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INCREMENTAL RULE-BASED REASONING FOR SEMANTIC DATA STREAMS

Rehab Albeladi

This thesis investigates the area of semantic stream processing, in which data streams are
combined with semantic reasoning techniques. We have investigated techniques for rule-
based reasoning over semantic streams in which reasoning is implemented natively over
streams as data flow networks, and have developed an adaptive optimisation method to
cope with the changing nature of streams. The contributions of this thesis include R4, a
native rule-based reasoner for RDF streams using the Rete algorithm, and a cost-based
adaptive plan optimiser designed for RDF streams. We have evaluated the performance of
R4 and compared it to both a typical static reasoner and to the state-of-the-art in stream
reasoners. The results show that R4 significantly outperforms these reasoners in terms of
throughput. We have also evaluated the adaptive optimisation technique, with results that

show the ability of the optimiser to devise and adopt better performing plans at runtime.
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Chapter 1

Chapter 1: Introduction

New developments in the realm of the Internet and Web are constantly evolving. On the
one hand, the growing use of sensors and embedded devices has given rise to a vision of a
future Internet called The Internet of Things (IoT) which aims to interconnect all these
devices through a global network (Atzori et al., 2010). By providing Internet connectivity
to “smart” embedded devices, computers will be able to automatically identify, monitor,
react to, and perform actions with regard to everyday objects. The 1oT will use technology
such as radio frequency identification (RFID) (Finkenzeller, 2010) to uniquely identify
objects and apply different event processing mechanisms to process the data streams

generated by devices.

According to Sunddamaeker et al., (2010), the number of Internet-connected personal
computers (PCs) was approximately 1.5 billion, in addition to over 1.0 billion Internet-
connected mobile phones. When the present “Internet of PCs” moves towards the 10T, 50—
100 billion devices will be connected to the Internet by 2020 (Sundamaeker et al., 2010).
The 10T has received considerable interest, and has been extensively investigated by
academia (Atzori et al., 2010), industry (Da Xu et al., 2014), and governments (Vermesan

et al., 2011) in order to achieve its objectives.

The proposed middleware architecture for the 10T in recent years has often followed the
service-oriented architecture (SOA) approach (Atzori et al., 2010). SOA principles allow
complex systems to be decomposed into applications consisting of simpler and more well-
defined components. Using common interfaces and standard protocols, SOA helps with the
integration of enterprise applications. However, SOA solutions are often too heavy for
devices with limited capabilities (Guinard et al., 2009).

Another suggested approach is to integrate real-world objects into the World Wide Web
using resource-oriented architecture to build the Web of Things. Guinard et al. (2010)
applied the representational state transfer (REST) architectural style to create loosely
coupled services on the Web so that they can be easily reused. According to this approach,
smart objects are becoming first-class citizens on the Web as every object is identified by a
Uniform Resource Identifier (URI).

On the other hand, as the current Web is becoming the largest medium of information,

many researchers are working on the Semantic Web, a vision of the future Web which
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aims to enable computers to understand the meaning of Web content (Berners-Lee et al.,
2001). This will enable software agents to access the Web and carry out intelligent tasks on
behalf of the user. Data in the Semantic Web have to be given well-defined meanings to be
machine processable. A number of formats have been standardised, such as Resource
Description Framework (RDF) (Cyganiak et al., 2014), RDF Schema (Brickley et al.,
2014), and Web Ontology Language (OWL) (Hitzler et al., 2012). The aim of these
formats is to structure and give semantics to the Web data, which will then enable

automatic reasoning and processing of this data.

Despite the fact that the IoT focuses on infrastructure issues and the Semantic Web places
more emphasis on knowledge representation, as they basically work in different layers, the
two visions aim to interlink the virtual and physical worlds. The IoT commonly identifies
real-world objects using unique RFID tags, while the Semantic Web uses URIs to uniquely
identify real-world objects. However, both visions could complement each other.

Data in such areas are continuously and sometimes massively produced by applications
that are becoming more and more data driven. For instance, the increasingly popular
sensing devices are currently used to generate environmental observations, monitor patient
conditions, track locations, and observe energy consumption (Fang et al., 2014; Myung et
al., 2002; Wei and Li, 2011). On the Web side, microblogging services, such as twitter,
also deliver real-time streaming data (Sakaki et al., 2010). This class of data differs
significantly from the typical, mostly static, data model, with changes being the rule rather
than the exception. This static data model (typically a relational model) does not consider
the temporal and ordered nature of data streams. Data in this model are stored and ad hoc
queries are issued to process the data in a pull-based fashion. Streaming data, on the
contrary, can arrive at a higher rate than that at which they can be stored and processed,
and therefore need to be handled on the fly in a push-based manner, using continuous
queries. A special class of management systems, called data stream management systems

(DSMSs), has appeared to provide such functionality (Babcock et al., 2002).

While DSMS engines can be used to process data streams generated by the 10T devices,
the heterogeneity of the data sources and formats makes interoperability and integration a
real challenge. As the Semantic Web’s standard formats (RDF and OWL) and linked data
principles (Bizer et al., 2009) facilitate the data integration of heterogeneous datasets, there
have been efforts to lift stream data to a semantic level (Sheth et al., 2008). Incorporating
semantics would also enable inferencing capabilities, a feature that is not available in

DSMSs owing to the lack of semantics in their data stream models.

2
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Inference enables the automatic discovery of new information (Lucas and Van Der Gaag,
1991). Data are modelled as a set of relationships between resources, so the inferencing
process on the Semantic Web means the generation of new relationships based on the
dataset and some background knowledge in the form of vocabularies or rule sets. A
number of reasoning engines for the Semantic Web, with different expressivity levels, have
appeared, such as Bossam (Jang and Sohn, 2004), Pellet (Sirin et al., 2007), and FaCT++
(Tsarkov and Horrocks, 2006). However, they mostly assume the knowledge base to be
static or slowly changing. Enabling reasoning upon rapidly changing semantic streams
would require a similar shift as that from database management systems to data stream
management systems. An example where inference is needed to derive new facts in a
streaming setting is described in (Cugola and Margara, 2012) as follows: in a smart
building, there could be a rule that produces an event of fire when it observes a very high
temperature happening in a short time window with a smoke event. This rule needs to be

continuously applied using a time-aware model to changing streams of events.

The processing of semantically-annotated dynamic data gives rise to semantic stream
processing, which has received increased interest from the Semantic Web community over
the past few years. We consider Semantic Stream Processing to lie at the intersection of
the Data Stream Management research, and the Semantic Web area because it builds its
techniques on both of them. The Internet of Things area is also relevant, as it can serve as a

context in which applications generate and process streaming data (Figure 1.1).

Internet of
Things

Data Stream
Semantic Web Management &
Complex Event
N

— Processing
Semantic

Stream
Processing

1 A W3C community group for RDF stream processing (RSP) was created in 2013. Available at:
https://www.w3.org/community/rsp/



https://www.w3.org/community/rsp/

Chapter 1

Figure 1.1: Background research areas

Semantic stream processing aims to provide the abstractions, foundations, methods, and
tools required to integrate data streams and semantic processing systems (Della Valle et al.,

2009). Challenges in this area include, but are not limited to, the following:

e Defining a data model for semantic streams that reflects their ordered and temporal
nature

e Supporting continuous queries

e Integrating background data and dynamic streams
e Providing reasoning capabilities

e Dealing with incomplete and noisy streams

e Distributed stream processing.

While most of these challenges are similar to those faced by the database community when
developing stream processing systems, these efforts cannot be directly applied to the
semantic stream processing area because of the primary differences between the relational
models used in the DSMSs and the RDF graph-based model of semantic data. A number of
semantic stream processing systems (Barbieri et al., 2010a; Bolles et al., 2008; Calbimonte
et al., 2010; Anicic et al., 2011; Le-Phuoc et al., 2011) have been developed in this area
and mostly address the continuous queries challenge through the extension of SPARQL
(Harris et al., 2013), the Semantic Web’s query language. They also defined an extension

of the RDF data model to express the temporal element.

In this research, we mainly focused on the reasoning aspect, with the aim of enabling rule-
based reasoning over RDF data streams as continuously running data flow networks. We
propose the use of an incremental reasoning framework with low-level operators directly
applied over the RDF streams. This RDF-native approach offers maximum optimisation
opportunities, which have a major impact on response time, memory consumption, and
completeness of results. We also investigated the optimisation problem itself, i.e.
translating a set of rules into a set of processing data flow networks. We consider the
adaptivity of such network structures to be an essential requirement to cope with the

constantly changing nature of the data streams.

That said, we addressed the rule-based reasoning on semantic streams with a number of
limitations. Firstly, streams in real-world applications are potentially delayed, incomplete,

imprecise, or noisy. This can lead to query results of unknown quality, so methods to clean



Chapter 1

the data are required, as are algorithms when reasoning with uncertainty. To limit the scope
of this research, we assumed that the arriving streams were ordered and complete.
Secondly, continuous query languages in the literature usually enable the addition and
deletion of stream elements, which then requires truth maintenance methods to ensure that
the data remain consistent. We assumed that the input streams were of the append-only

type and that the generated results were stream instances too.

1.1 Research Hypotheses

The main focus of this research was on enabling efficient and effective reasoning over
semantic streams. Efficient processing refers to the way in which the system handles the
input data. Data streams usually arrive in high volumes and velocity, so input throughput is
an important measure of stream processing system performance. The resources within a
stream processing system must be managed carefully owing to the high volumetric nature
of streams and because storing all the incoming data is usually impractical. On the other
hand, effectiveness measures are reflected by the quality of results produced by the system.
Precision and recall (the correctness and completeness of the retrieved results) are
commonly used metrics in general information retrieval systems. The timeliness of the
results is another effectiveness metric of prime importance in streaming applications,
especially as the results lose their value in the event of long delays. Stream processing

systems should be highly responsive.
We formulated our objectives based on the following research question and hypotheses:

How could we efficiently (by using minimal resources and ensuring high throughput) and
effectively (by providing timely results with high precision and recall) enable rule-based

reasoning over RDF data streams using data flow networks?

e Hypothesis 1: It was anticipated that our continuous reasoning approach would improve

throughput and responsiveness, when compared to a traditional static reasoner.

e Hypothesis 2: It was expected that the trade-off between the completeness of the output

results and the processing time could be controlled by varying the resource allocation.

e Hypothesis 3: It was anticipated that resource usage would be reduced by our approach

of enabling node sharing, where possible, between the rules.
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e Hypothesis 4: It was anticipated that system performance would be improved by
monitoring the characteristics of the streams in order to re-organise the reasoning
networks.

1.2 Contributions

The contributions of this thesis are:

e A native rule-based reasoner for RDF streams using dataflow networks. Our
reasoner supports RIF Core (Boley et al., 2013), which corresponds to the language
of definite Horn rules without function symbols, equivalent to Datalog. While
CQELS (Le-Phuoc et al., 2011) and Sparkwave (Komazec et al., 2012) (state-of-
the-art RDF stream processing systems) support native processing of RDF streams,
CQELS does not support reasoning, and Sparkwave provides a lower expressivity
of a subset of RDF Schema.

e A cost-based adaptive optimiser designed for RDF streams. In the RDF stream
processing area, only CQELS has addressed the issue of adaptive optimisation.
CQELS follows the fine-grained routing-based approach, while we follow a more
coarse-grained plan-based approach.

e An extension of RIF Core that adds the window construct to the language in order

to enable users to specify time constraints as part of the rules.

1.3 Thesis Structure

The remainder of this thesis is as follows: Chapter 2 provides related background material
to our work, first in the area of stream processing and continuous queries, including a
review of existing stream processing systems and continuous query languages (Section
2.1), and then with regard to the Semantic Web (Section 2.2), with a focus on the

knowledge representation of its data and the reasoning techniques.

The literature on semantic stream processing specifically is covered in Chapter 3. There is
a review of research advancement in different aspects of the field, including RDF stream
processing, reasoning and inference support, publishing, distributed processing, developed

environments, and benchmarking semantic stream processing engines.

Details of our reasoning framework and implemented system are given in Chapter 4. A

number of general requirements to enable efficient reasoning over the data streams are
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provided in Section 4.1. The adopted reasoning framework is then presented in Section 4.2,
starting with a justification of the design decisions that were taken by linking them to the
requirements. An RDF stream data model is then defined, followed by an operational
description of different operators needed for the continuous processing of the data streams.
R4, our rule-based reasoner for RDF streams, using the Rete algorithm (Forgy, 1982), is
covered in Section 4.3. The rule language supported by the system is discussed first,
followed by the system architecture and finally several aspects of data processing within
the system. The different nodes through which the data passes through from input to output
are detailed, together with other related issues, such as data structures and garbage

collection.

An evaluation of the implemented system is then presented in Chapter 5. An evaluation
scenario, including a description of the input data sets, together with a number of designed
use cases to test system functionality are described first in Section 5.1. Then, Section 5.2
details a number of experiments that have been carried out in order to comparatively
evaluate the system’s performance, first against a static reasoner (to test the first
hypothesis), and then against state-of-the-art semantic stream processing systems that
support inference.

Chapter 6 then addresses the optimisation problem. We first describe the initial plan
generation using a static optimiser in Section 6.1, and then present our adaptive
optimisation approach in Section 6.2. We present the cost model that was used to estimate
the expense of implementing the plans and two optimisation algorithms that were utilised
to generate more cost-effective plans. Finally, we describe the monitoring and plan

migration employed in the system.

An evaluation of the optimisation process is presented in Chapter 7. Section 7.1 tests the
effects of reducing window sizes on the quality of results. The operator sharing
optimisation technique is evaluated in Section 7.2. Section 7.3 is dedicated to evaluate the
adaptive optimiser. It first verifies the cost model by comparing the actual and estimated
costs of different plans. Then, the costs of the adaptive plans generated by the adaptive

optimiser are compared to those of the static plans, in stable and unstable conditions.

Finally, concluding remarks are provided in Chapter 8, and the contributions of this

research, together with suggested future work, are highlighted.
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1.4 Publications

Parts of this research have been published, as follows:

e Albeladi, R., Martinez, K. and Gibbins, N. (2015) Incremental rule-based reasoning
over RDF streams. In RDF Stream Processing Workshop at the 12th Extended Semantic
Web Conference, Portoroz, Slovenia.

e Albeladi, R. (2012) Distributed reasoning on semantic data streams. In International
Semantic Web Conference (pp. 433-436). Springer Berlin Heidelberg.

e Albeladi, R., Martinez, K. and Gibbins, N. (2012) Distributed stream reasoning. At the

poster track of the 9th Extended Semantic Web Conference, Heraklion, Greece.
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Chapter 2: Background Research

The Semantic Stream Processing area builds on the knowledge in both the Data Stream
Processing and the Semantic Web areas. In this chapter, we present a background review
of both of these areas. Section 2.1 reviews the research in the Stream Processing area,
highlighting the differences between a database management system and a data stream
processing system, briefly introducing some of the developed stream processers, and
discussing some techniques, including continuous queries, adaptive optimisation, and
distributed processing of streaming data. The Semantic Web is then reviewed in Section

2.2, with a focus on semantic data formats and related reasoning techniques.

2.1 Data Stream Processing

The emergence of data-intensive applications such as sensor networks and IoT applications
has created a number of requirements that cannot be easily met with the traditional
database systems, due to the sheer amount of data with which they operate (Stonebraker et
al., 2005). These applications require the ability to capture, analyse, and react to events on
a real-time basis. Data in these applications needs to be modelled as transient data streams,

rather than as typical persistent relations.

A data stream is a real-time, continuous sequence of items, ordered implicitly by arrival
time or explicitly by timestamps (Golab and Ozsu, 2003). Data streams differ from stored
relations in several ways: the data elements in the stream arrive online, they are potentially
unbounded in size, the system has no control over the arrival order of the data elements,
and the data elements may be discarded after being processed. These differences raise a
number of challenges which have been addressed by many researches in the database
community (Arasu et al., 2003; Abadi et al., 2003; Hammad et al., 2004).

2.1.1 Data Stream Management Systems

DBMS vs. DSMS: In order to describe a data stream management system (DSMS), we
compare it to a conventional database management system (DBMS). DBMSs are being
successfully used in a wide variety of domains and applications. They use the ‘store and
query’ model, where they permanently store the data and then evaluate queries against the
stored data (Garcia-Molina et al., 2000). Data stream applications do not fit this model, as

the stream elements can arrive faster than they can be stored (Golab and Ozsu, 2003).

9
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Therefore, a new specialised class of management systems that can perform real-time
analysis over streaming data has appeared. In Data Stream Management Systems (DSMS),
data arrives as one or more continuous data streams where a special type of queries —called
continuous queries—can be performed on them. Continuous queries (Terry et al., 1992) are
similar to traditional database queries, except they are issued only once and then run
continually over the changing data. When newly arriving data matches the running
continuous query, new results are returned to the client. Figure 2.1 depicts the general

model of data stream management systems.

Continuous
queries
Client
Stream data DSMS applications
sources Data Results
streams streams y \
[E————= "\

Figure 2.1: DSMS model

The operational model of a DSMS differs from that of a DBMS. In DBMSs, humans
actively update the dataset and initiate queries, and the DBMS acts as a passive repository,
simply executing the queries on the dataset. Abadi et al. (2003) refer to this as a human-
active, DSMS-passive (HADP) model. In contrast, DSMSs receive data from various
external sources, such as sensors, and not from humans. The DSMS plays an active role,
continuously processing this data and alerting humans when anomalies are detected.
Therefore, this is called the DBMS-active, human-passive (DAHP) model (Abadi et al.,
2003).

DBMS and DSMS are not only different in their basic models, but also in the nature of the
data that they handle and the queries that can be performed on this data. The following
table (2.1) illustrates the major differences between them (Abadi et al., 2003, and Babcock
et al., 2002).

10
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Table 2.1: Comparison between DBMS and DSMS

DBMS DSMS

Model |HADP (Human Active DBMS Passive) DAHP (DBMS Active Human Passive)

Only the current state of the data is The history of data is also important
important

Applications require no real-time services | Applications have real-time requirements

Triggers and alerters are second class Trigger-oriented applications
citizens
Data |Persistent relations Transient streams
Random access Sequential access
Relatively low update rate Possibly high arrival rate
Data elements are synchronised Data arrives asynchronously
Quieries | One-time queries Continuous queries
Queries have exact answers Answers computed with incomplete
information

Existing DSMS: There are a large number of applied data stream management systems.
Some of them are briefly introduced below, while their continuous query languages are
described later.

TelegraphCQ (Chandrasekaran et al., 2003) is an adaptive query engine for sensors to
process queries effectively. TelegraphCQ is focused on meeting the challenges of handling
large numbers of continuous queries over high-volume, highly variable data streams.
TelegraphCQ differs from other data stream systems due to its focus on extreme adaptivity

and the novel infrastructure required to support such adaptivity.

Aurora (Abadi et al., 2003) is a data stream management system for monitoring
applications. It is basically a data-flow system where data elements flow through a loop-
free, directed graph of processing operators. Aurora performs compile-time and run-time

optimisation. Moreover, it detects resource overhead, and it performs load-shedding.

STREAM (Arasu et al., 2003) is a general-purpose data stream management system
produced by Stanford University. It translates declarative queries into physical query plans
composed of operators, queues, and synopses. STREAM also performs load-shedding, if
needed, by introducing approximations. Furthermore, it provides a graphical interface to

enable users to monitor and manipulate query plans as they run.

11
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Nile (Hammad et al., 2004) is the query engine of the “STEM” stream database system.
Nile performs efficient pipelined execution of sliding window queries over multiple
streams. Another feature of Nile is its scalability in terms of the sizes of both queries and
data streams. It also provides guarantees for Quality of Service and Answers. Further

features include support for approximation and integrated online data mining tools.

After this first generation of stream processing engines was developed in academia, a
number of commercial and open-source large-scale streaming data analytics platforms
appeared, including Apache Storm?2, Yahoo’s S43, and Spark Streaming®. Storm was the
first distributed stream processing system to gain traction throughout research and practice
(Wingerath et al., 2016). It was developed by Twitter in late 2010 and eventually became
an Apache project in 2014. Storm’s architecture is based on the master-workers paradigm.
Optimised for low latency, Storm excels at high speed and is able to perform in the realm
of single-digit milliseconds in certain applications (Wingerath et al., 2016).

In contrast to previous stream processing systems, which work on a tuple at a time, Spark
Streaming (Zaharia et al., 2013) uses a micro-batching approach. As an extension of
Spark®, which is a fast and general-purpose cluster computing system, Spark Streaming
chunks incoming streams into small batches, forming Spark’s Resilient Distributed
Datasets (RDDs). An RDD is an immutable, deterministically recomputable, distributed
and fault-tolerant dataset (Zaharia et al., 2012). In contrast to Storm, Spark Streaming is

optimised for high throughput (Kipf and Kemper, 2016).

PipelineDB® is an open-source project that continuously runs SQL queries on streaming
data. It extends the database system PostgreSQL’ by introducing the concept of continuous
views. A continuous view differs from a regular view as it selects inputs from a
combination of streams and tables and is incrementally updated in real time as new data is
written to those inputs. PipelineDB excels at SQL queries that reduce the cardinality of

streaming datasets through summarisation and aggregation.

A recent development in the area is the ReStream project (Schleier-Smith et al., 2016),

which was developed at the University of California, Berkeley. ReStream is designed for

2 http://storm.apache.org/

3 http://incubator.apache.org/s4/

4 http://spark.apache.org/streaming/
5 https://spark.apache.org/

6 https://www.pipelinedb.com/

7 https://www.postgresql.org/
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accelerated replay. It processes stored event logs in parallel, with throughput much higher
than the real-time rate. This enables rapid development of applications that require
backtesting, as developers can evaluate new functionalities using weeks, or months worth
of stored data in minutes. ReStream combines streaming semantics with the performance
characteristics of batch processing, enabling serial equivalent processing of stored logs

using distributed computing resources.

2.1.2 Querying Data Streams

Queries over data streams have much in common with queries in DBMSs. However, there
is an important difference in the query execution model between one-time queries and
continuous queries. One-time queries as used in traditional database systems are evaluated
once over a point-in-time snhapshot of the data set, with the answer returned to the user
after the query evaluation has finished. In contrast, the class of queries used with data
streams are called continuous queries. These queries are issued once, operate continuously
over a period of time and incrementally return new results over time as new data arrives
(Babu and Widom, 2001). Continuous queries’ different nature raises a number of
challenges, such as their unbounded memory requirements, the need for approximate query
answering, the problem of blocking operators, and the need to reference past data

(Babcock et al., 2002). Some relevant challenges are described below.

As the data streams can be of unbounded size, query answers potentially require
unbounded memory to store them. Moreover, even if there is no need to store the answers,
as they can be provided as data streams themselves, some queries need unbounded memory
to compute exact results, e.g. join operators. Although there are some external memory
algorithms (Vitter, 1999) that can handle data that require a larger memory space than the
main memory, these algorithms are too slow for getting real-time responses. Arasu et al.,
(2003) differentiated between queries that can be answered exactly given a bounded
memory, and those which need unbounded memory. In the latter case, providing

approximate answers is a possible solution, which is in itself another challenge.

There are several approaches to approximate query answers. These include using sliding
windows, batch processing, sampling and synopses. Instead of evaluating the query over
the whole history of data, the first approach evaluates queries on windows of recent data.
According to Babcock et al., (2002), this method has several attractive properties. It is a
well-defined, easily understood, deterministic method. More importantly, it emphasises

recent data, which is usually more important to users, over old data in most real-world

13
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applications. For example, to make sense of network traffic patterns or sensor data, insights
based on recent data will be more useful than insights based on old data. In this sense,
windows can be thought of not as an approximation technique reluctantly applied due to
the inability to process queries over all historical data, but rather as part of the desired

query semantics explicitly expressed by the user.

As in Arasu et al., (2003), windows can be tuple-based, where an integer parameter is set
to be the number of returned tuples with the largest time-stamp. Alternatively, these can be
time-based windows, where a time interval parameter is set and the returned tuples should
have time-stamps falling in this interval range. Windows can also be classified based on
the movements of their endpoints: two fixed endpoints define a fixed window, two sliding
endpoints define a sliding window, while one fixed and one moving endpoint define a
landmark window (Golab and Ozsu, 2003).

To slide the window over its elements, there are two methods. The first is to specify a
periodic value, either a number of tuples or time units, depending on the window type, at
which the window updates its content and causes a new evaluation. This value is usually
called a slide or step, e.g. a sliding window over the last ten minutes with a step of two
minutes. The second method is the eager or data-driven approach, in which the window is
updated automatically whenever a new element arrives into the stream, which causes
another evaluation of the query. This means that it will generate results as soon as a new

tuple arrives; in the first approach, there is an added delay equal to the step value.

In terms of performing continuous queries over sliding windows, there are also two main
approaches: query re-evaluation and incremental evaluation (Ghanem et al., 2007). In the
first approach, the query is re-evaluated over a snapshot of the stream, representing the
current window independently from previous windows each time the window is updated.
This approach, while it has clear semantics and is easy to implement, can result in
redundant processing of certain tuples because they can be parts of several consecutive
windows. Conversely, in the incremental evaluation approach, only the changes in the

window relative to the previous window are processed by the query operators.

Applying windows on streams might not always be enough to handle the unbounded
memory requirement, for two reasons. First, window sizes can be large enough that the
entire contents of the window cannot be buffered in memory. Second, the stream arrival
rate can be faster than the time needed by the system to both update the window and
process the newly arrived element (Babcock et al., 2002). Therefore, other approximation
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techniques are needed. In the former case, it is impractical to try to answer a query over all
the data. Instead, queries can be evaluated over a sample of the data stream, producing
approximate answers that may be sufficient for some applications (e.g. (Demaine et al.,
2002)). In the latter case, eager (or streaming) evaluation of queries, in which windows are
updated and queries are re-evaluated upon arrival of each new stream element, might not
be appropriate. The natural solution is to process the incoming data in batches (Babcock et
al., 2002) as in the XJoin algorithm (Urhan and Franklin, 2000). Rather than producing a
continually up-to-date answer, the data elements are buffered as they arrive, and the
answer to the query is computed periodically as time permits. Batch processing is a good
approach when streams are bursty; a system that cannot keep up with the peak stream rate
may be able to handle the average rate, while buffering the streams at peak time and
catching up during a slow period. In contrast to sampling, this approach does not cause any

uncertainty about the accuracy of the answer, but does sacrifice timeliness instead.

A closely related challenge is the blocking operator’s problem. A blocking query operator
is an operator that is unable to produce its first output tuple until it has seen its entire input
(Babcock et al., 2002). Sort, aggregates, and some implementations of the join operator are
considered blocking. For example, the Nested Loop Join (NLJ) needs to scan the entire
inner relation and compare each tuple therein with the current tuple of the outer relation.
Since data streams maybe infinite, a blocking operator that takes input from a data stream
will never see its entire input, and will never be able to produce any output. Blocking
operators can be unblocked using the same windowing technique described above,
restricting the streaming input to a finite window. To avoid re-scanning the entire window,
these operators need to support incremental evaluation. Several unblocked join algorithms
have appeared that can process inputs in an incremental, pipelined approach, such as the
Symmetric Hash Join (SHJ) (Wilschut and Apers, 1993), and XJoin (Urhan and Franklin,
2000). The basic scheme of these algorithms is that they build hash tables on the fly for
each of their inputs, and when a tuple arrives from one of them, it is inserted into the

corresponding table and the other tables are probed for matches.

Stream query languages: A number of stream query languages have been proposed. They
fall into three different paradigms: relation-based languages, object-based languages, and
procedural languages (Golab and Ozsu, 2003).

Relation-based languages typically have SQL-like syntax and enhanced support for
windows and ordering. CQL (Arasu et al., 2006), StreaQuel (Chandrasekaran, 2002), and
AQuery (Lerrner and Shasha, 2003) are three relation-based languages. CQL (Continuous
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Query Language) has been used in the STREAM project (Arasu et al., 2003). It considers
streams as time-stamp ordered relations. It defines three types of operators: stream-to-
relation, relation-to-relation, and relation-to-stream operators. Stream-to-relation operators
produce a relation from a stream using different types of windows, relation-to-relation
operators are standard relational algebra operators producing a relation from another
relation, while relation-to-stream operators produce a stream from a relation. CQL
introduces three relation-to-stream operators: Istream, to indicate an insertion to the output
stream, Dstream, to indicate a deletion, and Rstream that returns all tuples in the relation at
a certain time. In contrast, StreaQuel — used in TelegraphCQ (Chandrasekaran et al., 2003)
— does not have relation-to-stream operators, since it considers all inputs and outputs as

streams.

Object-based languages also have SQL-like syntax, but add support to streaming abstract
data types (ADTSs). This approach is used in the COUGAR system (Bonnet et al., 2001)
where each type of sensor is modelled as an ADT with special signal-processing methods.
Another approach is used by the Tribeca system (Sullivan and Heybey, 1998), where

stream contents are classified according to a type hierarchy.

Table 2.2: Stream query languages features (Golab and Ozsu, 2003)

Language/ | Motivating | Allowed Basic Supported windows Custom
system applications| inputs operators .__|operators?
y pplicall ‘npu P Type Base | Execution b
AQuery Stock Stored |Relational, Fixed, Time | Not Via “each”
guotes, relations | “each”, order-|landmark, |and |discussed |operator
network dependant sliding count
traffic (First, next,
analysis etc.)
Aurora Sensor data |Streams |, n, U, ,|Fixed, Time | Streaming |Via map
only group-by, landmark, |and operator
resample, sliding count
drop, map,
window sort
caQL/ All-purpose |Streams |Relational, Sliding Time | Streaming | Allowed
STREAM and relation-to- and
relations | stream, count
sample
StreaQuel/ Sensor data |Streams |Relational All types | Time |Streaming | Allowed
Te|egraphCQ and and or
relations count | periodic
Tribeca Network Single |o, =, group-|Fixed, Time | Streaming | Allows
traffic input by, union |landmark, |and custom
analysis stream | aggregates sliding count aggregates
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In a procedural query language — as an alternative to a declarative query language — the
flow of the data can be specified by users. Aurora DSMS (Abadi et al., 2003) has a user
interface where users can create query plans by joining a set of boxes (operators) by arcs,
to specify the desired data flow. Aurora distinguishes between order-agnostic operators,
including filter, map, union and order-sensitive operators, such as BSort, aggregate, join,

and resample.

Table 2.2, from Golab and Ozsu (2003), summarises the features of stream query

languages. In general, relation-based languages appear to be more popular.

2.13 Continuous Query Optimisation

In a relational DBMS, a query processor consists of a number of components (Garcia-
Molina et al., 2000). First, a parser is used to parse SQL queries into an internal
representation, such as query graphs. Then a query optimiser is used to produce a query
plan, usually in a form of a tree, which specifies how exactly the query is to be evaluated.
The nodes in the tree represent relational algebra operators (e.g. select, join, sort, etc.) and
the arcs represent data being generated and consumed by these operators. The plan is then

fed into an execution engine to be executed at run time.

The query processor performance relies heavily on the optimiser. A query can usually be
evaluated using different equivalent query plans that give the same answer but may differ
significantly in their response time and consumed memory (Garcia-Molina et al., 2000).
Thus, the optimiser’s task of choosing the most efficient plan is crucial. To find the
optimal plan, optimisers use statistics about the tables involved in the query (e.g.
cardinalities, histograms), estimate operators’ selectivities, and employ a cost model to

estimate the total cost of different plans.

This approach doesn’t work well in Data Stream Management Systems for two main
reasons. First, the statistics about streaming data are usually unknown at compile time, or
even impossible to obtain in case of unbounded streams, therefore, traditional cardinality-
based cost metrics are not applicable (Kang et al., 2003). Second, for long-running queries,
data characteristics such as stream input rates might change during the query execution,
which will cause the optimal plan to change. Hence, the optimise-then-execute approach
does not suit this likely changing environment (Babu and Bizarro, 2005). For streaming,

federated or any inherently uncertain environment, research has since introduced adaptive
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query processers, in which runtime feedback is used to adapt query processing (Deshpande
etal., 2007).

2.1.3.1 Cost models

Because traditional cost metrics do not apply to continuous queries, Kang et al. (2003)
introduced a unit-time basis cost model to estimate the performance of different sliding
window join algorithms. The model considers different tasks performed by a window join
(i.e. inserting, probing, invalidating) to find the cost of handling an individual input tuple
of each input stream separately. This cost is then multiplied by the left (right) stream input
rate to obtain the per-unit-time cost of the left (right) part of the join. The left and right
costs are simply added together to calculate the join’s total cost. This division between the
left and right parts means that the algorithms used to perform them are completely
independent, i.e. the left join can be a hash join while the right part uses a nested loop

algorithm.

Ayad and Naughton (2004) extended this unit-time-based join’s cost to model the cost of
conjunctive queries with sliding windows with output rates and window size estimations of
all operators. A similar model was used in Cammert et al. (2008) to adaptively manage

resources by adjusting window sizes and time granularities.

Another model introduced in Viglas and Naughton (2002) also considered that inputs to
continuous queries are streams with input rates, as opposed to relations with known
cardinalities in traditional queries, to shift from cardinality-based models to a rate-based
model. They presented formulas to estimate output rates of different operators in a query
plan, which can be used to either optimise for the highest output rate or to identify which

plan will produce a specified number of results in the shortest amount of time.

More recent work on cost models has concentrated on distributed stream processing. For
example, Zeitler and Risch (2011) present a cost model for a stream splitting operator that
splits streams into parallel sub streams, while the model presented in (Heinze et al., 2014)
can estimate latency caused by operator movements across multiple sites. However, our
work is based on a centralised setting, in which the previously described models represent

the state of the art.
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2.1.3.2 Adaptive optimisation

Adaptive query optimisation techniques vary significantly in many factors. They differ in
what they attempt to adapt to (e.g. memory fluctuations, data arrival rates, user
preferences), the aim of adaptivity (e.g. minimising response time, maximising
throughput), the nature of feedback they collect, the frequency of feedback collection and
plan altering (inter-query, intra-query, per tuple), and the effect of adaptivity (i.e. what
behaviour it can change) (Gounaris et al., 2002). We summarise the main adaptive
approaches, organised by increasing frequency of adaptivity, first in the traditional store-

then-query context, then in continuous streaming systems.

In early optimisers, such as the System R query optimiser (Selinger et al., 1979), the
statistic-gathering scheme was very coarse-grained, running only periodically — typically
once a day or once a week — requiring administrative commands, and consuming
significant resources (Hellerstein et al., 2000). To enhance this scheme, Adaptive
Selectivity Estimation (ASE) was proposed (Chen and Roussopoulos, 1994), in which
statistics are gathered on a per-query level. For each query, the system tracks the sizes of
intermediate results and uses them to refine statistical metadata for future optimisation
decisions. While still moderately coarse, this inter-query method enables the system to

learn more and perform better in subsequent queries.

On an intra-query level, blocking operators offer materialisation points at which actual
statistics of intermediate results can be obtained, and the rest of the plan can be adapted.
Optimisation and execution are interleaved by dividing a query plan into stages, executing
one plan stage to completion, and using the statistics gathered from this stage to optimise
the execution of the next one (Deshpande et al., 2007). Mid-query re-optimisation (Kabra
and DeWitt, 1998) also operates on an intra-query level, employing progressive
optimisation and proactive re-optimisation. Instead of plan staging, it initially optimises the
entire plan, inserts statistics-gathering operators at specified checkpoints (usually after
blocking operators), and dynamically re-optimises the downstream (i.e. remaining) parts of
the plan if the runtime statistics differ significantly from the original estimates. A similar
approach is the Corrective Query Processing (CQP) (Ives et al., 2004) used in the Tukwila
integration system. However, CQP relies on pipelined operators — such as the XJoin
operator (Urhan and Franklin, 2000) — instead of blocking operators, so the execution cost

is continuously monitored.
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On the same level of frequency, but specifically designed for continuous stream
processors, Babu et al., (2004) proposed an adaptive ordering algorithm for pipelined
commutative stream filters, called A-Greedy (for Adaptive Greedy). A-Greedy adds two
logical components to the query engine: a profiler, and a re-optimiser. The profiler
continuously collects and maintains statistics about the recent input tuples. These statistics
are used by the re-optimiser to detect and correct suboptimal correlated filters ordering.
The algorithm can be also applied to a multiway stream join (MJoin) (Viglas et al., 2003),
which is a generalisation of symmetric binary joins. However, fully pipelined MJoins do
not hold internal states, which causes the performance to suffer due to the excessive re-
computation of intermediate results. To tackle this problem, an A-Caching algorithm was
introduced (Babu et al., 2005), which places subresult caches adaptively in MJoins to
minimise re-computation. A-Greedy and A-Caching are implemented in StreaMon (Babu
and Widom, 2004), the adaptive query processing engine for the STREAM DSMS.

The Telegraph stream project (Chandrasekaran et al.,, 2003) introduced a more
revolutionary method to enable adaptive processing on the very fine-grained level of per-
tuple planning, i.e. each tuple could be processed using a different plan. The basic idea
behind this approach is to treat query execution as a process of routing tuples through
pipelined operators, and to adapt by changing the order in which tuples are routed through,
effectively resulting in changing plans at a tuple level. They introduced the eddy dataflow
operator (Avnur and Hellerstein, 2000), which encapsulates adaptivity. Data flows into the
eddy from input streams or relations, and the eddy routes tuples into pipelining operators,
which return tuples back to the eddy after processing. The eddy sends the tuple to the
output only when all the operators have handled it. It also monitors the execution
continuously, to adaptively choose the routing order for each tuple. The eddy operator can
implement different routing policies; the initial one proposed by Avnur and Hellerstein is
the lottery scheduling routing policy (2000). In this policy, the eddy operator monitors the
input and output queues of each operator, assigning and penalising tickets to the operators
for every sent and returned tuple. The eddy then holds a lottery among the eligible
operators, routing the tuple to the operator that has the biggest number of tickets.

While increasing the level of adaptivity’s frequency can achieve better optimal plans, it can
also increase the overhead in terms of the time spent in the optimisation process and the
amount of memory needed to store all the required statistics. This trade-off needs to be
carefully considered in designing an adaptive optimiser. In other words, the potential

benefits of adaptivity should be weighed against the additional overhead they incur.
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2.1.4 Distributed Stream Processing

The previously presented data stream management systems perform centralised processing
of streams, as the early efforts in this domain have focused on designing new operators and
languages. Researchers then considered extending these systems to support distributed
processing of data streams, which are usually physically distributed, in order to achieve a
better scalability and higher availability (Shah et al., 2004). Researchers have built on and
extended the work of parallel query processing (Yu et al., 1993) in order to handle some
challenges that are not usually present in traditional database systems, mainly imposed by

the dynamic nature of streaming data.

Distributed query processing can take two forms. First, the query plan operators can be
distributed among several machines, so that each machine executes a different sub-tree of
the complex query tree. This method is called inter-operator parallelism, vertical
parallelism, or simply pipelining. The other method is called intra-operator parallelism,
horizontal parallelism, or partitioning, in which data is partitioned across multiple
machines rather than the query. In this approach, the same operator is copied on the

participating machines, and each of these instances operates on part of the data.

