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INCREMENTAL RULE-BASED REASONING FOR SEMANTIC DATA STREAMS 

Rehab Albeladi 

This thesis investigates the area of semantic stream processing, in which data streams are 

combined with semantic reasoning techniques. We have investigated techniques for rule-

based reasoning over semantic streams in which reasoning is implemented natively over 

streams as data flow networks, and have developed an adaptive optimisation method to 

cope with the changing nature of streams. The contributions of this thesis include R4, a 

native rule-based reasoner for RDF streams using the Rete algorithm, and a cost-based 

adaptive plan optimiser designed for RDF streams. We have evaluated the performance of 

R4 and compared it to both a typical static reasoner and to the state-of-the-art in stream 

reasoners. The results show that R4 significantly outperforms these reasoners in terms of 

throughput. We have also evaluated the adaptive optimisation technique, with results that 

show the ability of the optimiser to devise and adopt better performing plans at runtime. 
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Chapter 1: Introduction 

New developments in the realm of the Internet and Web are constantly evolving. On the 

one hand, the growing use of sensors and embedded devices has given rise to a vision of a 

future Internet called The Internet of Things (IoT) which aims to interconnect all these 

devices through a global network (Atzori et al., 2010). By providing Internet connectivity 

to “smart” embedded devices, computers will be able to automatically identify, monitor, 

react to, and perform actions with regard to everyday objects. The IoT will use technology 

such as radio frequency identification (RFID) (Finkenzeller, 2010) to uniquely identify 

objects and apply different event processing mechanisms to process the data streams 

generated by devices. 

According to Sunddamaeker et al., (2010), the number of Internet-connected personal 

computers (PCs) was approximately 1.5 billion, in addition to over 1.0 billion Internet-

connected mobile phones. When the present “Internet of PCs” moves towards the IoT, 50–

100 billion devices will be connected to the Internet by 2020 (Sundamaeker et al., 2010). 

The IoT has received considerable interest, and has been extensively investigated by 

academia (Atzori et al., 2010), industry (Da Xu et al., 2014), and governments (Vermesan 

et al., 2011) in order to achieve its objectives. 

The proposed middleware architecture for the IoT in recent years has often followed the 

service-oriented architecture (SOA) approach (Atzori et al., 2010). SOA principles allow 

complex systems to be decomposed into applications consisting of simpler and more well-

defined components. Using common interfaces and standard protocols, SOA helps with the 

integration of enterprise applications. However, SOA solutions are often too heavy for 

devices with limited capabilities (Guinard et al., 2009). 

Another suggested approach is to integrate real-world objects into the World Wide Web 

using resource-oriented architecture to build the Web of Things. Guinard et al. (2010) 

applied the representational state transfer (REST) architectural style to create loosely 

coupled services on the Web so that they can be easily reused. According to this approach, 

smart objects are becoming first-class citizens on the Web as every object is identified by a 

Uniform Resource Identifier (URI). 

On the other hand, as the current Web is becoming the largest medium of information, 

many researchers are working on the Semantic Web, a vision of the future Web which 
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aims to enable computers to understand the meaning of Web content (Berners-Lee et al., 

2001). This will enable software agents to access the Web and carry out intelligent tasks on 

behalf of the user. Data in the Semantic Web have to be given well-defined meanings to be 

machine processable. A number of formats have been standardised, such as Resource 

Description Framework (RDF) (Cyganiak et al., 2014), RDF Schema (Brickley et al., 

2014), and Web Ontology Language (OWL) (Hitzler et al., 2012). The aim of these 

formats is to structure and give semantics to the Web data, which will then enable 

automatic reasoning and processing of this data. 

Despite the fact that the IoT focuses on infrastructure issues and the Semantic Web places 

more emphasis on knowledge representation, as they basically work in different layers, the 

two visions aim to interlink the virtual and physical worlds. The IoT commonly identifies 

real-world objects using unique RFID tags, while the Semantic Web uses URIs to uniquely 

identify real-world objects. However, both visions could complement each other. 

Data in such areas are continuously and sometimes massively produced by applications 

that are becoming more and more data driven. For instance, the increasingly popular 

sensing devices are currently used to generate environmental observations, monitor patient 

conditions, track locations, and observe energy consumption (Fang et al., 2014; Myung et 

al., 2002; Wei and Li, 2011). On the Web side, microblogging services, such as twitter, 

also deliver real-time streaming data (Sakaki et al., 2010). This class of data differs 

significantly from the typical, mostly static, data model, with changes being the rule rather 

than the exception. This static data model (typically a relational model) does not consider 

the temporal and ordered nature of data streams. Data in this model are stored and ad hoc 

queries are issued to process the data in a pull-based fashion. Streaming data, on the 

contrary, can arrive at a higher rate than that at which they can be stored and processed, 

and therefore need to be handled on the fly in a push-based manner, using continuous 

queries. A special class of management systems, called data stream management systems 

(DSMSs), has appeared to provide such functionality (Babcock et al., 2002). 

While DSMS engines can be used to process data streams generated by the IoT devices, 

the heterogeneity of the data sources and formats makes interoperability and integration a 

real challenge. As the Semantic Web’s standard formats (RDF and OWL) and linked data 

principles (Bizer et al., 2009) facilitate the data integration of heterogeneous datasets, there 

have been efforts to lift stream data to a semantic level (Sheth et al., 2008). Incorporating 

semantics would also enable inferencing capabilities, a feature that is not available in 

DSMSs owing to the lack of semantics in their data stream models.  
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Inference enables the automatic discovery of new information (Lucas and Van Der Gaag, 

1991). Data are modelled as a set of relationships between resources, so the inferencing 

process on the Semantic Web means the generation of new relationships based on the 

dataset and some background knowledge in the form of vocabularies or rule sets. A 

number of reasoning engines for the Semantic Web, with different expressivity levels, have 

appeared, such as Bossam (Jang and Sohn, 2004), Pellet (Sirin et al., 2007), and FaCT++ 

(Tsarkov and Horrocks, 2006). However, they mostly assume the knowledge base to be 

static or slowly changing. Enabling reasoning upon rapidly changing semantic streams 

would require a similar shift as that from database management systems to data stream 

management systems. An example where inference is needed to derive new facts in a 

streaming setting is described in (Cugola and Margara, 2012) as follows: in a smart 

building, there could be a rule that produces an event of fire when it observes a very high 

temperature happening in a short time window with a smoke event. This rule needs to be 

continuously applied using a time-aware model to changing streams of events. 

The processing of semantically-annotated dynamic data gives rise to semantic stream 

processing, which has received increased interest from the Semantic Web community over 

the past few years1. We consider Semantic Stream Processing to lie at the intersection of 

the Data Stream Management research, and the Semantic Web area because it builds its 

techniques on both of them. The Internet of Things area is also relevant, as it can serve as a 

context in which applications generate and process streaming data (Figure 1.1). 

                                                           

1 A W3C community group for RDF stream processing (RSP) was created in 2013. Available at: 
https://www.w3.org/community/rsp/  

Semantic 
Stream 

Processing 

 

Semantic Web 
Data Stream 

Management & 
Complex Event 

Processing 

Internet of 
Things 

https://www.w3.org/community/rsp/
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Figure 1.1: Background research areas 

Semantic stream processing aims to provide the abstractions, foundations, methods, and 

tools required to integrate data streams and semantic processing systems (Della Valle et al., 

2009). Challenges in this area include, but are not limited to, the following: 

 Defining a data model for semantic streams that reflects their ordered and temporal 

nature 

 Supporting continuous queries 

 Integrating background data and dynamic streams 

 Providing reasoning capabilities 

 Dealing with incomplete and noisy streams 

 Distributed stream processing. 

While most of these challenges are similar to those faced by the database community when 

developing stream processing systems, these efforts cannot be directly applied to the 

semantic stream processing area because of the primary differences between the relational 

models used in the DSMSs and the RDF graph-based model of semantic data. A number of 

semantic stream processing systems (Barbieri et al., 2010a; Bolles et al., 2008; Calbimonte 

et al., 2010; Anicic et al., 2011; Le-Phuoc et al., 2011) have been developed in this area 

and mostly address the continuous queries challenge through the extension of SPARQL 

(Harris et al., 2013), the Semantic Web’s query language. They also defined an extension 

of the RDF data model to express the temporal element. 

In this research, we mainly focused on the reasoning aspect, with the aim of enabling rule-

based reasoning over RDF data streams as continuously running data flow networks. We 

propose the use of an incremental reasoning framework with low-level operators directly 

applied over the RDF streams. This RDF-native approach offers maximum optimisation 

opportunities, which have a major impact on response time, memory consumption, and 

completeness of results. We also investigated the optimisation problem itself, i.e. 

translating a set of rules into a set of processing data flow networks. We consider the 

adaptivity of such network structures to be an essential requirement to cope with the 

constantly changing nature of the data streams. 

That said, we addressed the rule-based reasoning on semantic streams with a number of 

limitations. Firstly, streams in real-world applications are potentially delayed, incomplete, 

imprecise, or noisy. This can lead to query results of unknown quality, so methods to clean 
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the data are required, as are algorithms when reasoning with uncertainty. To limit the scope 

of this research, we assumed that the arriving streams were ordered and complete. 

Secondly, continuous query languages in the literature usually enable the addition and 

deletion of stream elements, which then requires truth maintenance methods to ensure that 

the data remain consistent. We assumed that the input streams were of the append-only 

type and that the generated results were stream instances too. 

1.1 Research Hypotheses 

The main focus of this research was on enabling efficient and effective reasoning over 

semantic streams. Efficient processing refers to the way in which the system handles the 

input data. Data streams usually arrive in high volumes and velocity, so input throughput is 

an important measure of stream processing system performance. The resources within a 

stream processing system must be managed carefully owing to the high volumetric nature 

of streams and because storing all the incoming data is usually impractical. On the other 

hand, effectiveness measures are reflected by the quality of results produced by the system. 

Precision and recall (the correctness and completeness of the retrieved results) are 

commonly used metrics in general information retrieval systems. The timeliness of the 

results is another effectiveness metric of prime importance in streaming applications, 

especially as the results lose their value in the event of long delays. Stream processing 

systems should be highly responsive.  

We formulated our objectives based on the following research question and hypotheses:  

How could we efficiently (by using minimal resources and ensuring high throughput) and 

effectively (by providing timely results with high precision and recall) enable rule-based 

reasoning over RDF data streams using data flow networks? 

 Hypothesis 1: It was anticipated that our continuous reasoning approach would improve 

throughput and responsiveness, when compared to a traditional static reasoner. 

 Hypothesis 2: It was expected that the trade-off between the completeness of the output 

results and the processing time could be controlled by varying the resource allocation.  

 Hypothesis 3: It was anticipated that resource usage would be reduced by our approach 

of enabling node sharing, where possible, between the rules. 
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 Hypothesis 4: It was anticipated that system performance would be improved by 

monitoring the characteristics of the streams in order to re-organise the reasoning 

networks.  

1.2 Contributions 

The contributions of this thesis are: 

 A native rule-based reasoner for RDF streams using dataflow networks. Our 

reasoner supports RIF Core (Boley et al., 2013), which corresponds to the language 

of definite Horn rules without function symbols, equivalent to Datalog. While 

CQELS (Le-Phuoc et al., 2011) and Sparkwave (Komazec et al., 2012) (state-of-

the-art RDF stream processing systems) support native processing of RDF streams, 

CQELS does not support reasoning, and Sparkwave provides a lower expressivity 

of a subset of RDF Schema. 

 A cost-based adaptive optimiser designed for RDF streams. In the RDF stream 

processing area, only CQELS has addressed the issue of adaptive optimisation. 

CQELS follows the fine-grained routing-based approach, while we follow a more 

coarse-grained plan-based approach. 

 An extension of RIF Core that adds the window construct to the language in order 

to enable users to specify time constraints as part of the rules. 

1.3 Thesis Structure 

The remainder of this thesis is as follows: Chapter 2 provides related background material 

to our work, first in the area of stream processing and continuous queries, including a 

review of existing stream processing systems and continuous query languages (Section 

2.1), and then with regard to the Semantic Web (Section 2.2), with a focus on the 

knowledge representation of its data and the reasoning techniques.  

The literature on semantic stream processing specifically is covered in Chapter 3. There is 

a review of research advancement in different aspects of the field, including RDF stream 

processing, reasoning and inference support, publishing, distributed processing, developed 

environments, and benchmarking semantic stream processing engines. 

Details of our reasoning framework and implemented system are given in Chapter 4. A 

number of general requirements to enable efficient reasoning over the data streams are 
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provided in Section 4.1. The adopted reasoning framework is then presented in Section 4.2, 

starting with a justification of the design decisions that were taken by linking them to the 

requirements. An RDF stream data model is then defined, followed by an operational 

description of different operators needed for the continuous processing of the data streams. 

R4, our rule-based reasoner for RDF streams, using the Rete algorithm (Forgy, 1982), is 

covered in Section 4.3. The rule language supported by the system is discussed first, 

followed by the system architecture and finally several aspects of data processing within 

the system. The different nodes through which the data passes through from input to output 

are detailed, together with other related issues, such as data structures and garbage 

collection.  

An evaluation of the implemented system is then presented in Chapter 5. An evaluation 

scenario, including a description of the input data sets, together with a number of designed 

use cases to test system functionality are described first in Section 5.1. Then, Section 5.2 

details a number of experiments that have been carried out in order to comparatively 

evaluate the system’s performance, first against a static reasoner (to test the first 

hypothesis), and then against state-of-the-art semantic stream processing systems that 

support inference.  

Chapter 6 then addresses the optimisation problem. We first describe the initial plan 

generation using a static optimiser in Section 6.1, and then present our adaptive 

optimisation approach in Section 6.2. We present the cost model that was used to estimate 

the expense of implementing the plans and two optimisation algorithms that were utilised 

to generate more cost-effective plans. Finally, we describe the monitoring and plan 

migration employed in the system.  

An evaluation of the optimisation process is presented in Chapter 7. Section 7.1 tests the 

effects of reducing window sizes on the quality of results. The operator sharing 

optimisation technique is evaluated in Section 7.2. Section 7.3 is dedicated to evaluate the 

adaptive optimiser. It first verifies the cost model by comparing the actual and estimated 

costs of different plans. Then, the costs of the adaptive plans generated by the adaptive 

optimiser are compared to those of the static plans, in stable and unstable conditions. 

Finally, concluding remarks are provided in Chapter 8, and the contributions of this 

research, together with suggested future work, are highlighted. 
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1.4 Publications 

Parts of this research have been published, as follows: 

 Albeladi, R., Martinez, K. and Gibbins, N. (2015) Incremental rule-based reasoning 

over RDF streams. In RDF Stream Processing Workshop at the 12th Extended Semantic 

Web Conference, Portoroz, Slovenia. 

 Albeladi, R. (2012) Distributed reasoning on semantic data streams. In International 

Semantic Web Conference (pp. 433–436). Springer Berlin Heidelberg. 

 Albeladi, R., Martinez, K. and Gibbins, N. (2012) Distributed stream reasoning. At the 

poster track of the 9th Extended Semantic Web Conference, Heraklion, Greece. 
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Chapter 2: Background Research 

The Semantic Stream Processing area builds on the knowledge in both the Data Stream 

Processing and the Semantic Web areas. In this chapter, we present a background review 

of both of these areas. Section 2.1 reviews the research in the Stream Processing area, 

highlighting the differences between a database management system and a data stream 

processing system, briefly introducing some of the developed stream processers, and 

discussing some techniques, including continuous queries, adaptive optimisation, and 

distributed processing of streaming data. The Semantic Web is then reviewed in Section 

2.2, with a focus on semantic data formats and related reasoning techniques. 

2.1 Data Stream Processing 

The emergence of data-intensive applications such as sensor networks and IoT applications 

has created a number of requirements that cannot be easily met with the traditional 

database systems, due to the sheer amount of data with which they operate (Stonebraker et 

al., 2005). These applications require the ability to capture, analyse, and react to events on 

a real-time basis. Data in these applications needs to be modelled as transient data streams, 

rather than as typical persistent relations.  

A data stream is a real-time, continuous sequence of items, ordered implicitly by arrival 

time or explicitly by timestamps (Golab and Ozsu, 2003). Data streams differ from stored 

relations in several ways: the data elements in the stream arrive online, they are potentially 

unbounded in size, the system has no control over the arrival order of the data elements, 

and the data elements may be discarded after being processed. These differences raise a 

number of challenges which have been addressed by many researches in the database 

community (Arasu et al., 2003; Abadi et al., 2003; Hammad et al., 2004).  

2.1.1 Data Stream Management Systems  

DBMS vs. DSMS: In order to describe a data stream management system (DSMS), we 

compare it to a conventional database management system (DBMS). DBMSs are being 

successfully used in a wide variety of domains and applications. They use the ‘store and 

query’ model, where they permanently store the data and then evaluate queries against the 

stored data (Garcia-Molina et al., 2000). Data stream applications do not fit this model, as 

the stream elements can arrive faster than they can be stored (Golab and Ozsu, 2003). 
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Therefore, a new specialised class of management systems that can perform real-time 

analysis over streaming data has appeared. In Data Stream Management Systems (DSMS), 

data arrives as one or more continuous data streams where a special type of queries –called 

continuous queries—can be performed on them. Continuous queries (Terry et al., 1992) are 

similar to traditional database queries, except they are issued only once and then run 

continually over the changing data. When newly arriving data matches the running 

continuous query, new results are returned to the client. Figure 2.1 depicts the general 

model of data stream management systems. 

 

Figure 2.1: DSMS model 

The operational model of a DSMS differs from that of a DBMS. In DBMSs, humans 

actively update the dataset and initiate queries, and the DBMS acts as a passive repository, 

simply executing the queries on the dataset. Abadi et al. (2003) refer to this as a human-

active, DSMS-passive (HADP) model. In contrast, DSMSs receive data from various 

external sources, such as sensors, and not from humans. The DSMS plays an active role, 

continuously processing this data and alerting humans when anomalies are detected. 

Therefore, this is called the DBMS-active, human-passive (DAHP) model (Abadi et al., 

2003). 

DBMS and DSMS are not only different in their basic models, but also in the nature of the 

data that they handle and the queries that can be performed on this data. The following 

table (2.1) illustrates the major differences between them (Abadi et al., 2003, and Babcock 

et al., 2002). 

 

DSMS Stream data 
sources Data 

streams 

Results 
streams 

Continuous 
queries 

Client 
applications 
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Table 2.1: Comparison between DBMS and DSMS 

 DBMS DSMS 

Model HADP (Human Active DBMS Passive) DAHP (DBMS Active Human Passive) 

Only the current state of the data is 

important 

The history of data is also important 

Applications require no real-time services Applications have real-time requirements 

Triggers and alerters are second class 

citizens 

Trigger-oriented applications 

Data 

 

Persistent relations Transient streams 

Random access Sequential access 

Relatively low update rate Possibly high arrival rate 

Data elements are synchronised Data arrives asynchronously 

Queries One-time queries Continuous queries 

Queries have exact answers Answers computed with incomplete 

information 

 

Existing DSMS: There are a large number of applied data stream management systems. 

Some of them are briefly introduced below, while their continuous query languages are 

described later. 

TelegraphCQ (Chandrasekaran et al., 2003) is an adaptive query engine for sensors to 

process queries effectively. TelegraphCQ is focused on meeting the challenges of handling 

large numbers of continuous queries over high-volume, highly variable data streams. 

TelegraphCQ differs from other data stream systems due to its focus on extreme adaptivity 

and the novel infrastructure required to support such adaptivity. 

Aurora (Abadi et al., 2003) is a data stream management system for monitoring 

applications. It is basically a data-flow system where data elements flow through a loop-

free, directed graph of processing operators. Aurora performs compile-time and run-time 

optimisation. Moreover, it detects resource overhead, and it performs load-shedding. 

STREAM (Arasu et al., 2003) is a general-purpose data stream management system 

produced by Stanford University. It translates declarative queries into physical query plans 

composed of operators, queues, and synopses. STREAM also performs load-shedding, if 

needed, by introducing approximations. Furthermore, it provides a graphical interface to 

enable users to monitor and manipulate query plans as they run. 
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Nile (Hammad et al., 2004) is the query engine of the “STEM” stream database system. 

Nile performs efficient pipelined execution of sliding window queries over multiple 

streams. Another feature of Nile is its scalability in terms of the sizes of both queries and 

data streams. It also provides guarantees for Quality of Service and Answers. Further 

features include support for approximation and integrated online data mining tools. 

After this first generation of stream processing engines was developed in academia, a 

number of commercial and open-source large-scale streaming data analytics platforms 

appeared, including Apache Storm2, Yahoo’s S43, and Spark Streaming4. Storm was the 

first distributed stream processing system to gain traction throughout research and practice 

(Wingerath et al., 2016). It was developed by Twitter in late 2010 and eventually became 

an Apache project in 2014. Storm’s architecture is based on the master-workers paradigm. 

Optimised for low latency, Storm excels at high speed and is able to perform in the realm 

of single-digit milliseconds in certain applications (Wingerath et al., 2016). 

In contrast to previous stream processing systems, which work on a tuple at a time, Spark 

Streaming (Zaharia et al., 2013) uses a micro-batching approach. As an extension of 

Spark5, which is a fast and general-purpose cluster computing system, Spark Streaming 

chunks incoming streams into small batches, forming Spark’s Resilient Distributed 

Datasets (RDDs). An RDD is an immutable, deterministically recomputable, distributed 

and fault-tolerant dataset (Zaharia et al., 2012). In contrast to Storm, Spark Streaming is 

optimised for high throughput (Kipf and Kemper, 2016). 

PipelineDB6 is an open-source project that continuously runs SQL queries on streaming 

data. It extends the database system PostgreSQL7 by introducing the concept of continuous 

views. A continuous view differs from a regular view as it selects inputs from a 

combination of streams and tables and is incrementally updated in real time as new data is 

written to those inputs. PipelineDB excels at SQL queries that reduce the cardinality of 

streaming datasets through summarisation and aggregation. 

A recent development in the area is the ReStream project (Schleier-Smith et al., 2016), 

which was developed at the University of California, Berkeley. ReStream is designed for 

                                                           

2 http://storm.apache.org/ 
3 http://incubator.apache.org/s4/  
4 http://spark.apache.org/streaming/  
5 https://spark.apache.org/  
6 https://www.pipelinedb.com/  
7 https://www.postgresql.org/  

http://storm.apache.org/
http://incubator.apache.org/s4/
http://spark.apache.org/streaming/
https://spark.apache.org/
https://www.pipelinedb.com/
https://www.postgresql.org/
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accelerated replay. It processes stored event logs in parallel, with throughput much higher 

than the real-time rate. This enables rapid development of applications that require 

backtesting, as developers can evaluate new functionalities using weeks, or months worth 

of stored data in minutes. ReStream combines streaming semantics with the performance 

characteristics of batch processing, enabling serial equivalent processing of stored logs 

using distributed computing resources. 

2.1.2 Querying Data Streams 

Queries over data streams have much in common with queries in DBMSs. However, there 

is an important difference in the query execution model between one-time queries and 

continuous queries. One-time queries as used in traditional database systems are evaluated 

once over a point-in-time snapshot of the data set, with the answer returned to the user 

after the query evaluation has finished. In contrast, the class of queries used with data 

streams are called continuous queries. These queries are issued once, operate continuously 

over a period of time and incrementally return new results over time as new data arrives 

(Babu and Widom, 2001). Continuous queries’ different nature raises a number of 

challenges, such as their unbounded memory requirements, the need for approximate query 

answering, the problem of blocking operators, and the need to reference past data 

(Babcock et al., 2002). Some relevant challenges are described below. 

As the data streams can be of unbounded size, query answers potentially require 

unbounded memory to store them. Moreover, even if there is no need to store the answers, 

as they can be provided as data streams themselves, some queries need unbounded memory 

to compute exact results, e.g. join operators. Although there are some external memory 

algorithms (Vitter, 1999) that can handle data that require a larger memory space than the 

main memory, these algorithms are too slow for getting real-time responses. Arasu et al., 

(2003) differentiated between queries that can be answered exactly given a bounded 

memory, and those which need unbounded memory. In the latter case, providing 

approximate answers is a possible solution, which is in itself another challenge.  

There are several approaches to approximate query answers. These include using sliding 

windows, batch processing, sampling and synopses. Instead of evaluating the query over 

the whole history of data, the first approach evaluates queries on windows of recent data. 

According to Babcock et al., (2002), this method has several attractive properties. It is a 

well-defined, easily understood, deterministic method. More importantly, it emphasises 

recent data, which is usually more important to users, over old data in most real-world 
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applications. For example, to make sense of network traffic patterns or sensor data, insights 

based on recent data will be more useful than insights based on old data. In this sense, 

windows can be thought of not as an approximation technique reluctantly applied due to 

the inability to process queries over all historical data, but rather as part of the desired 

query semantics explicitly expressed by the user.  

As in Arasu et al., (2003), windows can be tuple-based, where an integer parameter is set 

to be the number of returned tuples with the largest time-stamp. Alternatively, these can be 

time-based windows, where a time interval parameter is set and the returned tuples should 

have time-stamps falling in this interval range. Windows can also be classified based on 

the movements of their endpoints: two fixed endpoints define a fixed window, two sliding 

endpoints define a sliding window, while one fixed and one moving endpoint define a 

landmark window (Golab and Ozsu, 2003). 

To slide the window over its elements, there are two methods. The first is to specify a 

periodic value, either a number of tuples or time units, depending on the window type, at 

which the window updates its content and causes a new evaluation. This value is usually 

called a slide or step, e.g. a sliding window over the last ten minutes with a step of two 

minutes. The second method is the eager or data-driven approach, in which the window is 

updated automatically whenever a new element arrives into the stream, which causes 

another evaluation of the query. This means that it will generate results as soon as a new 

tuple arrives; in the first approach, there is an added delay equal to the step value. 

In terms of performing continuous queries over sliding windows, there are also two main 

approaches: query re-evaluation and incremental evaluation (Ghanem et al., 2007). In the 

first approach, the query is re-evaluated over a snapshot of the stream, representing the 

current window independently from previous windows each time the window is updated. 

This approach, while it has clear semantics and is easy to implement, can result in 

redundant processing of certain tuples because they can be parts of several consecutive 

windows. Conversely, in the incremental evaluation approach, only the changes in the 

window relative to the previous window are processed by the query operators. 

Applying windows on streams might not always be enough to handle the unbounded 

memory requirement, for two reasons. First, window sizes can be large enough that the 

entire contents of the window cannot be buffered in memory. Second, the stream arrival 

rate can be faster than the time needed by the system to both update the window and 

process the newly arrived element (Babcock et al., 2002). Therefore, other approximation 
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techniques are needed. In the former case, it is impractical to try to answer a query over all 

the data. Instead, queries can be evaluated over a sample of the data stream, producing 

approximate answers that may be sufficient for some applications (e.g. (Demaine et al., 

2002)). In the latter case, eager (or streaming) evaluation of queries, in which windows are 

updated and queries are re-evaluated upon arrival of each new stream element, might not 

be appropriate. The natural solution is to process the incoming data in batches (Babcock et 

al., 2002) as in the XJoin algorithm (Urhan and Franklin, 2000). Rather than producing a 

continually up-to-date answer, the data elements are buffered as they arrive, and the 

answer to the query is computed periodically as time permits. Batch processing is a good 

approach when streams are bursty; a system that cannot keep up with the peak stream rate 

may be able to handle the average rate, while buffering the streams at peak time and 

catching up during a slow period. In contrast to sampling, this approach does not cause any 

uncertainty about the accuracy of the answer, but does sacrifice timeliness instead.  

