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Although the mathematical activity of proofs and refutations is widely recognised as significant in 

school mathematics, much remains under-explored about ways of facilitating such activity in the 

classroom. In this paper, we address this issue by focusing on task design in dynamic geometry 

environments. In particular, we formulate three principles for the task design and use these to develop 

classroom tasks. We analyse a task-based interview with a triad of upper secondary school students 

to show how the designed tasks stimulated their activity of proofs and refutations. 
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Introduction 

The mathematical activity of proofs and refutations described by Lakatos (1976) is significant in 

school mathematics because it enables students to experience authentic mathematical practice 

(Lampert, 1992). Although several researchers have described student behaviour with Lakatos’ 

terminology (Komatsu, 2016; Larsen & Zandieh, 2008), few studies have examined ways of 

purposefully introducing such activity into classrooms (Komatsu, Tsujiyama, Sakamaki, & Koike, 

2014; Komatsu, 2017; Larsen & Zandieh, 2008). Given the importance of mathematical tasks for 

student learning (Kieran, Doorman, & Ohtani, 2015), this study aims at developing task design 

principles and actual tasks for realising proofs and refutations. 

To achieve this purpose, we specifically focus on dynamic geometry environments (DGEs). Research 

has shown the capability of dynamic geometry software (DGS) for enhancing proof-related activities 

such as making conjectures and subsequently constructing proofs. In particular, some studies have 

shown how using DGS enabled students to discover the refutations of their conjectures and proofs 

and cope with these refutations (Healy & Hoyles, 2001; Olivero & Robutti, 2007). The successful 

use of DGS in previous research was accompanied by carefully-designed tasks (Hanna, 2000). 

Nevertheless, how the tasks were designed was often not clarified explicitly, and task design in DGEs 

remains understudied (Sinclair et al., 2016). 

To address these issues, the study reported in this paper focuses on the following research question: 

What principles can underpin the design of DGE tasks that facilitate student activity of proofs and 

refutations? 

The meaning of proofs and refutations 

Based on Lakatos (1976), we conceptualise the meaning of proofs and refutations as depicted in 

Figure 1. Students make conjectures (or are provided with statements), and then attempt to prove 

them. In this, they are confronted with refutations of the conjectures/statements or proofs, and refine 

them by addressing the refutations (Komatsu, 2016). 
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Figure 1: The conceptualisation of proofs and refutations 

As there is insufficient space to explain Figure 1 fully, here we clarify only two points. First, we take 

the meaning of proof in a broad sense such that a deductive proof may be valid only for a subset of 

all cases considered in a conjecture and statement. Second, although the word refutation is sometimes 

used only for conjectures and statements, not for proofs, this study utilises refutation for 

conjectures/statements and for proofs. These two points are epistemologically consistent with 

Lakatos’ view of mathematics. In Proofs and Refutations (Lakatos, 1976), he dealt with deductive 

proofs that were only partially valid. He also argued that proof was inextricably linked to refutations 

(Reid, Knipping, & Crosby, 2008) and coined the term local counterexamples to denote the 

refutations of proofs.  

Task design principles 

To design tasks for fostering the student activity of proofs and refutations, we develop principles for 

the task design from three aspects. First, Hanna (1995) pointed out that Lakatos’ (1976) story rested 

on the topic of polyhedra, where it was relatively easy to suggest counterexamples. This confirms 

that it is necessary to create tasks intentionally where counterexamples can be produced. Because it 

is the ambiguous meaning of polyhedra that made counterexamples possible in Lakatos’ research, it 

is essential to develop tasks whose conditions are purposefully ambiguous so that counterexamples 

can be proposed. In fact, we previously demonstrated that specific tasks that include hidden 

conditions, namely proof problems with diagrams, are useful for introducing proofs and refutations 

into secondary school geometry (Komatsu, et al., 2014; Komatsu, 2017). 

Second, research indicates that students encounter difficulties in producing proper counterexamples 

(Hoyles & Küchemann, 2002). Thus, it is important to prepare tools that foster student production of 

counterexamples. DGS could play the role of such tools in geometry education because the main 

advantage of DGS is that students can easily transform diagrams by dragging (Arzarello, Olivero, 

Paola, & Robutti, 2002) and thus the students have access to various diagrams. From research on 

dragging modalities and measuring modalities in DGEs (Arzarello et al., 2002; Olivero & Robutti, 

2007), the following are relevant to refutations of conjectures and proofs: dragging test, validation 

measuring, and proof measuring. 