To distribute a query processing over multiple machines, stateless operators (e.g. filter,
project) can be relatively easily pipelined. Therefore, early work in distributed query
processing in the traditional store-then-query model has focused on parallelising
individual, traditional, state-full operators such as the hybrid-hash join and sort. However,
in these efforts, the distribution mechanism needs to be included in every operator
implementation. Graefe (1990) then introduced a novel operator to abstract the distribution
mechanism called the exchange operator. This operator encapsulates all parallelism issues
and therefore makes implementation of parallel database algorithms significantly easier
and more robust. The exchange operator is inserted between the producer and consumer
operators to ensure proper routing of data and can provide vertical or horizontal
parallelism. However, the exchange operator uses static partitioning techniques, such as
hash partitioning, range partitioning, or round robin, which means that they do not adapt to

load variation at runtime.

Inspired by the exchange operator, but for the continuous processing model, two intra-
operator adaptive partitioning operators were introduced at U.C. Berkeley: RiverDQ
(Arpaci-Dusseau et al., 1999) and Flux (Shah et al.,, 2003). The distributed queue
abstraction RiverDQ addresses the load-balancing problems for a limited set of operators:
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those for which the partitioning of the input stream can be content-insensitive, such that
any tuple can be sent to any instance of the consuming operator. Every input tuple is routed
to a randomly chosen consumer instance weighted by the emptiness of the queue to that
instance. As this approach cannot be applied to content-sensitive operators such as joins
and group-by aggregates, the Flux operator generalises both Exchange and RiverDQ to
encapsulate the logic of online partitioning for a wide range of content-sensitive operators.
Following the design of the Exchange operator, each Flux operator is composed of two
parts: Flux-Cons (Flux consumer) and Flux-Prod (Flux producer). Flux-Cons is essentially
an iterator, while Flux-Prod encapsulates the routing logic. Flux follows a centralised
approach in which a central controller decides when to move which load where. Unlike
Exchange, these decisions are made online adaptively, based on real-time collected
statistics. A Flux operator can handle short-term imbalances using a buffering and
reordering mechanism, and adapts to long-term imbalances by enabling online

repartitioning and transferring of accumulated states.

In terms of distributed DSMSs, Borealis (Abadi et al., 2005) is a second-generation
distributed stream processing engine. In contrast to Flux, Borealis enables inter-level
parallelism, and works on a fully distributed, peer-to-peer network. Borealis derives its
core stream processing functionality from Aurora (Abadi et al., 2003), and distribution
functionality from its preceding project, Medusa (Cetintemel, 2003). However, Borealis
extends both of them by adding more features. On the processing side, it supports dynamic
revision of query results, and dynamic modification of queries. On the distribution side,
Borealis provides a scalable, Quality of Service (QoS)-based resource allocation and
optimisation, as well as fault tolerance. Borealis addresses these issues in the domain of
sensor networks, which adds the challenges of simultaneously optimising different QoS
metrics, such as processing latency, throughput, or sensor lifetime, and the ability to
perform optimisations at different levels of granularity: a node, a sensor network, a cluster

of sensors and servers, etc.

The above-described approaches provide the essential parallelism architecture and
functionality. However, they have to employ a load-balancing algorithm. Typically, a
dynamic load-distributing algorithm has four components (Shivaratri et al., 1992): a
transfer policy, a selection policy, a location policy, and an information policy. A transfer
policy determines whether a node is qualified to participate in a load transfer, either as a
sender or as a receiver. Once a node is determined to be a sender, a selection policy then

chooses which task or data partition to transfer. A location policy is then responsible for
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finding a good receiver for the selected task. In adaptive load-balancing algorithms, this
decision should be made at runtime, based on statistics about current load on other nodes.
The type of statistics about the states of the system’s operators, when they should be
collected, and where they are to be collected from, should all be specified in the

information policy.

The policy for load balancing in Flux proceeds in rounds. Each round consists of two
phases: a statistics collection phase, and a move phase. At the beginning of each round, the
central controller asks all Flux-Cons instances to start collecting statistics, and specifies a
duration parameter which indicates the time that should be spent collecting information
before returning it to the controller. The information to be collected is the amount of time
spent idle during this phase, and the number of tuples processed per partition. This
information is used by the controller to make a list of pair-wisely associated operators. The
most loaded server is paired with the least loaded server, and so on. The controller then
performs some threshold tests to ensure that moving a partition from the first operator of a
pair to the second operator would not increase the imbalance between them. After that, the
second phase starts by halting the producer operator. Meantime, the state is transferred
from the first Flux-Cons instance to the second. As soon as this completes, the producer

operator is resumed and sends data to the new receiver instance.

In the Borealis system, each site contains a local monitor, a local optimiser, and a
neighbourhood optimiser, which together are responsible for continuously optimising the
allocation of query network fragments to processing sites. Local monitors maintain various
operator and site-level statistics regarding utilisation and queuing delays for various
resources, including CPU, disk, bandwidth and power. These statistics are periodically
forwarded to end-point monitors that run at every site that produces final outputs, and are
responsible for evaluating QoS for every output message. There is also a global optimiser
that reacts to alerts from an end-point monitor indicating a problem which an output QoS
measures, including lifetime, throughput, and latency problems. On a local level, when a
monitor detects specific resource bottlenecks, the corresponding optimisers either request
the node to shed loads (ordered by the local optimiser) or, preferably, identify slack
resources to offload to other sites (determined by the neighbourhood optimiser). The tasks
chosen to move are those that improve resource utilisation most while imposing the
minimum load migration overhead. Borealis uses a correlation-based load distribution
algorithm (Xing et al., 2005) to minimise average load variation and maximise average

load correlation, which will accordingly result in small average end-to-end latency.
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2.15 Complex Event Processing

As a result of the broad-spectrum of application domains that require on-the-fly processing
of information, several research communities have addressed this problem, with each
bringing its own expertise, point of view and vocabulary (Cugola and Margara, 2012). The
data stream processing model discussed in the previous subsections was developed by the
database research community and can be seen as an evolution of the traditional data
processing supported by DBMS. DSMSs resemble DBMSs in processing incoming data
through a sequence of transformations using common SQL operators based on relational
algebra such as selections, aggregates and joins. In contrast, other research communities,
including those of distributed information systems, business process automation, control
systems and network monitoring, contribute to the complex event processing model (CEP),
which, according to Cugola and Margara (2012), can be routed to the publish-subscribe
domain. In complex event processing, data in input streams are viewed as simple events
that can be filtered, combined and transformed into composite events of interest to users.
Complex event queries can check for occurrence and non-occurrence of composite events

by imposing temporal, logical and value-based constraints over streaming events.

An example of a complex event processing system is SASE (Wu et al., 2006), which is a
monitoring system of streams of RFID readings encoded as events. SASE employs a
declarative complex event language that enables filtering and correlating events to match
specific patterns. The structure of the language consists of three clauses: the EVENT
clause which specifies the event pattern, i.e. the events that need to be detected and the
sequential and logical relations between them; the WHERE clause, which defines value-
based constraints; and the WITHIN clause, which enables specificity of window sizes. The
SEQ operator in this system is an example of a temporal constraint that is at the heart of
complex event processing and is not usually supported by the stream processing model,

which primarily focuses on producing and continuously updating query answers.

Another example is Esper®, which is considered to be the leading open-source CEP
provider (Cugola and Margara, 2012). Esper is distributed as embeddable components
written in Java and C#, which makes it suitable for integration into any Java- or .NET-
based process. It defines a rule language called the Event Processing Language (EPL),

which enables joining, filtering, sorting, aggregating, grouping, merging, and splitting

8 http://www.espertech.com/esper/
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event series or streams, as well as detecting sequences and patterns. In addition, it offers a
rich set of temporal windows that can be parameterised, including sliding, tumbling,
partitioned and named windows. Esper’s engine processing model is based on dynamic
state machines and delta networks, in which only changes to data are communicated across

object boundaries.

2.2 The Semantic Web

Over the past years, vast amounts of information have been published on the Web, making
it a universal source of information. However, as current web pages are designed to be read
by humans, computers are not capable of analysing this information. The Web has
developed rapidly as a medium of documents for people rather than data that can be
processed automatically. Given the current extent of information on the Web — answers for
numerous questions are out there — it is true that search engines do a very complex task of
finding and ranking related web pages, based on keyword matching, but it needs a human

to find the exact answer (Antoniou and Van Harmelen, 2004).

Transferring the available information on the Web into machine processable formats is the
aim of the Semantic Web (Berners-Lee et al., 2001). The Semantic Web is defined by Tim
Berners-Lee et al. (2001, p. 29) as “an extension of the current Web, in which information
is given well-defined meaning, better enabling computers and people to work in
cooperation”. Enabling computer programs to understand the meanings of web content will
enable the software agents to access the Web and carry out intelligent tasks on behalf of
the user. Mechanisms for shared understanding enable machines — or software agents —
from different domains to communicate with each other, automating large parts of users’

lives.

Giving meanings — or semantics — to the available information includes structuring and
annotating data, and adding logic and inference capabilities. These features had been
extensively studied long before the Web was developed, in the area of Artificial
Intelligence (Brachman and Levesque, 1985). However, the traditional knowledge
representation systems have usually been small: limited to questions that can be answered
reliably, and centralised: requiring everyone to share exactly the same definitions (Berners-
Lee et al., 2001). On the other hand, the Semantic Web should be as big and decentralised
as the current Web, which leads to another important aim of the Semantic Web: knowledge

interoperability and easy information integration, taking advantage of the Web’s unique
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naming and universality (Berners-Lee et al., 2001). A number of languages have already

been standardised to achieve these goals.

The Semantic Web layer cake, shown in Figure 2.2, represents a number of important
technologies that have been developed in order to actualise the Semantic Web vision.
These include RDF (Cyganiak et al., 2014) to express data, RDFS (Brickley et al., 2014)
and OWL (Hitzler et al., 2012) to enable shared understanding of concepts, SPARQL
(Harris et al., 2013) to query the data, and RIF (Kifer and Boley, 2013) to add

interchangeable rules support to the Semantic Web.

‘ User interface and applications

Trust

Proof
Unifying logic

Ontologies: ‘ ‘ Rules:
Querying: OWL RIF/SWRL 53
SPARQL =2
Taxonomies: RDFS (E‘
=
2

Data interchange: RDF
Syntax: XML
Identifiers: URI Character set: UNICODE

Figure 2.2: The Semantic Web layer cake (Domingue et al., 2011)

As we aim to enable reasoning on semantic data streams, we first provide a broader look at
knowledge representation in general, and their related reasoning methods, with a focus on
the rule-based approach. Then we describe the above-mentioned Semantic Web standards

and technologies. Finally, a number of existing reasoners for Semantic Web data are

reviewed.

221 Knowledge Representation and Reasoning Techniques

Reasoning about knowledge in Artificial Intelligence is used to discover new facts from a
knowledge base (Lucas and Van Der Gaag, 1991). Different inferencing algorithms have
been developed for different Knowledge Representation formalisms. These formalisms
include logic (Metakides and Nerode, 1996), production rules (Newell, 1973), semantics
networks (Woods, 1975), and frames (Minsky, 1975). They have different features and so

can serve different systems’ requirements in terms of expressivity and performance.
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Logical representation of knowledge includes two basic forms: propositional logic and
predicate logic. While propositional logic is limited in representing real-world knowledge,
predicate logic has the ability to use variables and functions. Due to its high expressivity,
the predicate logic is undecidable, meaning that it is not guaranteed that the proof
procedure will terminate (Lucas and Van Der Gaag, 1991). Description Logics (Baader,
2003) were then produced as a decidable subset of predicate logic with lower expressivity.
Description logic provides the following reasoning services: satisfaction, subsumption, and

classification (Donini et al., 1996).

Knowledge can also be represented in the form of production rules that are widely used in
expert systems, which are knowledge-based systems that can offer solutions to specific
problems in a given domain at a level comparable to that of an expert in the field (Lucas
and Van Der Gaag, 1991). Rules are easy to understand, maintain, and to derive inference
from. Each rule consists of two parts: a precondition (IF part), and an action (THEN part).
In rule-based engines, the condition parts of rules are checked with the current state of the
world (working memory). If a match occurs, the action part of the matched rule is

executed.

This inferencing process can be done through two mechanisms: forward chaining, and
backward chaining. Forward chaining (Forgy, 1981) is a data-driven algorithm as it starts
with data and looks for rules which apply to the facts until a goal is reached. While this
approach can result in a large number of entailments that will never be queried, queries can
get fast responses as all the entailments are asserted at the insertion time. On the other
hand, backward chaining is a goal-driven algorithm (Shortliffe, 1976), as it starts with a
goal and looks for rules that apply to that goal until a conclusion is reached. Backward
chaining can often be very expensive to support interactive-time query satisfaction;
therefore, forward chaining is more efficient in dynamic situations that require real-time

responses (Buchanan and Duda, 1983).

Checking conditions of rules with working memory is the core process of any rule engine.
A naive implementation would be to check each coming fact against each rule, which
usually results in a very slow system when dealing with large numbers of rules or facts
(Forgy, 1982). The Rete algorithm was developed by Forgy (1982) to provide a basis for a
more efficient implementation. It is a dataflow network-based algorithm designed to speed

the pattern matching process.
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The Rete algorithm can process large data sets efficiently because it avoids iterating over
both data elements (facts or working memory) and over the production rules. To avoid
iteration over data elements, the Rete algorithm stores with each condition (or pattern), a
list of the data elements that it matches. These lists are updated when the working memory
changes, in a forward chaining process. To avoid iteration over the production rules, the
Rete algorithm uses a tree-structured network to represent the rules. The network is
composed of different types of operators, which are also called nodes. The main two types
can be called the “intra-element” operators such as the filter operator and the “inter-
element” operators such as the join operator. An important feature of the Rete algorithm is
that when two patterns require the same nodes, these nodes are shared rather than building
duplicate ones. The tree-like network divides the matching process into multiple steps that
perform different checks, so if a data element does not match the first node, it is simply

discarded and does not complete its way through the network.

To illustrate with an example, consider the following pattern of a working memory
element, written in OPS5 language:

(Expression: “Name <N>, ~Argl 0, ~Op +, "~Arg2 <X>)

This arithmetic expression has four attribute-value pairs, with attributes indicated by the
symbol ~ and values representing either constants or variables. In OPS5, variables are
written between brackets, like <N> in the example. The intra-element features checked by
this pattern are: the element class must be Expression, the Argl value must be zero, and the
Op value must be +. On the other hand, the value of Name is an inter-element feature, as it
needs to be matched with variables from other patterns. For example, the PlusOx rule from
(Forgy, 1982), which aims to simplify algebraic expressions that add zero to a number, can

be written as follows:

(PlusOx (Goal: "Type Simplify, "Object <N>)
(Expression: “Name <N>, "“Argl 0, "Op +, "Arg2 <X>)
=> (modify 2 "Argl NIL "“Op NIL))

The rule name is followed by two patterns, representing the left-hand side, and then the
symbol =>, which is in turn followed by the action that represents the right-hand side. The
latter action assigns NIL to the operation and first argument values of the working memory
element that matches the second pattern in the rule, leaving only the second argument as a
result. In this case, the value of the Object attribute of the goal must be equal to the value
of the Name attribute of the expression. Figure 2.3 shows a Rete network for the PlusOx
rule (Forgy, 1982); the blue boxes represent the intra-element operators while the brown

one represents the inter-element operator.
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Distribute the elements

/ \

Is the element class Goal? Is the element class Expression?

' v

Is the value of the Argl 0?

v

Ts the value of Op +?

—

Join the elements in which the value
of the Object attribute from the left is
equal fo the value of the Name
attribute from the right

Is the value of Type Simplicity?

Report that rule PlusOx is satisfied

Figure 2.3: Rete network example

While different applications can add more node types, the basic ones are the root node,
one-input nodes (intra-element, or alpha nodes), two-input nodes (inter-element, or beta
nodes), and terminal nodes. Alpha nodes resemble the select (o) operator of relational
algebra; they only propagate statements that match their condition. On the other hand, a
beta node is responsible for joining some data elements of its two inputs on their shared
variable, resembling the join () operator of relational algebra. This analogy to database
systems is based on considering the Working Memory elements as tuples of some
universal relationship in a relational database, and so the LHS of a rule in a production

system is analogous to a query in a relational database language (Miranker, 1987).

One difference between database systems and production systems is that queries in
traditional database systems are typically computed only once; in other words, they are
single-shot queries. In contrast, rules in a production system are longer-lived and may be
computed repeatedly. To minimise the re-computation time of different production cycles,
production system algorithms retain state across cycles. Alpha and beta nodes in the Rete
networks maintain their own lists of every matched tuple in alpha/beta memories, to
provide incremental reasoning support. Therefore, Rete algorithm trades memory space for

reasoning performance.
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A number of other pattern matching algorithms have appeared to address this
memory/speed trade-off. TREAT (Miranker, 1987), for instance, only keeps alpha
memories, and its network has only one multi-join for each rule. This means that there are
no saved intermediate results, and every new element added to an alpha memory needs to
be joined with all other alpha memories each time. On the continuum between Rete and
TREAT, there is Rete* (Wright and Marshall, 2003), an extension of Rete with TREAT as
a special case. Among other features, Rete* employs a dynamic beta-memory cut
mechanism. It allows an upper bound on beta memory consumption to be specified by
users, so beta memories are discarded and retained at runtime depending on the current
memory consumption. If a beta memory is absent but is needed to process a token, Rete*
recalculates the missing memory. If the recalculation itself depends on prior joins with
absent memories, Rete* also recalculates, working back up the network until if finds a

stored beta memory, or it reaches the alpha memory.

The network structure in the original Rete algorithm follows a strict left-deep linear
structure, in which each join node has only two inputs; where the right input is always an
alpha memory and the left input a previous beta memory. TREAT has instead one join
node with any number of inputs, where the join order is statically specified following the
lexical order of the condition elements. As in query optimisation — see Section 2.1.3 — the
structure of the network (analogous to a query plan) and the join order, affects the
performance of the system, as it affects the number of partial instantiations or intermediate
results. The structure of the network also affects the possible amount of join nodes sharing
between different rules (Scales, 1986). Gator (Hanson and Hasan, 1993) has then appeared
as a generalised discrimination network, where any rule can have any number of join
nodes, each of which can have any number of inputs. Because the Gator structure is very
general, an optimiser is essential to pick a good structure for a rule, depending on the
environment. Gator implements a dynamic programming optimisation strategy that uses
some parameters akin to DBMS optimisers, such as selectivities and cardinalities, but also
takes into consideration some additional factors, such as update frequency and memory

node size.

Table 2.3 summarises the characteristics of Rete, TREAT, Rete* and Gator, along with
some performance remarks obtained from Nayak et al., (1988), Wright and Marshall
(2003), and Hanson and Hasan (1993).
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Table 2.3: Comparison of pattern matching algorithms

Beta memories? Network structure Performance
Rete |Yes Linear networks of two- |-Faster in general
input join nodes -Faster for addition
-Better performance for complex rules
TREAT |No One multiple-input join | -Less memory consumption
node per rule -Faster for deletion

-Better performance for simple rules (6 or
less condition elements)

Rete* | Yes (with dynamic | Linear networks of two- |-Maximum memory consumption defined
cut) input join nodes by user

-Rete*(0) is TREAT

-Always faster than Rete

Gator |Depends on No restrictions on the -Optimised networks are faster than Rete
optimisation number of inputs or the |and TREAT
tree structure -Near to TREAT memory consumption

-Optimisation time goes up to one minute
for an 11 conditions rule

As the Rete algorithm does not provide a time model, Berstel (2002) introduced an
extension to the algorithm to enable temporal reasoning. Temporal reasoning involves
formalisation of the notion of time in order to provide a way to represent and reason about
the temporal aspects of knowledge (Vila, 1994), which is an important feature of event
processing. Berstel’s extension differentiates between facts — which are maintained until
explicit retraction — and events — which are maintained until they expire. Each event has a
timestamp, and at the presence of temporal constraints, join nodes are responsible for
computing expiry dates for events propagated from a parent node, and retracting them

when they are expired.

2.2.2 Knowledge Representation on the Semantic Web

Data model: In order to enable machine-understanding of the Web data, the Semantic
Web uses formal knowledge representation techniques to describe the data contained on
the Web. The Resource Description Framework (RDF) was originally intended as a means
for processing metadata about web pages, but it has subsequently been generalised to
provide a general-purpose knowledge representation framework for web data (Domingue
et al., 2011). It provides interoperability between applications that exchange machine-
understandable information on the Web. RDF presents a model for representing entities

and relationships. This model encodes the semantics in sets of assertions called statements
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made up of three parts: subject, predicate, and object, and so they are also referred to as
triples. These three elements resemble the subject, verb, and object of a simple sentence
(Berners-Lee et al., 2001). For example, the sentence: John works with Tom, is represented

as follows:

Subject: John
Predicate: works with
Object: Tom

This triple can be diagrammed as in Figure 2.4:

worksWith
John Tom

Figure 2.4: An example RDF triple

A set of statements of this form naturally forms a directed, labelled graph, in which
subjects and objects can be seen as graph nodes, while predicates represent the named
edges between these nodes (Cyganiak et al., 2014). An example graph is shown in Figure
2.5. Arrows represent predicates, ovals represent subjects and objects, and boxes represent
a specific type of object called a literal. In contrast to XML for example, RDF graphs do
not necessarily follow the tree structure, as they usually have no roots, and there is no limit

to their structures.

worksWith

hasSister

surname

IIDyla n”

Figure 2.5: An example RDF graph

RDF triple components can be literals or resources. Literals are concrete data values such
as strings or integers — for example the surname “Dylan” in the above graph — and can only
appear as objects. Resources on the other hand, represent concepts and can appear as

subjects, predicates, or objects. Resource names in RDF take the form of Uniform
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Resource Identifiers (URIs) (Berners-Lee et al., 1998) which are unique identifiers for
concepts. A special case of resource are Blank Nodes, which are implicit concepts that
have no URIs or explicit names, and can only occur as subjects or objects.

RDF as a data model provides many attractive features especially for information sharing
and integration over the traditional relational data model (Hebeler et al., 2009). These
include the simple structure of its basic units, its unrestricted graph structure, and the
global namespace provided by the use of URIs (Hebeler et al., 2009). An RDF triple with a
named resource as its subject unambiguously describes that particular resource, regardless
of where the triple is asserted. In contrast to the relational model, where a particular row in
a database table is identified with a primary key that is unique to one table within one
database, a URI is a name that is universally unique, and remains valid in any context.
RDF triples are completely self-contained assertions of information, and as such they are
independent from one another. This independence means that the order in which they occur
is insignificant. Two RDF graphs can so be merged easily because their flexible structure
does not imply any inherent significance to any one resource as compared to any other.
Linking data sources together can be done simply by adding few triples to specify the
relationships between the data sources, which is much simpler than the complicated
schema realignment that is usually needed to integrate two data sources in a database

system.

RDF is a very flexible data model, as it allows representation of any arbitrary knowledge
assertions in the form of triples. There are no requirements for pre-defined data schemas as
in RDBMSs, which require the definition of data structures or schemas before actual data
can be asserted. This flexibility can be considered as a significant advantage when the
structure of the data is not well known in advance (Taylor et al., 2006). However, this
comes at a price. Pre-defined schemas offer detailed information to the DBMS on how the
data is structured, which informs its decisions about data storage layouts, and query
optimisation. While the RDF triple model is in itself a schema, it is still very loose
compared to the detailed relational schemas. This model is analogous to a database with

very few tables but with a huge number of small records.

Data extraction: RDF data are usually stored in a special type of repository called triple
stores. Data from these stores can be retrieved using the W3C standardised query language,
SPARQL (Harris et al., 2013), which recognises RDF as its fundamental syntax. SPARQL
enables users to specify a graph pattern with variables that will be matched against a given

data source, returning all matched bindings. The graph patterns themselves are composed

33



Chapter 2

of independent triple patterns, which makes it possible to state, for example, that some
parts of the graph are optional, or to limit any part of the entire query graph pattern to
particular RDF data sets.

SPARQL for RDF data is analogous to SQL for relational databases. While the underlying
graph structure is very different from the tabular format of RDMSs, a mapping between
SPARQL and SQL is still possible. Cyganiak (2005) provided a transformation from
SPARQL into relational algebra and outlined a translation from the relational algebra into
SQL statements. For example, a triple pattern in a SPARQL query that specifies a
predicate value and has subject and object as variables can be translated into a filter (o)
operation on the predicate and a projection (mw) for the subject and object. Two triple
patterns in a SPARQL graph pattern can be mapped into an inner join operation (<) on
their shared value, and so on. This mapping makes existing work on query planning and

optimisation available to SPARQL engines and RDF processors.

In addition, there is a substantial amount of research on native SPARQL optimisation,
which draws both from the semantics of SPARQL (Pérez et al., 2006) and from approaches
used in database optimisation. A SPARQL basic graph pattern optimisation using
selectivity estimation is presented by Stocker et al. (2008), in which graph patterns are
reordered based on a number of heuristics and summary statistics tailored for the RDF data
model. The heuristics range from simple triple pattern variable counting to a more
sophisticated probabilistic framework that uses pre-computed statistics to estimate the
selectivities of individual and joined triple patterns. Another approach to SPARQL
optimisation presented by Hartig and Heese (2007) uses syntactic rewriting based on a
given SPARQL query graph model (SQGM) that supports all phases of query processing.
In the query-rewriting phase, transformation rules are used to transform a SPARQL query
into another semantically equivalent query in order to achieve better execution. For
example, rules can be used to simplify complexly formulated queries by merging graph
patterns, and can eliminate redundant or contradictory restrictions. Other approaches
include providing specialised RDF indices (Harth and Decker, 2005) that can be used for
selectivity computation of single triple patterns, and enabling semantic query optimisation
for SPARQL (Schmidt et al., 2010).

Incorporating semantics: Another basic component of the Semantic Web are ontologies.
An ontology can be defined as “a formal, explicit specification of a shared

conceptualization” (Gruber, 1993). This enables computers to share not only information,
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but vocabulary (Patel-Schneider et al., 2004). A typical Web ontology has a taxonomy and
a set of inference rules (Berners-Lee et al., 2001). While the taxonomy defines classes of
objects and relations among them, the inference rules add the power of inferring new
relations. W3C has standardised RDF Schema (Brickley et al., 2014), which is a
vocabulary for describing properties, classes and their hierarchies, and OWL (the Web

Ontology Language) (Hitzler et al., 2012), which provides greater expressivity than RDFS.

RDF Schema is a vocabulary description language for RDF. It presents mechanisms for
describing sets of related resources and the relationships between these resources (Brickley
et al., 2014). So, RDFS adds some kinds of structure or schema over the unstructured RDF
data. RDFS does not provide a vocabulary of application-specific classes and properties,
instead, it provides the facilities needed to describe such classes and properties, and to
indicate which classes and properties are expected to be used together. The main classes
defined by RDFS are: Resource, Class, Literal, and Datatype. In addition, the main
properties defined by RDFS are: domain, range, subClassOf, and subPropertyOf.

RDF defines an informative rule-based axiomatization of the RDFS semantics that can be
executed over any RDF graph. Executing these rules will generate new facts when the
existing ones match rule conditions. All the rules are stated in the form: add a triple to a
graph when it contains triples matching a pattern. For example, if class X is a sub-class of
Y, and class Y is sub-class of Z, then a triple stating that class X is also a sub-class of Z is

asserted.

Web Ontology Language (Hitzler et al., 2012) is also a vocabulary description language;
however, it is designed for applications that require greater expressivity than that provided
by RDFS. OWL is a revision of the DAML+OIL ontology language (Horrocks, 2002). It
adds more vocabulary to describe properties and classes, including relations between
classes, cardinality, equality, richer typing of properties, and enumerated classes. The
original version of OWL (Patel-Schneider et al., 2004) defines three sublanguages with
increasing expressivity: OWL Lite, OWL DL, and OWL Full. While being less expressive,
OWL Lite also has a lower formal complexity than OWL DL. It doesn’t support some
OWL features, e.g. no enumerated or disjoint classes, and puts restrictions on some other
features, e.g. cardinality. OWL DL provides the maximum expressiveness that could be
achieved while maintaining completeness and decidability. It supports all OWL constructs
but with some restrictions. OWL Full provides the maximum expressiveness — no

restrictions — but with no computational guarantees, as it can be potentially undecidable.
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OWL 2 (Hitzler et al., 2012) is a revision of OWL that affords greater expressiveness
through the addition of new functionalities, including keys, property chains, richer data
types and data ranges. OWL 2 has three sublanguages: OWL 2 EL, OWL 2 QL, and OWL
2 RL. OWL 2 EL enables polynomial time algorithms for all the standard reasoning tasks.
It can be used for applications where very large ontologies are needed, and where
performance is more important than expressivity. OWL 2 QL uses standard relational
database technology to enable conjunctive queries to be answered. It is particularly suitable
for applications where small ontologies are used to organise large numbers of instances
and where it is useful or necessary to access the data directly via relational queries. OWL 2
RL enables polynomial time reasoning using rule-extended database technologies (e.g.,
Datalog (Ceri et al., 1990)) operating directly on RDF triples. It can suitably serve
applications where relatively small ontologies are used to organise large numbers of
instances and where it is useful or necessary to operate directly on data in the form of RDF

triples.

While reasoning over RDFS and OWL RL can be performed using the efficient,
lightweight rule-based reasoning algorithms, other OWL dialects need Description Logic
reasoning. Though OWL DL is guaranteed to be computationally decidable, that does not
imply that reasoning will be completed in a realistic amount of time. The trade-off between
expressivity and complexity should be taken into account when choosing the appropriate

semantic representation for the application.

To map the gap between logic programs and description logic, Grosof et al. (2003)
introduced new intermediate knowledge representations, Description Logic Programs
(DLP) and Description Horn Logic (DHL), which fall within the expressivity intersection
of rules and ontologies. They used RuleML to represent Logic programs, and
OWL/DAML+OIL to represent description logics, which were the current draft standards
for rules and ontologies in the Semantic Web context. They explained a bidirectional
mapping of premises and inferences — called DLP-fusion — from the DLP fragment of DL
to LP and from the DLP fragment of LP to DL. This fusion enables rules to be built on top

of ontologies and to build ontologies on top of rules.

Adding rules: Many rule languages for the Semantic Web have appeared since its early
days, to represent knowledge that either cannot be expressed in OWL or can be understood
more easily with rules (Hebeler et al., 2009). These include RuleML (Boley et al., 2001),
the Semantic Web Rule Language (SWRL) (Horrocks et al., 2004), in addition to rule

engines with their own rule syntax such as Jena (McBride, 2002) and Jess (Friedman-Hill,
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2002). As there is no one rule language that is likely to satisfy the needs of all different
applications, and as one of the Semantic Web goals is to ensure interoperability between
different systems, the W3C did not standardise any of them. Instead, they produced RIF:
the Rule Interchange Format (Kifer and Boley, 2013) as a recommendation. RIF represents
a core rule language plus extensions, which together allow rules to be translated between

rule languages and thus transferred between rule systems.

To enable interchange, RIF provides multiple dialects, such as RIF Core (Boley et al.,
2013), RIF Basic Logic Dialect (RIF BLD) (Boley and Kifer, 2013), or Production Rule
Dialect (RIF PRD) (de Sainte Marie et al., 2013), in addition to a set of standard data types
and built-in functions (RIF DTB) (Polleres et al., 2013). RIF Core is the fundamental RIF
language, designed to be the common subset of most rule engines, and provides safe
positive datalog with builtins. RIF BLD offers the expressive features of Horn rules, while
RIF PRD is focused on the condition-response frameworks of forward-chaining rules.
Although RIF dialects were designed mainly for interchange, each dialect is a standard rule

language and can be used even when portability and interchange are not required.

From a theoretical viewpoint, RIF Core corresponds to the language of definite Horn rules
without function symbols (often called ‘Datalog’) with standard first-order semantics
(Boley et al., 2013). Therefore, RIF Core is a subset of RIF BLD. It is also a subset of RIF
PRD, in which the conclusions of production rules are interpreted as assert actions.
Syntactically, RIF Core has a number of Datalog extensions to support features such as
objects and frames, similar to F-logic (Kifer et al., 1995), IRIs as identifiers of concepts,
and XML Schema datatypes (Biron et al., 2004). An example of a RIF frame is
<http://fexample.com/John> [ex:worksWith -> <http://example.com/Tom>], which
corresponds to the RDF triple (<http://fexample.com/John>, ex:worksWith,
<http://fexample.com/Tom>). The interoperability of RIF rules with RDF graphs and OWL
ontologies is explained in the RIF, RDF and OWL Compatibility document (Bruijn and
Welty, 2013), which defines the syntax and semantics of integrated RIF Core/RDF and
RIF Core/OWL languages. These features make RIF Core a Web-aware language (Boley
et al., 2013). Moreover, RIF Core is based on built-in functions and predicates over
selected XML Schema datatypes, as specified in RIF-DTB 1.0 (Polleres et al., 2013).
These include functions for comparing values, datatype-checking predicates, and basic

numeric functions.

An example of a simple RIF rule document obtained from Boley et al. (2013) is presented

in Listing 2.1. The rule derives ‘buy’ relationships from ‘sell’ relationships that are stored
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as facts. The document can be read in English as follows: a buyer buys an item from a
seller if the seller sells the item to the buyer; John sells LeRif to Mary. The conclusion that

Mary buys LeRif from John can be logically derived from this statement.

E Document (
: Prefix (cpt <http://example.com/concepts#>)
Prefix (ppl <http://example.com/people#>)
Prefix (bks <http://example.com/books#>)
Group
(

Forall ?Buyer ?Item ?Seller (

cpt:buy (?Buyer ?Item ?Seller) :- cpt:sell(?Seller ?Item ?Buyer)

)
cpt:sell (ppl:John bks:LeRif ppl:Mary)

Listing 2.1: An example RIF rule document

Linked Data: While the above-described standards provide a framework for representing
and processing semantic data, Linked Data principles provide a set of best practises for
publishing and interlinking such data on the Web in a manner that facilitates data discovery
and interoperability (Bizer et al., 2009). These principles were outlined by Berners-Lee
(2006) as follows: (1) use URIs to name things, (2) use HTTP URIs to allow individuals to
look up those names, (3) return useful information upon looking up URIs using standards

(e.g. RDF), and (4) include links to other URIs to enable further discovery.

Following these principles, data providers add their data to a global data space that allows
data to be discovered and used by various applications, creating what can be described as
the web of data (Bizer et al., 2009). The Linking Open Data project® was established to
bootstrap the web of data by converting existing open datasets to RDF and publishing them
on the Web according to linked data principles. As large organisations and governments
also published linked data, the number of datasets increased from 12 in 2007, at the
beginning of the project, to 1,146 interlinked datasets in the most recent update of the
Linked Open Data cloud (Abele et al., 2017).

2.23 Existing Semantic Reasoners

A semantic reasoner, rule engine, reasoning engine, or simply a reasoner, is a piece of

software able to infer logical consequences from a set of facts or axioms (Singh and

% https://www.w3.org/wiki/SweolG/TaskForces/CommunityProjects/LinkingOpenData
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Karwayun, 2010). Several semantic reasoners have been developed to reason over the
emerging Semantic Web knowledge. Some of them are reviewed below, with a comparison
presented in Table 2.4 based on Singh and Karwayun’s comparative study (2010). The first
three are Rete-based rule engines. However, none of them support reasoning over data

streams.

BaseVISor (Matheus et al., 2006) is a Rete-based, forward-chaining rule engine optimised
for processing RDF triples. It supports RuleML and R-Entailment rules. R-Entailment is a
language that combines RDF, RDFS and a part of OWL DL with simple Horn-style rules.
BaseVISor works similarly to other Rete-based inference engines. However, there is a
major difference between BaseVISor and these engines, which is that BaseVISor applies a
simple data structure to its facts rather than the arbitrary list structures used by other
engines, which enhances the pattern matching efficiency. BaseVISor is implemented in
Java and it provides an APl to facilitate the addition of user-defined procedural

attachments.

Bossam (Jang and Sohn, 2004) is another Rete-based, forward-chaining reasoner for
inferencing and querying over RDF(S) and OWL data sets, as well as executing rules such
as SWRL. Bossam is based on Logic Programming and First-Order-Logic (FOL). It also
provides an API for controlling the engine, loading ontologies and rules, querying
RDF(S)/OWL documents and giving explanations about derived facts. However, it does
not support SPARQL queries and it does not serialise the knowledge to a persistent store
(Papataxiarhis et al., 2009).

Jess (Friedman-Hill, 2002) is a rule engine written in Java that was inspired by the CLIPS
project (Wygant, 1989). It uses LISP-like syntax for its rules. It also contains a scripting
environment which makes it become a Java framework. Furthermore, being a Java-based
system facilitates Jess’s integration with a number of Web programming paradigms, like
Java servlets or applets. Finally, it supports backward-chaining and some additional

features such as procedural attachments (Papataxiarhis et al., 2009).

Jena (McBride, 2002) — a java framework for building Semantic Web applications —
provides a rule-based inference engine. However, Jena’s RDFS reasoner does not support
data types and blank node entailments. Additionally, Jena’s OWL reasoner is very limited,
since it is a rule-based implementation of OWL-Lite. However, Jena is able to be
connected to most of the available Description Logic reasoners, as external reasoners.

RacerPro — the commercial extension of Racer — (Haarslev and Muller, 2001), Pellet (Sirin
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et al., 2007), and FaCT++ (Tsarkov and Horrocks, 2006) support OWL-DL reasoning

using similar tableau-based approaches. However, FaCT++ does not support rules, i.e.

ABox reasoning. While all of these reasoners perform consistency checking, Pellet can

also explain the reasons for inconsistency.

Table 2.4: Comparison of semantic reasoners

OWL-DL Supported Reasoning Rule support?
Reasoning? expressivity for method
reasoning
BaseVISor No R-entailment, OWL 2 | Rule-based Yes, SWRL and
RL RuleML supported
Bossam Yes LP and negation, Rule-based | Yes, SWRL supported
incomplete OWL DL
Jess Yes Not clear Rule-based | Yes, SWRL supported
Jena No built-in OWL- | Incomplete for complex | Rule-based Yes
DL reasoner description logics
RacerPro Yes SHIQ Tableau Yes, SWRL supported
Pellet Yes SROIQ Tableau Yes, SWRL supported
FaCT++ Yes SROIQ Tableau No
2.3 Conclusion

In this chapter, we discussed the main technologies that have contributed to the emerging

semantic stream processing field. A review of the main techniques for data stream

processing was presented first, followed by a review of the Semantic Web and reasoning

techniques. The next chapter reviews the literature in the specific area of semantic stream

processing that combines features of the fields overviewed here.
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Chapter 3: Semantic Stream Processing

The relatively new research area of stream reasoning was first identified in 2008 by Della
Valle et al. (2008). It aims to integrate data streams with reasoning techniques to enable
logical reasoning on real time, semantic data streams. The area evolved fast in the last few
years, and is recently referred to as RDF stream processing. In the Semantic Web, data is
represented in RDF, and queries can be performed using SPARQL. However, to express
the temporal nature of streaming data, RDF needs to be extended to represent time, which
IS an important concept in data streams. SPARQL also cannot support queries on streaming
data as it lacks crucial operators found in the data stream management systems, such as the
window operators; this is a result of SPARQL’s origins as a store-and-query language.
Other issues in this area are: reasoning, distribution, publishing, etc. The following
subsections review the existing literature that addresses these challenges within the

semantic stream processing area.

