are no elements to

the right and hence no element will be reduced.

5.4 4 1 1 0 0 Set the inspected element equal to L(σ)4 = 0.



206 A. Lehmer Encoding and Decoding Processes

A.3 Lehmer Decoding Example

As far as the decoding process is concerned, we have to simply reverse the encoding process.

To elaborate further, starting from the far right element Le(σ)i and moving to the left, the

elements Le(σ)j associated with j < i, i.e. iwth the elements located to the right of the

examined element Le(σ)i, are increased by one, if the particular element Le(σ)j is greater

or equal than the examined element Le(σ)i. This process is repeated for all the elements

until the left-most element is reached. Naturally, this process leads to the reconstruction of

the index vector σ of the permutation. For instance, in our tutorial example the decoding

process is carried out as follows:

4 1 1 0 0

4 1 1 0 1

4 1 1 0 2

4 1 2 0 3

4 1 2 0 3

. (A.6)

Note that a more detailed version of Eq. (A.6) is presented in Table. A.2.

A.4 Applying Lehmer Coding to the Routing Problem

The Lehmer Coding process is of utter importance, since it succeeds in transforming each

route into a factoradic index, which may then be converted into a decimal or a binary index.

Therefore, the routing problem inherently obtains a binary combinatorial problem struc-

ture, facilitating the employment of quantum computing search and optimization methods.

For instance, the respective binary index of the aforementioned tutorial example is equal

to 1101000, which correspond to the number 104 in the decimal system. This specific index

indicates the permutation index in a list, in which all possible permutations of a certain

set of RNs have been stored in lexicographical order, where the zero index accounts for the

permutation, whose elements are sorted in ascending order, i.e. σi < σj with i < j.

Therefore, a method of generating all the possible prototype sets S of the RNs par-

ticipating in the formation the route has to be designed for completing the transfor-

mation. This may be implemented by using binary vectors, having a length, which is

equal to the total number of RNs in the network. The elements of these vectors having

a value equal to unity indicate that the respective RNs are participating in the formation

of the route. For instance, the binary vector of 111101 would result in a prototype set

S = {RN1,RN2,RN3,RN4,RN6} for an 8-node network .

Moreover, the total number of permutations, which a set S may produce is equal to

(|S|)! [137], where the operation | · | denotes the number of elements comprising the set, i.e.

its cardinality. This is equivalent to the number of unity-valued elements of the associated
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Table A.2: Detailed steps of the Lehmer decoding process for the example of (A.5).

Step Notes

1.1 4 1 1 0 0 Fetch the fifth element.

1.2 4 1 1 0 0 Increase by one the elements to the right that are

greater or equal; there a are no elements to

the right and hence no element will be increased.

2.1 4 1 1 0 0 Fetch the fourth element.

2.2 4 1 1 0 1 Increase by one the elements to the right that are

greater or equal; only the element equal to zero

will be increased.

3.1 4 1 1 0 1 Fetch the third element.

3.2 4 1 1 0 2 Increase by one the elements to the right that are

greater or equal; only the elements equal to one

will be increased.

4.1 4 1 1 0 2 Fetch the second element.

4.2 4 1 2 0 3 Increase by one the elements to the right that are

greater or equal; the elements equal to one and

two will be increased.

5.1 4 1 1 0 2 Fetch the first element.

5.2 4 1 2 0 3 Increase by one the elements to the right that are

greater or equal; no elements to the right are

greater or equal.

binary vectors. Hence, assuming a route index x, we are now capable of determining

the route’s binary vector by calculating the cumulative sums of the number of possible

permutations stemming from the binary vectors representing decimal values in the range of

{0, 1, . . . , 2Nnodes−2}, where Nnodes corresponds to the total number of nodes including the

SN and the DN. Given this cumulative sum, we are now capable of exporting the range of

decimal indices associated with a specific binary vector and thus it is possible to associate

a specific route with its respective binary vector.

Having determined the prototype set S, the permutation index has to be evaluated. In

fact, it is equal to the difference between the route’s decimal index x and the lower bound of

the range of its associated binary vector. Then, the permutation index is transformed into

the factoradic computational basis, hence evaluating the Lehmer-encoding vector Le(σ).

Finally, the actual route is exported by applying Lehmer decoding to the factoradic vec-
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tor Le(σ). For instance, assuming that the route having the decimal index of x = 1101

should be determined, the process of finding the respective binary vector is shown in Ta-

ble A.3, where we can observe that the appropriate binary vector corresponding to the

given route index is the vector [111101]. This vector corresponds to the prototype set

S = {RN1,RN2,RN3,RN4,RN6}. For the sake of obtaining the permutation, the cumu-

lative sum of the previous vector represented by its equivalent decimal value should be

subtracted from index x. The permutation index is then found to be equal to 104. The

latter index, in turn, is transformed into the factoradic computational basis and its value

is found to be equal to the vector Le(σ) = (4, 1, 1, 0, 0). Finally, Lehmer decoding is ap-

plied to Le(σ) and the route is found to be SN→RN5→RN2→RN3→RN1→RN4→DN by

appending the SN and DN at the beginning and the end of the exported route, respectively.

Table A.3: Calculation of the binary vector for the path with decimal index x = 1101.

Binary Vector Cumulative Sum Relationship to index i

000000 1 < 1101

000001 2 < 1101

. . . . . . < 1101

111100 997 < 1101

111101 1117 > 1101

. . . . . . < 1101
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