A closely related challenge is the blocking operator’s problem. A blocking query operator 

is an operator that is unable to produce its first output tuple until it has seen its entire input 

(Babcock et al., 2002). Sort, aggregates, and some implementations of the join operator are 

considered blocking. For example, the Nested Loop Join (NLJ) needs to scan the entire 

inner relation and compare each tuple therein with the current tuple of the outer relation. 

Since data streams maybe infinite, a blocking operator that takes input from a data stream 

will never see its entire input, and will never be able to produce any output. Blocking 

operators can be unblocked using the same windowing technique described above, 

restricting the streaming input to a finite window. To avoid re-scanning the entire window, 

these operators need to support incremental evaluation. Several unblocked join algorithms 

have appeared that can process inputs in an incremental, pipelined approach, such as the 

Symmetric Hash Join (SHJ) (Wilschut and Apers, 1993), and XJoin (Urhan and Franklin, 

2000). The basic scheme of these algorithms is that they build hash tables on the fly for 

each of their inputs, and when a tuple arrives from one of them, it is inserted into the 

corresponding table and the other tables are probed for matches.  

Stream query languages: A number of stream query languages have been proposed. They 

fall into three different paradigms: relation-based languages, object-based languages, and 

procedural languages (Golab and Ozsu, 2003).  

Relation-based languages typically have SQL-like syntax and enhanced support for 

windows and ordering. CQL (Arasu et al., 2006), StreaQuel (Chandrasekaran, 2002), and 

AQuery (Lerrner and Shasha, 2003) are three relation-based languages. CQL (Continuous 
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Query Language) has been used in the STREAM project (Arasu et al., 2003). It considers 

streams as time-stamp ordered relations. It defines three types of operators: stream-to-

relation, relation-to-relation, and relation-to-stream operators. Stream-to-relation operators 

produce a relation from a stream using different types of windows, relation-to-relation 

operators are standard relational algebra operators producing a relation from another 

relation, while relation-to-stream operators produce a stream from a relation. CQL 

introduces three relation-to-stream operators: Istream, to indicate an insertion to the output 

stream, Dstream, to indicate a deletion, and Rstream that returns all tuples in the relation at 

a certain time. In contrast, StreaQuel – used in TelegraphCQ (Chandrasekaran et al., 2003) 

– does not have relation-to-stream operators, since it considers all inputs and outputs as 

streams. 

Object-based languages also have SQL-like syntax, but add support to streaming abstract 

data types (ADTs). This approach is used in the COUGAR system (Bonnet et al., 2001) 

where each type of sensor is modelled as an ADT with special signal-processing methods. 

Another approach is used by the Tribeca system (Sullivan and Heybey, 1998), where 

stream contents are classified according to a type hierarchy. 

Table 2.2: Stream query languages features (Golab and Ozsu, 2003) 

Language/ 

system 

Motivating 

applications 

Allowed 

inputs 

Basic 

operators 

Supported windows Custom 

operators? 
Type Base Execution 

AQuery Stock 

quotes, 

network 

traffic 

analysis 

Stored 

relations 

Relational, 

“each”, order-

dependant 

(first, next, 

etc.) 

Fixed, 

landmark, 

sliding 

Time 

and 

count 

Not 

discussed 

Via “each” 

operator 

Aurora Sensor data Streams 

only 
, π, , ⋈, 

group-by, 

resample, 

drop, map, 

window sort 

Fixed, 

landmark, 

sliding 

Time 

and 

count 

Streaming Via map 

operator 

CQL/ 

STREAM 

All-purpose Streams 

and 

relations 

Relational, 

relation-to-

stream, 

sample 

Sliding Time 

and 

count 

Streaming Allowed 

StreaQuel/ 

TelegraphCQ 

Sensor data Streams 

and 

relations 

Relational All types Time 

and 

count 

Streaming 

or 

periodic 

Allowed 

Tribeca Network 

traffic 

analysis 

Single 

input 

stream 

, π, group-

by, union 

aggregates 

Fixed, 

landmark, 

sliding 

Time 

and 

count 

Streaming Allows 

custom 

aggregates 
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In a procedural query language – as an alternative to a declarative query language – the 

flow of the data can be specified by users. Aurora DSMS (Abadi et al., 2003) has a user 

interface where users can create query plans by joining a set of boxes (operators) by arcs, 

to specify the desired data flow. Aurora distinguishes between order-agnostic operators, 

including filter, map, union and order-sensitive operators, such as BSort, aggregate, join, 

and resample. 

Table 2.2, from Golab and Ozsu (2003), summarises the features of stream query 

languages. In general, relation-based languages appear to be more popular. 

2.1.3 Continuous Query Optimisation 

In a relational DBMS, a query processor consists of a number of components (Garcia-

Molina et al., 2000). First, a parser is used to parse SQL queries into an internal 

representation, such as query graphs. Then a query optimiser is used to produce a query 

plan, usually in a form of a tree, which specifies how exactly the query is to be evaluated. 

The nodes in the tree represent relational algebra operators (e.g. select, join, sort, etc.) and 

the arcs represent data being generated and consumed by these operators. The plan is then 

fed into an execution engine to be executed at run time. 

The query processor performance relies heavily on the optimiser. A query can usually be 

evaluated using different equivalent query plans that give the same answer but may differ 

significantly in their response time and consumed memory (Garcia-Molina et al., 2000). 

Thus, the optimiser’s task of choosing the most efficient plan is crucial. To find the 

optimal plan, optimisers use statistics about the tables involved in the query (e.g. 

cardinalities, histograms), estimate operators’ selectivities, and employ a cost model to 

estimate the total cost of different plans. 

This approach doesn’t work well in Data Stream Management Systems for two main 

reasons. First, the statistics about streaming data are usually unknown at compile time, or 

even impossible to obtain in case of unbounded streams, therefore, traditional cardinality-

based cost metrics are not applicable (Kang et al., 2003). Second, for long-running queries, 

data characteristics such as stream input rates might change during the query execution, 

which will cause the optimal plan to change. Hence, the optimise-then-execute approach 

does not suit this likely changing environment (Babu and Bizarro, 2005). For streaming, 

federated or any inherently uncertain environment, research has since introduced adaptive 
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query processers, in which runtime feedback is used to adapt query processing (Deshpande 

et al., 2007).  

2.1.3.1 Cost models 

Because traditional cost metrics do not apply to continuous queries, Kang et al. (2003) 

introduced a unit-time basis cost model to estimate the performance of different sliding 

window join algorithms. The model considers different tasks performed by a window join 

(i.e. inserting, probing, invalidating) to find the cost of handling an individual input tuple 

of each input stream separately. This cost is then multiplied by the left (right) stream input 

rate to obtain the per-unit-time cost of the left (right) part of the join. The left and right 

costs are simply added together to calculate the join’s total cost. This division between the 

left and right parts means that the algorithms used to perform them are completely 

independent, i.e. the left join can be a hash join while the right part uses a nested loop 

algorithm.  

Ayad and Naughton (2004) extended this unit-time-based join’s cost to model the cost of 

conjunctive queries with sliding windows with output rates and window size estimations of 

all operators. A similar model was used in Cammert et al. (2008) to adaptively manage 

resources by adjusting window sizes and time granularities. 

Another model introduced in Viglas and Naughton (2002) also considered that inputs to 

continuous queries are streams with input rates, as opposed to relations with known 

cardinalities in traditional queries, to shift from cardinality-based models to a rate-based 

model. They presented formulas to estimate output rates of different operators in a query 

plan, which can be used to either optimise for the highest output rate or to identify which 

plan will produce a specified number of results in the shortest amount of time.  

More recent work on cost models has concentrated on distributed stream processing. For 

example, Zeitler and Risch (2011) present a cost model for a stream splitting operator that 

splits streams into parallel sub streams, while the model presented in (Heinze et al., 2014) 

can estimate latency caused by operator movements across multiple sites. However, our 

work is based on a centralised setting, in which the previously described models represent 

the state of the art. 
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2.1.3.2 Adaptive optimisation 

Adaptive query optimisation techniques vary significantly in many factors. They differ in 

what they attempt to adapt to (e.g. memory fluctuations, data arrival rates, user 

preferences), the aim of adaptivity (e.g. minimising response time, maximising 

throughput), the nature of feedback they collect, the frequency of feedback collection and 

plan altering (inter-query, intra-query, per tuple), and the effect of adaptivity (i.e. what 

behaviour it can change) (Gounaris et al., 2002). We summarise the main adaptive 

approaches, organised by increasing frequency of adaptivity, first in the traditional store-

then-query context, then in continuous streaming systems. 

In early optimisers, such as the System R query optimiser (Selinger et al., 1979), the 

statistic-gathering scheme was very coarse-grained, running only periodically – typically 

once a day or once a week – requiring administrative commands, and consuming 

significant resources (Hellerstein et al., 2000). To enhance this scheme, Adaptive 

Selectivity Estimation (ASE) was proposed (Chen and Roussopoulos, 1994), in which 

statistics are gathered on a per-query level. For each query, the system tracks the sizes of 

intermediate results and uses them to refine statistical metadata for future optimisation 

decisions. While still moderately coarse, this inter-query method enables the system to 

learn more and perform better in subsequent queries.  

On an intra-query level, blocking operators offer materialisation points at which actual 

statistics of intermediate results can be obtained, and the rest of the plan can be adapted. 

Optimisation and execution are interleaved by dividing a query plan into stages, executing 

one plan stage to completion, and using the statistics gathered from this stage to optimise 

the execution of the next one (Deshpande et al., 2007). Mid-query re-optimisation (Kabra 

and DeWitt, 1998) also operates on an intra-query level, employing progressive 

optimisation and proactive re-optimisation. Instead of plan staging, it initially optimises the 

entire plan, inserts statistics-gathering operators at specified checkpoints (usually after 

blocking operators), and dynamically re-optimises the downstream (i.e. remaining) parts of 

the plan if the runtime statistics differ significantly from the original estimates. A similar 

approach is the Corrective Query Processing (CQP) (Ives et al., 2004) used in the Tukwila 

integration system. However, CQP relies on pipelined operators – such as the XJoin 

operator (Urhan and Franklin, 2000) – instead of blocking operators, so the execution cost 

is continuously monitored. 



Chapter 2 

20 

 On the same level of frequency, but specifically designed for continuous stream 

processors, Babu et al., (2004) proposed an adaptive ordering algorithm for pipelined 

commutative stream filters, called A-Greedy (for Adaptive Greedy). A-Greedy adds two 

logical components to the query engine: a profiler, and a re-optimiser. The profiler 

continuously collects and maintains statistics about the recent input tuples. These statistics 

are used by the re-optimiser to detect and correct suboptimal correlated filters ordering. 

The algorithm can be also applied to a multiway stream join (MJoin) (Viglas et al., 2003), 

which is a generalisation of symmetric binary joins. However, fully pipelined MJoins do 

not hold internal states, which causes the performance to suffer due to the excessive re-

computation of intermediate results. To tackle this problem, an A-Caching algorithm was 

introduced (Babu et al., 2005), which places subresult caches adaptively in MJoins to 

minimise re-computation. A-Greedy and A-Caching are implemented in StreaMon (Babu 

and Widom, 2004), the adaptive query processing engine for the STREAM DSMS.  

The Telegraph stream project (Chandrasekaran et al., 2003) introduced a more 

revolutionary method to enable adaptive processing on the very fine-grained level of per-

tuple planning, i.e. each tuple could be processed using a different plan. The basic idea 

behind this approach is to treat query execution as a process of routing tuples through 

pipelined operators, and to adapt by changing the order in which tuples are routed through, 

effectively resulting in changing plans at a tuple level. They introduced the eddy dataflow 

operator (Avnur and Hellerstein, 2000), which encapsulates adaptivity. Data flows into the 

eddy from input streams or relations, and the eddy routes tuples into pipelining operators, 

which return tuples back to the eddy after processing. The eddy sends the tuple to the 

output only when all the operators have handled it. It also monitors the execution 

continuously, to adaptively choose the routing order for each tuple. The eddy operator can 

implement different routing policies; the initial one proposed by Avnur and Hellerstein is 

the lottery scheduling routing policy (2000). In this policy, the eddy operator monitors the 

input and output queues of each operator, assigning and penalising tickets to the operators 

for every sent and returned tuple. The eddy then holds a lottery among the eligible 

operators, routing the tuple to the operator that has the biggest number of tickets. 

While increasing the level of adaptivity’s frequency can achieve better optimal plans, it can 

also increase the overhead in terms of the time spent in the optimisation process and the 

amount of memory needed to store all the required statistics. This trade-off needs to be 

carefully considered in designing an adaptive optimiser. In other words, the potential 

benefits of adaptivity should be weighed against the additional overhead they incur. 
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2.1.4 Distributed Stream Processing 

The previously presented data stream management systems perform centralised processing 

of streams, as the early efforts in this domain have focused on designing new operators and 

languages. Researchers then considered extending these systems to support distributed 

processing of data streams, which are usually physically distributed, in order to achieve a 

better scalability and higher availability (Shah et al., 2004). Researchers have built on and 

extended the work of parallel query processing (Yu et al., 1993) in order to handle some 

challenges that are not usually present in traditional database systems, mainly imposed by 

the dynamic nature of streaming data. 

Distributed query processing can take two forms. First, the query plan operators can be 

distributed among several machines, so that each machine executes a different sub-tree of 

the complex query tree. This method is called inter-operator parallelism, vertical 

parallelism, or simply pipelining. The other method is called intra-operator parallelism, 

horizontal parallelism, or partitioning, in which data is partitioned across multiple 

machines rather than the query. In this approach, the same operator is copied on the 

participating machines, and each of these instances operates on part of the data. 

To distribute a query processing over multiple machines, stateless operators (e.g. filter, 

project) can be relatively easily pipelined. Therefore, early work in distributed query 

processing in the traditional store-then-query model has focused on parallelising 

individual, traditional, state-full operators such as the hybrid-hash join and sort. However, 

in these efforts, the distribution mechanism needs to be included in every operator 

implementation. Graefe (1990) then introduced a novel operator to abstract the distribution 

mechanism called the exchange operator. This operator encapsulates all parallelism issues 

and therefore makes implementation of parallel database algorithms significantly easier 

and more robust. The exchange operator is inserted between the producer and consumer 

operators to ensure proper routing of data and can provide vertical or horizontal 

parallelism. However, the exchange operator uses static partitioning techniques, such as 

hash partitioning, range partitioning, or round robin, which means that they do not adapt to 

load variation at runtime. 

Inspired by the exchange operator, but for the continuous processing model, two intra-

operator adaptive partitioning operators were introduced at U.C. Berkeley: RiverDQ 

(Arpaci-Dusseau et al., 1999) and Flux (Shah et al., 2003). The distributed queue 

abstraction RiverDQ addresses the load-balancing problems for a limited set of operators: 
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those for which the partitioning of the input stream can be content-insensitive, such that 

any tuple can be sent to any instance of the consuming operator. Every input tuple is routed 

to a randomly chosen consumer instance weighted by the emptiness of the queue to that 

instance. As this approach cannot be applied to content-sensitive operators such as joins 

and group-by aggregates, the Flux operator generalises both Exchange and RiverDQ to 

encapsulate the logic of online partitioning for a wide range of content-sensitive operators. 

Following the design of the Exchange operator, each Flux operator is composed of two 

parts: Flux-Cons (Flux consumer) and Flux-Prod (Flux producer). Flux-Cons is essentially 

an iterator, while Flux-Prod encapsulates the routing logic. Flux follows a centralised 

approach in which a central controller decides when to move which load where. Unlike 

Exchange, these decisions are made online adaptively, based on real-time collected 

statistics. A Flux operator can handle short-term imbalances using a buffering and 

reordering mechanism, and adapts to long-term imbalances by enabling online 

repartitioning and transferring of accumulated states. 

In terms of distributed DSMSs, Borealis (Abadi et al., 2005) is a second-generation 

distributed stream processing engine. In contrast to Flux, Borealis enables inter-level 

parallelism, and works on a fully distributed, peer-to-peer network. Borealis derives its 

core stream processing functionality from Aurora (Abadi et al., 2003), and distribution 

functionality from its preceding project, Medusa (Cetintemel, 2003). However, Borealis 

extends both of them by adding more features. On the processing side, it supports dynamic 

revision of query results, and dynamic modification of queries. On the distribution side, 

Borealis provides a scalable, Quality of Service (QoS)-based resource allocation and 

optimisation, as well as fault tolerance. Borealis addresses these issues in the domain of 

sensor networks, which adds the challenges of simultaneously optimising different QoS 

metrics, such as processing latency, throughput, or sensor lifetime, and the ability to 

perform optimisations at different levels of granularity: a node, a sensor network, a cluster 

of sensors and servers, etc. 

The above-described approaches provide the essential parallelism architecture and 

functionality. However, they have to employ a load-balancing algorithm. Typically, a 

dynamic load-distributing algorithm has four components (Shivaratri et al., 1992): a 

transfer policy, a selection policy, a location policy, and an information policy. A transfer 

policy determines whether a node is qualified to participate in a load transfer, either as a 

sender or as a receiver. Once a node is determined to be a sender, a selection policy then 

chooses which task or data partition to transfer. A location policy is then responsible for 
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finding a good receiver for the selected task. In adaptive load-balancing algorithms, this 

decision should be made at runtime, based on statistics about current load on other nodes. 

The type of statistics about the states of the system’s operators, when they should be 

collected, and where they are to be collected from, should all be specified in the 

information policy. 

The policy for load balancing in Flux proceeds in rounds. Each round consists of two 

phases: a statistics collection phase, and a move phase. At the beginning of each round, the 

central controller asks all Flux-Cons instances to start collecting statistics, and specifies a 

duration parameter which indicates the time that should be spent collecting information 

before returning it to the controller. The information to be collected is the amount of time 

spent idle during this phase, and the number of tuples processed per partition. This 

information is used by the controller to make a list of pair-wisely associated operators. The 

most loaded server is paired with the least loaded server, and so on. The controller then 

performs some threshold tests to ensure that moving a partition from the first operator of a 

pair to the second operator would not increase the imbalance between them. After that, the 

second phase starts by halting the producer operator. Meantime, the state is transferred 

from the first Flux-Cons instance to the second. As soon as this completes, the producer 

operator is resumed and sends data to the new receiver instance.  

In the Borealis system, each site contains a local monitor, a local optimiser, and a 

neighbourhood optimiser, which together are responsible for continuously optimising the 

allocation of query network fragments to processing sites. Local monitors maintain various 

operator and site-level statistics regarding utilisation and queuing delays for various 

resources, including CPU, disk, bandwidth and power. These statistics are periodically 

forwarded to end-point monitors that run at every site that produces final outputs, and are 

responsible for evaluating QoS for every output message. There is also a global optimiser 

that reacts to alerts from an end-point monitor indicating a problem which an output QoS 

measures, including lifetime, throughput, and latency problems. On a local level, when a 

monitor detects specific resource bottlenecks, the corresponding optimisers either request 

the node to shed loads (ordered by the local optimiser) or, preferably, identify slack 

resources to offload to other sites (determined by the neighbourhood optimiser). The tasks 

chosen to move are those that improve resource utilisation most while imposing the 

minimum load migration overhead. Borealis uses a correlation-based load distribution 

algorithm (Xing et al., 2005) to minimise average load variation and maximise average 

load correlation, which will accordingly result in small average end-to-end latency. 
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2.1.5 Complex Event Processing 

As a result of the broad-spectrum of application domains that require on-the-fly processing 

of information, several research communities have addressed this problem, with each 

bringing its own expertise, point of view and vocabulary (Cugola and Margara, 2012). The 

data stream processing model discussed in the previous subsections was developed by the 

database research community and can be seen as an evolution of the traditional data 

processing supported by DBMS. DSMSs resemble DBMSs in processing incoming data 

through a sequence of transformations using common SQL operators based on relational 

algebra such as selections, aggregates and joins. In contrast, other research communities, 

including those of distributed information systems, business process automation, control 

systems and network monitoring, contribute to the complex event processing model (CEP), 

which, according to Cugola and Margara (2012), can be routed to the publish-subscribe 

domain. In complex event processing, data in input streams are viewed as simple events 

that can be filtered, combined and transformed into composite events of interest to users. 

Complex event queries can check for occurrence and non-occurrence of composite events 

by imposing temporal, logical and value-based constraints over streaming events. 

An example of a complex event processing system is SASE (Wu et al., 2006), which is a 

monitoring system of streams of RFID readings encoded as events. SASE employs a 

declarative complex event language that enables filtering and correlating events to match 

specific patterns. The structure of the language consists of three clauses: the EVENT 

clause which specifies the event pattern, i.e. the events that need to be detected and the 

sequential and logical relations between them; the WHERE clause, which defines value-

based constraints; and the WITHIN clause, which enables specificity of window sizes. The 

SEQ operator in this system is an example of a temporal constraint that is at the heart of 

complex event processing and is not usually supported by the stream processing model, 

which primarily focuses on producing and continuously updating query answers. 

Another example is Esper8, which is considered to be the leading open-source CEP 

provider (Cugola and Margara, 2012). Esper is distributed as embeddable components 

written in Java and C#, which makes it suitable for integration into any Java- or .NET-

based process. It defines a rule language called the Event Processing Language (EPL), 

which enables joining, filtering, sorting, aggregating, grouping, merging, and splitting 

                                                           

8 http://www.espertech.com/esper/  

http://www.espertech.com/esper/
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event series or streams, as well as detecting sequences and patterns. In addition, it offers a 

rich set of temporal windows that can be parameterised, including sliding, tumbling, 

partitioned and named windows. Esper’s engine processing model is based on dynamic 

state machines and delta networks, in which only changes to data are communicated across 

object boundaries. 

2.2 The Semantic Web 

Over the past years, vast amounts of information have been published on the Web, making 

it a universal source of information. However, as current web pages are designed to be read 

by humans, computers are not capable of analysing this information. The Web has 

developed rapidly as a medium of documents for people rather than data that can be 

processed automatically. Given the current extent of information on the Web – answers for 

numerous questions are out there – it is true that search engines do a very complex task of 

finding and ranking related web pages, based on keyword matching, but it needs a human 

to find the exact answer (Antoniou and Van Harmelen, 2004).  

Transferring the available information on the Web into machine processable formats is the 

aim of the Semantic Web (Berners-Lee et al., 2001). The Semantic Web is defined by Tim 

Berners-Lee et al. (2001, p. 29) as “an extension of the current Web, in which information 

is given well-defined meaning, better enabling computers and people to work in 

cooperation”. Enabling computer programs to understand the meanings of web content will 

enable the software agents to access the Web and carry out intelligent tasks on behalf of 

the user. Mechanisms for shared understanding enable machines – or software agents – 

from different domains to communicate with each other, automating large parts of users’ 

lives.  

Giving meanings – or semantics – to the available information includes structuring and 

annotating data, and adding logic and inference capabilities. These features had been 

extensively studied long before the Web was developed, in the area of Artificial 

Intelligence (Brachman and Levesque, 1985). However, the traditional knowledge 

representation systems have usually been small: limited to questions that can be answered 

reliably, and centralised: requiring everyone to share exactly the same definitions (Berners-

Lee et al., 2001). On the other hand, the Semantic Web should be as big and decentralised 

as the current Web, which leads to another important aim of the Semantic Web: knowledge 

interoperability and easy information integration, taking advantage of the Web’s unique 
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naming and universality (Berners-Lee et al., 2001). A number of languages have already 

been standardised to achieve these goals. 

The Semantic Web layer cake, shown in Figure 2.2, represents a number of important 

technologies that have been developed in order to actualise the Semantic Web vision. 

These include RDF (Cyganiak et al., 2014) to express data, RDFS (Brickley et al., 2014) 

and OWL (Hitzler et al., 2012) to enable shared understanding of concepts, SPARQL 

(Harris et al., 2013) to query the data, and RIF (Kifer and Boley, 2013) to add 

interchangeable rules support to the Semantic Web. 

 

Figure 2.2: The Semantic Web layer cake (Domingue et al., 2011) 

As we aim to enable reasoning on semantic data streams, we first provide a broader look at 

knowledge representation in general, and their related reasoning methods, with a focus on 

the rule-based approach. Then we describe the above-mentioned Semantic Web standards 

and technologies. Finally, a number of existing reasoners for Semantic Web data are 

reviewed. 

2.2.1 Knowledge Representation and Reasoning Techniques  

Reasoning about knowledge in Artificial Intelligence is used to discover new facts from a 

knowledge base (Lucas and Van Der Gaag, 1991). Different inferencing algorithms have 

been developed for different Knowledge Representation formalisms. These formalisms 

include logic (Metakides and Nerode, 1996), production rules (Newell, 1973), semantics 

networks (Woods, 1975), and frames (Minsky, 1975). They have different features and so 

can serve different systems’ requirements in terms of expressivity and performance. 
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Logical representation of knowledge includes two basic forms: propositional logic and 

predicate logic. While propositional logic is limited in representing real-world knowledge, 

predicate logic has the ability to use variables and functions. Due to its high expressivity, 

the predicate logic is undecidable, meaning that it is not guaranteed that the proof 

procedure will terminate (Lucas and Van Der Gaag, 1991). Description Logics (Baader, 

2003) were then produced as a decidable subset of predicate logic with lower expressivity. 

Description logic provides the following reasoning services: satisfaction, subsumption, and 

classification (Donini et al., 1996).  

Knowledge can also be represented in the form of production rules that are widely used in 

expert systems, which are knowledge-based systems that can offer solutions to specific 

problems in a given domain at a level comparable to that of an expert in the field (Lucas 

and Van Der Gaag, 1991). Rules are easy to understand, maintain, and to derive inference 

from. Each rule consists of two parts: a precondition (IF part), and an action (THEN part). 

In rule-based engines, the condition parts of rules are checked with the current state of the 

world (working memory). If a match occurs, the action part of the matched rule is 

executed.  

This inferencing process can be done through two mechanisms: forward chaining, and 

backward chaining. Forward chaining (Forgy, 1981) is a data-driven algorithm as it starts 

with data and looks for rules which apply to the facts until a goal is reached. While this 

approach can result in a large number of entailments that will never be queried, queries can 

get fast responses as all the entailments are asserted at the insertion time. On the other 

hand, backward chaining is a goal-driven algorithm (Shortliffe, 1976), as it starts with a 

goal and looks for rules that apply to that goal until a conclusion is reached. Backward 

chaining can often be very expensive to support interactive-time query satisfaction; 

therefore, forward chaining is more efficient in dynamic situations that require real-time 

responses (Buchanan and Duda, 1983).  

Checking conditions of rules with working memory is the core process of any rule engine. 

A naive implementation would be to check each coming fact against each rule, which 

usually results in a very slow system when dealing with large numbers of rules or facts 

(Forgy, 1982). The Rete algorithm was developed by Forgy (1982) to provide a basis for a 

more efficient implementation. It is a dataflow network-based algorithm designed to speed 

the pattern matching process.  
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The Rete algorithm can process large data sets efficiently because it avoids iterating over 

both data elements (facts or working memory) and over the production rules. To avoid 

iteration over data elements, the Rete algorithm stores with each condition (or pattern), a 

list of the data elements that it matches. These lists are updated when the working memory 

changes, in a forward chaining process. To avoid iteration over the production rules, the 

Rete algorithm uses a tree-structured network to represent the rules. The network is 

composed of different types of operators, which are also called nodes. The main two types 

can be called the “intra-element” operators such as the filter operator and the “inter-

element” operators such as the join operator. An important feature of the Rete algorithm is 

that when two patterns require the same nodes, these nodes are shared rather than building 

duplicate ones. The tree-like network divides the matching process into multiple steps that 

perform different checks, so if a data element does not match the first node, it is simply 

discarded and does not complete its way through the network.  

