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ABSTRACT
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Electronics and Computer Science

Doctor of Philosophy

PEOPLE’S INTERACTION WITH FUTURE AUTONOMOUS ENERGY SYSTEMS
IN THEIR EVERYDAY LIVES AT HOME

by Alper T. Alan

Intelligent agents that sense and respond our continuing daily activities autonomously
are becoming increasingly ubiquitous, and consequently transforming our lives. Domes-
tic energy use accounts for a significant portion of national energy consumption in many
countries, and is an important domain that intelligent agents may provide great benefit
for us, by enabling a much more efficient energy utilisation. Whilst there are many
algorithms developed for autonomous agents to assist people in managing their energy
consumption at home, to date, there have been very few studies that examine human
interaction with autonomy in the wild. Hence, there is a significant gap in our under-
standing of how people would react to and interact with autonomous agents in their
everyday lives. This thesis aims to close this gap and help us to better understand how
to design user interaction with future autonomous energy systems. To this end, we focus
on people’s perceptions of and interactions with two agent-based energy management
systems that we designed and deployed based on envisioning future energy scenarios,
and evaluated these systems through field studies. We represent implications for the

design of future intelligent energy systems based on the results of our field studies.

The first system focuses on energy tariff switching. The decision of which energy tariff
(i.e., energy pricing schema) to select is a challenging task for today’s most households.
Energy companies offer many different tariffs (e.g., standard, time of use and real-
time tariffs) and it can be difficult to know which will be the most tailored to your
consumption profile. Furthermore, the changes in the households’ consumption and
tariff rates increase the likelihood of ending up with a wrong tariff decision. To this end,
we first focus on a future scenario where autonomous agents embedded in households
have the ability to switch the energy providers daily, based on their offered rates and the
households’ consumption routines. To instantiate this envisioned scenario, we designed
and developed two prototypes of a novel home energy management system called Tariff
Agent, which monitors household energy consumption, as well as available energy tariffs,

and therefore calculates the best tariff, and (optionally) automatically switches to it.
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Both Tariff Agent prototypes offer flexible autonomy by which users can shift the sys-
tem’s level of autonomy in switching tariffs among three options: suggestion-only, semi-
autonomous and fully autonomous, whenever they like. The first prototype was used
by 10 UK households for 14 days. The findings from both quantitative and qualitative
results of this first field study show that at least some people are ready to embrace
software agents to manage their energy tariffs on their behalf as long as the agents re-
duce the hassle of tariff switching and maintain their budget. The results also indicate
that although the users showed trust in Tariff Agent to control their tariff, they were
still keen to monitor its performance. The second prototype was built based on the
results of the first study and, differently from the first prototype, users are enabled to
change the frequency of system reports that were previously sent once on each day of
the study. To examine user interaction with the system for longer terms, the second
study lasted 42 days and involved 12 UK households. The findings based on a thematic
analysis show that flexible autonomy is a promising way to sustain users’ engagement
with smart systems, despite their occasional mistakes. The findings also suggest that
users take responsibility of undesired outcomes of automated actions when delegation of

autonomy can be adjusted flexibly.

The second system focuses on home heating. Home heating is a primary portion of
energy expenses and therefore it is an important issue for residents. A number of smart
thermostats have been introduced to customers to automate heating control on their
behalf with the purpose of increasing the home’s energy efficiency. However, none of
these thermostats take into account energy prices that may vary based on residents’
energy tariff. Hence, the second future energy scenario that we focus on envisions a
smart thermostat that automates home heating control when energy price varies in real-
time. To do so, we implemented three different smart thermostats that automate heating
based on users’ heating preferences and the real-time price variations. We evaluated
our designs through a field study, where 30 UK households used our thermostats to
heat their homes over a month. Our findings through thematic analysis show that the
participants formed different understandings and expectations of our smart thermostat,
and used its different features in various ways to effectively respond to real-time prices
while maintaining their thermal comfort. Based on the findings, we present a number
of design and research implications, specifically for designing future smart thermostats
that will assist us in controlling home heating with real-time pricing, and for future

intelligent autonomous energy systems.
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Chapter 1

Introduction

The ways that people interact with computing systems are undergoing significant changes
due to the ever accelerating progress of information technology (Microsoft, 2008). Our
daily lives are increasingly becoming pervaded by interconnected ubiquitous devices
such as laptops, tablets, mobile phones, wireless sensors and actuators. This creates a
complex digital world around us that brims with vast amount of information (Jennings
et al., 2014). However, people’s capacity in monitoring, assessing and responding to all
the information is limited. Thus, in order to complete tasks in such a complex digital
environment, people have been utilising software agents, which are sophisticated com-
puter programs that act for their users or other programs autonomously (Wooldridge
et al., 1995; Jennings and Wooldridge, 1996). For instance, today software agents are
being used in various application domains including, but not limited to, personalised in-
formation management, electronic commerce, interface design, computer games, and the
management of complex commercial and industrial processes (Jennings et al., 2014). In
these domains, software agents not only provide users suggestions based on automated
computations of information, but also learn users’ preferences and complete difficult

tasks autonomously.

On the one hand, autonomous operation may be desirable, or even essential, if we are
willing to harness the opportunities offered by increasing amount of data. On the other
hand, however, autonomous operation may not be the best choice due to noise and
biases in real world data, the limited size of training datasets, and the discrepancies
between computationally feasible models and complex real-life systems, which result in
the operation of these “smart” autonomous systems being, at times, suboptimal or, in
the worst case, detrimental. For example, recent work examining the real-world uptake of
a smart thermostat highlighted how such errors are likely to cause users’ frustration and
may lead them to abandon the technology (Yang and Newman, 2013). It is therefore
crucial that researchers and designers understand how to best design interfaces and
interaction techniques that make the system status and operation clearly readable, and

that allow its users to easily shift between autonomous and manual operation, a notion

1



2 Chapter 1 Introduction

known in the multi-agent systems community as “adjustable” autonomy (Scerri et al.,
2003; Tambe et al., 2008).

To this end, the area of Human-Agent Interaction (HAI) has emerged to investigate the
key design principles for establishing the interaction between humans and agents (Lewis,
1998). It focuses on the development of interaction design methods that determine how
humans and agents interact with each other. To date, the majority of HAI research has
explored human interaction with robots or virtually embodied agents (Holz et al., 2009).
Furthermore, some of these studies were on specific domains that require considerable
user training, such as aviation and military systems (Nourbakhsh et al., 2005; Hoc,
2000). However, there is a significant gap in our understanding of how we should design
interactions with software agents, especially for the ones that might possibly intrude
into our daily activities and have financial impacts on their non-expert users. We aim

to explore and narrow this research gap in the domain of future energy infrastructures.

Future energy infrastructures, that are part of the vision called the smart grid, provide
rich opportunities to explore interaction issues between humans and agents. The smart
grid is defined by US Department of Energy (2008) as: “A fully automated power deliv-
ery network that monitors and controls every customer and node, ensuring a two-way
flow of electricity and information between the power plant and the appliance, and all
points in between. Its distributed intelligence, coupled with broadband communications
and automated control systems, enables real-time market transactions and seamless in-
terfaces among people, buildings, industrial plants, generation facilities, and the electric
network.” This definition highlights that renewable energy resources, distributed intel-
ligence, and autonomous energy systems will be major elements of our future energy
grids. In this thesis, we focus on how autonomous energy systems may mediate user
interaction with future energy grids. In particular, we are interested in the domestic set-
ting, the potential of home energy technology to operate autonomously, and in people’s
inclination, or resistance, to interact with such systems and to deliberately relinquish

control to them.

The choice of home energy setting is driven by several factors. First, energy as an
application is important in itself for its societal and economic implications (MacKay,
2009). Second, home energy systems provide an opportunity to study rich interactions
with prototypes of future autonomous interactive systems “in the wild” since electric-
ity is invisible (so much so that prior work aimed at materialising its representation,
e.g., (Pierce and Paulos, 2010)), easy to measure with inexpensive and easy-to-install
Internet-connected sensors, and its consumption is related to money in a way familiar
to most users: through energy tariffs and bills. These characteristics make it possible to
design and run field trials where financial experimental reward is linked to participants’
real electricity consumption and their use of prototypes, thus rendering the usefulness

of the system more tangible to the participants. Indeed, exposing potential users to
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functioning prototypes “in the wild” has long been recognised as critical for research of

interactive systems (Rogers et al., 2007).

Now, the domestic energy domain has been an active area of research in Human-
Computer Interaction (HCI) and Artificial Intelligence (AI) research disciplines. For
instance, the prior work within the HCI community mostly focused on materialising
the presentation of energy data (i.e., eco-feedback) to raise awareness and to promote
desired behaviours, mostly for energy conservation (Pierce et al., 2008; Froehlich et al.,
2010; Pierce and Paulos, 2012). In the same vein, the research area of Al developed var-
ious autonomous agents, scarce resource allocation mechanisms, intelligent coordination
and control algorithms for optimising energy efficiency (Rogers et al., 2012). However,
very few HCI and Al research have focused on the interaction issues between humans
and agents, and the challenge of designing interactive autonomous systems. To our
knowledge, there are yet no design guidelines derived from a real-world deployment for
interactive autonomous energy systems that go beyond providing their users suggestions
and automatically perform tasks on their behalf. For example, (Miller and Parasuraman,
2007) introduces 10 different levels of autonomy for an agent. However which of these
levels would be the best for residential energy management, how and whether should
the users share control with the agent, how and whether should the agent communicate
its knowledge and planned actions, and how and whether should the agent request user

input for clarification or notify the user of its actions are still unexplored questions.

Against this background, the main aim of this thesis is to address the challenge of
designing future smart home energy applications and shed light on the interaction issues
between humans and agents. In particular, our goal is to ascertain the principles for
designing, implementing and evaluating interactive autonomous energy systems. In this
thesis, we apply an existing HCI methodology to study human-agent interactions and to
investigate the concept of autonomy within the domain of home energy management. In
particular, we focus on the challenging problem of energy cost management given that
energy prices dynamically change (e.g., real-time pricing) (we detail the problem in the
next section), and how such a problem can be solved with the help of autonomous agents.
To this end, based on envisioning future energy scenarios (Reeves, 2012), we designed
and developed two agent-based energy systems: an autonomous tariff switching agent
that helps its users in selecting energy tariffs at various levels of autonomy (see Chapter 3
for details) and a smart thermostat that automates home heating control to enable its
users to cope with real-time prices (see Chapter 4 for details). We evaluated our systems
with field experiments to explore user perception of and reaction to the agents in their
everyday lives. Based on the quantitative and qualitative analysis of the field studies
we provide novel design guidelines for developing future interactive autonomous energy

systems.

The next section starts with the explanation of the tariff switching and the home heating

problems, and later discusses why we need design guidelines for developing autonomous
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energy systems that aims to assist people to cope with these two problems.

1.1 Problem Statement

The smart grid requires new energy and communication infrastructures that enable bidi-
rectional flow of energy and information in energy distribution network. As a first step
towards this development, smart meters have been installed in residential and commer-
cial buildings in many countries (The Department of Energy & Climate Change, 2012).
For example, the Smart Metering Initiative (SMI) driven forward by the UK Govern-
ment establishes an obligation to install smart meters for all consumers by 2020 (The
Department of Energy & Climate Change, 2009). Smart meters can measure electricity
consumption over short intervals, typically every 30 minutes, and allow providers to offer
time-based electricity pricing where the price for the electricity may change depending

on the time of the day (e.g., time-of-use and dynamic pricing).

These time-based electricity tariffs have changed the consumers’ role significantly and
required them to be more active in the energy market. The consumers need to respond
to variable prices in order to reduce their energy cost, either by reducing their energy use
when the prices for the electricity are high, or by shifting their energy use to the cheaper
periods. Although variable prices offer considerable savings, it is not easy enough for
consumers to respond appropriately to time-based tariffs as mostly they are explicitly
made confusing and complex (Ramchurn et al., 2013). In the long run, smart appliances
are envisioned to respond autonomously to these price changes. However, throughout
the transition period, consumers are likely to combat this complexity by themselves
(Rogers et al., 2012).

To harness the benefit of variable energy prices, consumers need to continuously monitor
their energy consumption and available energy prices. This appears to be a well-suited
task for agents but not for humans when we consider that most people are not interested
in dealing with energy. For example, a recent study has shown that people in the United
States only spend two hours a year on average to search for better energy deals (US
Department of Energy, 2008). Similarly, in United Kingdom, considering 26 million
households, 7 out of 10 are on the wrong tariff, and between 40% and 60% of the
households having the wrong tariff stick to the tariff they already have. The main
reasons why people do not switch their tariffs are: the complexity of tariffs that are
difficult to understand, the hassle of the tariff switching process where modification or
cancellation fees may apply, and personal preferences, for example, one could prefer to

stick to a tariff that is more expensive but more environmentally friendly.

To date, a number of comparison sites have been developed to help consumers find
the best energy tariff. These services provide a list of comparison of various tariffs

from different providers based on the user-provided estimate of how much energy will
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be consumed monthly or annually. Although these services offer some suggestions and
insights to consumers when choosing an energy tariff, their accuracy is highly depended
on the consumption estimates provided by consumers. However, when we take into
account varying consumption over different seasons and at different times during days,
incorrect suggestions become inevitable. For example, predictions of annual energy bills
for an average UK household can exceed £1,500 (Frankcom, 2012).

In this complex environment, interactive autonomous agents are required to support
consumers so that they can actually benefit from varying energy prices by better un-
derstanding and controlling their energy use. For example, autonomous agents can be
designed to serve households by learning their energy consumption profiles and switch-
ing their tariff to the cheapest option automatically. Another example could be a smart
thermostat that can learn households temperature preferences over varying prices. Then
it could automatically monitor and respond to the real-time prices on their behalf. By
so doing, they could reduce the hassle of dealing with the complexity of dynamic energy
prices whilst maintaining our budget. However, such automatic decisions might not be
optimal all the time because of the uncertainties of users’ energy consumption and the
energy prices, and this may eventually lead users to abandon the use of agent technol-
ogy. To render these autonomous systems practical, even under extreme uncertainties,
there is a need for design guidelines derived from real-world deployments. We aim to
introduce such design guidelines with this thesis. In the next section, we present the

requirements for this research.

1.2 Requirements

This research does not focus on the problem of energy saving, and it goes beyond pro-
viding consumption feedback to explore human interaction with autonomous energy
systems. To formulate novel design guidelines for autonomous energy systems for the
domestic setting, a number of requirements need to be satisfied by this research. Firstly,
we need fully functioning prototypes of an autonomous tariff switching agent and a smart
thermostat that users will engage with. Secondly, we need to conduct field studies that
will reveal how people interact with the agents in the real world. Therefore, we catego-
rized the requirements of this research into two main parts: the prototype requirements

and the evaluation requirements.

1.2.1 Prototype Requirements
The requirements need to be satisfied by our prototypes are as follows:

e Configuration of Agency: when and to what extent an autonomous agent-based

system should perform actions on behalf of a human user should be configurable.
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An autonomous energy management system should allow its users to individually
balance user control and system autonomy due to the autonomy preferences that
might vary for different users. For example, some users might favour ultimate
system autonomy over full user control and authorize the agent to switch energy
tariffs or heat their homes automatically based on varying energy prices, or prefer

full user control.

e Visibility of Agency: in autonomous agent systems, agency should be visible
in some degree to manage user expectations. However, the degree of visibility
needs to be designed cautiously. An extreme visualisation of system agency (e.g.,
interface agents that act as direct intermediaries or guides) might evoke inflated
user expectations and lead to user irritation. On the other hand, insufficient visu-
alisation of agency might result in users being unable to observe system state and
unaware of functioning agency. Therefore, the system agency should become visi-
ble in a lightweight way (i.e., not too intrusive) to inform the users of the changes
of the system state, while keeping the complexity of the system infrastructure

hidden from the users.

e Control over Agency: an autonomous agent-based system should be designed
in a fashion that users can still have the control over the system’s autonomous
actions. To this end, the system’s actions need to be coherent, intelligible and
reliable. The consequences of the autonomous actions need to be clear to users
and the users should be able to evaluate the risks associated with the autonomous
actions. Furthermore, the users should be able to easily override the system’s
autonomous actions. In summary, the users should be able to understand what
the agent is doing, why it is doing so, what it is going to do next and what is
going to happen if the agent does it; and eventually the user should have the
ultimate control over agency and should able to direct the agent by overriding its

autonomous actions.

1.2.2 Evaluation Requirements

The requirements need to be satisfied by the evaluation of an autonomous energy system

through a field study are presented as follows:

e Ecological validity: it is important to conduct a field study to find out how
people adopt and use a prototype in their everyday lives. However, for results of
such a study to be meaningful it is important to provide a high level of realism,
or in more formal terms a high degree of ecological validity. For example, in our
case, to let participants experience the situation of an autonomous energy system

affecting their budget, the system should use their real electricity consumption
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data and should include monetary incentives based on their performance to mimic

energy pricing.

e Participant Diversity: for the field study to be conducted, we require a number
of participants who will use the system at their homes. However, the determination
of the number of participants is challenging since since the cost (time and money)
of running such experiments grows with the number of users. The participants also
need to have different demographics and cultural backgrounds so that the more

representative findings can be obtained.

e Quantitative and Qualitative Methods: agent systems, so far, have been
mostly evaluated through quantitative analysis. Although quantitative results are
important means to support a hypotheses, it is hard to describe users’ behaviour
and activities only with quantitative data. For example, user interactions could be
logged as quantitative data for seeing how many times a user visited a page but it
is hard to reveal what the reasons were behind the visits of the page. Therefore,
in addition to quantitative data, to reveal how users perceived our prototypes
and reacted to them, we need qualitative accounts that can be collected through

interviews.

Next, we present the research objectives of this thesis.

1.3 Research Objectives

Traditional approaches for defining the relationship between humans and agents (typi-
cally defined by the level of autonomy attributed to the agents) assume that humans are
somehow more knowledgeable about the task and therefore more apt at defining when
the agent should autonomously act and when it should request manual operation. This
is typically referred to as adjustable autonomy, and it has been mostly used by the state-
of-the-art technologies where humans rely on autonomous systems to complete complex
tasks. However, in many cases, the points at which guidance needs to be requested may
not be defined. Moreover, humans may instead be guided by agents to complement
tasks undertaken by the agents. Thus, the locus of control may change between humans
and agents at any point in time. Such interactions put humans and agents on the same
level and are, hence, defined as realisations of flexible autonomy. Against this back-
ground, the aim of this research is to improve the state-of-the-art interaction methods
for human-agent interaction in order to establish more sustainable relationship between

human and agents in the specific domain of domestic energy consumption.
The ultimate objective of our research is as follows:

To develop design guidelines for autonomous energy systems that will be used by non-

expert users in the context of home energy management. The guidelines should lead
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to the development of agent-based systems in which autonomous operations are made
configurable, visible, and controllable. The design of agents should provide lightweight
interaction methods that are not too intrusive so to not to annoy the users in the long

term, but that are sufficiently informative for building the users’ trust in the agents.

1.4 Research Challenges

From the problem and requirements stated above there are research challenges that must
be addressed. Here we discuss four key challenges facing the development of autonomous

agents for real-world use.

e Intelligibility of Agents: The main driver behind the design of autonomous
agents is the need to mitigate complexity of intricate tasks whilst ensuring that
the automation is barely noticeable to its users (Klein et al., 2004). Meanwhile, it
is important to design agents such that they present their status and intentions in
an obvious way to users. In order for agents to be perceived as useful and reliable,
their autonomous actions need to be adequately understandable and predictable.
These two design principles contradict with each other, and this creates a design
challenge: how to find the right balance between reducing the visibility of automa-
tion and increasing its intelligibility. For instance, Woods and Sarter (2000) have
shown that high levels of automation in aircraft systems could lead to situations in
which human pilots are not sufficiently aware of what the automation is currently
doing, why it is doing it, and what it will do next. Norman (2002) describes mental
and conceptual models in his book. Mental models are representations of a system
that users create in their mind through interacting with the system (Weinschenk,
2011), and conceptual models are the actual models that designers utilise while
developing a system. The system’s design and interfaces can play a pivotal role
in delivering the right conceptual model and therefore improving the intelligibility
of agents. However, designing a legitimate conceptual model for autonomous sys-
tems to convey the right mental model to end-users is a significant challenge. In
particular, excessive information presented in the interfaces, which communicate
with the conceptual model, could overwhelm the users. While the presentation of

insufficient information could complicate the intelligibility of agents’ actions.

e Agents’ Interaction Frequency: Proactiveness is the ability of agents to take
initiative ahead of anticipated situations rather than reacting simply in response
to their environment (Wooldridge et al., 1995), and this is a key element of agent
autonomy (Nwana, 1996). A major challenge to design proactive agents is to
generate accurate predictions for the relevant future, for example, future energy
consumption or prices. However, the accuracy of predictions can be influenced

by a number of different factors such as the prediction method used and the data
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sensed. In particular, noisy data gathered from a sensing system may lead an
agent to take faulty initiative. For instance, missing energy consumption data
may cause an incorrect consumption prediction that is significantly lower than the
actual amount. This erroneous prediction of consumption may consequently lead
an agent to calculate an incorrect prediction of cost and therefore result in sub-
optimal decisions. To increase the prediction accuracy and to reduce uncertainty
in predictions, uncertainty reduction theory (Berger and Calabrese, 1975) could
be utilized to develop interactive agents that humans can communicate with. For
example, a consumer could inform an agent that her energy consumption for the
next day’s will be more than the predicted amount as the consumer has a better
idea of what appliances (e.g., washing machine) will be used then. However, this
communication might require considerable level of human interaction, especially
for a consumer with a highly varying consumption values. Considering the fact
that humans are not so willing to communicate with agents (Rodden et al., 2013),
it is challenging to decide how often agents should request for human input. The
agents should not become too intrusive with too many requests and they could

still continue operating thoroughly.

¢ Human Trust in Agents: People are mostly reluctant to delegate their tasks
to agent-based systems, although they might readily trust simple deterministic
mechanisms that are transparent in their designs (Bradshaw et al., 2004). To help
people to adopt autonomous energy management systems into their everyday lives,
it is crucial to establish human trust in agents that hold the promise of improved
quality of life. Human trust in agents is an essential factor to build long term
engagement between humans and agents. People need to be convinced that agents
are useful and dependable for critical tasks through showing that agents hold pre-
dictability and resemblance in their actions for certain circumstances. However,
this challenge runs counter to the principle of making agents more adaptable since
they may become less predictable due to the adaptation (Klein et al., 2004). More-
over, agents might cause harm more than good due to environmental uncertainties
or design faults. For instance, an autonomous energy management system might
lead a consumer to waste considerable amount of money because of faulty con-
sumption and cost predictions that result from the uncertainties in demand and
supply. Therefore, users must be able to evaluate the rewards and the potential

risks of cooperating with such autonomous systems in order to trust them.

e Flexible Autonomy: Inadequate level of complexity and autonomy of agents
can result in undesired consequences (Klein et al., 2004). To address this con-
cern, a number of techniques have been developed to ensure that the autonomy
of agents can be dynamically changed (Christoffersen and Woods, 2002; Myers
and Morley, 2003). In those agent systems, there are mostly control policies de-

fined to enable users to dynamically regulate the system’s behaviour. Users are
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able to define limits on autonomous behaviour according to their evaluation of an
agent’s proficiency. By so doing, undesirable outcomes can be prevented by man-
aging the level of autonomy attributed to agents and making agents work with
corrective measures (Klein et al., 2004). Furthermore, the capability to determine
autonomy dynamically means that poorly performing agents can be immediately
degraded to prevent undesired consequences (Bradshaw et al., 2004). However,
the specification of the control policies can sometimes be cumbersome as the ca-
pabilities of agents and humans can vary with respect to a given context. The
level of autonomy given to the agents can significantly influence the performance
of tasks. However, selecting the appropriate degree of autonomy that determines
what tasks will be delegated to agents on behalf of humans is quite challenging
as low autonomy level could reduce the performance at dealing with any complex
data while high autonomy level could limit human control and lead to undesired
consequences. The challenge for this study is to decide which levels of autonomy

to offer non-expert users in the context of home energy management.