Third, several studies have reported that when students encounter counterexamples, some of them 

refuse to accept the counterexamples and do not try to revise their conjectures (e.g. Balacheff, 1991). 

For resolving this problem, we capitalise on the potential of contradictions, because if contradictions 

are appropriately induced, confusion generated by the contradictions can be beneficial for learning 

(D’Mello, Lehman, Pekrun, & Graesser, 2014). To trigger contradictions, it is likely helpful to 

combine tasks intentionally (rather than use a single task) where students can recognise contradictions 



between their solutions to tasks and their thinking in subsequent tasks (Hadas, Hershkowitz, & 

Schwarz, 2000; Prusak, Hershkowitz, & Schwarz, 2012). 

In summary, we formulate the following principles of task design for fostering the student activity of 

proofs and refutations: 1) Using tasks whose conditions are purposefully ambiguous and thus allow 

the occurrence of counterexamples; 2) Providing tools that enhance the production of 

counterexamples; and 3) Increasing students’ recognition of contradictions that facilitates them to 

revise conjectures/statements and/or proofs. 

Methods 

Participants 

This paper analyses a task-based interview in which a triad of students, Kakeru, Sakura, and Yuka 

(pseudonyms), voluntarily participated. They were 11th graders (aged 16–17 years old) in an upper 

secondary school in Japan. According to their mathematics teacher, their mathematical capabilities 

were above average. The first author conducted the interview. The DGE was GeoGebra. Because the 

students had no experience with DGS, four hours was devoted, prior to the interview, to teaching the 

students the basic functions (e.g. basic construction, dragging, and measuring) of the DGE. The 

students had learnt geometric proofs using the conditions for congruent triangles and those for similar 

triangles. They were familiar with the inscribed angle theorem, the inscribed quadrilateral theorem, 

and the alternate segment theorem, all of which are related to tasks used in the interview.  

Tasks 

Q1. (1) As shown in the diagram given, there are four points A, B, C, and D 

on circle O. Draw lines AC and BD, and let point P be the intersection point 

of the lines. What relationship holds between ∆PAB and ∆PDC? Write your 

conjecture. (2) Prove your conjecture. 

Q2. Construct the diagram shown in Q1 with DGS. Move points A, B, C, and 

D on circle O to examine the following questions. (1) Is your conjecture in 

Q1 always true? (2) Is your proof in Q1 always valid? 

 

Figure 2: Tasks used in the interview 

The tasks used in the interview are shown in Figure 2. We developed them according to the 

aforementioned design principles. Q1 is relevant to the first principle that involves ambiguous 

conditions. The condition of Q1 is vague because there is no reference to the locations of points A, 

B, C, and D in the problem sentences. If the locations are changed, refutations of the proof constructed 

in Q1 can be discovered, as shown below. The second principle corresponds to Q2, where students 

are invited to construct the given diagram with DGS and produce various diagrams by dragging. The 

third principle is related to the combination of Q1 and Q2. It is, of course, possible for Q1 to stipulate 

the use of DGS to produce various diagrams for making a conjecture before proving. However, we 

designed Q1 and Q2 in the way set out in Figure 2 because we expected that proof construction in Q1 

could increase students’ conviction in their conjecture and proof. This design could lead to students’ 

recognition of a contradiction between their conviction and the subsequent refutations in Q2. 



Data collection and analysis 

The three students were asked to solve task Q1 collaboratively with paper and pencil and task Q2 

with DGS on a desktop computer. The task-based interview lasted for approximately 35 minutes in 

total. It was video-recorded and the audio transcribed. We used two cameras for the recording, one 

placed to video the students and the other placed to record the screen of the computer. The worksheets 

the students completed, and the DGS file the students made, were collected. We analysed these data 

by focusing on what type of diagram the students produced and how they dealt with the diagrams. 