To illustrate with an example, consider the following pattern of a working memory 

element, written in OPS5 language: 

(Expression: ^Name <N>, ^Arg1 0, ^Op +, ^Arg2 <X>) 

This arithmetic expression has four attribute-value pairs, with attributes indicated by the 

symbol ^ and values representing either constants or variables. In OPS5, variables are 

written between brackets, like <N> in the example. The intra-element features checked by 

this pattern are: the element class must be Expression, the Arg1 value must be zero, and the 

Op value must be +. On the other hand, the value of Name is an inter-element feature, as it 

needs to be matched with variables from other patterns. For example, the Plus0x rule from 

(Forgy, 1982), which aims to simplify algebraic expressions that add zero to a number, can 

be written as follows:  

(Plus0x (Goal: ^Type Simplify, ^Object <N>)  

        (Expression: ^Name <N>, ^Arg1 0, ^Op +, ^Arg2 <X>)  

         => (modify 2 ^Arg1 NIL ^Op NIL)) 

The rule name is followed by two patterns, representing the left-hand side, and then the 

symbol =>, which is in turn followed by the action that represents the right-hand side. The 

latter action assigns NIL to the operation and first argument values of the working memory 

element that matches the second pattern in the rule, leaving only the second argument as a 

result. In this case, the value of the Object attribute of the goal must be equal to the value 

of the Name attribute of the expression. Figure 2.3 shows a Rete network for the Plus0x 

rule (Forgy, 1982); the blue boxes represent the intra-element operators while the brown 

one represents the inter-element operator. 
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Figure 2.3: Rete network example 

While different applications can add more node types, the basic ones are the root node, 

one-input nodes (intra-element, or alpha nodes), two-input nodes (inter-element, or beta 

nodes), and terminal nodes. Alpha nodes resemble the select (σ) operator of relational 

algebra; they only propagate statements that match their condition. On the other hand, a 

beta node is responsible for joining some data elements of its two inputs on their shared 

variable, resembling the join (⋈) operator of relational algebra. This analogy to database 

systems is based on considering the Working Memory elements as tuples of some 

universal relationship in a relational database, and so the LHS of a rule in a production 

system is analogous to a query in a relational database language (Miranker, 1987). 

One difference between database systems and production systems is that queries in 

traditional database systems are typically computed only once; in other words, they are 

single-shot queries. In contrast, rules in a production system are longer-lived and may be 

computed repeatedly. To minimise the re-computation time of different production cycles, 

production system algorithms retain state across cycles. Alpha and beta nodes in the Rete 

networks maintain their own lists of every matched tuple in alpha/beta memories, to 

provide incremental reasoning support. Therefore, Rete algorithm trades memory space for 

reasoning performance.  
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A number of other pattern matching algorithms have appeared to address this 

memory/speed trade-off. TREAT (Miranker, 1987), for instance, only keeps alpha 

memories, and its network has only one multi-join for each rule. This means that there are 

no saved intermediate results, and every new element added to an alpha memory needs to 

be joined with all other alpha memories each time. On the continuum between Rete and 

TREAT, there is Rete* (Wright and Marshall, 2003), an extension of Rete with TREAT as 

a special case. Among other features, Rete* employs a dynamic beta-memory cut 

mechanism. It allows an upper bound on beta memory consumption to be specified by 

users, so beta memories are discarded and retained at runtime depending on the current 

memory consumption. If a beta memory is absent but is needed to process a token, Rete* 

recalculates the missing memory. If the recalculation itself depends on prior joins with 

absent memories, Rete* also recalculates, working back up the network until if finds a 

stored beta memory, or it reaches the alpha memory. 

The network structure in the original Rete algorithm follows a strict left-deep linear 

structure, in which each join node has only two inputs; where the right input is always an 

alpha memory and the left input a previous beta memory. TREAT has instead one join 

node with any number of inputs, where the join order is statically specified following the 

lexical order of the condition elements. As in query optimisation – see Section 2.1.3 – the 

structure of the network (analogous to a query plan) and the join order, affects the 

performance of the system, as it affects the number of partial instantiations or intermediate 

results. The structure of the network also affects the possible amount of join nodes sharing 

between different rules (Scales, 1986). Gator (Hanson and Hasan, 1993) has then appeared 

as a generalised discrimination network, where any rule can have any number of join 

nodes, each of which can have any number of inputs. Because the Gator structure is very 

general, an optimiser is essential to pick a good structure for a rule, depending on the 

environment. Gator implements a dynamic programming optimisation strategy that uses 

some parameters akin to DBMS optimisers, such as selectivities and cardinalities, but also 

takes into consideration some additional factors, such as update frequency and memory 

node size. 

Table 2.3 summarises the characteristics of Rete, TREAT, Rete* and Gator, along with 

some performance remarks obtained from Nayak et al., (1988), Wright and Marshall 

(2003), and Hanson and Hasan (1993). 
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Table 2.3: Comparison of pattern matching algorithms 

 Beta memories? Network structure Performance 

Rete Yes  Linear networks of two-

input join nodes 

-Faster in general 

-Faster for addition 

-Better performance for complex rules 

TREAT No  One multiple-input join 

node per rule 

-Less memory consumption 

-Faster for deletion 

-Better performance for simple rules (6 or 

less condition elements) 

Rete* Yes (with dynamic 

cut) 

Linear networks of two-

input join nodes 

-Maximum memory consumption defined 

by user 

-Rete*(0) is TREAT 

-Always faster than Rete 

Gator Depends on 

optimisation 

No restrictions on the 

number of inputs or the 

tree structure 

-Optimised networks are faster than Rete 

and TREAT 

-Near to TREAT memory consumption 

-Optimisation time goes up to one minute 

for an 11 conditions rule 

 

As the Rete algorithm does not provide a time model, Berstel (2002) introduced an 

extension to the algorithm to enable temporal reasoning. Temporal reasoning involves 

formalisation of the notion of time in order to provide a way to represent and reason about 

the temporal aspects of knowledge (Vila, 1994), which is an important feature of event 

processing. Berstel’s extension differentiates between facts – which are maintained until 

explicit retraction – and events – which are maintained until they expire. Each event has a 

timestamp, and at the presence of temporal constraints, join nodes are responsible for 

computing expiry dates for events propagated from a parent node, and retracting them 

when they are expired.  

2.2.2 Knowledge Representation on the Semantic Web 

Data model: In order to enable machine-understanding of the Web data, the Semantic 

Web uses formal knowledge representation techniques to describe the data contained on 

the Web. The Resource Description Framework (RDF) was originally intended as a means 

for processing metadata about web pages, but it has subsequently been generalised to 

provide a general-purpose knowledge representation framework for web data (Domingue 

et al., 2011). It provides interoperability between applications that exchange machine-

understandable information on the Web. RDF presents a model for representing entities 

and relationships. This model encodes the semantics in sets of assertions called statements 
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made up of three parts: subject, predicate, and object, and so they are also referred to as 

triples. These three elements resemble the subject, verb, and object of a simple sentence 

(Berners-Lee et al., 2001). For example, the sentence: John works with Tom, is represented 

as follows: 

Subject: John 

Predicate: works with 

Object: Tom 

This triple can be diagrammed as in Figure 2.4: 

 

Figure 2.4: An example RDF triple 

A set of statements of this form naturally forms a directed, labelled graph, in which 

subjects and objects can be seen as graph nodes, while predicates represent the named 

edges between these nodes (Cyganiak et al., 2014). An example graph is shown in Figure 

2.5. Arrows represent predicates, ovals represent subjects and objects, and boxes represent 

a specific type of object called a literal. In contrast to XML for example, RDF graphs do 

not necessarily follow the tree structure, as they usually have no roots, and there is no limit 

to their structures. 

 

Figure 2.5: An example RDF graph 

RDF triple components can be literals or resources. Literals are concrete data values such 

as strings or integers – for example the surname “Dylan” in the above graph – and can only 

appear as objects. Resources on the other hand, represent concepts and can appear as 

subjects, predicates, or objects. Resource names in RDF take the form of Uniform 

worksWith 
Tom John 

Tom 

“Dylan” 

hasSister 
John 

worksWith 

surname 

Sara 

Max worksWith 
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Resource Identifiers (URIs) (Berners-Lee et al., 1998) which are unique identifiers for 

concepts. A special case of resource are Blank Nodes, which are implicit concepts that 

have no URIs or explicit names, and can only occur as subjects or objects. 

RDF as a data model provides many attractive features especially for information sharing 

and integration over the traditional relational data model (Hebeler et al., 2009). These 

include the simple structure of its basic units, its unrestricted graph structure, and the 

global namespace provided by the use of URIs (Hebeler et al., 2009). An RDF triple with a 

named resource as its subject unambiguously describes that particular resource, regardless 

of where the triple is asserted. In contrast to the relational model, where a particular row in 

a database table is identified with a primary key that is unique to one table within one 

database, a URI is a name that is universally unique, and remains valid in any context. 

RDF triples are completely self-contained assertions of information, and as such they are 

independent from one another. This independence means that the order in which they occur 

is insignificant. Two RDF graphs can so be merged easily because their flexible structure 

does not imply any inherent significance to any one resource as compared to any other. 

Linking data sources together can be done simply by adding few triples to specify the 

relationships between the data sources, which is much simpler than the complicated 

schema realignment that is usually needed to integrate two data sources in a database 

system. 

RDF is a very flexible data model, as it allows representation of any arbitrary knowledge 

assertions in the form of triples. There are no requirements for pre-defined data schemas as 

in RDBMSs, which require the definition of data structures or schemas before actual data 

can be asserted. This flexibility can be considered as a significant advantage when the 

structure of the data is not well known in advance (Taylor et al., 2006). However, this 

comes at a price. Pre-defined schemas offer detailed information to the DBMS on how the 

data is structured, which informs its decisions about data storage layouts, and query 

optimisation. While the RDF triple model is in itself a schema, it is still very loose 

compared to the detailed relational schemas. This model is analogous to a database with 

very few tables but with a huge number of small records. 

Data extraction: RDF data are usually stored in a special type of repository called triple 

stores. Data from these stores can be retrieved using the W3C standardised query language, 

SPARQL (Harris et al., 2013), which recognises RDF as its fundamental syntax. SPARQL 

enables users to specify a graph pattern with variables that will be matched against a given 

data source, returning all matched bindings. The graph patterns themselves are composed 



Chapter 2 

34 

of independent triple patterns, which makes it possible to state, for example, that some 

parts of the graph are optional, or to limit any part of the entire query graph pattern to 

particular RDF data sets. 

 SPARQL for RDF data is analogous to SQL for relational databases. While the underlying 

graph structure is very different from the tabular format of RDMSs, a mapping between 

SPARQL and SQL is still possible. Cyganiak (2005) provided a transformation from 

SPARQL into relational algebra and outlined a translation from the relational algebra into 

SQL statements. For example, a triple pattern in a SPARQL query that specifies a 

predicate value and has subject and object as variables can be translated into a filter (σ) 

operation on the predicate and a projection (π) for the subject and object. Two triple 

patterns in a SPARQL graph pattern can be mapped into an inner join operation (⋈) on 

their shared value, and so on. This mapping makes existing work on query planning and 

optimisation available to SPARQL engines and RDF processors. 

In addition, there is a substantial amount of research on native SPARQL optimisation, 

which draws both from the semantics of SPARQL (Pérez et al., 2006) and from approaches 

used in database optimisation. A SPARQL basic graph pattern optimisation using 

selectivity estimation is presented by Stocker et al. (2008), in which graph patterns are 

reordered based on a number of heuristics and summary statistics tailored for the RDF data 

model. The heuristics range from simple triple pattern variable counting to a more 

sophisticated probabilistic framework that uses pre-computed statistics to estimate the 

selectivities of individual and joined triple patterns. Another approach to SPARQL 

optimisation presented by Hartig and Heese (2007) uses syntactic rewriting based on a 

given SPARQL query graph model (SQGM) that supports all phases of query processing. 

In the query-rewriting phase, transformation rules are used to transform a SPARQL query 

into another semantically equivalent query in order to achieve better execution. For 

example, rules can be used to simplify complexly formulated queries by merging graph 

patterns, and can eliminate redundant or contradictory restrictions. Other approaches 

include providing specialised RDF indices (Harth and Decker, 2005) that can be used for 

selectivity computation of single triple patterns, and enabling semantic query optimisation 

for SPARQL (Schmidt et al., 2010). 

Incorporating semantics: Another basic component of the Semantic Web are ontologies. 

An ontology can be defined as “a formal, explicit specification of a shared 

conceptualization” (Gruber, 1993). This enables computers to share not only information, 
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but vocabulary (Patel-Schneider et al., 2004). A typical Web ontology has a taxonomy and 

a set of inference rules (Berners-Lee et al., 2001). While the taxonomy defines classes of 

objects and relations among them, the inference rules add the power of inferring new 

relations. W3C has standardised RDF Schema (Brickley et al., 2014), which is a 

vocabulary for describing properties, classes and their hierarchies, and OWL (the Web 

Ontology Language) (Hitzler et al., 2012), which provides greater expressivity than RDFS. 

RDF Schema is a vocabulary description language for RDF. It presents mechanisms for 

describing sets of related resources and the relationships between these resources (Brickley 

et al., 2014). So, RDFS adds some kinds of structure or schema over the unstructured RDF 

data. RDFS does not provide a vocabulary of application-specific classes and properties, 

instead, it provides the facilities needed to describe such classes and properties, and to 

indicate which classes and properties are expected to be used together. The main classes 

defined by RDFS are: Resource, Class, Literal, and Datatype. In addition, the main 

properties defined by RDFS are: domain, range, subClassOf, and subPropertyOf. 

RDF defines an informative rule-based axiomatization of the RDFS semantics that can be 

executed over any RDF graph. Executing these rules will generate new facts when the 

existing ones match rule conditions. All the rules are stated in the form: add a triple to a 

graph when it contains triples matching a pattern. For example, if class X is a sub-class of 

Y, and class Y is sub-class of Z, then a triple stating that class X is also a sub-class of Z is 

asserted. 

Web Ontology Language (Hitzler et al., 2012) is also a vocabulary description language; 

however, it is designed for applications that require greater expressivity than that provided 

by RDFS. OWL is a revision of the DAML+OIL ontology language (Horrocks, 2002). It 

adds more vocabulary to describe properties and classes, including relations between 

classes, cardinality, equality, richer typing of properties, and enumerated classes. The 

original version of OWL (Patel-Schneider et al., 2004) defines three sublanguages with 

increasing expressivity: OWL Lite, OWL DL, and OWL Full. While being less expressive, 

OWL Lite also has a lower formal complexity than OWL DL. It doesn’t support some 

OWL features, e.g. no enumerated or disjoint classes, and puts restrictions on some other 

features, e.g. cardinality. OWL DL provides the maximum expressiveness that could be 

achieved while maintaining completeness and decidability. It supports all OWL constructs 

but with some restrictions. OWL Full provides the maximum expressiveness – no 

restrictions – but with no computational guarantees, as it can be potentially undecidable. 
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OWL 2 (Hitzler et al., 2012) is a revision of OWL that affords greater expressiveness 

through the addition of new functionalities, including keys, property chains, richer data 

types and data ranges. OWL 2 has three sublanguages: OWL 2 EL, OWL 2 QL, and OWL 

2 RL. OWL 2 EL enables polynomial time algorithms for all the standard reasoning tasks. 

It can be used for applications where very large ontologies are needed, and where 

performance is more important than expressivity. OWL 2 QL uses standard relational 

database technology to enable conjunctive queries to be answered. It is particularly suitable 

for applications where small ontologies are used to organise large numbers of instances 

and where it is useful or necessary to access the data directly via relational queries. OWL 2 

RL enables polynomial time reasoning using rule-extended database technologies (e.g., 

Datalog (Ceri et al., 1990)) operating directly on RDF triples. It can suitably serve 

applications where relatively small ontologies are used to organise large numbers of 

instances and where it is useful or necessary to operate directly on data in the form of RDF 

triples. 

While reasoning over RDFS and OWL RL can be performed using the efficient, 

lightweight rule-based reasoning algorithms, other OWL dialects need Description Logic 

reasoning. Though OWL DL is guaranteed to be computationally decidable, that does not 

imply that reasoning will be completed in a realistic amount of time. The trade-off between 

expressivity and complexity should be taken into account when choosing the appropriate 

semantic representation for the application.  

To map the gap between logic programs and description logic, Grosof et al. (2003) 

introduced new intermediate knowledge representations, Description Logic Programs 

(DLP) and Description Horn Logic (DHL), which fall within the expressivity intersection 

of rules and ontologies. They used RuleML to represent Logic programs, and 

OWL/DAML+OIL to represent description logics, which were the current draft standards 

for rules and ontologies in the Semantic Web context. They explained a bidirectional 

mapping of premises and inferences – called DLP-fusion – from the DLP fragment of DL 

to LP and from the DLP fragment of LP to DL. This fusion enables rules to be built on top 

of ontologies and to build ontologies on top of rules. 

Adding rules: Many rule languages for the Semantic Web have appeared since its early 

days, to represent knowledge that either cannot be expressed in OWL or can be understood 

more easily with rules (Hebeler et al., 2009). These include RuleML (Boley et al., 2001), 

the Semantic Web Rule Language (SWRL) (Horrocks et al., 2004), in addition to rule 

engines with their own rule syntax such as Jena (McBride, 2002) and Jess (Friedman-Hill, 
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2002). As there is no one rule language that is likely to satisfy the needs of all different 

applications, and as one of the Semantic Web goals is to ensure interoperability between 

different systems, the W3C did not standardise any of them. Instead, they produced RIF: 

the Rule Interchange Format (Kifer and Boley, 2013) as a recommendation. RIF represents 

a core rule language plus extensions, which together allow rules to be translated between 

rule languages and thus transferred between rule systems. 

To enable interchange, RIF provides multiple dialects, such as RIF Core (Boley et al., 

2013), RIF Basic Logic Dialect (RIF BLD) (Boley and Kifer, 2013), or Production Rule 

Dialect (RIF PRD) (de Sainte Marie et al., 2013), in addition to a set of standard data types 

and built-in functions (RIF DTB) (Polleres et al., 2013). RIF Core is the fundamental RIF 

language, designed to be the common subset of most rule engines, and provides safe 

positive datalog with builtins. RIF BLD offers the expressive features of Horn rules, while 

RIF PRD is focused on the condition-response frameworks of forward-chaining rules. 

Although RIF dialects were designed mainly for interchange, each dialect is a standard rule 

language and can be used even when portability and interchange are not required. 

From a theoretical viewpoint, RIF Core corresponds to the language of definite Horn rules 

without function symbols (often called ‘Datalog’) with standard first-order semantics 

(Boley et al., 2013). Therefore, RIF Core is a subset of RIF BLD. It is also a subset of RIF 

PRD, in which the conclusions of production rules are interpreted as assert actions. 

Syntactically, RIF Core has a number of Datalog extensions to support features such as 

objects and frames, similar to F-logic (Kifer et al., 1995), IRIs as identifiers of concepts, 

and XML Schema datatypes (Biron et al., 2004). An example of a RIF frame is 

<http://example.com/John> [ex:worksWith -> <http://example.com/Tom>], which 

corresponds to the RDF triple (<http://example.com/John>, ex:worksWith, 

<http://example.com/Tom>). The interoperability of RIF rules with RDF graphs and OWL 

ontologies is explained in the RIF, RDF and OWL Compatibility document (Bruijn and 

Welty, 2013), which defines the syntax and semantics of integrated RIF Core/RDF and 

RIF Core/OWL languages. These features make RIF Core a Web-aware language (Boley 

et al., 2013). Moreover, RIF Core is based on built-in functions and predicates over 

selected XML Schema datatypes, as specified in RIF-DTB 1.0 (Polleres et al., 2013). 

These include functions for comparing values, datatype-checking predicates, and basic 

numeric functions. 

An example of a simple RIF rule document obtained from Boley et al. (2013) is presented 

in Listing 2.1. The rule derives ‘buy’ relationships from ‘sell’ relationships that are stored 
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as facts. The document can be read in English as follows: a buyer buys an item from a 

seller if the seller sells the item to the buyer; John sells LeRif to Mary. The conclusion that 

Mary buys LeRif from John can be logically derived from this statement.  

 

Listing 2.1: An example RIF rule document 

 

Linked Data: While the above-described standards provide a framework for representing 

and processing semantic data, Linked Data principles provide a set of best practises for 

publishing and interlinking such data on the Web in a manner that facilitates data discovery 

and interoperability (Bizer et al., 2009). These principles were outlined by Berners-Lee 

(2006) as follows: (1) use URIs to name things, (2) use HTTP URIs to allow individuals to 

look up those names, (3) return useful information upon looking up URIs using standards 

(e.g. RDF), and (4) include links to other URIs to enable further discovery.  

Following these principles, data providers add their data to a global data space that allows 

data to be discovered and used by various applications, creating what can be described as 

the web of data (Bizer et al., 2009). The Linking Open Data project9 was established to 

bootstrap the web of data by converting existing open datasets to RDF and publishing them 

on the Web according to linked data principles. As large organisations and governments 

also published linked data, the number of datasets increased from 12 in 2007, at the 

beginning of the project, to 1,146 interlinked datasets in the most recent update of the 

Linked Open Data cloud (Abele et al., 2017). 

2.2.3 Existing Semantic Reasoners 

A semantic reasoner, rule engine, reasoning engine, or simply a reasoner, is a piece of 

software able to infer logical consequences from a set of facts or axioms (Singh and 

                                                           

9 https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData  

Document( 

   Prefix(cpt <http://example.com/concepts#>) 

   Prefix(ppl <http://example.com/people#>) 

   Prefix(bks <http://example.com/books#>) 

   Group 

   ( 

      Forall ?Buyer ?Item ?Seller ( 

         cpt:buy(?Buyer ?Item ?Seller) :- cpt:sell(?Seller ?Item ?Buyer) 

      ) 

      cpt:sell(ppl:John bks:LeRif ppl:Mary) 

   ) 

) 

https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
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Karwayun, 2010). Several semantic reasoners have been developed to reason over the 

emerging Semantic Web knowledge. Some of them are reviewed below, with a comparison 

presented in Table 2.4 based on Singh and Karwayun’s comparative study (2010). The first 

three are Rete-based rule engines. However, none of them support reasoning over data 

streams. 

BaseVISor (Matheus et al., 2006) is a Rete-based, forward-chaining rule engine optimised 

for processing RDF triples. It supports RuleML and R-Entailment rules. R-Entailment is a 

language that combines RDF, RDFS and a part of OWL DL with simple Horn-style rules. 

BaseVISor works similarly to other Rete-based inference engines. However, there is a 

major difference between BaseVISor and these engines, which is that BaseVISor applies a 

simple data structure to its facts rather than the arbitrary list structures used by other 

engines, which enhances the pattern matching efficiency. BaseVISor is implemented in 

Java and it provides an API to facilitate the addition of user-defined procedural 

attachments. 

Bossam (Jang and Sohn, 2004) is another Rete-based, forward-chaining reasoner for 

inferencing and querying over RDF(S) and OWL data sets, as well as executing rules such 

as SWRL. Bossam is based on Logic Programming and First-Order-Logic (FOL). It also 

provides an API for controlling the engine, loading ontologies and rules, querying 

RDF(S)/OWL documents and giving explanations about derived facts. However, it does 

not support SPARQL queries and it does not serialise the knowledge to a persistent store 

(Papataxiarhis et al., 2009).  

Jess (Friedman-Hill, 2002) is a rule engine written in Java that was inspired by the CLIPS 

project (Wygant, 1989). It uses LISP-like syntax for its rules. It also contains a scripting 

environment which makes it become a Java framework. Furthermore, being a Java-based 

system facilitates Jess’s integration with a number of Web programming paradigms, like 

Java servlets or applets. Finally, it supports backward-chaining and some additional 

features such as procedural attachments (Papataxiarhis et al., 2009).  

Jena (McBride, 2002) – a java framework for building Semantic Web applications – 

provides a rule-based inference engine. However, Jena’s RDFS reasoner does not support 

data types and blank node entailments. Additionally, Jena’s OWL reasoner is very limited, 

since it is a rule-based implementation of OWL-Lite. However, Jena is able to be 

connected to most of the available Description Logic reasoners, as external reasoners. 

RacerPro – the commercial extension of Racer – (Haarslev and Muller, 2001), Pellet (Sirin 
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et al., 2007), and FaCT++ (Tsarkov and Horrocks, 2006) support OWL-DL reasoning 

using similar tableau-based approaches. However, FaCT++ does not support rules, i.e. 

ABox reasoning. While all of these reasoners perform consistency checking, Pellet can 

also explain the reasons for inconsistency. 

Table 2.4: Comparison of semantic reasoners 

 OWL-DL 

Reasoning? 

Supported 

expressivity for 

reasoning 

Reasoning 

method 

Rule support? 

BaseVISor No R-entailment, OWL 2 

RL 

Rule-based Yes, SWRL and 

RuleML supported 

Bossam Yes LP and negation, 

incomplete OWL DL 

Rule-based Yes, SWRL supported 

Jess Yes Not clear Rule-based Yes, SWRL supported 

Jena No built-in OWL-

DL reasoner 

Incomplete for complex 

description logics 

Rule-based Yes 

RacerPro Yes SHIQ Tableau Yes, SWRL supported 

Pellet Yes SROIQ Tableau Yes, SWRL supported 

FaCT++ Yes SROIQ Tableau No 

 

2.3 Conclusion 

In this chapter, we discussed the main technologies that have contributed to the emerging 

semantic stream processing field. A review of the main techniques for data stream 

processing was presented first, followed by a review of the Semantic Web and reasoning 

techniques. The next chapter reviews the literature in the specific area of semantic stream 

processing that combines features of the fields overviewed here. 
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Chapter 3: Semantic Stream Processing  

The relatively new research area of stream reasoning was first identified in 2008 by Della 

Valle et al. (2008). It aims to integrate data streams with reasoning techniques to enable 

logical reasoning on real time, semantic data streams. The area evolved fast in the last few 

years, and is recently referred to as RDF stream processing. In the Semantic Web, data is 

represented in RDF, and queries can be performed using SPARQL. However, to express 

the temporal nature of streaming data, RDF needs to be extended to represent time, which 

is an important concept in data streams. SPARQL also cannot support queries on streaming 

data as it lacks crucial operators found in the data stream management systems, such as the 

window operators; this is a result of SPARQL’s origins as a store-and-query language. 

Other issues in this area are: reasoning, distribution, publishing, etc. The following 

subsections review the existing literature that addresses these challenges within the 

semantic stream processing area.  

3.1 Processing RDF Streams  

To enable the processing of RDF streams, Semantic Web research has been extended in 

two dimensions: support of the representation of time-varying data to enable time-aware 

processing of such data and support for continuous queries to process streaming linked 

data on the fly. Several RDF stream processing systems have been developed including C-

SPARQL (Barbieri et al., 2010a), Streaming SPARQL (Bolles et al., 2008), SPARQLStream 

(Calbimonte et al., 2010), EP-SPARQL (Anicic et al., 2011), CQELS (Le-Phuoc et al., 

2011) and INSTANS (Rinne et al., 2012a). They generally extend the RDF data model 

with time annotations to represent data streams and extend the SPARQL query language 

with streaming operators to enable continuous queries. However, because they differ in 

syntax and operational semantics, Dell’Aglio et al. (2014) proposed the RSP-QL as a 

unifying query model. We briefly describe these RDF and SPARQL extensions and 

discuss each work in greater detail. 