The following section details our research contributions.

1.5 Research Contributions

In this thesis, we present the outputs of interdisciplinary research combining techniques
and principles from HCI and Al, specifically by prototyping and deploying future au-
tonomous smart grid applications and by evaluating them in the wild. Our key contri-

butions can be summarised as follows:

e We present findings from two field studies where two different prototypes for au-
tomating energy tariff-switching were designed, implemented and evaluated in the
wild with households having various lifestyles. Both prototypes offer flexible auton-
omy by which users can shift the system’s level of autonomy among three options:
suggestion-only, semi-autonomous and fully autonomous, whenever they like. We
empirically demonstrate that flexible autonomy is a promising approach to sustain
user interaction with smart energy systems. We present households’ preferences
over different levels of system autonomy for both short and longer terms. We
show that users take responsibility for any undesired outcomes of automated ac-
tions when delegation of autonomy can be changed flexibly. We then provide novel
design guidelines derived from real-world experiments for developing autonomous

energy systems with flexible autonomy.

e We introduce the first smart thermostat study given real-time prices. The ther-

mostat allows its users to control their home heating with real-time prices, and
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automates the heating based on the temperature preferences of the users over
different energy price levels. We evaluate our system with 30 UK households in
a four-week in-situ study. We show that our participants formed different under-
standings and expectations of the system, and used it in various ways to effectively
respond to real-time prices while maintaining their thermal comfort. Based on the
findings, we provide design implications for developing a smart thermostat that

autonomously responds to real-time prices on its users behalf.

The research presented in this thesis was also published in the following two full papers

at international conferences:

Alan A, Costanza E, Fischer J, Ramchurn S, Rodden T, Jennings, N (2014).
A field study of human-agent interaction for electricity tariff switching. In,
Proceedings of the 13th International Conference on Autonomous Agents
and Multi-Agent Systems, Paris, France, 965-972.

Alan A, Shann M, Costanza E, Ramchurn S, Seuken S (2016). It is too
hot: an in-situ study of three designs for heating. In, Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, San Jose,
United States.

Moreover, the second study presented in Chapter 3 was presented at a workshop:

Alan A, Costanza E, Ramchurn S, Fischer J, Rodden T, Jennings, N (2015).
Managing energy tariffs with agents: a field study of a future smart energy
system at home. In, Adjunct Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous Computing and Proceedings
of the 2015 ACM International Symposium on Wearable Computers, Osaka,
Japan, 1551-1558.

Finally, a journal paper about the work presented in Chapter 3 is currently under review:

Alan A, Costanza E, Ramchurn S, Fischer J, Rodden T, Jennings, N (2015).
Tariff Agent: interacting with a future smart energy system at home. In,

ACM Transactions on Computer-Human Interaction (under review).

We next describe the structure of this thesis.
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1.6 Thesis Structure

The remaining chapters of this thesis are structured as follows:

Chapter 2 provides the essential background information that is required to contextualise
the work presented in this thesis. We start by outlining a brief review of human-agent
interaction studies. Next, we discuss the smart grid vision and the current changes
undergoing in global energy market to motivate studying human-agent interaction in
energy domain. Then, we represent prior energy related literature from AI and HCI
as the work we present in this thesis lies at the boundary of these two research areas.
Finally, we review models and motivation techniques for proenvironmental behavior,

which are necessary knowledge for designing energy management systems.

Chapter 3 introduces Tariff Agent, a novel agent-based tariff switching application. In
this chapter, we first detail its major components: tariff specifications, software agent
and interaction modalities. Next we present a field evaluation of the first Tariff Agent
version and show how participants perceived and reacted to our system. Later we
introduce the changes we implemented to Tariff Agent, based on the results of the first
study. Then we present a field evaluation of the new version, and discuss the findings it
revealed. Lastly, we discuss the results of the two field studies, and provide key design

implications for developing future autonomous systems with flexible autonomy.

Chapter 4 presents Smart Thermo, a novel autonomous thermostat application. We
start this chapter by providing the overall system description and the thermostat’s de-
sign variations. Next, we present a field study where different households used each
thermostat design to control their actual home heating over a month. We then state
the findings of the study and discuss their implications for the design of future smart

heating systems.

Chapter 5 gives a final summary of our research represented in this thesis. Firstly,
we discuss the conclusions that can be drawn from each chapter. Later we outline
future extensions of the work presented in this thesis, with specific attention paid to the

potential for further user interaction design with autonomous agents.



Chapter 2
Background

Interdisciplinary knowledge and research is vital to facilitate a better understanding of
how user interactions can be designed for smart technologies. The work we represent in
this thesis lies at the boundary of AI and HCI. Hence, in this chapter, we present the
background from both sub-disciplines of computing, which is required to understand the
approach for developing interactive autonomous agents for home energy management.
This chapter contains six main sections. In Section 2.1, we introduce an overview of
human-agent interaction studies. Section 2.2 discusses the smart grid vision with the
current implementations undergoing. Next, in Section 2.3, we represent the literature of
agent technologies for energy management domain. In the same vein, we show human-
computer interaction studies on energy management in Section 2.4. Finally, in Sections
2.5 and 2.6, we review some behaviour models and motivation techniques that we believe

are crucial to understand before designing any interactive system.

2.1 Human-Agent Interaction

Maes et al. (1997) presented a debate on whether users should retain complete control
of their interaction with interfaces or instead delegate some form of control to software
agents that act on their behalf. In the debate, Ben Shneiderman emphasizes the im-
portance of direct manipulation that is a human-interaction way which continuously
presents the data of interest and offers reversible and incremental actions with rapid
feedback. He expresses his concerns about the responsibility of the delegated actions.
Therefore he advocates the idea that users need to comprehend the system which has
to be predictable, and they need to be in charge of full control to take responsibility of

their actions.

On the other hand, Pattie Maes (Maes et al., 1997) states that direct manipulation will

eventually be unable to represent the computer environments that are becoming more

13
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and more complex. She also highlights the issue that users are not highly computer-
trained. Hence, she asserts that users have to delegate certain tasks, to some extent,
to agents that can act on their behalf or at least provide suggestions based on their
preferences. Moreover, she indicates that software agents are not alternative to direct
manipulation but is a powerful complementary technology. She suggests that a well-
designed autonomous system must still enable users to bypass the agents and perform
actions manually when they want, and the system should improve users’ trust in the

agents by helping users to understand what the agent does.

Indeed, the potential of agents to mitigate the increasing complexity of computer envi-
ronments has been recognized by HCI community, and increasingly applied to provide
intelligent services(Shenghua, 2010). For example, Baker et al. (2009) showed how agent-
based systems can be applied in the domestic setting for improving energy efficiency.
In the study consumers were enabled to interact with each home appliance (agents)
to monitor and manage their energy consumption. Similarly, Banerjee et al. (2011)
demonstrated how agents can help users to make better use of the renewable energy
generated by providing suggestions. Understandably, by the development of such agent-
based home energy systems, the agents will be more involved in consumers’ everyday
lives. Therefore, users will have more interactions with the agents at home (Rodden
et al., 2013).

Rodden et al. (2013) investigated users’ interactions with software agents embedded
within future energy systems, and shows why it is crucial to examine human-agent
interaction. In the study, animated sketches were used to convey the idea of software
agents that are embedded into homes and have the functionality of electricity monitoring,
switching energy provider and controlling appliances. The results of the study indicate
that even though their participants showed a willingness to embrace the agents to assist
in dealing with complex energy systems, there was a notable lack of trust in energy
companies among the participants, which may eventually influence the consumer trust

in software agents, as these agents might be provided by the companies.

So far, very few studies in the AI community have shown interest in the social as-
pects of the use of agents, and rather mainly concentrated on technical aspects such
as algorithms, communication languages, ontologies, agent-oriented programming and
verification of agent-based autonomous systems. However, understanding the interac-
tions between users and agents is fundamental to the design of agent-based systems that
people will adopt. An agent-based system with a poor design could lead to frustrations
and inconveniences for the users that interact with the system. For instance, intrusive
agent suggestions, agent failures or agents that do not fit human needs may reduce
the usability of such agent-based systems and cause the avoidance of agent technology
(Shenghua, 2010).
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Approaches to human-agent interaction include different research topics (Bradshaw
et al., 2011). The main research topics that have been formed by these approaches
as some also stated in (Bradshaw et al., 2011) include interface agents and assistants
(Clancey, 2004), adjustable autonomy (Scerri et al., 2003; Tambe et al., 2008), mixed-
initiative systems (Allen et al., 1999; Horvitz, 1999; Zimmerman et al., 2009), human-
agent teamwork (Sierhuis et al., 2003; Kamar, 2014), negotiation and repeated interac-
tions (Gal et al., 2011; Peled et al., 2015; Rosenfeld et al., 2015; Azaria et al., 2015),
and collaboration theory (Rich et al., 2001). Moreover, some recent studies (Traum and
Rickel, 2002; Goodrich and Schultz, 2007; Murphy and Schreckenghost, 2013; Sauppé
and Mutlu, 2015) focus on human interaction with robots or virtually embodied agents,
and provide important insights about interacting with them. However, these studies ne-
glect how software agents should be integrated in the infrastructure of smart applications

and how they should communicate with their users.

In the next section, we present the vision of the smart grid and real-time energy pricing

to better understand why the energy is a suitable domain for agent technology.

2.2 Smart Grids and Real-Time Pricing

The vision of smart grid is being adopted on a global scale, for instance in the UK where
a roll-out of smart energy meters to all households is planned to be completed by 2020
(The Department of Energy & Climate Change, 2013). Energy distribution grids in
which energy is simply delivered from suppliers to consumers are becoming more and
more intelligent by sensing and responding to consumer demand. Meanwhile, energy
generation sector is undergoing significant changes with penetration of renewables, in-
cluding wind turbines and solar farms (Simm et al., 2015). However, energy production
with the renewables fluctuates depending on the weather. This variability of energy
generation puts more strain on the energy market to balance supply with demand, and
increases the burden of dealing with peak demand that can lead to power outages. Peak
demand further reduces the efficiency of current grids given the large capital investments
needed to increase energy generation capacity to meet short peaks in demand (MacKay,
2009).

Moreover, the advent of electric vehicles (EVs), such as the Nissan Leaf and Chevy Volt,
will change the energy requirements of transportation from fossil fuels to electricity (US
Department of Energy, 2003). The batteries of these electric vehicles will introduce
considerable additional load on the distribution grid, since an EV battery needs to
charge quickly with a significant amount of energy to guarantee reasonable distances.
In particular, an EV battery may be charged with 32 kWh of energy in few hours to
ensure the range of around 100 miles, while a typical household may consume between
20 to 50 kWh of energy per day (Green et al., 2011). Thus, the requirement of the total
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energy will be boosted by these vehicles. Furthermore, new peaks could be caused by
these vehicles as their demand is likely to be concentrated on particular periods of the
day. For instance, a local distribution network might become congested when supplying
the aggregate demand when all the EVs in the local area are charged at the same
time(Ramchurn et al., 2012). Consequently, the burden of dealing with peak demand

will be increased.

To overcome the issue of peak demand, utility companies and government agencies have
been promoting demand response policies such as dynamic or real-time pricing where
energy prices vary over short time intervals, typically hourly (Barbose et al., 2004). The
aim of these pricing regimes is to incentivise consumers to reduce their consumption
at peak periods where the prices are presumably higher (US Department of Energy,
2006). Real-time pricing has the most potential for consumers to benefit as consumers
can obtain considerable monetary savings by shifting their loads to off-peak periods.
However, it also provides the highest risk compared to less dynamic variations such
as time-of-use pricing (Faruqui and Palmer, 2011). There has been early research and
tested pilot programs have reported successes and opportunities for dynamic pricing
(Heberlein and Warriner, 1983). A recent study with approximately 700 households
in Chicago reports that consumers reduced their loads at peak periods due to price
increases (Allcott, 2011). Research that focus more on how consumers sense real-time
pricing in reality are scarce and appear to favour more simple pricing models (Diitschke
and Paetz, 2013).

The dynamic or real-time pricing significantly change the role of consumers and offer
lower energy bills. However, consumers are required to continuously monitor the chang-
ing prices to take the advantage of them. While this challenge might be a very daunting
task for people, it would be a well-suited task for a smart system that can learn our
preferences, monitor the prices, and respond to them autonomously. In the following
section we discuss how autonomous agents can help people dealing with complex energy

tariffs (e.g., real-time pricing).

2.3 Autonomous Agents for Energy Management

Autonomous agents are intelligent computing entities that can automatically operate on
their users’ behalf (Wooldridge et al., 1995). Although the definition of agents can vary,
there are three commonly agreed fundamental attributes of an agent. These three main

characteristics are as follows:

e Reactivity: ability to react to the changes of its environment.

e Pro-activeness: capability to make plan to achieve pre-designed goals.
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e Social ability: agents could negotiate, cooperate or compete through communicat-

ing with each other or possibly with humans.

Agents can vary in terms of their intelligence level (Ferber, 1999). For instance, simple
agents, also known as reactive agents, only perform basic reactions to stimuli that they
monitor through some sensors. The use of these agents is especially prevalent when fast
response time is vital (e.g., electric protection). However, these simple agents do not fit
in complex tasks, which require more intellectual capabilities. More sophisticated agents
such as intelligent agents or learning agents can achieve their goals through using their
available resources and skills, or gain new knowledge about their environment through
observations. In case of energy management, the most significant strength of agents is
the ability of them to interact with each other. They can coordinate their activities and
cooperate with each other so as to reach a common objective. By so doing, they could

generate a form of distributed intelligence and act collectively (Wooldridge et al., 1995).

In recent years, there have been many research studies that use agent technology for
solving energy related problems. In particular, agent-based technology has been used in
demand side management in order to flatten the peak residential electricity demand that
increases generation costs in terms of both monetary and environmental. To this end,
there are many agent-based algorithms proposed for regulating home electricity demand
(Bakker et al., 2010; Keshav and Rosenberg, 2010; Schiilke et al., 2010; Bar-Noy et al.,
2008). Although these studies used a similar system architecture including a communi-
cation network, a list of smart meters and programmable switches, their approaches and
objectives were different, such as reducing total consumption and reducing costs based
on dynamic pricing, or shifting loads or using batteries in order to match renewable
generation. Similarly, SmartCap (Barker et al., 2012) focusses on residential loads and
divides them into two main folds: interactive loads and background loads. Interactive
loads generate the majority of loads in houses and they have little scheduling flexibility
(lights, TVs, microwaves, etc.). On the other hand, a substantial part of home electric-
ity consumption derives from background loads with some limited scheduling flexibility
(air conditioners, heaters, freezer, refrigerators, dehumidifiers, etc.). Unlike the previous
three works, SmartCap focuses on scheduling of background loads. Thus, it does not
influence the comfort of occupants through inactivating or scheduling interactive loads.
They achieve the decrease of average deviation from the mean power by over 20%, where

the deviation is at least 400 watts.

Numerous other studies exploit agent technology to overcome various challenges in the
energy domain (Alam et al., 2013; Vytelingum et al., 2011; Truong et al., 2013). Alam
et al. (2013) take an agent-based approach to coordinate energy exchanges between
households that are located off-grid and equipped with renewable energy generators
and electric batteries in order to reduce the battery use and improve energy efficiency.

To enable electricity consumers to obtain savings on their energy bills and maximise
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social welfare, Vytelingum et al. (2011) introduce a novel agent-based micro-storage
management method where individually-owned micro-storages are managed according
to some learning strategies that adapt to market conditions. Truong et al. (2013) model
the users’ everyday routines and link the use of different appliances so as to predict
future multiple appliance usage and, based on the predictions, to suggest the best time
to run appliances when it is more beneficial in terms of saving money and reducing

carbon emissions.

Furthermore it is possible to find numerous models and algorithms developed with dif-
ferent approaches for energy efficient heating. Some approaches focused on the models
of the environment (e.g., the weather) to create an efficient heating schedule (Yu et al.,
2013; Oldewurtel et al., 2010). Other approaches used motion sensing to detect people’s
presence, and control the heating based on the occupancy models of buildings (Scott
et al., 2011; Lu et al., 2010; Panagopoulos et al., 2015). Shann and Seuken (2013) pre-
sented a learning algorithm that elicits users’ preferred temperatures for different energy
prices and creates a comfort-cost trade-off model for each user. Lam et al. (2014) in-
troduced a thermal comfort model that updates based on the user’s comfort feedbacks.
However, all these studies have simulation based results. Therefore, we cannot know

whether they will actually work when they are deployed as a real world application.

Closer to one of our prototypes Tariff Agent, Ramchurn et al. (2013) introduce an ad-
vanced agent-based platform AgentSwitch that aims to solve the tariff selection problem
encountered by residential electricity consumers. It included novel energy usage predic-
tion and appliance disaggregation algorithms in order to be able to suggest that users
shift their deferrable loads to off-peak times for increasing savings. Also, it provides a col-
lective energy purchasing mechanism so that users can benefit from group discounts. The
mechanism relies on the Shapley value, which ensures that the discounts are fairly shared
by the users purchasing energy collectively. Furthermore, a novel provenance-tracking
service is provided by the platform which aims to distribute accountability among in-
dividual system components and increase reliability of suggestions. AgentSwitch is a
significant example of how novel agent technologies can be incorporated to solve energy-
related real problems. In a usability lab study of AgentSwitch, Fischer et al. (2013)
offer design recommendations for personalized energy-related recommender systems and
underlines the potential for semi-autonomous systems with the challenge of balancing

user control and autonomy flexibly.

Next, we explore HCI studies to understand how user interactions are designed so far to
convey energy-related information, and to mediate human interaction with autonomous

systems.
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Figure 2.1: The Power-Aware Cord (left), The Eco-Eye (middle), The Wattson
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2.4 Human-Computer Interaction for Energy Management

Reduction in domestic energy demand at peak load periods would allow better inte-
gration of renewable energy sources and mitigate the growing generation capacity need
caused by the peaks. A considerable increase in efficiency of electricity consumption and
a significant decrease in the peak demand can be attained through informed consumers
with energy management systems in which decisions are taken by agents or individual
households. However, for such systems to succeed, it is crucial that actual power usage

or energy related information is easily accessible and understandable for consumers.

The visualisations of the energy data play a significant role for the understandability of
how the energy is being consumed, as mostly people are not familiar and comfortable
with the energy domain. The main issues in transmission of this information are cus-
tomers’ understanding of energy concepts, convenient visualisations for conveying this
information and appropriate concrete pattern for the visualisations (Monigatti et al.,
2010).

To address these issues, HCI and Ubiquitous Computing researchers have been mainly
focused on the development of energy feedback systems, also known as eco-feedback
technologies, where energy consumption activities are perceived and related information
is provided as a feedback (Pierce et al., 2008). Eco-feedback technologies aim to mitigate
the adverse consequences caused by the lack of awareness and understanding of the
people about how their each energy consumption activity can affect the environment
by a set of creative and innovative visualisation techniques (Froehlich et al., 2010).
In addition, these interactive instruments underpin and expand positive attitudes to
sustainable activities. The figures below illustrate some of the creative visualisation

techniques.

The Power-Aware Cord displayed on the left in Figure 2.1 is a novel power strip which
visualises electricity consumption instead of hiding it. Electricity usage is visualised
through bright pulses and changing density of light. Although the Power-Aware Cord

is limited in terms of possible interpretations of its visualised data, it is effective in
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improving awareness of consumers. The Eco-Eye shown in the middle of Figure 2.1
is one of the commercial devices providing real-time feedback on the total domestic
energy consumption. It provides feedback through plain numerical data. The Wattson
displayed on the right side in Figure 2.1 is a household energy monitor which provides
ambient display in addition to direct real-time feedback. Live energy consumption is
demonstrated numerically with ambient lighting. The colour of light states whether
energy consumption is high or average. Previous studies indicate that approximately
10% energy saving is feasible through the use of real-time feedback systems such as the
Eco-Eye or the Wattson (Dobson and Griffin, 1992; Mountain, 2006).

Against this background, Strengers (2011) asserts that current eco-feedback systems
consider householders as resource managers that measure the cost of their consumption
and make rational and efficient decisions. However, this assumption is missing other ev-
eryday life factors such as social and cultural situations. Therefore, those eco-feedback
systems are likely to only attract the attention of environmentally motivated people and
have volatile effectiveness. In the work, several alternative design directions are identi-
fied. For example, as householders often cannot understand resource management units
(e.g., kilowatts and tons), these could be expressed by visual analogies such as buckets
of water, which are more common in everyday life. In this vein, Costanza et al. (2012)
proposes an interactive energy consumption visualisation tool that enables householders
to play with the graphical representations of their historical energy consumption data
with the aim of assisting users to better understand their energy consumption by relating

their consumption data to concrete activities.

Darby (2006) reviews several previous studies about energy feedback, and highlights the
effectiveness of energy feedback systems in improving energy conservation and efficiency.
However, there are some considerations stated by (Pierce et al., 2008) on the evaluation
of the effectiveness of such systems. They argue that the effectiveness of energy feed-
back is usually only assessed according to measured reduction in energy consumption.
Therefore, they point out that there is not enough research focusing the effects of feed-
back on behaviours, understandings, adoption and social relations of householders. For
example, which behaviours result in energy savings, how people sense the existence of
an eco-feedback system (e.g., pleasing, enjoyable, helpful or useless) and how the system
influences social relations within the household are the missing aspects of the existing
feedback studies.

To address this gap, Pierce et al. (2008) introduce a mobile application that semi-
automatically traces and reveals information about users’ transportation behaviour.
The application provides feedback by personal ambient displays based on their sensed
or self-reported transportation behaviours. The aim of the study is to encourage people
to use eco-friendly transportation such as walking, biking, taking public transportation
or carpooling. The representation of eco-friendly transportation is used jointly with the

representation of other goals (e.g., saving money, saving natural habitats, preserving
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species and getting exercise) that may attract users’ attention and eventually may lead
them to adopt environmentally friendly transportation behaviours. According to the
results of the study, it is hard to say that behaviour change occurred for all participants,
however the participants engaged with the application and started showing new be-
haviours such as going to work by walking rather than driving a personal car. Although
the study examined a semi-autonomous feedback system from a different perspective, it
does not investigate the challenges of user interactions with semi-autonomous or fully

autonomous agents.

In fact, to date, HCI research community has showed minimal interest in studying the
interaction issues between humans and agents within domestic energy environment. Very
few studies have explored how these new technologies (agents) could be harnessed to
develop new ways for people to interact with energy and whether they would be adopted

by real users and integrated into their everyday lives.

Yang and Newman (2013) have examined the real-world uptake of a smart thermo-
stat with 23 participants. They highlighted how sub-optimal decisions taken by a smart
thermostat are likely to cause users’ frustration and may lead them to abandon the tech-
nology. Their follow-up study (Yang et al., 2014) has investigated users’ long term inter-
actions with the smart thermostat. Their findings suggest that users’ interactions faded
over time and resulted in unrealised energy saving opportunities. They also propose that
an alternative design (i.e., a mixed-initiative system) might improve the sustainability

of user engagement and the system’s usefulness.

Bourgeois et al. (2014) deployed energy-aware washing machines that provide users
suggestions on when to do their laundry based on the availability of green energy. They
studied various intervention techniques with 18 households for 8 months, and showed
that proactive suggestions sent by a software agent via text messages are more effective
than the agent’s email interventions. Similarly, Costanza et al. (2014) proposed Agent
B, a software agent that also helps users book their washing machine in a scenario where
electricity prices change in every 15 minutes. In a field experiment, 10 participants used
Agent B for one month. The results suggest that Agent B helped users shift their laundry
in response to real-time prices. The study also highlights the important challenge of how
to determine the design features that achieve an acceptable balance between utility and

convenience for users to adopt agent technology in their everyday lives seamlessly.