Results 

Conjecture, proof, and types of diagrams the students produced 

Immediately after student Kakeru read the problem sentences in Q1, Sakura conjectured “similar?”. 

The students then wrote the following proof on their worksheet: 

In ∆PAB and ∆PDC, 

From the vertical angles, ∠APB = ∠DPC … (1) 

From arc BC, since inscribed angles are equal, ∠PAB = ∠PDC … (2) 

From (1) and (2), since two pairs of angles are equal, ∆PAB ~ ∆PDC 

After that, the students worked on Q2. As they worked, they produced and examined the six types of 

diagrams shown in Figure 3. In Figure 3a, triangle PAB (or likewise triangle PDC) is not constructed, 

while both triangles are not constructed in Figures 3b and 3c. Point P is located outside circle O in 

Figures 3d and 3e. In the type of diagram shown in Figure 3f, the students regarded points A and C 

(or likewise with points B and D) to be coincident and considered line AC (or likewise BD) to be a 

tangent to circle O. 

 

Figure 3: Types of diagrams the students produced 

In the following, we report the cases regarding Figures 3e and 3f because the students devoted more 

efforts to these types than to the other types. 

Case where point P is outside the circle 

At the beginning of Q2, the students produced the type shown in Figure 3e: 

116 Kakeru: Is the conjecture in Q1, similarity, always true? [Reading the problem 

sentence.] 

117 Sakura: Not similar. 

118 Yuka: In this case, … impossible. 

119 Kakeru: The intersection point is outside the circle. 



Here, Sakura and Yuna recognised a contradiction because although they proved their conjecture in 

Q1, they considered the type of Figure 3e to be a counterexample to their conjecture (lines 117 and 

118). Kakeru then responded to their judgement: 

132 Kakeru: We can say that they are similar. 

133 Sakura: Why? We can’t say that. 

134 Kakeru: Because. 

135 Sakura: Wait. Because. 

138 Kakeru: PAB and PDC. These are similar. This and this [angle P] are common and 

equal. Then, because [quadrilateral ABDC is] a quadrilateral that is inscribed 

to the circle. 

139 Sakura: That one. 

140 Kakeru: This [angle PAB] and this [angle PDC] are equal. 

A dispute between the students can be seen in this dialogue, where Kakeru argued that their conjecture 

was still true (line 132), whereas Sakura objected to his argument (lines 133 and 135). To respond to 

Sakura’s objection, particularly for showing the congruence of angles PAB and PDC, Kakeru 

proposed using the inscribed quadrilateral theorem (lines 138 and 140): an interior angle is equivalent 

to the exterior angle of the opposite angle. Sakura agreed with his thinking (line 139), and, thus, they 

were able to resolve the dispute by proving the similarity of the triangles in the type of Figure 3e. 

Case where a line is a tangent to the circle 

After producing the diagram type shown in Figure 3e, the students examined the type shown in Figure 

3f (note that, strictly speaking, this type is different from the original problem where line AC cannot 

be drawn if points A and C coincide.) When encountering this type, Kakeru was convinced that their 

conjecture would be still true, and proposed using the alternate segment theorem to prove the 

conjecture. Nevertheless, when he started explaining his idea to Sakura and Yuka, he had a doubt as 

to why line AP can be considered as a tangent. The students struggled to resolve this doubt. During 

their struggle, as the students mentioned only once that the type of Figure 3f might be a 

counterexample to their conjecture, they consistently anticipated that their conjecture would be true 

in this type. Eventually, they judged that line AP was the tangent by measuring the degree of angle 

PAO and finding that it was almost 90 degrees. The subsequent student interaction was as follows: 

357 Kakeru: If we consider this as a tangent, we can use the theorem about the angle 

formed by a tangent and a chord. 

358 Sakura: I see. 

359 Kakeru: We can show the similarity. 

360 Sakura: This (angle DCP) and this (angle PBA) and P. 

This dialogue shows that the students were able to prove their conjecture in the type of Figure 3f with 

the alternate segment theorem. 

Examination of the initial proof 

The students concluded their activity without considering Q2(2), so the interviewer questioned them 

as follows: “Please read again the sentences in Q2 carefully. When you say it does not hold, do you 

mean your conjecture is false, or your proof is invalid?” When addressing this question, the students 

noticed that the reasons in their initial proof were not applicable to the diagrams that they produced. 