In terms of representing data streams, research in this area has followed the conventional 

definitions of relational data streams as unbounded sequences of data items ordered by 

timestamps, as used by the DSMS community. All of the above-mentioned systems use the 

notion of RDF statements as the data items of which the stream consists. With the 

exception of INSTANS, where the time dimension is implicit in the schema, all other 
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systems use explicit time instants associated with each RDF statement. The time instants in 

RSP-QL, C-SPARQL, SPARQLStream and CQELS are represented as a single timestamp, 

where the associated statement occurs. In contrast, Streaming SPARQL and EP-SPARQL 

use an interval of two timestamps to represent the validity of the associated statement. 

While both ways allow time-aware processing of data streams, using intervals can support 

richer forms of temporal operations. For instance, in a system that assigns validity to 

events in the form of time intervals, users can query for events that overlap, or for an event 

that happens during another event. Beyond the basic RDF stream definition, RSP-QL also 

formally defines an instantaneous RDF graph, which is a snapshot of the input data taken 

at a specific point in time that captures the changes of an RDF graph over time. 

While different systems propose different extensions of SPARQL to enable continuous 

querying of data streams, they generally tend to follow the relational CQL model (C-

SPARQL, SPARQLStream, CQELS, RSP-QL) reviewed in the previous chapter, Section 

2.1.2. They adapt CQL’s three classes of operators to work on RDF streams. The first 

class, that of window operators that transform streams to relations, is adapted to support 

transforming RDF streams to solution mappings. Most existing works in this area (e.g., C-

SPARQL, EP-SPARQL, SPARQLStream, CQELS) support a time-based sliding window, 

and some also support triple-based sliding windows. The second class of operators 

(relation-to-relation) includes operators that represent SPARQL algebra (Pérez et al., 

2006). Therefore, the main advantage of the CQL approach is that the streaming extension 

of the query language does not need to redefine its original operators; it only works on 

their inputs and outputs. The third class (relation to stream) transforms the mapping set 

produced by the previous class into an RDF stream. The C-SPARQL supports Rstream, 

while CQELS supports Istream and SPARQLStream supports Rstream, Istream and Dstream. 

Execution strategies vary considerably between different systems. For instance, C-

SPARQL, Streaming SPARQL and SPARQLStream update their input windows 

periodically, while EP-SPARQL, CQELS and INSTANS use a data driven approach. 

When a window is updated, systems generally re-execute the standing query on the new 

window content. In terms of implementation, they tend to use existing engines to process 

data, where the RSP engine works as a wrapper and orchestrator. As an example, C-

SPARQL is built on top of the STREAM DSMS (reviewed in Section 2.1.1) and Sesame 

SPARQL query engine. 

Next, we will discuss the existing works in this area individually and in greater detail, 

highlighting differences to the above general model. 
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Streaming SPARQL. The first attempt to extend SPARQL to support processing of RDF 

streams was presented by Bolles et al., (2008). They introduced Streaming SPARQL as a 

SPARQL extension to cope with window queries over RDF streams. The definition of 

RDF stream data type is based on Krämer and Seeger (2005), where three types of streams 

are defined: a raw data stream represents the data received by the engine, a physical data 

stream which can be processed by the system operators, and a logical data stream over 

which the semantics of the extensions can be defined. Instead of performing a window 

operation on a stream to transform it into a relation, Streaming SPARQL extends the 

logical SPARQL algebra on the foundation of a temporal relational algebra based on multi-

sets, and provides an algorithm to translate SPARQL queries into the new extended 

algebra. Streaming SPARQL has both tuple based (SlidingTupleWindow) and time based 

(SlidingDeltaWindow and FixedWindow) window operators. Window operation can be 

specified in the FROM clause of the query and also in the GroupGraphPattern part. 

C-SPARQL. Continuous SPARQL (Barbieri et al., 2009; Barbieri et al., 2010a) is usually 

considered as the leading contributor in this area and is often cited as a reference in the 

field (Margara et al., 2014). It is a SPARQL extension that follows a CQL-like approach. It 

defines an RDF stream data type, adds support for windows over streams and aggregation 

capability. An RDF stream is simply defined as an ordered sequence of pairs, each of 

which is made of an RDF triple and a timestamp. As these data streams are possibly 

unlimited, C-SPARQL has defined two types of windows. Physical windows can extract a 

given number of triples starting from the last element, while logical windows are time 

based and can be sliding or tumbling. In C-SPARQL syntax, windows are defined as part 

of the FROM clause of queries. In addition, C-SPARQL offers more expressivity by 

defining a number of aggregate functions: count, sum, average, min, and max. While it 

does not add explicit temporal operators, C-SPARQL allows queries to directly access 

timestamps of individual triples.  

An execution environment for C-SPARQL is also introduced, where each query is 

translated into two parts: the static part is passed to a SPARQL query engine (Sesame 

(Broekstra, 2002)), while a relational data stream management system (STREAM (Arasu et 

al., 2003)) is used to evaluate the streams and aggregates. Although this framework has the 

advantage of reusing existing technology, splitting queries into static and dynamic parts 

may prevent optimisation that could be possible in a unified framework.  

EP-SPARQL. Event Processing SPARQL (Anicic et al., 2011) is another SPARQL 

extension proposed as a new language for event processing and stream reasoning. Unlike 
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other systems that are inspired by Data Stream Management Systems, EP-SPARQL’s 

language constructs and processing model is based on CEP systems. EP-SPARQL is 

defined to be SPARQL extended by the binary operators SEQ, EQUALS, 

OPTIONALSEQ, and EQUALSOPTIONAL. These operators are used to detect RDF 

triples occurring in a specific temporal order in order to capture more complex patterns 

over RDF streams. These expressive temporal operators go beyond C-SPARQL’s simple 

timestamp() function in terms of detecting temporal relationships between RDF patterns. 

Moreover, EP-SPARQL provides the function getDURATION() to add selection criteria 

(windows) over RDF streams, which are defined as sequences of RDF triples where each 

triple is associated with a time interval.  

EP-SPARQL queries are translated into the Etalis language for events (ELE) (Anicic et al., 

2012) rules. Etalis is based on logic programming and implemented in Prolog. Etalis rules 

are compiled as event-driven backward-chaining (EDBC) rules, which enable event-

driven, incremental detection of complex events in near real time. By using (recursive) 

logic rules, a unified execution mechanism for both querying and reasoning is enabled. 

SPARQLStream. Calbimonte et al., (2010) designed a service that enables ontology-based 

access to streaming data in order to integrate heterogeneous data sources. The service 

receives queries specified in terms of the ontology using SPARQLStream, another extension 

of SPARQL, to support processing RDF streams. These queries are then transformed into a 

relational continuous query language (SNEEql) using a set of mappings expressed in S2O, 

an extension of the R2O mapping language (Barrasa et al., 2004) that supports streaming 

data. After the query translation phase, the query processing phase starts, using a DSMS 

engine (SNEE) (Galpin et al., 2011). The results are then transformed from a set of tuples 

into ontology instances. SPARQLStream language is inspired by – and very similar to – C-

SPARQL. However, it adds support for the window-to-stream operators: Rstream, Istream, 

and Dstream, and it only supports time-based windows. 

CQELS. As opposed to C-SPARQL, EP-SPARQL, and SPARQLStream, CQELS 

(Continuous Query Evaluation over Linked Streams) (Le-Phuoc et al., 2011) uses a “white 

box” approach, i.e. it defines its own RDF-native processing operators rather than reusing 

existing technologies. Hence, it integrates the processing of background and streaming data 

without delegating each of them to external engines. CQELS uses a point-based timestamp 

to add the temporal aspect for both streams and linked data. To process its input, CQELS 

implements three types of operators, organised as a data flow: window, relational, and 

streaming operators, that resemble CQL’s stream-to-relation, relation-to-relation, and 
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relation-to-stream operators. CQELS also has the feature of adaptive queries processing, 

where a mechanism similar to Eddies (Avnur and Hellerstein, 2000) is used to dynamically 

reorder the operators in the data flow tree. A cost-based routing policy decides the order in 

which the operators are executed at runtime. 

INSTANS. A completely different approach to processing dynamic RDF data is 

introduced in INSTANS (Incremental eNgine for STANding Sparql) (Rinne et al., 2012a). 

Instead of extending SPARQL to support continuous queries, they used the Rete algorithm 

(Forgy, 1982), an incremental algorithm to solve the many patterns/many objects match 

problem, to implement a number of interconnected SPARQL 1.1 updates. It also differs 

from standard SPARQL in the execution mechanism because it does not execute queries 

on demand but rather propagates data through a query matching network. Each tuple is 

processed as soon as it arrives, and output is produced immediately when all conditions 

match. It differs from continuous SPARQL extensions in that it has no notion of stream-to-

relation or relation-to-stream operators; instead, windows are handled using explicit 

INSERT and DELETE queries. Therefore, it is possible to use only SPARQL without any 

extensions to process streams. However, we can show that this comes at the expense of a 

more complicated way to model the required query semantics, as follows. In Rinne et al. 

(2012b), in a sample use case in which one needs to detect a nearby friend, which can be 

represented in C-SPARQL as a single continuous query, four SPARQL queries are needed 

in INSTANS: a window query, a nearby detection query, a notification query and a query 

to remove invalidated nearby statuses. 

Table 3.1 compares the different approaches to enabling RDF stream processing; the 

execution is mainly based on Le-Phuoc (2012a). Systems use similar data models and 

provide a similar level of expressivity, except for EP-SPARQL, which supports higher 

levels of expressivity; however, they vary in their execution models. Two important points 

can be observed from the table. First, none of them, except EP-SPARQL, support 

background ontological reasoning. Even in EP-SPARQL, ontological reasoning is not 

supported natively but rather enabled using user-defined recursive production rules. The 

next section discusses works that are mainly focused on the reasoning problem. Second, 

we notice that systems either use static plans or completely externalise the optimisation 

problem to the underlying systems. This is mainly because using a black-box approach 

prohibits optimisation opportunities. CQELS, which enables native support of RDF 

streams, is the only engine to provide adaptive optimisation. 



Chapter 3 

46 

Table 3.1: Comparison of RDF Stream Processing approaches 

 Streaming 

SPARQL 

C-SPARQL EP-SPARQL SPARQLStream CQELS INSTANS 

D
at

a 

m
o
d
el

 Stream elements Triples Triples Triples Triples Triples Triples 

Time model Interval Single point Interval Single point Single point Implicit 

E
x
p
re

ss
iv

it
y
 

Supported windows Time-based, triple-

based 

Time-based, triple-

based 

Time-based Time-based, history 

windows 

Time-based, triple-

based 

No explicit window 

operator 

Temporal operators No No Yes No No No 

Reasoning No No RDFS subset No No No 

E
x
ec

u
ti

o
n
 

Input updates Periodical Periodical Data-driven Periodical Data-driven Data-driven 

Execution strategy Re-execution Re-execution Incremental Re-execution Re-execution Incremental 

Optimisation Algebraic, static Algebraic, static Externalised Externalised Physical, adaptive Algebraic, static 

Internal representation Stream-to-stream 

operators 

CQL&SPARQL 

queries 

Logic programmes SNEE queries Adaptive physical 

operators 

Rete dataflow 

networks 

Underlying engine N/A: No 

implementation 

Sesame and 

STREAM 

Prolog SNEE N/A: Native N/A: Native 
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3.2 Reasoning on Semantic Streams  

While the RSP engines enabled processing RDF streams, integration with static knowledge 

bases and issuing of standing SPARQL queries, RDFS/OWL reasoning was not supported 

by the majority. Other works in the area addressed the reasoning problem in different 

ways. We classified the proposed approaches towards stream reasoning depending on their 

expressivity in two categories. The first supports lightweight reasoning to highly dynamic 

streams on the level of RDFS and subsets of OWL 2 RL. The second enables richer forms 

of reasoning, including description logics and nonmonotonic reasoning; however, it either 

does so for less dynamic streams or involves approximation techniques. Stuckenschmidt et 

al. (2010) introduced a conceptual view of cascading reasoners, in which reasoners are 

organised in a hierarchy of increasing complexity in order to overcome the trade-off 

between the complexity of the reasoning method and the frequency of the data stream the 

reasoner is able to handle. 

3.2.1 Lightweight stream reasoning 

An early work by Walavalker et al. (2008) presents a subsumption reasoner that can deal 

with streaming knowledge. Given an RDFS or OWL ontology, the system pre-computes 

the transitive closure of all classes on the rdfs:subClassOf relationship and stores the class-

subclass pairs in a database table. A set of continuous queries are defined based on the 

RDFS entailment rules, to be evaluated at run time by the TelegraphCQ stream 

management system (Chandrasekaran et al., 2003), in order to identify subclass events of 

the event of concern. Similar to C-SPARQL, EP-SPARQL, and SPARQLStream , this 

reasoner uses a black-box approach. Its expressivity is limited to the main RDFS predicates 

(subClassOf, subPropertyOf, range, and domain) and OWL’s inverseOf relationship. 

Reasoning over streams needs to operate incrementally, as re-computing all results 

whenever a change is made to the input streams (insertion or deletion) can result in a very 

slow performance. Barbieri et al. (2010b) propose an approach for incremental reasoning 

to maintain the ontological entailments, referred to as IMaRS in (Dell’Aglio and Della 

Valle, 2014). The approach is based on the (DRed) algorithm (Gupta et al., 1993), which 

overestimates the deletions and then computes re-derivations, but the resulting incremental 

algorithm of data streams reasoning is easier and more efficient because the addition or 

removal of facts from data streams is controlled by windows, which have a clear expiration 
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time. The algorithm requires tagging of each RDF triple (both inserted and entailed) with 

an expiration timestamp. The program then can compute a new complete and correct 

materialisation by dropping RDF triples that are no longer in the window. This can be 

directly compared to the Rstream operator of CQL (Arasu et al., 2003), which provides all 

answers that are correct at a certain time as a stream of results. An evaluation of the 

program shows that it is faster than the naïve approach (computing the entire 

materialisation at each step) when the percentage of change is less than 13% of the 

background knowledge. Although the results are promising, the experiments have been 

performed for only one query, so it is not clear how the algorithm will work and scale for 

multiple queries with different window definitions (Anicic et al., 2011). Furthermore, it is 

restricted to time-based windows and does not allow deleting triples, e.g. in case of 

inconsistency, before their expiration.  

The Rete algorithm also works incrementally. Rete networks are used in Sparkwave 

(Komazec et al., 2012) to enable schema-enhanced pattern detection on RDF data streams. 

However, they present a fixed approach that can only operate over RDF schema and a few 

OWL constructs. A pre-processing epsilon network, which handles the reasoning task, is 

placed before the Rete network, which processes the RDF streams. Sparkwave is a clear 

example of sacrificing expressivity for performance; its reasoning capabilities are 

restricted, it has the same limitations as IMaRS and it does not support disjunction, 

negation, temporal or arithmetic operators. Oliya et al., (2011) also use the Rete algorithm 

to enable incremental OWL reasoning over dynamic contextual information that can be 

expressed through Description Horn Logic ontologies. However, the paper says nothing 

about time windows or any other streaming operators.  

3.2.2 Complex stream reasoning 

Rscale (Liebig and Opitz, 2011) is an OWL 2 RL reasoner that is suitable for a moderate 

update frequency. The system uses a relational database as secondary storage to store the 

ontology in base tables. The applicable rules are translated to SQL queries and executed by 

the rule engine at those tables. The results are written in delta tables, followed by an 

alignment and merge phase, which executes in rounds by deleting already inferred facts 

from delta tables and adding the remaining facts to the base tables. Dynamic updates 

(insertions and deletions) are then dealt with incrementally based on Volz et al. (2005). 

Because the execution mechanism consists of many steps and requires reactivation with 
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every update, Rscale might not be suitable for fast streams. Furthermore, it does not 

support time-aware reasoning. 

On a more expressive level, TrOWL (Ren et al., 2010; Ren and Pan, 2011) supports 

dynamic management of description logic ontologies. It uses syntactic approximation to 

reduce reasoning complexity. In contrast to IMaRS, TrOWL requires no fixed time 

window to manage deletions; instead, it uses a Truth Maintenance System to maintain 

intermediate results and the deduction relations among them. Because this approach has 

the disadvantage of using excessive memory consumption, they also present an 

optimisation algorithm that reduces the number of unnecessary intermediate results. 

Do et al. (2011) introduced the concept of stream reasoning to Answer Set Programming 

(ASP) using dlvhex (Leone et al., 2006) to combat uncertain data by using disjunction 

rules to generate a multiple answer set. They applied an ASP solver (dlvhex) repeatedly on 

periodically changing windows of OWL objects. On the contrary, Gebser et al. (2012) 

handled streaming data into the reasoning methodology of ASP by proposing novel 

language constructs that enable specifying and reasoning with time-decaying logic 

programs. Similar to the idea of cascading reasoners (Stuckenschmidt et al., 2010), 

StreamRule (Mileo et al., 2013) combines CQELS for stream processing and filtering with 

Oclingo, the ASP engine of Gebser et al. (2012), for nonmonotonic reasoning. 

On the theoretical side, LARS (a logic-based framework for analysing reasoning over 

streams) (Beck et al., 2015) provides a rule-based formalism with different means for time 

abstraction. A rule language with model-based, nonmonotonic semantics similar to ASP is 

also introduced. 

3.3 Publishing Semantic Streams  

Though best practices for linking semantic static data on the Web were stated under the 

name of Linked Data (Bizer et al., 2009), RDF streams have been neglected. Publishing 

RDF streams in the Linked Data cloud (Abele et al., 2017) will enable Semantic Web 

applications to consume this data and facilitate the integration of RDF streams with static 

data already published in the Linked Data cloud. To enable such publication, the 

identification, discovery, and access to stream data need to be addressed (Sequeda and 

Corcho, 2009).  
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The concept of Linked Stream Data has been introduced by Sequeda and Corcho (2009). 

They propose a URI-based mechanism to identify and access sensor network streams. 

Sensors are identified by URIs that return the sensors’ metadata when dereferenced, while 

data streams emitted by those sensors are also identified by URIs that return the 

observations contained in the stream. The Linked Stream Data URI scheme also identifies 

stream data at specific moments in time (by including a timestamp in the stream URI), in 

specific time windows (by specifying a start time and end time in the stream URI), and at 

specific locations (by including the coordinates in the stream URI). 

Another approach to publish data streams as Linked Data was proposed by Barbieri and 

Della Valle (2010c). In this approach, each RDF stream is represented as one Stream 

Graph (s-graph) and several Instantaneous Graphs (i-graphs). A s-graph is a metadata 

graph that describes the current content of the window over the RDF stream. S-graphs use 

the rdfs:seeAlso attribute to refer to a number of i-graphs, which in turn represent 

individual readings or observations. Similar to the Linked Stream Data approach, these s-

graphs and i-graphs are identified by URIs. However, representing time is different. While 

Linked Stream Data allows for opening a window starting from and ending at any moment 

in time, this approach specifies only the duration (or size) of the window in the URI, 

forcing the extraction of the last elements from the data stream. This is more compliant 

with the nature of streams, that being possibly of unbounded size, should not be treated as 

persistent data to be stored and queried on demand, but rather as transient data to be 

consumed on the fly by continuous queries. 

3.4 Distributed Semantic Stream Processing 

Systems that deal with a high velocity or volume of data streams feature several scalability 

requirements (Shah et al., 2003). These requirements have been addressed in relational 

DSMSs by enabling parallel and distributed processing of data streams (e.g. Abadi et al., 

2005; Shah et al., 2004). In the stream reasoning area, there is an attempt by Hoeksema and 

Kotoulas (2011) to apply a parallel approach for stream reasoning using the Yahoo S4 

framework. They introduce a number of RDFS specialised reasoning Processing Elements 

(PEs) to distribute triples over multiple streams. Streams are distributed across those PEs 

according to a given key, so the PEs can be distributed across different nodes for a parallel 

execution. Continuous query answering is also supported by a number of components that 

can be combined to translate a subset of C-SPARQL into a parallel execution plan. 
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While all the RSP engines reviewed in sections 3.1 work in a centralised setting, the recent 

implementation of CQELS (Le-Phuoc et al., 2013) supports parallel processing in a cloud 

environment. They built the CQELS engine on an elastic cluster, where it can adapt to 

changing processing loads by dynamically adjusting the number of processing nodes at 

runtime. The network consists of a number of processing nodes and a central coordinator 

that maps the logical query network to the available nodes. They provided parallel 

algorithms for window, join and aggregation operators. Their evaluation experiments show 

that the throughput scales linearly with increasing numbers of processing nodes. 

3.5 Developed Semantic Streams Environments 

SemSorGrid4Env (Gray et al., 2011) is an application that implements a service 

architecture to provide a semantically integrated information space for sensed and stored 

data drawn from heterogeneous data sources. The architecture is structured into three tiers. 

The data tier enables publishing and querying data in its native format. The middleware 

tier supports the discovery and integration of different data models. Finally, the application 

tier provides support for web-based applications to interact with other services of the 

system. This architecture is deployed as a flood emergency response planning system. The 

paper mainly focuses on the integration process, while they use SPARQLStream (Calbimonte 

et al., 2010) for continuous query processing. 

BOTTARI (Balduini et al., 2012) is a mobile application that continuously analyses social 

media streams to deliver personalised location-based recommendations. BOTTARI 

architecture contains three parts: a client (mobile app) which interacts with the user and 

initiates SPARQL queries, a PUSH segment that continuously analyses streams of tweets 

using C-SPARQL, and a PULL segment that answers the client’s queries by combining 

different forms of reasoning. The paper presents an evaluation of a deployment of the 

system that analyses tweets about points of interest (POIs) such as hotels and restaurants in 

Insadong, Korea. Their scalability test shows that the system handles a flow of 15,000 

tweets/second, though the input rate is at tens of tweets a day. As this rate is considered 

slow for a stream processing engine, they claim that BOTTARI’s scalability goes largely 

beyond the actual needs of its deployment in Insadong. 

Another platform is called Linked Streams Middleware (LSM) (Le-Phuoc et al., 2012b). It 

integrates sensor streams with Linked Data by enriching them with semantic descriptions 

using a wide range of wrappers. It also provides an intuitive Web interface for data 
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annotation and visualisation. Finally, live querying over both types of data is enabled using 

CQELS and a standard SPARQL processor. LSM uses a cloud-based infrastructure 

(Hadoop cluster) for real-time data collection, which enables its current deployment to 

access over 110,000 sensor data streams. However, the continuous querying process is not 

distributed. 

3.6 Benchmarking 

As the number of RDF stream processing engines has increased, the need for an open 

benchmarking framework has grown. Existing RDF/SPARQL benchmarks such as the 

Berlin SPARQL Benchmark (Bizer and Schultz, 2009) and LUBM (Guo et al., 2005) are 

designed for static data. On the other hand, there is also an available benchmark for 

DSMSs: the Linear Road benchmark (Arasu et al., 2004), which is based on the relational 

data model, and does not consider reasoning. Therefore, a number of benchmarking 

frameworks for streaming RDF/SPARQL engines have been proposed. 

The Streaming RDF/SPARQL Benchmark “SRBench” (Zhang et al., 2012) is mainly 

focused on evaluating coverage for SPARQL constructs. It uses a real world sensor data 

set linked to some static data sets from the LOD cloud, and provides a comprehensive set 

of queries that cover the important SPARQL operators and the common streaming 

SPARQL extensions. They provided a functional evaluation of three streaming SPARQL 

engines: SPARQLStream, CQELS, and C-SPARQL. The results show that all three engines 

support basic SPARQL features over time-based windows of streaming data. None of the 

engines provides reasoning, and there is very limited support for SPARQL1.1 features. At 

the moment, SRBench does not offer performance evaluation. 

The second benchmark is the Linked Stream Benchmark “LSBench” (Le-Phuoc et al., 

2012c) focuses on evaluating performance of the system using throughput as an indicator. 

LSBench implements a data generator that generates stream social network data. It also 

defines a set of queries to test the functionality of three streaming engines: CQELS, C-

SPARQL, and JTALIS (EP-SPARQL engine). The correctness of the results of these 

queries is then tested, which shows there is a degree of mismatch due to the different 

execution strategies used by the engines. LSBench also provides some performance tests 

measuring throughput of the three engines to see how fast they are. As C-SPARQL is not 

designed for large static data sets, the results show that CQELS and JTALIS have higher 

throughput than C-SPARQL by some orders of magnitude. The same test is run again with 
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varying static data sizes, and different number of simultaneous queries. CQELS 

outperforms the other engines but they all show linear deterioration of throughput against 

increasing numbers of queries. LSBench does not measure other performance metrics, such 

as memory usage. 

An extension of the SRBench that is mainly concerned with the correctness problem is 

called CSRBench (Dell’Aglio et al., 2013). When comparing the output of different RSP 

engines, it is difficult to determine whether different results for the same query from 

different engines are incorrect behaviour or merely a result of different operational 

semantics. To address this problem, they analyse the operational semantics of these 

engines, focusing on stream-to-relation and relation-to-stream operators. Stream-to-relation 

analysis is based on the SECRET (Botan et al., 2010) model, which characterises the 

behaviour of time windows through four functions: scope, content, report and tick. For 

relation-to-stream semantics, they consider the operator used (Rstream, Istream, or 

Dstream) and whether or not the engine produces a notification for an empty answer. 

However, their approach is only applicable to CQL-based systems. 

Another framework for benchmarking RSP engines is CityBench (Ali et al., 2015), which 

focuses on evaluating system performance under a realistic dynamic setting in the smart 

city domain. It provides a configurable testbed infrastructure, which allows the use of 

evaluation tests using fine-tuned configuration parameters. These include changes in input 

streaming rate, variable background data size, number of concurrent queries and number of 

streams within a single query. They evaluated two RSP engines (C-SPARQL and CQELS) 

in terms of latency, memory consumption and completeness of results while varying the 

configurable parameters. 

3.7 Conclusion  

The processing of dynamic data has gained increasing attention in the Semantic Web 

community over the past few years. Research efforts have addressed several issues in this 

area including defining and querying semantic streams, stream reasoning, publishing 

linked streams, and benchmarking semantic stream processing systems. Semantic streams 

are usually defined as sequences of RDF triples associated with a time element. However, 

there is a room for other definitions of RDF streams based on different granularity, e.g. 

streams of RDF graphs. 
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The main focus in the area was to enable on-the-fly processing of semantic streams, which 

led to the development of a number of stream processing engines that can handle dynamic 

RDF streams. However, apart from CQELS, all of these engines are not natively designed 

for RDF streams. CQELS defines its own operators to work directly on RDF streams. 

However, it does not support reasoning. 

SRBench (Zhang et al., 2012) found that none of the tested stream processing engines 

provides reasoning support. The few studies that aim to provide streaming inference 

support have been reviewed in this chapter. Areas such as real-time optimisation and 

distributed processing of RDF streams remain very little explored. 

In conclusion, there are some RDF stream processing systems (Table 3.1) but the majority 

of them do not support reasoning. On the other hand, there are some stream reasoning 

systems (reviewed in Section 3.2) but they do not address the optimisation problem. 

Therefore, our work aims to close this gap, by providing reasoning support as well as 

adaptive optimisation in a native, unified approach. 
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Chapter 4: Continuous Reasoning 

While most of the leading works in semantic stream processing area focus on RDF stream 

processing without reasoning support (Zhang et al., 2012), we mainly aimed to enable 

reasoning for RDF streams. In this chapter, we describe our approach to support generic 

rule-based reasoning for real-time streaming data. First, we define a number of general 

requirements that informed our design decisions. Second, we introduce our continuous 

reasoning framework, including a definition of the RDF stream datatype, and an 

operational description of the supported operators. Then, we introduce R4 – Rule-based 

Reasoner for RDF streams using Rete – our prototype stream reasoning engine. We 

describe its architecture, how it implements the different operators of the framework, and 

present an extension to the standard Semantic Web rule language RIF in order to add 

support for temporal operations. 