To design an energy-related autonomous system that will be adopted by users into
their everyday routines, it is important to understand how people form energy-related
behaviours and what factors motivate them to form these behaviours. Therefore, in
the next sections we discuss the models of pro-environmental behaviour and motivation

techniques for promoting such behaviours.
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2.5 Models of Pro-environmental Behaviour

Pro-environmental behaviour corresponds to behaviour that does not damage the envi-
ronment, or even benefits the environment. For instance, lowering thermostat settings,
reducing car usage, waste recycling and composting, purchasing energy-saving light bulbs
or preferring energy efficient appliances are various types of pro-environmental behaviour
(Steg and Vlek, 2009). Understanding the underlying motivations of people who exhibit
environmentally friendly behaviour has been studied by different disciplines including
Economics, Sociology and Psychology. There are numerous theoretical models developed
in order to provide insights about people’s pro-environmental behaviours. These models
clearly influence the design of interactive systems since designers take some model of
human behaviour as basis when attempting to solve a problem (Froehlich et al., 2010).
The most commonly used models of pro-environmental behaviour in the literature can
be categorized into two basic types: rational choice models and norm-activation models.
This section presents these two main models based on the literature review presented in
(Froehlich et al., 2010).

2.5.1 Rational Choice Models

A rational choice model assumes that people are self-interested and environmental be-
haviour is triggered by the evaluation of expected utility. Attitude models are the
earliest and simplest rational choice models. Attitude models are based on three inter-
related components: affective component, behaviour component and cognitive compo-
nent. Briefly, attitude models assume that knowledge leads to feelings and emotions,
which eventually result in pro-environmental behaviour. However, these models do not
consider the other possible factors that might affect the behaviour. Hence, attitudes
do not always match with actual behaviour. For instance, an early study showed that
people who consider energy conservation as the most significant way to deal with energy
crisis are not different from others in energy-conservation behaviours (Costanzo et al.,
1986).

Another rational choice model is the model of responsible environmental behaviour which
considers additional factors. Hines et al. (1987), who proposed this model, state that
intention to act and situational conditions such as economic constraints and social pres-
sures play a significant role in the determination of pro-environmental behaviour. Lastly,
the rational-economic model relies on the idea that people will demonstrate environmen-
tally responsible behaviours if these behaviours bring economic benefits. However, it is
not always the case that people match behaviours with costs. The rational-economic
model also disregards the impact of non-economic determinants such as comfort, habit
and social norms (Yates and Aronson, 1983). Furthermore, slight price manipulations

might not carry great importance for people and might not lead to significant behaviour



Chapter 2 Background 23

change, while dramatically changing the cost of resources (e.g. water, gas and electricity)

could easily become an ethical issue (Steg and Vlek, 2009).

2.5.2 Norm Activation Models

Norm activation theory indicates that personal norms are the only determinants of
prosocial behaviour (Schwartz, 1977). Personal norms are assumed to be strong feelings
of moral obligations that direct people to engage in pro-social behaviour. According to
Schwartz (1977), the personal norms emerge from two premises: the recognition of the
consequences of one’s behaviours and the acceptance of personal responsibility for those
behaviours. For instance, in norm activation model, if someone is aware of the effects of
her fuel consumption on the climate change problem and accept the responsibility of fuel
consumption behaviour, then the person is likely to develop personal norm to reduce her
fuel consumption. Norm activation models differ from rational choice models as they
suggest that behaviour might be stimulated by altruistic norms and moral obligations

might outshine the subjective perceptions of utility (Staats et al., 2004).

The value-belief-norm theory introduced by Stern (2000) extends the norm activation
theory through establishing a more sophisticated relationship among values, beliefs, at-
titudes and norms. In this theory, pro-social attitudes and personal norms are suggested
as significant determinants of pro-environmental behaviour. The theory postulates that
pro-environmental behaviour is primarily gained by the awareness of consequences in
the norm activation model. However, the degree of acceptance of pro-environmental be-
haviour is correlated with personal values. As an illustration, if a person possesses strong
altruistic and biospheric values, the person is more likely to adopt pro-environmental
behaviour. This acceptance is less likely when the person holds egoistic values (De Groot
and Steg, 2007). Thus, environmentally desirable behaviours are activated not just by
the attention paid to other people who might suffer from environmental damage but also
according to the self and non-human entities (Steg and Vlek, 2009). In the next section,
we discuss some of the techniques that have been used to motivate pro-environmental

behaviour.

2.6 Motivation Methods for Pro-environmental Behaviour

Designs based on the models of pro-environmental behaviour on their own, are not
sufficient for encouraging people to change their behaviour (Froehlich et al., 2010). Thus,
there has been research on particular interventions which might motivate people to
adopt environmentally responsible behaviour. In what follows, we individually detail
some of the most widespread motivation techniques including information, goal-setting,

comparison, commitment, feedback, rewards and penalties.
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2.6.1 Information

Information is the instrument which has been mostly used to promote pro-environmental
behaviour through media campaigns, leaflets or websites. The underlying idea is that
better informed people will behave more environmentally friendly. However, represen-
tation of the information about the benefits of pro-environmental behaviours typically
does not lead to permanent effect. In order to improve the effect of information, it must
be easy to grasp, reliable, easy to remember and delivered in an attractive way in the
right place at the right time (Froehlich et al., 2010).

Geller (1981) evaluated the impact of a workshop in which energy-saving information
was provided. The workshop increased the concerns about energy crises, improved the
knowledge about energy conservation and strengthen the intentions of people to adopt
energy-saving behaviours. However, the evaluation showed that although information
influenced underlying determinants of energy usage, it did not lead to behaviour changes.
In the same vein, studies by Luyben (1982), Hutton and McNeill (1981), and Staats et al.
(1996) evaluated mass media campaigns and indicated the similar result: an increase in

knowledge but not a necessary increase in willingness to behave pro-environmentally.

2.6.2 Goal-setting

Goal-setting is a powerful way of motivation that works through a comparison of the
present and an ideal future situation (Van Houwelingen and Van Raaij, 1989). Goals
can be set by authorities or by households. Other motivation techniques such as feed-
back and commitment are often used in joint with goal-setting so as to indicate how
households are performing relative to the goal, or in order to increase compliance to the
goal (Becker, 1978). Locke and Latham (2002) indicates that goals influence behaviour
through directing attention and effort toward goal-related activities and enhancing per-
sistence. Additionally, Craig and McCann (1978) states that the established goals should
be feasible.

Becker (1978) argues that a relatively difficult goal is more effective than a relatively
easy goal. The study states that households received a relatively difficult goal (save 20%
energy) and feedback about their performance conserved the most (15.1%), while the
households who had been given a relatively easy goal (save 2% energy) showed that an
easy goal is not effective at all. Similarly, Van Houwelingen and Van Raaij (1989) con-
cluded that goal-setting supported by daily feedback on consumption reduced natural
gas use by 12.3%. Furthermore, McCalley and Midden (2002) found that participants
who received a goal and feedback saved more energy per washing trial than partici-
pants who received only feedback. No considerable difference had been found between

participants who had set a goal themselves and those with an assigned goal.
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2.6.3 Commitment

A commitment refers to an oral or written pledge or promise to behave in a certain
way or achieve a specific goal (Abrahamse et al., 2005). A commitment, which plays an
important role as a determinant of environmentally friendly behaviour, can be made to
oneself or to others, in either case it might activate personal or social norms. The impact
of commitment varies with the type of commitment that is made, the person or people
to whom the commitment is conveyed and whether the commitment is made privately or
publicly. Pallak and Cummings (1976) found that households who committed to declare
their results publicly consumed 15% less natural gas and 20% less electricity than other
groups. Similarly, Wang and Katzev (1990) stated that a signed pledge to recycle raised

40% of recycling compared to baseline data.

2.6.4 Feedback

Feedback is another general method that is applied to promote pro-environmental be-
haviour. Feedback consists of providing households information about their performance
towards a specific goal (i.e., energy reduction). Becker (1978) showed the positive effect
of feedback on performance in connection with residential energy conservation. A ma-
jority of studies related to the effect of feedback on pro-environmental behaviours has
focused on domestic resource consumption including water, electricity and natural gas
(Froehlich et al., 2010). Feedback can vary in terms of the frequency of feedback, the
level of feedback and the content of feedback. The most common feedback frequencies
are continuous feedback, daily feedback, weekly and monthly feedback. Whilst low-level
feedback aims to change or improve a certain behaviour through providing detailed in-
formation about the behaviour, high-level feedback provides summation information to
improve performance towards a more general goal. Besides including individual per-
formance information, feedback can contain performance information of others which

might evoke a social norm (Abrahamse et al., 2005).

Cook (1979) showed that households who received continuous feedback consumed 12%
less electricity than a control group. Similarly, Bittle et al. (1979) indicated that house-
holds that received daily feedback saved an average of 4% on their electricity usage com-
pared to baseline consumption. A more recent study by Vollink and Meertens (1999),
used a combination of motivation techniques including weekly feedback, goal-setting and
information (energy saving tips), and showed that households with the combination of
interventions saved more energy than the control group. Siero et al. (1996) conducted
a study of energy consumption at two units in a company and found that the unit who
received comparative feedback saved more energy than the unit who was subject to indi-
vidual feedback. However, Haakana et al. (1997) and Egan (1999) argue that, although

comparisons appeal people’s interest, they might not always result in behaviour change.
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2.6.5 Rewards and Penalties

Rewards and penalties are both consequence interventions which are based on the idea
that the application of positive or negative consequences will have impact on behaviour.
In other words, pro-environmental behaviours will be more preferable when rewarding
consequences offered with them, and non-environmental behaviours will become more
avoidable when negative consequences are attached to them (Abrahamse et al., 2005).
Rewards and penalties are usually monetary. For instance, encouraging households to
invest in home insulation in order to save money on their heating bills, or promoting
the use of energy-efficient home appliances so as to reduce overall energy consumption
and cost. However, the introduced consequences need not always be monetary, they
could be related to status or convenience. For example, private reserved parking spots
for ride-sharing have been demonstrated to increase carpooling, and residential curbside
pickup services has significantly increased recycling efforts through making it easy to
discard wastes (Stern, 1999).

Slavin et al. (1981) used monetary rewards with feedback in their two studies, which
were conducted to explore the influences of a group contingency for conservation on
uelectricity use. In both studies, average electricity savings of 6-7% relative to baseline
was achieved. It was shown that people could even respond to symbolic reward such
as an acknowledgement of pro-environmental behaviour. Consolvo et al. (2008) found
that even displaying an asterisk after the completion of a behaviour can lead a positive
response. There are eco-feedback designs that utilise game-like rewards (e.g., scores,

levels, etc.) to promote positive behaviours (Bang et al., 2007; Consolvo et al., 2008).

2.7 Summary

This chapter first introduced a brief literature of Human-Agent Interaction studies.
Secondly, the smart grid vision and undergoing developments in the energy domain was
discussed. Then, a detailed overview of the key Al and HCI research related to this thesis
were presented to provide the necessary background. Later, this chapter highlighted two
main models of pro-environmental behaviour: the rational choice model which states
that pro-environmental behaviour is initiated by evaluation of expected benefits, and
the norm-activation model that considers personal norms as fundamental determinants
of pro-social behaviour. Although these two models are not complete guides to explore
all human behaviour, they can be still utilized by interactive designs in order to uncover
behaviour factors. For instance, a design based on the rational choice model might
highlight the monetary benefit of an environmental behaviour. Whilst a design based
on norm-activation model could stress the foreseen consequences of an pro-environmental

behaviour in wildlife to promote an altruistic attitude. Both in Tariff Agent and Smart
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Thermo, we exploited the rational choice model with the assumption that users would

interact with the system to improve their utility (i.e., monetary saving).

Lastly, this chapter presented the key motivation methods used in literature to influ-
ence households’ energy consumption behaviour. Namely, these predominant motivation
techniques are information, goal setting, commitment, feedback and rewards and penal-
ties. As it is stated in the discussion above, the effectiveness of these techniques varies.
Also, most of the techniques were used in combinations. Therefore, it is difficult to
indicate the exact influence of an individual technique. For instance, most often goal
setting or commitment is used with feedback so that people who made a commitment
or set a goal can monitor how they are performing and how they are close to their
pledge or goal. In case any motivation methods will be used, it is essential to initially
determine what behaviours a design is aiming to motivate, as each behaviour includes
different complexities and nuances. Hence, user interaction designers need to consider
the behaviours that they are planning to influence before creating any system. Both
in Tariff Agent and Smart Thermo, we aim to encourage people to be more active in
understanding their consumption and reacting to changing energy prices. To do so,
we exploit the combination of motivation methods: information, feedback, rewards and

penalties. Chapters 3 and 4 demonstrate the use of these motivation methods in detail.






Chapter 3

Tariff Agent

In this chapter, we aim to study how people interact with an autonomous system that
can proactively make decisions, which may have financial consequences and impact on
the daily routines of its owner. In order to obtain meaningful results from such a study,
it is crucial to offer a high degree of ecological validity. Therefore we designed and
carried out two field trials by deploying different versions of Tariff Agent to observe
how people make use of the system as a part of their everyday life, for both short
and longer terms.! The system development is inspired by the future scenario depicted
in a previous work (Rodden et al., 2013), where autonomous agents are embedded in
households have the ability to switch the energy providers based on their offered rates
and the households’ consumption routines in order to ensure that the households are
on the best tariff. The concept of switching energy suppliers or tariffs is familiar to
households in the UK, especially as a number of government media campaigns in recent
years encouraged consumers to change often in order to save on energy bills>. Domestic
energy consumers in the UK can switch their tariff through websites or call centres,
as often as they wish®, but the switching process may take time, on average around
17 days*. We condensed this actual scenario in order to be able to run field studies
of limited duration. Therefore, in our field studies, we assume that every household
can switch its electricity tariff every day, one day in advance, through our agent-based

application.

'Ethics approval references for the two field studies are ERGO-10369 and ERGO-11382.

https://www.gov.uk/government/publications/household-energy-savings-through-
switching-supporting-evidence

3Some contracts might be binding for a period of time (e.g., 12 or 24 months).

“http://www.moneysupermarket .com/gas-and-electricity/switching-suppliers/
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3.1 Study Method

To recruit participants we utilised personal contacts and snowball sampling, with the
constraint that all participants would be blind to the purpose of our research. The re-
cruitment criteria for participants were to have a broadband Internet connection, basic
knowledge of Internet use, and to live in flats or houses where off-the-shelf energy moni-
toring kits could be easily and safely installed without the intervention of a professional
electrician. Participants were asked to install the kit on their own and make sure it runs
throughout the study, but support was provided where necessary. After the installation
of the monitoring kits, our agent-based web application was introduced to participants.
In particular we emphasised that the system does not affect their actual energy tariffs
and bills, yet their daily energy cost and therefore the monetary reward that they will
receive at the end is calculated based on their actual energy consumption and the tariff

they select on the system. We detail the use of monetary reward below.

To motivate participants to engage with and experience the use of an autonomous system
that may affect them financially, we provided monetary incentives based on their study
performance. This idea of using monetary incentives to mimic energy pricing was in-
spired from earlier studies (Slavin et al., 1981; Costanza et al., 2014), where participants
were rewarded according to their study performance. At the beginning of our studies,
a certain level of budget was allocated to each participant, and their daily consumption
cost was deducted from this budget over the period of the trial. At the end of the stud-
ies participants received payments (in the form of a shopping voucher) according to the
amount left on their budget. By so doing, we aimed to make their savings have a real

and tangible impact, and therefore encourage participants to engage with the system.

To reveal users’ orientation towards an autonomous energy system we performed both
quantitative and qualitative analysis. Quantitative data was collected through automat-
ically recorded system logs, documenting the interaction of users with the system (e.g.,
how many times participants visited a specific page or changed the system’s autonomy
level). However, such data alone does not provide enough information to understand
users’ behaviour, for example why they would opt for a certain autonomy level or visit a
certain page more frequently. Therefore, we complemented it with semi-structured exit
interviews. These interviews focused on participants’ use, adoption and understanding
of the system, and lasted between 20 and 30 minutes. In the interviews, we asked open

questions mostly related to their actual experience with the deployed system.

3.2 The First Study

We recruited a total of 10 participants (5 female) for the first field study. The first field

study was conducted for 12 days, where participants engaged with the initial version
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Table 3.1: Participants’ profiles for the first study.

PARTICIPANT GENDER AGE OCCUPATION OTHERS

Alisa Female 20s Lawyer 4 Adults
Claudia Female 20s Chemistry UG Stud. 3 Adults

Ender Male 30s Law PhD Stud. 1 Adult

Greta Female 20s HR Manager 3 Adults

Ivan Male 20s Comp. Sci. PhD Stud. 2 Adults

Louisa Female 30s Manager 1 Adult, 1 Child
Maria Female 30s Comp. Sci. PostDoc 1 Adult
Mehmet Male 20s PhD in English None

Omar Male 30s Comp. Sci. PhD Stud. 1 Adult, 2 Children
Sinha Male 30s Manager 1 adult

of Tariff Agent. At the beginning of the study all participants were allocated a budget
of £30 for spending during the study. Half of the participants were local professionals
working in different sectors, while the other participants were members of the university
(see Table 3.1 for detailed profiles).

In what follows, we first explain our tariff scenario and tariff specifications. In Sec-
tion 3.2.2 we explain how the autonomous system works. Then we show interaction
modalities of the system in Section 3.2.3. In Section 3.2.4, we present the analysis of

quantitative and qualitative data.

3.2.1 Tariff Scenario and Tariff Specifications

We consider a daily electricity tariff switching problem so as to be able to create a
field study of limited duration (as depicted in the previous section). We assume that
every household can switch tariff every day one day in advance, and can select its tariff
only from two types of suppliers. The first type purchases their energy from traditional
fossil fuel power stations, therefore they have dependable production for fluctuating
demand, and sell electricity at a constant rate (rgyq), in our scenario 15 p/kWh (pence
per kilowatt-hour). The second type of supplier sells electricity at a variable rate that
may change every day. This type of supplier buys its day-ahead energy from a wind
generator that has different production every day depending on the weather. It needs
to buy extra energy from the real-time market to meet possible shortfalls in supply.
Thus, it passes such costs to its consumers through offering two rates: a low rate 7ryindg
is applied to the consumption covered by the wind generation, while a high rate r,wind

is applied to the rest of the consumption.

To make the tariff switching problem more challenging for the users and therefore encour-
age them to consider delegating the process to an agent, we introduced three different

suppliers from the second type, named as A, B and C (see Table 3.2). Each of these
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Table 3.2: Tariffs in p/kWh.

Tariff Twind Tnowind Risk Level

Variable-A 3 p/kWh 23 p/kWh High
Variable-B 8 p/kWh 18 p/kWh Medium
Variable-C =~ 10 p/kWh 16 p/kWh Low

three suppliers offers a tariff with a different combination of low rate and high rate, cor-
responding to a different level of risk for the user. Tariff Variable-A is considered high
risk because the gap between the low rate and the high rate is highest (rying: 3 p/kWh,
Tnowind: 23 p/kWh), Variable-B is medium risk (7ying: 8 p/kWh, mowing: 18 p/kWh),
and Variable-C is lower risk (7ying: 10 p/kWh, rowing: 16 p/kWh). The standard rate
lies between the 7ind and Towing rates offered by these three tariffs. Therefore, it is

not easy to decide which tariff is the cheapest.

In particular, there are two types of uncertainty affecting the tariff selection decision.
The first one is personal uncertainty in predicting the user’s own consumption for the
next day, for example consumption might change with unpredictable visits by friends for
a dinner or running out of clean clothes and therefore needing to do a wash. The second
uncertainty is environmental since the availability of wind energy is weather dependent
and therefore, while hourly predictions may be reasonably good, day-ahead predictions

are likely to be inaccurate (Truong et al., 2013).

3.2.2 Software Agent

In our tariff switching scenario, planning which tariff to select and when to change it is
a well-suited task for a software agent since it is necessary to continuously monitor the

changing consumption and wind energy to predict the best tariff.

Participants’ energy consumption is monitored through off-the-shelf home energy mon-
itoring devices (AlertMe®). These devices measure the total consumption of the house-
hold through a current clamp, and make the data available through an HTTP API.
Predicting day-ahead usage accurately has been shown to be a challenging problem,
and even with sophisticated machine learning techniques produce unsatisfying results
(Truong et al., 2013). Therefore, we implemented a simple prediction method, which
uses the previous day’s consumption as a prediction for the next day’s consumption. As
detailed in Section 3.2.3.1, users can manually provide the agent with a more accurate

prediction of their consumption for the following day through the web interface.

To simulate the availability of wind generation, we collected wind data from a weather
forecast service for 28 days from regions where wind turbines are located in the UK.

We collected the actual and predicted wind energy values, which are then calibrated

Swww.alertme.com
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for individual users, based on their average daily consumption. This calibration is im-
portant because each individual user of Tariff Agent may have different daily electricity
consumption levels, so we need to calibrate the wind energy values to ensure users’ con-
sumption may, at times, be higher than the available wind energy, and, at other times,
be within the available wind energy. Our aim is to introduce uncertainty in the system,
so that the agent would at times provide correct suggestions, but at times incorrect ones
because of incorrect wind predictions and mismatch between available wind energy and
users’ consumption. Essentially we shift the wind probability distribution so its average
and range roughly match the probability distribution of the energy consumption of each

participant.

Even though realised and predicted wind energy values are stored on the same platform,
the realised values are never passed on to the tariff switching algorithm used by Tariff
Agent. To select or suggest an energy tariff, the agent first computes the predicted
day-ahead costs for all tariffs by using the predicted user consumption and predicted
wind energy for the next day, and then chooses the cheapest tariff. The realised wind
energy values are then only used for calculating the daily cost at the end of each day,

based on the user’s selected tariff and actual consumption.

3.2.3 Interaction Modalities of Tariff Agent

Interactions between users and our system ocur through two mediums: they can interact
with the system either through SMS or through a web site. The site includes two pages:

home and details, which are described in what follows.

3.2.3.1 Home Page

The home page, illustrated in Figure 3.1, comprises three components: tariff, setting and
budget. Through the Tariff component users can see the current tariff and manually
select the tariff for the next day. The current tariff is displayed on the top, highlighted in
green if it is the same as the one the system suggested, otherwise in orange, to emphasise

the difference.

In the middle of the component, the predicted values for the user’s consumption and
wind generation on the next day are shown. Below the predictions, the four tariffs are
listed, from the one predicted to be the cheapest to the most expensive. The suggested
tariff (the cheapest) is marked as such through a text label. Users can select a tariff
through a button and they can bring up a detailed description of each tariff, including

the rates, by clicking on the ‘information icon’ next to it.

The predicted amount of energy consumption can be modified through radio buttons.

Changes in the consumption prediction are immediately reflected in the estimated costs
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TariffAgent o

— Tariff - Setting

Your current tariff is Fixed Tariff.

Tomaorrow's tariff is Fixed Tariff. You can changed it before 9pm today. © Send me an SMS when tariff change is suggested.

Predictions for Tomorrow: 23.4 KWh - A lot more than yesterday

©18.7 KWh - More than yesterday @ Automatically select best tariff and send confirmation.

Estimated Consumption: @15.6 KWh - Same as yesterday
©10.9 KWh - Less than yesterday

7.8 KWh - A lot less than yesterday

@ Automatically select best tariff without confirmation.

Save into agent settings

Estimated Wind Energy Generation: 6.7 kWh B
udget

Tariff Cost Best Worst g
Fixed £203 £203 £203 [EEEEEM suggested ﬁ Available: £19.40 Spent: £10.60
Variable-c £2.00 £1.56 £250 e

Account Book Details
Variable-s £214 £125 £281 e
VariableA £2.25 £047 £3.59 ﬁ

Figure 3.1: Home page.

for each tariff. The manually selected prediction can be confirmed, or “saved”, to the
system by clicking a button. By so doing, users can understand how the system uses
their predicted consumption to make a better choice on their behalf and therefore inspire

confidence in the system.