3.1 Processing RDF Streams

To enable the processing of RDF streams, Semantic Web research has been extended in
two dimensions: support of the representation of time-varying data to enable time-aware
processing of such data and support for continuous queries to process streaming linked
data on the fly. Several RDF stream processing systems have been developed including C-
SPARQL (Barbieri et al., 2010a), Streaming SPARQL (Bolles et al., 2008), SPARQLstream
(Calbimonte et al., 2010), EP-SPARQL (Anicic et al., 2011), CQELS (Le-Phuoc et al.,
2011) and INSTANS (Rinne et al., 2012a). They generally extend the RDF data model
with time annotations to represent data streams and extend the SPARQL query language
with streaming operators to enable continuous queries. However, because they differ in
syntax and operational semantics, Dell’Aglio et al. (2014) proposed the RSP-QL as a
unifying query model. We briefly describe these RDF and SPARQL extensions and

discuss each work in greater detail.

In terms of representing data streams, research in this area has followed the conventional
definitions of relational data streams as unbounded sequences of data items ordered by
timestamps, as used by the DSMS community. All of the above-mentioned systems use the
notion of RDF statements as the data items of which the stream consists. With the

exception of INSTANS, where the time dimension is implicit in the schema, all other
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systems use explicit time instants associated with each RDF statement. The time instants in
RSP-QL, C-SPARQL, SPARQLstream and CQELS are represented as a single timestamp,
where the associated statement occurs. In contrast, Streaming SPARQL and EP-SPARQL
use an interval of two timestamps to represent the validity of the associated statement.
While both ways allow time-aware processing of data streams, using intervals can support
richer forms of temporal operations. For instance, in a system that assigns validity to
events in the form of time intervals, users can query for events that overlap, or for an event
that happens during another event. Beyond the basic RDF stream definition, RSP-QL also
formally defines an instantaneous RDF graph, which is a snapshot of the input data taken

at a specific point in time that captures the changes of an RDF graph over time.

While different systems propose different extensions of SPARQL to enable continuous
querying of data streams, they generally tend to follow the relational CQL model (C-
SPARQL, SPARQLstream, CQELS, RSP-QL) reviewed in the previous chapter, Section
2.1.2. They adapt CQL’s three classes of operators to work on RDF streams. The first
class, that of window operators that transform streams to relations, is adapted to support
transforming RDF streams to solution mappings. Most existing works in this area (e.g., C-
SPARQL, EP-SPARQL, SPARQLstream, CQELS) support a time-based sliding window,
and some also support triple-based sliding windows. The second class of operators
(relation-to-relation) includes operators that represent SPARQL algebra (Pérez et al.,
2006). Therefore, the main advantage of the CQL approach is that the streaming extension
of the query language does not need to redefine its original operators; it only works on
their inputs and outputs. The third class (relation to stream) transforms the mapping set
produced by the previous class into an RDF stream. The C-SPARQL supports Rstream,

while CQELS supports Istream and SPARQLstream SUpports Rstream, Istream and Dstream.

Execution strategies vary considerably between different systems. For instance, C-
SPARQL, Streaming SPARQL and SPARQLsteam update their input windows
periodically, while EP-SPARQL, CQELS and INSTANS use a data driven approach.
When a window is updated, systems generally re-execute the standing query on the new
window content. In terms of implementation, they tend to use existing engines to process
data, where the RSP engine works as a wrapper and orchestrator. As an example, C-
SPARQL is built on top of the STREAM DSMS (reviewed in Section 2.1.1) and Sesame
SPARQL query engine.

Next, we will discuss the existing works in this area individually and in greater detail,

highlighting differences to the above general model.
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Streaming SPARQL. The first attempt to extend SPARQL to support processing of RDF
streams was presented by Bolles et al., (2008). They introduced Streaming SPARQL as a
SPARQL extension to cope with window queries over RDF streams. The definition of
RDF stream data type is based on Kramer and Seeger (2005), where three types of streams
are defined: a raw data stream represents the data received by the engine, a physical data
stream which can be processed by the system operators, and a logical data stream over
which the semantics of the extensions can be defined. Instead of performing a window
operation on a stream to transform it into a relation, Streaming SPARQL extends the
logical SPARQL algebra on the foundation of a temporal relational algebra based on multi-
sets, and provides an algorithm to translate SPARQL queries into the new extended
algebra. Streaming SPARQL has both tuple based (SlidingTupleWindow) and time based
(SlidingDeltaWindow and FixedWindow) window operators. Window operation can be

specified in the FROM clause of the query and also in the GroupGraphPattern part.

C-SPARQL. Continuous SPARQL (Barbieri et al., 2009; Barbieri et al., 2010a) is usually
considered as the leading contributor in this area and is often cited as a reference in the
field (Margara et al., 2014). It is a SPARQL extension that follows a CQL-like approach. It
defines an RDF stream data type, adds support for windows over streams and aggregation
capability. An RDF stream is simply defined as an ordered sequence of pairs, each of
which is made of an RDF triple and a timestamp. As these data streams are possibly
unlimited, C-SPARQL has defined two types of windows. Physical windows can extract a
given number of triples starting from the last element, while logical windows are time
based and can be sliding or tumbling. In C-SPARQL syntax, windows are defined as part
of the FROM clause of queries. In addition, C-SPARQL offers more expressivity by
defining a number of aggregate functions: count, sum, average, min, and max. While it
does not add explicit temporal operators, C-SPARQL allows queries to directly access

timestamps of individual triples.

An execution environment for C-SPARQL is also introduced, where each query is
translated into two parts: the static part is passed to a SPARQL query engine (Sesame
(Broekstra, 2002)), while a relational data stream management system (STREAM (Arasu et
al., 2003)) is used to evaluate the streams and aggregates. Although this framework has the
advantage of reusing existing technology, splitting queries into static and dynamic parts

may prevent optimisation that could be possible in a unified framework.

EP-SPARQL. Event Processing SPARQL (Anicic et al., 2011) is another SPARQL

extension proposed as a new language for event processing and stream reasoning. Unlike
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other systems that are inspired by Data Stream Management Systems, EP-SPARQL’s
language constructs and processing model is based on CEP systems. EP-SPARQL is
defined to be SPARQL extended by the binary operators SEQ, EQUALS,
OPTIONALSEQ, and EQUALSOPTIONAL. These operators are used to detect RDF
triples occurring in a specific temporal order in order to capture more complex patterns
over RDF streams. These expressive temporal operators go beyond C-SPARQL’s simple
timestamp() function in terms of detecting temporal relationships between RDF patterns.
Moreover, EP-SPARQL provides the function getDURATIONY() to add selection criteria
(windows) over RDF streams, which are defined as sequences of RDF triples where each

triple is associated with a time interval.

EP-SPARQL queries are translated into the Etalis language for events (ELE) (Anicic et al.,
2012) rules. Etalis is based on logic programming and implemented in Prolog. Etalis rules
are compiled as event-driven backward-chaining (EDBC) rules, which enable event-
driven, incremental detection of complex events in near real time. By using (recursive)

logic rules, a unified execution mechanism for both querying and reasoning is enabled.

SPARQLstream. Calbimonte et al., (2010) designed a service that enables ontology-based
access to streaming data in order to integrate heterogeneous data sources. The service
receives queries specified in terms of the ontology using SPARQLstream, another extension
of SPARQL, to support processing RDF streams. These queries are then transformed into a
relational continuous query language (SNEEqI) using a set of mappings expressed in S20,
an extension of the R20 mapping language (Barrasa et al., 2004) that supports streaming
data. After the query translation phase, the query processing phase starts, using a DSMS
engine (SNEE) (Galpin et al., 2011). The results are then transformed from a set of tuples
into ontology instances. SPARQLsteam language is inspired by — and very similar to — C-
SPARQL. However, it adds support for the window-to-stream operators: Rstream, Istream,
and Dstream, and it only supports time-based windows.

CQELS. As opposed to C-SPARQL, EP-SPARQL, and SPARQLstream, CQELS
(Continuous Query Evaluation over Linked Streams) (Le-Phuoc et al., 2011) uses a “white
box” approach, i.e. it defines its own RDF-native processing operators rather than reusing
existing technologies. Hence, it integrates the processing of background and streaming data
without delegating each of them to external engines. CQELS uses a point-based timestamp
to add the temporal aspect for both streams and linked data. To process its input, CQELS
implements three types of operators, organised as a data flow: window, relational, and

streaming operators, that resemble CQL’s stream-to-relation, relation-to-relation, and
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relation-to-stream operators. CQELS also has the feature of adaptive queries processing,
where a mechanism similar to Eddies (Avnur and Hellerstein, 2000) is used to dynamically
reorder the operators in the data flow tree. A cost-based routing policy decides the order in

which the operators are executed at runtime.

INSTANS. A completely different approach to processing dynamic RDF data is
introduced in INSTANS (Incremental eNgine for STANding Spargl) (Rinne et al., 2012a).
Instead of extending SPARQL to support continuous queries, they used the Rete algorithm
(Forgy, 1982), an incremental algorithm to solve the many patterns/many objects match
problem, to implement a number of interconnected SPARQL 1.1 updates. It also differs
from standard SPARQL in the execution mechanism because it does not execute queries
on demand but rather propagates data through a query matching network. Each tuple is
processed as soon as it arrives, and output is produced immediately when all conditions
match. It differs from continuous SPARQL extensions in that it has no notion of stream-to-
relation or relation-to-stream operators; instead, windows are handled using explicit
INSERT and DELETE queries. Therefore, it is possible to use only SPARQL without any
extensions to process streams. However, we can show that this comes at the expense of a
more complicated way to model the required query semantics, as follows. In Rinne et al.
(2012b), in a sample use case in which one needs to detect a nearby friend, which can be
represented in C-SPARQL as a single continuous query, four SPARQL queries are needed
in INSTANS: a window query, a nearby detection query, a notification query and a query
to remove invalidated nearby statuses.

Table 3.1 compares the different approaches to enabling RDF stream processing; the
execution is mainly based on Le-Phuoc (2012a). Systems use similar data models and
provide a similar level of expressivity, except for EP-SPARQL, which supports higher
levels of expressivity; however, they vary in their execution models. Two important points
can be observed from the table. First, none of them, except EP-SPARQL, support
background ontological reasoning. Even in EP-SPARQL, ontological reasoning is not
supported natively but rather enabled using user-defined recursive production rules. The
next section discusses works that are mainly focused on the reasoning problem. Second,
we notice that systems either use static plans or completely externalise the optimisation
problem to the underlying systems. This is mainly because using a black-box approach
prohibits optimisation opportunities. CQELS, which enables native support of RDF

streams, is the only engine to provide adaptive optimisation.
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Table 3.1: Comparison of RDF Stream Processing approaches

Streaming C-SPARQL EP-SPARQL SPARQLstream CQELS INSTANS
SPARQL

Stream elements Triples Triples Triples Triples Triples Triples

s B

5 g Time model Interval Single point Interval Single point Single point Implicit
Supported windows Time-based, triple-| Time-based, triple-| Time-based Time-based, history | Time-based, triple-|No explicit window

based based windows based operator

P

% Temporal operators No No Yes No No No

(5]

£ |Reasoning No No RDFS subset No No No
Input updates Periodical Periodical Data-driven Periodical Data-driven Data-driven
Execution strategy Re-execution Re-execution Incremental Re-execution Re-execution Incremental
Optimisation Algebraic, static Algebraic, static Externalised Externalised Physical, adaptive | Algebraic, static
Internal representation | Stream-to-stream CQL&SPARQL Logic programmes | SNEE queries Adaptive  physical | Rete dataflow

operators queries operators networks

[

o

5 Underlying engine N/A: No | Sesame and | Prolog SNEE N/A: Native N/A: Native

(&)

E implementation STREAM
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3.2 Reasoning on Semantic Streams

While the RSP engines enabled processing RDF streams, integration with static knowledge
bases and issuing of standing SPARQL queries, RDFS/OWL reasoning was not supported
by the majority. Other works in the area addressed the reasoning problem in different
ways. We classified the proposed approaches towards stream reasoning depending on their
expressivity in two categories. The first supports lightweight reasoning to highly dynamic
streams on the level of RDFS and subsets of OWL 2 RL. The second enables richer forms
of reasoning, including description logics and nonmonotonic reasoning; however, it either
does so for less dynamic streams or involves approximation techniques. Stuckenschmidt et
al. (2010) introduced a conceptual view of cascading reasoners, in which reasoners are
organised in a hierarchy of increasing complexity in order to overcome the trade-off
between the complexity of the reasoning method and the frequency of the data stream the
reasoner is able to handle.

3.21 Lightweight stream reasoning

An early work by Walavalker et al. (2008) presents a subsumption reasoner that can deal
with streaming knowledge. Given an RDFS or OWL ontology, the system pre-computes
the transitive closure of all classes on the rdfs:subClassOf relationship and stores the class-
subclass pairs in a database table. A set of continuous queries are defined based on the
RDFS entailment rules, to be evaluated at run time by the TelegraphCQ stream
management system (Chandrasekaran et al., 2003), in order to identify subclass events of
the event of concern. Similar to C-SPARQL, EP-SPARQL, and SPARQLstream , this
reasoner uses a black-box approach. Its expressivity is limited to the main RDFS predicates
(subClassOf, subPropertyOf, range, and domain) and OWL’s inverseOf relationship.

Reasoning over streams needs to operate incrementally, as re-computing all results
whenever a change is made to the input streams (insertion or deletion) can result in a very
slow performance. Barbieri et al. (2010b) propose an approach for incremental reasoning
to maintain the ontological entailments, referred to as IMaRS in (Dell’Aglio and Della
Valle, 2014). The approach is based on the (DRed) algorithm (Gupta et al., 1993), which
overestimates the deletions and then computes re-derivations, but the resulting incremental
algorithm of data streams reasoning is easier and more efficient because the addition or

removal of facts from data streams is controlled by windows, which have a clear expiration

47



Chapter 3

time. The algorithm requires tagging of each RDF triple (both inserted and entailed) with
an expiration timestamp. The program then can compute a new complete and correct
materialisation by dropping RDF triples that are no longer in the window. This can be
directly compared to the Rstream operator of CQL (Arasu et al., 2003), which provides all
answers that are correct at a certain time as a stream of results. An evaluation of the
program shows that it is faster than the naive approach (computing the entire
materialisation at each step) when the percentage of change is less than 13% of the
background knowledge. Although the results are promising, the experiments have been
performed for only one query, so it is not clear how the algorithm will work and scale for
multiple queries with different window definitions (Anicic et al., 2011). Furthermore, it is
restricted to time-based windows and does not allow deleting triples, e.g. in case of

inconsistency, before their expiration.

The Rete algorithm also works incrementally. Rete networks are used in Sparkwave
(Komazec et al., 2012) to enable schema-enhanced pattern detection on RDF data streams.
However, they present a fixed approach that can only operate over RDF schema and a few
OWL constructs. A pre-processing epsilon network, which handles the reasoning task, is
placed before the Rete network, which processes the RDF streams. Sparkwave is a clear
example of sacrificing expressivity for performance; its reasoning capabilities are
restricted, it has the same limitations as IMaRS and it does not support disjunction,
negation, temporal or arithmetic operators. Oliya et al., (2011) also use the Rete algorithm
to enable incremental OWL reasoning over dynamic contextual information that can be
expressed through Description Horn Logic ontologies. However, the paper says nothing

about time windows or any other streaming operators.

3.2.2 Complex stream reasoning

Rscale (Liebig and Opitz, 2011) is an OWL 2 RL reasoner that is suitable for a moderate
update frequency. The system uses a relational database as secondary storage to store the
ontology in base tables. The applicable rules are translated to SQL queries and executed by
the rule engine at those tables. The results are written in delta tables, followed by an
alignment and merge phase, which executes in rounds by deleting already inferred facts
from delta tables and adding the remaining facts to the base tables. Dynamic updates
(insertions and deletions) are then dealt with incrementally based on Volz et al. (2005).

Because the execution mechanism consists of many steps and requires reactivation with

48



Chapter 3

every update, Rscale might not be suitable for fast streams. Furthermore, it does not

support time-aware reasoning.

On a more expressive level, TrOWL (Ren et al.,, 2010; Ren and Pan, 2011) supports
dynamic management of description logic ontologies. It uses syntactic approximation to
reduce reasoning complexity. In contrast to IMaRS, TrOWL requires no fixed time
window to manage deletions; instead, it uses a Truth Maintenance System to maintain
intermediate results and the deduction relations among them. Because this approach has
the disadvantage of using excessive memory consumption, they also present an
optimisation algorithm that reduces the number of unnecessary intermediate results.

Do et al. (2011) introduced the concept of stream reasoning to Answer Set Programming
(ASP) using dlvhex (Leone et al., 2006) to combat uncertain data by using disjunction
rules to generate a multiple answer set. They applied an ASP solver (dlvhex) repeatedly on
periodically changing windows of OWL objects. On the contrary, Gebser et al. (2012)
handled streaming data into the reasoning methodology of ASP by proposing novel
language constructs that enable specifying and reasoning with time-decaying logic
programs. Similar to the idea of cascading reasoners (Stuckenschmidt et al., 2010),
StreamRule (Mileo et al., 2013) combines CQELS for stream processing and filtering with
Oclingo, the ASP engine of Gebser et al. (2012), for nonmonotonic reasoning.

On the theoretical side, LARS (a logic-based framework for analysing reasoning over
streams) (Beck et al., 2015) provides a rule-based formalism with different means for time
abstraction. A rule language with model-based, nonmonotonic semantics similar to ASP is

also introduced.

3.3 Publishing Semantic Streams

Though best practices for linking semantic static data on the Web were stated under the
name of Linked Data (Bizer et al., 2009), RDF streams have been neglected. Publishing
RDF streams in the Linked Data cloud (Abele et al., 2017) will enable Semantic Web
applications to consume this data and facilitate the integration of RDF streams with static
data already published in the Linked Data cloud. To enable such publication, the
identification, discovery, and access to stream data need to be addressed (Sequeda and
Corcho, 2009).
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The concept of Linked Stream Data has been introduced by Sequeda and Corcho (2009).
They propose a URI-based mechanism to identify and access sensor network streams.
Sensors are identified by URIs that return the sensors’ metadata when dereferenced, while
data streams emitted by those sensors are also identified by URIs that return the
observations contained in the stream. The Linked Stream Data URI scheme also identifies
stream data at specific moments in time (by including a timestamp in the stream URI), in
specific time windows (by specifying a start time and end time in the stream URI), and at

specific locations (by including the coordinates in the stream URI).

Another approach to publish data streams as Linked Data was proposed by Barbieri and
Della Valle (2010c). In this approach, each RDF stream is represented as one Stream
Graph (s-graph) and several Instantaneous Graphs (i-graphs). A s-graph is a metadata
graph that describes the current content of the window over the RDF stream. S-graphs use
the rdfs:seeAlso attribute to refer to a number of i-graphs, which in turn represent
individual readings or observations. Similar to the Linked Stream Data approach, these s-
graphs and i-graphs are identified by URIs. However, representing time is different. While
Linked Stream Data allows for opening a window starting from and ending at any moment
in time, this approach specifies only the duration (or size) of the window in the URI,
forcing the extraction of the last elements from the data stream. This is more compliant
with the nature of streams, that being possibly of unbounded size, should not be treated as
persistent data to be stored and queried on demand, but rather as transient data to be

consumed on the fly by continuous queries.

3.4 Distributed Semantic Stream Processing

Systems that deal with a high velocity or volume of data streams feature several scalability
requirements (Shah et al., 2003). These requirements have been addressed in relational
DSMSs by enabling parallel and distributed processing of data streams (e.g. Abadi et al.,
2005; Shah et al., 2004). In the stream reasoning area, there is an attempt by Hoeksema and
Kotoulas (2011) to apply a parallel approach for stream reasoning using the Yahoo S4
framework. They introduce a number of RDFS specialised reasoning Processing Elements
(PEs) to distribute triples over multiple streams. Streams are distributed across those PEs
according to a given key, so the PEs can be distributed across different nodes for a parallel
execution. Continuous query answering is also supported by a number of components that

can be combined to translate a subset of C-SPARQL into a parallel execution plan.
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While all the RSP engines reviewed in sections 3.1 work in a centralised setting, the recent
implementation of CQELS (Le-Phuoc et al., 2013) supports parallel processing in a cloud
environment. They built the CQELS engine on an elastic cluster, where it can adapt to
changing processing loads by dynamically adjusting the number of processing nodes at
runtime. The network consists of a number of processing nodes and a central coordinator
that maps the logical query network to the available nodes. They provided parallel
algorithms for window, join and aggregation operators. Their evaluation experiments show

that the throughput scales linearly with increasing numbers of processing nodes.

3.5 Developed Semantic Streams Environments

SemSorGrid4Env (Gray et al., 2011) is an application that implements a service
architecture to provide a semantically integrated information space for sensed and stored
data drawn from heterogeneous data sources. The architecture is structured into three tiers.
The data tier enables publishing and querying data in its native format. The middleware
tier supports the discovery and integration of different data models. Finally, the application
tier provides support for web-based applications to interact with other services of the
system. This architecture is deployed as a flood emergency response planning system. The
paper mainly focuses on the integration process, while they use SPARQLstream (Calbimonte

et al., 2010) for continuous query processing.

BOTTARI (Balduini et al., 2012) is a mobile application that continuously analyses social
media streams to deliver personalised location-based recommendations. BOTTARI
architecture contains three parts: a client (mobile app) which interacts with the user and
initiates SPARQL queries, a PUSH segment that continuously analyses streams of tweets
using C-SPARQL, and a PULL segment that answers the client’s queries by combining
different forms of reasoning. The paper presents an evaluation of a deployment of the
system that analyses tweets about points of interest (POIls) such as hotels and restaurants in
Insadong, Korea. Their scalability test shows that the system handles a flow of 15,000
tweets/second, though the input rate is at tens of tweets a day. As this rate is considered
slow for a stream processing engine, they claim that BOTTARI’s scalability goes largely

beyond the actual needs of its deployment in Insadong.

Another platform is called Linked Streams Middleware (LSM) (Le-Phuoc et al., 2012b). It
integrates sensor streams with Linked Data by enriching them with semantic descriptions

using a wide range of wrappers. It also provides an intuitive Web interface for data
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annotation and visualisation. Finally, live querying over both types of data is enabled using
CQELS and a standard SPARQL processor. LSM uses a cloud-based infrastructure
(Hadoop cluster) for real-time data collection, which enables its current deployment to
access over 110,000 sensor data streams. However, the continuous querying process is not
distributed.

3.6 Benchmarking

As the number of RDF stream processing engines has increased, the need for an open
benchmarking framework has grown. Existing RDF/SPARQL benchmarks such as the
Berlin SPARQL Benchmark (Bizer and Schultz, 2009) and LUBM (Guo et al., 2005) are
designed for static data. On the other hand, there is also an available benchmark for
DSMSs: the Linear Road benchmark (Arasu et al., 2004), which is based on the relational
data model, and does not consider reasoning. Therefore, a number of benchmarking
frameworks for streaming RDF/SPARQL engines have been proposed.

The Streaming RDF/SPARQL Benchmark “SRBench” (Zhang et al., 2012) is mainly
focused on evaluating coverage for SPARQL constructs. It uses a real world sensor data
set linked to some static data sets from the LOD cloud, and provides a comprehensive set
of queries that cover the important SPARQL operators and the common streaming
SPARQL extensions. They provided a functional evaluation of three streaming SPARQL
engines: SPARQLstream, CQELS, and C-SPARQL. The results show that all three engines
support basic SPARQL features over time-based windows of streaming data. None of the
engines provides reasoning, and there is very limited support for SPARQL1.1 features. At

the moment, SRBench does not offer performance evaluation.

The second benchmark is the Linked Stream Benchmark “LSBench” (Le-Phuoc et al.,
2012c) focuses on evaluating performance of the system using throughput as an indicator.
LSBench implements a data generator that generates stream social network data. It also
defines a set of queries to test the functionality of three streaming engines: CQELS, C-
SPARQL, and JTALIS (EP-SPARQL engine). The correctness of the results of these
queries is then tested, which shows there is a degree of mismatch due to the different
execution strategies used by the engines. LSBench also provides some performance tests
measuring throughput of the three engines to see how fast they are. As C-SPARQL is not
designed for large static data sets, the results show that CQELS and JTALIS have higher
throughput than C-SPARQL by some orders of magnitude. The same test is run again with
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varying static data sizes, and different number of simultaneous queries. CQELS
outperforms the other engines but they all show linear deterioration of throughput against
increasing numbers of queries. LSBench does not measure other performance metrics, such

as memory usage.

An extension of the SRBench that is mainly concerned with the correctness problem is
called CSRBench (Dell’Aglio et al., 2013). When comparing the output of different RSP
engines, it is difficult to determine whether different results for the same query from
different engines are incorrect behaviour or merely a result of different operational
semantics. To address this problem, they analyse the operational semantics of these
engines, focusing on stream-to-relation and relation-to-stream operators. Stream-to-relation
analysis is based on the SECRET (Botan et al., 2010) model, which characterises the
behaviour of time windows through four functions: scope, content, report and tick. For
relation-to-stream semantics, they consider the operator used (Rstream, Istream, or
Dstream) and whether or not the engine produces a notification for an empty answer.

However, their approach is only applicable to CQL-based systems.

Another framework for benchmarking RSP engines is CityBench (Ali et al., 2015), which
focuses on evaluating system performance under a realistic dynamic setting in the smart
city domain. It provides a configurable testbed infrastructure, which allows the use of
evaluation tests using fine-tuned configuration parameters. These include changes in input
streaming rate, variable background data size, number of concurrent queries and number of
streams within a single query. They evaluated two RSP engines (C-SPARQL and CQELS)
in terms of latency, memory consumption and completeness of results while varying the

configurable parameters.

3.7 Conclusion

The processing of dynamic data has gained increasing attention in the Semantic Web
community over the past few years. Research efforts have addressed several issues in this
area including defining and querying semantic streams, stream reasoning, publishing
linked streams, and benchmarking semantic stream processing systems. Semantic streams
are usually defined as sequences of RDF triples associated with a time element. However,
there is a room for other definitions of RDF streams based on different granularity, e.g.

streams of RDF graphs.
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The main focus in the area was to enable on-the-fly processing of semantic streams, which
led to the development of a number of stream processing engines that can handle dynamic
RDF streams. However, apart from CQELS, all of these engines are not natively designed
for RDF streams. CQELS defines its own operators to work directly on RDF streams.

However, it does not support reasoning.

SRBench (Zhang et al., 2012) found that none of the tested stream processing engines
provides reasoning support. The few studies that aim to provide streaming inference
support have been reviewed in this chapter. Areas such as real-time optimisation and
distributed processing of RDF streams remain very little explored.

In conclusion, there are some RDF stream processing systems (Table 3.1) but the majority
of them do not support reasoning. On the other hand, there are some stream reasoning
systems (reviewed in Section 3.2) but they do not address the optimisation problem.
Therefore, our work aims to close this gap, by providing reasoning support as well as
adaptive optimisation in a native, unified approach.

54



Chapter 4

Chapter 4: Continuous Reasoning

While most of the leading works in semantic stream processing area focus on RDF stream
processing without reasoning support (Zhang et al., 2012), we mainly aimed to enable
reasoning for RDF streams. In this chapter, we describe our approach to support generic
rule-based reasoning for real-time streaming data. First, we define a number of general
requirements that informed our design decisions. Second, we introduce our continuous
reasoning framework, including a definition of the RDF stream datatype, and an
operational description of the supported operators. Then, we introduce R4 — Rule-based
Reasoner for RDF streams using Rete — our prototype stream reasoning engine. We
describe its architecture, how it implements the different operators of the framework, and
present an extension to the standard Semantic Web rule language RIF in order to add
support for temporal operations.

4.1 Requirements

Different scenarios have different requirements, mainly due to different stream
characteristics (input rate, volume, bursts, etc.), resource constraints, and the nature and
complexity of the rules to be applied. For example, network analysis systems must deal
with high-volume input streams (Sullivan, 1996), while sensor networks should tolerate the
power constraints of the sensors (Akyildiz et al., 2002). This section presents some
common requirements and challenges that should be considered to enable the processing of
semantic data streams. Most of these requirements are based on Stonebraker et al., (2005)
who defined general requirements for stream processing applications (DSMSs), with the
addition of inference support that is only relevant to semantic streams.
R.1. Integration

In many cases, it is essential to combine stored data with streaming data to provide answers
to queries. For example, names and locations of sensors are typically static stored data,
while the sensors’ observations are streaming data. For instance, queries asking for the
‘number of cycles hired in the last ten minutes in central London’ require a combination of
both stored and streaming data to be evaluated. It is important to have an efficient
mechanism for the unified processing of stored and streaming data. Furthermore, many

scenarios call for the integration of data from different sources (Margara et al., 2014),
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which is the main reason for modelling data in the RDF format that enables
interoperability.
R.2.  Time management

As streaming data change over time, scenarios in streaming applications are usually
concerned with monitoring this change. For example, weather monitoring applications can
use changes in meteorological data observed during specific windows of time to predict
severe weather conditions. This means that a data model linking the streaming data
element to the time domain is needed. In addition to the time-based data model, a time-
aware processing model is also needed to model time relations between data.

R.3.  Data-driven processing

Some applications — especially in the health and environment domains — are time-critical,
demanding fast response times. For example, a home health monitoring application
(Paganelli and Giuli, 2007) should alert the hospital when it infers that a critical situation
has occurred based on abnormal biomedical parameters observed by its sensors. In general,
answers should be provided before they become outdated or useless. To achieve this,
latency® should be kept to a minimum. In a data-driven environment, stream elements are
consumed and results are generated as soon as they are received. Stonebraker et al., (2005)
describes data-driven systems are described as ‘active’ systems, as opposed to ‘passive’
systems, which wait to be told what to do by an application before beginning processing.

R.4.  Memory utilisation

As data streams are potentially unbounded in size, complete processing of the whole
dataset would also require unbounded memory. To address this challenge, quality and
completeness of results can be traded for memory space.

R.5.  Inference support

One of the distinctive features of the Semantic Web is expressive inference capabilities.
Applications that model their streaming data using Semantic Web languages should
support some forms of reasoning, as some queries need implicit knowledge. For example,
in the social media domain, a possible scenario (similar to scenarios in (Balduini et al.,
2013)) is to request recent tweets with hash tags related to a specific city. Reasoning over
an ontology that models the different districts in this city can retrieve these tweets. As
reasoning over expressive ontologies is considered expensive, there is a trade-off between

expressivity and efficiency.

10 By latency, we refer to response time, the time between the arrival of new elements and the generation
of output results. We use both terms interchangeably.
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R.6.  Managing dynamic environments

Response time and memory consumption are highly dependent on the internal processing
plans generated by systems. Implementing a good optimisation strategy can improve the
system’s performance. However, during the life of the running plan, the environment
conditions (e.g. stream’s input rate) may change, so the system needs to support adaptive
optimisation (Babu and Bizarro, 2005). For example, in a street monitoring application,
input rates can vary significantly between busy and quiet periods. Without adaptivity,
performance may drop significantly as conditions change over time. This is because
queries and rules in a streaming environment are long-running, so a bad optimisation plan

causes long-term damage to performance.

Relation to other requirements in the literature: A recent survey of the stream
reasoning area (Margara et al., 2014) analysed a number of scenarios and produced
requirements similar to those mentioned above. These requirements include integration
(R.1); time management (R.2); efficiency, which is directly related to the low latency
requirement (R.3); big data management, which includes memory utilisation (R.4) and
managing dynamic environments requirements (R.6); expressivity as a more general form
of the inference support (R.5); and Quality of Service, which is also related to managing
dynamic environments and adaptivity (R.6). Other requirements that go beyond the scope
of this thesis are distribution, uncertainty management, and historical data management.
We consider distribution as a future work. While reasoning with uncertainty (Halpern,
2005) is an important requirement, we consider it of secondary importance to the

requirements we address.

As stated in the beginning of this section, some of our requirements were inspired by
Stonebraker et al.’s (2005) eight rules for stream processing. Their first rule is to ‘keep the
data moving’, which is related to our low latency requirement (R.3). Their second rule is to
‘query using SQL on streams’. Although querying using SQL might be irrelevant for
linked streaming data, this requirement demands support for time-aware data processing,
which is related to our time management requirement (R.2). Another rule is to ‘integrate
stored and streaming data’, similar to our first requirement (R.1). Furthermore, the ‘process
and respond instantaneously’ talks about the importance of highly optimised plans for
achieving good performance, which is related to our requirement regarding adaptive
optimisation (R.6). Stonebraker et al.’s other rules are mostly related to distribution and

managing uncertainty, including automatic partitioning and scaling, guaranteeing data
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safety and availability, handling stream imperfections, and generating predictable

outcomes, which we consider out of the scope of this thesis.

Addressing these requirements in the literature: Table 4.1 shows how the most relevant
systems in the literature addressed the previous requirements. All of those RDF stream
processing systems enable integration of different data sources by processing streams
encoded in RDF and also enable integration with static datasets. However, the majority of
these systems rely on underlying stream or event processors and SPARQL engines which
means a unified processing of stored and streaming RDF data is not enabled (Le-Phuoc et
al., 2011). A time-based model for RDF data is supported by most systems by annotating
data elements with their time of occurrence or validity. EP-SPARQL also supports
temporal reasoning. Data-driven processing is supported by EP-SPARQL, CQELS,
INSTANS and Sparkwave. A common approach to utilise memory followed by the
majority of these systems is to evaluate queries over sliding windows based on the
assumption that users are mainly interested in recent data. Reasoning over a subset of
RDFS is enabled in EP-SPARQL and Sparkwave, while IMaRS also supports transitive
property. Managing dynamic requirements is only supported by CQELS by enabling
adaptive optimisation of the continuous SPARQL queries.

Table 4.1: Addressing the requirements in the related RDF stream processing systems

Requirements - c g o
Systems % :i -?, g %‘é % e é E §
r!;? NGE)§M.§§<.°E’§ LO.E?‘L © £3
= rceE|dOE| 28| =3 (35
Streaming SPARQL (Bolles et al., 2008) |* * *
C-SPARQL (Barbieri et al., 2009) * * *
EP-SPARQL (Anicic et al., 2011) * * * * *
SPARQLstream (Calbimonte et al., 2010) |* * *
CQELS (Le-Phuoc et al., 2011) * * * * *
INSTANS (Rinne et al., 2012a) * * *
IMaRS (Barbieri et al., 2010b) * * * *
Sparkwave (Komazec et al., 2012) * * * * *
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4.2 Continuous reasoning framework for RDF streams

A framework that supports the requirements in the previous section in the semantic streams
context is needed. The main features of this framework and their relations to the above
requirements are listed below.

1. Unified and native RDF support:

The majority of the systems reviewed in the previous chapter that enable semantic stream
processing (Barbieri et al., 2010a; Calbimonte et al., 2010; Anicic et al., 2011; Walavalker
et al., 2008) employ a black-box approach, in which they rely on stream processing
engines that are not optimised for the RDF data model. This also introduces the overhead
of wrapping or translating the queries and the RDF stream elements to the underlying

engine’s query and data model (Le-Phuoc et al., 2011).

While almost all RDF stream processing systems enable the integration of streaming and
static RDF data, processing these two types of data is not unified, which hinders possible
optimisations. In order to offer maximum optimisation opportunities — which have a major
impact on response time, memory consumption, and completeness of results — the system
should have full control over the low level processing operators. Our framework is based
on a white-box architecture, in which processing operators work directly on RDF data
streams and background knowledge in a unified approach. This feature addresses the
integration requirement (R.1) and is also related to the low latency requirement (R.3).

2. Continuous reasoning:

Our processing framework is not only aimed at the continuous processing of high-
throughput RDF streams but also adds inference support. The initial main focus of research
in this area was to enable the rapid processing of RDF streams. As covered in Section 3.1,
only EP-SPARQL adds simple forms of reasoning. As opposed to approaches covered in
Section 3.2.2, which support higher complexity reasoning for low-throughput streams, our
approach enables lower complexity, general rule-based reasoning at the level of OWL 2
RL on high-throughput streams.

Our reasoning framework includes a time-annotated data model and a time-aware
continuous processing model based on time windows. The model is fully streaming so that
even inference results are considered streams, themselves, and can enter the system again
as input and contribute to derive more results. The continuous reasoning model addresses

the inference requirement (R.5) and time management requirement (R.2).
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3. Incremental, data-driven processing

All operators in our model work in a data-driven manner. Stream elements received from
outside streams are directly pushed to the operators, and the operators, themselves,
communicate their results in a push-based approach. This ensures minimum latency, as
opposed to the periodic evaluation approach used in C-SPARQL, Streaming SPARQL, and
SPARQLstream, Which update the content of the windows for every period of time specified
in the query. For example, if the re-evaluation period is specified as five minutes, there will
be a minimum latency of five minutes between the first received triple and the results it

produces.

Furthermore, as the inference process is computationally expensive, the naive re-
computation approach is not adequate in a streaming context. Thus, we use the naturally
incremental Rete algorithm (Forgy, 1982) to implement the continuous reasoning
networks. As the Rete algorithm is memory-intensive, we employ a time-based extension
to utilise memory consumption. These techniques aim to improve the performance of the
system, addressing the data-driven processing requirement (R.3) and memory utilisation
(R.4).
4. Adaptive optimisation:

As a consequence of the unified white-box approach, optimisation opportunities should be
exploited to improve the performance of the system. With the exception of CQELS, other
RDF stream processing systems do not focus on the optimisation problem, as it is often
externalised to the underlying engine; cross-model optimisation of stream and static data is

restricted due to the black-box approach.

As the traditional RDBMS cost-based optimisation approach is not suited for the streaming
context due to the absence of statistics beforehand and the dynamic nature of streaming
environments, our framework employs adaptive optimisation techniques based on the
research in data stream management systems. The adaptive optimiser responds to changes
in the conditions of input streams by re-organising operators in the continuously running
dataflow networks. The adaptivity feature allows managing dynamic environments (R.6),

enabling lower response time (R.3).

Table 4.2 shows the features supported in our framework and their connections with the

requirements.
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This continuous reasoning framework is realised using data-flow networks, where rules are
translated into pipelined, non-blocking physical operators (that work incrementally in a
data-driven fashion) representing nodes and edges represent RDF streams that flow
between operators, generating results in a continuous manner. Streams are observed
through time windows, which enable the time-based maintenance of both stream elements
and inference results. In the following subsections, the notion of RDF streams is formally
defined, followed by the supported operators in our framework.

Table 4.2: Requirements and design decisions

Design decisions | Native ~ RDF | Continuous Incremental Adaptive
support reasoning data-driven optimisation
operators
Requirements
R.1 Integration *
R.2 Time management *
R.3 Data-driven processing * * *
R.4 Memory utilisation *
R.5 Inference support *
R.6 Managing dynamic environments *
42.1 Data Model

Using RDF as a unified data model for all data streams can solve the heterogeneity
problem found in the 10T area. However, the basic RDF model needs to be extended to
express the temporal aspect of data streams by adding a time annotation. Therefore, as in
the DSMS systems, streams are sequences (possibly unlimited) of pairs, each of which is

formed of a data element and a time element.

4.2.1.1 The data element

All RDF stream processing systems reviewed in the previous chapter use the RDF
statement as the data element, defining an RDF stream as an ordered sequence of RDF
triples associated with a time element. However, RDF streams can be seen as streams of
events that occur in real-life, and while some of these events can be represented using a
single statement, in many cases, they need many more triples to convey their meaning. For

example, a person entering a room can be represented in one RDF statement, while 14
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triples are used to represent a single sensor observation in the SemSorGrid4Env project
using the SSN ontology. This set of triples that describes a single event can be considered
as an RDF graph.