4.1 Requirements 

Different scenarios have different requirements, mainly due to different stream 

characteristics (input rate, volume, bursts, etc.), resource constraints, and the nature and 

complexity of the rules to be applied. For example, network analysis systems must deal 

with high-volume input streams (Sullivan, 1996), while sensor networks should tolerate the 

power constraints of the sensors (Akyildiz et al., 2002). This section presents some 

common requirements and challenges that should be considered to enable the processing of 

semantic data streams. Most of these requirements are based on Stonebraker et al., (2005) 

who defined general requirements for stream processing applications (DSMSs), with the 

addition of inference support that is only relevant to semantic streams. 

R.1. Integration 

In many cases, it is essential to combine stored data with streaming data to provide answers 

to queries. For example, names and locations of sensors are typically static stored data, 

while the sensors’ observations are streaming data. For instance, queries asking for the 

‘number of cycles hired in the last ten minutes in central London’ require a combination of 

both stored and streaming data to be evaluated. It is important to have an efficient 

mechanism for the unified processing of stored and streaming data. Furthermore, many 

scenarios call for the integration of data from different sources (Margara et al., 2014), 
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which is the main reason for modelling data in the RDF format that enables 

interoperability.  

R.2. Time management 

As streaming data change over time, scenarios in streaming applications are usually 

concerned with monitoring this change. For example, weather monitoring applications can 

use changes in meteorological data observed during specific windows of time to predict 

severe weather conditions. This means that a data model linking the streaming data 

element to the time domain is needed. In addition to the time-based data model, a time-

aware processing model is also needed to model time relations between data.  

R.3. Data-driven processing 

Some applications – especially in the health and environment domains – are time-critical, 

demanding fast response times. For example, a home health monitoring application 

(Paganelli and Giuli, 2007) should alert the hospital when it infers that a critical situation 

has occurred based on abnormal biomedical parameters observed by its sensors. In general, 

answers should be provided before they become outdated or useless. To achieve this, 

latency10 should be kept to a minimum. In a data-driven environment, stream elements are 

consumed and results are generated as soon as they are received. Stonebraker et al., (2005) 

describes data-driven systems are described as ‘active’ systems, as opposed to ‘passive’ 

systems, which wait to be told what to do by an application before beginning processing.  

R.4. Memory utilisation 

As data streams are potentially unbounded in size, complete processing of the whole 

dataset would also require unbounded memory. To address this challenge, quality and 

completeness of results can be traded for memory space.  

R.5. Inference support 

One of the distinctive features of the Semantic Web is expressive inference capabilities. 

Applications that model their streaming data using Semantic Web languages should 

support some forms of reasoning, as some queries need implicit knowledge. For example, 

in the social media domain, a possible scenario (similar to scenarios in (Balduini et al., 

2013)) is to request recent tweets with hash tags related to a specific city. Reasoning over 

an ontology that models the different districts in this city can retrieve these tweets. As 

reasoning over expressive ontologies is considered expensive, there is a trade-off between 

expressivity and efficiency. 

                                                           

10 By latency, we refer to response time, the time between the arrival of new elements and the generation 
of output results. We use both terms interchangeably. 
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R.6. Managing dynamic environments 

Response time and memory consumption are highly dependent on the internal processing 

plans generated by systems. Implementing a good optimisation strategy can improve the 

system’s performance. However, during the life of the running plan, the environment 

conditions (e.g. stream’s input rate) may change, so the system needs to support adaptive 

optimisation (Babu and Bizarro, 2005). For example, in a street monitoring application, 

input rates can vary significantly between busy and quiet periods. Without adaptivity, 

performance may drop significantly as conditions change over time. This is because 

queries and rules in a streaming environment are long-running, so a bad optimisation plan 

causes long-term damage to performance. 

Relation to other requirements in the literature: A recent survey of the stream 

reasoning area (Margara et al., 2014) analysed a number of scenarios and produced 

requirements similar to those mentioned above. These requirements include integration 

(R.1); time management (R.2); efficiency, which is directly related to the low latency 

requirement (R.3); big data management, which includes memory utilisation (R.4) and 

managing dynamic environments requirements (R.6); expressivity as a more general form 

of the inference support (R.5); and Quality of Service, which is also related to managing 

dynamic environments and adaptivity (R.6). Other requirements that go beyond the scope 

of this thesis are distribution, uncertainty management, and historical data management. 

We consider distribution as a future work. While reasoning with uncertainty (Halpern, 

2005) is an important requirement, we consider it of secondary importance to the 

requirements we address. 

As stated in the beginning of this section, some of our requirements were inspired by 

Stonebraker et al.’s (2005) eight rules for stream processing. Their first rule is to ‘keep the 

data moving’, which is related to our low latency requirement (R.3). Their second rule is to 

‘query using SQL on streams’. Although querying using SQL might be irrelevant for 

linked streaming data, this requirement demands support for time-aware data processing, 

which is related to our time management requirement (R.2). Another rule is to ‘integrate 

stored and streaming data’, similar to our first requirement (R.1). Furthermore, the ‘process 

and respond instantaneously’ talks about the importance of highly optimised plans for 

achieving good performance, which is related to our requirement regarding adaptive 

optimisation (R.6).  Stonebraker et al.’s other rules are mostly related to distribution and 

managing uncertainty, including automatic partitioning and scaling, guaranteeing data 
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safety and availability, handling stream imperfections, and generating predictable 

outcomes, which we consider out of the scope of this thesis. 

Addressing these requirements in the literature: Table 4.1 shows how the most relevant 

systems in the literature addressed the previous requirements. All of those RDF stream 

processing systems enable integration of different data sources by processing streams 

encoded in RDF and also enable integration with static datasets. However, the majority of 

these systems rely on underlying stream or event processors and SPARQL engines which 

means a unified processing of stored and streaming RDF data is not enabled (Le-Phuoc et 

al., 2011). A time-based model for RDF data is supported by most systems by annotating 

data elements with their time of occurrence or validity. EP-SPARQL also supports 

temporal reasoning. Data-driven processing is supported by EP-SPARQL, CQELS, 

INSTANS and Sparkwave. A common approach to utilise memory followed by the 

majority of these systems is to evaluate queries over sliding windows based on the 

assumption that users are mainly interested in recent data. Reasoning over a subset of 

RDFS is enabled in EP-SPARQL and Sparkwave, while IMaRS also supports transitive 

property. Managing dynamic requirements is only supported by CQELS by enabling 

adaptive optimisation of the continuous SPARQL queries. 

Table 4.1: Addressing the requirements in the related RDF stream processing systems 
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Streaming SPARQL (Bolles et al., 2008) * *  *   

C-SPARQL (Barbieri et al., 2009) * *  *   

EP-SPARQL (Anicic et al., 2011) * * * * *  

SPARQLStream (Calbimonte et al., 2010) * *  *   

CQELS (Le-Phuoc et al., 2011) * * * *  * 

INSTANS (Rinne et al., 2012a) *  * *   

IMaRS (Barbieri et al., 2010b) * *  * *  

Sparkwave (Komazec et al., 2012) * * * * *  
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4.2 Continuous reasoning framework for RDF streams 

A framework that supports the requirements in the previous section in the semantic streams 

context is needed. The main features of this framework and their relations to the above 

requirements are listed below. 

1. Unified and native RDF support: 

The majority of the systems reviewed in the previous chapter that enable semantic stream 

processing (Barbieri et al., 2010a; Calbimonte et al., 2010; Anicic et al., 2011; Walavalker 

et al., 2008) employ a black-box approach, in which they rely on stream processing 

engines that are not optimised for the RDF data model. This also introduces the overhead 

of wrapping or translating the queries and the RDF stream elements to the underlying 

engine’s query and data model (Le-Phuoc et al., 2011).  

While almost all RDF stream processing systems enable the integration of streaming and 

static RDF data, processing these two types of data is not unified, which hinders possible 

optimisations. In order to offer maximum optimisation opportunities – which have a major 

impact on response time, memory consumption, and completeness of results – the system 

should have full control over the low level processing operators. Our framework is based 

on a white-box architecture, in which processing operators work directly on RDF data 

streams and background knowledge in a unified approach. This feature addresses the 

integration requirement (R.1) and is also related to the low latency requirement (R.3). 

2. Continuous reasoning: 

Our processing framework is not only aimed at the continuous processing of high-

throughput RDF streams but also adds inference support. The initial main focus of research 

in this area was to enable the rapid processing of RDF streams. As covered in Section 3.1, 

only EP-SPARQL adds simple forms of reasoning. As opposed to approaches covered in 

Section 3.2.2, which support higher complexity reasoning for low-throughput streams, our 

approach enables lower complexity, general rule-based reasoning at the level of OWL 2 

RL on high-throughput streams.  

Our reasoning framework includes a time-annotated data model and a time-aware 

continuous processing model based on time windows. The model is fully streaming so that 

even inference results are considered streams, themselves, and can enter the system again 

as input and contribute to derive more results. The continuous reasoning model addresses 

the inference requirement (R.5) and time management requirement (R.2). 
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3. Incremental, data-driven processing 

All operators in our model work in a data-driven manner. Stream elements received from 

outside streams are directly pushed to the operators, and the operators, themselves, 

communicate their results in a push-based approach. This ensures minimum latency, as 

opposed to the periodic evaluation approach used in C-SPARQL, Streaming SPARQL, and 

SPARQLStream, which update the content of the windows for every period of time specified 

in the query. For example, if the re-evaluation period is specified as five minutes, there will 

be a minimum latency of five minutes between the first received triple and the results it 

produces. 

Furthermore, as the inference process is computationally expensive, the naïve re-

computation approach is not adequate in a streaming context. Thus, we use the naturally 

incremental Rete algorithm (Forgy, 1982) to implement the continuous reasoning 

networks. As the Rete algorithm is memory-intensive, we employ a time-based extension 

to utilise memory consumption. These techniques aim to improve the performance of the 

system, addressing the data-driven processing requirement (R.3) and memory utilisation 

(R.4). 

4. Adaptive optimisation: 

As a consequence of the unified white-box approach, optimisation opportunities should be 

exploited to improve the performance of the system. With the exception of CQELS, other 

RDF stream processing systems do not focus on the optimisation problem, as it is often 

externalised to the underlying engine; cross-model optimisation of stream and static data is 

restricted due to the black-box approach.  

As the traditional RDBMS cost-based optimisation approach is not suited for the streaming 

context due to the absence of statistics beforehand and the dynamic nature of streaming 

environments, our framework employs adaptive optimisation techniques based on the 

research in data stream management systems. The adaptive optimiser responds to changes 

in the conditions of input streams by re-organising operators in the continuously running 

dataflow networks. The adaptivity feature allows managing dynamic environments (R.6), 

enabling lower response time (R.3). 

Table 4.2 shows the features supported in our framework and their connections with the 

requirements. 



Chapter 4 

61 

This continuous reasoning framework is realised using data-flow networks, where rules are 

translated into pipelined, non-blocking physical operators (that work incrementally in a 

data-driven fashion) representing nodes and edges represent RDF streams that flow 

between operators, generating results in a continuous manner. Streams are observed 

through time windows, which enable the time-based maintenance of both stream elements 

and inference results. In the following subsections, the notion of RDF streams is formally 

defined, followed by the supported operators in our framework. 

Table 4.2: Requirements and design decisions 

Design decisions 

 

 

Requirements 

Native RDF 

support 

Continuous 

reasoning 

Incremental 

data-driven 

operators 

Adaptive 

optimisation 

R.1 Integration *    

R.2 Time management  *   

R.3 Data-driven processing *  * * 

R.4 Memory utilisation   *  

R.5 Inference support  *   

R.6 Managing dynamic environments    * 

4.2.1 Data Model 

Using RDF as a unified data model for all data streams can solve the heterogeneity 

problem found in the IoT area. However, the basic RDF model needs to be extended to 

express the temporal aspect of data streams by adding a time annotation. Therefore, as in 

the DSMS systems, streams are sequences (possibly unlimited) of pairs, each of which is 

formed of a data element and a time element. 

4.2.1.1 The data element  

All RDF stream processing systems reviewed in the previous chapter use the RDF 

statement as the data element, defining an RDF stream as an ordered sequence of RDF 

triples associated with a time element. However, RDF streams can be seen as streams of 

events that occur in real-life, and while some of these events can be represented using a 

single statement, in many cases, they need many more triples to convey their meaning. For 

example, a person entering a room can be represented in one RDF statement, while 14 
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triples are used to represent a single sensor observation in the SemSorGrid4Env project 

using the SSN ontology. This set of triples that describes a single event can be considered 

as an RDF graph. 

Defining the stream as a sequence of graphs can also be more meaningful in other 

situations. First, use cases that require tuple-based windows do not work correctly if events 

are represented in more than one triple using a triple-based definition of streams. For 

example, a query asking to observe the last ten tweets of a specific user does not give 

correct results using a window of size 10 over a triple-based stream, as tweets are usually 

represented in more than one triple. Second, in systems that apply sampling techniques 

over input streams for load shedding, sampling at a graph level should produce more 

results than sampling at a triple level. For example, if a tweet is represented in two triples 

(e.g. one represents the user; one represents hash tags used), a simple sampling technique 

that sheds 50% of the load will produce no results if the query concerns both triples of the 

tweet (e.g. a specific user and a specific hash tag) using the triple-based definition, while 

sampling on a graph-level can produce 50% of the qualifying tweets.   

For these reasons, we define RDF streams as sequences of RDF graphs associated with 

time annotations. This definition is general enough to capture cases where an event is 

represented using a single triple, as it can be a special case of a graph containing one 

statement. This definition represents external streams arriving at the system from a data 

source. An external stream is an ordered sequence of pairs; each pair consists of an RDF 

graph and a time element. On the other hand, internal streams represent data that flows 

between operators inside the system. Our operators work on the fine-grained level of 

triples. The data element of internal streams depends on the operator that produced it. For 

example, an output stream of a filter operator (checking a triple pattern) is a sequence of 

triples, while an output of a join operator is a number of joined triples representing a partial 

result. These partial results are lists of triples, i.e. graphs. However, we refer to them as 

tokens in order to avoid confusing the partial results with the external stream graphs. An 

internal RDF stream is an ordered – possibly unlimited – sequence of tokens associated 

with a time element.  

4.2.1.2 The time element 

For the time element, we follow the temporal model of Krämer and Seeger (2005), where 

external stream elements are associated with timestamps (representing time of occurrence) 

and internal stream elements are annotated with time intervals (representing validity). If 
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external graphs arrive at the system without timestamps, they should be stamped by the 

system (system time) prior to any processing. If they come annotated with application 

time, we expect them to arrive in order.  

Upon entering the system, external streams are transformed to internal streams by adding 

an expiration time to the occurrence (start) time. The expiration time for each element can 

be calculated using time window operators by adding the specified window size to the 

element’s start time. This facilitates garbage collection and inference result maintenance, 

as they will also be assigned a time interval indicating their expiration time. This can 

further enable coalescing value-equivalent streams with adjacent time intervals. 

4.2.1.3 Formal Definitions  

Definition 1 (Time): Let T be a discrete time domain with a total order under ≤ ; and 

let element t ∈ T be a timestamp. A time interval is defined as [ts, te), where ts and te 

are both timestamps, and ts ≤ te . 

Definition 2 (RDF triple and RDF graph): Like Cyganiak et al. (2014), we define 

an RDF triple as follows: Let I denote the set of IRI constants, L the set of literals, B 

the set of blank nodes, (s,p,o) then denotes an RDF triple and its subject-predicate-

object components where s ∈ IB, p ∈ I and o ∈ ILB. We define an RDF graph, 

GRDF, as a set of RDF triples: GRDF = {(s1, p1, o1), (s2, p2, o2), ..., (sn, pn, on)}.  

Definition 3 (External RDF stream): We consider an external RDF stream, Se, to 

be a sequence of timestamped RDF graphs, and therefore we define it as a sequence 

of pairs, < GRDF, t>, each of which is comprised of an RDF graph and a timestamp t 

∈ T. Like Arasu et al. (2006), we note that there could be zero, one, or multiple 

graphs with the same timestamp in a stream. However, there should be a finite 

number of graphs with a given timestamp. 

Order and equivalence: Stream elements are ordered by their timestamps. For two 

stream elements, <G1, t1> and <G2, t2>, we say that G1 <t G2 to indicate that t1 < t2, 

which means that G1 precedes G2 in the stream. However, graphs with the same 

timestamp have no particular order within in the stream; they can appear in any order 

and the stream will remain the same. We say that G1 is timestamp-equivalent to G2 

(G1 =t G2) if t1 = t2. Therefore, a stream B can be equivalent to a stream A if B 

contains the same graphs as A, and for each G1, G2 ∈ A, G1 must precede G2 if 

G1<tG2, or G1 can appear before or after G2 if G1 =t G2. For example, stream A = 
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{<a,1>, <b,2>,<c,2>, <d,3>} is equivalent to stream B = {<a,1>, <c,2>,<b,2>, 

<d,3>}. 

Definition 4 (Internal RDF stream): We consider an internal RDF stream, Si, to be 

a sequence of tokens associated with time intervals, and therefore we define it as a 

sequence of pairs, <K, [ts, te)>, where K is a token that is a set of one or more RDF 

triples and ts, te ∈ T are the start and end timestamps forming a time interval. These 

tokens are used both for representing partial results that are being passed around the 

system as well as representing completed results that are omitted from the reasoner. 

Because each token consists of one or more triples, the token can also be considered 

a graph, but we denoted it as a token to avoid confusion with graphs that represent 

raw input data. 

As each token can consist of one or more triples, we differentiate between two types 

of internal streams. The data element in the first represents singleton graphs 

containing only one triple, so is called an internal triple stream, denoted as Sit, while 

the second is called an internal graph stream, denoted as Sig, where tokens represent 

graphs containing more than one triple. The time element in both types is the same, 

which includes two timestamps representing a time interval. We note that internal 

triple streams are a subset of internal graph streams, which means that every internal 

triple stream is also an internal graph stream. 

An internal stream is ordered by the start timestamp of its elements. As in external 

streams, there could be multiple—but limited—tokens with the same start timestamp 

in an internal stream. Furthermore, there is no order among tokens with the same 

start timestamp.  

An external stream of RDF graphs can be transformed into an equivalent stream of RDF 

triples by splitting each graph into its constituent triples. The same timestamp t is assigned 

as the start time ts to all triples of this graph so that ordering is preserved internally. The 

end timestamp te is defined as infinity ∞.  

4.2.2 Operators 

All operators in our continuous reasoning framework work on a data-driven basis. Each 

operator takes one or multiple streams as input and produces one stream as output. The 

difference between operators is that some of them can be stateless, while others must be 

stateful to work correctly.  
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According to Andrade et al. (2014), a stream processing operator can be either stateful 

(maintains an internal state across tuples during processing), or stateless (processes tuples 

independently from each other). Stateless operators, including filter, map, graph-to-triple, 

and window operators, can process each received stream element they receive without 

storing or accessing any internal data structure created by processing earlier data (Andrade 

et al., 2014). If the operation results in an output element, it is immediately appended to the 

output stream. On the other hand, stateful operators, including join and aggregation 

operators, need to access and maintain internal states each time they receive an input. 

These internal states affect the results produced by the operator (Andrade et al., 2014). In 

the next subsections, we provide an operational description of these operators, presenting a 

streaming algorithm for each of them. We start with the operators that convert between the 

different types of streams defined in the previous section, followed by data processing 

operators. 

We expect these operators to be composed in networks as follows: first, an external-to-

internal operator converts an external stream to an equivalent internal graph stream. This is 

followed by a graph-to-triples operator which converts the internal graph stream to its 

equivalent internal triple stream. The internal triple stream is then passed to any number of 

filter operators. The resulting internal triple streams from filters are then joined into 

internal graph streams by join operators. Window operators can be placed before or after 

the filters, but necessarily before joins. The final data processing operator in a network 

should be the map operator which generates the results as an internal graph stream. This 

stream can then be passed to an internal-to-external operator to generate results in the form 

of an external stream, and can enter the network again for further processing as an internal 

graph stream through the graph-to-triples operator. 

4.2.2.1 External-to-internal 

 

Listing 4.1: External-to-internal operator 

Operator: External-to-internal 

Input: stream Se
in 

Output: stream Sig
out 

1 Foreach <GRDF, t> arriving from Se
in  

2  Append <GRDF,[t,∞)> to Sig
out 
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This unary operator is responsible for transforming an external stream to its equivalent 

internal graph stream ready to be consumed by other operators. For each arriving graph, it 

assigns the timestamp of the graph as the start time and infinity as the end time forming the 

time interval [ts, te). The output stream elements of this operator (the internal graph stream) 

are ordered by the start timestamp. 

Example. Listing 4.2 (a) represents an example external stream input, and Listing 4.2 (b) 

represents the output stream of an external-to-internal operator. 

<{(s1,p1,o1), (s1,p2,o2)}, 5> 

<{(s2,p1,o4), (s2,p2,o4), (s2, p3, o5)}, 8> 

Listing 4.2(a): Example external stream input 

<{(s1,p1,o1), (s1,p2,o2)}, [5, ∞)> 

<{(s2,p1,o4), (s2,p2,o4), (s2, p3, o5)}, [8, ∞)> 

Listing 4.2(b): Output stream of an external-

to-internal operator

4.2.2.2 Graph-to-triples 

 

Listing 4.3: Graph-to-triples operator 

This unary operator is responsible for transforming an internal graph stream to its 

equivalent internal triple stream. It deconstructs the incoming RDF graphs into their 

individual triples and for each graph assigns the time interval of the graph as the time 

interval to each triple. The output stream elements of this operator are ordered by the start 

timestamp. 

Example. Listing 4.4 (a) represents an example input stream, and Listing 4.4 (b) represents 

the output stream of a graph-to-triples operator. 

 

 

 

Operator: Graph-to-triples 

Input: stream Sig
in 

Output: stream Sit
out 

1 Foreach <GRDF, [ts, te)> arriving from Sig
in  

2  Foreach (s,p,o) ∈ GRDF 

3   Append <{(s,p,o)},[ts, te)> to Sit
out 
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<{(s1,p1,o1), (s1,p2,o2)}, [5, ∞)> 

<{(s2,p1,o4), (s2,p2,o4), (s2,p3,o5)}, [8, ∞)> 

 

 

 

Listing 4.4(a): Example input stream of a 

graph-to-triples operator 

<{(s1,p1,o1)}, [5, ∞)> 

<{(s1,p2,o2)}, [5, ∞)> 

<{(s2,p1,o4)}, [8, ∞)> 

<{(s2,p2,o4)}, [8, ∞)> 

<{(s2,p3,o5)}, [8, ∞)> 

Listing 4.4(b): Example output stream of a 

graph-to-triples operator 

4.2.2.3 Internal-to-external 

 

Listing 4.5: Internal-to-external operator 

This operator is responsible for transforming an internal graph stream back to its 

equivalent external stream. For each arriving graph, it removes the end timestamp in order 

to get a stream of graphs with single timestamps, matching definition 3 of an external 

stream. 

Example. Listing 4.6 (a) represents an example internal stream input, and Listing 4.6 (b) 

represents the output stream of an internal-to-external operator. 

<{(s1,p1,o1), (s1,p2,o2)}, [5, 15)> 

<{(s2,p1,o4), (s2,p2,o4), (s2, p3, o5)}, [8, 18)> 

Listing 4.6(a): Example internal stream input 

<{(s1,p1,o1), (s1,p2,o2)}, 5> 

<{(s2,p1,o4), (s2,p2,o4), (s2, p3, o5)}, 8> 

Listing 4.6(b): Output stream of an internal-

to-external operator

Operator: Internal-to-external 

Input: stream Sig
in 

Output: stream Se
out 

1 Foreach < GRDF,[ ts, te)> arriving from Sig
in  

2  Append <GRDF,ts> to Se
out 
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4.2.2.4 Filter 

 

Listing 4.7: Filter operator 

The unary filter operator, in general, evaluates a predicate over each incoming element. If 

the predicate is satisfied, the element is immediately appended to the output stream; 

otherwise, it is simply discarded. The predicate is general enough to capture any one-pass, 

externally defined predicate (including the built-in datatype predicates and functions of 

RIF Core) and also the common case of triple patterns. When the predicate represents a 

triple pattern, the filter operator is semantically equivalent to SPARQL’s basic pattern 

match.  

Let V denote the set of variables, I the set of IRI constants, L the set of literals, B the set of 

blank nodes. Let TPN = {(s,p,o)| s ∈ IBV, p ∈ IV, o ∈ ILBV} be the set of 

triple patterns (Harris et al., 2013). Given tpn ∈ TPN, the triple pattern match predicate is 

evaluated as follows: 

𝑚𝑎𝑡𝑐ℎ((𝑠, 𝑝, 𝑜, [𝑡𝑠, 𝑡𝑒)), 𝑡𝑝𝑛) =

{
 

 
𝑡𝑟𝑢𝑒, (𝑠 = 𝑡𝑝𝑛. 𝑠 ∨ 𝑡𝑝𝑛. 𝑠 ∈ 𝑉) ∧

                     (𝑝 = 𝑡𝑝𝑛. 𝑝 ∨ 𝑡𝑝𝑛. 𝑝 ∈ 𝑉) ∧

                 (𝑜 = 𝑡𝑝𝑛. 𝑜 ∨ 𝑡𝑝𝑛. 𝑜 ∈ 𝑉)

𝑓𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

It ensures that the coming triple’s subject is equal to the triple pattern’s (tpn) subject or that 

the triple pattern’s subject is a variable (in the following examples, we use the question 

mark ‘?’ to mark a variable name). The same checks are done for the predicate and object 

parts of the coming triple. The algorithm presented in Listing 4.7 describes the filtering 

process. 

As the input stream is handled triple by triple in order, and as the time annotation is not 

changed, the same order is preserved in the output stream. 

Operator: Filter 

Input: stream Sit
in, filter predicate fp 

Output: stream Sit
out 

1 Foreach <{(s,p,o)},[ts,te)> arriving from Sit
in  

2  If fp(<{(s,p,o)},[ts,te)>) is true 

3   Append <{(s,p,o)},[ts,te)> to Sit
out 



Chapter 4 

69 

Example. Listing 4.8 (a) represents an example input stream, and Listing 4.8 (b) represents 

the output stream of a filter operator, with the triple pattern (?x, p2, ?y) as its filter 

predicate. 

<{(s1,p1,o1)}, [5, ∞)> 

<{(s1,p2,o2)}, [5, ∞)> 

<{(s2,p1,o4)}, [8, ∞)> 

<{(s2,p2,o4)}, [8, ∞)> 

<{(s2, p3,o5)}, [8, ∞)> 

Listing 4.8(a): Example input stream of a 

filter operator 

<{(s1,p2,o2)}, [5, ∞)> 

<{(s2,p2,o4)}, [8, ∞)> 

 

 

 

 

Listing 4.8(b): Output stream of a filter 

operator (fp=(?x, p2, ?y))

4.2.2.5 Window 

 

Listing 4.9: Window operator (time-based) 

The window operator is widely used in stream processing for two main reasons. First, it 

unblocks stateful operators and constrains the unlimited memory requirement. All the 

above one-pass operators are easily adapted to process streams in a pipelined fashion, as 

they do not have to keep states. However, stateful operators need to access the whole state 

in order to produce results. If streams are infinite, the memory required to save the state is 

unlimited, and the operator will be blocked indefinitely as it waits for the end of the 

streams. The window operator restricts the size of the input stream. The second reason for 

using the window operator is that it can serve as a part of the query semantics, as streaming 

applications are usually concerned with pattern changes over time. Users, for example, can 

express that they are interested in a specific event happening in the last hour as part of the 

query or rule. 