Setting is the second component of the home page, and it allows users to select one of

the following three autonomy levels:

e Suggestion-only: If the system detects that the current tariff is different from the
one predicted to be the best for the next day, it sends an SMS suggesting a tariff
change. Users can accept the suggestion by replying “Yes” via SMS.

e Semi-autonomous: The system automatically switches to the predicted best tariff
and informs users of the change via SMS. If the users are not happy with the
change they can go to the website and manually change the tariff there. This level
is semi-autonomous in that it automatically switches tariffs, but it allows users to

easily regain control.

e Fully autonomous: The system automatically switches to the predicted best tariff
but does not inform the user of the change. This level is fully autonomous in that

it completely offloads users of the burden of tariff switching.

The users who have selected either the semi-autonomous or fully autonomous option

could access the website and modify the predicted consumption, which will automatically
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TariffAgent rHome

Account Book Details
Date Predicted Cons. (kWh)  Actual Cons. (kWh) Predicted Wind Energy (kWh)  Actual Wind Energy (kWh)  Agent Suggestion Selected Tariff Cost (£) SavediLost (£)

19-Sep 5.4 5.6 23 23 Fixed Fixed 0.73 0.10
18-Sep 6.1 5.8 23 Fixed Fixed 0.75 0.12
17-Sep 4.3 5.4 24 21 Variable-A Variable-A 0.82 -0.12

16-Sep 57 6.1 2.2 2.4 Fixed Fixed 0.79 0.13

4 Previous Next B

Figure 3.2: Details page.

affect the system’s selection of tariff. To select a tariff manually, the users need to change

their setting to suggestion-only autonomy level.

The last component on the home page is the Budget, which displays how much was
spent and how much remains of the budget allocated at the beginning of the study. It
also provides a link to the other web page of the system, which is described in the next

section.

3.2.3.2 Details Page

The details page, shown in Figure 3.2, provides historical information about the opera-
tion of Tariff Agent, with the aim of allowing users to evaluate their performance, and
make the system accountable. In particular, for each past day the predicted and actual
values for energy consumption and wind generation are shown, together with the sug-
gested and actual tariff selection, the cost and the saving or loss incurred. The saving
incurs when the cost of the selected tariff is the cheapest compared to other tariffs’ cost,
and the value of the saving is determined by comparing the selected tariff’s cost with the
most expensive tariff. On the other hand, the loss incurs when there was a better tariff
than the selected one, which would cost less money for consuming the same amount of
energy. The value of the loss is calculated by comparing the cost of the selected tariff

and the cheapest tariff.

To facilitate the understanding of the information displayed, values in the table are
colour-coded. Tariffs are displayed in green or red depending on whether the selection
was optimal or sub-optimal. Consumption and wind generation predictions are shown
in green when they turned out to be accurate (within 10%) and the resulting tariff
suggestion is optimal. They are shown in red when they are inaccurate (outside 10%)
compared to the realised values and the resulting tariff suggestion is suboptimal. They
are shown in orange if the predictions are off (outside 10%), but the resulting tariff
suggestion was optimal (for example in the case that one error compensated for the
other).
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TariffAgent: Hello, your tariff needs to
be changed from Tariff-A to Tariff-B for
tomorrow. If you confirm the change
reply as '"Yes'.

User: Yes T

changed to Tariff-B.

TariffAgent: Your tariff for tomorrow
has successfully changed to Tariff-B.

Figure 3.3: A text dialog under the semi-autonomous setting.

3.2.3.3 System Initiated Interactions via SMS

The system can send three different types of notifications via SMS: reports, suggestions
and confirmations. Reports provide information on how much energy was consumed,
how much the cost was, which tariff was selected, and how much was saved or lost
(compared to the optimal or the worst tariff). Reports were sent every day to all users
regardless of their setting. An example report is: “Hello, yesterday your tariff was
Tariff-A, your consumption was 4.4 kWh and it cost you 0.69 pound. You saved 1.30
pound with Tariff-A.” The system sends suggestions to users who are on suggestion-only
setting, when their tariff for the next day is predicted not to be optimal, for example:
“Hello, your tariff needs to be changed from Tariff-A to Tariff-B for tomorrow. If you

7

confirm the change please reply as ‘Yes’.

Saving assumptions are only presented in the web UI for brevity, rather than in the SMS.
Confirmation messages are sent only to users on semi-autonomous setting to inform them
of an automatic tariff switch, such as: “Hello, I switched your tariff from Tariff-A to

Tariff-B for tomorrow.”

3.2.4 Findings

We report findings from the semi-structured interviews through thematic analysis (Braun
and Clarke, 2006). The interviews were documented through audio recording (later fully
transcribed) and notes; analysis started by categorising the material at the sentence level
through open codes. The codes were assigned to commonly recurring themes, significant
events or references. The coding was performed by two researchers. Initially 88 open
codes were used, which are later grouped in four broader categories that we discuss
in what follows. We also present information on system usage based on automatic

interaction logs.
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Number of individualdays % % & % % % % % % %  qomaL
Home page access 8 7 11 5 7 5 7 7 6 6 69
Details page access 5 5 11 3 6 4 4 4 4 4 50
Prediction adjustment 2 2 4 0 4 1 2 0 0 0 15
Manual tariff selection 2 3 2 0 4 1 1 0 1 0 14
Setting on semi-autonomy 0 0 5 2 1 13 7 0 0 0 28
SMS suggestion accepted 0 2 2 0 2 0 0 4 0 1 11
No response to SMS 1 3 2 2 1 0 0 0 1 0 10
Day of last interaction 14 14 14 14 14 12 14 14 14 14

Figure 3.4: Overview of user activities. The rows listed under each user repre-
sent the total number of individual days that the user performed each activity.
The last row shows the last day of user interaction.

3.2.4.1 Engagement

The summary of user activities throughout the study is displayed in Figure 3.4. Par-
ticipants accessed the web interface on average every 2.2 days, with some participants
accessing it almost daily and some as infrequently as once every 5 days. The home page
was loaded more frequently, with 277 page loads over the course of the study, while the
details page was loaded overall 210 times, still accounting for approximately 43% of the

total page views (Figure 3.6).

The default autonomy level at the beginning of the trial for all participants was suggestion-
only, where the system sends SMS suggestions about tariff switching but it does not
automatically switch. This default option was chosen because it is the one that re-
quires the most interaction from users, so we wanted to see whether they would change
to a less demanding one over time. Half of the participants modified the settings to
semi-autonomy, where the system automatically changes to the predicted best tariff and
informs the user of the change via SMS. The semi-autonomous setting was kept for a
maximum of 14 days, and 29 days in total across all the participants who used it (i.e., 5.8
days per participant on average). The remaining half kept using the default suggestion-
only setting. No one selected the fully autonomous setting (where the system changes
the tariff without informing the user). We report in Figure 3.5 for how the number of

users keeping different autonomy levels varied over the course of the study.

In terms of tariff selection, two participants never received switching suggestions because
they happened to be already on an optimal tariff. For the remaining eight participants
who received tariff switching suggestions from the system (while on suggestion-only
setting), five participants accepted them by replying ‘Yes’ via SMS at least once, the
other three participants never accepted any tariff switching suggestion and stayed on the
fixed tariff during the whole study. Overall, 15 suggestions were sent from the system
to the users, with a 66% acceptance rate (Figure 3.7). All 5 participants who used semi-
autonomous setting took advantage of the web UI to provide manual estimates of their
electricity consumption prediction for the following day. In total this explicit input was

provided 26 times during the study.
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Figure 3.7: Acceptance of
suggestions.

Figure 3.6: Page visits.
All participants stated that they checked their budget on the website with some reg-
ularity during the study, demonstrating that all participants cared about the reward.
However, most of them reported that they more frequently kept track of their bud-
get through SMS summary reports, as these reported the daily expenditure. Overall
our participants spent £134.5 over the entire study, and they were rewarded a total of

£165.5, corresponding to an average of £16.55 per participant (SD: £4.2).

All participants described the daily SMS notifications, which include the summary (tariff,
cost and saving) of the previous day, as informative and motivating. Nobody complained
about them being intrusive or too frequent. Moreover, the daily notifications were mostly
explained as the preferred way to keep track of the system. For example, Maria said, “I
like more to have an SMS than to login to the [web] page.” The amount of information
provided in the SMS messages was reported to be concise and satisfactory. For instance,
Ivan said, “It would be more confusing. I mean if I need more information to make

a decision I would open the web site. [...] So, no, I think more information would be
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more confusing.”, when we asked him if there was more information required in the
messages. Some participants commented that they would opt for less frequent (e.g.,

weekly) summary messages if they had to use the system longer term:

Analyst - “What did you like the most and least about the system?”

Greta - “I think it is quite easy to understand, but after a while I would
probably want the text messages to be less frequent. I would probably want

to get updates every sort of a week maybe.”

3.2.4.2 Perception

Despite the limited duration of the study, the system appeared to be simple enough
for some participants to develop sophisticated explanations about how the system and

tariffs work, which were very close to the actual implementation.

Analyst - “What do you think the system does for you?”

Alisa - “Given a forecast of certain level of consumption which I tell to the
system, it will select the best tariff, once it has selected the best tariff if I
agree with that after counting the wind speed so splitting the cost in two
parts. The one that is covered by the wind energy, once this part is consumed
it will cost me the rest of the amount. I do not know if I explained it well.
So in my mind, I thought like the actual amount of energy I have consumed
there will be one part, which will be covered by the wind energy, and the

rest of the energy will be paid by me.”

However, some participants had difficulties in understanding how the cost was calculated
in the system. They referred only to the effect of their electricity consumption, leaving

out the availability of wind energy.

Claudia - “It tracks how much electricity we use during a day and then
suggests whether I should keep that tariff for the next day, or change to a
different tariff. I guess it is sort of trying to see a pattern, every day we use
a similar amount. I imagine it goes on the day before more. I do not know
because I do not see how it suggested moving [to another tariff] on some
days. Why did it suggest it, because it [the consumption] is not like being
huge dramatically different each day?”
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Some participants described the variable tariffs as risky since their rates can vary de-
pending on consumption and available wind energy, whereas they are always charged at
the same rate with a fixed tariff. In other words, with variable tariffs, they could end
up paying more than what they were expecting (for a fixed amount of consumption),
because of the wind energy that they have no control over. This appeared to be the
main reason why three of the participants stayed on a fixed tariff for the entire duration
of the study. In the interviews some of the participants reported being aware of the op-
portunity that they could save money by switching to the variable tariffs, but preferred

avoiding risk.

Differently, we observed that some participants selected the variable tariffs not only
because of possible monetary savings but also because they perceived the variable tariffs
as more environmentally friendly compared to the fixed tariff. For instance, Alisa said,
“I am saving money and it implies using wind energy. Because using environmentally
friendly resources as wind energy is always good.” when we asked her why she mostly

opted for the variable tariffs.

All participants commented that the system was functioning well and they all declared
that they perceived the system to be working in their favour. In addition to being
beneficial for the end users, some participants suggested that the system also works in
favour of the energy provider as well as of the environment. Participants mostly found
the system easy to use. For instance, Greta told us how it was easy for her to manage

the tariffs even though she did not have any experience before.

Greta - “In terms of the online website, it is quite clear for me and also it
shows you the budget. I think the quite good thing about the system is that
you are updated through messages and you can sort of control the usage of

tariffs as a person who has very little experience of dealing with electricity.”

The colouring of the history data in the detail page was not successful. Most of the

participants had difficulty in remembering their meaning.

3.2.4.3 Adoption
Participants commented that the system reduces the hassle of dealing with tariffs and

saves time and money. Being busy with travelling or other daily tasks was reported as

a reason to select the semi-autonomous setting.

Analyst - “Why did you select the second setting (semi-autonomous)?”
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Louisa - “I am very busy. I did not want one more task on my mind and
I do prefer the confirmation by text because this way I know and I feel in

control actually.”

However, even though participants appreciated the system autonomy, they were still
keen to be aware of any possible automatic change. Therefore, all of the partici-
pants who delegated the system to automatically switch their tariff preferred using
the semi-autonomous setting, where confirmation is sent via SMS (as opposite to fully-

autonomous setting where no confirmation is sent).

Analyst - “Why didn’t you ever use the third setting (fully autonomous)?”

Greta - “I want to basically know what is happening. I used the automat-
ically select the best tariff and send me confirmation because if something

changes I would like to know about it.”

It is also interesting to note that the benefit provided by the system is often described
in terms of offering control, even though autonomy is one of the major features of Tariff
Agent, which was acknowledged by participants. For example, Louisa said, “[it] gives
me [an] opportunity to save money, really, because I can change the tariff and I can
predict for next day” (our emphasis). Through this quote we can see that Luisa, who
mostly used the system in automatic mode, refers to herself, rather than the system,

being in charge of switching tariff and achieving the savings.

In addition to the tariff selection, energy consumption is what participants have control
over (while they have no control over wind energy generation). So the risk related
to a variable tariff was sometimes associated to plans of carrying out energy-intensive

activities, such as laundry.

Analyst - “How did you decide which tariff is the best option for you?”

Ender - “Actually, if you are planning to wash your clothes, it does not make
sense to take risk because you know you will consume much more energy

than yesterday.”

The participants who switched tariffs (either manually or automatically through the
system) reported that they developed strategies to cope with the uncertainty of the
wind and consumption. These were mostly based on planning future activities, and
then taking advantage of the option to input their consumption prediction to inform the

tariff selection by the autonomous system.
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Analyst - “How did you use the button called ‘save into agent’?”

Maria - “This weekend was obvious because I was not here. So I decided
to change the consumption prediction to be much less. Also I changed it
on Friday, because on Saturday I use more energy usually than during the
weekdays, because it is the day that I put on the washing machine and I stay

more hours at home.”

During these days Maria kept the system setting to automatically switch tariff, so this
quote demonstrates that taking advantage of system autonomy is not at odds with

staying in control.

In the interviews, we received comments on how sometimes it could be difficult to predict

the next day’s consumption, especially in a shared house.

Analyst - “Do you think the system worked well as it was intended?”

Alisa - “It [the system] would be very much useful for a household in which
you can really make reliable forecast because for instance two days ago here
there was a party of washing machine use. So you cannot play with saving

into system setting, because it depends on other people’s decisions.”

Here Alisa highlights the challenge of using automatic predictions, or even manual pre-
dictions, given that household activities can sometimes happen in an unplanned fashion.
The party of washing machine use that she mentions in this case refers to a day where

her flatmates ran several laundry loads.

Some participants reported that receiving tariff switch confirmations from the system
also reminded them to monitor the consumption prediction made by the system. For
instance, Maria told us, “The best setting is the second one. The system selects the tariff
automatically and sends me the confirmation that is it. Also, sending me confirmation
reminds me to check if I will have a different consumption.” In contrast, others told
us they did not often need to monitor the predictions as their consumption was more
or less constant, for example Louisa said: “I just left it on automatic. I cannot say I
was using it everyday because my consumption was kind of same.” This quote suggests
that, in this case, the system autonomy was accepted, perhaps, because the prediction

was particularly easy.

3.2.4.4 Accountability

All participants stated that they do not trust energy companies. Having bad experience

with energy bills or hearing about companies in the media appear to be the main reasons
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of distrust. Moreover, the abstruseness of energy contracts and energy bills increase the

distrust of consumers towards energy companies.

On the other hand, all participants liked Tariff Agent, appreciated being able to change
their tariffs more flexibly and having more transparency in their consumption and cost,

therefore, found the system more reliable than what utility companies provide now.

Louisa - “With predicted stuff from the companies I always feel cheated but
this way it is clear and it looks more honest really. Honestly, because it really

feels like it is something transparent and straightforward.”

It was interesting to note that most of the participants felt that Tariff Agent offers more
control, although the system works with a certain level of autonomy. This feeling of

control seemed to increase the user trust towards the system.

Correct suggestions or tariff changes made autonomously seem to intrinsically improve
the trust towards the system. For instance, Ender reported how a correct suggestion
encouraged him to trust the system more for his future decisions: “It suggested me fixed
tariff and I did not want to choose that and I lost money. In that case I learnt that
I should trust the system.” Likewise, Alisa’s comment also suggests how the system
accuracy plays a significant role in terms of trust: “I received the messages and the
system actually was selecting for me the proper option, this is for sure. My tariff was

always the best one, I saw it and I was happy about it.”

However, Tariff Agent was deliberately designed not to select the correct tariff all the
time in order to elicit users’ reactions to an autonomous system that can negatively
affect their budget. It was interesting to note that participants always referred to the
system with tolerance when we asked how they felt about incorrect suggestions and

selections in the interviews.

3.2.5 Summary and Implications

In the first study, it was interesting to note how different participants reacted to differ-
ent autonomy levels, and appreciated automated SMS reminders and recommendations.
Participants’ reports of their study experiences suggested that they felt more in con-
trol, engaged well with the system, and they were broadly tolerant to the system’s
autonomous operations. This was particularly interesting since tariffs were confusing
(i.e., wind-based tariffs added external uncertainty) and autonomous systems are gen-
erally mistrusted. This first study showed us that some participants willingly delegated
their tariff decision to an autonomous system, but that they were still keen to moni-
tor its operations and to intervene in the system when they believe it is necessary for

improving its decisions.
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However, the study was limited to two weeks. Even though the findings reveal that
this two weeks was sufficient for participants to experience the system, form opinions
about it and develop strategies to integrate the autonomous tariff switching in their
everyday practices; the question naturally emerged whether the findings would also hold
in a longer deployment period. In particular, was the user “tolerance” of the system’s
autonomy and at times inaccuracies due to the scale of the study? Would users give
the system more autonomy if they are satisfied with the performance of the system, or
withdraw it entirely if they are not, as time passes? In fact, some participants reported
that they might opt for the fully autonomous setting or would like to receive SMS reports

less frequently, if the study was longer.

One common method for grounding the implications of a field study is to run a new study
by utilising what have learnt in the previous one (Sas et al., 2014). Therefore, we decided
to run a new longer field study to explore the questions stated above, after implementing
some design changes for improving the first prototype based on the implications of the
first study.

3.3 The Second Study

The second field study aimed to explore users’ longer term interactions with a tariff
switching system. To recruit participants a similar approach was followed as for the first
field study, however with an aim to have a broader sample of the population. Overall,
12 participants (6 female) were recruited to cover a range of lifestyles, as detailed in
Table 3.3.

In the light of the first study we implemented some design changes, which we detail in

the following section. The participants used the new version of Tariff Agent for a period

Table 3.3: Participants’ profiles for the second study.

PARTICIPANT GENDER AGE OCCUPATION OTHERS
Adam Male 60s Priest None
Arthur Male 60s Retired None
Chloe Female 40s Community Manager None
Dionisia Female 20s Chemistry PhD Stud. 1 Adult
Evelyn Female 60s Retired None
Gerard Male 20s Media Production Manager 1 Adult
Gonca Female 20s Social Policy MSc Stud. None
Hiroko Female 30s Housewife 1 Adult, 2 Children
Lucy Female 20s Estate Manager 1 Adult
Peter Male 30s Unemployed 1 Child
Stewart Male 30s Software Consultant 1 Adult

Turan Male 30s Chemistry PhD Stud. 1 Adult
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TariffAgent ione oces

— Tariff — Setting

Your current tariff is Tariff-A.

Tomorrow's tariff is Tariff-A. You can changed it before 9pm today. §
) Send me an SMS when tariff change is suggested

Predictions for Tomerrow:
4.1 KWh - A lot more than yesterday

(3.2 kWh - More than yesterday

@ Automatically select the best tariff and inform me

Estimated Consumption: ®2.7 kWh - Same as yesterday () Automatically select the best tariff without informing me
1.9 kWh - Less than yesterday

1.4 KWh - A lot less than yesterday

Tell the Agent
@ To change the suggested tariff with your own prediction of consumption, you need — Reports
to click "Tell the Agent” button above.
Tariff Ezlsi:'lahed ::::;:19 g:‘i; | want to receive a report every:
Tariff-A £052 £025 £010  Suggested Selecled @day ) 3days O 5days ) week
Tariff-B £0.57 £035 £0.08

@ Reports are sent regardiess of your selected setting and
Tarif.C £069 £050 £007 Select they include brief information about your consumption, cost and
selected tariff.

Tarift-D £0.89 £075 £005

Tarif-£ £11 £1.00 £0.04 Select

Tariff-F £1.38 £130 £003 —Budget

Tarif-G £165 £1.60 £0.02 Select

Tarif-H  £1.98 £195 £001 Available: £59.70 Spent: £20.30

€PEstimated cost is the predicted total cost of your energy consumption for tomorrow
and it is calculated as follows:
Cost(£) = Standing Charge(£) + ( Unit Rate(£) x Estimated Consumption(kWh) )

Please click here to see your account details

Figure 3.8: New home page.

of 6 weeks (42 days). At the beginning of the study, all participants were allocated a
budget of £80, and their daily consumption cost was reduced from this budget over the

period of the trial.

3.3.1 Implemented Changes

During the interviews of the first study, we observed that some participants perceived
wind-based tariffs as more environmentally friendly. This perception influenced their
reactions to the tariff suggestions that were automatically sent by the system, and led
them to ignore the suggestion and stick to the same tariff that was not always the cheap-
est. Therefore, we removed the emphasis on renewable energy and external uncertainty
to more distinctly focus on issues of users’ orientation to smart systems. Similarly to
real-world tariffs, the tariffs we use in the second field study are defined in terms of: a
standing charge that is a fixed amount charged daily for service cost; and a unit rate
that is the price of electricity per kWh. In particular, each tariff represents the best
value for a particular consumption range so that it is not easy to decide which tariff is
the cheapest as it may change every day unless the user is able to accurately predict her

own consumption.

In the first study, the system was designed to send a daily report to all users regardless

of their settings and the users were not able to deactivate or reduce the frequency of
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Tarifnge nt Home  Details

Account Book Details

Date Predicted Gonsumption (kWh) Actual Consumption (KWh) Agent Suggestion Selected Tariff Budget (£) Cost (£) Ssaved/Lost (£)
31-Aug 43 Tanif-A Tanif-A 8571 058 1313
30-Aug 34 54 Tariff-A Tariff-A 8647 076 -0.002
29-Aug 36 34 Tariff-A Taniff-A 67.06 059 1394
28-Aug 24 Tarift-A Tarift-A 6765 059 1394
27-Aug a6 Tanif-A Tanift-A 6826 061 1376
26-Aug 23 28 Tarift-A Tarift-A 8679 053 1.448
25:Aug 53 45 Tarift-8 Tarifr-8 69.50 0.71 -0.010
24-Aug 30 29 Tarift-A Tarift-A 70.04 054 1439
23-Aug 23 53 Tarif-A Tariff-A 7082 078 -0.008
22-Aug 20 Tarift-A Tarift-A 7137 0.55 1.430

4 Previous Next b
. Incorrect censumpncn pleﬂltﬂDﬂ that caused incorrect tariff suggestlon
|_ Incorrect cansumption prediction that did not cause incorrect tariff suggestion
]l : Corect consumption prediction that lead to corect tariff suggestion

Figure 3.9: New details page.

these reports. In the interviews some users commented that they could opt for a less
frequent summary messages, for example weekly, if the study was longer. Therefore,
we decided to alter the design and enable users to change the frequency of reports. To
do so, we added another component to the home page, called Reports (see Figure 3.8).
This component enables users to decide how often they want to receive an SMS report,
where the option every day is initially selected by default. The other options are: every

3 days, every 5 days and every week.

Furthermore, in the home page we added explanatory information tips to help users to
understand and remember the basic underpinnings of the system, for example what the
functionality of ‘Tell the Agent’ button is, how the estimated cost is calculated, and

what information the SMS reports include.

From the details page (Figure 3.9), we removed predicted and actual wind energy values
in accordance with the changes in tariff specifications. We added a Budget column,
showing the balance left in their account for each of the past days. Also at the bottom
of the page we inserted colour-code reminders that explain how the table values are
coloured. For instance, a green colour represents a correct consumption prediction which
resulted in a correct tariff suggestion (but not necessarily a correct tariff selection since

the user might not have selected the suggested one).