Defining the stream as a sequence of graphs can also be more meaningful in other
situations. First, use cases that require tuple-based windows do not work correctly if events
are represented in more than one triple using a triple-based definition of streams. For
example, a query asking to observe the last ten tweets of a specific user does not give
correct results using a window of size 10 over a triple-based stream, as tweets are usually
represented in more than one triple. Second, in systems that apply sampling techniques
over input streams for load shedding, sampling at a graph level should produce more
results than sampling at a triple level. For example, if a tweet is represented in two triples
(e.g. one represents the user; one represents hash tags used), a simple sampling technique
that sheds 50% of the load will produce no results if the query concerns both triples of the
tweet (e.g. a specific user and a specific hash tag) using the triple-based definition, while

sampling on a graph-level can produce 50% of the qualifying tweets.

For these reasons, we define RDF streams as sequences of RDF graphs associated with
time annotations. This definition is general enough to capture cases where an event is
represented using a single triple, as it can be a special case of a graph containing one
statement. This definition represents external streams arriving at the system from a data
source. An external stream is an ordered sequence of pairs; each pair consists of an RDF
graph and a time element. On the other hand, internal streams represent data that flows
between operators inside the system. Our operators work on the fine-grained level of
triples. The data element of internal streams depends on the operator that produced it. For
example, an output stream of a filter operator (checking a triple pattern) is a sequence of
triples, while an output of a join operator is a number of joined triples representing a partial
result. These partial results are lists of triples, i.e. graphs. However, we refer to them as
tokens in order to avoid confusing the partial results with the external stream graphs. An
internal RDF stream is an ordered — possibly unlimited — sequence of tokens associated

with a time element.

4.2.1.2 The time element

For the time element, we follow the temporal model of Krdmer and Seeger (2005), where
external stream elements are associated with timestamps (representing time of occurrence)

and internal stream elements are annotated with time intervals (representing validity). If
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external graphs arrive at the system without timestamps, they should be stamped by the
system (system time) prior to any processing. If they come annotated with application

time, we expect them to arrive in order.

Upon entering the system, external streams are transformed to internal streams by adding
an expiration time to the occurrence (start) time. The expiration time for each element can
be calculated using time window operators by adding the specified window size to the
element’s start time. This facilitates garbage collection and inference result maintenance,
as they will also be assigned a time interval indicating their expiration time. This can

further enable coalescing value-equivalent streams with adjacent time intervals.

4.2.1.3 Formal Definitions

Definition 1 (Time): Let T be a discrete time domain with a total order under < ; and
let element t € T be a timestamp. A time interval is defined as [ts, te), where ts and te

are both timestamps, and ts < te.

Definition 2 (RDF triple and RDF graph): Like Cyganiak et al. (2014), we define
an RDF triple as follows: Let | denote the set of IRI constants, L the set of literals, B
the set of blank nodes, (s,p,0) then denotes an RDF triple and its subject-predicate-
object components where s € IUB, p € I and 0 € [uLUB. We define an RDF graph,
GRPF, as a set of RDF triples: GRPF = {(s1, p1, 01), (S2, P2, 02), ..., (Sn, Pn, On)}.

Definition 3 (External RDF stream): We consider an external RDF stream, Se, to
be a sequence of timestamped RDF graphs, and therefore we define it as a sequence
of pairs, < GRPF, t>, each of which is comprised of an RDF graph and a timestamp t
€ T. Like Arasu et al. (2006), we note that there could be zero, one, or multiple
graphs with the same timestamp in a stream. However, there should be a finite

number of graphs with a given timestamp.

Order and equivalence: Stream elements are ordered by their timestamps. For two
stream elements, <G, t1> and <G, t>>, we say that G1 <; G to indicate that t1 < to,
which means that G: precedes Gz in the stream. However, graphs with the same
timestamp have no particular order within in the stream; they can appear in any order
and the stream will remain the same. We say that G; is timestamp-equivalent to G>
(G1 =t Gy) if t1 = to. Therefore, a stream B can be equivalent to a stream A if B
contains the same graphs as A, and for each Gi, G2 € A, G1 must precede G if

G1<tG2, or G1 can appear before or after Gy if G1 =t G2. For example, stream A =
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{<a,1>, <b,2><c,2>, <d,3>} is equivalent to stream B = {<a,1>, <c,2><b,2>,
<d,3>}.

Definition 4 (Internal RDF stream): We consider an internal RDF stream, S;, to be
a sequence of tokens associated with time intervals, and therefore we define it as a
sequence of pairs, <K, [ts, te)>, where K is a token that is a set of one or more RDF
triples and ts, te € T are the start and end timestamps forming a time interval. These
tokens are used both for representing partial results that are being passed around the
system as well as representing completed results that are omitted from the reasoner.
Because each token consists of one or more triples, the token can also be considered
a graph, but we denoted it as a token to avoid confusion with graphs that represent

raw input data.

As each token can consist of one or more triples, we differentiate between two types
of internal streams. The data element in the first represents singleton graphs
containing only one triple, so is called an internal triple stream, denoted as Sit, while
the second is called an internal graph stream, denoted as Sig, where tokens represent
graphs containing more than one triple. The time element in both types is the same,
which includes two timestamps representing a time interval. We note that internal
triple streams are a subset of internal graph streams, which means that every internal

triple stream is also an internal graph stream.

An internal stream is ordered by the start timestamp of its elements. As in external
streams, there could be multiple—Dbut limited—tokens with the same start timestamp
in an internal stream. Furthermore, there is no order among tokens with the same

start timestamp.

An external stream of RDF graphs can be transformed into an equivalent stream of RDF
triples by splitting each graph into its constituent triples. The same timestamp t is assigned
as the start time ts to all triples of this graph so that ordering is preserved internally. The

end timestamp te is defined as infinity oo.

4.2.2 Operators

All operators in our continuous reasoning framework work on a data-driven basis. Each
operator takes one or multiple streams as input and produces one stream as output. The
difference between operators is that some of them can be stateless, while others must be
stateful to work correctly.
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According to Andrade et al. (2014), a stream processing operator can be either stateful
(maintains an internal state across tuples during processing), or stateless (processes tuples
independently from each other). Stateless operators, including filter, map, graph-to-triple,
and window operators, can process each received stream element they receive without
storing or accessing any internal data structure created by processing earlier data (Andrade
et al., 2014). If the operation results in an output element, it is immediately appended to the
output stream. On the other hand, stateful operators, including join and aggregation
operators, need to access and maintain internal states each time they receive an input.
These internal states affect the results produced by the operator (Andrade et al., 2014). In
the next subsections, we provide an operational description of these operators, presenting a
streaming algorithm for each of them. We start with the operators that convert between the
different types of streams defined in the previous section, followed by data processing

operators.

We expect these operators to be composed in networks as follows: first, an external-to-
internal operator converts an external stream to an equivalent internal graph stream. This is
followed by a graph-to-triples operator which converts the internal graph stream to its
equivalent internal triple stream. The internal triple stream is then passed to any number of
filter operators. The resulting internal triple streams from filters are then joined into
internal graph streams by join operators. Window operators can be placed before or after
the filters, but necessarily before joins. The final data processing operator in a network
should be the map operator which generates the results as an internal graph stream. This
stream can then be passed to an internal-to-external operator to generate results in the form
of an external stream, and can enter the network again for further processing as an internal

graph stream through the graph-to-triples operator.

4.2.2.1 External-to-internal

Operator: External-to-internal
Input: stream S

Output: stream S;;°“"

1 Foreach <G®P, t> arriving from S

2 Append <GFPF [t,e0)> to S

Listing 4.1: External-to-internal operator
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This unary operator is responsible for transforming an external stream to its equivalent
internal graph stream ready to be consumed by other operators. For each arriving graph, it
assigns the timestamp of the graph as the start time and infinity as the end time forming the
time interval [ts, te). The output stream elements of this operator (the internal graph stream)

are ordered by the start timestamp.

Example. Listing 4.2 (a) represents an example external stream input, and Listing 4.2 (b)

represents the output stream of an external-to-internal operator.

<{(s1,p1,01), (s1,p2,02)}, 5> <{(s1,p1,01), (s1,p2,02)}, [5, ==)>
<{(s2,p1,04), (s2,p2,04), (s2, p3, 05)}, 8> <{(s2,p1,04), (s2,p2,04), (s2, p3, 05)}, [8, =°)>
Listing 4.2(a): Example external stream input Listing 4.2(b): Output stream of an external-

to-internal operator

4.2.2.2 Graph-to-triples

Operator: Graph-to-triples

Input: stream S;;"

Output: stream Si°"

1 Foreach <GF%, [t,, te)> arriving from S;g"
2 Foreach (s,p,0) € GRDF

3 Append <{(s,p,0)},[ts, te)> to Si°""

Listing 4.3: Graph-to-triples operator

This unary operator is responsible for transforming an internal graph stream to its
equivalent internal triple stream. It deconstructs the incoming RDF graphs into their
individual triples and for each graph assigns the time interval of the graph as the time
interval to each triple. The output stream elements of this operator are ordered by the start

timestamp.

Example. Listing 4.4 (a) represents an example input stream, and Listing 4.4 (b) represents

the output stream of a graph-to-triples operator.
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<{(s1,p1,01), (s1,p2,02)}, [5, ==)> <{(s1,p1,01)}, [5, ==)>
<{(s2,p1,04), (s2,p2,04), (s2,p3,05)}, [8, ==)> <{(s1,p2,02)}, [5, ==)>
<{(s2,p1,04)}, [8, ==)>
<{(s2,p2,04)}, [8, =°)>
<{(s2,p3,05)}, [8, ==)>

Listing 4.4(a): Example input stream of a Listing 4.4(b): Example output stream of a

graph-to-triples operator graph-to-triples operator

4.2.2.3 Internal-to-external

Operator: Internal-to-external

Input: stream S;;"

Output: stream S

1 Foreach < G [ t;, te)> arriving from S;"

2 Append <GRPF t> to SO

Listing 4.5: Internal-to-external operator

This operator is responsible for transforming an internal graph stream back to its
equivalent external stream. For each arriving graph, it removes the end timestamp in order
to get a stream of graphs with single timestamps, matching definition 3 of an external

stream.

Example. Listing 4.6 (a) represents an example internal stream input, and Listing 4.6 (b)

represents the output stream of an internal-to-external operator.

<{(s1,p1,01), (s1,p2,02)}, [5, 15)> <{(s1,p1,01), (s1,p2,02)}, 5>
<{(s2,p1,04), (s2,p2,04), (s2, p3, 05)}, [8, 18)> <{(s2,p1,04), (s2,p2,04), (s2, p3, 05)}, 8>
Listing 4.6(a): Example internal stream input Listing 4.6(b): Output stream of an internal-

to-external operator
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4.2.2.4 Filter

Operator: Filter

Input: stream Sy, filter predicate fp
Output: stream S;;°""

1 Foreach <{(s,p,0)},[ts,te)> arriving from Si"
2 If fp(<{(s,p,0)},[ts te)>) is true

3 Append <{(s,p,0)},[ts,te)> to Si®*

Listing 4.7: Filter operator

The unary filter operator, in general, evaluates a predicate over each incoming element. If
the predicate is satisfied, the element is immediately appended to the output stream;
otherwise, it is simply discarded. The predicate is general enough to capture any one-pass,
externally defined predicate (including the built-in datatype predicates and functions of
RIF Core) and also the common case of triple patterns. When the predicate represents a
triple pattern, the filter operator is semantically equivalent to SPARQL’s basic pattern

match.

Let V denote the set of variables, | the set of IRI constants, L the set of literals, B the set of
blank nodes. Let TPN = {(s,p,0)| s € IUBUWV, p € LV, 0 € IULUBUV} be the set of
triple patterns (Harris et al., 2013). Given tpn € TPN, the triple pattern match predicate is

evaluated as follows:

true, (s=tpn.svtpn.seV)A
(p=tpn.pvtpn.p eV)A
(o =tpn.oVtpn.oeV)
false, otherwise

match((s,p, o, [ts, te)), tpn) =

It ensures that the coming triple’s subject is equal to the triple pattern’s (tpn) subject or that
the triple pattern’s subject is a variable (in the following examples, we use the question
mark ‘?” to mark a variable name). The same checks are done for the predicate and object
parts of the coming triple. The algorithm presented in Listing 4.7 describes the filtering

process.

As the input stream is handled triple by triple in order, and as the time annotation is not

changed, the same order is preserved in the output stream.
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Example. Listing 4.8 (a) represents an example input stream, and Listing 4.8 (b) represents

the output stream of a filter operator, with the triple pattern (?x, p2, ?y) as its filter

predicate.
<{(s1,p1,01)}, [5, ==)> <{(s1,p2,02)}, [5, ==)>
<{(s1,p2,02)}, [5, ==)> <{(s2,p2,04)}, [8, >=)>

<{(s2,p1,04)}, [8, ==)>
<{(s2,p2,04)}, [8, ==)>

<{(s2, p3,05)}, [8, ==)>

Listing 4.8(a): Example input stream of a Listing 4.8(b): Output stream of a filter

filter operator operator (fp=(?x, p2, ?y))

4.2.2.5 Window

Operator: Window

Input: stream Sy, window size w
Output: stream S;;°""

1 Foreach <K, [ts,te)> arriving from S

2 Append <K, [ts,ts+w)> to Si°"t

Listing 4.9: Window operator (time-based)

The window operator is widely used in stream processing for two main reasons. First, it
unblocks stateful operators and constrains the unlimited memory requirement. All the
above one-pass operators are easily adapted to process streams in a pipelined fashion, as
they do not have to keep states. However, stateful operators need to access the whole state
in order to produce results. If streams are infinite, the memory required to save the state is
unlimited, and the operator will be blocked indefinitely as it waits for the end of the
streams. The window operator restricts the size of the input stream. The second reason for
using the window operator is that it can serve as a part of the query semantics, as streaming
applications are usually concerned with pattern changes over time. Users, for example, can
express that they are interested in a specific event happening in the last hour as part of the

query or rule.

Listing 4.9 shows the window operator algorithm, where the time-based window size is
denoted as w, which is a natural number (w € N) that represents the number of time

instances covered by the window. The window operator, itself, is a stateless one-pass unary
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operator. We use a time-based sliding window definition. Its task is to assign the expiration
time of each incoming element by adding the specified window size to the element’s start
time. The window operator can be placed anywhere in the query pipeline but should
precede any stateful operator. These stateful operators use the expiration time assigned by

the window operator to maintain their windowed states.

We note that this model does not place a limit on the number of stream elements that fit
within a windowed state. Referring back to the external stream definition (Definitions 3),
which states that multiple graphs can have the same timestamp, it means that there may be
a very large but finite number of graphs within a windowed state at any given point.
However, we do not consider windows that are fixed in terms of the number of stream
elements they hold (such as the triple-based windows defined in CQELS (Le-Phuoc et al.,
2011)).

Example. Listing 4.10 (a) represents an example input stream, and Listing 4.10 (b)

represents the output stream of a window operator, with the size defined as 10 time

instances.
<{(s1,p1,01)}, [5, ==)> <{(s1,p1,01)}, [5, 15)>
<{(s2,p1,04)}, [8, ==)> <{(s2,p1,04)}, [8, 18)>
<{(s3, p3,05)}, [10, ==)> <{(s3, p3,05)}, [10, 20)>

Listing 4.10(a): Example input stream of a Listing 4.10(b): Example output stream of a

window operator window operator (w=10)

4.2.2.6 Join

Join is a binary stateful operator. It works symmetrically by matching arriving elements
from one input stream to elements of the state of the opposite stream. Unlike traditional
joins, joins in streaming applications do not work on full states but rather on windows
representing the most recent part of the input stream. As streaming data change over time,
data elements continuously enter and exit the valid window part of the stream. Therefore, it
is the join operator’s responsibility to ensure that their window states are up to date. At any
point in time t € T, a window state of a stream i is ws; = {<K, [ts,te)> | <K, [ts,te)> € i A t
<te}, i.e. it includes all elements in stream i that have not expired. The join operator uses a
join predicate, jp, which is a condition composed of variables and constants, conjunction
and disjunction symbols (A, V), in addition to equality and ordering symbols (=, #, <, >,

< >
>, 2).
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Function: removeExpired(window state ws, timestamp t)

1 ex = new list

2 Foreach <K,[ts,te)> € ws

2

3
4
5

if(te < t)
add K to ex
remove <K, [ts,te)> from ws

else return ex

Listing 4.11: Aukxiliary function 'removeExpired' algorithm

Function: probe(window state ws, element K, join predicate jp)

1 return all K’ € ws where jp(K, K’) holds

Listing 4.12: Aukxiliary function 'probe’ algorithm

Operator: Join (left activation)

Input: streams Sigl"‘, Sitr‘“, window states ws), wsy, join predicate jp

Output: stream S;°""

1 Foreach <K, [ts,te)> arriving from Sigl“‘

2
3
4
5
6

insert <K, [ts,te)> to ws
removeExpired(wsr, ts)
matches = probe(ws,, K, jp)
foreach <K’,[ts, t.')> € matches

Append <KUK’, [max(ts,ts'),min(te, te'))> to Sig®"

Listing 4.13: Join operator (left activation)

There are four processing steps that are carried out symmetrically by a join operator upon

each arrival of a stream element. First, the arriving element is added to the state of the side

it has arrived from. Second, the opposite stream state is updated by removing expired

elements. This is to ensure that the new element does not match an outdated element. Then,

the opposite state is probed for matches. Finally, the results are generated and appended to

the output stream. Listing 4.13 shows these steps when a stream element arrives at the left

side. Line 2 inserts the new element to the left window state, lines 3 and 4 update and

probe the right window state, and lines 5 and 6 generate results. There is an equivalent
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right hand join algorithm to handle elements arriving at the right input stream. The full
join requires both of these algorithms, so they both append results to the same output

stream.

Multiple join operators can be connected to create a left-deep network. Therefore, apart
from the first join in the network, all other joins receive an internal graph stream—which is
the output of the previous join in the network—as their left input, and an internal triple
stream—which is usually an output of a filter operator—as their right input. The first join
in the network, as a special case, receives two internal triple streams from two filter
operators. However, the join operator signature should still be adequate, as we defined
internal triple streams as a subset of internal graph streams. As this first join constructs its
results by combining an arriving triple from one side with a matching triple from the
window state of the other side, the result is an internal graph stream. This means that the
first join operator works also as a triple-to-graph operator.

Deciding which elements to remove from a window state is based on the expiration times
attached to these elements, as shown in the ‘removeExpired’ function (Listing 4.11).
Elements with expiration times that are smaller than the start times of the newly arriving
tuples cannot be joined, as there is no overlap in their validities. As input streams arrive in
increasing order of start time, even future elements will have no chance to join with them,

so they can be safely removed.

When joining two stream elements, the result is a token that contains both elements. This
generated element should be considered invalid as soon as one of the elements that
contributed to it expires. Therefore, the generated token’s time interval is assigned as the

intersection of the intervals of the contributing elements.

The join algorithm is symmetrical; it handles elements from both sides in the order in
which they arrived. However, it is possible for the join operator to receive an element from
each side at the same time (thus having the same timestamp). We show here that the result
stream will be the same regardless of the order in which the join operator handles its input.
Let e be the new element arriving at the left input stream, e; the new element arriving at
the right input stream, and ws; and ws; the left and right window states. Now, let us
consider joining the left input element first. The algorithm starts by inserting e in the left

window state, ws;:

1- ws’ = ws U e
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The next step is to update the right window by removing expired elements (referred to as
ex):

2- WSy = wWsr - Xy

Then, the updated right window is probed with the left incoming element to identify
matches:

3- matches = | x ws;’

At this stage, the algorithm finishes by appending the found matches to the result stream
S1:

4- S1 = {earlier elements, e > ws;’}

The algorithm is called again, repeating the steps performed on the other side for the
element arriving at the right input, er. First, the updated right window state, ws,’ (step 2), is

updated again by inserting the new element:

5- WSy’ = WS U er
Then, the left window (which was updated in step 1) is updated by removing expired
elements:

6- WS’’’ = ws|’ —exi

New matches are found by probing the updated left window with the element arriving at
the right input:

7- matches = er daws;”’
The result stream, S1, is then appended with the new matches:
8- S1 = {earlier elements, e > ws,’, er ba ws;’’}

The second possibility is that the join algorithm starts processing the element from the
right stream first, so let us repeat the same eight steps to produce output stream S2 so we

can determine whether S1 and S2 are equivalent.

1- WS’ = wWsr U ey

2- WS)” = ws| — ex|

3- matches = er @ ws)’

4- S2 = {earlier elements, er > ws’}
5- WS’ =ws)” U e

6- WSy’ = wsy” — eXr

7- matches = e ba ws,”’

8- S2 = {earlier elements, er > wsy’, e ™ Ws;’’}
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To compare S1 with S2, we disregard the earlier elements, as they are supposed to be the
same. Thus, we compare S1 = { e/ x Ws,’, er M WS;”’} with S2 = { er b WS’, e b4 WS’}
From steps 1, 2, and 6 above, S1 = { e/ @ ws,’, er & Ws;”’} = { e > (Wsy - exr), er X ((Ws
we)—ex) }={ex (ws-exy), (er x (wsi—exi)) u(ere)}and S2 = {er xws’, e X
WS’} = { er ba (WS — exi), e (Wsr U er) —exp)} = { er > (Ws) — exi), (er ™ (WSr — exy)) U
(e1 > er)}. If we disregard the part that joins e with er as it is the same in both streams (as
the join operator is commutative) we find that S1 = { e > (wsr - exy), (er ™ (ws| — exi))}

and S2 = { er ™ (ws;—exi), (er > (wsr—exr))}.

We note that both streams contain the same results, but appear in a different order. Based
on the definition of the join operator, the join results are stamped with the largest start
timestamp of its parents. As we expect stream elements to arrive in order, e; will have a
larger start timestamp than those in the right window state. Therefore, elements in (e
(wsr - exr)) should use ey’s start timestamp as their start timestamp. The same is true on the
other side; elements in (er > (ws; — exi)) should use e/‘s start timestamp as their start
timestamp. As e and er have the same start timestamp, both streams are considered
equivalent. Definition 4 states that there is no order among stream elements with the same

start timestamp.

Example. Using a 10 time instances window, consider this simple join example: (?X,
P2, ?y) A(?X, p2, ?z). It joins two triples (with p2 as a predicate) if they have the same
subject. Listing 4.14 (a) and (b) represents left and right input streams of a join operator,

and Listing 4.14 (c) represents its output stream.

<{(s1,p2,01)}, [5, 15)> <{(s2,p2,01)}, [6, 16)> <{(s2,p2,04), (s2,p2,01)}, [8, 16)>
<{(s2,p2,04)}, [8, 18)> <{(s3,p2,02)}, [10, 20)> <{(s1,p2,03), (s1,p2,01)} [12, 15)>
<{(s4, p2,05)}, [11, 21)> <{(s1,p2,03)}, [12, 22)> <{(s3, p2,05), (s3,p2,02)}, [14, 20)>
<{(s3, p2,05)}, [14, 24)> <{(s4,p2,02)}, [14, 24)> <{(s4,p2,02), (s4, p2,05)}, [14, 21)>
<{(s2, p2,07)}, [17, 27)> <{(s5,p2,04)}, [15, 25)>

Listing 4.14(a): Example left Listing 4.14(b): Example right Listing 4.14(c): Example output

input stream of a join operator input stream of a join operator stream of a join operator

When the second element from the left stream (with subject s2) arrives, it generates the
first result as it joins with the first element in the right window. The second result is
generated when the third element from the right stream (with subject s1) joins the first
element in the left window state. Then at time point 14, we simultaneously get two

elements from both streams. If we handle the incoming element from the left stream first,
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the new element with subject s3 joins with the second element in the right window state,
creating the result <{(s3, p2,05), (s3,p2,02)}, [14, 20)>, then by handling the incoming
element from the right stream, we get the result <{(s4,p2,02), (s4, p2,05)}, [14, 21)>. On
the other hand, if we handle the incoming element from the right stream first, the result of
s4 subject with the time interval [14, 21) will be generated first, followed by the result of
s3 subject with the time interval [14, 20). As they both have the same start timestamp
(which defines the order of the stream), we will get the same output stream regardless of
which input side we handle first. Finally, notice that the last incoming element from the
left stream does not join with the first element in the right side as it expires before the

arrival of the new element.

4.2.2.7 Aggregation

Operator: Aggregation
Input: stream S;", window state ws, current aggregate v, aggregation function agf
Output: stream S;°
1 Foreach <K, [ts,te)> arriving from S;"
2 removeExpired(ws, ts)
< =smallest end time in ws

3
4 insert < K,[ts,te)> to ws
5 v = agf(ws)

6

append <KU{(currentAggregate, hasValue, v)}, [ts, min(te, te’))> to Sig°"

Listing 4.15: Aggregation operator

Aggregate operators provide and maintain statistics about window states. They are widely
used in streaming applications to provide compact summaries of the streams. These
statistics include count, sum, max, min, and average (which can be derived from sum and
count). The operator uses a user-defined aggregate function (agf) that is applied
successively to the current window state, ws. In the most general algorithm (presented in
Listing 4.15), the aggregate operator needs to maintain one window (the current window
state) and keep all its elements in order to re-evaluate the aggregate function with the
updated content of the window. Similar to the join operator, upon each arrival of a new
element, an aggregate operator needs to first update its window state by removing expired
elements. Then, it inserts the arriving element to its window state, re-evaluates its function

on the current window, and constructs a new triple around the new result to be appended,
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along with the arriving token, to the output stream. An example aggregate function agf is
max (presented in Listing 4.16), which finds the maximum value of a specific variable in
the current window. We use the notation K(x) to refer to the attribute of interest ‘x’ in the
arriving token ‘K’. For example, if K is {(s1,p1,01), (s2,p2,20)}, and x is the object of the
second triple in K, then K(x) = 20.

Function: max(window state ws)

1 // x is the attribute of K that contains the numerical value of interest
2v=0

3 Foreach <K, [ts,te)> € ws

4 if(K(x) > v)

5 v = K(x)

6 returnv

Listing 4.16: max aggregate function

While some aggregate functions can be maintained incrementally, some require a new re-
evaluation by scanning the whole window in special cases. Sum and count can be
maintained incrementally as follows: for each insertion, the new element’s value is added
to the current sum, and the count is incremented by one; for each deletion of an expired
element, its value is decreased from the current sum, and the count is decremented by one
(sum incremental algorithm is presented in Listing 4.17). In this case, we send the new
element, the expired elements, and the current aggregate to the aggregate function instead
of sending the whole window state. Therefore the aggregation algorithm in Listing 4.13
needs slight changes in line 2 where there should be a list (ex) to receive the expired
elements from ‘removeExpired’ function (ex = removeExpired(ws, ts)), and line 5 to send
the new element K, the expired elements ex, and the current aggregate v instead of sending
ws to the aggregate function (v = agf(K, ex, v)). Max and min, on the other hand, require
rescanning the window upon each expiration, where the expired element is the current max

or min.
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Function: sum(new element K, expired elements ex, current aggregate v)
1 // x is the attribute of K that contains the numerical value of interest

2 Foreach <K’,[ts,te)> € ex

3 v=v-K'(x)

4v=v+K(x)

5returnv

Listing 4.17: sum aggregate function (incremental)

Example. Consider a simple aggregate function that finds the element with the maximum
object value (e.g. a temperature or a vehicle speed) in a 10 time instances window. Listing
4.18 (a) represents an example input stream, and Listing 4.18 (b) represents the output
stream. Notice that we receive the last element, the previous maximum value of 30 is

already expired, so the algorithm finds the maximum value in the valid window state.

<{(s1,p1,20)}, [5, 15)> <{(s1,p1,20)}, [5, 15)>

<{(s3,p1,30)}, [10, 20)> <{(s3,p1,30)}, [10, 15)>

<{(s4,p1,20)}, [16, 26)> <{(s3,p1,30)}, [16, 20)>

<{(s5,p1,17)}, [21, 31)> <{(s4,p1,20)}, [21, 26)>
Listing 4.18(a): Example input stream of a Listing 4.18(b): Example output stream of a
'max' aggregation operator 'max' aggregation operator

4.2.2.8 Map

Operator: Map

Input: stream Sig", mapping function mf
Output: stream S;g°*"

1 Foreach <K, [ts,te)> arriving from S

2 Append <mf(K),[ts,te)> to S5;®™"

Listing 4.19: Map operator

This operator applies a mapping function to each arriving token and appends the result to
the output stream. The map function, mf, applies a user-defined graph template composed

of elements from the set (1 U B U L v V) to transform an incoming token to a new graph.
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It is a more general form of the relational algebra projection operator, as it can generate
new attributes that are not part of the incoming element. In our rule-based reasoning
context, this operator is used to generate the head of the rule when the token satisfies the
whole body of this rule. This way, it is also equivalent to SPARQL’s CONSTRUCT

clause. The generated result keeps the same time interval of the original token.

Note that Definition 4 states that tokens can represent complete results. Therefore, the
result stream produced by the map operator is represented as an internal stream so that it
can re-enter the system while holding time intervals that model its validity.

Example. Listing 4.20 (a) represents an example input stream, and Listing 4.20 (b)
represents the output stream of a map operator, that generates the head (?x, ?p, ?z) from the

input {(?x, ?p, ?y),(?y, ?p, ?z)} which can be used to imply transitivity.

<{(s1,p1,01), (01,p1,02)}, [5, 10)> <{(s1,p1,02)}, [5, 10)>

<{(s2,p2,04), (04,p2,03)}, [8, 12)> <{(s2,p2,03)}, [8, 12)>

Listing 4.20(a): Example input stream of a Listing 4.20(b): Example output stream of a
map operator map operator

The time interval and expiration model are based on the temporal operator algebra of
Krdmer and Seeger (2005). However, their stateful operators’ algorithms do not release
output results until they expire to ensure correctness of results, as no future input elements
can modify the output. As this does not follow the real-time requirement of our framework,
our operators release results as soon as they are produced. This does not affect the
correctness of the results, as it currently does not include operators that can invalidate
previous results before they expire such as the difference operator.

4.3 R4: Rule-based Reasoner for RDF streams using Rete

We implemented the above framework of continuous reasoning for RDF streams using the
Rete algorithm. The Rete algorithm is used for pattern matching in the rule-based
reasoning process. Rules are translated into Rete networks of nodes. The nodes represent
different operators that can be shared between rules and the data flows between these
nodes. The tree-like network divides the matching process into multiple steps that perform
different checks, so if a data element does not match the first node, it is simply discarded

and does not complete its way through the network.
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In the first stage, a discrimination network partitions the input streams by applying filtering
conditions (filter nodes), forming Rete’s alpha network. These streams are then fed into the
beta network where multiple join nodes group their input streams that share the same value
of a specified variable. Finally, after all the streams are joined, a terminal node is
responsible for generating the new inferred statements, which are modelled to form the
output stream. This stream then enters the network again as input in order to infer more
results. The same process is applied for user defined rules and background ontological
rules such as RDFS (Brickley et al., 2014) entailment rules. Figure 4.1 illustrates the Rete

network operators and data flow to match rules 9 and 10 of the RDFS entailment rules.

The original Rete algorithm was not designed to deal with streaming data. In fact, Rete
trades memory space for faster processing, as it materialises all intermediate results. In
streaming applications, this is not a viable option, as streams can be of unlimited size.
Therefore, we extend Rete by applying the concept of sliding windows to the working
memories in a way equivalent to Berstel (2002). Each join node maintains a sliding
window over each stream input, effectively replacing alpha and beta memories with stream

window states.

rdfs9: IF uuu rdfs:subClassOf xxx AND vvv rdf:type uuu THEN vvv rdf:type xxx
rdfs10: IF uuu rdf:type rdfs:Class THEN uuu rdfs:subClassOf uuu

winl
__._{ S1 Join Terminal
Fiter L OIT > [T >
(Predicate= rdfs:subClassOf) (S1.Subject = 52.0bject) (Rule 9)

Yﬂ win2 —p - s2
Data ool
source Qzﬁ e
Filter Filter Terminal
(Predicate= rdf:type) D:EE:>
(Object = rdfs:Class) (Rule 10)

Figure 4.1: Rete network example (RDFS rules 9 and 11)

The next subsections present the rule language used to declare rules, give the system

architecture, and detail the reasoning process carried out by the Rete networks.

4.3.1 Rule Language

For generic rule-based reasoning, we chose RIF (Kifer and Boley, 2013) to express the
rules that are going to be continuously matched against data streams. Besides being a W3C
standard that fits nicely with other Semantic Web standards (its compatibility with RDF
and OWL is defined in de Bruijn and Welty (2013)), RIF was mainly designed to facilitate
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rule exchange among other rule systems; however, we only consider it here as a declarative
rule language. R4 supports RIF Core, which corresponds to the language of definite Horn
rules without function symbols, equivalent to Datalog (Boley et al., 2013).

As data streams can be of unlimited size, rules cannot be evaluated against whole streams.
A common approach to address this problem that our continuous reasoning framework
follows is to specify a limited subpart — a window — of the stream. These windows convert
an unlimited stream into a finite set, which a rule can be matched against. As these
windows can form a part of the rule semantics, users should be able to specify them using
the rule language. Therefore, we extend RIF to express these windows in the rule

documents in order to be applied in streaming contexts.

Listing 4.21 shows the EBNF grammar for the extended RIF Core syntax. RIF rule sets are
organised into Documents, Groups, and Rules. At the document level, the ‘Import’
directive is used to import data from non-RIF Core documents, such as RDF data or OWL
ontologies, where the LOCATOR is a URI indicating the location of the imported
document and PROFILE is an optional entailment regime. The import directive can be
used to import the static background data that is temporally agnostic. To enable the system
to differentiate between this data and streaming temporal data, we add the StreamImport
directive, which defines streaming data sources. For each stream, users can specify the
window size, i.e. the time validity for each element of this stream. For example, users can
state that they are only interested in tweets posted during the last hour by a specific user.
The window specification is optional, as some rules that do not block operators can be
processed without time restrictions, e.g. simple filtering.

Specifying the window size at the import directive is generally semantically equivalent to
specifying it at the FROM clause in SPARQL extensions such as C-SPARQL. They both
extract from the stream the most recent elements that occur during the last number of time
units, specified as the size of the window. However, in SPARQL extensions, this is
specified for each query, while the stream import directive is defined at the document
level, which is expected to contain more than one rule. Therefore, the import window
serves as a global window across all rules. As different rules can require different window
constraints, local window size can also be optionally set at the formula level to enable
more flexibility. This is comparable to a Streaming SPARQL window at the query’s
GroupGraphPattern level. Local window values (if specified) override global window

values in the respective rule.
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Rule Language:
Document

Group?')'
Base
Prefix
Import
ImportStream
Group
RULE
CLAUSE
Implies
LOCATOR
PROFILE

Condition Language:
FORMULA

ATOMIC
Atom
UNITERM
GROUNDUNITERM
Equal
Member
Frame

TERM
GROUNDTERM
Expr

List

Const

Var

Name
SYMSPACE
Window
TimeUnit

Annotations:

IRIMETA

IRIMETA? 'Document' '(' Base? Prefix* Import* ImportStream¥*
'Base' ' (' ANGLEBRACKIRI ')'
'Prefix' ' (' Name ANGLEBRACKIRI ')'
IRIMETA? 'Import' '(' LOCATOR PROFILE? ')'
= IRIMETA? 'ImportStream' ' (' LOCATOR PROFILE? ')' Window?
= IRIMETA? 'Group' Strategy? Priority? '(' (RULE | Group)* ')'
(IRIMETA? 'Forall' Var+ '(' CLAUSE ')') | CLAUSE
Implies | ATOMIC
IRIMETA? (ATOMIC | 'And' ' (' ATOMIC* ')') ':-' FORMULA
ANGLEBRACKIRI
ANGLEBRACKIRI
(IRIMETA? 'And' '(' FORMULA* ")' |
IRIMETA? 'Or' '(' FORMULA* ')' |
IRIMETA? 'Exists' Var+ '(' FORMULA ')' |
ATOMIC |

IRIMETA? Equal |
IRIMETA? Member |

IRIMETA? 'External' ' (' Atom ')') Window? ('On' IRIMETA)?
IRIMETA? (Atom | Frame)
UNITERM
Const '(' (TERM* ')'
Const ' (' GROUNDTERM* ')'
= TERM '=' TERM
= TERM '#' TERM
= TERM '[' (TERM '->' TERM)* ']'
= IRIMETA? (Const | Var | List | 'External' '(' Expr ")')
IRIMETA? (Const | List | 'External' '(' GROUNDUNITERM ')')
= UNITERM
'List' ' (' GROUNDTERM* ')'
""" UNICODESTRING '"~"' SYMSPACE | CONSTSHORT
'?' Name
NCName

= ANGLEBRACKIRI | CURIE

positiveInteger TimeUnit

'ms' I 's! I 'm' I 'h'

'(*'" IRICONST? (Frame | 'And' '(' Frame* '")')? '*)'?

Listing 4.21: Extended RIF Core syntax (extensions are shown in bold)

We also added another optional construct at the formula level. The ‘On’ construct specifies

the ID of an input for this formula to be applied on. Using this option, different parts of the

rules can be applied to different input streams, without having to apply all rules to all input

streams.
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4.3.2 System architecture

Stream
sources

Rule Parser

v
Output
Adaptive results
Optimiser === Rete Networks
i
A |
1

|
- Monitor -
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Figure 4.2: R4 system architecture

R4 is a native rule-based reasoner for RDF streams. It receives rules from users, evaluates
them on RDF streams, and continuously provides results. The white-box system
architecture is illustrated in Figure 4.2. The heart of the system is the dynamic Rete engine,
where the continuous processing of both RDF streams and RDF static data actually
happens. The engine instantiates the data flow network operators and connects them as
specified by the optimiser. The network operators start processing the data pushed to the
engine by the data sources. The engine keeps processing incoming data, generating streams
of results, until it is explicitly requested to stop. While the generated results are pushed
instantly as output to the user, they are also fed back to the network to be used as streaming

input.

The second main component of R4 is the adaptive optimiser. Its main job is to choose an
efficient plan for the current conditions to be used by the Rete engine. Apart from
communicating the chosen plan to the rule engine, the optimiser communicates with two
more components: the rule parser and the monitor. A rule document containing any
number of rules in the extended RIF Core language is submitted to the system. The rule
parser component translates the rules into abstract syntax trees and passes it to the
optimiser. Then, the optimiser uses some basic heuristics to generate an initial plan and
conveys it to the rule engine. As this initial plan might not be optimal, and as stream

characteristics (e.g. input rates) can change over time, the monitor continuously collects
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performance-related statistics about the running operators and sends them to the optimiser
periodically. The optimiser uses the collected statistics to check if any changes need to be
made over the running plan and instructs the Rete engine to perform such changes.

The following subsection describes the rule engine implementation of the continuous
reasoning framework in more details, while the adaptive optimisation part is left for the

next chapter.

4.3.3 Data Processing using Rete

The Rete-based dataflow networks of R4 consist of nodes that fall into four main
categories: source nodes, alpha nodes, beta nodes, and terminal nodes. Each type carries
out specific tasks, effectively implementing the operators detailed in Section 4.2.2.

Reading input: In R4, data enters the network through the source nodes. For each import
in the RIF file, the rule engine instantiates a source node that is responsible for acquiring
the data input from the imported document. As inputs can be static RDF data or streaming
data, source nodes have two types: static sources and streaming sources. For static imports,
source nodes pull the data (RDF statements) from the specified documents and push them
to the nodes in their respective network. Therefore, static data populate the network before
dealing with streaming data. For streaming imports, source nodes implement the graph-to-
triples operator, converting streams of graphs into streams of triples. Furthermore, if the
streaming import statement declares a window size (global window) for this stream, the
corresponding source node also implements the window operator, annotating the incoming
statements with time intervals. The start time is given as the system time of arrival if the
parent graph was not already annotated at its origin, otherwise passing the annotation of
the graph to the resulting triples. In both cases, the end time is calculated as the sum of the
start time and window size. Source nodes propagate the annotated triples to their successor

nodes, which are the alpha nodes.