Listing 4.9 shows the window operator algorithm, where the time-based window size is 

denoted as w, which is a natural number (w ∈ N) that represents the number of time 

instances covered by the window. The window operator, itself, is a stateless one-pass unary 

Operator: Window 

Input: stream Sit
in, window size w 

Output: stream Sit
out 

1 Foreach <K,[ts,te)> arriving from Sit
in  

2 Append <K,[ts,ts+w)> to Sit
out 
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operator. We use a time-based sliding window definition. Its task is to assign the expiration 

time of each incoming element by adding the specified window size to the element’s start 

time. The window operator can be placed anywhere in the query pipeline but should 

precede any stateful operator. These stateful operators use the expiration time assigned by 

the window operator to maintain their windowed states. 

We note that this model does not place a limit on the number of stream elements that fit 

within a windowed state. Referring back to the external stream definition (Definitions 3), 

which states that multiple graphs can have the same timestamp, it means that there may be 

a very large but finite number of graphs within a windowed state at any given point. 

However, we do not consider windows that are fixed in terms of the number of stream 

elements they hold (such as the triple-based windows defined in CQELS (Le-Phuoc et al., 

2011)).  

Example. Listing 4.10 (a) represents an example input stream, and Listing 4.10 (b) 

represents the output stream of a window operator, with the size defined as 10 time 

instances. 

<{(s1,p1,o1)}, [5, ∞)> 

<{(s2,p1,o4)}, [8, ∞)> 

<{(s3, p3,o5)}, [10, ∞)> 

Listing 4.10(a): Example input stream of a 

window operator 

<{(s1,p1,o1)}, [5, 15)> 

<{(s2,p1,o4)}, [8, 18)> 

<{(s3, p3,o5)}, [10, 20)> 

Listing 4.10(b): Example output stream of a 

window operator (w=10) 

4.2.2.6 Join 

Join is a binary stateful operator. It works symmetrically by matching arriving elements 

from one input stream to elements of the state of the opposite stream. Unlike traditional 

joins, joins in streaming applications do not work on full states but rather on windows 

representing the most recent part of the input stream. As streaming data change over time, 

data elements continuously enter and exit the valid window part of the stream. Therefore, it 

is the join operator’s responsibility to ensure that their window states are up to date. At any 

point in time t ∈ T, a window state of a stream i is wsi = {<K, [ts,te)> | <K, [ts,te)> ∈  i ∧ t 

≤ te}, i.e. it includes all elements in stream i that have not expired. The join operator uses a 

join predicate, jp, which is a condition composed of variables and constants, conjunction 

and disjunction symbols (∧,∨), in addition to equality and ordering symbols (=, ≠, <, >, 

≤, ≥).  
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Listing 4.11: Auxiliary function 'removeExpired' algorithm 

 

Listing 4.12: Auxiliary function 'probe' algorithm 

 

Listing 4.13: Join operator (left activation) 

There are four processing steps that are carried out symmetrically by a join operator upon 

each arrival of a stream element. First, the arriving element is added to the state of the side 

it has arrived from. Second, the opposite stream state is updated by removing expired 

elements. This is to ensure that the new element does not match an outdated element. Then, 

the opposite state is probed for matches. Finally, the results are generated and appended to 

the output stream. Listing 4.13 shows these steps when a stream element arrives at the left 

side. Line 2 inserts the new element to the left window state, lines 3 and 4 update and 

probe the right window state, and lines 5 and 6 generate results. There is an equivalent 

Function: removeExpired(window state ws, timestamp t) 

1 ex = new list 

2 Foreach <K,[ts,te)> ∈ ws 

2 if(te < t) 

3   add K to ex 

4   remove <K, [ts,te)> from ws 

5  else return ex 

Function: probe(window state ws, element K, join predicate jp) 

1 return all K’ ∈ ws where jp(K, K’) holds 

Operator: Join (left activation) 

Input: streams Sigl
in, Sitr

in, window states wsl, wsr, join predicate jp 

Output: stream Sig
out 

1 Foreach <K,[ts,te)> arriving from Sigl
in 

2  insert <K,[ts,te)> to wsl 

3  removeExpired(wsr, ts) 

4 matches = probe(wsr, K, jp) 

5 foreach <K’,[ts’, te’)> ∈ matches 

6  Append <KK’, [max(ts,ts’),min(te, te’))> to Sig
out  
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right hand join algorithm to handle elements arriving at the right input stream.  The full 

join requires both of these algorithms, so they both append results to the same output 

stream. 

Multiple join operators can be connected to create a left-deep network. Therefore, apart 

from the first join in the network, all other joins receive an internal graph stream—which is 

the output of the previous join in the network—as their left input, and an internal triple 

stream—which is usually an output of a filter operator—as their right input. The first join 

in the network, as a special case, receives two internal triple streams from two filter 

operators. However, the join operator signature should still be adequate, as we defined 

internal triple streams as a subset of internal graph streams. As this first join constructs its 

results by combining an arriving triple from one side with a matching triple from the 

window state of the other side, the result is an internal graph stream. This means that the 

first join operator works also as a triple-to-graph operator.  

Deciding which elements to remove from a window state is based on the expiration times 

attached to these elements, as shown in the ‘removeExpired’ function (Listing 4.11). 

Elements with expiration times that are smaller than the start times of the newly arriving 

tuples cannot be joined, as there is no overlap in their validities. As input streams arrive in 

increasing order of start time, even future elements will have no chance to join with them, 

so they can be safely removed.   

When joining two stream elements, the result is a token that contains both elements. This 

generated element should be considered invalid as soon as one of the elements that 

contributed to it expires. Therefore, the generated token’s time interval is assigned as the 

intersection of the intervals of the contributing elements. 

The join algorithm is symmetrical; it handles elements from both sides in the order in 

which they arrived. However, it is possible for the join operator to receive an element from 

each side at the same time (thus having the same timestamp). We show here that the result 

stream will be the same regardless of the order in which the join operator handles its input. 

Let el be the new element arriving at the left input stream, er the new element arriving at 

the right input stream, and wsl and wsr the left and right window states. Now, let us 

consider joining the left input element first. The algorithm starts by inserting el in the left 

window state, wsl: 

1- wsl’ = wsl  el 
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The next step is to update the right window by removing expired elements (referred to as 

ex): 

2- wsr’ = wsr - exr 

Then, the updated right window is probed with the left incoming element to identify 

matches: 

3- matches = el ⋈ wsr’ 

At this stage, the algorithm finishes by appending the found matches to the result stream 

S1: 

4- S1 = {earlier elements, el ⋈ wsr’} 

The algorithm is called again, repeating the steps performed on the other side for the 

element arriving at the right input, er. First, the updated right window state, wsr’ (step 2), is 

updated again by inserting the new element: 

5- wsr’’ = wsr’  er 

Then, the left window (which was updated in step 1) is updated by removing expired 

elements: 

6- wsl’’ = wsl’ – exl 

New matches are found by probing the updated left window with the element arriving at 

the right input: 

7- matches = er ⋈ wsl’’ 

The result stream, S1, is then appended with the new matches: 

8- S1 = {earlier elements, el ⋈ wsr’, er ⋈ wsl’’} 

The second possibility is that the join algorithm starts processing the element from the 

right stream first, so let us repeat the same eight steps to produce output stream S2 so we 

can determine whether S1 and S2 are equivalent. 

1- wsr’ = wsr  er 

2- wsl’ = wsl – exl 

3- matches = er ⋈ wsl’ 

4- S2 = {earlier elements, er ⋈ wsl’} 

5- wsl’’ = wsl’  el 

6- wsr’’ = wsr’ – exr 

7- matches = el ⋈ wsr’’ 

8- S2 = {earlier elements, er ⋈ wsl’, el ⋈ wsr’’} 
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To compare S1 with S2, we disregard the earlier elements, as they are supposed to be the 

same. Thus, we compare S1 = { el ⋈ wsr’, er ⋈ wsl’’} with S2 = { er ⋈ wsl’, el ⋈ wsr’’}. 

From steps 1, 2, and 6 above, S1 = { el ⋈ wsr’, er ⋈ wsl’’} = { el ⋈ (wsr - exr), er ⋈ ((wsl 

 el) – exl) } = { el ⋈ (wsr - exr), (er ⋈ (wsl – exl))  (er ⋈ el) } and S2 = { er ⋈ wsl’, el ⋈ 

wsr’’} = { er ⋈ (wsl – exl), el ⋈ ((wsr  er) – exr)} = { er ⋈ (wsl – exl), (el ⋈ (wsr – exr))  

(el ⋈ er)}. If we disregard the part that joins el with er as it is the same in both streams (as 

the join operator is commutative) we find that S1 = { el ⋈ (wsr - exr), (er ⋈ (wsl – exl))} 

and S2 = { er ⋈ (wsl – exl), (el ⋈ (wsr – exr))}.  

We note that both streams contain the same results, but appear in a different order. Based 

on the definition of the join operator, the join results are stamped with the largest start 

timestamp of its parents. As we expect stream elements to arrive in order, el will have a 

larger start timestamp than those in the right window state. Therefore, elements in (el ⋈ 

(wsr - exr)) should use el’s start timestamp as their start timestamp. The same is true on the 

other side; elements in (er ⋈ (wsl – exl)) should use er‘s start timestamp as their start 

timestamp. As el and er have the same start timestamp, both streams are considered 

equivalent. Definition 4 states that there is no order among stream elements with the same 

start timestamp.  

Example. Using a 10 time instances window, consider this simple join example: (?x, 

p2, ?y)∧(?x, p2, ?z). It joins two triples (with p2 as a predicate) if they have the same 

subject. Listing 4.14 (a) and (b) represents left and right input streams of a join operator, 

and Listing 4.14 (c) represents its output stream. 

<{(s1,p2,o1)}, [5, 15)> 

<{(s2,p2,o4)}, [8, 18)> 

<{(s4, p2,o5)}, [11, 21)> 

<{(s3, p2,o5)}, [14, 24)> 

<{(s2, p2,o7)}, [17, 27)> 

Listing 4.14(a): Example left 

input stream of a join operator 

<{(s2,p2,o1)}, [6, 16)> 

<{(s3,p2,o2)}, [10, 20)> 

<{(s1,p2,o3)}, [12, 22)> 

<{(s4,p2,o2)}, [14, 24)> 

<{(s5,p2,o4)}, [15, 25)> 

Listing 4.14(b): Example right 

input stream of a join operator 

<{(s2,p2,o4), (s2,p2,o1)}, [8, 16)> 

<{(s1,p2,o3), (s1,p2,o1)} [12, 15)> 

<{(s3, p2,o5), (s3,p2,o2)}, [14, 20)> 

<{(s4,p2,o2), (s4, p2,o5)}, [14, 21)> 

 

Listing 4.14(c): Example output 

stream of a join operator 

When the second element from the left stream (with subject s2) arrives, it generates the 

first result as it joins with the first element in the right window. The second result is 

generated when the third element from the right stream (with subject s1) joins the first 

element in the left window state. Then at time point 14, we simultaneously get two 

elements from both streams. If we handle the incoming element from the left stream first, 
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the new element with subject s3 joins with the second element in the right window state, 

creating the result <{(s3, p2,o5), (s3,p2,o2)}, [14, 20)>, then by handling the incoming 

element from the right stream, we get the result <{(s4,p2,o2), (s4, p2,o5)}, [14, 21)>. On 

the other hand, if we handle the incoming element from the right stream first, the result of 

s4 subject with the time interval [14, 21) will be generated first, followed by the result of 

s3 subject with the time interval [14, 20). As they both have the same start timestamp 

(which defines the order of the stream), we will get the same output stream regardless of 

which input side we handle first. Finally, notice that the last incoming element from the 

left stream does not join with the first element in the right side as it expires before the 

arrival of the new element. 

4.2.2.7 Aggregation 

 

Listing 4.15: Aggregation operator 

Aggregate operators provide and maintain statistics about window states. They are widely 

used in streaming applications to provide compact summaries of the streams. These 

statistics include count, sum, max, min, and average (which can be derived from sum and 

count). The operator uses a user-defined aggregate function (agf) that is applied 

successively to the current window state, ws. In the most general algorithm (presented in 

Listing 4.15), the aggregate operator needs to maintain one window (the current window 

state) and keep all its elements in order to re-evaluate the aggregate function with the 

updated content of the window. Similar to the join operator, upon each arrival of a new 

element, an aggregate operator needs to first update its window state by removing expired 

elements. Then, it inserts the arriving element to its window state, re-evaluates its function 

on the current window, and constructs a new triple around the new result to be appended, 

Operator: Aggregation 

Input: stream Sig
in, window state ws, current aggregate v, aggregation function agf 

Output: stream Sig
out 

1 Foreach <K,[ts,te)> arriving from Sig
in  

2  removeExpired(ws, ts) 

3 te’ = smallest end time in ws 

4 insert < K,[ts,te)> to ws  

5 v = agf(ws)  

6  append <K{(currentAggregate, hasValue, v)}, [ts, min(te, te’))> to Sig
out  
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along with the arriving token, to the output stream. An example aggregate function agf is 

max (presented in Listing 4.16), which finds the maximum value of a specific variable in 

the current window. We use the notation K(x) to refer to the attribute of interest ‘x’ in the 

arriving token ‘K’. For example, if K is {(s1,p1,o1), (s2,p2,20)}, and x is the object of the 

second triple in K, then K(x) = 20. 

 

Listing 4.16: max aggregate function 

While some aggregate functions can be maintained incrementally, some require a new re-

evaluation by scanning the whole window in special cases. Sum and count can be 

maintained incrementally as follows: for each insertion, the new element’s value is added 

to the current sum, and the count is incremented by one; for each deletion of an expired 

element, its value is decreased from the current sum, and the count is decremented by one 

(sum incremental algorithm is presented in Listing 4.17). In this case, we send the new 

element, the expired elements, and the current aggregate to the aggregate function instead 

of sending the whole window state. Therefore the aggregation algorithm in Listing 4.13 

needs slight changes in line 2 where there should be a list (ex) to receive the expired 

elements from ‘removeExpired’ function (ex = removeExpired(ws, ts)), and line 5 to send 

the new element K, the expired elements ex, and the current aggregate v instead of sending 

ws to the aggregate function (v = agf(K, ex, v)). Max and min, on the other hand, require 

rescanning the window upon each expiration, where the expired element is the current max 

or min.  

Function: max(window state ws) 

1 // x is the attribute of K that contains the numerical value of interest 

2 v = 0 

3 Foreach <K,[ts,te)> ∈ ws 

4 if(K(x) > v) 

5   v = K(x) 

6 return v 
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Listing 4.17: sum aggregate function (incremental) 

Example. Consider a simple aggregate function that finds the element with the maximum 

object value (e.g. a temperature or a vehicle speed) in a 10 time instances window. Listing 

4.18 (a) represents an example input stream, and Listing 4.18 (b) represents the output 

stream. Notice that we receive the last element, the previous maximum value of 30 is 

already expired, so the algorithm finds the maximum value in the valid window state. 

<{(s1,p1,20)}, [5, 15)> 

<{(s3,p1,30)}, [10, 20)> 

<{(s4,p1,20)}, [16, 26)> 

<{(s5,p1,17)}, [21, 31)> 

Listing 4.18(a): Example input stream of a 

'max' aggregation operator 

<{(s1,p1,20)}, [5, 15)> 

<{(s3,p1,30)}, [10, 15)> 

<{(s3,p1,30)}, [16, 20)> 

<{(s4,p1,20)}, [21, 26)> 

Listing 4.18(b): Example output stream of a 

'max' aggregation operator 

 

4.2.2.8 Map 

 

Listing 4.19: Map operator 

This operator applies a mapping function to each arriving token and appends the result to 

the output stream. The map function, mf, applies a user-defined graph template composed 

of elements from the set (I  B  L  V) to transform an incoming token to a new graph. 

Operator: Map 

Input: stream Sig
in, mapping function mf 

Output: stream Sig
out 

1 Foreach <K,[ts,te)> arriving from Sig
in  

2  Append <mf(K),[ts,te)> to Sig
out 

Function: sum(new element K, expired elements ex, current aggregate v) 

1 // x is the attribute of K that contains the numerical value of interest 

2 Foreach <K’,[ts,te)> ∈ ex 

3 v = v – K’(x) 

4 v = v + K(x) 

5 return v 
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It is a more general form of the relational algebra projection operator, as it can generate 

new attributes that are not part of the incoming element. In our rule-based reasoning 

context, this operator is used to generate the head of the rule when the token satisfies the 

whole body of this rule. This way, it is also equivalent to SPARQL’s CONSTRUCT 

clause. The generated result keeps the same time interval of the original token. 

Note that Definition 4 states that tokens can represent complete results. Therefore, the 

result stream produced by the map operator is represented as an internal stream so that it 

can re-enter the system while holding time intervals that model its validity. 

Example. Listing 4.20 (a) represents an example input stream, and Listing 4.20 (b) 

represents the output stream of a map operator, that generates the head (?x, ?p, ?z) from the 

input {(?x, ?p, ?y),(?y, ?p, ?z)} which can be used to imply transitivity. 

<{(s1,p1,o1), (o1,p1,o2)}, [5, 10)> 

<{(s2,p2,o4), (o4,p2,o3)}, [8, 12)> 

Listing 4.20(a): Example input stream of a 

map operator 

<{(s1,p1,o2)}, [5, 10)> 

<{(s2,p2,o3)}, [8, 12)> 

Listing 4.20(b): Example output stream of a 

map operator 

The time interval and expiration model are based on the temporal operator algebra of 

Krämer and Seeger (2005). However, their stateful operators’ algorithms do not release 

output results until they expire to ensure correctness of results, as no future input elements 

can modify the output. As this does not follow the real-time requirement of our framework, 

our operators release results as soon as they are produced. This does not affect the 

correctness of the results, as it currently does not include operators that can invalidate 

previous results before they expire such as the difference operator.  

4.3 R4: Rule-based Reasoner for RDF streams using Rete   

We implemented the above framework of continuous reasoning for RDF streams using the 

Rete algorithm. The Rete algorithm is used for pattern matching in the rule-based 

reasoning process. Rules are translated into Rete networks of nodes. The nodes represent 

different operators that can be shared between rules and the data flows between these 

nodes. The tree-like network divides the matching process into multiple steps that perform 

different checks, so if a data element does not match the first node, it is simply discarded 

and does not complete its way through the network.  
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In the first stage, a discrimination network partitions the input streams by applying filtering 

conditions (filter nodes), forming Rete’s alpha network. These streams are then fed into the 

beta network where multiple join nodes group their input streams that share the same value 

of a specified variable. Finally, after all the streams are joined, a terminal node is 

responsible for generating the new inferred statements, which are modelled to form the 

output stream. This stream then enters the network again as input in order to infer more 

results. The same process is applied for user defined rules and background ontological 

rules such as RDFS (Brickley et al., 2014) entailment rules. Figure 4.1 illustrates the Rete 

network operators and data flow to match rules 9 and 10 of the RDFS entailment rules. 

The original Rete algorithm was not designed to deal with streaming data. In fact, Rete 

trades memory space for faster processing, as it materialises all intermediate results. In 

streaming applications, this is not a viable option, as streams can be of unlimited size. 

Therefore, we extend Rete by applying the concept of sliding windows to the working 

memories in a way equivalent to Berstel (2002). Each join node maintains a sliding 

window over each stream input, effectively replacing alpha and beta memories with stream 

window states.  

 Figure 4.1: Rete network example (RDFS rules 9 and 11) 

The next subsections present the rule language used to declare rules, give the system 

architecture, and detail the reasoning process carried out by the Rete networks. 

4.3.1 Rule Language  

For generic rule-based reasoning, we chose RIF (Kifer and Boley, 2013) to express the 

rules that are going to be continuously matched against data streams. Besides being a W3C 

standard that fits nicely with other Semantic Web standards (its compatibility with RDF 

and OWL is defined in de Bruijn and Welty (2013)), RIF was mainly designed to facilitate 

S2 

S1 

rdfs9: IF uuu rdfs:subClassOf xxx AND vvv rdf:type uuu THEN vvv rdf:type xxx 

rdfs10: IF uuu rdf:type rdfs:Class THEN uuu rdfs:subClassOf uuu 

Filter 
(Predicate= rdfs:subClassOf) 

Filter 
(Predicate= rdf:type) 

Filter 

(Object = rdfs:Class) 

Terminal 

(Rule 10) 

Data 
source 

Join 

(S1.Subject = S2.Object) 

Terminal 

(Rule 9) 

win2 

win1 

S1 
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rule exchange among other rule systems; however, we only consider it here as a declarative 

rule language. R4 supports RIF Core, which corresponds to the language of definite Horn 

rules without function symbols, equivalent to Datalog (Boley et al., 2013). 

As data streams can be of unlimited size, rules cannot be evaluated against whole streams. 

A common approach to address this problem that our continuous reasoning framework 

follows is to specify a limited subpart – a window – of the stream. These windows convert 

an unlimited stream into a finite set, which a rule can be matched against. As these 

windows can form a part of the rule semantics, users should be able to specify them using 

the rule language. Therefore, we extend RIF to express these windows in the rule 

documents in order to be applied in streaming contexts. 

Listing 4.21 shows the EBNF grammar for the extended RIF Core syntax. RIF rule sets are 

organised into Documents, Groups, and Rules. At the document level, the ‘Import’ 

directive is used to import data from non-RIF Core documents, such as RDF data or OWL 

ontologies, where the LOCATOR is a URI indicating the location of the imported 

document and PROFILE is an optional entailment regime. The import directive can be 

used to import the static background data that is temporally agnostic. To enable the system 

to differentiate between this data and streaming temporal data, we add the StreamImport 

directive, which defines streaming data sources. For each stream, users can specify the 

window size, i.e. the time validity for each element of this stream. For example, users can 

state that they are only interested in tweets posted during the last hour by a specific user. 

The window specification is optional, as some rules that do not block operators can be 

processed without time restrictions, e.g. simple filtering. 

Specifying the window size at the import directive is generally semantically equivalent to 

specifying it at the FROM clause in SPARQL extensions such as C-SPARQL. They both 

extract from the stream the most recent elements that occur during the last number of time 

units, specified as the size of the window. However, in SPARQL extensions, this is 

specified for each query, while the stream import directive is defined at the document 

level, which is expected to contain more than one rule. Therefore, the import window 

serves as a global window across all rules. As different rules can require different window 

constraints, local window size can also be optionally set at the formula level to enable 

more flexibility. This is comparable to a Streaming SPARQL window at the query’s 

GroupGraphPattern level. Local window values (if specified) override global window 

values in the respective rule. 
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Rule Language:  

  Document       ::= IRIMETA? 'Document' '(' Base? Prefix* Import* ImportStream* 

Group?')' 

  Base           ::= 'Base' '(' ANGLEBRACKIRI ')' 

  Prefix         ::= 'Prefix' '(' Name ANGLEBRACKIRI ')' 

  Import         ::= IRIMETA? 'Import' '(' LOCATOR PROFILE? ')' 

  ImportStream   ::= IRIMETA? 'ImportStream' '(' LOCATOR PROFILE? ')' Window? 

  Group          ::= IRIMETA? 'Group' Strategy? Priority? '(' (RULE | Group)* ')'  

  RULE           ::= (IRIMETA? 'Forall' Var+ '(' CLAUSE ')') | CLAUSE  

  CLAUSE         ::= Implies | ATOMIC 

  Implies        ::= IRIMETA? (ATOMIC | 'And' '(' ATOMIC* ')') ':-' FORMULA 

  LOCATOR        ::= ANGLEBRACKIRI 

  PROFILE        ::= ANGLEBRACKIRI 

 

Condition Language:  

  FORMULA        ::= (IRIMETA? 'And' '(' FORMULA* ')' | 

                     IRIMETA? 'Or' '(' FORMULA* ')' | 

                     IRIMETA? 'Exists' Var+ '(' FORMULA ')' | 

                     ATOMIC | 

                     IRIMETA? Equal | 

                     IRIMETA? Member | 

                     IRIMETA? 'External' '(' Atom ')') Window? ('On' IRIMETA)? 

  ATOMIC         ::= IRIMETA? (Atom | Frame) 

  Atom           ::= UNITERM 

  UNITERM        ::= Const '(' (TERM* ')' 

  GROUNDUNITERM  ::= Const '(' GROUNDTERM* ')' 

  Equal          ::= TERM '=' TERM 

  Member         ::= TERM '#' TERM 

  Frame          ::= TERM '[' (TERM '->' TERM)* ']' 

  TERM           ::= IRIMETA? (Const | Var | List | 'External' '(' Expr ')') 

  GROUNDTERM     ::= IRIMETA? (Const | List | 'External' '(' GROUNDUNITERM ')') 

  Expr           ::= UNITERM 

  List           ::= 'List' '(' GROUNDTERM* ')' 

  Const          ::= '"' UNICODESTRING '"^^' SYMSPACE | CONSTSHORT 

  Var            ::= '?' Name 

  Name           ::= NCName 

  SYMSPACE       ::= ANGLEBRACKIRI | CURIE 

  Window         ::= positiveInteger TimeUnit 

  TimeUnit       ::= 'ms' | 's' | 'm' | 'h' 

 

Annotations:  

  IRIMETA        ::= '(*' IRICONST? (Frame | 'And' '(' Frame* ')')? '*)' 

 

Listing 4.21: Extended RIF Core syntax (extensions are shown in bold) 

We also added another optional construct at the formula level. The ‘On’ construct specifies 

the ID of an input for this formula to be applied on. Using this option, different parts of the 

rules can be applied to different input streams, without having to apply all rules to all input 

streams. 

http://www.w3.org/TR/2013/REC-rif-dtb-20130205/#sec-shortcuts-constants
http://www.w3.org/TR/2006/REC-xml-names11-20060816/#NT-NCName
http://www.w3.org/TR/2013/REC-rif-dtb-20130205/#sec-shortcuts-constants
http://www.w3.org/TR/2013/REC-rif-dtb-20130205/#sec-shortcuts-constants
http://www.w3.org/TR/2013/REC-rif-dtb-20130205/#sec-shortcuts-constants
http://www.w3.org/TR/2013/REC-rif-dtb-20130205/#sec-shortcuts-constants
http://www.w3.org/TR/2013/REC-rif-dtb-20130205/#sec-shortcuts-constants
http://www.w3.org/TR/2006/REC-xml-names11-20060816/#NT-NCName
http://www.w3.org/TR/2013/REC-rif-dtb-20130205/#sec-shortcuts-constants
http://www.w3.org/TR/2013/REC-rif-dtb-20130205/#sec-shortcuts-constants
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4.3.2 System architecture  

 

Figure 4.2: R4 system architecture 

R4 is a native rule-based reasoner for RDF streams. It receives rules from users, evaluates 

them on RDF streams, and continuously provides results. The white-box system 

architecture is illustrated in Figure 4.2. The heart of the system is the dynamic Rete engine, 

where the continuous processing of both RDF streams and RDF static data actually 

happens. The engine instantiates the data flow network operators and connects them as 

specified by the optimiser. The network operators start processing the data pushed to the 

engine by the data sources. The engine keeps processing incoming data, generating streams 

of results, until it is explicitly requested to stop. While the generated results are pushed 

instantly as output to the user, they are also fed back to the network to be used as streaming 

input. 

The second main component of R4 is the adaptive optimiser. Its main job is to choose an 

efficient plan for the current conditions to be used by the Rete engine. Apart from 

communicating the chosen plan to the rule engine, the optimiser communicates with two 

more components: the rule parser and the monitor. A rule document containing any 

number of rules in the extended RIF Core language is submitted to the system. The rule 

parser component translates the rules into abstract syntax trees and passes it to the 

optimiser. Then, the optimiser uses some basic heuristics to generate an initial plan and 

conveys it to the rule engine. As this initial plan might not be optimal, and as stream 

characteristics (e.g. input rates) can change over time, the monitor continuously collects 
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performance-related statistics about the running operators and sends them to the optimiser 

periodically. The optimiser uses the collected statistics to check if any changes need to be 

made over the running plan and instructs the Rete engine to perform such changes. 