3.3.2 Findings

Similar to the first study, we used thematic analysis (Braun and Clarke, 2006) for the
semi-structured exit interviews. The same two researchers performed the coding. Ini-

tially 76 open codes were used, which are later grouped in four broader categories that
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[
Number of individual days % . © {‘% 6’0 “o % - Uy % TOTAL
Home page access 11 18 6 9 19 26 16 12 4 4 6 4 135
Details page access ) 1 0 3 8 21 ) 4 1 3 6 2 67
Prediction adjustment 3 16 0 7 7 25 3 6 1 4 1 3 76
Manual tariff selection 3 17 2 7 9 1 1 2 1 4 5 4 56
Setting on semi-autonomy 39 0 0 0 0 40 30 0 0 0 13 0 122
SMS suggestion accepted 0 0 5 2 3 0 1 0 23 5 2 11 52
No response to SMS 2 0 10 13 21 0 2 9 2 4 14 10 87
Day of last interaction 39 37 41 38 41 38 31 24 42 41 29 42

Figure 3.10: Overview of user activities. The rows listed under each user repre-
sent the total number of individual days that the user performed each activity.
The last row shows the last day of user interaction.

we discuss in what follows. We also present information on system usage based on

automatic interaction logs.

3.3.2.1 Engagement

The summary of user activities throughout the study is displayed in Figure 3.10. Par-
ticipants accessed the home page more frequently, with 420 page loads over the course
of the study, while the details page was loaded overall 184 times, still accounting for
approximately 30% of the total page views. Figure 3.12 shows that the interactions of
users with the web site drastically dropped after the first week, yet were maintained at
a significant level by each user until the end of the study. Everyone either accessed the
web interface or replied to SMS suggestions with some regularity that is on average at

least once every 2.5 days (SD: 1.3 days).

Similar to the first study, the default autonomy level at the beginning of the trial was
suggestion-only for all participants. Four of the participants modified the autonomy
level to the semi-autonomous option, where the system automatically changes to the
predicted best tariff and informs the user of the change via SMS. The remaining eight
users kept using the default autonomy level. No one selected full autonomy (where the
system changes the tariff without informing the user). We report in Figure 3.11 for how

the number of users of each autonomy level varied over the course of the study.

In terms of tariff selection, the system’s predictions of the optimal tariff were correct on
average 65% of the time (SD:12.3%); for reference users’ actual selections throughout the
study (a combination of automatic and manual) corresponded to the optimal tariff 61%
of the time (SD:15.4%). Overall 10 participants received SMS tariff switching suggestions
from the system (while on the suggestion-only setting). The other two participants did
not receive any tariff change suggestions, as one was not using his mobile phone and
the other one switched to an automatic tariff change setting after the first few days.
Eight participants accepted the suggestions by replying ‘Yes’ via SMS at least once,
the other two participants never accepted any tariff switching suggestions but changed

their tariff manually on the website at least once. In total 139 SMS suggestions were
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sent from the system to the users, with a 38% acceptance rate. Additionally, 59 times
users changed their tariffs manually from the website and in 49 cases they accepted the
system’s suggestion (see Figure 3.13). In these cases an SMS was not sent because the

suggestion was accepted early in the day, via the web UL

All users except one took advantage of the web Ul to provide manual estimates of their
electricity consumption prediction for the following day at least once. In total this
explicit input was provided 110 times during the study, and resulted in 85 correct tariff
selections. The one person who did not use the input feature turned out to have a very

regular consumption profile throughout the entire duration of the study.

During the interviews, participants stated that they checked their budget regularly from
both the website and the SMS reports, which shows that they cared about the reward.
Overall our participants spent £440 over the entire study, and were rewarded a total of

£520, corresponding to an average of £43.30 per participant (SD: £14.67).
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All participants commented that the system was functioning well and that they found
it easy to use. The following quote is representative of the sort of reactions we recorded:
“I think it was easy to use. It was really simple, a few buttons to click, and if it needs
to change the tariff, hmm getting the text alerts I quite liked.” (Peter). The quote
demonstrates also the participants’ general appreciation for the SMS notifications. We
were often told that they serve as reminders and as an easier way to access the system,

compared to visiting the website.

Similar to the first study, participants described the daily SMS reports, which include
the summary (tariff, cost and saving) of the previous day as informative and useful.
Nobody found them intrusive or too frequent. In fact, interestingly all participants kept
the frequency of reports at the daily option, which was default. Three users lamented
that they found the saving/loss information in the SMS reports confusing, because it

was not clear to them what their expenditure was compared against.

The value of SMS reports and notifications was emphasised by one participants who
did not have a mobile phone during the study: “I do not have a mobile phone, so the
text message was coming through on my landline [through a text-to-speech service|. It
could have been clearer by an email; I look at emails every day so there is no problem
there. So for me, that would have been an improvement on how it worked.” (Arthur).
The suggestion to use email as an alternative to SMS indicates that Arthur felt the lack
of notifications and reminders, even though he was a very active user of the web Ul
(he manually changed tariff on 17 days and adjusted the consumption prediction on 16

days).

3.3.2.2 Perception

Some of the interview questions were aimed at assessing participants’ perception of the
system. Most participants appeared to hold a mental model that mirrors quite closely the
actual design and implementation of Tariff Agent, except for the consumption prediction
as detailed below. For example, Gerard eloquently described: “It looks at what usage
you think you are going to be using in the next day, which is something you either tell
it or it just guesses itself, and then it looks at various tariffs based on the standing costs
and the per unit costs, and works out which one is going to be the cheapest.”, or more

concisely Hiroko told us: “It decides the tariff and recommends me the tariff.”

However, for some other participants the initial response to the question of “what the
system does” instead highlighted energy monitoring and awareness. Peter told us: “Well
it just helps me to monitor my energy usage, it would help me definitely bring my bills
down. That’s what I was hoping it would do, anyway. That’s what it seems to do. It

definitely helped me be more careful with my energy usage.”
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Indeed, some participants reported that such awareness led them to change their energy
consumption habits, for example switching off devices that used to be left on or in

stand-by.

Analyst - “Have you changed anything related to your energy consumption?”

Lucy - “I used to leave the telly on for my dog during the day but I do not
do that anymore. He sits in silence now. It is just as I said probably made
me aware how much electric I actually use whereas before I just used to put
10 pound a week electric and just done with it. Now I am thinking actually

seeing where things going. So it has made me changing definitely.”

Through the interviews we could also notice that some participants had a quite detailed

model of how energy tariffs work.

Analyst - “How do you think your daily energy cost is calculated?”

Chloe - “I reasonably understand that yeah, higher standing charges for
higher tariffs, but because my unit rate is low then I am better of having
either Tariff-A or Tariff-B with the lowest standing charge.”

Our scenario, where the tariff can be switched everyday, was considered by some as a

key feature that is part of Tariff Agent.

Analyst - “What did you like the most about the system?”

Arthur - “T did like the different choices. It was quite interesting having
some, quite variation on unit rate and standing charge can compare how

they would produce the actual cost.”

Towards the end of the interview, participants were asked who they thought would own
the system, if it was real. The answers were quite varied, but most participants seemed
to have quite a strong view on the matter. Many suggested that they would person-
ally prefer the government or an independent organisation to provide the system. For
example, “Ideally, somebody who has got no vested interest in what tariff it is.” (Eve-
lyn). Or, “I could not image this implemented by anybody other than power companies

realistically. But I personally prefer government.” (Gerard)
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3.3.2.3 Adoption

The interviews revealed a range of attitudes and orientations towards the autonomy of
the system, which showed similarities to the ones that we observed in the first study.
Being busy with travelling or other daily tasks, and feeling lazy were reported as reasons
to select the semi-autonomous setting, for example, “I was logging in everyday and just
looking at it and leaving it and to be honest towards the middle of it I kind of got a bit

more lazy.” (Stewart)

Two of the participants who used the semi-autonomous setting reported to have al-
ready been exposed to real-world systems that recommend changes of tariff via email,
“I actually get an email from them if a cheaper tariff based on my last month usage is
available. So if they find a tariff that would save me more than £50 a year I get an

email.” (Gerard)

Another participant highlighted the options offered by Tariff Agent in terms of automa-
tion against manual intervention, and appreciated being able to shift between these

multiple options.

Analyst - “Can you describe how you used the system?”

Adam - “I am very, very busy here within the parish. So I was fascinated
by the way in which you have a multiple choice [setting]. You could either
how to say look at it, examine each aspect and dimension of this program,
or you could choose as I did after a day or so number 2 [semi-autonomy],

and it would choose it automatically, and I found that great help as well.”

Along the same lines, participants generally considered the opportunity of providing
input to the system as an advantage. This aspect was generally related to the fact that
it would be impossible for an automatic system to predict correctly in case of exceptions
in their daily routines, “I think the whole idea of the fact that you can have an input
is the reason why I like it.” (Lucy), or “That is the point of the system, isn’t it really,
that you monitor it and you go no hang on that is not quite right. So ultimately you

have to be responsible for it. The control is still with user ultimately.” (Peter)

However, the input that users need to provide to the system was perceived as effort that
needs to be put into using it. Some participants perceived it as light, “It does require
you to do a bit of work, but I do not think it requires you to do an awful lot of work.”
(Gerard), while others considered it hard, “OK but then that involves a lot more input
from me to do the prediction for what tomorrow might be.” (Chloe). In some cases, the
increased performance provided by the manual input was not considered to be worth

the effort, compared to the performance that Tariff Agent would achieve on its own.
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“Every other day it gets it right, every other day it gets it wrong and then to be honest,
I think I would probably make the same mistakes so and I am not going to login in every
single day and change it because it is more effort than it is worth I guess in that case.”
(Stewart)

Some participants reported that they kept the system in suggestion-only setting because
they generally like to be in control. For example Dionisia told us: “I think it [suggestion-
only| suits me. I like to be in control of what I spent, I guess.” Similarly, Peter said:
“I think I quite liked the idea of still being in control of it. So still being, yeah so it
was still my choice rather than letting you to decide.” Disagreement with the choice of
the system was also mentioned as a reason not to relinquish control: “I would never use

automatically select ever. [Laughing] 'cause I may not agree.” (Evelyn)

As described in Section 3.2.2, Tariff Agent uses the previous day’s consumption to pre-
dict for the next day, and estimate the best tariff. Users have the option to adjust this
prediction through the web Ul. Indeed, most participants took advantage of this option
and reported that they predicted the next day’s consumption mostly based on plan-
ning future activities such as doing laundry, being away from home, or hosting guests.
Changes in personal plans were reported as an obstacle for providing input to the sys-
tem: “I found it impossible to predict tomorrow because I might make plans to use

washing machine or a cooker and then I didn’t do that.” (Evelyn)

On the other hand, another participant told us how she changed her plans to match the
tariff selected by the system.

Gonca - “Sometimes I could not change the tariff when the system showed
me like tomorrow my tariff will be changed to B, which was more than I
consume normally, then I knew that ok today I will not do the laundry, for

example, and I just waited to do the next day.”

In this case Gonca reported to have seen the system notification too late, after the 9pm
deadline for tariff selection, so she changed her plans for the next day to follow the

system schedule.

Some participants suggested that contextual factors specific to their circumstances influ-
enced the accuracy of predictions. For example, Adam said, “This house unfortunately
has so many visitors coming through that when the choice was made based on yester-
day, I'd get a lot of unexpected visitors coming and really [laughing] test the patience
of this program.” Similarly, Evelyn indicated that predicting could be even harder for
low profile users since any appliance usage might cause peaks in the consumption: “In
my case, my consumption is going to vary greatly from day to day, with a family that
might be different.”
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A number of participants reported that they were confused with the system being one
day behind and one day ahead. For example, Peter said, “Sometimes it was difficult.
I get confused sometimes thinking about yesterday in relation to what energy I'd use
tomorrow, but obviously that’s the only way you can do it, because yesterday you had

the all-day consumption, so that was just me trying to get my head around it.”

We also recorded a number of comments related to the mechanics of the prediction
system. While some users correctly understood the system to predict tomorrow’s con-
sumption simply to be the same as yesterday’s consumption, a number of other users
expected the system’s prediction mechanism to be more sophisticated than it actually
was. For instance, Arthur told us that the system was learning his consumption: “The
pattern that has been build up over the previous days or weeks. Of course for the longer
period, then hopefully it would get to know how my energy usage comes out in regular
basis.” The same participant also commented that the system may help him to improve
his predictions over time: “It would also, perhaps, get me to estimate better what my
consumption is going to be so I think I would learn as I went along more how to estimate

the consumption.”

In the same vein, talking about how the system predicts her consumption for the fol-
lowing day, Lucy explained: “Probably what I have used on the same day, or I suppose
as it goes on longer, you get more data so you got more of an idea of what we do use
and what we don’t use. So I think probably as time got on it was more accurate than
it was initially ’cause you collect more data.” Others were uncertain about the matter:
“I don’t know. I was wondering how smart it was, whether it looks at previous weeks,
days of the week.” (Gerard)

3.3.2.4 Responsibility

Similar to the first study, all participants commented that they perceived the system as
helping them save money, through mostly correct suggestions, and most of them stated
that they trust the system’s tariff decisions. However, the participants of the second
study were more aware of the system’s imperfection, most probably due to a longer

duration of the study.

Interestingly, when we asked about experienced mistakes in tariff suggestions or selec-
tions, they mostly considered it to be their own responsibility, “It is my mistake because
I have not informed the system of something that I knew would change what consump-
tion I used.” (Lucy), or, “it is connected to the individuals and requires individual
responsibility to make the system in the savings work, it sort of gives responsibility back
to the energy user.” (Chloe) In an even more drastic way Gerard said, “I think it was

always my fault. So I just felt annoyed with myself and I started trusting the machine
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more than I trusted myself, I was like oh the machine knows what it is doing, just leave

it alone.”

Talking about mistakes the system may commit, Arthur highlighted the importance of
receiving immediate feedback in order to maintain trust, “I would not worry as long as

I got the message straight away to say our suggestion yesterday was erroneous.”

3.4 Discussion

In our two field studies we exposed two diverse groups of participants to an envisioned
future energy scenario, in which autonomous systems embedded in households have the
ability to switch the energy tariff based on the offered rates and a prediction of the user’s
consumption. However, to reveal meaningful results from such studies it is essential that
participants feel and engage with the scenario. Therefore, to render the scenario tangible
for our participants, we combined a financial experimental reward with actual energy
consumption data measured in participants’ homes. Both user interaction logs and the
accounts offered in the interviews about system usage suggest that the study design was
successful in making the scenario visible and tangible, echoing recent findings from the
literature (Costanza et al., 2014).

3.4.1 Interaction with Autonomy

One aim of our research was to explore how users would perceive an autonomous system
affecting them financially and possibly intruding into their daily routines. The results
of the first and the second study suggest that participants kept a strong feeling of
control over the autonomous system and they appear to understand and appreciate the
autonomous nature of Tariff Agent, which proactively sends users suggestions about
switching energy tariffs. In particular, this is well demonstrated by the general and
prolonged engagement that most participants of the both studies had in switching tariffs
and in providing input to the system to improve its consumption forecast performance,
and hence the quality of the suggestions. Additionally, none of the participants reported
that they found the SMS tariff switching prompts bothersome, supporting the findings of
other recent work (Bourgeois et al., 2014). Also, as suggested by some participants of the
first study, we implemented the second prototype to enable users to change the frequency
of summary reports sent daily by the system. However, no participants changed the
frequency of the reports and all kept it at daily option, since they found the SMS

reports informative and useful.

Our other aim was to investigate the users’ autonomy and interaction preferences over

both short and longer terms. In the second field study the engagement with autonomy
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delegation was less generalised compared to the first study. While half of the partici-
pants used the semi-autonomous option in the first study, only one third of participants
delegated responsibility to the system to automatically switch their tariff in the second
study. This finding indicates a key design implication for autonomous energy systems.
It is important to offer autonomy delegation as an option, as some users took advantage
of it. This is also supported by the diversity of responses we collected around partici-
pants’ orientation to autonomy. In other words, the decision of balancing control and
autonomy should be left to users where appropriate to cater for individual differences
in what levels of system autonomy people are comfortable with. In so doing, users
may continue to make use of relevant parts of the system autonomy, rather than taking
over full control or abandoning the whole technology (Yang et al., 2014). Our results
suggest that flexible autonomy shows promise for sustaining users’ engagement with an

autonomous system, despite its occasional mistakes.

For both studies, the interviews revealed that all participants maintained a strong feeling
of control over the system. It is worth emphasizing that the duration of the trial and
the presence or absence of renewable energy do not seem to influence this finding. This
result becomes more interesting when we consider that existing literature suggested that
autonomous technologies leave users feeling out of control (Barkhuus and Dey, 2003), and
that in our application even with the lowest autonomous level (i.e., suggestion-only) the
system was continuously monitoring users’ consumption and automatically suggesting
tariff changes. Such a feeling of control seems to be boosted by the awareness that the
autonomy level can be changed at any time, that input about their own consumption
predictions can be provided to the system to help it make better decisions, and that they
are able to easily monitor the performance of the system. This is particularly shown by
the participants, with most feeling that incorrect tariff decisions would be largely their
responsibility. Recent work Stout et al. (2014) suggested that delegation of autonomy
is perceived by users as a means to shift blame from themselves to autonomous system
for undesirable outcomes. In contrast, our results show that the ability to delegate
autonomy in a flerible manner ultimately leads users to feel in control and therefore

responsible.

Such a result may be, in part, due to domestic energy consumption being perceived as a
very personal matter, over which an automatic system has limited insight. Nevertheless,
we believe this is an important finding, which suggests that flexible autonomy may lead
people to share the blame with the system and form more collaborative and long term
relationship with it, rather than only blaming the system for incorrect actions and stop
using it. This is also a promising finding for previous HCI studies (Strengers, 2011;
Darby, 2006) that address the challenge of maintaining user interest and interaction
with the eco-feedback systems. It looks like flexible autonomy could be useful to sustain

user interaction and may help them to adapt new behaviours in longer run.
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3.4.2 Orientation to Smart Systems

As detailed in our system description, we decided to implement a very simple consump-
tion prediction strategy in Tariff Agent because we expected it would make it easier for
users to interpret the functionality of the system, while offering comparable accuracy
to more complex alternatives. Namely, the system was simply using the previous day’s
consumption as a prediction for the next day. Although this simple strategy is even
indicated on the system’s home page, in both studies some participants perceived the
system’s predictions to be smarter and more complex than they are in reality. They
suggested that the system applies more advanced pattern recognition (e.g., days of the
week) and even that it learned their usage habits, becoming more accurate over the
duration of the study. Once again, this finding emerged irrespective of the duration of
the study and the presence of wind-generated energy. This result resonates with the
findings of (Yang et al., 2014) around their study of a commercial smart thermostat:
their participants overestimated the abilities of the product, for example in terms of

learning when they are at home and when away, leading to some resource wastage.

While in the case of the smart thermostat it may be explained through the explicit mar-
keting of the product as “learning over time”, we did not promote Tariff Agent as having
such features. This expectation, then, may be due to an ever-increasing exposure of the
general public to advanced machine learning computer systems. Such exposure is some-
times direct (e.g., Internet search engines), or through media reports. An alternative
explanation may be related to our innate talent to learn over time. Perhaps participants
expected Tariff Agent to learn like a person would. Even though we carefully avoided
any anthropomorphic feature, to avoid any emotional biases, the system, even by its
name, is explicitly referred to as an “agent” which may create such expectations. We
believe these results highlight an important implication for future research in interaction

with “smart” systems: to try and discover the source of people’s learning expectations.

In the second study, participants comments around who would, or should, own the sys-
tem if it was real further suggest that Tariff Agent seems to be perceived as more opaque
than we had hoped for. Often the preference was for the ownership and operation to lay
with the government or with an independent body. We interpret this as an indication
that participants are afraid that the performance of a system dealing with energy con-
sumption, tariffs and billing, may be biased to favour the profits of an energy provider.
The system is not perceived as a simple and neutral data processor, nobody answered
to the ownership question saying that it does not matter. This finding resonates with
those reported by (Rodden et al., 2013), who exposed users to two different video sce-
narios where an autonomous system mediated energy and tariffs, and found that when
the system was presented as being installed and owned by the energy supplier, reactions
were much more critical than when it was presented as being installed and owned by

the householders themselves. The perceived opacity is at odds with the fact that, at the
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same time, our participants felt largely responsible for any losses incurred by incorrect
tariff selections, rather than blaming the autonomous system. This apparent contrast
can perhaps be explained in light of the fact that in our studies the system was clearly
presented as developed and operated by a university, a type of organisation generally

recognised as trustworthy.

3.4.3 Design Implications

In what follows, we list design suggestions based on our in the wild evaluations and
qualitative and quantitative analysis for specifically autonomous domestic energy sys-
tems, where the systems deal with financially sensitive tasks and may disrupt users’
daily activities. However, we believe that these design guidelines can be also exploited

for developing applications in other domains that involve human-agent interaction.

e Provide an easy way for users to receive updates about the status and operation of
the autonomous system, and allow users to change the frequency of the updates.
This first suggestion is based on the observation that in our field trials partici-
pants were very keen on keeping track of the system’s operations. None of them
disabled the SMS notifications; instead everyone reported that they found them
useful. Moreover, the web access logs illustrate that participants visited the de-
tailed information page quite frequently; it received about 43% of total page views
in study 1, and 30% in study 2, illustrating a desire to monitor in detail what the
system is doing. Although none of our participants reduced the frequency of daily
summary SMS messages in the second study, providing such ability to users seems

useful as some participants suggested so in our initial study.

o Enable users to instruct the autonomous system by offering them opportunities to
declare their plans and integrate these plans into the system’s operation.
This second suggestion builds on the perception of feeling in control that our
participants reported in the two trials. This feeling of control was related to
them inputting into the system their predicted consumption for the following day,
but also to some adjustments of the participants’ schedule. Indeed in some cases
this action took the form of almost “booking” their activities (e.g., laundry) into
the system. Moreover, being able to correct the system’s prediction seemed to
improve the intelligibility of the system’s decision-making as this created a sandbox
(Mennicken et al., 2014) for users where they could try different consumption

inputs to see how the system accordingly changed the suggested or selected tariff.

e Leave the system open to transfer of control by allowing users to adjust the sys-
tem’s level of autonomy (i.e., when to release or retain autonomy).
This last suggestion is based on the fact that in both field studies some participants

used the autonomous system setting of Tariff Agent (semi-autonomy), while other
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users kept the manual confirmation (suggestion-only). Of those who took advan-
tage of automation in the first trial, two users reverted to suggestion-only mode
after some time. It should be emphasized that this suggestion-only option does
not correspond to simply turning the system autonomy off completely, indeed the
system still continuously monitors consumption and it autonomously offers sugges-
tions for when to change tariff. However, the user needs to explicitly accept such
suggestions, before they are turned into practice. Results from both studies show
that individuals might have different preferences for different autonomy levels, and

this preference might change over time.

These design suggestions extend and enhance the existing trends in mixed-initiative sys-
tems. These put the onus of requesting human control or input on the system (Horvitz,
1999; Scerri et al., 2003). Mostly it is part of the system’s functionality to decide when
to attempt and transfer control to users. In contrast, we suggest that a more suitable
approach is to enable the user to enact control or to adjust autonomy by default. We
believe that systems involving humans and agents (so-called human-agent collectives
(Jennings et al., 2014)) should enable human users to provide input to autonomous sys-
tems at any time to improve their operation. In turn, this makes legibility of system
state an essential requirement for the design of mixed-initiative systems. In order words,
we suggest that systems involving humans and agents should be left open enough that
users can decide when to intervene. It should not be necessary to express this oper-
ation as “removing” or “diminishing” agency from the system, indeed in our system
the optional user input provides more information for the system to help them to save

money.