Alpha network: Alpha nodes are single-entry nodes that form a discrimination network.
In R4, an alpha node can receive RDF triples (streams or static) from any number of nodes
through its single input. Each received element is matched against some conditions and is
either dropped if there is no match or propagated downstream to its successor node(s) in
the event of a match. For triple pattern conditions that contain, for example, two constants
(e.g. (?x, p, 0)), it is possible to either create two successive alpha nodes — one for each

constant — or create one alpha node that checks both constraints. While the first option

83



Chapter 4

increases the possibilities of sharing, we opted for the second option to get fewer nodes
and, therefore, less traffic. The optimiser creates one alpha node for each triple pattern in
the set of rules (triple patterns are represented as frames in RIF). Alpha nodes, therefore,
implement the filter operator defined in 4.2.2.2. Alpha nodes treat static RDF triples and
RDF streams equally, as they are not concerned with the time element. Each alpha node is
followed by an alpha memory. The first alpha memory in the network is followed by a
special node called the left input adaptor (described below), while the other alpha

memories are followed by beta nodes.

Beta network: The left input adaptor node is responsible for preparing the incoming
triples to enter the beta network from the left input of the first beta node in a given join-
tree. It creates a new token that represents a partial match — defined as a list of triples — for
each rule body, for which the incoming triple is a sub-graph match, then adds this triple as
the first item in each list. It also annotates each token with the same time interval as the

triple for which it was generated. Tokens are then sent to the first node in the beta network.

Beta nodes are two-input nodes that are responsible for joining the branches of the alpha
network. In our implementation, as in the original Rete algorithm, beta nodes form a left-
deep tree. Each beta node maintains a left memory, which is a beta memory storing tokens
received from other beta nodes (or from the left input adaptor node in case of the first beta
node), and a right memory, which is an alpha memory storing triples received from alpha
nodes. Join nodes are beta nodes that implement the join operator (defined in 4.2.2.5).
They match inputs from both sides according to some conditions, e.g. a shared variable
binding. As explained earlier, we use window-join operators to avoid storing and operating
over all partial results. In this context, each left (beta) and right (alpha) memory is

implemented as a valid window state.

When a join node is left-activated (i.e. it receives a token through its left input), it first adds
the new token to its left window then prepares its right window by removing any expired
items (items with an end time that is earlier than the start time of the incoming token) so
that no outdated results are matched. The right window is then searched according to the
join node conditions. When a match is found, a new token is created by duplicating the left
token and adding the right triple to the new token's triple list. The new token is annotated
with the latest start time and earliest end time of the left token and right triple time
annotations (the intersection of their time intervals) and then propagated to the next beta
node, or to the terminal node if it is in the root node of a join tree. Conversely, when the

join node is right-activated by receiving a triple from an alpha node, it adds the new triple
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to the right window, prepares the left window, then matches the triple against the
remaining tokens. Join nodes that join a streaming input with a static input can only be
activated from the streaming side, and the join result is annotated with the same time

interval of the arriving stream element.

Generating results: Finally, terminal nodes receive tokens from the root nodes of join-
trees and are responsible for producing entailed graphs. The optimiser creates one terminal
node for each rule, so a terminal node is an implementation of the map operator (defined in
4.2.2.3) using the rule head as the map function. The annotation of the entailed graphs is
directly inherited from the completed token from which it is produced. The union of the
output of all terminal nodes, which is the output of the system, itself, is re-entered as an

input stream to the source nodes to support iterative inference.

Memories implementation: The data structures used to implement the window states
need to support fast update (insertion and removal) and efficient search. Implementing the
window states as priority queues, in which tokens or triples are ordered according to their
end time annotations, ensures the efficient removal of expired elements, as the algorithm
does not have to traverse the whole data structure searching for expired elements.
However, this can perform badly with regards to probing, as the size of these memories is
expected to be big and the match operation is repeated excessively with fast input rates.
Therefore, we implemented each window state using a priority queue and a hash map in
order to simultaneously improve the speed of updating (using the priority queue) and

probing (using the hash map). Static memories, however, only need hash maps.

Each memory state supports three operations: insert, prune, and probe. Insert and prune
work on both structures, while probe only uses the hash map. Listing 4.22 presents
algorithms of these operations for alpha memories. If the rule’s document only specifies a
global window, then the insert operation simply inserts the arriving triple to the hash map
and priority queue. However, if the alpha memory corresponds to a triple pattern (of which
the enclosing formula contains a local window), the insert operation overrides the end time

of the triple to represent the local window size.
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Structure: Alpha memory

H is the memory’s hash map; PQ is the priority queue; w is the local window size
Procedure: Insert (Triple e)

1 if e is associated with a timestamp

2 add e to PQ

3 if w# null
4 e.te = e.tstw
5addetoH

Procedure: Probe (Token k)

1 return H.get(k.joinAttribute)
Procedure: Prune (int ts)

1 e =head of PQ

2 while e.te<t;

3 remove e from PQ and from H

4 e = next triple in PQ

Listing 4.22: Alpha memory operations

Sharing memories: The Rete algorithm allows sharing nodes and their memories between
different rules to save processing and memory costs. Nodes that have the same conditions
and ancestors can be shared instead of duplicating. For example, if the triple pattern (?x,
p, ?y), where p is a specific property, appears in two rules, the same alpha node that checks
for this pattern and the resulting alpha memory can be shared between the two rules.
However, a situation to be considered is if one of the identical triple patterns appears in a
formula that specifies a local window, while the other one does not (i.e. it uses the global
window), or if both of them appear in formulas with local windows of different sizes. In
this case, the alpha memory adopts the bigger window so that no possible results are
missed. As this can mean generating false positives for the formula with the smaller
window size, the following join node corresponding to the smaller window formula needs
to check for an overlap in the time intervals of its two inputs according to its own window

definition during the probing process.

While the model allows different sized local windows to appear in the same rule, we notice
that the join order can affect the number of results. To illustrate with an example, consider

the following rule that has two joins, each specifies its own local window size: join events
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a and b (ax b) occurring in a 5 minute window, and join events b and ¢ (b c) occurring

in a 10 minute window.

First, elements from stream a will pass a window operator, which assigns an end timestamp
by adding 5 to the start time (assuming the time unit is minutes). As the alpha memory of
stream b is shared between two windows, it will take the bigger one, adding 10 to the start
time. Elements from stream c will be assigned end timestamps by adding 10 to the start

timestamp.

Consider these inputs: a= <al,1>, b= <b1,2>, c= <c1,5>, <c2,8>. We should expect to get
two answers from these inputs, the first one combines al, b1, and c1, and the second one

combines al, b1, and c2.

By applying the window operators to the inputs, we get: a= <al, [1,6)>, b= <bl,[2, 12)>,
c= <cl,[5,15)>, <c2,[8,18)>. To join all streams in a left deep plan, we have two options:

(arab) »ac, or (b ¢) xa.

In the first case: the first join (ax b) generates a single result: <(al,b1),[2,6)> and passes it
to the second join, then the second join ((a b) xc) re-assigns the expiration time of this
element converting it to <(al,bl),[2,12)> and matches it against the event stream c
generating the results: <(al,b1,c1),[5,12)> and <(al,b1,c2),[8,12)>.

In the second case: the first join (b c) generates two results: <(b1,c1),[5,12)> and
<(b1,c2),[8,12)> and passes them to the second join, then the second join ((bx c) xa) re-
assigns the expiration time of these elements converting them to <(b1,c1),[5,10)> and
<(b1,c2),[8,13)> and matches them against the event stream a generating the result:
<(al,bl,cl),[5,6)>. We notice that this join order misses the second result that combines
al, bl and c2. While the first plan was able to generate this result by re-assigning the
expiration time according to its local window, this plan still missed this output. Therefore,
we note that when windows are of the same size, then the order of joins does not affect the
result. On the other hand, when windows are of different sizes, the order of joins can affect

the result, and hence reasoning may be incomplete.

Garbage collection: The join node algorithm ensures that data elements in one of the input
memories that cannot be used to produce results are deleted by checking the expiration
time every time a new element arrives at the other input. This works efficiently for join
nodes that join two streams with similar input rates. However, if one of the input streams is

very slow and the second is fast, the fast stream’s memory can grow big before an element
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arrives from the slow stream to trigger the garbage collection process. While this has no
functional effect on the behaviour of the join, it does increase the resource consumption of
this join. In this case, the join node should periodically check its input stream memories for
expired data. Another extreme case is when a join node joins a static memory with a
stream; this join is only activated from the streaming side, so garbage collection on the
streaming memory is never triggered. For these joins, instead of invalidating expired
elements from the opposite input memory, this is performed on the input memory of the
same side, as the opposite memory is static and its elements are persistent. We note that
this technique is not needed in the general case (where both streams have comparable
arrival rates), as pruning the other input (which is always required in order to ensure
correctness of results) is sufficient.

Ontology reasoning: In the RIF import statements, users can choose the entailment
regime for background reasoning. If one is specified, the system builds a separate Rete
network that implements the entailment rules of the specified regime. These networks feed
their output entailments directly to the main Rete network that implements the user-defined
rules. RDFS ontologies are supported by building a network that implements the 13 RDFS
entailment rules. Appendix A shows the RDFS++ rules written in RIF and the
corresponding Rete. RDFS++ rules go beyond basic RDFS constructs by supporting OWL
inverseOf, sameAs, and TransitiveProperty (Allemang and Hendler, 2008). To support
OWL ontologies, the RIF document ‘OWL 2 RL in RIF’ (Reynolds, 2013) describes two
approaches to reason over the rule-based dialect of OWL 2 using RIF. The first is a direct
translation of OWL 2 RL rules to RIF Core. While this approach is straightforward and
easy to implement, it has the disadvantage of creating a big network for the large list of
rules; however, some parts of the network might never be used (the corresponding rule’s
constructs are never used in the ontology). The second approach avoids this problem by
translating the source OWL 2 RL ontology to a specialised RIF Core rule set. An algorithm
that handles the instantiation of the RIF rule set for a particular ontology is described in the
‘OWL 2 RL in RIF’ document. As this algorithm only uses TBox axioms (static

knowledge), it can be implemented as it is in our stream reasoner.

4.4 Conclusion

This chapter has presented our main contribution: a continuous reasoning approach, and
the implemented stream reasoning engine R4: a rule-based reasoner for RDF streams using

Rete. R4 provides continuous inferencing capabilities natively over RDF streams for
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generic rules expressed in our extension of RIF, which represents a minor contribution of
this thesis. We used Java as a programming language to implement a prototype system of
R4. The implemented prototype can successfully read RDF streams, use Rete networks to
reason over them, and continuously produce results. In the next chapter, we provide a
concrete scenario with a number of use cases, along with a comparative evaluation of the

implemented reasoner.
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Chapter 5: Evaluating R4

Chapter 4 described R4, a continuous rule-based reasoner for semantic streams. This
chapter tests and evaluates the performance of the implemented prototype. Section
5.1 presents an evaluation scenario — describing the input datasets used in the
evaluation process, along with a number of rules with different complexities — to test
the system functionality. Then, Section 5.2 presents a comparative evaluation; we
conduct several experiments to evaluate the system performance by comparing it to
other reasoners. Firstly, in Section 5.2.1, we compare R4 performance to a static
reasoner to show the advantage of the continuous reasoning approach. Then, in
Section 5.2.2, we compare R4 to other state-of-the-art systems that are designed to

reason over semantic streams.

5.1 Evaluation scenario

We obtained semantic streams from the SemsorGrid4Env*! project. The main objective of
this project is to design, implement, and deploy a service-oriented architecture and
middleware that allows application developers to build open, large-scale, semantic-based
sensor network applications for environmental management (Gray et al., 2009). It employs
Semantic Web techniques to real-world, real-time data coming from heterogeneous sensor
networks so that developers can use these sensors for other environmental management

purposes than those they were originally expected to have.

5.1.1 Datasets

Meteorological and oceanographic data generated by the Channel Coast Observatory®?
(CCO) sensor network are made available in RDF format by SemsorGrid4Env’s CCO API
(Frazer et al., 2011). Every half hour, the CCO API publishes new semantic sensor
observations obtained from 24 sensors deployed around the English Channel. These
observations observe several properties, e.g. wave height, wave direction, and wind speed.
The API makes these available as a collection of observations (i.e. sets of observations
sharing some characteristics) (Garcia-Castro et al., 2012) for a given half-hour period. A
published collection could comprise only observations, but could also be a collection that

11 http://www.semsorgrid4env.eu/
12 http://www.channelcoast.org/
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aggregates other collections of observations. This data is published on the Web as linked
data®® and stored in a triple store with a SPARQL endpoint*,
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Figure 5.1: The SSN ontology, key concepts and relations, split by conceptual modules (Compton

etal., 2012)

The project reuses a number of ontologies to model the data. However, it mainly relies on
the Semantic Sensor Networks (SSN) ontology (Compton et al., 2012). The SSN ontology
is organised into ten conceptual modules of related concepts, as shown in Figure 5.1. The
core module is the Sensor-Stimulus-Observation (SSO) pattern, which links sensors, what
they sense, and the resulting observations. Other modules are used to, for example,
represent the deployment of sensors and their platforms, the measuring capabilities of
sensors and the survival conditions of specific environments. The SSN ontology uses the
DOLCE+DnS Ultra Lite (DUL)* foundational ontology as an upper ontology to facilitate
interoperability. The SemSorGrid4Env project also uses an extension of the SSN ontology
to model some aspects that are not covered by the SSN ontology, such as observation
collections and measurement properties (Garcia-Castro et al., 2012), the SWEET ontology
(Raskin and Pan, 2005) to describe the services provided by the infrastructure, and the
Coastal Defence ontology (Garcia-Castro et al., 2012), which represents features of interest

and their properties that are specific to the flood emergency planning use case.

13 e.g., http://rdf.api.channelcoast.org/observations/cco/boscombe/Dirp/latest contains the latest wave
direction observations by the Boscombe sensor.

14 Available at http://env.ecs.soton.ac.uk:8000/

15 http://www.ontologydesignpatterns.org/ont/dul/DUL .owl
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.................................................................................................................................

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .

@prefix w3time: <http://www.w3.0rg/2006/time#> .

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> .

@prefix ssnExt: <http://www.semsorgriddenv.eu/ontologies/SsnExtension.owl#> .
@prefix coastD: <http://www.semsorgridd4env.eu/ontologies/CoastalDefences.owl#> .
@prefix waves: <http://marinemetadata.org/2005/08/ndbc_waves#> .

<http://id.api.channelcoast.org/observations/cco/penzance/Dirp/20130326#000000>
rdf:type ssn:Observation ;
ssn:observedBy <http://id.api.channelcoast.org/sensors/cco/penzance> ;
ssn:observedProperty waves:Mean Wave Direction ;
ssn:featureOfInterest coastD:PhysicalMetOcean ;

ssn:observationResultTime :time 1 ;
ssn:observationResult :res 1 .
:time 1

rdf:type w3time:Interval ;

w3time:hasBeginning "2013-03-26T00:00:00"""xsd:dateTime ;
w3time:hasEnd "2013-03-26T00:30:00"""xsd:dateTime .
ires 1

rdf:type ssn:SensorOutput ;

ssn:hasValue :val 1 .

:val 1

rdf:type ssn:0bservationValue ;
ssnExt:hasQuantityUnitOfMeasure coastD:degree .
ssnExt:hasQuantityValue "153.300"""xsd:double .

Listing 5.1: A CCO observation represented in RDF Turtle notation
An example observation is shown in Listing 5.1. Each observation contains the URI of the
sensor that made this measurement, the URI of the property it measures, the URI of the

feature that this property is observed of, the time interval across which the observation was

made, and finally, the measurement.

Table 5.1: Input datasets

Date | No. of triples | No. of observations
Datasetl 2013-03-26T00:00/ 2013-03-26T00:30 2,366 169
Dataset? 2013-03-26T00:00/ 2013-03-26T03:00 14,098 1,007
Dataset3 2013-03-26T00:00/ 2013-03-27T00:00 110,572 7,898
Dataset4 2013-03-26T00:00/ 2013-03-31T00:00 462,560 33,040
Dataset5 2013-03-26T00:00/ 2013-04-06T00:00 1,121,974 80,141

For many of our experiments, we need to stress the system. The CCO update rate of nearly
2500 triples per half hour (seven observations from each of the 24 sensors) is not
sufficient. Therefore, we have performed a number of SPARQL Construct queries over the
CCO triple store and stored the results in different files. Table 5.1 shows the statistics of
these datasets. One of them — datasetl — simply contains all observations received over one

half hour. Another one — dataset3 — contains observations of all sensors observed over a
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whole day, comprising approximately 100Kk triples. The last one contains approximately 1

million triples and represents observations over a period of 11 days.

5.1.2 Functionality Tests

The main objective of these tests is to show that the system operators work accurately and
produce the expected results for a range of typical use cases in weather sensor networks.
We have defined a number of rules that range from simple pattern matching to more
complex ones that require particular functionalities, such as aggregation, dealing with
static and dynamic input, and ontology reasoning. For each of them, we describe the rule
and motivation behind it, its RIF syntax, a simplified Rete diagram of it, and a sample of

the produced output.

A source node at the bottom of the networks get real-time input streams via HTTP from
CCO sensor URIs®®. For simplicity, we only run the following use cases using input from
five sensors, as we aim to assess the functionality of the system here, not the performance.
The source node reads these URIs every half an hour to get new observations, and sends it

to the following nodes in the network.

Note that in the rules described in the following sections, the namespace prefixes are those

presented in Listing 5.1.

5.1.2.1 Basic Pattern Matching

Alert when a wave height gets above a certain level.

Motivation: This is a basic but useful rule for monitoring applications. Detecting high
waves can be very crucial for decision making by coastal flood managers. This rule tests
the system’s ability to match RDF triple patterns and join their bindings to produce the
expected output. As the rule syntax below does not specify a local window size, the system
uses the global window specified at the import section of the rule document. If also not

specified, the system uses its default values.

16 e.g., http://rdf.api.channelcoast.org/observations/cco/boscombe/Hs/latest
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Prefix ( pred <http://www.w3.0rg/2007/rif-builtin-predicate#> )
Forall ?2ob 2?v (
If And(?o0b [rfd:type -> ssn:Observation]
?0b [ssn:observedProperty -> waves:Wind Wave Height]
?0b [ssn:observationResult -> ?result]
?result [ssn:hasValue -> ?value]
?value [ssnExt:hasQuantityValue -> ?v]
External (pred:numeric-greater-than(?v 4.00)))
Then ?0b [ssnExt2:alert -> ?2v])

Rete network:

///;7 Dq?ob
X ?result
,////////;?
X ?value

///////;7
0?v>4.00 00:Wind_Wave_Height

) )
O-chasQualityVaIue Op=hasvaive O P=observationResult OonbservedProperty

Figure 5.2: Rule 1 network
Example results:

i http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#220000
i ssnExt2:alert 4.05

E http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#230000
| ssnExt2:alert 4.29

http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#233000
ssnExt2:alert 4.38

5.1.2.2 Aggregation

Find the half daily average of wave heights for a specific sensor.

Motivation: Aggregates are very important figures, especially in streaming applications. In
this use case, we test the system’s ability to calculate averages over a specified time

window for a specific sensor.
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Rule:

! Prefix ( func <http://www.w3.0rg/2007/rif-builtin-function#> ) '
E Forall ?o0b ?v avg( !
E If (And( ?0b [ssn:observedProperty —-> waves:Wind Wave Height] !
?0b [ssn:observedBy ->
http://id.api.channelcoast.org/sensors/cco/minehead]
! ?0b [ssn:observationResult -> ?result] '
i ?result [ssn:hasValue -> ?value] '
?value [ssnExt:hasQuantityValue -> ?v]
?avg = External (func:numeric-avg(?v)) ) 12 h 1
E Then ssnExt2:Average [ssnExt:hasQuantityValue -> ?avg]) E

Rete network:

!

Avgoy

!

X ?0b

X ?0b

/ N?result
M?value
X GO:Wind_Wave_Height 00:minehead
0P=hasQualityValue P=hasValue O p=observationResult GP:observedProperty GonbservedBy

Figure 5.3: Rule 2 network

Example results:

5.1.2.3 Static and Dynamic

Find the location of sensors that observe high waves.

Motivation: This use case is very similar to the first one. However, it also shows the
coordinates of the sensors that observed the output. These coordinates can then be further
used by other rules to locate nearby places of interest. As the locations of sensors are
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typically static, this rule gets input from a static file containing the locations of all sensors

and receives dynamic observation updates like the previous rules.

Rule:

: Prefix (sw <http://sweet.jpl.nasa.gov/2.1/sweetAll.owl#>)

: Forall 2?ob ?v 2col 2co2(

E If And( ?0ob [ssn:observedProperty -> waves:Wind Wave Height] E
i ?0b [ssn:observedBy -> 2s] :
i ?0b [ssn:observationResult -> ?result] E
E ?result [ssn:hasValue -> ?value] E
E ?value [ssnExt:hasQuantityValue -> ?v] H
H External (pred:numeric-greater-than(?v 4.00))

E ?s [ssn:hasDeployment -> 7?dep] E
: ?dep [ssn:deployedOnPlatform -> ?plat] i
i ?plat [sw:hasLocation -> ?loc] E
: ?loc [sw:coordinatel -> ?col] i
i ?loc [sw:coordinate2 -> 2?co2]) ;
i Then And( ?0b [ssnExt2:alert -> °?v]

i ?0b [ssnExt2:atCoordinatel -> ?col] E
E ?0b [ssnExt2:atCoordinate2 -> ?co2])) E

Rete network:

Output from rule 1

Figure 5.4: Rule 3 network
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Example results:

E http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#220000
! ssnExt2:alert 4.05

i http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#220000
| ssnExt2:atCoordinatel 50.35

i http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#220000
E ssnExt2:atCoordinate2 -5.18

! http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#230000

| ssnExt2:alert 4.29

! http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#230000
ssnExt2:atCoordinatel 50.35
http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#230000
ssnExt2:atCoordinate2 -5.18

Find the sensors that observe wind speeds higher than a known hurricane (inspired by a
query in Zhang et al. (2012)).

Motivation: Extreme weather conditions can be detected by comparing observed values to
historical data. This use case, like the previous one, involves dealing with static and
dynamic data but also needs to perform background ontology reasoning. For the historical
hurricane data, we prepared a small dataset taken from dbpedia, containing information
about a number of hurricanes. In dbpedia, the class yago:Hurricane111467018 is used to
describe a hurricane. However, this class has only two instances linked directly to it, while
it has 88 subclasses that are used by other hurricane instances. For example,
dbpedia:Hurricane_Fabian is of type yago:HurricanesinBermuDA, which is one of the
yago:Hurricanel11467018 subclasses. To be able to find information about all possible
hurricane instances, we need to first perform background ontology reasoning. When the
background reasoning mode is activated, rule 9 of the RDFS entailment rules will assert
these hurricanes as instances of the hurricane superclass. These new assertions are inserted

back as input so that the RIF rule can find them.

Prefix (yago <http://dbpedia.org/class/yago/>)
Prefix (dbpprop <http://dbpedia.org/property/>)
Forall ?ob ?s ?hur (
If And( ?0ob [ssn:observedProperty -> waves:wind speed]
?0b [ssn:observedBy —-> ?s]
?0b [ssn:observationResult -> ?result]
?result [ssn:hasValue -> ?value]
?value [ssnExt:hasQuantityValue -> ?v]
?hur [rdf:type -> yago:Hurricanelll467018]
?hur [dbpprop:1MinWinds -> ?hurWind]
External (pred:numeric-greater-than (?v ?hurWind)))
Then ?ob [ssnExt2:alert -> ?s])
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Rete network:

!

M (?v>?hurWind)

M ’)Ob
N ’>ob

—7 N
?hur
X ?result

A7

N ?value

/ \ O Wlnd _speed 00 Hurrlcane

0P:hasQuaIityVaIueGp=hasVa|ue GP:observanonResult O-P—observedProperty O-P—observedByOP_rdf_type O-p:]_MinWin

Figure 5.5: Rule 4 network

5.2 Comparative Evaluation

To evaluate the efficiency of our native semantic stream reasoning approach, we compare
R4 to other semantic reasoners. First, we compare it with Jena, a static semantic reasoner,
in terms of the throughput and processing time needed to process different datasets.
Second, we compare R4 to Etalis and Sparkwave — stream processing engines that support
background reasoning. All experiments were performed on an Intel Core i5 computer
running at 3.2 GHz with 8 GB memory. Each experiment was performed five times, and
the results presented in this chapter represent the average. The complete results of selected

experiments can be found in Appendix B.

5.2.1 Comparing Stream Reasoning to Static Reasoning

In this experiment, we compare R4 to the Jena generic rule-based reasoner. Jena is an open
source Semantic Web framework for Java. Its API enables reading, processing, and writing
RDF graphs as ‘Model’ Java objects. It was chosen because of its rich Java library, which
made it easy to check and compare results, control input rates, etc.

Jena provides a number of inference engines, including configurable RDFS, OWL
reasoners, and a generic rule-based reasoner that supports user-defined rules. The generic

reasoner’s default configuration works in a ‘hybrid’ mode, in which it uses a forward
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chaining Rete engine and a backward chaining engine in conjunction. It can also be

configured to run the forward chaining engine only.

5.2.1.1 Methodology

As one of the most important requirements for any streaming application is to provide
timely responses, we compare Jena’s generic rule-based reasoner and R4 in terms of the
processing time needed to reason over the input data. Measuring processing time for Jena
is straight forward, as it starts and ends processing at specific points of time, where all
results are provided at the end when the engine has finished processing all the input.
However, R4 performs continuous reasoning, where results are produced incrementally as
soon as they are obtained, and the rule has no explicit end time. Therefore, we take the
latter of two measures: the time when the last output result is produced and the time when

the last input triple is processed.

We used a similar rule to the one in 5.1.2.1 but with background RDFS reasoning applied.
We prepared a simple synthetic schema of five observation classes (Observationl to
Observation5), where each class is a subclass of the next, and assigned the class
Observation as a subclass of the first one. The rule then asked for observations of type

Observationl with high waves.

5.2.1.2 Experiment 1

The naive way to compare R4 and Jena is to push the whole input dataset to each engine,
apply the same rule, and compare the processing times. This way, Jena receives the whole
dataset at once and performs static reasoning one time. On the other hand, R4 receives the
input data as a finite stream. It observes it through a time window and incrementally
performs reasoning. We conducted this experiment using the five datasets described in

Table 5.1 (on page 89) and chose 100 milliseconds as R4’s default window size.

Nevertheless, this experiment is unfair for both Jena and R4. It is unfair for Jena, as R4
does not work on the whole dataset at any time instance, while Jena has to consider every
triple. On the other hand, it is unfair for R4, as Jena does not perform any retractions, while
R4 continuously checks and removes outdated elements. Therefore, we conducted another

experiment in which we tried to mimic a streaming situation.
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5.2.1.3 Experiment 2

In this second experiment, the input file was partitioned to chunks of specific size, forming
what we call ‘updates’. We periodically sent one update to Jena and R4 until the last
chunk. To help Jena remove expired elements, we saved each update in a separate model
and forced the reasoner to remove the elements of this model when we considered them
expired (as per the time window specified for R4). For example, if we send an update
every second, and the time window is five seconds, at the sixth iteration, we insert the sixth
update and remove the first update from the inference model, and so on. After each update,
we measured delay (or response time), which is the time taken by each engine to process

the whole update (including insertion and removal for Jena).

We ran this experiment using different update and window sizes. We used dataset 3 from
Table 5.1, which contains observations from all sensors over a whole day as the input
dataset. We partitioned it into 48 sets; each contains observations of half an hour (2,300
triples). We also partitioned it into 24 sets with observations of a whole hour for each
(4,600 triples). Different window sizes are used to reflect different ratios of change. We
also used dataset 4 from Table 5.1, partitioned into ten sets. Table 5.2 describes seven

settings for the second experiment.

Table 5.2: All different settings in experiment 2

No. Dataset size Update size Window size (hours) | Change percentage
1 110,572 triples 2,300 triples 10 5%
2 24 hours Half-hour 5 10%
3 4,600 triples 10 10%
4 1 hour 5 20%
5 2 50%
6 1 100%
7 462,560 triples 50,000 triples 44 25%
5 days ~11 hours

5.2.1.4 Comparative results

We performed the first experiment for Jena with the default configuration (default Jena),
Jena with the forward Rete setting (Rete Jena), and R4. The average processing times of
reasoning over different datasets are presented in Table 5.3 and illustrated in Figure 5.6.
We also derived the input throughput of each system by dividing the processing time by
the dataset size, depicted in Figure 5.7. R4 outperforms the default Jena in all cases and
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outperforms Rete Jena in most of them. The figure shows that, while they perform
comparably with small datasets, the difference becomes clear with big datasets. Jena
spends considerable time building in-memory graphs and performing full reasoning over

them, while R4 continuously matches patterns on the fly.

Table 5.3: Processing time results for the experiment 1 (pushing the whole dataset)

Processing time (in seconds)
Input dataset Default Jena Rete Jena R4
Datasetl 0.29 0.24 0.13
Dataset2 0.49 0.42 0.37
Dataset3 1.73 1.44 1.68
Dataset4 5.66 4.79 3.98
Dataset5 14.43 12.85 8.03

We note that R4 is expected to produce less or incomplete results compared to Jena, as it
does not consider the full dataset at any time instance. However, this was not the case due
to the nature of the applied rule. The rule does not join triples from different graphs
(observations) that may potentially arrive in a time interval that is bigger than the time
window. All joins in the rule are intra-graph, and as the graph size is small (14 triples) and

the input throughput is high, the graph always fits in the same window.
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Figure 5.6: Processing time results for the experiment 1 (see table 5.3)
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Figure 5.7: Throughput results for the experiment 1

We also performed the second experiment for the default Jena, the forward chaining Rete

Jena, and R4 using the different update and window sizes described in Table 5.2.

For the first setting, 2300 triples are fed every half hour; Figure 5.8 shows the response
time of each system when the window size is set to ten hours!’. We notice that both Jena
settings perform similarly during the first ten hours or 20 updates because there is only
insertion at this stage. At the 21st update, the windows become full, and the systems have
to start removing expired elements. Here, the cost of the default Jena suddenly increases,
while Rete Jena and R4 keep on steady response rates. This is expected, as the default Jena
re-performs the reasoning process for the whole data in the window for every removal. The
Rete-based Jena and R4, on the other hand, update their entailments incrementally. R4 still
outperforms Rete Jena, as its internal data structures are optimised for the time-based
removal of expired data (unlike Jena, which has to search for these data in order to remove
them).

In the above experiment, each update only changes 5% of the valid data, which justifies the
huge difference between the incremental systems (R4 and Rete Jena) and the default Jena
that re-computes entailments of the valid data from scratch. We changed the window size
to five hours, so each update now changes 10% of the valid data. The results of this setting
are depicted in Figure 5.9. It shows a similar pattern, but the default Jena has closer results
to the other engines.

17 To avoid the long running time, we actually insert every thirty seconds; thus, the window size is set to 10
minutes.
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Figure 5.8: Response time for experiment 2, setting 1 (24 hours worth of data, updated every half
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We ran the same experiment again with the second partitioning, in which each update
contains 4600 triples, representing a whole hour worth of data. We varied the window size
between ten hours (10% change), five hours (20% change), two hours (50% change), and
one hour (100% change). Figures 5.10-5.13 show the response times of the three engines.
The same trend is noticed, and for the last setting, both Jena engines become very close to

each other, as the whole dataset is changed at each update.
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Figure 5.10: Response time for experiment 2, setting 3 (24 hours worth of data, updated every

hour, window size 10 hours)
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Figure 5.11: Response time for experiment 2, setting 4 (24 hours worth of data, updated every
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Figure 5.13: Response time for experiment 2, setting 6 (24 hours worth of data, updated every

hour, window size 1 hour)

In the last setting, we changed the input file to the fourth dataset from Table 5.1 —
containing almost half a million triples — to see if these results hold with bigger updates
and windows. In this setting, each update inserts 50,000 triples, and the window size is set
to include 200,000 triples. Figure 5.14 illustrates the results of this experiment, which
shows that R4 still has the lowest response time, followed by the Rete Jena, while the

default Jena comes last as in previous settings.
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Figure 5.14: Response time for experiment 2, setting 7 (5 days worth of data, updated every ~11

hours, window size ~44 hours)

For each setting, we calculated the average response time of each engine, taking into

account the iterations after the window is full. The results are presented in Table 5.4. For

all of the above settings, R4’s average response time is almost half of the response time of

the Rete-based Jena and varies between 10-33% of the average response time of the

default Jena depending on the percentage of change.

Table 5.4: Average response time for all settings in experiment 2

Setting Default Jena Rete Jena R4

No. Update size | Window| Change| Average| Standard| Average| Standard| Average| Standard

size % /| response | deviation| response| deviation| response | deviation

(hours) time (ms) time (ms) time (ms)

1| 2,300 triples, 10 5%| 188.59 32.01 39.61 9.22 18.89 6.30
half hour

2 5 10%| 110.89 27.08 38.29 9.53 17.83 5.63

3| 4,600 triples, 10 10%| 256.50 72.53 76.36 15.88 39.27 16.47
1 hour

4 5 20%| 168.25 54.25 76.04 17.50 36.77 14.17

5 2 50%| 114.11 33.13 77.55 13.41 34.29 13.78

6 1 100% 94.77 24.93 70.59 19.05 31.70 13.59

71 50,000 triples, 44 25% | 1371.23| 232.46| 674.60| 213.88| 42457 85.62
11 hours
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5.2.2 Comparing to State-of-the-art Stream Reasoning Systems

To evaluate the performance of R4, we compared it with state-of-the-art stream reasoning
systems that provide the capability of performing lightweight background reasoning on
streamed semantic data (reviewed in Chapter 3, Section 3.2.1). These included Etalis
(Anicic et al., 2012), Sparkwave (Komazec et al., 2012), Streaming knowledge bases
(Walavalker et al., 2008), and the incremental reasoner presented in Barbieri et al. (2010b).
To the best of our knowledge, the latter two implementations were never made public, so
we have only compared R4 to Etalis and Sparkwave.

Similar to R4, Sparkwave uses Rete networks that work directly on RDF streams.
However, Sparkwave’s reasoning expressivity is limited to specific RDF Schema
entailment rules (plus owl:inverseOf and owl:SymmetricProperty) while R4 is built to
support general purpose rules that can be written in RIF Core. Rete networks in Sparkwave
are used to process continuous SPARQL queries, while the schema entailments support is
provided using an additional network called €-—network that precedes the Rete network.
Sparkwave pre-computes the schema closure and use it to build the €-network. This
network encodes schema-driven property hierarchies with specified domain and range
definitions connected to class hierarchies. However, this network is activated by single
triples from the stream, as it treats its input in a stateless way. Therefore, as explained in
(Dell’ Aglio and Della Valle, 2014), Sparkwave cannot be extended to support RDFS+ as it
cannot for example support the owl:transitiveProperty construct, because it needs to be
activated by multiple triples from the stream. R4 on the other hand processes RDFS+
(encoded in RIF in Appendix A) in the same way it processes general purpose RIF rules,
using Rete networks that can be activated by more than one streaming input. Furthermore,
R4 enables re-entrancy, which enables a generated answer to re-enter the network to

possibly participate in generating further answers.

In terms of stream models, Sparkwave uses point-in-time semantics for the time model,
defining an RDF stream as an unbounded sequence of RDF triples associated with
timestamps. In R4, an external RDF stream is an unbounded sequence of RDF graphs
associated with timestamps. Internally, both R4 and Sparkwave use time intervals (only for
beta memory elements in Sparkwave) but representing different semantics. In R4, an
internal stream element is assigned an expiration timestamp based on the specified
window, each generated partial or full result takes the latest start timestamp and the earliest

expiration timestamp of it constituting elements to represent its validity, so that whenever
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any constituting element expires, its generated result also expires. In Sparkwave, a
generated partial or full result takes the earliest start timestamp and the latest start
timestamp of its constituting element as a means to check if this interval falls in the

specified window, while garbage collection is based on start timestamps only.

5.2.2.1 Methodological Considerations

Following the development of semantic stream processors, a number of benchmarks have
emerged to test and compare their performance: SRBench (Zhang et al., 2012), CSRBench
(Dell’Aglio et al., 2013), LSBench (Le-Phuoc et al., 2012c), and CityBench (Ali et al.,
2015). While these benchmarks provide rich datasets, they mostly do not consider
reasoning; with the exception of SRBench, none of the other benchmarks’ queries require

inference capabilities.

One of the most important measures of any stream processing system is the maximum
input throughput, defined in Scharrenbach et al. (2013) as the number of data elements in
the input stream consumed by the system per time unit; we use this as the key performance
indicator in our comparative evaluation of the three systems. In addition, it is necessary to
confirm that the data produced by a system is complete and correct according to its

semantics.

5.2.2.2 Methodology

We set up Jtalis (the Java wrapper of Etalis) over SWI-Prolog v7.2.1 and installed
Sparkwave v0.5.1.

We planned to run the same rule used in the comparison with Jena over the CCO dataset.
However, Sparkwave was unable to read the dataset correctly as it does not parse blank
nodes; this might be because it uses the hash-join algorithm to improve time efficiency, but
builds the hashtables based on the URIs of the incoming data. Sparkwave also does not
support data comparisons (needed for the greater-than condition in the rule). Therefore, we
followed the experimentation strategy used by Sparkwave (Komazec et al., 2012) as it also
requires reasoning over background knowledge to correctly answer the query. In this
experiment, we use a synthetic dataset generated with the Berlin SPARQL Benchmark
(BSBM) (Bizer and Schultz, 2009) containing 1.1 million triples (representing 100,000
limited time offers made available by an online market place). For background knowledge,
we generated a small schema that described 329 product types arranged in a four-level
hierarchy.
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.............................................................................................................

I Prefix(dc <http://purl.org/dc/elements/1.1/>)
. Prefix (bsbm voc <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01l/vocabulary/>)
; Prefix (bsbm inst <http://wwwé4.wiwiss.fu-berlin.de/bizer/bsbm/v0l/instances/>)
i Forall ?offer ?product ?vendor ?price ?from ?to ?delivery ?webpage (

If And( ?offer [rdf:type -> bsbm voc:0ffer]

?offer [bsbm voc:product -> ?product]
?offer [bsbm voc:vendor -> ?vendor]
?offer [bsbm voc:price -> ?price]

?offer [bsbm voc:validTo -> ?to]

?offer [bsbm voc:deliveryDays -> ?delivery]
?offer [bsbm voc:offerWebpage -> ?webpage]
?o0ffer [dc:publisher -> ?publisher]

?offer [dc:date -> ?date]

?product [rdf:type -> bsbm inst:ProductType73] )

1

I

1

1

1

1

1

; [

i [

I [

! ?offer [bsbm voc:validFrom -> ?from]
1

: [

i [

i [

! [

1

I

: Then ?product [bsbm voc:offerPrice -> ?price] )

o -

Listing 5.2: A RIF Core rule that entails the offer price for all products of a specific type that are on

offer

Each system was configured with the generated schema, a rule inspired by a query from
the BSBM, and a window size (0.1, 1, 2, 5, and 10 second sliding windows are tested). The
rule we used in this experiment, shown in Listing 5.2, is inspired by the Berlin SPARQL
benchmark and entails the offer price for all products of a specific type that are on offer.
As offers may be associated with product super-types, some background reasoning is

needed to determine the offer price for specific product sub-types.