The following subsection describes the rule engine implementation of the continuous 

reasoning framework in more details, while the adaptive optimisation part is left for the 

next chapter. 

4.3.3 Data Processing using Rete 

The Rete-based dataflow networks of R4 consist of nodes that fall into four main 

categories: source nodes, alpha nodes, beta nodes, and terminal nodes. Each type carries 

out specific tasks, effectively implementing the operators detailed in Section 4.2.2.   

Reading input: In R4, data enters the network through the source nodes. For each import 

in the RIF file, the rule engine instantiates a source node that is responsible for acquiring 

the data input from the imported document. As inputs can be static RDF data or streaming 

data, source nodes have two types: static sources and streaming sources. For static imports, 

source nodes pull the data (RDF statements) from the specified documents and push them 

to the nodes in their respective network. Therefore, static data populate the network before 

dealing with streaming data. For streaming imports, source nodes implement the graph-to-

triples operator, converting streams of graphs into streams of triples. Furthermore, if the 

streaming import statement declares a window size (global window) for this stream, the 

corresponding source node also implements the window operator, annotating the incoming 

statements with time intervals. The start time is given as the system time of arrival if the 

parent graph was not already annotated at its origin, otherwise passing the annotation of 

the graph to the resulting triples. In both cases, the end time is calculated as the sum of the 

start time and window size. Source nodes propagate the annotated triples to their successor 

nodes, which are the alpha nodes. 

Alpha network: Alpha nodes are single-entry nodes that form a discrimination network. 

In R4, an alpha node can receive RDF triples (streams or static) from any number of nodes 

through its single input. Each received element is matched against some conditions and is 

either dropped if there is no match or propagated downstream to its successor node(s) in 

the event of a match. For triple pattern conditions that contain, for example, two constants 

(e.g. (?x, p, o)), it is possible to either create two successive alpha nodes – one for each 

constant – or create one alpha node that checks both constraints. While the first option 
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increases the possibilities of sharing, we opted for the second option to get fewer nodes 

and, therefore, less traffic. The optimiser creates one alpha node for each triple pattern in 

the set of rules (triple patterns are represented as frames in RIF). Alpha nodes, therefore, 

implement the filter operator defined in 4.2.2.2. Alpha nodes treat static RDF triples and 

RDF streams equally, as they are not concerned with the time element. Each alpha node is 

followed by an alpha memory. The first alpha memory in the network is followed by a 

special node called the left input adaptor (described below), while the other alpha 

memories are followed by beta nodes.  

Beta network: The left input adaptor node is responsible for preparing the incoming 

triples to enter the beta network from the left input of the first beta node in a given join-

tree. It creates a new token that represents a partial match – defined as a list of triples – for 

each rule body, for which the incoming triple is a sub-graph match, then adds this triple as 

the first item in each list. It also annotates each token with the same time interval as the 

triple for which it was generated. Tokens are then sent to the first node in the beta network. 

Beta nodes are two-input nodes that are responsible for joining the branches of the alpha 

network. In our implementation, as in the original Rete algorithm, beta nodes form a left-

deep tree. Each beta node maintains a left memory, which is a beta memory storing tokens 

received from other beta nodes (or from the left input adaptor node in case of the first beta 

node), and a right memory, which is an alpha memory storing triples received from alpha 

nodes. Join nodes are beta nodes that implement the join operator (defined in 4.2.2.5). 

They match inputs from both sides according to some conditions, e.g. a shared variable 

binding. As explained earlier, we use window-join operators to avoid storing and operating 

over all partial results. In this context, each left (beta) and right (alpha) memory is 

implemented as a valid window state.  

When a join node is left-activated (i.e. it receives a token through its left input), it first adds 

the new token to its left window then prepares its right window by removing any expired 

items (items with an end time that is earlier than the start time of the incoming token) so 

that no outdated results are matched. The right window is then searched according to the 

join node conditions. When a match is found, a new token is created by duplicating the left 

token and adding the right triple to the new token's triple list. The new token is annotated 

with the latest start time and earliest end time of the left token and right triple time 

annotations (the intersection of their time intervals) and then propagated to the next beta 

node, or to the terminal node if it is in the root node of a join tree. Conversely, when the 

join node is right-activated by receiving a triple from an alpha node, it adds the new triple 
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to the right window, prepares the left window, then matches the triple against the 

remaining tokens. Join nodes that join a streaming input with a static input can only be 

activated from the streaming side, and the join result is annotated with the same time 

interval of the arriving stream element. 

Generating results: Finally, terminal nodes receive tokens from the root nodes of join-

trees and are responsible for producing entailed graphs. The optimiser creates one terminal 

node for each rule, so a terminal node is an implementation of the map operator (defined in 

4.2.2.3) using the rule head as the map function. The annotation of the entailed graphs is 

directly inherited from the completed token from which it is produced. The union of the 

output of all terminal nodes, which is the output of the system, itself, is re-entered as an 

input stream to the source nodes to support iterative inference. 

Memories implementation: The data structures used to implement the window states 

need to support fast update (insertion and removal) and efficient search. Implementing the 

window states as priority queues, in which tokens or triples are ordered according to their 

end time annotations, ensures the efficient removal of expired elements, as the algorithm 

does not have to traverse the whole data structure searching for expired elements. 

However, this can perform badly with regards to probing, as the size of these memories is 

expected to be big and the match operation is repeated excessively with fast input rates. 

Therefore, we implemented each window state using a priority queue and a hash map in 

order to simultaneously improve the speed of updating (using the priority queue) and 

probing (using the hash map). Static memories, however, only need hash maps. 

Each memory state supports three operations: insert, prune, and probe. Insert and prune 

work on both structures, while probe only uses the hash map. Listing 4.22 presents 

algorithms of these operations for alpha memories. If the rule’s document only specifies a 

global window, then the insert operation simply inserts the arriving triple to the hash map 

and priority queue. However, if the alpha memory corresponds to a triple pattern (of which 

the enclosing formula contains a local window), the insert operation overrides the end time 

of the triple to represent the local window size.  
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Listing 4.22: Alpha memory operations 

Sharing memories: The Rete algorithm allows sharing nodes and their memories between 

different rules to save processing and memory costs. Nodes that have the same conditions 

and ancestors can be shared instead of duplicating. For example, if the triple pattern (?x, 

p, ?y), where p is a specific property, appears in two rules, the same alpha node that checks 

for this pattern and the resulting alpha memory can be shared between the two rules. 

However, a situation to be considered is if one of the identical triple patterns appears in a 

formula that specifies a local window, while the other one does not (i.e. it uses the global 

window), or if both of them appear in formulas with local windows of different sizes. In 

this case, the alpha memory adopts the bigger window so that no possible results are 

missed. As this can mean generating false positives for the formula with the smaller 

window size, the following join node corresponding to the smaller window formula needs 

to check for an overlap in the time intervals of its two inputs according to its own window 

definition during the probing process. 

While the model allows different sized local windows to appear in the same rule, we notice 

that the join order can affect the number of results. To illustrate with an example, consider 

the following rule that has two joins, each specifies its own local window size: join events 

Structure: Alpha memory 

H is the memory’s hash map; PQ is the priority queue; w is the local window size 

Procedure: Insert (Triple e) 

1 if e is associated with a timestamp 

2 add e to PQ  

3  if w ≠ null 

4   e.te = e.ts+w 

5 add e to H 

Procedure: Probe (Token k) 

1  return H.get(k.joinAttribute) 

Procedure: Prune (int ts) 

1 e = head of PQ 

2 while e.te<ts 

3  remove e from PQ and from H 

4  e = next triple in PQ 
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a and b (a⋈ b) occurring in a 5 minute window, and join events b and c (b⋈ c) occurring 

in a 10 minute window. 

First, elements from stream a will pass a window operator, which assigns an end timestamp 

by adding 5 to the start time (assuming the time unit is minutes). As the alpha memory of 

stream b is shared between two windows, it will take the bigger one, adding 10 to the start 

time. Elements from stream c will be assigned end timestamps by adding 10 to the start 

timestamp.  

Consider these inputs: a= <a1,1>, b= <b1,2>, c= <c1,5>, <c2,8>. We should expect to get 

two answers from these inputs, the first one combines a1, b1, and c1, and the second one 

combines a1, b1, and c2.  

By applying the window operators to the inputs, we get: a= <a1, [1,6)>, b= <b1,[2, 12)>, 

c= <c1,[5,15)>, <c2,[8,18)>. To join all streams in a left deep plan, we have two options: 

(a⋈b) ⋈c, or (b⋈ c) ⋈a. 

In the first case: the first join (a⋈ b) generates a single result: <(a1,b1),[2,6)> and passes it 

to the second join, then the second join ((a⋈ b) ⋈c) re-assigns the expiration time of this 

element converting it to <(a1,b1),[2,12)> and matches it against the event stream c 

generating the results: <(a1,b1,c1),[5,12)> and <(a1,b1,c2),[8,12)>. 

In the second case: the first join (b⋈ c) generates two results: <(b1,c1),[5,12)> and 

<(b1,c2),[8,12)> and passes them to the second join, then the second join ((b⋈ c) ⋈a) re-

assigns the expiration time of these elements converting them to <(b1,c1),[5,10)> and 

<(b1,c2),[8,13)> and matches them against the event stream a generating the result: 

<(a1,b1,c1),[5,6)>. We notice that this join order misses the second result that combines 

a1, b1 and c2. While the first plan was able to generate this result by re-assigning the 

expiration time according to its local window, this plan still missed this output. Therefore, 

we note that when windows are of the same size, then the order of joins does not affect the 

result. On the other hand, when windows are of different sizes, the order of joins can affect 

the result, and hence reasoning may be incomplete. 

Garbage collection: The join node algorithm ensures that data elements in one of the input 

memories that cannot be used to produce results are deleted by checking the expiration 

time every time a new element arrives at the other input. This works efficiently for join 

nodes that join two streams with similar input rates. However, if one of the input streams is 

very slow and the second is fast, the fast stream’s memory can grow big before an element 
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arrives from the slow stream to trigger the garbage collection process. While this has no 

functional effect on the behaviour of the join, it does increase the resource consumption of 

this join. In this case, the join node should periodically check its input stream memories for 

expired data. Another extreme case is when a join node joins a static memory with a 

stream; this join is only activated from the streaming side, so garbage collection on the 

streaming memory is never triggered. For these joins, instead of invalidating expired 

elements from the opposite input memory, this is performed on the input memory of the 

same side, as the opposite memory is static and its elements are persistent. We note that 

this technique is not needed in the general case (where both streams have comparable 

arrival rates), as pruning the other input (which is always required in order to ensure 

correctness of results) is sufficient. 

Ontology reasoning: In the RIF import statements, users can choose the entailment 

regime for background reasoning. If one is specified, the system builds a separate Rete 

network that implements the entailment rules of the specified regime. These networks feed 

their output entailments directly to the main Rete network that implements the user-defined 

rules. RDFS ontologies are supported by building a network that implements the 13 RDFS 

entailment rules. Appendix A shows the RDFS++ rules written in RIF and the 

corresponding Rete. RDFS++ rules go beyond basic RDFS constructs by supporting OWL 

inverseOf, sameAs, and TransitiveProperty (Allemang and Hendler, 2008). To support 

OWL ontologies, the RIF document ‘OWL 2 RL in RIF’ (Reynolds, 2013) describes two 

approaches to reason over the rule-based dialect of OWL 2 using RIF. The first is a direct 

translation of OWL 2 RL rules to RIF Core. While this approach is straightforward and 

easy to implement, it has the disadvantage of creating a big network for the large list of 

rules; however, some parts of the network might never be used (the corresponding rule’s 

constructs are never used in the ontology). The second approach avoids this problem by 

translating the source OWL 2 RL ontology to a specialised RIF Core rule set. An algorithm 

that handles the instantiation of the RIF rule set for a particular ontology is described in the 

‘OWL 2 RL in RIF’ document. As this algorithm only uses TBox axioms (static 

knowledge), it can be implemented as it is in our stream reasoner.   

4.4 Conclusion   

This chapter has presented our main contribution: a continuous reasoning approach, and 

the implemented stream reasoning engine R4: a rule-based reasoner for RDF streams using 

Rete. R4 provides continuous inferencing capabilities natively over RDF streams for 
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generic rules expressed in our extension of RIF, which represents a minor contribution of 

this thesis. We used Java as a programming language to implement a prototype system of 

R4. The implemented prototype can successfully read RDF streams, use Rete networks to 

reason over them, and continuously produce results. In the next chapter, we provide a 

concrete scenario with a number of use cases, along with a comparative evaluation of the 

implemented reasoner. 
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Chapter 5: Evaluating R4 

Chapter 4 described R4, a continuous rule-based reasoner for semantic streams. This 

chapter tests and evaluates the performance of the implemented prototype. Section 

5.1 presents an evaluation scenario – describing the input datasets used in the 

evaluation process, along with a number of rules with different complexities – to test 

the system functionality. Then, Section 5.2 presents a comparative evaluation; we 

conduct several experiments to evaluate the system performance by comparing it to 

other reasoners. Firstly, in Section 5.2.1, we compare R4 performance to a static 

reasoner to show the advantage of the continuous reasoning approach. Then, in 

Section 5.2.2, we compare R4 to other state-of-the-art systems that are designed to 

reason over semantic streams. 

5.1 Evaluation scenario 

We obtained semantic streams from the SemsorGrid4Env11 project. The main objective of 

this project is to design, implement, and deploy a service-oriented architecture and 

middleware that allows application developers to build open, large-scale, semantic-based 

sensor network applications for environmental management (Gray et al., 2009). It employs 

Semantic Web techniques to real-world, real-time data coming from heterogeneous sensor 

networks so that developers can use these sensors for other environmental management 

purposes than those they were originally expected to have.  

5.1.1 Datasets 

Meteorological and oceanographic data generated by the Channel Coast Observatory12 

(CCO) sensor network are made available in RDF format by SemsorGrid4Env’s CCO API 

(Frazer et al., 2011). Every half hour, the CCO API publishes new semantic sensor 

observations obtained from 24 sensors deployed around the English Channel. These 

observations observe several properties, e.g. wave height, wave direction, and wind speed. 

The API makes these available as a collection of observations (i.e. sets of observations 

sharing some characteristics) (Garcia-Castro et al., 2012) for a given half-hour period. A 

published collection could comprise only observations, but could also be a collection that 

                                                           

11 http://www.semsorgrid4env.eu/ 
12 http://www.channelcoast.org/ 

http://www.semsorgrid4env.eu/
http://www.channelcoast.org/
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aggregates other collections of observations. This data is published on the Web as linked 

data13 and stored in a triple store with a SPARQL endpoint14.  

 

Figure 5.1: The SSN ontology, key concepts and relations, split by conceptual modules (Compton 

et al., 2012) 

The project reuses a number of ontologies to model the data. However, it mainly relies on 

the Semantic Sensor Networks (SSN) ontology (Compton et al., 2012). The SSN ontology 

is organised into ten conceptual modules of related concepts, as shown in Figure 5.1. The 

core module is the Sensor-Stimulus-Observation (SSO) pattern, which links sensors, what 

they sense, and the resulting observations. Other modules are used to, for example, 

represent the deployment of sensors and their platforms, the measuring capabilities of 

sensors and the survival conditions of specific environments. The SSN ontology uses the 

DOLCE+DnS Ultra Lite (DUL)15 foundational ontology as an upper ontology to facilitate 

interoperability. The SemSorGrid4Env project also uses an extension of the SSN ontology 

to model some aspects that are not covered by the SSN ontology, such as observation 

collections and measurement properties (Garcia-Castro et al., 2012), the SWEET ontology 

(Raskin and Pan, 2005) to describe the services provided by the infrastructure, and the 

Coastal Defence ontology (Garcia-Castro et al., 2012), which represents features of interest 

and their properties that are specific to the flood emergency planning use case.   

                                                           

13 e.g., http://rdf.api.channelcoast.org/observations/cco/boscombe/Dirp/latest contains the latest wave 

direction observations by the Boscombe sensor. 
14 Available at http://env.ecs.soton.ac.uk:8000/  
15 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl  

http://id.api.channelcoast.org/observations/cco/boscombe/Hs/latest
http://env.ecs.soton.ac.uk:8000/
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
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Listing 5.1: A CCO observation represented in RDF Turtle notation 

An example observation is shown in Listing 5.1. Each observation contains the URI of the 

sensor that made this measurement, the URI of the property it measures, the URI of the 

feature that this property is observed of, the time interval across which the observation was 

made, and finally, the measurement. 

Table 5.1: Input datasets 

 
Date No. of triples No. of observations 

Dataset1 2013-03-26T00:00/ 2013-03-26T00:30 2,366 169 

Dataset2 2013-03-26T00:00/ 2013-03-26T03:00 14,098 1,007 

Dataset3 2013-03-26T00:00/ 2013-03-27T00:00 110,572 7,898 

Dataset4 2013-03-26T00:00/ 2013-03-31T00:00 462,560 33,040 

Dataset5 2013-03-26T00:00/ 2013-04-06T00:00 1,121,974 80,141 

For many of our experiments, we need to stress the system. The CCO update rate of nearly 

2500 triples per half hour (seven observations from each of the 24 sensors) is not 

sufficient. Therefore, we have performed a number of SPARQL Construct queries over the 

CCO triple store and stored the results in different files. Table 5.1 shows the statistics of 

these datasets. One of them – dataset1 – simply contains all observations received over one 

half hour. Another one – dataset3 – contains observations of all sensors observed over a 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

@prefix w3time: <http://www.w3.org/2006/time#> . 

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 

@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> . 

@prefix ssnExt: <http://www.semsorgrid4env.eu/ontologies/SsnExtension.owl#> . 

@prefix coastD: <http://www.semsorgrid4env.eu/ontologies/CoastalDefences.owl#> . 

@prefix waves: <http://marinemetadata.org/2005/08/ndbc_waves#> . 

  

<http://id.api.channelcoast.org/observations/cco/penzance/Dirp/20130326#000000> 

  rdf:type ssn:Observation ; 

  ssn:observedBy <http://id.api.channelcoast.org/sensors/cco/penzance> ; 

  ssn:observedProperty waves:Mean_Wave_Direction ; 

  ssn:featureOfInterest coastD:PhysicalMetOcean ; 

  ssn:observationResultTime _:time_1 ; 

  ssn:observationResult _:res_1 .  

_:time_1  

  rdf:type w3time:Interval ;  

  w3time:hasBeginning "2013-03-26T00:00:00"^^xsd:dateTime ;  

  w3time:hasEnd "2013-03-26T00:30:00"^^xsd:dateTime .  

_:res_1  

  rdf:type ssn:SensorOutput ;  

  ssn:hasValue _:val_1 .  

_:val_1  

  rdf:type ssn:ObservationValue ;  

  ssnExt:hasQuantityUnitOfMeasure coastD:degree .  

  ssnExt:hasQuantityValue "153.300"^^xsd:double . 
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whole day, comprising approximately 100k triples. The last one contains approximately 1 

million triples and represents observations over a period of 11 days. 

5.1.2 Functionality Tests 

The main objective of these tests is to show that the system operators work accurately and 

produce the expected results for a range of typical use cases in weather sensor networks. 

We have defined a number of rules that range from simple pattern matching to more 

complex ones that require particular functionalities, such as aggregation, dealing with 

static and dynamic input, and ontology reasoning. For each of them, we describe the rule 

and motivation behind it, its RIF syntax, a simplified Rete diagram of it, and a sample of 

the produced output. 

A source node at the bottom of the networks get real-time input streams via HTTP from 

CCO sensor URIs16. For simplicity, we only run the following use cases using input from 

five sensors, as we aim to assess the functionality of the system here, not the performance. 

The source node reads these URIs every half an hour to get new observations, and sends it 

to the following nodes in the network.  

Note that in the rules described in the following sections, the namespace prefixes are those 

presented in Listing 5.1. 

5.1.2.1 Basic Pattern Matching 

Alert when a wave height gets above a certain level. 

Motivation: This is a basic but useful rule for monitoring applications. Detecting high 

waves can be very crucial for decision making by coastal flood managers. This rule tests 

the system’s ability to match RDF triple patterns and join their bindings to produce the 

expected output. As the rule syntax below does not specify a local window size, the system 

uses the global window specified at the import section of the rule document. If also not 

specified, the system uses its default values.  

 

 

 

                                                           

16 e.g., http://rdf.api.channelcoast.org/observations/cco/boscombe/Hs/latest 

http://rdf.api.channelcoast.org/observations/cco/boscombe/Hs/latest
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Rule: 

Rete network: 

 

 

Figure 5.2: Rule 1 network 

Example results: 

 

5.1.2.2 Aggregation 

Find the half daily average of wave heights for a specific sensor. 

Motivation: Aggregates are very important figures, especially in streaming applications. In 

this use case, we test the system’s ability to calculate averages over a specified time 

window for a specific sensor. 

 

σP=hasQualityValue  

 
σP=hasValue  σP=observationResult 

 

σP=observedProperty  

 

σO=Wind_Wave_Height 

 

σ?v>4.00 

 

⋈?value 

 

⋈?result 

 

⋈?ob 

 

http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#220000 

ssnExt2:alert 4.05 

http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#230000 

ssnExt2:alert 4.29 

http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#233000 

ssnExt2:alert 4.38 

Prefix( pred <http://www.w3.org/2007/rif-builtin-predicate#> ) 

Forall ?ob ?v ( 

  If  And(?ob [rfd:type -> ssn:Observation] 

?ob [ssn:observedProperty -> waves:Wind_Wave_Height] 

?ob [ssn:observationResult -> ?result] 

?result [ssn:hasValue -> ?value] 

?value [ssnExt:hasQuantityValue -> ?v] 

External (pred:numeric-greater-than(?v 4.00))) 

  Then ?ob [ssnExt2:alert -> ?v]) 

http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#220000
http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#230000
http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#233000
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Rule: 

 

Rete network: 

 

 

Figure 5.3: Rule 2 network 

Example results: 

 

5.1.2.3 Static and Dynamic 

Find the location of sensors that observe high waves. 

Motivation: This use case is very similar to the first one. However, it also shows the 

coordinates of the sensors that observed the output. These coordinates can then be further 

used by other rules to locate nearby places of interest. As the locations of sensors are 

Prefix( func <http://www.w3.org/2007/rif-builtin-function#> ) 

Forall ?ob ?v ?avg( 

  If  (And( ?ob [ssn:observedProperty -> waves:Wind_Wave_Height] 

?ob [ssn:observedBy -> 

http://id.api.channelcoast.org/sensors/cco/minehead] 

?ob [ssn:observationResult -> ?result] 

?result [ssn:hasValue -> ?value] 

?value [ssnExt:hasQuantityValue -> ?v] 

?avg = External (func:numeric-avg(?v)) ) 12 h 

  Then ssnExt2:Average [ssnExt:hasQuantityValue -> ?avg]) 

σP=hasQualityValue  

 
σP=hasValue  

 

σP=observationResult σP=observedProperty  

 
σP=observedBy 

σO=Wind_Wave_Height 

 

⋈?ob 

 

⋈?value 

 

⋈?result 

 

⋈?ob 

 

Avg?v 

 

σO=minehead 

 

ssnExt2:Average ssnExt:hasQuantityValue 0.8200000000000002 

Wave height average: 0.7545833333333336 

 

http://id.api.channelcoast.org/sensors/cco/minehead
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typically static, this rule gets input from a static file containing the locations of all sensors 

and receives dynamic observation updates like the previous rules. 

Rule: 

 

Rete network: 

 

Figure 5.4: Rule 3 network 

 

Prefix (sw < http://sweet.jpl.nasa.gov/2.1/sweetAll.owl#>) 
Forall ?ob ?v ?co1 ?co2( 

  If  And( ?ob [ssn:observedProperty -> waves:Wind_Wave_Height] 

?ob [ssn:observedBy -> ?s] 

?ob [ssn:observationResult -> ?result] 

?result [ssn:hasValue -> ?value] 

?value [ssnExt:hasQuantityValue -> ?v] 

External (pred:numeric-greater-than(?v 4.00)) 

?s [ssn:hasDeployment -> ?dep] 

?dep [ssn:deployedOnPlatform -> ?plat] 

?plat [sw:hasLocation -> ?loc] 

?loc [sw:coordinate1 -> ?co1] 

?loc [sw:coordinate2 -> ?co2]) 

  Then  And( ?ob [ssnExt2:alert -> ?v] 

 ?ob [ssnExt2:atCoordinate1 -> ?co1] 

 ?ob [ssnExt2:atCoordinate2 -> ?co2])) 

Output from rule 1  

 

⋈?co1 

 

⋈?s 

 

⋈?dep 

 

⋈?plat 

 

⋈?co2 
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Example results:  

5.1.2.4 Background Reasoning 

Find the sensors that observe wind speeds higher than a known hurricane (inspired by a 

query in Zhang et al. (2012)). 

Motivation: Extreme weather conditions can be detected by comparing observed values to 

historical data. This use case, like the previous one, involves dealing with static and 

dynamic data but also needs to perform background ontology reasoning. For the historical 

hurricane data, we prepared a small dataset taken from dbpedia, containing information 

about a number of hurricanes. In dbpedia, the class yago:Hurricane111467018 is used to 

describe a hurricane. However, this class has only two instances linked directly to it, while 

it has 88 subclasses that are used by other hurricane instances. For example, 

dbpedia:Hurricane_Fabian is of type yago:HurricanesInBermuDA, which is one of the 

yago:Hurricane111467018 subclasses. To be able to find information about all possible 

hurricane instances, we need to first perform background ontology reasoning. When the 

background reasoning mode is activated, rule 9 of the RDFS entailment rules will assert 

these hurricanes as instances of the hurricane superclass. These new assertions are inserted 

back as input so that the RIF rule can find them.  

Rule: 

http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#220000 

ssnExt2:alert 4.05 

http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#220000 

ssnExt2:atCoordinate1 50.35 

http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#220000 

ssnExt2:atCoordinate2 -5.18 

http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#230000 

ssnExt2:alert 4.29 

http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#230000 

ssnExt2:atCoordinate1 50.35 

http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#230000 

ssnExt2:atCoordinate2 -5.18 

Prefix (yago <http://dbpedia.org/class/yago/>) 

Prefix (dbpprop <http://dbpedia.org/property/>) 

Forall ?ob ?s ?hur ( 

  If  And( ?ob [ssn:observedProperty -> waves:wind_speed] 

?ob [ssn:observedBy -> ?s] 

?ob [ssn:observationResult -> ?result] 

?result [ssn:hasValue -> ?value] 

?value [ssnExt:hasQuantityValue -> ?v] 

?hur [rdf:type -> yago:Hurricane111467018] 

?hur [dbpprop:1MinWinds -> ?hurWind] 

External (pred:numeric-greater-than(?v ?hurWind))) 

  Then ?ob [ssnExt2:alert -> ?s]) 

http://dbpedia.org/class/yago/HurricanesInBermuDA
http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#220000
http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#220000
http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#220000
http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#230000
http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#230000
http://id.api.channelcoast.org/observations/cco/perranporth/Hs/20130622#230000
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Rete network: 

 

 

Figure 5.5: Rule 4 network 

5.2 Comparative Evaluation 

To evaluate the efficiency of our native semantic stream reasoning approach, we compare 

R4 to other semantic reasoners. First, we compare it with Jena, a static semantic reasoner, 

in terms of the throughput and processing time needed to process different datasets. 