3.5 Summary

In this chapter, we have presented two field studies that exposed participants to a proto-
typed future energy scenario. Our scenario simulates a situation where households can
switch electricity tariff on a daily basis, to try and best match their consumption level.
This scenario enabled us to study users’ interactions with Tariff Agent, an interactive
autonomous system designed to help in managing energy costs, which offers flexible au-
tonomy and detailed information about its operation. The studies were made possible
by a medium-fidelity prototyping approach combining off-the-shelf Internet-connected

sensors with Web technology, and with financial experimental rewards.

Our field studies enabled participants to experience an autonomous energy system in
their everyday lives, form opinions about it and develop strategies to integrate its au-
tonomous operation in their everyday practices. The results of our field studies demon-
strate that users are happy for the help Tariff Agent provides to them to deal with

the complexity of variable tariffs, and at least in part, ready to use systems like Tariff
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Agent to manage their energy tariffs. Our results suggest that people are willing to
delegate some control to the agents but not fully. Hence, it is important to stress that
system designs need to strike a nuanced balance between providing the user with means
to monitor system performance and take control when they consider it necessary. Our
results highlight opportunities and show promising directions to design mixed-initiative
autonomous energy systems. In particular, based on the results, we have provided design
guidelines for developing future intelligent energy system to make these system useful

and acceptable to users in their everyday lives.

These design guidelines presented in Chapter 3 are based on the use of a simple agent
whose operations are fairly intelligible. However, we have not studied the further ques-
tion: how to design interactions of a learning agent to meet the requirements stated
in Chapter 1. In particular, making the actions of a learning agent intelligible is chal-
lenging due to the fact that the agent will be learning how to react to the user’s input
over time (unlike Tariff Agent where users’ consumption input had immediate impact
on the agent’s tariff decision). Therefore, the user’s input might not directly manipulate
the agent’s actions as that single input could be treated as noise depending on the prior
knowledge, which may eventually lead the user to think that the agent is malfunctioning.
To address this challenge, in the next chapter, we represent a study of a learning agent
called Smart Thermo, which helps users to manage their home heating control given

real-time prices.






Chapter 4

Smart Thermo

In this chapter, we aim to explore the design space of a smart thermostat that helps
domestic users react to real-time energy pricing, by autonomously adjusting the indoor
temperature setpoint. More specifically, we aim to address the research questions: what
would be people’s feelings and expectations towards a smart thermostat that controls
their home heating based on real-time prices, whether different user interface designs
of the thermostat result in different user understanding and reactions, and how people

would adopt and interact with the thermostat in their everyday lives.

To this end, we designed, implemented and deployed three different designs of a smart
thermostat: a rule-based thermostat by which participants manually specify how to re-
spond price changes, and two learning-based thermostats that apply a machine learning
algorithm to identify households’ temperature preferences over different prices. In order
to evaluate these designs and to observe how users would react to such future technology,
at a point in time where energy real-time prices are not yet widely implemented, we con-
ducted a field study based on the same methodology presented in Chapter 3, where we
exposed our participants to a future scenario through a combination of financial experi-
mental reward and sensors installed in their homes. As our smart thermostat responded
to the varying prices on households’ behalf by adjusting the home’s temperature, it

caused a real impact on the comfort of its owners.!

4.1 The Study

We conducted a study with 30 UK households (see Table 4.1) over a period of four weeks
during February-March 2015. To recruit participants we distributed approximately 3000

study invitation letters around the city. We recruited households who had a broadband

!Ethics approval reference for the study is ERGO-13417.
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Table 4.1: Participants’ profiles.

Thermostat | Age Occupation Others
P1 | Indirect L. 40 PhD Student 1 Child
P2 Manual 63 | Maintenance Eng. 1 Adult
P3 Direct L. 37 Antiques Dealer 1 Ad., 2 Ch.
P4 Direct L. 43 PhD Student 1 Ad., 2 Ch.
P5 Manual 50 Estate Mng. 1 Ad., 1 Ch.
P6 Manual 36 Nanny 1 Ad., 1 Ch.
P7 | Indirect L. 76 Retired 1 Adult
P8 Indirect L. 32 Radiographer 2 Ad., 1 Ch.
P9 Direct L. 44 Teacher 1 Ad., 2 Ch.
P10 Direct L. 62 Retired 2 Adults
P11 Manual 44 Teacher 1 Ad., 2 Ch.
P12 | Indirect L. 50 Office Mng. 1 Adult
P13 Manual 40 Education 2 Ad., 1 Ch.
P14 | Indirect L. 60 Lecturer 1 Adult
P15 Manual 53 Photographer 2 Ad., 1 Ch.
P16 Direct L. 60 Self Employed 1 Adult
P17 | Indirect L. 58 Charity Mng. 1 Adult
P18 Manual 40 Accountant 1 Ad., 4 Ch.
P19 Direct L. 71 Retired 1 Ad.
P20 | Indirect L. 56 | Database Admin. 2 Adults
P21 | Indirect L. 26 Contract Mng. 1 Ad., 1 Ch.
P22 Direct L. 22 Student 1 Adult
P23 | Indirect L. 28 Sport Mng. 2 Adults
P24 Direct L. 69 Retired 1 Adult
P25 Direct L. 49 Gas Engineer 1 Adult
P26 Manual 64 Engineer 1 Adult
P27 Manual 91 Retired 1 Adult
P28 Direct L. 73 Retired 1 Adult
P29 Manual 75 Retired Na
P30 | Indirect L. 28 PhD Student 1 Ad. , 1 Ch.

Internet connection and a central heating control, based on a first-come first-served

basis.

Participants were assigned to three groups, each corresponding to one thermostat de-
sign, one by one in the order 1, 2, 3. An online budget of £100 was then allocated
to each household and participants started to use our system for heating their house.
Throughout the study, on each day, their daily heating cost was calculated based on the
number of hours their boiler was on (i.e., when the setpoint was higher than the indoor
temperature) and the energy prices at those hours. The daily heating cost then was sub-
tracted from their online budget on each day. After four weeks, when the study ended,
they received the amount left in their budget in cash as an experimental reward. By so
doing, we aimed to encourage participants to respond to the prices, and make savings
have a real impact. Similar to the Tariff Agent studies, we used monetary incentives to

mimic a real-time pricing scenario.

The simulated real-time pricing scenario was based on actual historical spot prices in the
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Figure 4.1: Overall system diagram.

UK electricity market in January 2014.2 For convenience, we removed extreme outliers
from the historical pricing data making the prices range from 5 pence to 35 pence (see
Appendix A). During our field study the energy price was changed every 30 minutes,
similarly to the UK market.

4.2 Technology

We equipped each household with a Horstmann HRT4-ZW thermostat, a Raspberry Pi
(RPi) and an Android 4.4 tablet. Figure 4.1 shows the connections among different en-
tities. The Horstmann thermostat is a standard room thermostat but can be wirelessly
controlled over the Z-Wave communication protocol from the RPi (through a RaZberry
daughter card®). The RPi also connects through the home wireless broadband router
to our web server, where the smart thermostat algorithm and Uls run. The RPi reg-
ularly pulls the indoor temperature from the thermostat (every 5 minutes), sends the
temperature data to our server, and receives the latest individual heating plan. Based
on the plan the RPi then controls the setpoint of the thermostat. The tablet allows
participants to access our web application through the broadband connection, and to
manipulate their own heating plan. Each tablet was installed with a software called
Kiosk Browser Lockdown and our web application was set as the default one. We also
added the application as a bookmark on the home screen of participants own devices

(tablet or smart phone), if they wished.

2For practicality we recorded the prices about a year earlier than our study took place, that is in
February-March 2015.
3http://razberry.z-wave.me/
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Figure 4.2: Manual - home page.

4.3 Design Variations

In order to gain an understanding of how to best design a smart thermostat for real-time

prices, we decided to explore three thermostat designs that we describe in what follows.

4.3.1 Manual Thermostat

This design aims to provide manual operation and involves no machine learning algo-
rithm. Hence, in this design, users are required to manually specify how the temperature
is going to be set at different prices through adjusting a number of setpoint sliders. On
the home page (Figure 4.2), users can see the current energy price and indoor tem-
perature, and adjust the setpoint by pressing the +/- buttons next to it. Each press
increases/decreases the setpoint by half a degree. To provide context for the current
value, a label indicates whether the price is normal (bottom of the range), high (mid-
range) or very high (top of the range). The price value and the label are color coded
green, yellow or red for emphasis. At the bottom left of the home page users can find
the boost button, which allows them to turn the heating on continuously for 1 hour,

temporarily overriding the setpoint.

On the right side of the page, four setpoint sliders enable users to specify how the
setpoint should be changed at different prices.* In other words, these sliders allow users
to directly specify how to trade off comfort and cost. These are positioned on the
home page to make them easily visible and accesible, even at the risk of increasing the
complexity of the page. It should be noted that the sliders are not influenced by the

boost button. The sliders are influenced by the +/— buttons, and are constrained to

4We call these sliders interchangeably setpoint or preference sliders.
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SmartThermo  Home | Schedule @ Help Logout (usr6)

Click on each box to turn on/off the heater for each hour.

Monday - Friday

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 08:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

il N il

00000 01:00 02:00 03:00 04:00 05:00 06:00 0F:00 08:00 08:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

OFF | OFF | OFF | OFF | OFF | OFF | OFF OFF | OFF | OFF

Saturday - Sunday
‘UFF OFF | OFF | oFf | oFF

OFF OFF | OFF | OFF | OFF | OFF

Estimated 30 days cost: £ 45.53

Figure 4.3: Manual - schedule page.

always form a straight line. Thus, if the user changes the setpoint at any slider, the other
sliders might change their values as well to conform to the linearity. The temperatures

of the intermediate price values are calculated based on linear interpolation.

The schedule page (Figure 4.3) is another page that the manual thermostat users could
access. This page allows the users to program the heating schedule that defines the
boiler’s on and off times. Due to the screen size of our tablets we decided to divide
the schedule of a day into hourly-based time slots and group the days as weekdays and
weekend. To change the boiler’s status for a period of time the user only needs to touch
on the time slots corresponding to the period. We provided this schedule page since we

anticipated that users would expect such a functionality from a smart thermostat.

Both the home and the schedule pages display the ‘Estimated 30 days cost’ that reflects
how the current settings on the setpoint sliders and the schedule impact the monthly cost
of heating. When users make a change in the sliders or in the schedule, the estimated
cost updates accordingly. Also it is important to note that users need to save any changes

that they make in order to register that change into the system.

4.3.2 Direct Learning Thermostat

This design uses the machine learning algorithm introduced in a prior work (Shann and
Seuken, 2013),% and aims to automate users’ temperature decisions for different prices
(see Appendix B for details of how the algorithm works). When users make changes
to the temperature, the learning algorithm correlates these changes with the prices and

generates a user model. Thus, rather than requiring the user to manually specify the

5There might be more advanced algorithms giving better results. We chose this algorithm due to its
simplicity and robustness.
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SmartThermo @ Home  Settings  Schedule  Help Logout (usr24)
Price Now Indoor Setpoint Now Predicted Heating Program
19.0°C - 23.0°C + Period Price Setpoint
3am-7am 8p OFF
OPlease save the changes. LT 2 e 7am-4pm  13p 23.0°C
4pm-8pm 17p 23.0°C
8pm-3am 11p 23.0°C

Estimated 30 days cost: £80.13
Spent so far: £77.60 out of £100.

Boiler:ON

Boost for 1 hour

Figure 4.4: Direct learning - home page.

setpoint sliders, the learning algorithm automatically arranges them. Each time the
user submits a temperature, the algorithm updates the user’s model and the thermostat
directly heats to the optimal temperature of the user model based on the current price.
The aim of this design is to help users understand that the setpoints that they save are
being learned by the smart thermostat for future use to determine the setpoint based

on varying prices.

In this thermostat design (Figure 4.4), users directly interact with the machine learning
algorithm. When the user presses the +/— buttons, the learning algorithm updates the
user’s model and displays the optimal setpoint based on the model. The algorithm uses
Bayesian inference to update the model, which means it considers the user’s individual
temperature inputs as noisy data. Thus, the user might need to press the +/— buttons
several times to change the setpoint a half degree, depending on the model’s prior
knowledge. For example, assume that the current setpoint is 18.5°C. If the user now
presses the warmer button once, the algorithm will take 19°C as input and do a Bayesian
update, resulting in a learned optimal setpoint of 18.7°C, which is then rounded to
18.5°C (the granularity is in steps of 0.5°C). Thus, the user does not see any change in
the setpoint. However, if he presses a second time, the algorithm will take 19.5°C as
input and the learned optimal setpoint increases to 18.9°C, which will then result in a
setpoint change to 19°C. Thus, in this hypothetical example, the user had to press the
+ button twice to increase the setpoint from 18.5°C to 19°C.

However, to visualise the impact of each press, a pop-up message appears with two
buttons, by which users can save or undo the setpoint change. Additionally, each press
synchronously affects the ‘Estimated 30 days cost’ as well as a table called ‘Predicted
Heating Program’. This table shows the average temperatures that will be set by the

thermostat, based on the predicted average prices at four time periods. The setpoint
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SmartThermo Home Settings Schedule Help Logout (usr23)
Setpoint Preferences Previous Inputs from Home Page
+ + + + Date Price Setpoint
oG =G G G Mar 19, 2015, 8:13 a.m. 5p 16.0°C
— — — — Mar 18, 2015, 8:11 a.m. 17p 16.0°C
Mar 18, 2015, 8:11 a.m. 17p 16.5°C
Mar 17, 2015, 8:13 a.m. 17p 16.0°C
Mar 16, 2015, 6:35 p.m. 15p 16.5°C
Previous Next ®
5p 15p 25p 35p Estimated 30 days cost: £24.86

Figure 4.5: Direct learning - settings page.

displayed for each time period changes dynamically according to the updates in the user
model. Similar to the manual thermostat, the home page also contains the boost button,
which turns the heating on continuously for 1 hour. The boost button does not influence

the learning: it was designed as a way to define exceptions to the preferences.

With this thermostat design, users also have an additional page called settings. The
settings page (Figure 4.5) aims to provide users an additional level of control and trans-
parency of the learning algorithm. Similar to the home page of the manual design, there
are four sliders representing the user’s learnt temperature preferences for each price
band. We moved the sliders into the settings page because the focus of the learning
thermostat is simplicity of use. The user can see how these sliders are arranged by the
thermostat by looking at a history table. The table lists the user’s previous temperature
inputs together with correlated prices. The user can adjust the sliders to specify his own
preferences. By so doing, the user resets the learning algorithm and clears the table of
previous inputs. Therefore, a confirmation pop-up is shown before the user saves any
changes made in the sliders. The schedule page provided in the manual thermostat is

also accessible by the users of the direct learning thermostat.

4.3.3 Indirect Learning Thermostat

Similar to the direct learning thermostat, the same learning algorithm is used in this
design. However, the rationale behind this design is to enable users to temporarily
override the learning, and in this way hide from the users the complexity of the algorithm.
Thus, in this design, each time the user submits a temperature, the algorithm updates
the user model but the thermostat first heats to the inputted temperature - rather than
heating to the optimal temperature of the model. However, after one hour it goes back

to auto-mode and sets the setpoint to the optimal temperature of the user model based
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SmartThermo @ Home  Settings  Schedule  Help Logout (usr12)
Price Now Indoor Setpoint Now Predicted Heating Program
17.5°C - 18.0°C + Period Price Setpoint
3am-7am 8p 17.0°C
Heating to 18.0°C now. Back to auto-mode in 56min 14sec. 7am-4pm 13p 17.0°C
4pm-8pm  17p 17.0°C
8pm-3am 11p 17.0°C

Estimated 30 days cost: £41.29
Spent so far: £40.15 out of £100.

Boiler:ON

Boost for 1 hour

Figure 4.6: Indirect learning - home page.

on the then current price. For example, when the user sets the temperature to 20°C,
the thermostat will heat to this exact temperature for one hour. In the background, it
takes the 20°C as a new learning input and performs a Bayesian update. After the one
hour, the thermostat will switch to the temperature that will be optimal (according to

its updated user model) at the then current price.

In this design, since the temperature input that users provide temporarily overrides the
setpoint that the algorithm would set based on the user’s model and the current price,
the +/— buttons work exactly in the same way as in the manual thermostat (each press
increases/decreases the setpoint by half a degree). Once the user saves the new setpoint,
the algorithm updates the user model based on the new input. Then, it waits for an
hour to take the control back and change the setpoint to the learned one according to
the then current price. Meanwhile, the thermostat heats to the inputted temperature.
This process was explained with a pop-up message including a countdown timer, starting
from 60 minutes, in the UI (Figure 4.6). Users can still change the setpoint and save it
before the countdown finishes, which will restart the count down with the new setpoint.
As in the direct learning thermostat, the home page also contains a boost button, which
does not influence the learning. The settings and schedule pages are also provided for

the indirect learning thermostats.

4.4 Data Collection and Analysis

During the course of the study, we recorded all users’ interactions with the thermostat
application. For instance, we recorded when participants changed the setpoint or the

heating schedule, or when they used the boost button. Additionally, we collected detailed
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quantitative data about the heating habits of each household, including the temperatures
the users set in response to real-time prices and how indoor temperatures varied over
the course of the study. However, it was difficult to derive conclusions about the impact
of the different thermostat designs on these data, since there are other factors affecting
people’s heating preferences (e.g., weather and home insulation) (Peffer et al., 2011).

Therefore, we focused on the qualitative data collected during the interviews.

4.4.1 Interviews

We conducted semi-structured exit interviews with family members at their homes.
We interviewed 26 households.® The interviews were mostly held with the participant
that signed the consent form at the beginning of the study, however some interviews
also involved the participant’s partner. In the interviews we asked participants open
questions about their use, adoption and understanding of the thermostat. All interviews
were audio-recorded, and lasted on average of 34 minutes (SD: 8 minutes, min: 18

minutes, max: 52 minutes).

4.4.2 Analysis

The interviews were fully transcribed and analysed through thematic analysis Braun and
Clarke (2006). Four researchers were involved in this, while the coding was performed
by two researchers. The analysis started by categorising the material at the sentence
level through open codes. Initially 93 open codes were used, later grouped in broader

categories that we discuss in the following section.

4.5 Findings

In this section we first present an overview of the quantitative analysis we performed on
the overall system usage, based on the automatic interaction logs. Secondly, we report
the major findings of our thematic analysis. The analysis revealed six key themes: (1)
orientation towards the thermostat’s agency, (2) reactions to different UI features, (3)
managing the home heating with real-time prices, (4) mental models of the thermostat’s
learning feature, (5) balancing cost and thermal comfort, and (6) limitations of the
thermostat’s learning model. We present the categories that revealed these themes in
the following sections. In excerpts, we use “F” for female and “M” for male to denote

the gender of the household member.

50ther 4 participants were not available for the interview.
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Table 4.2: Overall quantitative data analysis.

Manual Direct L. Indirect L
M SD M SD M SD

36.7 528 133 144 185 228

Setpoint Changes
from Home Page

Setpoint Changes
from Settings Page

Schedule Changes 18.2 14.8 478 51.3 21.8 194
Boost Activations 175 141 7.3 4.3 142 11.3
Spent from Budget £55 £22 £55 £33 £30 £15

Demand Response  36% 19% 34% 1% 47% 24%
Note. M = Mean. SD = Standard Deviation.

- - 6.4 74 25 3

4.5.1 Overview of Quantitative Analysis

Users of each thermostat design heated their home using our system for a month. They
mostly interacted with the system via the tablet we provided or the tablet they already
had. Some of these participants additionally used their mobile phones to access the
system. Table 4.2 includes the overall data of system usage. We performed one-way
ANOVA tests on the quantitative data. However, we could not find any significant
differences or long-term effects in user interactions across the three deployed designs.
This was also the case for the analysis of other quantitative data collected (i.e., setpoints
and indoor temperatures). The analysis did not reveal any significant differences in users’
demand-responses or savings, which might be understandable given the interpersonal,

contextual, and environmental differences of the users.

4.5.2 Orientation towards the Thermostat’s Agency

All participants commented that they were happy with the thermostat autonomously
responding to real-time prices on their behalf. The following is a typical response that
we received in the interviews, when we asked participants about their feelings towards

the agency of the system.

P18 (M): “I'm happy with that if the thermostat understands that at this
price I would rather avoid heating the house, and at this price I would like
to heat the house, then I'm happy for it to take over that control, as long as

it’s very straightforward for me to override.”

We observed that they felt in control overall and were also mostly confident with the

way the thermostat was working.

Analyst: “To what degree did you feel like the system worked for you, or it

required you to do the work?”
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P13 (F): “So basically I just order the system to do the things for me and
the system does the whole thing. ”

4.5.3 Reactions to Different Ul Features

In the interviews we observed that most participants understood well how to use the
UI elements (e.g., the +/— buttons) of each thermostat design. Nearly all participants
commented that the thermostat was easy to understand and use. All participants ap-
peared to understand the functionality of the setpoint sliders and mostly appreciated

their use.

The users of the direct learning thermostat were mostly aware of the fact that sometimes
they were required to press the 4+/— buttons multiple times to achieve the desired
setpoint value. However, they did not explicitly state that this was due to the learning

feature.

P3 (F): “The estimated cost would change before the degree thing changed.
So, you press it. Sort of, like, Wow it needs four presses per half degree or
something, and I was like, because I could see this number here was changed.
It was doing something. Then I thought it must be incremental, must be in

tenths rather than in halves.”

The indirect learning thermostat users mostly explained the way the 60 minutes count-
down works as though it goes back to the previously saved setpoint rather than the

learned setpoint based on the price at the time after 60 minutes.

P23 (F): “So then there’s a countdown for 60 minutes and after that the
temperature will resume to what was set previously. Occasionally I would

reset the temperature again within those 60 minutes.”

4.5.4 Managing the Home Heating with Real-time Prices

Here we detail how and why participants used the thermostat in different ways to heat

their house with real-time prices.

4.5.4.1 Setpoint Preferences

Most participants of all three thermostat designs reported preferring to change ‘setpoint
now’ from home page to control the indoor temperature with real-time prices. They also

fiddled with the setpoint sliders, but the number of times was relatively low compared
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to the changes made in the ‘setpoint now’. Interviews revealed that most participants
were happy with the arrangement of the sliders and therefore they did not feel the need
to alter them often. Also a few participants found the sliders complex, which led them

to play with the ‘setpoint now’ more.

We had constrained the setpoint sliders to present a straight line corresponding to users’
heating preferences. Therefore, changes made to one of the sliders affected the values
of others. Overall the participants who interacted with the sliders found them easy to
adjust and appreciated their use. In the interviews, only one participant griped about
this linear relationship among the sliders. However, we noticed that this user only played
with the first slider throughout the study, therefore they could make only parallel shift

on the slider values without being able to change the slope of the line.

P15 (F): “If we could’ve adjusted them differently and made our own deci-
sions on these rather than they just go up automatically when you change

one of the others, we would’ve preferred that.”

Most participants kept the configuration of the sliders in descending order, starting with
higher temperature at lower price and lowering the setpoint as the price increases. Two
users calibrated the four sliders to have the same setpoint. In other words, they opted
for a specific temperature setpoint to heat their house over the course of the study

regardless of the heating cost.

P29 (M): “You should be prepared to pay more, a higher rate, if you wanted
to be more comfortable. I could change it as when I wanted it, but if I
wanted to go to a higher temperature, it could cost me more. But, because
I had set it at a flat rate, I wasn’t bothered.”

Also, participants reported that they did not need to change the sliders once they found
their limit for how much comfort they could sacrifice to save money. The process of

finding such a limit was generally a matter of trial and error:

P11 (F): “It was freezing cold and it must’ve broken. I checked and that’s

when I saw it was on 35p and that’s when I changed the lowest set point.”

Some participants were more conscious of and certain about their tolerance limit for
temperature even in the early stages of the field study. Therefore, once these participants
arranged the sliders early on in the study, they stopped interacting with the sliders, and

used other interface features, such as the schedule, to adjust the heating.
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P16 (M): “When we first got it, we looked at the pricing bands and made
some decisions at that stage. We did it once and I don’t think we revisited
it. What we did visit, then, pretty regularly, probably every day, and maybe

more often than once a day, we did revisit the schedule.”