We then measured the time it took for the system to consume all 1.1 million triples for
each configuration of each system, from which we can calculate the maximum throughput
and average latency of that system for each window size. We also checked the correctness
of results and found that all three systems provide the same correct results. This is because
the operational semantic of the systems are similar. In terms of the SECRET model —
described in (Dell’Aglio et al., 2013) — the report strategy of all systems are content-
change, the tick is tuple-driven, and the output operator is Istream. Above that, the query
used in our experiments does not match triples from different graphs, which means

windowing mechanisms does not affect the results.

5.2.2.3 Comparative Results

Firstly, we note that the rule presented in Listing 5.2 takes significantly longer to process
in Etalis (over three hours for the 1.1 million dataset with a one-second time window
compared to less than two minutes for the other two systems). In order to further
investigate this difference, we tried changing the And into a series of seqs (Anicic et al.,

2011), which resulted in the system running 20x times faster (7.5 minutes for the same
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test). Despite being semantically different®, we would not expect such a drastic difference
in running time unless Etalis were heavily optimised for the seq operator. This is likely, as
Etalis is intended for event processing rather than continuous querying/reasoning, making

the order of arrival of triples more relevant than their simple coincidence in the system.

In order to present graphics that provide a meaningful comparison between the time
efficiency of each system with regards to changing window ranges, as in Figure 5.15, we
chose to eliminate the results for Etalis using And from our dataset but include those using
the rule modified to use seq when evaluating Etalis. It should be noted that we recognise
that this modified rule is not semantically equivalent to that by which we evaluate R4 and
Sparkwave, which cannot express the seq operator, but is suffcient to contrast the effect of
the window range on the time effeciency of the three systems. Table 5.5 presents the
processing times of both settings in Etalis (‘And’ and ‘seq’) in addition to Sparkwave and
R4, for the rule presented in Listing 5.2, with a third-level product type (according to the
four-level hierarchy schema). The schema is loaded first. The data is then provided to each
system by specifying the file name from which it is supposed to be read, so that each
system starts reading and processing the data from that file at the fastest rate at which it is
able. We measure the time needed to process the whole dataset, starting from receipt of the
first tuple (thus, the time required to process the schema is not included). For each system,
we ran the same rule with the same dataset five times. The average processing time is

presented. No warm up period was used to take account of disk caching.

Table 5.5: Comparing processing times (in seconds) of R4, Sparkwave, and Etalis

System Window size (seconds)
0.1 1 2 5 10
R4 8.82 12.25 14.33 15.25 17.30
Sparkwave 27.05 74.48 104.37 163.82 228.81
Etalis (seq) 461.91 446.56 447.98 447.48 449.74
Etalis (And) 11587.32 11310.25 11567.61 11594.24 11496.49

As shown in figures 5.15 and 5.16, R4 is significantly faster than both Etalis and

Sparkwave for the tested window sizes. Interestingly, while the maximum throughput

18 For example, a query that asks whether two persons arrived at the same location within a five-minute
interval using ‘and’ will produce results regardless of which person arrived earlier. Using ‘seq’ on the other
hand, will only produce results if personl in the query arrived before person2 in the specified time window.
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decreases and processing time increases (apparently asymptotically) with window range
similarly in both Sparkwave and R4, those of Etalis using seq appear to remain
approximately constant for all window ranges tested. It should be noted that this behaviour
of Etalis remains in the case where the query uses And. However, despite its constancy, the
throughput and processing latency of Etalis are so dramatically lower/higher than the other
systems, respectively, that we project that R4 will remain faster than both Sparkwave and
Etalis in cases where the window sizes are orders of magnitude larger than those tested.

We note that the aim of this experiment was not to reproduce Sparkwave’s experiment
described in (Komazec et al., 2012), but was rather guided by Sparkwave’s experiment; we
aimed to carry out a like-for-like comparison between the three systems. However, we
acknowledge that there is a discrepancy between the performance of Sparkwave in our
experiment and its performance in published experiment (Komazec et al., 2012). While we
have not used exactly the same dataset used in their experiment (as it was not provided by
Komazec et al), we generated a dataset in the same way as they described in the
Sparkwave experiment. Our generated dataset is smaller than in Sparkwave experiment,
but of a roughly comparable size (1.1 million triples in our experiment vs. 2.2 million
triples in the Sparkwave experiment). We used the same rule as in the Sparkwave
experiment, but as they did not specify the target product type they used in the rule, we
picked an arbitrary product type. We used the same schema, but with fewer subclasses of
the chosen product type (Komazec at el note that the number of subclasses of the target
product type had a negligible effect on throughput).

On a smaller problem, with a faster computer (3.2 GHz vs. 2.66 GHz) with more memory
(8 GB vs. 4 GB RAM), Sparkwave performed worse in our experiment than it did in the
Sparkwave experiment. For example, using a 5 second window, Sparkwave’s throughput
was 7,000 triples/second in our experiment, compared to 60,000 triples/second in their
experiment. However, the description of the Sparkwave experiment in (Komazec et al.,
2012) is incomplete, as it does not describe the number of results generated by the rule,
which might have an effect on throughput. Therefore, it may not be reasonable to strictly

compare the results of this experiment with that of Sparkwave experiment.
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Figure 5.16: Input throughput of R4, Sparkwave, and Etalis

Finally, we also repeated the same experiment using different schemas with different

number of subclasses, ranging between 40 and 1100 subclasses. All the three systems were

not affected by the bigger schema size, showing similar performance to the original setting.

Results of this experiment can be found in Appendix B.

5.3 Conclusion

This chapter has presented several evaluations of R4. A number of functionality tests have

proved some of its capabilities, including basic pattern matching, aggregation, combining
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static and dynamic data, and performing background reasoning. Comparing R4’s

performance with Jena’s static reasoner positively supports our first hypothesis:

Hypothesis 1: It was anticipated that our continuous reasoning approach would

improve throughput and responsiveness, when compared to a traditional static reasoner.

Furthermore, in terms of input throughput, R4 outperformed two of the state-of-the-art
stream reasoning engines, namely Sparkwave and Etalis. However, our experiment is
limited to only one rule using one dataset; the performance for other datasets with different
characteristics and other rules might be different. However, if we were to use more than
one rule, we might not necessarily be able to compare the results from one rule to the
results from another rule. Therefore, a benchmark based on a selection of rules is needed,
but it will also be limited to one dataset. While Sparkwave evaluated their system using
three different rules, they reported consistent performance between all three rules
(Komazec et al., 2012).

Experiments described in this chapter were run in R4 using statically optimised plans. With
the addition of the adaptive optimiser — introduced next chapter — we expect R4 to highly

outperform the other systems, especially in dynamic environments.
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Chapter 6: Optimisation

As a single rule can usually be evaluated using different equivalent plans, an optimiser is
needed to identify and generate the most efficient plan. In this chapter, we address the
optimisation problem in the context of semantic stream processing. We firstly describe
how R4 generates the initial plan based on simple heuristics in Section 6.1. We then
discuss how the adaptive optimisation paradigm, introduced in the data stream
management community (reviewed in Chapter 2, Section 2.1.3), is applied in R4 (Section
6.2). Section 6.3 then introduces the employed cost model, discussing several issues such
as estimating selectivities and output rates. Monitoring, optimisation algorithms, and plan

migration issues are discussed in sections 6.4, 6.5, 6.6, respectively.

6.1 Initial Rete Network Generation: Static Optimisation

In a database management system (DBMS), optimisers use statistics such as data
cardinality and operator selectivities to build a cost model to choose the optimal plan at
compile time (Garcia-Molina et al., 2000). However, these statistics are usually
unavailable before runtime in a streaming context (Viglas and Naughton, 2002). Therefore,
we use simple heuristics to generate a basic initial plan that should be refined at runtime
after collecting sufficient statistics.

To generate the initial Rete network, the rule document is first parsed to identify individual
rules and their condition elements (triple patterns). We use Squall’s RIF Core parser® and
extend it to handle stream and window specifications, using the EBNF given in Fig 4.7 and

the code available from Squall.

The parsed ruleset is then passed to the optimiser, which starts by creating a source node
for each input. Then, it handles the body — the ‘If’ part — of the ruleset by creating and
connecting alpha and beta nodes. It forms the alpha network by creating an alpha node
(with its own alpha memory) for each triple pattern. The beta network is then modelled by
forming a left input adapter node to follow the first alpha node. For each other alpha node,
a join node with a beta memory is created to connect it with the previous node in the beta
network, which results in a left-deep beta network. At the end, the head — the ‘Then’ part —

of the ruleset is handled by creating a terminal node with a template for every atom.

1 https://github.com/sinjax/squall/tree/master/core/rif-core-parser
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As the optimiser traverses the list of triple patterns, attempting to join them in the same
order as they appear in the rule document, it enforces a known optimisation heuristic,
which is to join alpha nodes with shared variables only (Garcia-Molina et al., 2000),
leaving the triple patterns that have unique variables to the end. This optimisation
technique aims to avoid Cartesian products, which are known to generate larger
intermediate results (Mishra and Eich, 1992).

Before modelling any alpha or beta node, the set of already modelled nodes is checked. If
an equivalent node — one that has the same condition, sources, and local window size if
specified — has been already created, the old node (and its memory) is simply shared
instead of creating a duplicate operator. This is one of the features of the original Rete

algorithm (Forgy, 1982) that can save both memory and computational resources.

After dealing with all triple patterns in the ruleset, we handle the predicates. Predicates (or
filters) are pushed as high as possible in the network as follows: If the predicate compares
a variable to a static value, an alpha constraint is created at the first alpha node in which
this variable appears. If the predicate compares two variables, a beta constraint is created at
the first beta node where both variables appear in its tokens. Again, pushing filters as early
as possible in the network is a known optimisation heuristic in DBMS (Garcia-Molina et
al., 2000).

6.2 Adaptive Optimisation

As the initial plan was not constructed based on statistics of the input data, it is not
expected to be optimal. Furthermore, the characteristics of data streams may continuously
change, so the optimisation process needs to be adaptive. Apart from CQELS (Le-Phuoc et
al., 2011), all other processors of semantic streams — reviewed in Chapter 3 — do not
consider adaptive optimisation, as they basically depend on their underlying stream
systems. CQELS, on the other hand, employs a white-box approach, so it implements its
own optimiser. In the relational stream processing community, some systems supported
adaptive optimisation using the plan-based approach, where the optimiser changes the
running plan for all tuples (Babu and Widom, 2004; Cammert et al., 2008). Other systems
used the routing-based approach, in which each tuple can follow a different route (Avnur
and Hellerstein, 2000). CQELS supports routing-based adaptive optimisation using the
Eddy operator (Avnur and Hellerstein, 2000). While eddies enable a fine-grained per-tuple
optimisation, we argue that it would be very expensive for the RDF model. An RDF
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document (or stream) consists of a large number of small triples, compared to the relational
model, where a smaller number of records or tuples are composed, usually of more than
three attributes. Holding statistics and choosing a route order for every small triple would
cause a large computational overhead. We opt for more coarse adaptivity at an intra-query
level as in (Babu and Widom, 2004; Cammert et al., 2008). In other words, R4’s optimiser
Is plan-based, as opposed to the routing-based strategy used in CQELS.

The RDF model also causes more joins than the relational model, as a single triple does not
hold much information. This makes it more crucial to have a good beta network topology.
Therefore, due to the fact that we flattened the alpha network into single alpha nodes, we
focus on optimising the join node ordering. The order of joins in the Rete network largely
determines the performance of the plan, as join nodes are far more expensive than stateless
filter nodes. While different equivalent plans should produce the same number of output
results, different join orderings will cause a different size of intermediate results, affecting
both processing costs and memory consumption, which ultimately mark throughput. A
poorly-ordered plan might suffer even more, as stream characteristics change at runtime.
The optimiser needs to ensure that the order of join nodes of the running plan is efficient

for the current conditions.

Placing the more selective operators early in the network usually results in smaller
intermediate results, which leads to faster processing and lower memory consumption. For
example, assume we want to join three streams (A, B, and C), and each produces 10
triple/sec into a window of 10 seconds. Also, assume that there is a shared variable among
all of them and that the join selectivity of AxB = 0.1, AxC = 0.2, and BxC = 0.3. As
joins are commutative operators, there are three possible distinct ways to join the three
streams: (AxB)~C, (AxC)xB, and (Bx<C)xA. The first join of the first plan will
produce 100 triples every second, which means its beta memory size may grow up to 1000
triples. For the second and third plans, the first join’s output rates are 200 triples/sec and
300 triples/sec, while its beta memory size are 2000 triples and 3000 triples, respectively.

In this example, it is obvious that the first plan will outperform the other plans.

However, ordering joins based only on their selectivities does not always guarantee an
optimal plan, as there are other factors that determine the performance of the network. In
the example above, if stream A’s input rate was 100 triples/sec instead of 10, output rates
of the first join in the three plans would be 1000, 2000, and 300. This means that the first
plan is no longer the optimal plan; instead, the third plan, which is ranked worst using the
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lowest-selectivity-first heuristic, is now the best. Another important factor that affects the
cost is the window size. Giving stream A a big window would have a similar effect to
giving it a higher input rate. Therefore, a cost model that takes all these factors into
account is needed. Using a cost model, the optimiser can estimate the costs of different
possible orderings of joins and select the cheapest. The ultimate goal of the adaptive

optimiser is to maximise throughput.

The adaptive optimisation process for continuous reasoning involves three parts of the
system that work together to maintain good performance in changing streaming conditions.
First, the monitor periodically tracks stream statistics, uses them to measure the cost of the
currently running plan, and reports the cost to the optimiser. The optimiser compares the
new cost to previously reported costs; if they significantly differ, it starts the re-
optimisation process. Using a dynamic programming algorithm based on the cost model, it
tries to find a cheaper plan. If a cheaper plan is found, it is communicated to the rule
engine, and a plan migration is ordered. The rule engine then runs the chosen plan. This

process is illustrated in Figure 6.1.

Rules

!

Optimiser
Estimates costs of different
plans, chooses cheapest

Measured cost Chosen plan
Monitor Rule engine
Observes stream stats, Runs chosen plan,
measures plan cost manages migration

Figure 6.1: Adaptive optimisation process

In the next subsections, we first lay out the cost model used to estimate costs of join
operators and plans. Then, the adaptation approach and its stages, including monitoring, re-

optimisation, and plan migrations, are described in more detail.
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6.3 Cost Model

Most optimisers in modern database systems are cost-based (Viglas and Naughton, 2002).
Cost models are used to estimate costs of different equivalent plans in order to choose the
most efficient. Some stream processing engines also use cost models instead of heuristics
(e.g. (Viglas and Naughton, 2002; Cammert et al., 2008)). In streaming contexts, however,
costs of operators are generally rate-based as opposed to relational, cardinality-based cost
models (Schmidt, 2006).

As we are only interested in finding an efficient join ordering, and because joins are
usually the most expensive operators in the network, we model the cost of the network as
the summation of its joins’ costs. We follow the research on estimating the cost of a
windowed join —as in Kang et al., (2003), Ayad and Naughton (2004), and Cammert et al.,

(2008) — and use a per-unit-time cost model. In this model:
Cost of an operator = input rate * cost of handling one tuple

To model the cost of an individual join operator, we consider all the tasks that are
performed by this operator. As described in Section 4.3.3, a join node that takes input from
two windowed streams would perform the following tasks when a tuple is received from
either side: the tuple is inserted into the corresponding window; the other window performs
a garbage collection, which is then probed for matches; any results are then generated.
Using L and R to refer to the left and right input streams to a join node, we represent the

cost of a join operator as follows?:
C(LM R) = Cinsert + Cinvalidate + Cprobe + Cresult.

In order to find the individual costs of these operations, we use the notions of input and
output rates, window sizes, and selectivity. While these can be measured for running plans,
we need a way to estimate them without actually creating and running the joins to avoid
this unnecessary overhead. The following subsections explain how we calculate these
different parameters in order to find each individual cost in the previous formula. Table 6.1
identifies the different parameters used throughout this section, where L and R denote the

left and right input streams (as in the previous formula), and o refers to the output stream.

20 Throughout this section, we use L and R to refer to the left and right input streams to a join node, and o
to refer to the output stream.
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Table 6.1: Cost model terms

Ai Acrrival rate of tuples from a source input i

AL Arrival rate of tuples for the left input of a join

AR Acrrival rate of tuples for the right input of a join

Ao Output rate of tuples from the current operator

WL Size of the left input window (number of tuples)

Wr Size of the right input window (number of tuples)

W, Size of the output window (number of tuples)

BL Number of hash buckets in the left input window

Br Number of hash buckets in the right input window

f Selectivity factor

C! Cost of inserting a tuple into a memory

cH Cost of evaluating the hash function of a single tuple

cv Cost of removing a tuple from a memory

CE Cost of re-organising the heap

cP Cost of a single evaluation of the join predicate

c¢ Cost of generating a new tuple

CT Cost of checking a tuple’s timestamp

M Size of a left tuple (number of triples comprising it)

dse Number of distinct values of attribute a in stream S
6.3.1 Constant costs

First, we estimated the system-dependant costs (C', CH, CV, CE, CP, C® and CT), used in
insertion, invalidation, probing, and result generation cost formulas, by measuring the
actual time used by the CPU to perform each task. For example, we measured the time
taken to hash 1000 tuples and divided the result by 1000 to determine the cost of a single
evaluation of the hash function (i.e. CP).

6.3.2 Estimating join’s selectivity (f)

One of the most important variables to estimate in the cost model is the join’s selectivity
factor. In Babu et al. (2004), a profiler is used to estimate the selectivites of pipelined
filters, where a periodic sample of the input is passed to different alternative paths to
calculate the operators’ selectivities. However, with the big number of joins expected using
the RDF model, this can be quite expensive. We need a cheaper way that finds reasonably

good estimates of joins’ selectivities.

120



Chapter 6

Cost models of windowed joins similar to ours — in Cammert et al. (2008) and Gomes and
Choi (2008) — use the join selectivity factor without discussing how to estimate its value.
In Ayad and Naughton (2004) and Getta and Vossough (2004), a join selectivity is
described as a multiplication of the selectivities of all previous nodes in the network. This
goes back to system R optimiser (Selinger, 1979), where the selectivity of (predl) and
(pred2), i.e. f (predlxpred2), equals f (predl) * f (pred2). However, because this assumes
independence of the input values, using this with the RDF model results in severe
underestimations of the number of output results of the join. RDF data usually demonstrate
a high correlation between triples. For instance, an RDF triple <observation X,
observedBYy, sensor_y> will always co-occur with a triple like <observation x,
observedProperty, property_z>. If we have 100 unique observations and are asked to join
(?x, observedBy, ?y) with (?x, observedProperty, ?z), we expect the cardinality of the
output results to be 100, as every observation contains information about the two
predicates. However, using the above join selectivity estimation method underestimates the
number of results to one: f(Lxr) = f(L)*f(r) = 1/100 * 1/100 = 1/10000, so W, = WL * WRr
* f(Lxr) = 100 * 100 * 1/10000 = 1. On the other hand, it can be reasonable to assume the
independence of observed temperature values from two different streams in a join like (?y,

observedValue, ?x)(?z, observedValue, ?X).

To address this problem, we apply a method based on an observation introduced in
Neumann and Moerkotte (2011). They observe that many of the correlations between triple
patterns stem from the fact that RDF uses multiple triples to describe the same entity, so
searching for one of them is practically as selective as searching for all of them. In our
graph-based RDF stream model, a stream is comprised of small graphs representing those
entities, in the example above, weather observations. Therefore, we differentiate between
the selectivities of joining triple patterns from a single graph — self-joins or intra-graph
joins —and joining triple pattern from different graphs.

In the first case, the cardinality of joining multiple triple patterns from the same graph is
equal to the number of graphs in the windowed stream, as they always co-occur. We
consider triple patterns from one graph with bound objects as well as bound predicates. For
example, joining (?x type Observation) with (?x observedValue >30) is an intra-graph join,
but the selectivity of the first pattern is different than the second. While all 100
observations satisfy the first pattern, assume that only 10 observations satisfy the second.

By making the join as selective as the most selective pattern, i.e. f(Lxr) = min(f(0),f(r)) =
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min(1/100,1/10) = 1/100, 50 Wo = WL * Wg * f(Lgr) = 100 * 10 * 1/100 = 10, which is the

correct number of results.

In the second case, where joins happen between different graphs — either from the same
stream or different streams — we assume independence. So, generally, for intra-graph joins,
f(Lar) = min(f(L),f(r)) and, for inter-graph joins, f(Lxr) = f(L)*f(r).

6.3.3 Estimating window sizes (W,)

A join’s right parent is always an alpha node. Hence, its window size can be measured at
any time during the cost estimation phase, as they already exist and are not affected by the

adaptive re-optimisation. In addition, it can be calculated using the following formula:
Wo(Ua) = WS * f(O'a),

where Ws = the window length for tuple-based window, or Ws = A;i * Ts, where Ts is the

time-based window length.

On the other hand, the left parent of a join node is another join node, and its window size
needs to be estimated since it might not be existent when the optimiser tries to investigate
new ways to join the alpha nodes. If we can estimate the join selectivity factor, then the

join’s window size can simply be estimated as:
Wo = WL * Wr * f(LXR).

While this formula appears exactly the same as the one used for finding the cardinality of a
relational join — replacing window sizes with table cardinalities — it does actually take into
account the temporal nature of sliding windows. This is explained by Ayad and Naughton
(2004) as follows: A join’s output window size is the number of valid tuples resulting from
the join. A tuple stays valid as long as none of the tuples that comprise it have expired. If
left and right input rates are steady and left and right window sizes at the beginning are W
and W, the resulting window size for the already existing tuples in the windows will be
WL * Wr * f(Lxar). We consider tuples arriving from the left side; each arriving tuple
produces Wr * f(Lxr) new tuples. However, we expect the same number of tuples in the
resulting window to be invalidated as the earliest tuple in the left window becomes
expired. The same logic applies to tuples arriving at the right side. Hence, the previous

formula presents a good average estimate of the join results’ window size.
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6.3.4 Estimating output rates (A.)

In R4, as we use left-deep plans, right input rates are always the output rates of alpha
nodes, while left input rates are the output rates of previous beta nodes. Output rates of
alpha nodes are simply the output rates of raw streams multiplied by the selectivity of the

filter predicate, as follows:
A o(O'a) =1 i * f(O'a).

The stream output rate can either be known in advance or averaged at the source node. The
selectivity factor of an alpha node can be defined as the percentage of tuples satisfying the
filter predicate relative to the number of tuples input from the stream. As in database

systems, it can be estimated as:
f(O'a) = 1/dS(a),

The number of distinct tuples can be measured online as the number of hash buckets of the
corresponding alpha memory. Alpha memories are always available and are not affected

by the re-optimisation process.

Finding the output rate of a join node is more complicated, as it has two inputs. We first
find the output rate of a Cartesian product. In a Cartesian product node, every incoming
tuple from the left parent is joined with every tuple in the right parent’s window (and vice

versa). Therefore:
Ao(LXR) = AL WRr + Ar WL

Then, by defining the selectivity factor of a join node as the percentage of tuples satisfying
the join predicate relative to a Cartesian product, we can estimate a join node’s output rate

as:
Ao(L™R) = (AL WR + Ar WL ) f(LXR).

Now, we discuss each individual cost in the previous formula — first in abstract terms, then

in terms of our implementation.
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6.3.5 Insertion cost (Cinsert)

Every time unit, the join node receives a number of tuples from both sides, equalling the
output rate of its left and right parents. For each incoming tuple, there is a constant cost of
adding the tuple to the corresponding memory. Therefore:

Cinsert = ( AL+ AR ) * CI.

The constant cost is implementation dependant. As explained in Chapter 4, R4 uses a hash
map and a priority queue — implemented as a binary tree — to model an alpha or beta
memory. Therefore, C' includes the cost of hashing the tuple, inserting it into a hash
bucket, and adding it to the queue. While adding an element to a binary tree usually incurs
a logarithmic cost in the length of the tree (Mehlhorn and Sanders, 2008), we found it to be
constant in our experiments. Java’s implementation of a priority queue adds the new
element to the leaves and then uses the comparator to pop it up the tree until it finds its
correct location. As the comparator orders tuples by increasing timestamps, and because
incoming tuples usually arrive in order, they usually stay at the leaves — hence, the constant
cost, as follows:

Cinsert = (AL+ AR ) * (CI + CH).

6.3.6 Invalidation cost (Cinvalidate)

Every time unit, the number of expired tuples in the left or right memory that need to be
removed can be estimated to be equal to the output rate of the corresponding parent. This is
especially accurate for tuple-based windows, in general, and time-based windows in steady

state conditions where streams’ output rate does not change often, as follows:
Cinvalidate = ( AL+ AR ) * CV.

As opposed to the insertion cost in R4, the cost of deleting a tuple is actually logarithmic in
the length of the tree, as it requires re-organisation of the queue. Whenever an element is
deleted from the queue, which is usually the root of the tree (as it has the smallest
timestamp), it is replaced by the last inserted tuple. The tree implementation then uses the
comparator to push down this tuple until it finds its correct location, which should be in the
leaves, as it has the biggest timestamp. This means it would be compared with a number of
elements equal to the length of the tree. After deleting the stale tuple from the queue and
re-organising it, the tuple should also be removed from the hash map, incurring a constant

cost CH. Therefore:
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Cinvatidate = ( AL* 10g2(Wi+1) + Ar * log2(Wr+1) ) * CE + (AL+ Ar) * CH,

6.3.7 Probing cost (Cprobe)

When a new tuple arrives at one side, the join node searches the other side’s window to
find matches. The number of comparisons that needs to be done for each input depends on
the join algorithm. For nested loop joins, every incoming tuple from the left side needs to

be compared with each tuple in the right window (and vice versa), as follows:
Cprobe = ( AL WR + Ar WL ) * CP.

For symmetrical hash joins used in R4, there is the constant cost of hashing the incoming
tuple; the comparison cost will be a function of the number of tuples in the matching
bucket. If we assume uniform distribution of tuples across buckets, each bucket will
contain Wi/B; tuples, as follows:

Cprobe = (AL * WR/BR + Ar * W1/BL) * C” + (AL + AR) * C™,

6.3.8 Result generation cost (Cresult)

If the searching process results in a match, there is a cost of generating the new result.
While Kang’s cost model (Kang et al., 2003) does not consider this cost, it is explicitly

calculated in Cammert (2008) as a constant cost for each generated tuple, as follows:
Cresult = Ao * CG.

However, in R4, the cost of creating a result is not simply a constant. There is the constant
cost of creating the new tuple, and then, there is the cost of assigning its timestamp. This
cost is found to be a function of the number of triples in the left tuple because we need to
search them to find the latest start time and earliest end time stamps to assign them to the

result. Thus, if M is the size of the left tuple:

Cresult = 2o * (C®+M *CT).

6.4 Monitoring

Every set amount of time, the monitor measures the cost of the currently running plan. It
uses the same cost model presented in the previous sections, but as the plan is actually
running, it uses measured window sizes and input rates instead of estimates. The monitor

works in a bottom-up fashion, starting from the source nodes until the last join in the
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network, as every join needs information about its parent’s window sizes and output rates.
At the source nodes level, it updates the average output rates of every incoming stream. At
the alpha network, it updates the output rates and window sizes of each alpha node. Then,
it starts finding the cost of every join node, updating its window size and output rate at the

same time. Finally, the monitor finds the cost of all joins and reports it to the optimiser.

The monitoring interval value can either be set by the user or decided by the system.
Choosing a small interval increases monitoring overhead but provides a better chance for
the optimiser to respond to quickly changing stream statistics. We can start with a small
value and increase it if stream characteristics stay stable. Whenever it observes a change,

the monitoring interval can be reduced again until the observed statistics stabilise.

6.5 Optimisation algorithm

The optimiser receives updates from the monitor about the current plan cost. While
reacting to any change in the cost means a highly adaptive system, it has also some side
effects (Babu and Bizzaro, 2005). Besides the increased overhead, this can lead to a case
called thrashing. An Adaptive Query Processing system is thrashing if most of its resources
are spent in adptivity-related overhead such as plan switching, not in query execution
(Babu and Bizarro, 2005). Another reason to avoid adapting to every change is that this
change might be transient, which means by the time the system switches into the new plan
suitable for the change, the change is gone and the new plan is not suitable anymore. To
avoid these problems, the optimiser keeps a window of plan costs and finds the average. If
the new average cost significantly differs from the previous average, it starts the re-

optimisation process.

The optimiser now starts trying to find a cheaper plan for the current conditions. Using
dynamic programming techniques, we implemented two algorithms that use the cost model

to find a new efficient plan.

6.5.1 Optimal plan algorithm

The first algorithm finds the optimal left-deep plan that is guaranteed to have a lower cost
than all other possible left-deep plans based on the cost model. Working bottom-up, it
starts by finding all possible plans of one-join size that join only two alpha nodes. It
estimates every plan’s cost and adds them to the first level table. In the second round, each

one-join plan from the first level table is joined with every alpha node except those
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participating in the current plan. This results in new, two-join plans that join three alpha
nodes. Each new plan increments its cost with the new join’s estimated cost; then, it is
added to the second level table. This process continues until, after the final round — which
is equal to the number of alpha nodes minus one — the last table contains plans that join all

alpha nodes. The optimiser then simply chooses the cheapest plan from the table.

Procedure: Find optimal plan
Input: alpha nodes in the current plan as, a, as, ..., an
Output: New plan optP

1 rightParents ={ ay, ay, a3, ..., an}

2 leftParents = { ay, a3, a3, ..., an}

3 for (r=0; r<n-1; r++)

4 for (i=0; i<leftParents.length; i++)

5 if (leftParents[i] € rightParents)

6 remove leftParents[i] from rightParents

7 if (leftParents]i] is a join node)

8 rightParents = { a1, a, a3, ..., an}

9 remove all alpha nodes in leftParents]i].plan from rightParents
10 for (j=0; j<rightParents.length; j++)

11 if (leftParents[i] and rightParents[j] have a shared variable)
12 jn = join (leftParents]il, rightParents[j])

13 newPlan = leftParents|i].plan

14 newPlan.add(jn)

15 newPlan.cost += jn.cost

16 table[r].add(newPlan)

17 leftParents = all last joins in table[r] plans

18 optP = cheapest plan in table[r]
19 return optP

Listing 6.1: Optimal plan algorithm

The pseudo code of the algorithm is presented in Listing 6.1. We have two lists
representing potential left parents and right parents, initially containing all alpha nodes of
the current rule. We then have three loops: the first represents the rounds, the second loops
potential left parents, and the third loops potential right parents. In the first round (as a
special case), where left parents are alpha nodes, lines 5 and 6 ensure that an alpha node
does not get joined with itself. By deleting the current left parent alpha node from potential

right parents, we prevent subsequent left parent alpha nodes from joining with the current
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node, which results in a duplicate join node. For example, if we have three alpha nodes (A,
B, and C) in the first round, we first hold A as the left parent. By deleting A from the right
parents list, A is joined with B and, then, with C. In the left parents loop, B is the left
parent, and the right parents list does not contain A; therefore, we do not join B with A (a
duplicate to A join B). This is equivalent to having the second and third loops as:
for(i=0; i<leftParents.length; i++)
for(j=i+1; j<rightParents.length; j++).

However, this logic does not hold for subsequent rounds, so we chose to remove nodes
from the list of right parents. Lines 11-16 check if there is a possible join between the
current left and right parents, create a join node, and add it to a new plan — which is
initialised as the left parents’ plan — and increment the new plan’s cost with the new join’s

estimated cost. The new partial plan is stored in the current level table.

In the following rounds, the list of left parents will now be filled with join nodes (line 17).
As the list of right parents is now empty, it is re-filled in line 8. Then, line 9 ensures that
the left parent join node does not get joined with an already joined alpha node in the
current plan, e.g. node (A&B) does not join A or B. The programme continues until the

final round, where all plans join all alpha nodes. It chooses the cheapest plan and returns it.

To get an idea about the overhead of this algorithm, we estimate the number of join nodes
it creates. We consider a star-joined plan, in which every alpha node shares a variable with
each other alpha node. If we assume there are n alpha nodes in this plan, the first round
will create (n-1)+(n-2)+(n-3)+...+1 = n(n-1)/2 partial plans of one-join size. Each will be
joined with n-2 alpha nodes in the second round, resulting in n(n-1)/2 * (n-2) partial plans
of two-join size. Each of these is joined with n-3 alpha nodes in the third round, i.e. there
are n(n-1)/2 * (n-2)* (n-3) partial plans of three-join size. In the final round, each partial
plan is joined with one remaining alpha node, so the number of plans is n(n-1)/2 * (n-2) *
(n-3) * ... * 1 = n(n-1)/2 * (n-2)!. This number serves as a worst-case scenario, as we

assumed a star-shaped plan; other shapes result in a smaller number of alternative plans.

6.5.2 Greedy algorithm

The second algorithm uses a greedy approach to minimise the overhead. As in the first
algorithm, it starts by finding all possible two-alpha joins and their costs. However, instead
of saving and working on all of them in the next round, it only saves the cheapest one. This

cheapest join then gets joined with all remaining alpha nodes, and the cheapest resulting
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join is saved to get joined in the next round, and so on. Listing 6.2 shows a pseudo code of
this algorithm. After joining the last alpha node, we get a new plan that is not guaranteed to
be optimal, but the overhead can be significantly lower than the first algorithm.

Procedure: Find greedy plan
Input: alpha nodes in the current plan as, a, as, ..., an
Output: New plan grP

1 rightParents = { ay, a3, as, ..., an}

2 leftParents = { ay, a3, a3, ..., an}

3 for (r=0; r<n-1; r++)

4 for (i=0; i<leftParents.length; i++)

5 if (leftParents[i] € rightParents)

6 remove leftParents[i] from rightParents

7 for (j=0; j<rightParents.length; j++)

8 if (leftParents[i] and rightParents[j] have a shared variable)
9 jn = join (leftParents]il, rightParents[j])
10 estimate jn’s cost and it to table[r]

11 jn = cheapest join in table][r]

12 remove jn.rightParent from rightParents

13 if (jn.leftParent is an alpha node)

14 remove jn.leftParent from rightParents

15 clear leftParents

16 add jn to leftParents

17 add jn to grP

18 grP.cost += jn.cost

19 return grP

Listing 6.2: Greedy plan algorithm

While the number of join nodes created in the first round is the same as in the previous
algorithm, it is significantly lower in the next rounds. In the second round, instead of
joining every partial plan from the first round with the n-2 remaining alphas, only the
cheapest partial plan is joined, resulting in n-2 partial plans of two-join size. Ultimately,
there will be one complete plan and n(n-1)/2 + (n-2) + (n-3) + ... +1 = n(n-1)/2 + (n-1)(n-
2)/2 partial plans. This is also based on a star-shaped rule; other shapes require a smaller

number of partial plans.

6.6 Plan migration

When the optimiser successfully finds a cheaper plan, it orders the rule engine to start a

plan migration. Switching immediately from the old plan to the new plan will cause a loss
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of possible results. This is because the new plan joins have empty memories, while the old
joins’ windows are full with intermediate results, which can be possibly joined by newly
arriving tuples. To avoid this problem, we run both plans simultaneously until the new
plan’s joins are full with intermediate results and all the old plan join windows’ tuples are
expired. This period of time is equal to the largest window size of input streams
participating in this plan. To avoid duplications in the output results, we only print the
results of the old plan until the plan migration stage finishes; then, the new plan prints out

its results, while the old plan is disconnected.

6.7 Conclusion

This chapter presented our second contribution: a cost-based adaptive optimiser for RDF
streams. The optimisation process in R4 runs as follows: first, R4 produces an initial plan
based on a number of known optimisation heuristics, such as plan sharing and avoiding
Cartesian products. After running the initial plan, the monitor starts collecting statistics
about the performance of operators, that are then used by the adaptive optimiser to find a
cheaper plan. The adaptive optimiser estimates different plans costs based on a cost model.
When a cheaper plan is found, the optimiser instructs the rule engine to start the migration
process. In the next chapter, we validate the cost model, and evaluate the adaptive

optimiser performance in different setting.
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Chapter 7: Evaluating R4’s Optimiser

Chapter 5 presented a comparative evaluation of the main reasoning engine. As the
previous chapter addressed the optimisation problem in semantic stream processors,
detailing the optimisation process carried out by R4, we now evaluate the performance of
R4’s optimiser. Before we evaluate the adaptive optimiser, which responds to changes in
streams’ characteristics by adapting the order of join nodes in its Rete networks, we
investigate two known optimisation techniques: namely, minimising window sizes
(Motwani et al., 2003) and sharing parts of the Rete networks between different rules
(Forgy, 1982).

In Section 7.1, we examine the effect of minimising window size on the processing time
and completeness of results. Then, Section 7.2 tests the ability of R4’s optimiser to share
operators between different rules and shows how this can improve the performance of the
system. Finally, Section 7.3 evaluates the adaptive optimiser: first, by verifying its cost
model and, second, by comparing the costs of the plans chosen by the adaptive optimiser
with the plans chosen by the static optimiser in both stable and unstable streaming
conditions. For all these experiments, we apply the same datasets used in the real-world

scenario in the SemSorGrid4Env project described in Chapter 5, Section 5.1.

7.1 Quality of results vs. window size

In the information retrieval domain, in general, the measurements most commonly used to
test the quality of results are precision and recall (Manning et al., 2008). The precision of a
system is the proportion of retrieved material that is actually relevant. In contrast, the recall
of a system is the proportion of relevant material that is actually retrieved (Van Rijsbergen,
1979). This pair is widely used to measure what is known as the effectiveness of the
retrieval system. In other words, it is a ‘measure of the ability of the system to retrieve
relevant documents while, at the same time, holding back non-relevant one’ (Manning et
al., 2008).

Stream processing systems try to maximise both the precision and recall of the results they
produce. However, it is not always possible to produce 100% correct and complete results
when the systems are limited to a bounded amount of memory (Babcock et al., 2002).
Approximation techniques used to handle the potentially unbounded input streams can

affect both the precision and recall of the produced answers. The sampling technique
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provides approximate answers that are not always correct, while the windowing technique
provides incomplete but correct answers. The incompleteness used here regards the whole
input stream, and is applied in situations when windowing is used as a mere resource
management technique, i.e, not part of the intended semantics of the rule. In the second
case, windows are used as temporal constraints, and results should be both correct and
complete with regard to the applied window. As we do not use sampling techniques, we

focus on examining the recall measurement?L.

To evaluate the quality of R4’s results, we observed the completeness of results while
applying different window sizes. We ran the system on two datasets — Dataset2 and
Dataset3 — from Table 5.1. A rule that asks for all available swell period measurements
observed by a sensor that has also observed a high wave (Listing 7.1) is applied. For every
high wave observation, the system should search the windows for all swell period
observations by this sensor. We stream the dataset, sending 169 observations every second
(2366 triples) instead of every half an hour in the real-life streaming rate. In case of the
second dataset, which has all half-hourly observations from a whole day, a 48 seconds
window size would be equivalent to 24 hours window in the real-life streaming rate, and so
should find all swell period values for every sensor with a high wave reading. Minimising
windows caused the system to only find swell period readings that were observed near the

high wave observation.