In other words, they regarded these diagrams as local counterexamples to their proof in the sense of 

Lakatos’ (1976) terminology. For example, the following is their discussion about Figure 3e: 

456 Sakura: We wrote, “From arc BC, since inscribed angles are equal, ∠PAB = ∠PDC”. 

457 Kakeru: PAB and PDC. This [the initial proof] is for this case [shown in Figure 2]. 

458 Sakura: This [the last line in the proof] is valid, but the sentences [the second and third 

lines in the proof] are not valid, right? 

461 Kakeru: This [the initial proof] is only for this [Figure 2]. 

462 Yuka: If so, this proof … 

463 Sakura: Is not always valid, right? 

After that, the students pointed out that it was sufficient to revise the reasons in their initial proof by 

replacing the equality of vertical angles and the inscribed angle theorem with the identity of the angles 

and the inscribed quadrilateral theorem, respectively. They also examined and revised the initial proof 

in the type of Figure 3f in a similar way, with the alternate segment theorem. 

Discussion and conclusion 

The students in the interview were able to engage in mathematical activity of proofs and refutations 

depicted in Figure 1. After making and proving a conjecture, they produced diagrams to scrutinise 

whether their conjecture was always true. Although they initially judged the type of diagram in Figure 

3e to be a counterexample to their conjecture, they modified their judgement by proving that their 

conjecture was still true in this type. This proof was constructed without looking back at their initial 

proof and revising it. However, after the interviewer’s intervention asking them to consider Q2(2), 

the students recognised that their initial proof was not applicable to the types of diagrams in Figures 

3e and 3f, and revised the proof for these types. 

The three design principles and the tasks developed based on the principles were generally helpful 

for fostering the students’ activity. Based on the first principle, we used the proof problem whose 

condition regarding the locations of points A, B, C, and D is ambiguous (Figure 2). This task enabled 

the students to produce the six types of diagrams that had the potential to refute their conjecture and 

proof (Figure 3). 

With regard to the second principle, DGS in general and its dragging function in particular (Arzarello 

et al., 2002), were highly useful for producing such a variety of diagrams. In our earlier research, 

many students in a lower secondary school encountered difficulties in drawing diagrams that refuted 

their proofs in paper-and-pencil environments (Komatsu, Ishikawa, & Narazaki, 2016). Although the 

tasks used in that study were more difficult than those in this study, without DGS it would likely be 

challenging for the three students in this study to produce various diagrams different from Figure 2. 

The combination of Q1 and Q2 based on the third principle played a role in stimulating the subsequent 

students’ activity. In the case where point P was outside circle O, Sakura and Yuka felt a contradiction 

between the truth of their conjecture that was proved in Q1 and the refutation in Q2 where they judged 

the type of Figure 3e to be a counterexample to their conjecture. This contradiction triggered the 

dispute with Kakeru, where Sakura and Yuka’s judgement was revised through Kakeru’s proof 

showing that their conjecture was still true. In the subsequent case where a line was a tangent to circle 

O (Figure 3f), the students did not seem to perceive such a contradiction. This was likely related to 

the students’ earlier experience, where they could show that the type of Figure 3e, which was initially 



regarded as a counterexample, did not refute their conjecture. This experience would constitute a 

source of their conviction in the truth of their conjecture as regards the type of Figure 3f. If the 

students encountered this type prior to the type of Figure 3e, they would think that it might refute 

their conjecture, and would perceive a contradiction between their conjecture and the refutation. 

This study has limitations as it is based on a case with one set of tasks. It is necessary to develop other 

tasks based on the design principles of this study and conduct further empirical studies, including 

studies in real classroom settings, to inspect the values of the principles and tasks. Another interesting 

future issue is to examine whether the design principles of this study are applicable to content areas 

other than geometry (for example, number theory). The design principles are not conceptually 

restricted to geometry education; the ‘tools’ mentioned in the second design principle are not only 

DGS tools. This issue is worth addressing in order to extend the opportunity to introduce proofs and 

refutations from geometry into other topics in the mathematics curriculum. 
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