4.5.4.2 Schedule

Most participants told us how it was easier to access and change the heating program
through our system compared to their previous programmable heating controls. Being
able to easily turn on and off the heating by touching on the displayed hourly time slots,
and being able to have different programs for weekdays and weekends, seemed to meet

participant’s favour.

P21 (F): “We changed it most days because it was so easy to access. If I was
going out and I knew that we wouldn’t be home until five, I'd set it to come

on at four. Whereas previously, we wouldn’t even touch it on a normal one.”

Here she refers to the “normal one” as a wall-mounted programmable thermostat that she
had before taking part in our study. Her comment suggests that people may engage more
with their heating systems when the systems are easy to control and access. Specifically,
among the users of all Ul designs, most participants liked being able to control the
heating remotely from anywhere in the house or anywhere outside via their Internet-

connected devices - rather than walking to a wall-mounted thermostat each time.

P23 (F): “It was just useful to be able to change the temperature from
wherever I was really. I could do it from work and quite often did or if I
went from work to the supermarket and then came home, you could do it

from the supermarket. So yes, it was really clever.”

In the interviews, we observed that occupancy was the major factor affecting the way
participants modified the schedule. They mostly tended to turn off the heating when no
one was around, and turn it on if someone was at home. Participants who had regular
lifestyles reported that they didn’t need to change the schedule often, whereas some

participants altered the schedule quite often due to their irregular lifestyles.

P28 (M): “I did change this one [schedule| at the very beginning, but other
than that I haven’t touched it at all because, I’ve been working with this
time limits for the boiler on and off for 25 years. It’s suited my lifestyle. I'm

a creature of habit really.”
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P10 (F): “I'm retired so could be at home all day but at the last minute
suddenly go off somewhere and we’re three adults. So it’s three people leading
separate lives in a way rather than if we were a family with children and you’d
know you would be in the house until half past eight go to school picking up.

So our lifestyle is quite erratic.”

We also observed that some participants used the schedule as a medium to respond to
changing energy prices. For example, in the following quote, P9 (F) indicates that she
moved the time that the thermostat normally comes on in the mornings nearly one hour

earlier to benefit from lower prices.
Analyst: “How do you feel about the real-time prices for heating energy?”

P9 (F): “I noticed that it [price] was cheaper before 7am. Previously, I'd
been putting the heating on like maybe 6:45 because we get up about 7:00,
then leaving it on while we’re getting ready for work and school and then
turning it off. I changed that and started putting it on earlier, putting it on
at 6:00 and then having it go off at 7:00, and it still kept the house warm

enough until we went out sort of an hour or so later.”

There were other factors that influenced participants’ heating program, such as their
daily activities or weather conditions. Participants mostly turned the heating on at
times that they usually took showers, or turned it off when they used the oven. While
on cold days participants arranged the schedule to make the thermostat come on for

more time slots, they had fewer time slots on for milder days.

4.5.4.3 Boost

After deciding how to balance comfort and cost, participants tended to use the “boost”
button for exceptional situations to turn the heating on instead of changing the setpoints

on the sliders.

P2 (M): “I tended to be comfortable with the settings that I had on it and
sort of left it. The only time if it was really cold in the mornings when we
got up, I'd press the boost to boost it and it probably only went on for an

hour or two.”

Some participants also commented that they used the boost button just to heat their

home a bit more when the prices were lower.

P21 (F): “I liked when it said £0.05 and I was like; yes, put the heating on,
boost it!”
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4.5.5 Mental Models of the Thermostat’s Learning Feature

Only the users of direct and indirect thermostats were exposed to the machine learning
algorithm. These users were required to click the save and learn button that appears
every time they make a change in the setpoint from home page in order to register
their preferred temperature into the thermostat. Including the text ‘learn’ in the save
button seemed to be successful at conveying the fact that the thermostat was learning.
However, when we asked the users’ opinion about what the thermostat was learning
in the interviews, three users reported that they had not thought about it before and

therefore that they had no comment.

Among the participants who formed opinions about the learning feature, most partici-
pants appeared to have an understanding that is well-matched with the actual under-
pinnings of the thermostat’s learning feature. Most participants were aware of the fact
that the thermostat was trying to correlate their preferred setpoints to varying prices.
It seemed that the display of previous inputs in the settings page supported their com-
prehension. Though, conceivably, no one seemed to be interested in how the thermostat

was actually calculating the setpoint based on their previous inputs

Analyst: “If you had to explain the learning feature to one of your friends,

how would you explain it?”

P3 (F): “It [thermostat] learns your tolerance for an increase in price. It
learns your habits and your behaviours in terms of the price versus the tem-
perature, and then it applies those, reapplies them for future events when

the unit price goes up.”

P23 (M): “As you input your set point changes according to the prices and
then the system starts to understand what your views are of that cost I
suppose. That is what you think is expensive and that is what you think is

cheap, and then make changes.”

In these quotes, the participants are very clear about what the thermostat was trying to
learn. They explain that the thermostat was learning their temperature preferences for
different prices based on their previous inputs. Also, the participants express that the
thermostat was learning in order to be able to autonomously respond to the changing

prices on their behalf.

On the other hand, some participants had another interesting mental model description
of the learning feature, which was neglecting the effect of the prices. These participants
described the thermostat as though it was matching their preferred temperatures with

the times and the days of the previous temperature inputs that they provided.
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Analyst: “So can you tell me what happens when you click to the save and

learn button after you change the setpoint?”

P21 (M): “Well, it [thermostat] updates and it changes the kind of the set-
point to what it is going to heat to, but it also learns what you have done.
So, I am guessing that later on, if you are doing that at a certain point every

day then it’s going to learn that.”

P30 (M): “If I play a particular temperature as the setpoint and then click on
save and learn, from what I understand is the system will take this reading
to consideration for whether to turn the boiler on or off but at the same time
try to see that at this particular time of the day, whether it’s weekday or
weekend and then try to replicate that during other days.”

This misinterpretation of the learning feature was more prevalent among the indirect
learning thermostat users than among the users of the direct learning thermostat. Fur-
ther exploration also revealed that none of the participants having the misinterpretation
was familiar with the Nest thermostat, or in fact any other smart thermostats that exist

in the energy market. We can therefore assume that they were not biased.

4.5.6 Balancing Cost and Thermal Comfort

Even though seeing the current price of energy had mostly impacted on how our partici-
pants heated their home over the course of the study, there were other significant factors
that played key roles in the decisions of the participants for maintaining their thermal
comfort at home. One of these key factors was occupancy. Most of our participants
commented that they tended to turn off the heating for the times that no one was at
home. Another important factor was outside weather as opposed to the indoor temper-
ature: the colder the weather was, the longer the heating was on. Lastly, daily activities
at home seemed to substantially influence the participants’ heating preferences. While
sitting still or having a shower caused participants to turn on the heating, cooking or

other physical activities led them to keep the heating off.

P2 (M): “I generally go out by nine o’clock I had the heating going off at
eight o’clock in the morning. So it sort of warmed us up to have our showers
and be comfortable in the morning, and weekends it depended whether we
were in or out as to whether we left it on or knocked it off. So it revolved
around our lifestyle and work patterns and things. And the temperature

outside. If it was really cold outside then we would have it on longer.”
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P1 (M): “Most of the time I tried to connect the schedule with my daily
activities. For instance, I take shower in the morning, and sometimes I work
here at home between 9 and 11. So these are the times that I turn on the
heating. Most of the time between 12 and 3, I cook and turn off the heating,

because it really doesn’t feel cold.”

Another interesting finding that emerged from the interviews was the ways participants
attempted to maintain their thermal comfort at home without using our heating system.
The most prevalent attempt was putting on one more layer of clothing (generally a
jumper), or using a blanket when the energy prices are high. Also some participants
took the advantage of their other heating sources such as wood-burning stoves, which is

typical in small town houses in the UK.

P8 (M): “I think we have probably spent less on our heating in general than
we would have done normally. Normally we heat the house pretty much all

the time in the winter. We did at times just put another jumper on.”

4.5.7 Limitations of the Thermostat’s Learning Model

As it is clear in the previous excerpts, the price was not the only factor affecting our
participant’s setpoint preferences. However, the learning algorithm used in both direct
and indirect learning thermostats was only considering two inputs: the setpoint regis-
tered and the price at that current time. Therefore, the thermostat was automating
the setpoint control only based on the price. This limited learning capability resulted
in dissatisfaction among a few participants since the setpoint automatically set by the
thermostat was not always the right temperature for its owner. The following quotes

are the only ones from which we received such feedback from the participants.

P3 (F): “There were times when I came in and I was like. Hang on a sec. My
house is really warm and it must have been because it had learned something
that. To do with the temperature. So, it must have said all the prices are
this, so they like it warm when it’s like this. It’s like. Hell no. It’s too hot!”

P9 (F): “Well, if I understood the intention that it was trying to set my
temperature according to the price, that didn’t really work for me. I kind
of wanted a combination. I kind of could see the point of that. But like I
said, at night, I didn’t want it so warm, though perhaps I quite sort of would
like it to keep it a degree or two cooler when the temperature’s high to save
money or something like that. But I also wanted it to let me decide more

and not decide for me all the time.”
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4.6 Discussion

In this section, we revisit the major findings of our study, and discuss them in light
of prior literature. We also present implications for interaction design of smart energy

systems and for future research.

4.6.1 Designing a Thermostat for Real-Time Prices

Any thermostat designed for real-time prices will need to automate the heating at some
level, as otherwise it would be a very difficult task for a human to monitor every price
change and alter the heating accordingly. In Chapter 3, we suggested that autonomous
systems should allow their users to easily override the automated decisions at any point
in time, without completely disabling the system’s autonomy. In this vein, in the Smart
Thermo study we observed that some participants used the boost button as a means
to temporarily override their temperature preferences for exceptional situations, rather
than resetting the learned preferences. These exceptional situations not only occurred
when users felt cold and wanted to heat the house despite the high prices, but also
happened when users wanted to heat the house a bit more than they would do normally

in order to benefit from low prices (typically termed the rebound effect).

One of the most-liked features was the display of ‘Estimated 30 days cost’. As P28-m
said, “I’ve watched also my estimated cost each day, to see whether it varied at all. I had
taken an interest in it, every day really, I'’ve become almost fixated by it.” We observed
that the participants used it as a ‘sandbox’ area (Mennicken et al., 2014), by which
they could view the consequences of different settings on the cost before approving
them. Another well-liked feature was the ability to control the thermostat remotely.
Participants commented that this feature affords them a high degree of convenience for
heating their home. Most of them reported that they monitored their house (whether
the heating was on or off) while they were away, or turned the heating on just before
coming home. Furthermore, they found the use of it handy even within the house. For
instance, one of our participants commented that she liked being able to take the tablet
with her to bed so that she could turn the heating on in cold mornings without having
to leave the bed.

Most participants found the thermostat’s heating schedule easy to access and program.
However, some participants perceived its hourly time slots as limiting their scheduling
plan. This is understandable when one considers that today most heating controls pro-
vide finer resolutions (e.g., 10 to 30 minutes). Additionally, grouping the daily heating
program by weekdays and weekend was not convenient for all participants to accom-
modate their occupancy patterns. As an example, one participant said her Saturdays
and Sundays are totally different. We also had some participants who did not have any

occupancy patterns at all and had to adjust the schedule quite a few times in a day.
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Therefore, further research is needed to address how to best design heating programs

for people with unpredictable lifestyles.

Our field study showed that participants could use our thermostats to effectively manage
their home heating and create temperature preferences based on real-time prices. As
we expected these temperature preferences varied for different individuals. While most
participants set lower temperatures at peak prices compared to lower price periods,
reducing the average energy consumption during peak hours by 38% (see Table 4.2), two
households kept the same temperature for all price bands. Furthermore, our participants
adopted different strategies to respond to real-time prices. While most participants used
the setpoint and the setpoint sliders for reacting to changing prices, some participants
interestingly used the boost and the schedule features more than adjusting the setpoint
for heating their home with real-time prices. This is in line with a previous study that
examined people’s use and mental model of their heating system (Revell and Stanton,
2014), and revealed that setpoint adjustment was less prevalent among their participants
compared to the adjustments of other devices, such as the programmer, override button

and radiator valves.

Finally, we noted the several ways that our participants used to maintain their thermal
comfort, especially when the prices were high, without using our heating systems, such
as putting on one more layer of clothing or using a blanket. These observations show
similarity to the findings of previous work (Clear et al., 2013, 2014), which examine
students’ daily heating habits and report the similar activities without any financial
benefits.

4.6.2 Expectations from Smart Home Heating Systems

While most participants perceived the thermostat as “smart” because of its learning
capability of preferred temperatures and its ability to automate home heating based
on changing prices, for some participants it was enough to describe the thermostat
as smart just because of its remote control capability and its programmable schedule.
This perception was due to the fact that these functionalities were mostly new to the
participants. More importantly they experienced improvement in their quality of life as
these functionalities assisted and facilitated their heating task. This finding is in line
with prior research suggesting that computing technologies would be perceived to be

“smart” if they offer an advantage for the users’ daily tasks (Mennicken et al., 2014).

Regarding the learning feature of the thermostats, participants had different explana-
tions and mental models. While some participants described the system as one that was
trying to match their temperature preferences with changing prices, other participants

thought that the system was learning the times of days that they set temperatures.
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Interestingly, participants who used the direct learning thermostat and had no techni-
cal background (e.g., P3, an antiques dealer) described more accurate mental models
compared to the participants of the indirect learning thermostat with more technical
background (e.g., P1-m and P30-m, both computer science PhD students). A previous
study examining non-technical users’ understandings of an intelligent system suggests
that people’s initial mental models and misconceptions stayed relatively constant over
their study (Tullio et al., 2007). Therefore, we asked our participants, who had this
misconception, if they were aware of any commercial smart thermostats, such as Nest
that learns your schedule, in order to see if they had any initial knowledge that would
have affected their mental models. However, they all reported that they had not heard
of any smart thermostat before. This then may suggest that exposing users directly
to the outcomes of learning algorithms may help users to create better mental models.
Furthermore, while showing the correlation between previous temperature inputs and
prices supported the users’ understanding, a more useful method could be a notifica-
tion system that periodically states what has been learned by the system. We believe
these results highlight an important implication for future research in interaction with
“smart” energy systems to try and discover the source of people’s mental models and

learning expectations.

Our system learns users’ preferred temperatures at different prices to automate home
heating. However, from the interviews, it was clear that the price was not the only
factor that our users considered for heating their home. Other key factors were outside
weather, occupancy and daily activities within the house. Some participants explicitly
stated that the use of the thermostat could be more convenient if it could learn their
occupancy patterns. Also, outside weather and the activities that they perform during
a day within the house have a significant impact on how people feel the indoor tempera-
ture. For instance, most of our participants preferred to have the heating on when they
shower and have the heating off when they use their oven or perform physical activi-
ties. Therefore, future design of learning thermostats should not only take into account
occupancy patterns and outdoor temperatures (Peffer et al., 2011), in addition to peo-
ple’s price preferences, but also people’s daily routines (e.g., times that they shower and

cook).

4.6.3 Studying Future Smart Energy Systems

In order to let participants experience a future scenario, we prototyped our system
based on envisioning (Reeves, 2012). Our scenario depicts an energy market in which
consumers can respond to real-time prices by using a smart thermostat that automati-
cally controls heating on their behalf. Participants’ statements about their perception
and adoption of the smart thermostat indicate that combining experimental reward with

a deployed prototype is an effective way to convey a future scenario to participants and
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allow them to obtain real life experience, echoing the findings represented in Chapter 3
and a recent study of future scenarios (Costanza et al., 2014). Extending our Tariff
Agent studies and the study by Costanza et al. (2014), in Smart Thermo study our
participants experienced the autonomous actions of the smart energy system not only
through financial incentives, but also through the thermostat’s automatic temperature
changes. Such changes could directly influence our participants’ comfort. Yet, similar to
the results of previous studies, our participants mostly felt in control of their heating sys-
tem and demonstrated a generally positive attitude towards the thermostat. Hence, we
believe this finding reinforces those from those previous studies, revealing the potential

of future autonomous smart energy systems.

One of the prerequisites for taking part in our study was to have a central heating
system with a single boiler. However, we did not define any requirements on the type of
thermostat previously installed, such as programmable or non-programmable, digital or
analog. Our findings revealed that the type of thermostat familiar to our participants
influenced their perception and use of our system. In particular, participants not used to
a programmable thermostat focused mostly on the schedule feature of our system, since
this was a new and significant feature for them. This circumstance turned out to steer
attention away from our primary interest: the ability of our thermostats to automatically
react to real-time prices. Hence, future research should take user fragmentation into
account in the recruiting process of participants in order to improve the effectiveness of

system designs and to obtain more focused results.

4.7 Summary

Smart energy systems that leverage machine learning techniques are increasingly in-
tegrated in all aspects of our lives, and they are changing the way that we perform
our daily activities. The design of these systems plays a key role in how we adapt to
and interact with them. Therefore, we need to better understand how to design user
interaction with such systems. To this end, in this chapter, we introduced the design
and implementation of three different smart thermostats that automate heating based
on users’ heating preferences and real-time prices. We presented the evaluation of our
designs through a field study, where 30 UK households used our thermostats to heat

their homes over a month.

Our findings through thematic analysis show that the participants formed different un-
derstandings and expectations of our smart thermostat, and used it in various ways to
effectively respond to real-time prices while maintaining their thermal comfort. Based
on the findings, we provided a number of design and research implications, specifically
for designing future smart thermostats that will assist us in controlling home heating

with real-time pricing, and for future intelligent autonomous systems. Specifically, we
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observed that exposing users directly to the consequences of machine learning resulted
in better user mental models. Also we learnt that taking user fragmentation into ac-
count in the recruiting process of participants is important to improve the efectiveness

of system designs and to obtain more focused results.

We suggest that future learning thermostats should provide users a means to temporarily
override their preferences for exceptional situations and a means to view the financial
consequences of different settings before confirming them. Moreover, future design of
learning thermostats should not only take into account occupancy patterns, outdoor
temperatures, people’s price preferences, but also people’s daily routines (e.g., times
that they shower and cook). These recommendations will assist designers in addressing
the challenges highlighted in Chapter 1, and therefore will help them improving user
experience with smart energy systems. This in return will enable us to more smoothly

integrate these systems into our everyday lives and actually benefit from them.



Chapter 5

Conclusions and Future Work

In this chapter, we summarise the contributions of this thesis and give directions for

future work.

5.1 Conclusions

In Chapter 1, we first stated that while there exist many studies that propose algorithms
for autonomous agents to control home energy use where, for example, agents automate
microstorage or appliance use, there are very few studies that examine the use of agents
with real-world deployments. Hence, we then highlighted that there is a significant gap
in our understanding of how we should design interactions with agent-based energy sys-
tems, especially for the ones that might possibly intrude upon our daily activities. Given
this, we represented the aim of this work that is to provide novel design guidelines that
improve user interactions with autonomous agent-based home energy management sys-
tems, and ascertain to what extent actually users embrace autonomous agents, whether
they opt for fully autonomous or semi-autonomous agents as opposed to controlling their

preferences without any automation.

To this end, Chapter 2 provided a necessary background of previous research approaches
that examine human-agent interaction in miscellaneous genres with various perspectives.
We also gave an overview of the forthcoming developments in smart energy systems
and existing energy related studies from various disciplines work including agent-based
computing, HCI, and social sciences. We then concluded that these approaches have
neglected the questions of how software agents should be involved in smart energy in-
frastructures and how users and these agents should interact with each other, which is
what we aim to address in this thesis by representing a number of field evaluations of

different designs of agent-based energy systems.
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Chapter 3 represents two field studies that exposed participants to a prototyped future
energy scenario. Our scenario simulates a situation where households can switch electric-
ity tariff on a daily basis, to try and best match their consumption level. This scenario
enabled us to study users’ interactions with Tariff Agent, an interactive autonomous
system designed to help in managing energy costs, which offers flexible autonomy and
detailed information about its operation. The studies were made possible by combin-
ing off-the-shelf Internet-connected sensors with Web technology, and with monetary
rewards. Our field studies enabled participants to experience an autonomous energy
service agent in their everyday lives, form opinions about it and develop strategies to
integrate its autonomous operation in their everyday practices. Based on the results of
our field studies, we demonstrate that users are, at least in part, ready to use systems
like Tariff Agent to manage their energy tariffs. However, the results stress that system
designs need to strike a nuanced balance between providing the user with means to
monitor system performance and take control when they consider it necessary. We then
provided novel design guidelines for implementing mixed-initiative interactions with au-
tonomous energy systems. The design guidelines suggest that designers should provide
an easy way for users to receive updates about the status and operation of the agent,
enable users to instruct the agent by offering them opportunities to declare their plans
and integrate these plans into the agent’s operations, and leave the system open to trans-
fer of control by allowing users to adjust the system’s level of autonomy. We believe
these guidelines, which are derived from real-world deployments, can be also used for

developing applications in other domains that involve human-agent interaction.

Chapter 4 represents a field evaluation of a smart thermostat called Smart Thermo,
which automates heating based on users’ heating temperature preferences over real-time
prices. 30 UK households used our thermostats to heat their homes over a month. Our
findings through thematic analysis indicate that the participants formed different un-
derstandings and expectations of our smart thermostat, and used it in various ways to
effectively respond to real-time prices while maintaining their thermal comfort. Fur-
thermore, we show that exposing users directly to the consequences of machine learning
may result in better user mental models. Based on the findings, we finally provide a
number of design implications, specifically for designing future smart thermostats that
will assist us in controlling home heating with real-time pricing, and for other future
intelligent autonomous systems of which actions may cause financial consequences for
us. In particular, the implications suggest that designers should provide users a means
to temporarily override their preferences on a learning-based system for exceptional sit-
uations, rather than resetting the learned preferences, and a means to view the financial

consequences of different settings before approving them.

Tariff Agent and Smart Thermo were developed by taking into account the prototype

requirements stated in Section 1.2.1. In both, the system’s autonomous actions were
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made configurable, visible, and controllable to users. Moreover, both systems were eval-
uated with field studies based on the evaluation requirements presented in Section 1.2.2.
We linked users’ actual electricity consumption with monetary incentives to provide
ecological validity and enable them to experience varying energy prices. We attached
importance to recruit a fair number of participants having different backgrounds (see
Tables 3.1 and 4.1). To better understand user perception of and interaction with our
systems, we used both quantitative and qualitative research methods. Based on the
quantitative and qualitative analyses, we provided novel design guidelines for develop-
ing autonomous domestic energy systems for everyday life use, which helped us to meet
our research objectives indicated in Section 1.3. Furthermore, our results enabled us to
address the research challenges mentioned in Section 1.4. In particular, we showed that
flexible autonomy helps users feeling in control and therefore sustaining their trust in
and interaction with the agent. We also showed the intelligibility of agents seems to be
improved by providing means for users to direct the agent, and by exposing the users to

the consequences of their inputs without any delay.

When taken together, the contributions of the field evaluations of the novel agent-based
energy applications that are represented in this thesis advances the state of the art
interaction design in the domain of human-agent interaction. We believe our contri-
butions highlight opportunities and show promising directions to design autonomous
energy systems in ways that make them useful and acceptable to users in their everyday
lives. Our design recommendations will assist designers in improving user experience
with autonomous technologies, which in return will help us to more smoothly integrate

these technologies into our everyday lives and actually benefit from them.

The field studies represented in this thesis are significant steps towards achieving the goal
of designing interactive autonomous systems that meet user satisfaction in the domain of
residential energy management. However, we recognise that there are some limitations
in our studies, which pave the way for our future work. In the following section, we

discuss the limitations and our future research focuses.

5.2 Future Work

The interviews with the users of Tariff Agent and Smart Thermo revealed that some
participants perceived these systems more smarter than they actually were. For instance,
some Tariff Agent users thought the system was learning their consumption habits over
the past days, whilst the system was just using the yesterday’s consumption. Similarly,
Smart Thermo was only learning people’s temperature preferences over varying prices.
However, some users believed that the thermostat was also learning their temperature

preferences based on the times of the day. We believe these results highlight an important
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implication for future research in interaction with autonomous agent-based systems to

explore the underlying source of people’s understandings and learning expectations.