; Forall ?s ?v ?v2( :
! If And( ?0b [ssn:observedProperty -> waves:Wind Wave Height]

: ?70b [ssn:observedBy ?s]

1 ?0b [ssn:observationResult ?result] i
: ?result [ssn:hasValue ?value]

; ?value [ssnExt:hasQuantityValue ?v]

! External (pred:numeric-greater-than(?v 4.00)) i
E ?0b2 [ssn:observedProperty -> waves:Swell Period] :
i ?70b2 [ssn:observedBy -> ?s]

! ?20b2 [ssn:observationResult -> ?result2] i
: ?result?2 [ssn:hasValue -> ?value2]

i ?value?2 [ssnExt:hasQuantityValue -> ?v2])

: Then ?s [ssnExt2:swellValue -> ?v2]) :
1

Listing 7.1: Completeness of results experiment rule

We first used Jena with the same rule and datasets to find the number of complete results
for each dataset. To calculate the recall, we simply divided the number of retrieved results

by the number of complete results.

21 We compared R4’s output to Jena’s output and ensured that all retrieved results are correct.
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Table 7.1 and Figure 7.1 show the increasing recall values in correlation with increasing
window size. For each running, we also calculated the average response time. The table
also shows the trade-off between the response time and completeness of results. While
maximising window size means getting more results, it also means the response time will

increase, as the system will spend more time processing the larger memories.

T
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0.5 #
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0.3 —fli—Dataset3
¥

0.2
0.1
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Window size (seconds)

Recall

Figure 7.1: Window size vs. recall

Table 7.1: Recall and response time for different window sizes

Dataset Window size | No. of results Recall Average Standard
(seconds) response time deviation
(ms)
Dataset 2 1 11 0.28 2.52 0.23
2 21 0.53 2.88 0.39
4 36 0.90 3.04 0.56
6 40 1.00 3.20 0.84
12 40 1.00 3.20 0.66
Dataset 3 1 65 0.10 2.92 0.80
2 163 0.25 3.88 0.77
4 271 0.42 4.67 0.80
6 339 0.52 5.91 1.01
12 492 0.75 6.22 1.40
24 613 0.94 7.99 1.08
36 644 0.99 8.47 1.24
48 653 1.00 6.65 1.16
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7.2 Operator Sharing

Forall ?o0b ?v ?s (
If And( ?ob [ssn:observedProperty -> waves:Wind Wave Height]
?0b [ssn:observedBy -> ?s]
?20b [ssn:observationResult -> ?result]
?result [ssn:hasValue -> ?value]
?value [ssnExt:hasQuantityValue -> ?v]
External (pred:numeric-greater-than(?v 2.00)))
Then ?s [ssnExt2:highAlert -> ?v])
Forall ?0b ?v ?avg(
If And( ?ob [ssn:observedProperty -> waves:Wind Wave Height]
?0b [ssn:observedBy -> ?s]
?0b [ssn:observationResult -> ?result]
?result [ssn:hasValue -> ?value]
?value [ssnExt:hasQuantityValue -> ?v]
(?avg = External (func:numeric-avg(?v)) ) 30 m
Then ?s [ssnExt2:average -> ?avg])

Listing 7.2: Operator sharing experiment rule

R4 enables sharing of operators and their memories between multiple rules. To examine
how operator sharing can affect the memory consumption of the system, we created two
rules that can share some of their operators. The two rules are then executed in two
settings: they share their operators in the first setting, while they run separately in the
second. For both settings, we periodically measure the memory size of all stateful
operators. Then, we compare the shared network memory consumption to the unshared

one.

The implemented rules are presented in the RIF in Listing 7.2. The first rule finds wave
heights greater than a specified threshold, along with the sensor ID that observed it. The
second rule finds the average wave height across all 24 sensors every half hour. The
unshared Rete networks are illustrated in Figure 7.2, while the shared network is depicted
in Figure 7.3. It shows that, for this particular use case, most filter operators are shared,

and three out of four joins are also shared.

We ran those rules on Dataset3, which contains nearly 100k triples. We set the global
window size to 8 seconds (equivalent to 4 hours, as we run in the same input rate as the
previous experiment). All alpha and beta memories report their sizes every second. We
calculate the total size of these memories every second in both settings and compare them
to show the effect of operator sharing on memory consumption. Full numerical results can

be found in Appendix C. Here, we represent two charts: one shows only the totals of
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memory sizes for both settings, and the other shows the growth of all window sizes over

time.
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Figure 7.2: Two separate Rete networks for two rules without sharing
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Figure 7.3: Shared Rete network for two rules
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Figure 7.4: Total memory sizes for shared and unshared plans

Figure 7.4 simply shows that the shared plan consumes less memory than the unshared
one. The extra memory saved by the shared plan can be exploited by enlarging the shared

windows in order to maximise coverage and increase the completeness of the results.
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Figure 7.5: Individual memories growth over time
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Figure 7.5 shows the behaviour of the windows in the shared plan over time. The windows
all start from zero and grow incrementally until they reach their predefined limit (8
seconds), at which point they start dropping expired tuples while receiving new tuples at
the same time. The pace at which they evolve, however, is different. The figure shows that
the highest memory size belongs to alpha memories with only one condition matching the
predicate (a2, a3, a4, and a6). In this use case, these predicates are not selective, as there is
one triple matching each predicate in every observation. The first alpha memory (al) is
connected to a more selective filter, its selectivity determine the selectivities of its
following join nodes (b1, b2, b5). The lowest memory size is associated with the b4, which
is beta memory of the last join in the first rule, connecting five triple patterns, in which two
of them are selective. Alpha and beta memories of the unshared plan follow the same
patterns, but as some nodes and their memories are duplicated, we get the higher memory

cost.

7.3 Evaluating the adaptive optimiser

R4 has an adaptive optimiser that responds to changing streams’ characteristics during
runtime by adapting the order of join nodes in the running networks. The adaptive
optimiser communicates with the monitor to receive real-time statistics about the cost of
the running plan, tries to find a cheaper plan based on a cost model, and instructs the rule

engine to migrate to the new plan if found.

Before evaluating the performance of the adaptive optimiser, we need to validate the
employed cost model. Experiments in Section 7.3.1 test the optimiser’s ability to correctly
estimate the performance of different plans by comparing measured plans’ costs and
estimations based on the cost model. Section 7.3.2 evaluates the decisions taken by the
adaptive optimiser at stable conditions. We compare the cost of the plan chosen by the
adaptive optimiser (based on the cost model) to the cost of the initial plan chosen by the
static optimiser. Finally, Section 7.3.3 repeats the previous experiment but under unstable

conditions, where stream conditions change during the lifetime of the running rule.

731 Verifying the cost model

The cost-based optimisation process in R4 uses real-time statistics about the input streams
to measure the cost of the running plan and estimate costs of possible alternative plans

using the cost model, presented in Section 6.3. The cost model is a vital part of the
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optimisation process, as it can lead to wrong decisions if it does not estimate costs of
different plans correctly. While it is not expected to provide accurate measures of the costs,
it should be able to correctly rank different plans based on their costs, especially when their
costs vary significantly. This section presents experiments that compare the estimated costs

of different plans to their actual costs.

73.1.1 Methodology

To verify the cost model, we run two experiments for two rules: simple and complex. The
simple one (triple patterns are shown in Listing 7.3) takes input from a single stream and
has intra-graph joins only, while the complex rule (Listing 7.4) takes input from multiple
streams and has both intra- and inter-graph joins. For each experiment, we compare the
measured and estimated costs of all feasible plans. Feasible plans are plans that follow the

shared variable condition employed by the static optimiser.

Both measured and estimated costs are calculated using the cost model. However, the
measured cost is based on the actual run-time statistics of input and output rates, beta
memories’ sizes, and operators’ selectivities. On the other hand, the estimated cost is based
on estimations of operators’ output rates, beta memories’ sizes, and operators’ selectivites.
To further verify the cost model in the first experiment, we compare the measured plan
cost — based on the cost model — to the actual performance of the plan in terms of its
response time, i.e., the time between receiving new elements till producing the last output

of each update.

The first experiment’s rule represents a basic pattern matching with three conditions (or
triple patterns) that checks if an observation’s result is above a specified threshold. For this
rule, there are only two feasible plans: (AxB)xC, and (Bx<C)~A, as plan (AxC)xB
violates the shared variable condition. For clarity, we omit parentheses and the join symbol
in the following and use the conditions’ ordering to represent plans, e.g., (AxB)=C is
represented as ABC and (BxC)xA as BCA. For each plan, we print latency, measured
cost, and estimated cost every second while inserting a stream of 700 graphs (9800 triples)
per second input rate. We use a 1.1 million triples input file that contains observations
collected over 10 days. We manipulated the observation results so that they only match the
rule condition (greater than 100) after 70 seconds to check the cost model’s sensitivity to

the changing selectivity.
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1
E A ?0b ssn:observationResult ?result
i B ?result ssn:hasValue ?value !
. 1
: C ?value ssnExt:hasQuantityValue (?v>100)

Listing 7.3: Triple patterns of Rule 1

In the second experiment, the rule checks if there are two sensors observing the same high
result. In total, there are 16 different feasible plans to implement this rule. We chose five of
them that are expected to have different costs, including: ABCFED, DEFCBA, CBAFED,
FEDCBA, and FCBADE. We run each plan individually, printing measured and estimated
costs every second. As the plan receives input from two streams, we obtained observations
of two sensors and stored them in two files to stream them at a faster rate. In this
experiment, the first stream input rate is 2000 triples/second, and the other stream’s input
rate is 1000 triples/second, while the CCO sensors provide data at an output rate of 98
triples (seven graphs or observations) per 30 minutes. The content of the streams is not
manipulated in this experiment, and both streams are assigned global window sizes of five

seconds.

PP PP P PP -
?0bl ssn:observationResult ?resultl

A
B ?resultl ssn:hasValue ?valuel

C ?valuel ssnExt:hasQuantityValue (?2v>100)
D ?0b2 ssn:observationResult ?result?2

E ?result? ssn:hasValue ?value?2

F ?value?2 ssnExt:hasQuantityValue (?2v>100)

Listing 7.4: Triple patterns of Rule 2

7.3.1.2 Results

For the first experiment, Figure 7.6 compares the measured and estimated costs for each of
the two alternative plans plotted every second during the lifetime of the rule. The figure
shows that the second plan (BCA) outperforms the first one in the first 70 seconds and has
the same cost as the first plan after that. This is because triple pattern C is very selective at
the beginning, while the selectivities of patterns A and B are equal to one, i.e. every input
graph has one triple matching A and one triple matching B. This means that joining pattern
C with B first results in small beta memories for the whole network. On the other hand,
joining pattern A with B first results in a join node that has an output rate equal to the
original stream input rate (700 matches/second), leading to a big beta memory following

this join. As we manipulated the input stream so that every graph after second 70 matches
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triple pattern C, all joins now have the same selectivity, which means that both plans have

the same cost.
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Figure 7.6: Estimated and measured costs for Rule 1 plans

In this setting, the figure also shows that the measured and estimated costs of both plans
are identical. While it is not usually the case, the cost model can accurately calculate the
cost of simple plans, where only intra-graph joins are used. The input observations
(graphs) represent perfect characteristic sets. In this case, the output rate of the whole plan
is based on the output rate of the most selective pattern (pattern C in this case). As we get
actual statistics from the alpha network, selectivities and output rates of the beta network

nodes, and therefore, the cost, can be accurately calculated.

Matching measured and estimated costs proves that the optimiser performs well in terms of
estimating different parameters that are used in calculating the estimated cost based on the
cost model, including output rates, beta memories’ sizes, and operators’ selectivities.
Furthermore, in this setting, we also measure the actual plan latency and compare it to the
measured cost to see how well the cost model formulas reflect the real-life cost. Figure 7.7
shows that, while the plans’ costs produced by the cost model underestimate the actual
time taken to process the input, they reflected the same trend. Before 70 seconds, both
show that Plan 2 outperforms Plan 1. At 70 seconds, the costs of both plans increase — Plan
1 slightly and Plan 2 significantly. After this turning point, both methods show that both
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plans perform equally. The underestimation could be due to the constant costs of handling
one triple in the cost model formulas being underestimated in addition to the fact that the
cost model only calculates the costs of join nodes; other costs such as filtering at the alpha
network, generating results at the terminal node, and communication costs between nodes

are not included.
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Figure 7.7: Measured costs vs. latency for Rule 1 plans

The second experiment also compares measured and estimated costs but for a more
complex rule. The chosen plans are as follows: Plan 1 (ABCFED) matches stream 1
patterns (with the most selective pattern — pattern C — at the end) with stream 2 patterns
(the most selective pattern F has to precede other patterns, as it is the only one that shares a
variable with stream 1 patterns). Plan 2 (DEFCBA) matches stream 2 patterns (with the
most selective pattern — pattern F — at the end) with stream 1 patterns. Plans 3 and 4
(CBAFED and FEDCBA) are similar to the previous two but with the most selective
patterns for each stream first. The last plan (FCBADE) is different, as it performs the inter-
graph join first. As expected, Figure 7.8 (with measured costs), shows that plans 3 and 4
outperform plans 1 and 2, as they have the more selective patterns first. Between them,

plans with stream 2 patterns first outperform their equivalent plans where stream 1 patterns
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are placed first. This is because stream 2 has a lower input rate than stream 1. Plan 5

performs between Plans 2 and 3.

More importantly, this ranking is preserved in Figure 7.9, which shows estimated costs of
the five plans®2. While the measured and estimated costs do not exactly match, the cost

model was accurate enough to rank different plans correctly.
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Figure 7.8: Measured costs for Rule 2 plans
7.3.2 Optimisation performance under stable conditions

After we ensured that the cost model could reasonably estimate different plan costs, we
now measure the performance gains after employing the cost-based adaptive optimiser.
The absence of streams’ statistics beforehand means that the initial plan chosen by the
static optimiser can be inefficient. However, as soon as the monitor collects some statistics,

the adaptive optimiser uses them to find and switch to a more efficient plan. In this section,

22 We split the results into two figures, as they do not look clear in a single graph; raw results and a single
graph for measured and estimated costs can be found in Appendix C.
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we compare the measured costs of the initial plan and the new plan chosen by the adaptive

optimiser when stream conditions — input rates and selectivities — are stable.
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Figure 7.9: Estimated costs for Rule 2 plans

7.3.2.1 Methodology

We apply the same two — simple and complex — rules from the previous section (Listings
7.3 and 7.4). For each, we first run the static optimiser only, identify the chosen plan, ask
the monitor to print the measured cost of the running plan every second until the end of the
streamed files, and find the average cost. We apply the same process using the adaptive
optimiser twice, first using the greedy algorithm and then using the optimal algorithm. We
only show the cost of the plan chosen by the optimal algorithm if it is different to the one
chosen by the greedy algorithm. Moreover, to show the overhead of adaptivity, we run the
adaptive optimiser (using the greedy algorithm) in two settings: the first one switches to
the new chosen plan immediately without employing the migration process (during which

both old and new rules are running), and the second applies the plan migration process.

For each rule, we compare the costs of plans chosen by the static and adaptive optimisers

using a variety of parameters that affect plan costs. These include using different global
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window sizes for the input streams, different stream input rates, different operators’

selectivities, and different numbers of join nodes.

7.3.2.2 Results

Varying window sizes:

For the first rule, Figure 7.10 compares different plans’ costs using window sizes varying
from 1-15 seconds. The selectivity of operators reflects the real-life sensor data, as we
have not manipulated the content of streams, while the input rate is fixed at 70
graphs/second (almost 1000 triples/second). The initial plan generated by the static
optimiser follows the same order the rule was written in (i.e. ABC), while both the greedy
and optimal algorithms of the adaptive optimiser chose the order CBA, putting the most
selective pattern first. For all the different window sizes used, the adaptive plan’s cost is

44% less than the initial plan.

We also notice that increasing the window size only slightly increases the plan cost for
both static and adaptive plans. A bigger window size means elements will stay longer in
memories, affecting mainly the probe cost (and possibly the result generation cost, as there
is a bigger chance of matches but not the insertion or deletion costs). Thanks to the hash-
based implementation of alpha and beta memories, bigger windows do not dramatically

increase plan costs.

However, increasing window sizes has another side affect, which is a more expensive plan
migration. The figure shows this clearly; as for the first window size, the plan migration
stage only caused less than a 2% increase in the adaptive plan cost, while the last window
(15 seconds) caused almost a 20% increase. This behaviour is expected, as our
implemented plan migration strategy runs both the old and new plans for an amount of
time equal to the window size in order to ensure complete results (with regard to the
requested window size). The plans’ costs presented are averaged over a period of 100
seconds. Running the same rule for longer time in the same stable conditions reduces the
cost of migration relevant to the static plan, i.e. the static plan cost will remain the same,
while the high cost of migration will be averaged over a longer period, resulting in a lower

cost.
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Figure 7.10: Average plans’ costs using different window sizes for Rule 1

For the second rule, we chose window sizes of one and five seconds, trying their different
combinations for the two streams, as shown in Figure 7.11. Both streams have the same
input rate of 1000 triples/second. The static plan puts the first stream triple patterns with
the same order as they appear in the rule (ABC) and then the second stream patterns in
reversed order (the most selective pattern first: FED) to follow the shared variable
condition. On the other hand, the greedy algorithm finds that joining the most selective
pattern of the two streams (C and F) is the cheapest among two-alpha-nodes networks. It
then joins the remaining patterns of the first stream (A and B) and then the patterns of the
second stream (D and E) for the first, second, and last setting, producing the plan
CFBAED. For the third setting, as the window of the first stream is bigger, it joins the
remaining patterns of the second stream before those of the first stream, producing the plan
CFEDBA. The optimal algorithm chooses a different order: CBFEAD for the first, second,
and last settings and FECBDA for the third setting.

We notice that the optimal plans only marginally outperform the plans generated by the
greedy algorithm. Gains over static plans are between 15% to 25%, which is less than in
the previous experiment. The reason could be that the second half of this rule is already
optimised in the initial plan, placing the most selective pattern first in order to follow the
shared variable static optimisation technique. Finally, we notice that plan migration costs
are similar in the last three settings, as the adaptive optimiser has to run both old and new

plans until the bigger window of both streams finishes.
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Figure 7.11: Average plans’ costs using different window sizes for Rule 2

Varying input rates:

In this experiment, we fix window sizes at five seconds and vary the streams’ input rates.
Figures 7.12 and 7.13 compare costs of static and adaptive plans for different input rates
for Rules 1 and 2. The same observations made in the previous experiment are noticed
here, including that both greedy and optimal algorithms pick the same plan for the simple
rule and different plans for the second rule but with marginal cost differences, and that
gains over the static plan are higher in Rule 1. However, an important difference that can
be noticed is the steep increase of plan costs with a higher input rate. Unlike increasing
window sizes that only affect the probing cost, increasing input rates affect all join
operations. Higher rates mean more insertions, leading to more deletions when they expire,

and also to more probing operations.
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Figure 7.12: Average plans' costs using different input rates for Rule 1
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Figure 7.13: Average plans' costs using different input rates for Rule 2
Varying selectivities:

Operators’ selectivities are based on the values contained in the streamed data. Selectivities
of operators are measured using the selectivity factor, which takes values between 0 and 1.
A low selectivity factor near 0 means that the operator is highly selective, producing only a
small fraction of its input as output. On the other hand, a high selectivity factor near 1

means that the operator produces most of its input as output, indicating low selectivity.

In the previous two experiments, we controlled window sizes and input rates but have not
manipulated the actual dataset, so they reflect real-world observation values. In this

experiment, we fix window sizes and input rates, while varying the input data values to
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result in different selectivities. We prepared several datasets, changing observation results
(triples matching triple pattern C) in each of them to match certain selectivity. For
example, half of the observations in the ‘0.5’ dataset match the rule conditions, and all of

the observations in the ‘1’ dataset will make it to the output.

Figure 7.14 shows that the best gains are obtained when the selectivity is low. When the
selectivity goes up to 0.75, the cheaper plan found by the adaptive optimiser (CBA)
becomes more expensive than the static plan (ABC) with the migration costs. This
situation can be avoided by applying a threshold before changing to any cheaper plan e.g.,
changing plans only if the new plan is 25% cheaper than the current plan. When the
selectivity is 1, the adaptive optimiser finds that the cost of the new plan is the same as the
cost of the old one (as now all triple patterns have the same selectivity), and therefore, it

does not change plans.
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Figure 7.14: Average plans' costs using different selectivities for Rule 1

For the second setting, we join the stream of ‘0.1° selectivity with the streams of ‘0.01°,
‘0.05°, and ‘0.1 selectivities. Results are similar to the previous setting, getting better
gains with lower selectivies. However, in this case, the greedy algorithm failed to find a
cheaper plan. It chooses to join patterns C and F first (as described in varying window

sizes experiment), which ends up in a plan that is more expensive than the static plan.
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Figure 7.15: Average plans' costs using different selectivities for Rule 2

1

e ?20b rdf:type ssn:Observation

: H ?0b ssn:featureOfInterest :PhysicalMetOcean

i I ?0b ssn:observedProperty :Mean Wave Direction
i J ?70b ssn:observedBy ?sensor

: A ?70b ssn:observationResult ?result

i B ?result ssn:hasValue ?value

: C ?value ssnExt:hasQuantityValue (?2v>100)

Listing 7.5: Triple patterns added to Rule 1

Varying number of joins:

In this experiment, we check how the adaptive optimiser performance scales while
increasing the number of joins. For the first setting, we add one more triple pattern to Rule
1 each time, causing one more join, until we reach the rule of seven triple patterns

presented in Listing 7.5.

Figure 7.16 shows that adding triple patterns G and H to the front of the rule causes a big
increase in the static plan cost, as these patterns are not selective (every graph in the
dataset satisfies them). The adaptive plan cost also increases to a lesser extent, as these
patterns are placed at the end of the network. Adding the third triple pattern (1) is beneficial
to the static plan, as it is a selective pattern. The adaptive plan cost is not changed, as its

first join of C and B is already more selective than this.
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?0bl ssn:observationResult ?resultl

?resultl ssn:hasValue ?valuel

?valuel ssnExt:hasQuantityValue (?2v>100)
?20b2 ssn:observationResult ?result2

?result?2 ssn:hasValue ?value?

?value? ssnExt:hasQuantityValue (?2v>100)
?20b3 ssn:observationResult ?result3

?result3 ssn:hasValue ?value3

?value3 ssnExt:hasQuantityValue (?2v>100)

1

EEHEXRTMmHEOOQ®E P

Listing 7.6: Rule 2 after joining one more stream

With Rule 2, instead of adding more triple patterns to two parts of the rule concerning the
two input streams, we add more streams, asking for the matching observation results across
three and four streams. The original Rule 2, which matches two streams with five joins,
adds two more streams, increasing the number of joins to eight and 11. Similar to the
previous experiments’ varying window sizes and input rates, the optimal algorithm
produces plans that only slightly outperform the greedy plans for five and eight joins.
Having 11 joins, however, causes the current implementation of the optimal algorithm to
crash (out of memory exception). The total number of possible plans (disregarding the
shared variable condition) is equal to 10!, i.e. 3,628,800 plans. Even for more efficient
implementations of the algorithm, we expect that it would take too long to find a good plan
— that stream conditions might change again before applying the new plan, rendering it
useless. For big beta networks in a highly fluctuating stream environment, the fast,

suboptimal greedy algorithm would be preferable.
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Figure 7.17: Average plan’s cost for an increasing number of joins for Rule 2

733 Optimisation performance under unstable conditions

The experiments in the previous section showed that the adaptive optimiser in almost all

cases was able to produce a cheaper plan. However, the gain over the static plan depends

mainly on the rule itself and if there is any room for improvement. For example, if the

simple rule (Rule 1) was originally written with the most selective pattern first, the

adaptive optimiser would not be able to provide any improvements. Yet, the adaptive

optimiser’s main goal is not only to provide a better plan than the initial one but to adapt to

a changing environment. In this section, we evaluate the adaptivity of the optimiser by
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testing it under an unstable environment, where stream conditions change during the

lifetime of the rule.

7.3.3.1 Methodology

We observe the cost of the static and adaptive plans over runtime while varying stream
conditions. Out of the four parameters that affect plan costs tested in the previous section,
only input rates and selectivities are related to streams; window sizes and number of joins
are related to rules decided by the user, and therefore, are not expected to change rapidly
during runtime. Therefore, we conduct two experiments measuring how the optimiser
responds to changes in stream input rates and changing selectivities. For both experiments,
we use the rule presented in Listing 7.6 that joins three streams, checking if they all
observe the same value. All streams in both experiments are observed through a window

size of three seconds.

In the first experiment, we run the rule for 60 seconds. During the first 20 seconds, we set
the first stream to a high input rate of 3000 triples/second, while the second and third
streams have medium, 300 triples/second, and low, 30 triples/second, input rates,
respectively. At 20 seconds, we swap the input rates of the first and third streams so that
the first has the low rate and the last has the high rate while the second remains the same.
After another 20 seconds, we swap the rates of the first and the third streams again so that
they return to their original rates.

For the second experiment, a similar setting is used. We prepare three input streams with
manipulated observation values to reflect the following selectivities: high (0.1), medium
(0.05), and low (0.01) selectivity factors for the first, second, and third streams,
respectively. After 45 seconds, data in the three streams begin to reflect different
selctivities, in which the first stream becomes highly selective (low selectivity factor 0.01)
and the third stream data represent lower selectivities (high selectivity factor 0.1). At 90

seconds, they go back to reflect their original selectivities.

7.3.3.2 Results

Figures 7.18 and 7.19 show the effect of changing input rates and selectivities on the costs

of the static and adaptive plans. A similar pattern is observed in both figures®, showing

2 We note that Figure 7.19 provides more neat patterns, because selectivities, input rates, window sizes
are all controlled, while selectivities in Figure 7.18 reflect unmanipulated real-world data.
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that the adaptive optimiser immediately responds to the changing conditions by switching
to a more efficient plan, maintaining a low cost most of the running time. The static plan

cost, on the other hand, rises and falls with the changing conditions without any control.

During the first part of the experiment, the static plan follows the order of the original rule,
joining the first stream with the second and, then, the third. This results in a high cost, as
the first stream has a higher input rate in the first experiment and a lower selectivity in the
second one. The adaptive optimiser chooses to join the third stream with the second and
first stream, producing a lower cost plan. When the first change occurs, the cost of the
static plan drops down, as the first stream now has the lowest input rate (or highest
selectivity in the second setting). The adaptive optimiser immediately notices that its
current plan (that joins the third stream first) becomes inefficient and successfully changes
to a plan that joins the first stream first (as in the static plan). However, it goes through a
short period of high costs during plan migration, as it has to run both plans simultaneously.
After the second change, the static plan goes into its original high cost, while the adaptive
optimiser successfully changes plans to join the third stream first, maintaining its low cost

after the end of migration.
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Figure 7.18: Adaptivity while changing input rates
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7.4 Conclusion

This chapter has presented experiments that investigate the trade-off between window sizes
and completeness of results; advantages of operator sharing, along with a thorough

evaluation of R4’s adaptive optimiser.

Observing the increased completeness of results and increased processing time in
correlation with increasing windows sizes in the first experiment (Section 7.1) positively

supports our second hypothesis.

Hypothesis 2: It was expected that the trade-off between the completeness of the
output results and the processing time could be controlled by varying the resource

allocation.

Second, the increase of total window sizes in the unshared plan over the shared one in the

second experiment (Section 7.2) positively supports our third hypothesis.

Hypothesis 3: It was anticipated that resource usage would be reduced by our

approach of enabling node sharing, where possible, between the rules.

Finally, the different experiments carried out in sections 7.3.2 and 7.3.3 show the
effectiveness of the adaptive optimiser in maintaining lower plan costs — even under

changing conditions — which positively supports our fourth hypothesis.
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Hypothesis 4: It was anticipated that system performance would be improved by
monitoring the characteristics of the streams in order to re-organise the reasoning

networks.

However, there are two main factors that we have not considered in our evaluation of the
adaptive optimiser. First, our evaluation is based on only two rules, which may have
introduced a degree of bias into the results; future evaluation could improve on this by
considering a wider range of rules that correspond to other use cases that go beyond the use
case considered. Secondly, while we considered the overhead associated with plan
migration, the overhead associated with monitoring has not been evaluated. Although it
can be controlled by minimising and maximising the monitoring interval (which affects the
adaptivity), the monitoring overhead should be evaluated and added to the cost of adaptive

optimisation.
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Chapter 8: Conclusions and Future Work

The work presented in this thesis falls within the semantic stream reasoning domain, which
aims to integrate semantic reasoning techniques with data streams. This can potentially fill
the gap between the loT paradigm (where data streams are generated and processed, but
with no standard format or semantic reasoning abilities) and the Semantic Web area (where
reasoners work on standardised semantic data efficiently, but not at a high change rate, as

in streams).

The primary aim of this research was to enable efficient rule-based reasoning over RDF
data streams using dataflow networks, where reasoning is implemented natively over
streams using data flow networks. We also addressed the optimisation issue by enabling
the reasoning networks to adaptively change at run time, in order to cope with their
environmental conditions. A summary of the research and contributions is provided in

Section 8.1, and possible improvements recommended for future work in Section 8.2.

8.1 Summary

Several requirements were identified that were relevant to our main research question
(outlined in Chapter 1):

How could we efficiently (by using minimal resources and ensuring high
throughput) and effectively (by providing timely results with high precision and
recall) enable rule-based reasoning over RDF data streams using data flow

networks?

The requirements included integrating the streaming and static data, ensuring low latency,
utilising memory, supporting inference, and managing a dynamic environment. The
primary objective of the research for this thesis was to create R4, a rule-based reasoner for
RDF streams, using the Rete algorithm. R4 is based on a continuous reasoning framework
that addresses the stated requirements as follows. R4 tackles the integration requirements
by enabling unified and native processing of the static and streaming RDF data. While this
feature made it necessary to implement R4 from scratch, rather than reuse existing
semantic reasoners and stream processing systems (as in the early semantic stream
processing systems, such as C-SPARQL), there are two main advantages to this approach.

Firstly, it avoids the overheads involved in transforming the RDF streams to the underlying
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stream engine model. Secondly, it involves full control over the low-level processing

plans, enabling better optimisation opportunities.

R4 supports background reasoning and domain, user-defined rules using Rete networks in
a unified way. This helps to address the inference support requirement. The incremental
reasoning enabled by the Rete algorithm helps to keep the latency to a minimum, avoiding
costly re-computation. As intermediate results need to be maintained using this approach,
we addressed the memory utilisation problem by using the windowing technique. Every
partial or complete result was assigned an expiration time so that resource usage was kept
under control as the engine continuously removed expired elements. The resource
utilisation requirement was further addressed as the intermediate results between the

different plans could be shared.

R4 supports adaptive optimisation to further improve performance, and to address the
requirement of managing a dynamic environment. As stream characteristics change at run
time, what was at first an optimal plan may perform increasingly poorly. The running plan
in R4 can be adapted to a more efficient one using a cost-based model that is specifically

designed for RDF streams.

After testing the implemented R4 system using a number of use cases, we conducted a
comparative evaluation of its performance, first comparing it to a static reasoner, proving
our first hypothesis that a stream reasoner would outperform a static reasoner in terms of
throughput and response time. We then compared R4 to two stream reasoning engines,
Sparkwave and Etalis, and discovered that R4 outperformed them both. Lastly, we
evaluated the performance of the adaptive optimiser using different settings (stable and
changing). The adaptive optimiser generated more cost-effective plans than those
generated by a static optimiser for all of these settings.

8.1.1 Contributions

R4, a continuous rule-based processing reasoner that works natively on RDF streams, was
the main contribution to this thesis. We applied the incremental Rete algorithm to
overcome the challenge of RDF stream reasoning, and tackled issues such as memory
management and sharing memories of different window sizes. R4 creates Rete networks
for background reasoning entailment rules and domain-specific, user-defined rules in the
same way and connects the first to the latter. The results from both networks were assigned

expiration times and re-entered into the networks to generate further results. This is
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different to the way in which Sparkwave (Komazec et al., 2012) applies the Rete algorithm
to the problem. As Sparkwave does not support reentrancy, it handles background
reasoning using a schema pre-processing step and an additional network (g-network) that
produces entailments to be used by the main Rete network. INSTANS (Rinne et al., 2012a)
also uses the Rete networks to incrementally process RDF streams. However, it does not
discuss the challenge of background reasoning. In addition, the insertion and removal of
RDF statements is handled using explicit INSERT and DELETE queries, unlike our

garbage collection approach embedded in the beta nodes.

Our second contribution is the cost-based adaptive optimiser. We based our cost model on
the body of work produced by the stream management community, while undertaking
RDF-specific issues, such as selectivity estimation. Except for CQELS (Le-Phuoc et al.,
2011), the semantic stream processing engines reviewed in Chapter 3 do not support
adaptive optimisation. On the other hand, CQELS employs an Eddies-based adaptivity
approach at the very fine-grained level of triples. We believe that our more coarse-grained
adaptivity approach at the level of plans is more suited to the RDF model as it avoids the

overhead of adding routing information to every triple.

The extension of Rule Interchange Format (RIF) Core was another minor contribution to
our research. Adding window constructs enables users to define time constraints to be used
by the processing engine. These windows can be defined at import level, which works as a
global window across all the rules in the document, or at formula level, creating local

windows that override global ones.

8.2 Future Work

This research focused on enabling efficient rule-based reasoning for RDF streams. We
support reasoning for rules that can be expressed in the RIF Core rule language. To
enhance efficiency, we applied the incremental Rete algorithm and supported adaptive
optimisation to keep the performance at a high level, even in dynamic conditions. This
work could be further improved in three main directions, namely supporting the adaptive
control of the window size, increasing expressivity by assisting non-monotonic reasoning,

and increasing efficiency and scalability by supporting distributed processing.
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8.2.1 Adaptive window size

R4’s adaptive optimiser is capable of changing the processing plan at run time to a more
efficient plan based on a cost model. However, in some cases (e.g. stream bursts), even the
most cost-effective plan does not result in adequate performance. In devising a plan cost
using a cost model in terms of the time needed to process a number of elements equal to
the input rate, with the input rate being defined as the number of incoming triples per
second, any plan cost of > 1 second is considered to be inefficient. For example, if a stream
input rate is 2000 triples/second, where the cheapest plan cost is 2 seconds, then at the end
of the first second, the plan would have processed only half of what had arrived at the
beginning, but would be faced with another 2000 triples arriving at second 2. The

accumulation of unprocessed elements means that the system loses its responsiveness.

In this case, maintaining responsiveness may be considered more important than
completeness of the results. Therefore, a feasible solution is to apply window reduction. In
Section 7.1, we saw how the trade-off between the completeness of results and processing
times could be controlled by the window sizes. We suggest that the optimiser should be
enabled to adaptively control the window sizes in order to handle situations of data

overflow.

Reducing the window sizes can be carried out globally, or at local operator level. Global
window reduction can be compared to other load shedding techniques, such as sampling,
as effectiveness may vary between the approaches. The number of results and memory and
processing costs were compared when applying window reduction and sampling in
Cammert et al. (2008). They found that the window reduction technique returned more

results than the sampling technique.

Furthermore, window reduction can be performed locally in some nodes. In this case,
nodes that contribute little to the final output results should have reduced window sizes. To
apply this technique, the monitor should be extended to continuously measure how each
node’s output extends throughout the network. This can be especially beneficial with
ontological background reasoning as R4 follows a forward chaining approach, whereby

many entailed results are not actually used.

8.2.2 Expressivity

The expressivity of R4 could be improved by supporting the more expressive dialect of
RIF, namely RIF Production Rule Dialect (PRD) (de Sainte Marie et al., 2013). RIF PRD
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extends RIF Core mainly by allowing different forms of actions in the head part of the rule,
including Assert, Retract, and Modify, thus enabling non-monotonic reasoning. RIF PRD
formulas also allow negation, which is not supported by RIF Core. In its current form, our
continuous rule-based reasoning framework cannot support negation and non-monotonic
reasoning as retraction is only supported for expired results. As reasoning in our
framework is incremental, retracting a triple or a token before it expires means that all
subsequent nodes and memories should be notified to retract any elements that were
produced as a result of the presence of that triple. As we used the time intervals with an
expiration time approach, each join node independently removed expired elements from its
parent memories without communicating with the other nodes. Therefore, invalidating an

element before its expiration time would result in incorrect answers (false positives).

The negative tuples approach is a different way of removing expired elements found in the
literature of stream processing which avoids reliance on timestamps (Hammad et al.,
2003). According to this approach, a window operator emits a positive tuple for every
arriving tuple, and a negative tuple (effectively the same tuple but with a negative sign)
when this tuple expires. All subsequent operators should be able to deal with positive and
negative tuples. Negative tuples can be used not only to ask for the removal of expired
tuples, but also to retract invalid tuples. However, the main drawback to this approach is
that it doubles the number of tuples going through the network, which reduces the
efficiency of the system. We expect this to affect RDF stream processing to a higher extent
(than relational streams) because of the fine-grained nature of the RDF model. For
instance, a simple relational to RDF mapping tool would generate five triples for a single
relational tuple with five attributes. Therefore, instead of undergoing a complete shift to
this approach in order to support retraction, we propose the adoption of a hybrid method in
which the current expiration timestamp approach is retained and negative tuples only used
when it is necessary to invalidate an element before it expires. All operator algorithms

should be updated with instructions for operators to follow upon receiving a negative tuple.

8.2.3 Distribution

An important challenge in stream processing in general is distributed processing. Data
streams are usually distributed in nature. For some high volume streams produced by
widely distributed sources, simply collecting all the streams to be processed in a single
machine can be inefficient (Babcock et al., 2002). Performing some processing on data

locally at the source (e.g. filtering) can improve performance by reducing expensive data
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transfer costs (e.g. SNEE (Galpin et al., 2011)). The ability to distribute processing over
multiple machines also enables more scalable systems, as they can scale in two
dimensions: the hardware performance of each computing node and the number of nodes
(Urbani et al., 2009)). A distributed stream reasoner should be also more fault-tolerant than
a centralized reasoner, since it avoids a single point of failure and enables the migration of
operators between the affected nodes. Furthermore, overloading problems can be avoided

by supporting automatic load balancing over the available nodes.

We suggest a distributed system architecture for R4, in which data flow networks can be
distributed among multiple machines that can communicate and dynamically share load
with each other. Figure 8.1 shows a dataflow network distributed among several hosts. To

enable this, we discuss the communication and load management problems.

Clients

Sources
)
@
‘N

ROF Streams

Figure 8.1: A distributed dataflow network

8.23.1 Communication Framework

Communication on the Web is based on the request-response approach using the HTTP
protocol. In this approach, a client asks for information from a server and the server
responds by submitting the information to the client. This protocol is sufficient for
downloading static documents. However, modern Web applications need a more dynamic
approach, as HTTP does not support real time communication where the server can

automatically push updates to clients. To overcome these drawbacks, many protocols have
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been developed to support transportation of streaming and real time data. These include
RTSP (Schulzrinene et al., 1998), XMPP (Saint-Andre, 2004), Pubsubhubbub?*, MQTT?°.