As with all field experiments, our studies are subject to several limitations. These limi-
tations suggest a number of directions for future research. In our studies only one par-
ticipant per household took part in the interview. Therefore, the focus was on individual
interaction with and perception of the system. However, as most of our participants live
with others, the system may affect the social dynamics in the home around energy con-
sumption. Further research is required to better understand the potential social impacts
of the system on home dwellers, and consequently draw implications on how domestic
autonomous systems may best be designed to support multi-user interaction. Moreover,
the duration of our field studies were limited to 2, 4 and 6 weeks. An opportunity for fu-
ture work, then, is to observe user engagement and potential behavioral change through
longer term studies. Furthermore, our participants are not representative of the overall
society: as almost all of them are educated to above average levels; so it is important to

extend this work to a more general population.

Moreover, our contributions through a number of field studies involved an individual
person interacting with a single agent. Future work could aim to advance our research
through investigating human-agent interactions in multi-agent systems where an individ-
ual person could interact with multiple agents or with other people, directly or through
their agent. In order to investigate human-agent interactions in multi-agent systems,
an agent-based platform could be deployed for energy exchange among multiple con-
sumers. The platform could initiate the energy exchange protocol introduced in a recent
study (Alam et al., 2015) as a future scenario, where off-grid homes equipped with re-
newable energy sources and electricity storages can negotiate and exchange energy with
each other. A field study of such a scenario could help us to better understand how we
should design user interaction with multi-agent systems to support people’s collaborative

activities and their coordination.



Appendix A

Real-Time Energy Prices

The following tables include the real-time prices used in the Smart Thermo study dis-
cussed in Chapter 4. The pairs presented in the tables correspond to the actual and
predicted prices for each half an hour period of each day, over 31 days, starting from 1st
January 2014.
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Period/Day 1 2 3 4 5 6 7 8

1 (12,12) 7,7) (20,7) (12,12) (12,15) (7,12) (7,10) (22,7)
2 (12,12) 7,7) (12,12) (12,12) (12,15) (12,12) (10,10) (12,7)
3 (12,12) (7,7) (12,12) (20,7) (10,15) (12,12) (12,10) (12,7)
4 (12,10) 7,7) (7,7) (10,7) (10,12) (12,12) 7,7) 22,7)
5 (7,10) (5,7) (7,7) (7,7) (10,12) (7,12) (5,7) 7,7)

6 (7,10) (5,7) 7,7) (5,7) (10,10) (7,12) (5,7) 22,7)
7 (20,12) (5,7) (7,7) (5,7) (7,10) (5,10) (5,7) 7,7)

8 (5,12) (5,7) (5,7) (5,7) (7,10) (5,7) (5,7) (7,7)

9 (5,12) (5,7) (5,7) (5,7) (7,10) (5,7) (5,7) 7,7)

10 (5,7) (5,7) (5,7) (5,7) (7,7) (5,7) (5,7) 7,7)

11 (5,7) (5,7) (5,7) (5,7) (12,7) (5,7) (5,7) (7,7)

12 (5,7) (5,7) (5,7) (10,7) (20,7) (5,7) (12,7) (7,7)

13 (5,7) (7,10) (5,10) (12,10) (12,7) (7,15) (12,10) (10,10)
14 (5,7) (7,10) (7,10) (7,10) 7,7) 7,7 (15,10) (10,15)
15 (5,7) (7,10) (7,10) (7,12) (7,10) (10,10) (15,10) (12,12)
16 (5,7) (7,10) (10,10) (7,12) (10,10) (15,10) (15,10) (15,17)
17 (5,5) (10,12) (12,10) (7,10) (7,10) (12,10) (10,10) (15,12)
18 (5,7) (15,12) (12,12) (10,10) (7,10) (10,10) (10,10) (10,12)
19 (7,7) (15,10) (12,12) (10,17) (10,12) (12,12) (10,12) (15,12)
20 7,7 (15,12) (12,12) (10,22) (10,12) (15,12) (10,12) (10,12)
21 (7,7) (12,12) (12,10) (10,20) (12,12) (12,12) (15,12) (20,12)
22 7,7 (12,12) (12,10) (20,17) (10,12) (12,12) (10,12) (10,12)
23 (10,10) (12,12) (12,10) (25,15) (12,12) (10,12) (10,10) (10,12)
24 (12,10) (12,12) (12,12) (20,12) (12,12) (10,12) (10,10) (15,12)
25 (15,10) (12,12) (12,12) (27,12) (15,12) (10,12) (10,10) (15,12)
26 (12,10) (12,12) (12,12) (25,12) (15,10) (10,12) (10,10) (15,12)
27 (12,10) (12,12) (12,12) (20,12) (12,10) (10,12) (12,10) (15,15)
28 (12,10) (12,12) (15,12) (17,12) (10,10) (10,12) (12,10) (17,15)
29 (12,10) (12,12) (12,12) (15,12) (12,10) (10,12) (12,10) (20,12)
30 (12,10) (12,10) (12,10) (15,15) (10,10) (10,12) (12,10) (20,12)
31 (10,10) (10,12) (12,12) (15,12) (10,12) (10,12) (10,15) (25,12)
32 (10,10) (10,12) (12,12) (15,12) (12,12) (12,12) (10,12) (25,12)
33 (15,12) (15,15) (15,15) (25,15) (12,12) (12,20) (12,15) (30,12)
34 (20,25) (25,17) (20,15) (35,17) (15,15) (20,22) (22,20) (35,27)
35 (20,27) (35,17) (20,17) (35,20) (20,17) (17,22) (25,17) (15,30)
36 (17,25) (35,17) (17,15) (35,20) (12,17) (20,22) (22,17) (15,27)
37 (17,22) (30,15) (15,15) (35,17) (20,15) (17,20) (20,15) (15,15)
38 (15,15) (15,15) (12,15) (32,15) (15,15) (15,17) (15,15) (15,15)
39 (15,15) (15,12) (15,12) (17,12) (15,12) (12,15) (15,12) (12,12)
40 (15,15) (15,12) (15,12) (15,12) (10,12) (12,15) (15,12) (15,12)
41 (15,15) (12,12) (15,12) (12,12) (12,12) (12,15) (12,12) (12,12)
42 (10,12) (12,12) (15,12) (12,12) (12,12) (12,12) (12,12) (12,12)
43 (20,17) (10,10) (15,12) (15,12) (12,12) (10,12) (10,12) (12,12)
44 (10,12) (10,10) (12,12) (12,12) (12,12) (10,12) (10,12) (12,12)
45 (7,12) (10,10) (10,10) (12,12) (12,12) (10,12) (10,10) (20,12)
46 (7,10) (20,10) (10,10) (12,12) (12,12) (7,10) (10,10) (10,10)
47 7,7) 7,7) (12,12) (12,15) (7,15) (7,10) (7,10) (7,10)
48 (7,7) (20,7) (12,15) (12,15) (7,12) 7,7) (7,10) (7,10)




Period/Day 9 10 11 12 13 14 15 16
1 (12,10) (12,15) (10,12) (12,10) (12,12) (10,10) (12,10) (12,10)
2 (12,10) (15,15) (12,12) (12,10) (12,12) (12,15) (12,10) (12,10)
3 (12,10) (12,15) (12,12) (12,10) (12,10) (12,15) (12,10) (12,10)
4 (12,10) (10,12) (10,10) (12,10) (12,10) (10,15) (10,10) (10,12)
5 7.7 (10,10) (10,10) (12,7) (12,10) (10,15) (10,12) (10,10)
6 7.7) (10,12) (12,10) (12,7) (12,10) (12,15) (10,10) (10,10)
7 (7,12) (7.12) (12,7) (12,7) (12,15) (12,10) (10,10) (7,10)
8 (5.7) (7,10) 7.7) (12,7) 7.7) (10,10) (10,10) (7,10)
9 (7,12) (7,10) 7.7) (12,7) (7,15) (10,10) (10,10) (7,10)
10 (5.7) (7,10) 7.7) 7.7) (7,10) (10,10) (5,7) (12,10)
11 (7,10) (10,10) (7,10) 7.7) 7.7) (10,12) (10,12) (7,12)
12 (7,15) (12,10) (7,10) 7.7) 7.7) (10,12) (7,15) (7,12)
13 (10,15) (15,12) (7.12) 7.7) (15,7) (12,12) (7,15) (10,12)
14 (10,15) (15,12) (7.12) 7.7) (15,7) (12,12) (10,15) (15,15)
15 (10,15) (15,12) (10,17) (12,7) (15,7) (12,15) (12,20) (15,17)
16 (17,20) (22,12) (10,25) (10,10) (27.7) (15,17) (15,30) (15,17)
17 (30,17) (15,12) (7,30) (10,10) (17,10) (15,15) (12,27) (27,12)
18 (12,17) (15,12) (10,12) (10,10) (12,12) (15,17) (15,20) (12,25)
19 (12,15) (15,12) (10,12) (10,12) (17,15) (12,25) (15,17) (12,30)
20 (12,17) (15,17) (10,12) (12,12) (20,25) (12,32) (15,17) (12,32)
21 (12,15) (15,17) (12,12) (12,12) (12,32) (12,25) (15,17) (12,25)
22 (12,15) (15,15) (15,17) (12,12) (15,17) (12,22) (15,17) (12,27)
23 (12,12) (15,20) (12,17) (12,12) (12,17) (10,17) (15,17) (12,17)
24 (12,12) (15,17) (12,15) (17.12) (12,17) (10,17) (12,15) (12,20)
25 (12,15) (12,17) (10,15) (27.12) (12,17) (10,17) (12,15) (12,20)
26 (10,12) (12,17) (10,12) (30,12) (12,17) (10,15) (12,15) (12,15)
27 (10,12) (15,17) (10,12) (30,12) (12,17) (10,17) (12,12) (10,15)
28 (10,12) (15,15) (10,12) (32,12) (12,17) (10,15) (12,12) (10,15)
29 (10,12) (17.17) (10,12) (32,10) (12,17) (10,17) (12,12) (12,15)
30 (10,12) (15,15) (10,12) (27.,10) (12,15) (10,15) (12,12) (12,15)
31 (10,12) (12,15) (12,12) (22,10) (12,12) (10,12) (10,12) (15,15)
32 (10,12) (15,15) (12,12) (17.12) (15,15) (10,15) (12,12) (20,15)
33 (12,12) (15,12) (12,12) (25,12) (12,12) (10,17) (12,12) (22,17)
34 (12,25) (20,17) (15,15) (25,12) (17,25) (15,20) (17,17) (27.32)
35 (15,32) (17,20) (25,17) (27,35) (20,32) (15,20) (20,27) (27,22)
36 (15,25) (15,17) (32,15) (22,35) (20,27) (15,20) (20,25) (20,20)
37 (12,27) (15,17) (27,12) (20,30) (17,15) (12,20) (12,20) (17,20)
38 (12,20) (15,15) (25,12) (17.,15) (15,15) (12,17) (15,17) (15,17)
39 (15,15) (12,12) (20,12) (15,12) (12,12) (12,12) (17,12) (12,15)
40 (15,15) (15,12) (15,12) (15,12) (15,15) (12,12) (17,12) (12,15)
41 (15,12) (12,12) (12,12) (15,12) (12,17) (15,15) (10,12) (12,12)
42 (12,12) (12,12) (10,12) (15,12) (10,12) (15,12) (17,12) (12,12)
43 (12,15) (12,12) (12,12) (15,10) (12,15) (12,15) (15,12) (17,12)
44 (10,12) (12,15) (12,15) (10,10) (12,15) (10,15) (10,12) (12,15)
45 (10,12) (12,15) (10,12) (10,10) (10,10) (12,15) (10,15) (12,15)
46 (10,12) (12,12) (12,12) (7,10) (12,10) (12,12) (10,12) (10,15)
47 (12,12) (12,10) (12,10) (7,12) (12,10) (10,10) (10,10) (10,12)
48 (12,12) (12,10) (12,10) (12,12) (10,10) (10,10) (10,10) (10,10)




Period/Day 17 18 19 20 21 22 23 24
1 (10,15) (15,10) (12,12) (10,10) (12,12) (7,15) (10,12) (7,17)
2 (12,15) (15,10) (12,12) (10,15) (12,12) (7,15) (10,15) (12,17)
3 (12,17) (15,10) (12,15) (10,15) (10,15) (7,15) (12,17) (12,17)
4 (7,15) (12,7) (10,15) (10,15) (10,12) (7,17) (7.17) (12,15)
5 (7,15) (12,7) (7,15) (12,15) (10,12) (7,15) (10,15) (12,15)
6 (12,15) (12,7) (7,15) (12,15) (10,12) (7,15) (10,15) (12,17)
7 (7,12) (10,7) (7,15) (10,15) (7,12) (7,15) (7,15) (12,15)
8 (7,12) (10,7) 7.7) (7,10) (7.12) (7,15) (7,15) (7,15)
9 (7,15) 7.7) (7,15) 7.7) (7,12) (7,15) (7.17) (7,17)
10 (7,12) 7.7) (7,15) 7.7) (7.12) (7,15) (7.12) (7,10)
11 (7.12) 7.7) (7,15) (10,7) (10,12) (7,12) (7,15) (7,15)
12 (7,15) 7.7 (7,15) (10,7) (7,10) (7,12) (7,15) (7,12)
13 (7,15) (7,10) 7.7) (12,7) (12,12) (7,15) (10,12) (12,15)
14 (15,15) (7.12) 7.7) (12,7) (12,12) (10,15) (10,15) (12,15)
15 (15,17) (7,12) (7,12) (12,7) (12,12) (10,17) (10,17) (12,15)
16 (12,20) (7,12) (7,10) (15,7) (12,12) (15,17) (15,17) (12,15)
17 (12,17) (10,12) (12,10) (15,10) (12,12) (12,12) (12,17) (12,12)
18 (12,12) (10,12) (12,12) (12,12) (12,12) (12,12) (12,17) (12,12)
19 (12,15) (10,12) (12,15) (12,10) (12,12) (12,17) (12,17) (12,12)
20 (12,17) (15,17) (12,17) (15,15) (12,15) (12,22) (12,17) (12,12)
21 (12,15) (10,12) (15,17) (15,15) (12,32) (12,17) (12,20) (15,12)
22 (12,17) (10,17) (15,25) (15,17) (12,32) (12,17) (12,20) (15,12)
23 (12,15) (12,17) (12,22) (27.17) (15,27) (12,15) (10,17) (15,12)
24 (12,17) (12,17) (12,25) (27.17) (15,17) (10,12) (10,17) (15,12)
25 (12,12) (10,17) (12,25) (12,20) (10,22) (10,12) (10,20) (12,12)
26 (10,12) (10,15) (12,20) (12,17) (10,17) (10,12) (10,20) (12,12)
27 (10,12) (10,17) (12,17) (12,17) (15,12) (10,15) (12,17) (12,12)
28 (10,15) (10,17) (12,17) (12,15) (15,12) (10,15) (12,17) (12,12)
29 (12,17) (10,10) (12,17) (12,15) (12,15) (10,15) (10,15) (12,15)
30 (10,15) (7,10) (12,15) (12,15) (10,12) (10,15) (10,15) (12,22)
31 (10,15) (10,12) (12,17) (12,15) (12,17) (12,15) (10,15) (10,15)
32 (12,15) (10,12) (12,17) (15,15) (12,17) (12,12) (10,17) (10,15)
33 (10,15) (10,12) (12,17) (17,15) (15,12) (12,12) (10,15) (10,15)
34 (30,15) (10,15) (15,25) (17.,15) (15,15) (12,15) (17,20) (12,15)
35 (32,20) (15,15) (22,32) (17,22) (15,17) (15,15) (35,35) (15,20)
36 (27,20) (15,15) (22,30) (17,20) (15,15) (12,15) (32,35) (12,20)
37 (27,17) (12,15) (20,17) (17.12) (15,15) (15,15) (25,35) (12,17)
38 (12,17) (12,15) (17,15) (17.,15) (12,15) (12,15) (20,27) (15,17)
39 (17,12) (10,15) (15,12) (15,15) (15,15) (12,15) (15,15) (15,12)
40 (17,12) (10,12) (12,12) (15,12) (15,15) (12,17) (12,15) (15,12)
41 (15,12) (10,12) (12,12) (12,12) (15,15) (12,15) (12,15) (15,12)
42 (15,12) (12,12) (12,12) (12,12) (12,12) (12,15) (12,15) (15,12)
43 (15,12) (12,12) (12,12) (12,15) (10,12) (12,15) (10,15) (15,12)
44 (12,12) (10,12) (10,12) (10,12) (10,12) (10,15) (10,15) (10,12)
45 (12,12) (7.12) (10,12) (10,15) (10,12) (10,12) (10,15) (10,12)
46 (15,12) (12,10) (10,10) (10,15) (10,10) (10,12) (10,12) (10,12)
47 (12,10) (12,10) (10,12) (12,12) (7,10) (10,10) (7,15) (10,10)
48 (12,10) (12,10) (10,10) (12,10) (7,15) (10,10) (7,15) (10,10)




Period/Day 25 26 27 28 29 30 31
1 (10,10) (12,17) (7,10) (15,7) (10,7) (12,12) (12,15)
2 (10,10) (12,20) (7,12) (12,7) (10,15) (12,12) (12,15)
3 (10,10) (12,17) (7,12) (12,7) (12,12) (10,17) (12,15)
4 (10,10) (12,15) (7,12) (12,7) (10,12) (10,15) (10,15)
5 (7,10) (12,15) (7,10) (12,7) (10,12) (10,20) (10,17)
6 (7,10) (12,15) (7,12) (12,7) (10,12) (10,17) (10,17)
7 (7,10) (12,15) 7.7) 7.7) (7,12) (10,12) (10,17)
8 (7,10) (10,15) 7.7) 7.7) (7.12) (10,12) (10,17)
9 (7,10) (7,15) 7.7) 7.7) (7,12) 7.7) (7,15)
10 (7,10) (7,15) 7.7) 7.7) (7.12) 7.7) (7,15)
11 (7,10) (7,10) 7.7) 7.7) (7.17) (15,15) (10,15)
12 (7,10) (7,10) 7.7) 7.7) (7,12) (15,15) (10,10)
13 (7,10) (7,15) (10,7) (12,15) (10,17) (12,25) (10,15)
14 (7,15) (7,15) (12,7) (12,15) (12,17) (12,17) (10,15)
15 (7.12) (7,15) (15,7) (12,17) (10,22) (15,17) (12,17)
16 (7.12) (7.17) (15,7) (15,17) (10,27) (15,17) (17,17)
17 (15,12) (7.17) (15,7) (12,17) (12,22) (17,15) (17,20)
18 (15,12) (7.17) (15,7) (12,17) (10,20) (17.,15) (12,12)
19 (15,12) (12,17) (15,10) (15,12) (10,20) (27.,15) (12,17)
20 (15,12) (15,17) (15,10) (15,17) (10,20) (27,15) (12,12)
21 (15,17) (12,17) (15,10) (15,12) (10,22) (27.,15) (12,12)
22 (15,17) (15,17) (15,10) (15,12) (10,17) (27.,15) (12,12)
23 (15,17) (15,15) (15,12) (15,12) (10,15) (27.12) (15,12)
24 (15,17) (15,17) (15,12) (15,12) (15,15) (35,12) (15,12)
25 (15,15) (15,17) (15,12) (15,20) (15,15) (35,12) (15,12)
26 (15,15) (15,17) (15,12) (15,20) (15,15) (30,12) (15,12)
27 (10,15) (15,15) (12,12) (17,20) (15,12) (22,12) (15,10)
28 (12,15) (15,15) (12,10) (12,17) (12,12) (15,12) (15,10)
29 (12,15) (15,12) (15,10) (12,20) (12,10) (17.12) (15,10)
30 (10,15) (15,12) (15,10) (12,17) (12,10) (15,12) (15,10)
31 (12,12) (12,10) (12,12) (12,15) (15,12) (15,12) (15,12)
32 (12,15) (10,10) (15,12) (12,15) (15,12) (15,12) (15,12)
33 (12,15) (10,10) (12,12) (12,15) (15,12) (15,12) (15,12)
34 (15,22) (12,12) (15,15) (12,27) (17,27) (25,15) (30,15)
35 (22,25) (25,22) (25,25) (20,27) (15,27) (22,30) (27,17)
36 (22,15) (25,25) (22,25) (17,17) (15,25) (17,27) (27.17)
37 (20,15) (20,15) (20,22) (15,20) (15,22) (15,25) (25,15)
38 (15,15) (17,12) (20,22) (12,15) (15,15) (15,22) (22,15)
39 (12,15) (15,12) (17,22) (12,12) (12,12) (17,20) (20,15)
40 (12,15) (15,12) (15,12) (12,15) (17,12) (15,20) (15,17)
41 (10,15) (15,12) (12,15) (12,12) (15,15) (15,20) (15,15)
42 (15,15) (15,12) (12,12) (12,15) (12,15) (15,15) (15,12)
43 (12,15) (12,10) (15,10) (12,15) (12,15) (12,15) (12,12)
44 (10,15) (7,10) (10,10) (10,12) (12,15) (12,15) (10,12)
45 (7,15) (7,10) (12,10) (10,10) (12,22) (12,15) (12,12)
46 (7,15) (7,10) (10,10) (10,15) (12,12) (12,15) (10,10)
47 (7,15) (7,10) (15,10) (12,15) (12,12) (12,15) (10,10)
48 (12,15) (7,10) (12,7) (10,7) (12,12) (12,12) (10,10)







Appendix B

Learning Heating Preferences

The two learning-based thermostat designs introduced in Chapter 4 were based on prior
work on home heating by Shann and Seuken (2013). Here we review how they mod-
elled users’ heating preferences given real-time prices. When a user wants to heat her
house, she needs to decide the temperature that her home will be heated and how much
money she is willing to pay for that heating. The value function v(T{™) quantifies in
pence a user’s comfort for a certain temperature T;™ at time ¢, and the cost function
(T, py, TE*Y) measures how much it will cost to heat to Ty™ | given the current price
of energy p; and external temperature T, The user’s utility per time period At is

given by the difference between value and cost multiplied by At:
w(Ti™, pe TE™) = (W(T{™) — (T, pe, TE™)) At (B.1)

The value function is modelled as a quadratic loss function that has the following para-

metric form:
o(T{™) = a — b(T* = T;™)?, (B.2)

where the parameter a is the user’s willingness to pay for his most preferred temperature,
which is denoted as T* . The second term, b(T™* —T;™)? is a loss function that quantifies
how much the user suffers from deviations from his most preferred temperature 7. The

parameter b measures the user’s sensitivity to these temperature deviations.
The cost function is given by the following equation:

C(Tf"t,pu Tfmt) — )\ptrh(ﬂnt o text)‘ (B3)
Here, 7}, is heater’s power, and A is the leakage rate of the house. The value of A captures
how well the house is insulated. The cost function approximates the true cost of heating

by measuring how much it would cost to keep the temperature at T/ at time interval
t.
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Together, this results in the following utility function:
U(ﬂint7pt7 jvtext) _ (a . b(T* _ flvtint)2 o )\ptrh(Ttint _ temt))At. (B4)

Using this utility function, it is possible to derive a user’s optimal temperature for a

given price p; by taking the derivative with respect to 7;™ and solving for T}™:

T (pr) = T* + mpy, (B.5)
where m = —2%. This means, the optimal temperature 7" as a function of the current
price p; is a decreasing straight line whose y-intercept is T and whose slope is m = —%.

At every time step ¢, the smart thermostat computes the estimated optimal temperature
for the current price p; according to its model of the user’s preferences by using the

estimates of the most preferred temperature T* and the sensitivity b:

A . A
Tapt(pt) =T" — %pta (BG)

Then, it heats the house to this currently optimal temperature.
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