Several factors should be considered to determine which protocol to use:

e Distribution style: a push-based protocol will better satisfy the real-time
requirements

e Latency: the time it takes for data to propagate between the network nodes should
be as low as possible

e The underlying transport protocol: HTTP-based protocols will be more suitable for
Web applications

e Implemented libraries and active developer communities

The Real Time Streaming Protocol (RTSP) can be excluded for using a pull-based
distribution style and its higher latency, as it requires at least three request-response
sequences. While the other three protocols support a publish/subscribe communication,
MQTT can also be excluded for not being HTTP-based. Pubsubhubbub is a simple,
pub/sub, HTTP-based protocol with latency kept at minimum. However, it appears to have
fewer implementations and libraries than XMPP. The eXtensible Message and Presence
Protocol (XMPP) is an open protocol for message-oriented middleware which can provide
near real time communication. It has many features that satisfy the above requirements:
push-based distribution style, minimum latency, Web based protocol, and widely deployed
and tested libraries for both server and client sides. It is actually a decentralised system;

anyone can run their own XMPP server.

Using XMPP as a communication protocol, each host runs as an XMPP server and client at
the same time. These hosts subscribe to their preceding nodes in the network, as instructed
by the optimiser. The interaction framework involves two stages: the handshaking stage
and the data streaming stage. The first stage is more complicated and expensive than the

second one, but it only happens once, while the lightweight second stage is long-lasting.

8.2.3.2 Dynamic Load Management

For a distributed dataflow network to perform efficiently, load needs to be balanced
between the multiple hosts so that the processing capacity is used to its fullest advantage.
Random allocation of tasks may result in some hosts being overloaded while other hosts

are idle or lightly loaded. A load distribution mechanism is needed to transfer tasks from

24 Available at: <http://pubsubhubbub.appspot.com/>
25 Available at: <http://mgtt.org/>
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the poorly performing, overloaded hosts to lightly loaded hosts, so that tasks can take
advantage of resources that would otherwise go unused. Furthermore, the dynamic
characteristics of streaming data require an adaptive load balancing algorithm that takes

account of the runtime changing system-state information.

As in the adaptive optimisation mechanism, a central network optimiser can be used to
make decisions of when and where to move loads between the participating hosts. These
decisions are to be based on the run-time performance and load statistics of each host
collected and periodically reported by local monitors of these hosts. As in the Borealis
correlation load balancing algorithm (Abadi et al., 2005), we can define the load in terms
of CPU utilisation for each host and operator. For a specific period of time, the load of an
operator is the fraction of the CPU time needed by that operator over the length of the
period. In other words, if the average tuple arrival rate in period i for operator o is (o) and
the average tuple processing time for operator o is p(0), then the load of o in period i is (o)
p(0). The load of a host in a given period is defined as the sum of all its operators’ loads in

that period.

We move now from the information policy of the load management mechanism to the
transfer policy, i.e. deciding which hosts are suitable to participate in a task transfer, either
as senders or as receivers. As used in both Flux (Shah et al., 2003) and the Borealis
correlation algorithm, a relative pairwise policy can be followed. After the central
optimiser receives information about the loads of all hosts, it orders the hosts by their
average load. Then the first (the most loaded) host is paired with the last (the least loaded)
host and the second host with the penultimate host, and so on, such that the i" host in the
ordered list is paired with the (n-i+1)" host in the list. For each pair, the optimiser
considers moving load from the first host to the second. However, to minimise the load
migration overhead—which can nullify the possible benefits of the redistribution—some
threshold tests can be applied for each pair before deciding to move load. If the donor’s
load is less than the average load of all hosts, or if the load difference between the two
hosts is less than a predefined threshold, or if the receiver’s load is above a threshold, then
this pair is not considered for a load redistribution, and the optimiser moves to the next
pair. When a pair is selected for load migration, operators are selected from the donor host
to be moved based on their individual loads, such that the selected operator’s total load is

less than (donor’s load — receiver’s load)/2. Then the load migration process starts.
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Before After

Figure 8.2: Moving operator upstream

The optimiser starts the load migration process by asking the donor host to suspend the
execution of the selected operators to be moved. At the same time, the optimiser also asks
the receiver host to instantiate these operators and provides it with the addresses of their
predecessors so they can subscribe to them. The donor host is then asked to send the states
of these operators to the receiver host. Once the transfer is complete, the optimiser sends
alerts to the successor operators in the original plan to subscribe to the new locations and
then asks the donor host to delete the moved operators.

As the above mechanism does not consider bandwidth issues, a simple optimisation
technique for a distributed data flow network can also be employed as follows: For any
connection with limited bandwidth, or with traffic bigger than a predefined threshold, we
consider moving the sending operator on the edge downstream, or moving the receiving
operator on the other end of the connection upstream. First, we check the output
throughput of the sending operator and compare it to the throughput of its predecessor. If
the sender produces more triples than its predecessor, then the sender should be moved
downstream. If it produces fewer triples, then we compare it to the receiver’s throughput.

If the receiver produces less output than the sender, then we move the receiver upstream.

This technique is similar to the “Box Sliding” technique briefly described in Cherniack et
al., (2003), where an operator with a selectivity value of more than one is moved
downstream, while operators with low selectivity are moved upstream. However, in its
simple mechanism, this technique might only perform well—i.e. reduce network traffic—if
both the sending and the receiving operators have only one input. If either one of them has
other inputs then moving it to another site without taking consideration of the other inputs
may increase network traffic. An example is illustrated in Figure 3.4. Here, the receiving

operator C has another input on the same host. Moving C to Hostl because C is more

165



Chapter 8

selective than B will cause F to send its output using the same connection. A carefully

designed load balancing algorithm is needed that takes these cases into account.
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Appendix A RDFS++ Background Reasoning

RDFS++ reasoning supports the main RDFS predicates (domain, range, subPropertyOf, and
subClassOf) in addition to a number of lightweight but useful OWL predicates (sameAs,
inverseOf, and TransitiveProperty). In this appendix, we present the entailment rules used to
reason over these predicates, followed by a shared Rete network to evaluate these rules.

(* rdfs2 *)
Forall 7x ?p ?y ?¢(
If And( ?p [rdfs:domain -> ?c]
2% [?p ->?y])
Then ?x [rdf:type -> ?c])

(* rdfs3 *)
Forall ?x ?p ?y ?c(
If And( ?p [rdfs:range -> ?c]
2x [?p ->?y])
Then ?y [rdf:type -> ?c])

(* rdfs5 *)
Forall ?7x ?y ?z(
If And( ?x [rdfs:subPropertyOf -> ?y]
?y [rdfs:subPropertyOf -> ?z])
Then ?x [rdfs:subPropertyOf -> ?z])

(* rdfs6 *)
Forall ?x ?p ?y ?q(
If And( ?p [rdfs:subPropertyOf -> ?q]
2x[?p > ?y])
Then ?x [?q -> ?y])

(* rdfs9 *)
Forall ?x ?y ?a(
If And( ?x [rdfs:subClassOf -> ?y]
?a [rdf:type -> ?x])
Then ?a [rdf:type -> ?y])

(* rdfs1l *)
Forall ?x ?y ?z(
If And( ?x [rdfs:subClassOf -> ?y]
?y [rdfs:subClassOf -> ?z])
Then ?x [rdfs:subClassOf -> ?z])

(* owlinv *)
Forall 2x ?p ?y ?q(
If And(?x [?p -> ?y]
?p [owl:inverseOf -> ?q])
Then ?y [?q -> ?X])

(* owlinv2 *)

Forall ?p ?q(
If ?p [owl:inverseOf -> ?q]
Then ?q [owl:inverseOf -> ?p])

................................................................................................................................
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(* owltra *)
Forall ?x ?p ?y ?z(
If And(?x [?p ->?V]
2y [?p -> ?7]
?p [rdf:type -> owl:TransitiveProperty])
Then ?x [?p -> ?2])

(* owlsame *)
Forall ?x ?p ?y ?z(
If And(?x [?p -> ?V]
?7x [owl:sameAs -> ?z])
Then 2z [?p ->?y])

(* owlsame2 *)
Forall ?x ?y(

If ?2x [owl:sameAs -> ?y]
Then ?y [owl:sameAs -> ?x])

...................................................................................................................................

Listing A.1: RDFS++ rules in RIF Core
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Appendix B Raw Comparative Evaluation Data

This appendix contains the raw evaluation data for some of the experiments described in
Chapter 5. Section B.1 contains the processing time results for the first and second
experiments described in Section 5.2.1, while section B.2 contains the processing times of
systems in the experiments of Section 5.2.2.

B.1 R4 vs. Jena vs. JenaRete

First experiment

Dataset Processing time (seconds)

size Standard

System (triples) Runl |Run?2 Run 3 Run 4 Run5 |Average |deviation
2366 0.31 0.28 0.27 0.29 0.27 0.29 0.02
14098 0.55 0.48 0.47 0.49 0.47 0.49 0.03
114562 1.76 1.86 1.76 1.61 1.65 1.73 0.10
462560 5.80 5.34 5.49 6.07 5.60 5.66 0.29
Jena 1121974| 14.49 14.49 14.31 14.60 14.25 14.43 0.15
2366 0.27 0.24 0.23 0.24 0.23 0.24 0.02
14098 0.46 0.41 0.41 0.41 0.41 0.42 0.03
114562 1.49 1.47 1.47 1.36 141 1.44 0.06
462560 4.83 4.78 4.85 4.69 4.78 4.79 0.06
JenaRETE 1121974| 11.98 13.61 12.74 13.13 12.80 12.85 0.60
2366 0.18 0.12 0.12 0.12 0.12 0.13 0.03
14098 0.45 0.36 0.35 0.35 0.36 0.37 0.04
114562 1.67 1.68 1.65 1.82 1.60 1.68 0.08
462560 4.05 3.97 3.97 4.12 3.81 3.98 0.12
R4 1121974 8.10 8.03 7.67 8.19 8.17 8.03 0.21
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Second experiment

Setting 1:
Update Response delay (milliseconds) Standard
System number |Runl [Run2 |Run3 |Run4 |Run5 |Average deviation
1 188 163 165 165 159 168.00 11.45
2 70 63 61 64 59 63.40 4.16
3 49 46 44 44 46 45.80 2.05
4 45 40 37 34 39 39.00 4.06
5 36 34 33 32 33 33.60 1.52
6 34 36 35 34 33 34.40 1.14
7 42 39 41 39 41 40.40 1.34
8 52 53 49 50 53 51.40 1.82
9 51 53 48 49 56 51.40 3.21
10 33 33 33 29 32 32.00 1.73
11 32 33 32 29 33 31.80 1.64
12 33 32 33 28 33 31.80 2.17
13 33 33 33 30 33 32.40 1.34
14 34 34 54 53 54 45.80 10.78
15 49 49 31 29 31 37.80 10.26
16 44 42 44 45 43 43.60 1.14
17 32 29 31 25 31 29.60 2.79
18 31 30 32 28 32 30.60 1.67
19 36 31 35 30 35 33.40 2.70
20 29 25 30 25 39 29.60 5.73
21 279 291 273 341 346 306.00 34.89
22 214 254 216 231 232 229.40 16.06
23 214 224 218 223 242 224.20 10.73
24 210 236 221 206 218 218.20 11.63
25 178 183 186 185 185 183.40 3.21
26 182 186 194 193 198 190.60 6.47
27 174 174 181 166 180 175.00 6.00
28 228 197 216 229 232 220.40 14.43
29 244 231 240 246 256 243.40 9.10
30 162 203 165 175 174 175.80 16.21
31 162 166 167 168 169 166.40 2.70
32 165 167 170 168 168 167.60 1.82
Jena 33 176 166 179 182 180 176.60 6.31
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34 162 176 168 171 168 169.00 5.10
35 163 162 169 164 169 165.40 3.36
36 162 162 170 161 171 165.20 4.87
37 187 160 190 178 189 180.80 12.56
38 209 195 210 202 191 201.40 8.39
39 174 188 199 166 160 177.40 15.99
40 174 164 181 162 167 169.60 7.83
41 172 162 234 159 164 178.20 31.56
42 188 163 171 166 178 173.20 10.04
43 159 162 182 178 159 168.00 11.11
44 164 180 188 165 166 172.60 10.81
45 165 164 162 165 166 164.40 1.52
46 167 166 166 168 167 166.80 0.84
47 171 162 193 181 180 177.40 11.63
48 160 177 160 185 188 174.00 13.40
1 205 147 149 151 148 160.00 25.20
2 48 52 51 57 53 52.20 3.27
3 38 35 38 45 35 38.20 4.09
4 32 35 35 37 34 34.60 1.82
5 38 40 39 40 39 39.20 0.84
6 27 29 28 27 26 27.40 1.14
7 26 27 30 29 26 27.60 1.82
8 38 40 43 38 38 39.40 2.19
9 30 32 34 32 31 31.80 1.48
10 31 32 34 32 27 31.20 2.59
11 34 32 34 33 28 32.20 2.49
12 30 31 34 35 29 31.80 2.59
13 30 31 31 33 29 30.80 1.48
14 54 50 61 59 58 56.40 4.39
15 24 26 26 27 25 25.60 1.14
16 37 39 39 37 38 38.00 1.00
17 23 26 26 24 25 24.80 1.30
18 25 27 27 26 26 26.20 0.84
19 30 31 31 27 31 30.00 1.73
20 24 26 26 21 25 24.40 2.07
21 41 43 44 45 42 43.00 1.58
22 38 40 44 40 37 39.80 2.68
JenaRETE 23 62 62 71 60 68 64.60 4.67
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24 37 38 46 36 37 38.80 4.087
25 42 41 38 37 37 39.00 2.345
26 38 37 65 34 39 42.60 12.661
27 37 39 50 65 38 45.80 11.946
28 36 38 36 54 40 40.80 7.563
29 37 36 35 37 39 36.80 1.483
30 35 36 35 35 38 35.80 1.304
31 37 35 35 34 38 35.80 1.643
32 36 57 37 39 43 42.40 8.591
33 41 43 40 41 43 41.60 1.342
34 41 44 42 42 42 42.20 1.095
35 41 43 39 50 42 43.00 4.183
36 40 42 40 39 43 40.80 1.643
37 41 45 41 42 40 41.80 1.924
38 39 88 89 39 90 69.00 27.395
39 82 39 32 32 36 44.20 21.335
40 32 38 33 29 32 32.80 3.271
41 32 35 33 30 33 32.60 1.817
42 34 34 32 29 33 32.40 2.074
43 32 32 29 30 36 31.80 2.683
44 34 30 30 28 42 32.80 5.586
45 31 29 28 28 32 29.60 1.817
46 31 30 29 27 37 30.80 3.768
47 30 28 30 29 31 29.60 1.140
48 28 28 30 28 30 28.80 1.095
1 113 117 110 114 112 113.20 2.588
2 44 47 45 30 45 42.20 6.907
3 21 24 23 22 22 22.40 1.140
4 18 18 18 18 17 17.80 0.447
5 20 21 23 21 24 21.80 1.643
6 14 15 15 14 14 14.40 0.548
7 14 14 13 12 14 13.40 0.894
8 20 19 20 19 19 19.40 0.548
9 12 12 12 13 12 12.20 0.447
10 13 13 14 13 13 13.20 0.447
11 20 21 19 19 20 19.80 0.837
12 12 11 12 12 11 11.60 0.548
R4 13 12 12 12 11 12 11.80 0.447
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14 12 11 11 11 11 11.20 0.45
15 19 19 20 19 19 19.20 0.45
16 11 12 12 11 12 11.60 0.55
17 12 12 12 12 13 12.20 0.45
18 20 20 21 20 25 21.20 2.17
19 14 14 13 14 13 13.60 0.55
20 12 12 11 11 11 11.40 0.55
21 34 35 38 42 36 37.00 3.16
22 17 17 17 18 17 17.20 0.45
23 17 17 17 18 17 17.20 0.48
24 28 32 27 15 29 26.20 6.54
25 16 15 15 26 16 17.60 4.72
26 15 14 15 14 15 14.60 0.55
27 26 26 14 14 27 21.40 6.77
28 14 16 28 25 15 19.60 6.43
29 14 15 16 15 15 15.00 0.71
30 26 27 13 29 27 24.40 6.47
31 15 14 26 15 14 16.80 5.17
32 14 15 14 15 15 14.60 0.55
33 24 24 25 22 24 23.80 1.10
34 15 15 14 14 14 14.40 0.55
35 37 36 37 38 47 39.00 4.53
36 21 19 20 20 13 18.60 3.21
37 13 14 13 13 14 13.40 0.55
38 13 14 13 13 21 14.80 3.49
39 20 21 20 20 13 18.80 3.27
40 14 14 15 13 13 13.80 0.84
41 13 15 14 14 20 15.20 2.78
42 21 21 21 19 14 19.20 3.03
43 13 14 14 14 21 15.20 3.27
44 20 20 13 19 13 17.00 3.67
45 14 13 21 13 14 15.00 3.39
46 14 14 14 14 21 15.40 3.13
47 19 20 13 20 13 17.00 3.67
48 14 14 20 14 21 16.60 3.58
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Setting 7:
Update Response delay (milliseconds) Standard
System number |Runl [Run2 |Run3 |Run4 |Run5 |Average deviation
1| 1134| 1045 989| 1089| 1003 1052.00 60.23
2 922 904 785 952 792 871.00 77.28
3| 1107| 1152| 1013| 1076| 1081 1085.80 50.62
4 550 534 530 523 595 546.40 28.92
5| 1382| 1423| 1440| 1408| 1433 1417.20 23.06
6| 1801 1854 1823 1821 1791 1818.00 24.23
7| 1174| 1259| 1242| 1166| 1254 1219.00 45.24
8| 1215 1197 1171 1258 1159 1200.00 39.12
9| 1264| 1304| 1410| 1264| 1335 1315.40 60.72
Jena 10| 1221 1354| 1221| 1165| 1328 1257.80 79.85
1 871 819 819 895 880 856.80 35.56
2 591 606 606 738 665 641.20 61.11
3 758 747 747 837 788 775.40 38.31
4 387 379 379 436 443 404.80 31.94
5 671 665 665 677 686 672.80 8.90
6 657 643 643| 1268 672 776.60 274.96
7 494 485 485 479 477 484.00 6.63
8| 1248| 1150 1150 542| 1150 1048.00 286.03
9 589 556 556 557 585 568.60 16.86
JenaRETE 10 491 497 497 517 486 497.60 11.78
1 658 687 654 672 678 669.80 13.76
2 464 464 467 481 575 490.20 47.92
3 319 291 296 284 306 299.20 13.66
4 524 531 324 568 547 498.80 99.17
5 387 391 672 407 398 451.00 123.78
6 331 329 333 349 345 337.40 8.99
7 671 390 410 418 401 458.00 119.53
8 372 687 320 719 727 565.00 201.32
9 313 319 672 325 329 391.60 156.87
R4 10 393 350 312 330 337 344.40 30.44
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Experiment 1: Varying window size

R4 vs. Sparkwave and Etalis

Appendix B

Processing time (seconds)

Window Standard

System size Run1 Run 2 Run 3 Run 4 Run 5 Average deviation
0.1| 465.72| 459.49| 455.15| 466.94| 462.27 461.91 4.78

1| 449.76| 440.35| 443.13| 445.40| 454.19 446.56 5.48

2| 446.02| 453.88| 449.32| 448.29| 442.39 447.98 4.24

5| 442.49| 452.26| 447.06| 454.82| 440.78 447.48 6.06

Etalis (seq) 10| 450.85| 452.71| 445.60| 447.68| 451.87 449.74 3.00
1/11097.22|11402.0811243.72|11534.86|11273.36| 11310.25 165.87
2|11353.66|11479.98|11581.19|11959.85|11463.37| 11567.61 233.64

Etali 5111645.02111711.14|11452.99|11550.24|11611.83| 11594.24 98.03
(and) 10{11601.35|11482.45|11526.07 |11397.74|11474.88| 11496.50 74.64
0.1 25.64 27.65 26.87 27.40 27.71 27.05 0.86

1 73.01 78.36 75.08 73.27 72.70 74.48 2.36

2| 103.43| 105.41| 105.24| 103.77| 104.01 104.37 0.90

5| 163.84| 162.40| 161.42| 162.91| 168.53 163.82 2.77

Sparkwave 10| 223.97| 210.54| 233.86| 235.70| 223.97 228.81 11.78
0.1 8.86 9.09 8.68 8.81 8.70 8.83 0.17

1 12.49 12.15 12.32 12.20 12.08 12.25 0.16

2 13.61 14.70 14.59 14.74 14.00 14.33 0.50

5 14.66 15.67 15.27 15.55 15.08 15.25 0.40

R4 10 17.79 18.11 16.93 17.23 16.45 17.30 0.66
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Experiment 2: Varying schema size

P ing ti d
No. of rocessing time (seconds) standard
System subclasses |Run 1 Run 2 Run 3 Run 4 Run 5 Average |deviation
40| 516.11| 501.57| 521.73| 494.61| 496.77| 506.16 12.08
200| 529.27| 529.70| 538.59| 547.13| 531.89| 535.31 7.58
585| 523.97| 535.20| 523.50| 519.50| 530.18| 526.47 6.20
Etalis (seq) 1100| 530.78| 541.13| 535.80| 537.04| 512.62| 531.47 11.17
40| 149.93| 151.81| 145.28| 146.40| 152.43| 149.17 3.20
200| 209.04| 216.86| 220.21| 215.87| 206.42| 213.68 5.74
585| 196.11| 199.40| 197.07| 179.93| 196.85| 193.87 7.89
Sparkwave 1100| 215.04| 193.56| 199.78| 191.44| 199.96| 199.95 9.23
40 14.22 14.37 13.45 13.45 14.05 13.91 0.43
200 15.33 16.20 16.74 15.99 16.30 16.11 0.51
585 14.69 15.68 15.34 14.53 14.97 15.04 0.47
R4 1100 14.54 14.99 14.64 15.25 14.27 14.74 0.38
600000
500000
£ 400000
()
£
Eo 300000 @ Sparkwave
g e R4
9 200000 _f )
& Etalis
100000
0 — .
40 200 585 1100
No. of subclasses

Figure B.1: Processing time of R4, Sparkwave, and Etalis with different schemas
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Appendix C Raw Optimisation Evaluation Data

This appendix contains the raw evaluation data for some of the experiments described in
Chapter 7. Section C.1 presents the average response time with different window sizes
(described in Section 7.1). Section C.2 presents total and individual memory growth
(experiments of Section 7.2). Section C.3 has some of the adaptive optimiser experiments
(described in Section 7.3).

C.1 Window size vs. completeness

Window Average response time (milliseconds) standard

Dataset | size Run1 Run 2 Run 3 Run 4 Run 5 Average |deviation
1 2.60 2.40 2.60 2.20 2.80 2.52 0.23

2 3.00 3.40 2.40 3.00 2.60 2.88 0.39

4 3.40 3.80 2.80 2.40 2.80 3.04 0.56

6 4.00 3.60 2.40 2.20 3.80 3.20 0.84

Ds2 12 3.40 3.80 2.60 3.80 2.40 3.20 0.66
1 4.35 2.61 2.52 2.54 2.59 2.92 0.80

2 5.26 3.52 3.59 3.61 3.44 3.88 0.77

4 6.09 4.17 4.37 4.30 4.44 4.67 0.80

6 7.67 5.54 5.57 5.70 5.09 5.91 1.01

12 8.54 5.61 5.33 6.50 5.11 6.22 1.40

24 9.39 6.83 8.67 7.07 8.02 8.00 1.08

36 9.13 10.04 6.96 7.52 8.67 8.47 1.24

Ds3 48 7.59 8.15 5.44 6.11 5.98 6.65 1.16
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C.2 Operator sharing

Experiment 1: Total memory growth

Running time

Memories size (triples)

1 944 1523
2 1891 3049
3 2837 4574
4 3784 6100
5 4730 7625
6 5676 9150
7 6640 10702
8 7569 12201
9 7565 12194
10 7567 12196
11 7583 12221
12 7572 12201
13 7571 12203
14 7581 12216
15 7563 12189
16 7571 12200
17 7563 12189
18 7584 12222
19 7560 12183
20 7574 12209
21 7587 12225
22 7568 12197
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Experiment 2: Individual memory growth

time |al a2 a3 a4 a5 bl b2 b3 b4 a6 b5
1 24| 169| 169| 169| 123 24 24 48 1| 169 24
2 48| 338| 338| 338| 249 48 48 96 2| 338 48
3 72 507 507 507 374 72 72 144 3 507 72
4 9| 676 676| 676 500 96 9% | 192 4| 676 96
5| 120| 845| 845| 845| 625| 120| 120 240 5| 845| 120
6| 144| 1014| 1014| 1014| 750| 144| 144| 288 6| 1014| 144
7 171} 1183| 1183| 1183 874 171 171 342 8| 1183 171
8 192 1352| 1352| 1352| 1001 192 192 384 8| 1352 192
9| 191| 1352| 1352| 1352| 1003| 191| 191| 382 8| 1352| 191
10| 191| 1352| 1352| 1352| 1005| 191| 191| 382 8| 1352| 191
11 194 1352| 1352| 1352| 1003 194 194 388 8| 1352 194
12 191 1352| 1352| 1352| 1009 191 191 382 9| 1352 191
13| 192| 1352| 1352| 1352| 1002| 192| 192| 384 9| 1352| 192
14| 193| 1352| 1352| 1352| 1007| 193| 193| 386 8| 1352| 193
15| 190| 1352| 1352| 1352| 1008| 190| 190| 380 7| 1352| 190
16 191 1352| 1352| 1352| 1008 191 191 382 9| 1352 191
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C.3 Adaptive optimisation

C3.1

Cost model experiments

The table shows the costs of five plans, for each the measured cost (m), then the estimated cost

(e).

P1-m

Pl-e

P2-m

P2-e

P3-m

P3-e

P4-m

P4-e

P5-m

P5-e

0.00231

0.00239

0.00193

0.00199

0.00177

0.00185

0.00167

0.00174

0.00176

0.00185

0.00119

0.00125

0.00097

0.00105

0.00092

0.00098

0.00085

0.00092

0.00092

0.00102

0.00137

0.00132

0.00116

0.00113

0.00108

0.00103

0.00103

0.00099

0.00118

0.00108

0.00122

0.00130

0.00101

0.00112

0.00093

0.00102

0.00088

0.00099

0.00090

0.00108

0.00133

0.00129

0.00113

0.00110

0.00104

0.00100

0.00100

0.00097

0.00112

0.00104

0.00132

0.00128

0.00113

0.00109

0.00103

0.00099

0.00099

0.00096

0.00110

0.00102

0.00126

0.00127

0.00107

0.00109

0.00098

0.00098

0.00093

0.00095

0.00100

0.00101

0.00123

0.00129

0.00104

0.00109

0.00094

0.00100

0.00091

0.00096

0.00093

0.00102

0.00119

0.00130

0.00101

0.00110

0.00091

0.00101

0.00088

0.00097

0.00088

0.00105

10

0.00119

0.00134

0.00102

0.00113

0.00091

0.00105

0.00088

0.00099

0.00087

0.00109

11

0.00126

0.00136

0.00101

0.00113

0.00097

0.00108

0.00087

0.00100

0.00094

0.00111

12

0.00125

0.00135

0.00107

0.00114

0.00097

0.00106

0.00094

0.00101

0.00098

0.00111

13

0.00134

0.00133

0.00113

0.00112

0.00105

0.00104

0.00099

0.00099

0.00113

0.00108

14

0.00132

0.00132

0.00108

0.00111

0.00104

0.00104

0.00095

0.00098

0.00107

0.00106

15

0.00129

0.00134

0.00106

0.00113

0.00100

0.00105

0.00092

0.00099

0.00101

0.00109

16

0.00128

0.00134

0.00105

0.00110

0.00099

0.00105

0.00092

0.00097

0.00099

0.00105

17

0.00128

0.00133

0.00106

0.00110

0.00100

0.00104

0.00092

0.00097

0.00100

0.00105

18

0.00130

0.00133

0.00108

0.00111

0.00101

0.00104

0.00095

0.00097

0.00104

0.00106

19

0.00125

0.00134

0.00103

0.00112

0.00096

0.00105

0.00089

0.00098

0.00094

0.00107

20

0.00125

0.00134

0.00104

0.00112

0.00096

0.00105

0.00090

0.00099

0.00095

0.00108

21

0.00130

0.00133

0.00111

0.00112

0.00102

0.00105

0.00097

0.00098

0.00107

0.00107
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22

0.00126

0.00134

0.00107

0.00112

0.00098

0.00105

0.00094

0.00099

0.00100

0.00109

23

0.00124

0.00130

0.00104

0.00109

0.00096

0.00101

0.00090

0.00096

0.00095

0.00103

24

0.00129

0.00129

0.00109

0.00108

0.00101

0.00101

0.00095

0.00095

0.00104

0.00101

25

0.00135

0.00129

0.00116

0.00109

0.00106

0.00100

0.00102

0.00096

0.00116

0.00102

26

0.00138

0.00131

0.00115

0.00110

0.00109

0.00103

0.00101

0.00097

0.00119

0.00105

27

0.00130

0.00134

0.00107

0.00113

0.00102

0.00106

0.00093

0.00099

0.00103

0.00109

28

0.00174

0.00140

0.00148

0.00117

0.00145

0.00111

0.00135

0.00104

0.00184

0.00117

29

0.00145

0.00137

0.00121

0.00116

0.00116

0.00108

0.00108

0.00102

0.00132

0.00114

30

0.00136

0.00133

0.00115

0.00113

0.00107

0.00105

0.00101

0.00099

0.00117

0.00109

31

0.00131

0.00136

0.00111

0.00115

0.00102

0.00107

0.00098

0.00101

0.00107

0.00112

32

0.00132

0.00132

0.00110

0.00111

0.00103

0.00104

0.00096

0.00098

0.00108

0.00107
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Figure C.1: Measured and estimated costs of five equivalent plans
Cc.3.2 Comparing static and adaptive plans

Varying window size/Single stream

Window Cost (seconds) Standard
Plan size (s) Run1 Run 2 Run 3 Run 4 Run 5 Average |deviation
1| 3.3E-04| 3.3E-04| 3.3E-04| 3.3E-04| 3.3E-04| 3.3E-04| 1.2E-06
3| 3.6E-04| 3.6E-04| 3.6E-04| 3.6E-04| 3.6E-04| 3.6E-04| 4.3E-07
5| 3.8E-04| 3.8E-04| 3.8E-04| 3.8E-04| 3.8E-04| 3.8E-04| 0.0E+00
7| 3.9E-04| 3.9E-04| 3.9E-04| 3.8E-04| 3.9E-04| 3.9E-04| 1.1E-06
11| 4.1E-04| 4.1E-04| 4.1E-04| 4.1E-04| 4.1E-04| 4.1E-04| O0.0E+00
static 15| 4.3E-04| 4.4E-04| 4.3E-04| 4.3E-04| 4.3E-04| 4.3E-04 1.7E-08
adaptive 1| 2.1E-04| 2.1E-04| 2.1E-04| 2.1E-04| 2.1E-04| 2.1E-04 5.2E-07
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3| 2.3E-04| 2.3E-04| 2.3E-04| 2.3E-04| 2.3E-04| 2.3E-04| 3.4E-07
5| 2.5E-04| 2.5E-04| 2.5E-04| 2.5E-04| 2.5E-04| 2.5E-04| 0.0E+00
7| 2.5E-04| 2.5E-04| 2.5E-04| 2.5E-04| 2.5E-04| 2.5E-04| 1.3E-07
11| 2.7E-04| 2.7E-04| 2.7E-04| 2.7E-04| 2.7E-04| 2.7E-04| 0.0E+00
15| 2.8E-04| 2.8E-04| 2.8E-04| 2.8E-04| 2.8E-04| 2.8E-04 1.4E-08
1| 2.2E-04| 2.1E-04| 2.1E-04| 2.1E-04| 2.1E-04| 2.1E-04| 7.4E-07
3| 2.4E-04| 2.4E-04| 2.4E-04| 2.4E-04| 2.4E-04| 2.4E-04| 3.0E-07
5| 2.7E-04| 2.7E-04| 2.7E-04| 2.7E-04| 2.7E-04| 2.7E-04| 0.0E+00
7| 2.8E-04| 2.8E-04| 2.8E-04| 2.8E-04| 2.8E-04| 2.8E-04 2.6E-07
Adaptive
with 11| 3.1E-04| 3.1E-04| 3.1E-04| 3.1E-04| 3.1E-04| 3.1E-04| 0.0E+00
migration 15| 3.4E-04| 3.4E-04| 3.4E-04| 3.4E-04| 3.4E-04| 3.4E-04| 1.1E-08
Varying input rate
Cost (seconds) standard
Plan Rate (t/s) [Run 1 Run 2 Run 3 Run 4 Run5 |Average |deviation
1000| 3.8E-04| 3.9E-04| 3.8E-04| 3.9E-04| 3.8E-04| 3.8E-04| 2.5E-06
3000| 1.3E-03| 1.3E-03| 1.3E-03| 1.3E-03| 1.3E-03| 1.3E-03| 0.0E+00
5000| 2.4E-03| 2.4E-03| 2.4E-03| 2.4E-03| 2.4E-03| 2.4E-03| O0.0E+00
7000| 3.3E-03| 3.3E-03| 3.3E-03| 3.3E-03| 3.3E-03| 3.3E-03| 4.8E-19
static 11000| 5.9E-03| 5.9E-03| 5.9E-03| 5.9E-03| 5.9E-03| 5.9E-03| 0.0E+00
1000| 2.6E-04| 2.6E-04| 2.6E-04| 2.6E-04| 2.6E-04| 2.6E-04| 5.3E-07
3000| 8.9E-04| 8.9E-04| 8.9E-04| 8.9E-04| 8.9E-04| 8.9E-04| O0.0E+00
5000| 1.6E-03| 1.6E-03| 1.6E-03| 1.6E-03| 1.6E-03| 1.6E-03| 2.4E-19
7000| 2.2E-03| 2.2E-03| 2.2E-03| 2.2E-03| 2.2E-03| 2.2E-03| 0.0E+00
adaptive 11000| 3.8E-03| 3.8E-03| 3.8E-03| 3.8E-03| 3.8E-03| 3.8E-03| 4.8E-19
Adaptive 1000| 3.1E-04| 3.1E-04| 3.1E-04| 3.1E-04| 3.1E-04| 3.1E-04| 8.7E-07
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with 3000| 1.1E-03| 1.1E-03| 1.1E-03| 1.1E-03| 1.1E-03| 1.1E-03| 0.0E+00
migration
5000| 1.9e-03| 1.9E-03| 1.9E-03| 1.9E-03| 1.9E-03| 1.9E-03| 0.0E+00
7000| 2.7E-03| 2.7E-03| 2.7E-03| 2.7E-03| 2.7E-03| 2.7E-03| 0.0E+00
11000| 4.6E-03| 4.6E-03| 4.6E-03| 4.6E-03| 4.6E-03| 4.6E-03| 0.0E+00
Varying selectivities
Selectivity Cost (seconds) Standard
Plan factor Runl |Run2 |Run3 |Run4 |Run5 |Average |deviation
0.01| 3.8E-04| 3.8E-04| 3.8E-04 | 3.8E-04| 3.8E-04| 3.8E-04| 3.3E-06
0.1| 3.8E-04| 3.8E-04| 3.9E-04| 3.8E-04| 3.9E-04| 3.8E-04| 1.7E-06
0.25| 4.0E-04| 4.0E-04| 4.1E-04| 4.0E-04| 4.0E-04| 4.0E-04 2.2E-06
0.5| 4.3E-04| 4.3E-04| 4.3E-04| 4.3E-04| 4.3E-04| 4.3E-04 1.9E-06
0.75| 4.7E-04| 4.8E-04| 4.7E-04| 4.7E-04| 4.7E-04| 4.7E-04| 1.5E-06
static 1| 5.0E-04| 5.0E-04| 5.0E-04| 5.0E-04| 5.0E-04| 5.0E-04| 1.3E-06
0.01| 2.6E-04| 2.6E-04| 2.5E-04 | 2.6E-04| 2.6E-04| 2.5E-04| 1.0E-06
0.1| 2.7E-04| 2.7E-04| 2.7E-04| 2.7E-04| 2.7E-04| 2.7E-04 1.6E-06
0.25| 3.1E-04| 3.1E-04| 3.1E-04 | 3.0E-04| 3.0E-04| 3.1E-04| 1.0E-06
0.5| 3.7E-04| 3.6E-04 | 3.7E-04| 3.7E-04| 3.7E-04| 3.7E-04 1.1E-06
0.75| 4.4E-04| 4.4E-04 | 4.4E-04| 4.4E-04| 4.4E-04| 4.4E-04 1.5E-06
adaptive 1| 4.9E-04| 5.0E-04| 5.0E-04| 5.0E-04| 5.0E-04| 5.0E-04| 9.3E-07
0.01| 3.1E-04| 3.1E-04| 3.1E-04 | 3.1E-04| 3.1E-04| 3.1E-04| 2.3E-06
0.1| 3.2E-04| 3.3E-04| 3.3E-04| 3.3E-04| 3.3E-04| 3.3E-04| 1.6E-06
0.25| 3.6E-04| 3.6E-04| 3.6E-04 | 3.6E-04| 3.6E-04| 3.6E-04| 1.2E-06
0.5| 4.3E-04| 4.3E-04| 4.3E-04| 4.3E-04| 4.3E-04| 4.3E-04| 8.0E-07
Adaptive
with 0.75| 5.1E-04| 5.1E-04 | 5.1E-04 | 5.1E-04| 5.1E-04| 5.1E-04| 8.7E-07
migration 1| 3.1E-04| 3.1E-04| 3.1E-04| 3.1E-04| 3.1E-04| 3.1E-04 2.3E-06
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Varying number of joins

Appendix C

Cost (seconds)

No. of Standard
Plan joins Run1 Run 2 Run 3 Run 4 Run5 Average |deviation
3.6E-04| 3.6E-04| 3.6E-04| 3.6E-04| 3.6E-04| 3.6E-04| 5.3E-07
6.0E-04| 6.1E-04| 6.1E-04| 6.1E-04| 6.1E-04| 6.1E-04| 1.8E-06
8.5E-04| 8.6E-04| 8.5E-04| 8.6E-04| 8.6E-04| 8.6E-04| 1.2E-06
6.4E-04| 6.4E-04| 6.4E-04| 6.4E-04| 6.4E-04| 6.4E-04 1.1E-06
static 6.9E-04| 6.9E-04| 6.8E-04| 6.9E-04| 6.9E-04| 6.9E-04| 1.3E-06
2.3E-04| 2.3E-04| 2.3E-04| 2.3E-04| 2.3E-04| 2.3E-04| 6.8E-07
3.5E-04| 3.5E-04| 3.5E-04| 3.5E-04| 3.5E-04| 3.5E-04| 2.7E-07
4.6E-04| 4.6E-04| 4.6E-04| 4.6E-04| 4.6E-04| 4.6E-04 1.1E-06
4.7E-04| 4.7E-04| 4.7E-04| 4.7E-04| 4.7E-04| 4.7E-04 1.3E-06
adaptive 5.2E-04| 5.2E-04| 5.2E-04| 5.2E-04| 5.2E-04| 5.2E-04 1.2E-06
2.4E-04| 2.4E-04| 2.4E-04| 2.5E-04| 2.4E-04| 2.4E-04 5.1E-07
3.6E-04| 3.7E-04| 3.7E-04 | 3.7E-04| 3.7E-04| 3.7E-04 8.6E-07
4.9E-04| 49E-04| 4.9E-04| 4.9E-04| 4.9E-04| 4.9E-04 6.2E-07
Adaptive
with 4.9E-04| 49E-04| 4.9E-04| 4.8E-04| 4.9E-04| 4.9E-04 1.1E-06
migration 5.4E-04| 5.5E-04| 5.4E-04| 5.5E-04| 5.5E-04| 5.5E-04 1.4E-06
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