Second, we compare R4 to Etalis and Sparkwave – stream processing engines that support 

background reasoning. All experiments were performed on an Intel Core i5 computer 

running at 3.2 GHz with 8 GB memory. Each experiment was performed five times, and 

the results presented in this chapter represent the average. The complete results of selected 

experiments can be found in Appendix B.  

5.2.1 Comparing Stream Reasoning to Static Reasoning 

In this experiment, we compare R4 to the Jena generic rule-based reasoner. Jena is an open 

source Semantic Web framework for Java. Its API enables reading, processing, and writing 

RDF graphs as ‘Model’ Java objects. It was chosen because of its rich Java library, which 

made it easy to check and compare results, control input rates, etc.  

Jena provides a number of inference engines, including configurable RDFS, OWL 

reasoners, and a generic rule-based reasoner that supports user-defined rules. The generic 

reasoner’s default configuration works in a ‘hybrid’ mode, in which it uses a forward 

σP=hasQualityValue  σP=hasValue σP=observationResult σP=observedProperty  

 

σP=observedBy 

σO=wind_speed 

 

⋈?ob 

 

⋈?value 

 

⋈?result 

 

⋈?ob 

 

⋈(?v>?hurWind) 

σP=rdf:type σP=1MinWin 

σO=Hurricane 

 

⋈?hur 
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chaining Rete engine and a backward chaining engine in conjunction. It can also be 

configured to run the forward chaining engine only. 

5.2.1.1 Methodology 

 As one of the most important requirements for any streaming application is to provide 

timely responses, we compare Jena’s generic rule-based reasoner and R4 in terms of the 

processing time needed to reason over the input data. Measuring processing time for Jena 

is straight forward, as it starts and ends processing at specific points of time, where all 

results are provided at the end when the engine has finished processing all the input. 

However, R4 performs continuous reasoning, where results are produced incrementally as 

soon as they are obtained, and the rule has no explicit end time. Therefore, we take the 

latter of two measures: the time when the last output result is produced and the time when 

the last input triple is processed.  

We used a similar rule to the one in 5.1.2.1 but with background RDFS reasoning applied. 

We prepared a simple synthetic schema of five observation classes (Observation1 to 

Observation5), where each class is a subclass of the next, and assigned the class 

Observation as a subclass of the first one. The rule then asked for observations of type 

Observation1 with high waves. 

5.2.1.2 Experiment 1 

The naïve way to compare R4 and Jena is to push the whole input dataset to each engine, 

apply the same rule, and compare the processing times. This way, Jena receives the whole 

dataset at once and performs static reasoning one time. On the other hand, R4 receives the 

input data as a finite stream. It observes it through a time window and incrementally 

performs reasoning. We conducted this experiment using the five datasets described in 

Table 5.1 (on page 89) and chose 100 milliseconds as R4’s default window size. 

Nevertheless, this experiment is unfair for both Jena and R4. It is unfair for Jena, as R4 

does not work on the whole dataset at any time instance, while Jena has to consider every 

triple. On the other hand, it is unfair for R4, as Jena does not perform any retractions, while 

R4 continuously checks and removes outdated elements. Therefore, we conducted another 

experiment in which we tried to mimic a streaming situation. 
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5.2.1.3 Experiment 2 

In this second experiment, the input file was partitioned to chunks of specific size, forming 

what we call ‘updates’. We periodically sent one update to Jena and R4 until the last 

chunk. To help Jena remove expired elements, we saved each update in a separate model 

and forced the reasoner to remove the elements of this model when we considered them 

expired (as per the time window specified for R4). For example, if we send an update 

every second, and the time window is five seconds, at the sixth iteration, we insert the sixth 

update and remove the first update from the inference model, and so on. After each update, 

we measured delay (or response time), which is the time taken by each engine to process 

the whole update (including insertion and removal for Jena).  

We ran this experiment using different update and window sizes. We used dataset 3 from 

Table 5.1, which contains observations from all sensors over a whole day as the input 

dataset. We partitioned it into 48 sets; each contains observations of half an hour (2,300 

triples). We also partitioned it into 24 sets with observations of a whole hour for each 

(4,600 triples). Different window sizes are used to reflect different ratios of change. We 

also used dataset 4 from Table 5.1, partitioned into ten sets. Table 5.2 describes seven 

settings for the second experiment. 

Table 5.2: All different settings in experiment 2 

No. Dataset size Update size Window size (hours) Change percentage 

1 110,572 triples 

24 hours 

2,300 triples 

Half-hour 

10 5% 

2 5 10% 

3 4,600 triples 

1 hour 

 

10 10% 

4 5 20% 

5 2 50% 

6 1 100% 

7 462,560 triples 

5 days 

50,000 triples 

~11 hours 

44  25% 

5.2.1.4 Comparative results 

We performed the first experiment for Jena with the default configuration (default Jena), 

Jena with the forward Rete setting (Rete Jena), and R4. The average processing times of 

reasoning over different datasets are presented in Table 5.3 and illustrated in Figure 5.6. 

We also derived the input throughput of each system by dividing the processing time by 

the dataset size, depicted in Figure 5.7. R4 outperforms the default Jena in all cases and 
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outperforms Rete Jena in most of them. The figure shows that, while they perform 

comparably with small datasets, the difference becomes clear with big datasets. Jena 

spends considerable time building in-memory graphs and performing full reasoning over 

them, while R4 continuously matches patterns on the fly. 

Table 5.3: Processing time results for the experiment 1 (pushing the whole dataset) 

 
Processing time (in seconds) 

Input dataset Default Jena Rete Jena R4 

Dataset1 0.29 0.24 0.13 

Dataset2 0.49 0.42 0.37 

Dataset3 1.73 1.44 1.68 

Dataset4 5.66 4.79 3.98 

Dataset5 14.43 12.85 8.03 

We note that R4 is expected to produce less or incomplete results compared to Jena, as it 

does not consider the full dataset at any time instance. However, this was not the case due 

to the nature of the applied rule. The rule does not join triples from different graphs 

(observations) that may potentially arrive in a time interval that is bigger than the time 

window. All joins in the rule are intra-graph, and as the graph size is small (14 triples) and 

the input throughput is high, the graph always fits in the same window. 

 

 

Figure 5.6: Processing time results for the experiment 1 (see table 5.3) 
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Figure 5.7: Throughput results for the experiment 1 

We also performed the second experiment for the default Jena, the forward chaining Rete 

Jena, and R4 using the different update and window sizes described in Table 5.2.  

For the first setting, 2300 triples are fed every half hour; Figure 5.8 shows the response 

time of each system when the window size is set to ten hours17. We notice that both Jena 

settings perform similarly during the first ten hours or 20 updates because there is only 

insertion at this stage. At the 21st update, the windows become full, and the systems have 

to start removing expired elements. Here, the cost of the default Jena suddenly increases, 

while Rete Jena and R4 keep on steady response rates. This is expected, as the default Jena 

re-performs the reasoning process for the whole data in the window for every removal. The 

Rete-based Jena and R4, on the other hand, update their entailments incrementally. R4 still 

outperforms Rete Jena, as its internal data structures are optimised for the time-based 

removal of expired data (unlike Jena, which has to search for these data in order to remove 

them). 

In the above experiment, each update only changes 5% of the valid data, which justifies the 

huge difference between the incremental systems (R4 and Rete Jena) and the default Jena 

that re-computes entailments of the valid data from scratch. We changed the window size 

to five hours, so each update now changes 10% of the valid data. The results of this setting 

are depicted in Figure 5.9. It shows a similar pattern, but the default Jena has closer results 

to the other engines. 

                                                           

17 To avoid the long running time, we actually insert every thirty seconds; thus, the window size is set to 10 
minutes. 
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Figure 5.8: Response time for experiment 2, setting 1 (24 hours worth of data, updated every half 

an hour, window size 10 hours) 

 

Figure 5.9: Response time for experiment 2, setting 2 (24 hours worth of data, updated every half 

an hour, window size 5 hours) 
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We ran the same experiment again with the second partitioning, in which each update 

contains 4600 triples, representing a whole hour worth of data. We varied the window size 

between ten hours (10% change), five hours (20% change), two hours (50% change), and 

one hour (100% change). Figures 5.10–5.13 show the response times of the three engines. 

The same trend is noticed, and for the last setting, both Jena engines become very close to 

each other, as the whole dataset is changed at each update. 

 

Figure 5.10: Response time for experiment 2, setting 3 (24 hours worth of data, updated every 

hour, window size 10 hours) 

 

Figure 5.11: Response time for experiment 2, setting 4 (24 hours worth of data, updated every 

hour, window size 5 hours) 
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Figure 5.12: Response time for experiment 2, setting 5 (24 hours worth of data, updated every 

hour, window size 2 hours) 

 

Figure 5.13: Response time for experiment 2, setting 6 (24 hours worth of data, updated every 

hour, window size 1 hour) 

In the last setting, we changed the input file to the fourth dataset from Table 5.1 –  

containing almost half a million triples – to see if these results hold with bigger updates 

and windows. In this setting, each update inserts 50,000 triples, and the window size is set 

to include 200,000 triples. Figure 5.14 illustrates the results of this experiment, which 

shows that R4 still has the lowest response time, followed by the Rete Jena, while the 

default Jena comes last as in previous settings. 
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Figure 5.14: Response time for experiment 2, setting 7 (5 days worth of data, updated every ~11 

hours, window size ~44 hours) 

For each setting, we calculated the average response time of each engine, taking into 

account the iterations after the window is full. The results are presented in Table 5.4. For 

all of the above settings, R4’s average response time is almost half of the response time of 

the Rete-based Jena and varies between 10–33% of the average response time of the 

default Jena depending on the percentage of change. 

Table 5.4: Average response time for all settings in experiment 2 

Setting Default Jena Rete Jena R4 

No. Update size Window 

size 

(hours) 

Change 

% 

Average 

response 

time (ms) 

Standard 

deviation 

Average 

response 

time (ms) 

Standard 

deviation 

Average 

response 

time (ms) 

Standard 

deviation 

1 2,300 triples, 

half hour 

10  5% 188.59 32.01 39.61 9.22 18.89 6.30 

2 5 10% 110.89 27.08 38.29 9.53 17.83 5.63 

3 4,600 triples, 

1 hour 

 

10 10% 256.50 72.53 76.36 15.88 39.27 16.47 

4 5 20% 168.25 54.25 76.04 17.50 36.77 14.17 

5 2 50% 114.11 33.13 77.55 13.41 34.29 13.78 

6 1 100% 94.77 24.93 70.59 19.05 31.70 13.59 

7 50,000 triples, 

11 hours 

44 25% 1371.23 232.46 674.60 213.88 424.57 85.62 
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5.2.2 Comparing to State-of-the-art Stream Reasoning Systems 

To evaluate the performance of R4, we compared it with state-of-the-art stream reasoning 

systems that provide the capability of performing lightweight background reasoning on 

streamed semantic data (reviewed in Chapter 3, Section 3.2.1). These included Etalis 

(Anicic et al., 2012), Sparkwave (Komazec et al., 2012), Streaming knowledge bases 

(Walavalker et al., 2008), and the incremental reasoner presented in Barbieri et al. (2010b). 

To the best of our knowledge, the latter two implementations were never made public, so 

we have only compared R4 to Etalis and Sparkwave. 

Similar to R4, Sparkwave uses Rete networks that work directly on RDF streams. 

However, Sparkwave’s reasoning expressivity is limited to specific RDF Schema 

entailment rules (plus owl:inverseOf and owl:SymmetricProperty) while R4 is built to 

support general purpose rules that can be written in RIF Core. Rete networks in Sparkwave 

are used to process continuous SPARQL queries, while the schema entailments support is 

provided using an additional network called Ԑ–network that precedes the Rete network. 

Sparkwave pre-computes the schema closure and use it to build the Ԑ–network. This 

network encodes schema-driven property hierarchies with specified domain and range 

definitions connected to class hierarchies. However, this network is activated by single 

triples from the stream, as it treats its input in a stateless way. Therefore, as explained in 

(Dell’Aglio and Della Valle, 2014), Sparkwave cannot be extended to support RDFS+ as it 

cannot for example support the owl:transitiveProperty construct, because it needs to be 

activated by multiple triples from the stream. R4 on the other hand processes RDFS+ 

(encoded in RIF in Appendix A) in the same way it processes general purpose RIF rules, 

using Rete networks that can be activated by more than one streaming input. Furthermore, 

R4 enables re-entrancy, which enables a generated answer to re-enter the network to 

possibly participate in generating further answers.  

In terms of stream models, Sparkwave uses point-in-time semantics for the time model, 

defining an RDF stream as an unbounded sequence of RDF triples associated with 

timestamps. In R4, an external RDF stream is an unbounded sequence of RDF graphs 

associated with timestamps. Internally, both R4 and Sparkwave use time intervals (only for 

beta memory elements in Sparkwave) but representing different semantics. In R4, an 

internal stream element is assigned an expiration timestamp based on the specified 

window, each generated partial or full result takes the latest start timestamp and the earliest 

expiration timestamp of it constituting elements to represent its validity, so that whenever 
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any constituting element expires, its generated result also expires. In Sparkwave, a 

generated partial or full result takes the earliest start timestamp and the latest start 

timestamp of its constituting element as a means to check if this interval falls in the 

specified window, while garbage collection is based on start timestamps only.  

5.2.2.1 Methodological Considerations 

Following the development of semantic stream processors, a number of benchmarks have 

emerged to test and compare their performance: SRBench (Zhang et al., 2012), CSRBench 

(Dell’Aglio et al., 2013), LSBench (Le-Phuoc et al., 2012c), and CityBench (Ali et al., 

2015). While these benchmarks provide rich datasets, they mostly do not consider 

reasoning; with the exception of SRBench, none of the other benchmarks’ queries require 

inference capabilities. 

One of the most important measures of any stream processing system is the maximum 

input throughput, defined in Scharrenbach et al. (2013) as the number of data elements in 

the input stream consumed by the system per time unit; we use this as the key performance 

indicator in our comparative evaluation of the three systems. In addition, it is necessary to 

confirm that the data produced by a system is complete and correct according to its 

semantics.  

5.2.2.2 Methodology 

We set up Jtalis (the Java wrapper of Etalis) over SWI-Prolog v7.2.1 and installed 

Sparkwave v0.5.1. 

We planned to run the same rule used in the comparison with Jena over the CCO dataset. 

However, Sparkwave was unable to read the dataset correctly as it does not parse blank 

nodes; this might be because it uses the hash-join algorithm to improve time efficiency, but 

builds the hashtables based on the URIs of the incoming data. Sparkwave also does not 

support data comparisons (needed for the greater-than condition in the rule). Therefore, we 

followed the experimentation strategy used by Sparkwave (Komazec et al., 2012) as it also 

requires reasoning over background knowledge to correctly answer the query. In this 

experiment, we use a synthetic dataset generated with the Berlin SPARQL Benchmark 

(BSBM) (Bizer and Schultz, 2009) containing 1.1 million triples (representing 100,000 

limited time offers made available by an online market place). For background knowledge, 

we generated a small schema that described 329 product types arranged in a four-level 

hierarchy.  
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Listing 5.2: A RIF Core rule that entails the offer price for all products of a specific type that are on 

offer 

Each system was configured with the generated schema, a rule inspired by a query from 

the BSBM, and a window size (0.1, 1, 2, 5, and 10 second sliding windows are tested). The 

rule we used in this experiment, shown in Listing 5.2, is inspired by the Berlin SPARQL 

benchmark and entails the offer price for all products of a specific type that are on offer. 

As offers may be associated with product super-types, some background reasoning is 

needed to determine the offer price for specific product sub-types. 

We then measured the time it took for the system to consume all 1.1 million triples for 

each configuration of each system, from which we can calculate the maximum throughput 

and average latency of that system for each window size. We also checked the correctness 

of results and found that all three systems provide the same correct results. This is because 

the operational semantic of the systems are similar. In terms of the SECRET model – 

described in (Dell’Aglio et al., 2013) – the report strategy of all systems are content-

change, the tick is tuple-driven, and the output operator is Istream. Above that, the query 

used in our experiments does not match triples from different graphs, which means 

windowing mechanisms does not affect the results. 

5.2.2.3 Comparative Results 

Firstly, we note that the rule presented in Listing 5.2 takes significantly longer to process 

in Etalis (over three hours for the 1.1 million dataset with a one-second time window 

compared to less than two minutes for the other two systems). In order to further 

investigate this difference, we tried changing the And into a series of seqs (Anicic et al., 

2011), which resulted in the system running 20x times faster (7.5 minutes for the same 

Prefix(dc <http://purl.org/dc/elements/1.1/>) 

Prefix(bsbm_voc <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>) 

Prefix(bsbm_inst <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/>) 

Forall ?offer ?product ?vendor ?price ?from ?to ?delivery ?webpage( 

  If And( ?offer [rdf:type -> bsbm_voc:Offer] 

?offer [bsbm_voc:product -> ?product] 

?offer [bsbm_voc:vendor -> ?vendor] 

?offer [bsbm_voc:price -> ?price] 

?offer [bsbm_voc:validFrom -> ?from] 

?offer [bsbm_voc:validTo -> ?to] 

?offer [bsbm_voc:deliveryDays -> ?delivery] 

?offer [bsbm_voc:offerWebpage -> ?webpage] 

?offer [dc:publisher -> ?publisher] 

?offer [dc:date -> ?date] 

?product [rdf:type -> bsbm_inst:ProductType73] ) 

  Then ?product [bsbm_voc:offerPrice -> ?price] ) 
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test). Despite being semantically different18, we would not expect such a drastic difference 

in running time unless Etalis were heavily optimised for the seq operator. This is likely, as 

Etalis is intended for event processing rather than continuous querying/reasoning, making 

the order of arrival of triples more relevant than their simple coincidence in the system. 

In order to present graphics that provide a meaningful comparison between the time 

efficiency of each system with regards to changing window ranges, as in Figure 5.15, we 

chose to eliminate the results for Etalis using And from our dataset but include those using 

the rule modified to use seq when evaluating Etalis. It should be noted that we recognise 

that this modified rule is not semantically equivalent to that by which we evaluate R4 and 

Sparkwave, which cannot express the seq operator, but is suffcient to contrast the effect of 

the window range on the time effeciency of the three systems. Table 5.5 presents the 

processing times of both settings in Etalis (‘And’ and ‘seq’) in addition to Sparkwave and 

R4, for the rule presented in Listing 5.2, with a third-level product type (according to the 

four-level hierarchy schema). The schema is loaded first. The data is then provided to each 

system by specifying the file name from which it is supposed to be read, so that each 

system starts reading and processing the data from that file at the fastest rate at which it is 

able. We measure the time needed to process the whole dataset, starting from receipt of the 

first tuple (thus, the time required to process the schema is not included). For each system, 

we ran the same rule with the same dataset five times. The average processing time is 

presented. No warm up period was used to take account of disk caching. 

Table 5.5: Comparing processing times (in seconds) of R4, Sparkwave, and Etalis 

System Window size (seconds) 

0.1 1 2 5 10 

R4 8.82 12.25 14.33 15.25 17.30 

Sparkwave 27.05 74.48 104.37 163.82 228.81 

Etalis (seq) 461.91 446.56 447.98 447.48 449.74 

Etalis (And) 11587.32 11310.25 11567.61 11594.24 11496.49 

As shown in figures 5.15 and 5.16, R4 is significantly faster than both Etalis and 

Sparkwave for the tested window sizes. Interestingly, while the maximum throughput 

                                                           

18 For example, a query that asks whether two persons arrived at the same location within a five-minute 
interval using ‘and’ will produce results regardless of which person arrived earlier. Using ‘seq’ on the other 
hand, will only produce results if person1 in the query arrived before person2 in the specified time window. 
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decreases and processing time increases (apparently asymptotically) with window range 

similarly in both Sparkwave and R4, those of Etalis using seq appear to remain 

approximately constant for all window ranges tested. It should be noted that this behaviour 

of Etalis remains in the case where the query uses And. However, despite its constancy, the 

throughput and processing latency of Etalis are so dramatically lower/higher than the other 

systems, respectively, that we project that R4 will remain faster than both Sparkwave and 

Etalis in cases where the window sizes are orders of magnitude larger than those tested. 

We note that the aim of this experiment was not to reproduce Sparkwave’s experiment 

described in (Komazec et al., 2012), but was rather guided by Sparkwave’s experiment; we 

aimed to carry out a like-for-like comparison between the three systems. However, we 

acknowledge that there is a discrepancy between the performance of Sparkwave in our 

experiment and its performance in published experiment (Komazec et al., 2012). While we 

have not used exactly the same dataset used in their experiment (as it was not provided by 

Komazec et al), we generated a dataset in the same way as they described in the 

Sparkwave experiment. Our generated dataset is smaller than in Sparkwave experiment, 

but of a roughly comparable size (1.1 million triples in our experiment vs. 2.2 million 

triples in the Sparkwave experiment). We used the same rule as in the Sparkwave 

experiment, but as they did not specify the target product type they used in the rule, we 

picked an arbitrary product type. We used the same schema, but with fewer subclasses of 

the chosen product type (Komazec at el note that the number of subclasses of the target 

product type had a negligible effect on throughput). 

On a smaller problem, with a faster computer (3.2 GHz vs. 2.66 GHz) with more memory 

(8 GB vs. 4 GB RAM), Sparkwave performed worse in our experiment than it did in the 

Sparkwave experiment. For example, using a 5 second window, Sparkwave’s throughput 

was 7,000 triples/second in our experiment, compared to 60,000 triples/second in their 

experiment. However, the description of the Sparkwave experiment in (Komazec et al., 

2012) is incomplete, as it does not describe the number of results generated by the rule, 

which might have an effect on throughput. Therefore, it may not be reasonable to strictly 

compare the results of this experiment with that of Sparkwave experiment. 
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Figure 5.15: Processing time of R4, Sparkwave, and Etalis 

 

Figure 5.16: Input throughput of R4, Sparkwave, and Etalis 

Finally, we also repeated the same experiment using different schemas with different 

number of subclasses, ranging between 40 and 1100 subclasses. All the three systems were 

not affected by the bigger schema size, showing similar performance to the original setting. 

Results of this experiment can be found in Appendix B. 

5.3 Conclusion 

This chapter has presented several evaluations of R4. A number of functionality tests have 

proved some of its capabilities, including basic pattern matching, aggregation, combining 
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static and dynamic data, and performing background reasoning. Comparing R4’s 

performance with Jena’s static reasoner positively supports our first hypothesis:  

Hypothesis 1: It was anticipated that our continuous reasoning approach would 

improve throughput and responsiveness, when compared to a traditional static reasoner. 

Furthermore, in terms of input throughput, R4 outperformed two of the state-of-the-art 

stream reasoning engines, namely Sparkwave and Etalis. However, our experiment is 

limited to only one rule using one dataset; the performance for other datasets with different 

characteristics and other rules might be different. However, if we were to use more than 

one rule, we might not necessarily be able to compare the results from one rule to the 

results from another rule. Therefore, a benchmark based on a selection of rules is needed, 

but it will also be limited to one dataset. While Sparkwave evaluated their system using 

three different rules, they reported consistent performance between all three rules 

(Komazec et al., 2012). 

Experiments described in this chapter were run in R4 using statically optimised plans. With 

the addition of the adaptive optimiser – introduced next chapter – we expect R4 to highly 

outperform the other systems, especially in dynamic environments. 
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Chapter 6: Optimisation  

As a single rule can usually be evaluated using different equivalent plans, an optimiser is 

needed to identify and generate the most efficient plan. In this chapter, we address the 

optimisation problem in the context of semantic stream processing. We firstly describe 

how R4 generates the initial plan based on simple heuristics in Section 6.1. We then 

discuss how the adaptive optimisation paradigm, introduced in the data stream 

management community (reviewed in Chapter 2, Section 2.1.3), is applied in R4 (Section 

6.2). Section 6.3 then introduces the employed cost model, discussing several issues such 

as estimating selectivities and output rates. Monitoring, optimisation algorithms, and plan 

migration issues are discussed in sections 6.4, 6.5, 6.6, respectively. 

6.1 Initial Rete Network Generation: Static Optimisation  

In a database management system (DBMS), optimisers use statistics such as data 

cardinality and operator selectivities to build a cost model to choose the optimal plan at 

compile time (Garcia-Molina et al., 2000). However, these statistics are usually 

unavailable before runtime in a streaming context (Viglas and Naughton, 2002). Therefore, 

we use simple heuristics to generate a basic initial plan that should be refined at runtime 

after collecting sufficient statistics. 

To generate the initial Rete network, the rule document is first parsed to identify individual 

rules and their condition elements (triple patterns). We use Squall’s RIF Core parser19 and 

extend it to handle stream and window specifications, using the EBNF given in Fig 4.7 and 

the code available from Squall. 

The parsed ruleset is then passed to the optimiser, which starts by creating a source node 

for each input. Then, it handles the body – the ‘If’ part – of the ruleset by creating and 

connecting alpha and beta nodes. It forms the alpha network by creating an alpha node 

(with its own alpha memory) for each triple pattern. The beta network is then modelled by 

forming a left input adapter node to follow the first alpha node. For each other alpha node, 

a join node with a beta memory is created to connect it with the previous node in the beta 

network, which results in a left-deep beta network. At the end, the head – the ‘Then’ part –  

of the ruleset is handled by creating a terminal node with a template for every atom. 

                                                           

19 https://github.com/sinjax/squall/tree/master/core/rif-core-parser  

https://github.com/sinjax/squall/tree/master/core/rif-core-parser
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As the optimiser traverses the list of triple patterns, attempting to join them in the same 

order as they appear in the rule document, it enforces a known optimisation heuristic, 

which is to join alpha nodes with shared variables only (Garcia-Molina et al., 2000), 

leaving the triple patterns that have unique variables to the end. This optimisation 

technique aims to avoid Cartesian products, which are known to generate larger 

intermediate results (Mishra and Eich, 1992). 

Before modelling any alpha or beta node, the set of already modelled nodes is checked. If 

an equivalent node – one that has the same condition, sources, and local window size if 

specified – has been already created, the old node (and its memory) is simply shared 

instead of creating a duplicate operator. This is one of the features of the original Rete 

algorithm (Forgy, 1982) that can save both memory and computational resources.  

After dealing with all triple patterns in the ruleset, we handle the predicates. Predicates (or 

filters) are pushed as high as possible in the network as follows: If the predicate compares 

a variable to a static value, an alpha constraint is created at the first alpha node in which 

this variable appears. If the predicate compares two variables, a beta constraint is created at 

the first beta node where both variables appear in its tokens. Again, pushing filters as early 

as possible in the network is a known optimisation heuristic in DBMS (Garcia-Molina et 

al., 2000). 

6.2 Adaptive Optimisation  

As the initial plan was not constructed based on statistics of the input data, it is not 

expected to be optimal. Furthermore, the characteristics of data streams may continuously 

change, so the optimisation process needs to be adaptive. Apart from CQELS (Le-Phuoc et 

al., 2011), all other processors of semantic streams – reviewed in Chapter 3 – do not 

consider adaptive optimisation, as they basically depend on their underlying stream 

systems. CQELS, on the other hand, employs a white-box approach, so it implements its 

own optimiser. In the relational stream processing community, some systems supported 

adaptive optimisation using the plan-based approach, where the optimiser changes the 

running plan for all tuples (Babu and Widom, 2004; Cammert et al., 2008). Other systems 

used the routing-based approach, in which each tuple can follow a different route (Avnur 

and Hellerstein, 2000). CQELS supports routing-based adaptive optimisation using the 

Eddy operator (Avnur and Hellerstein, 2000). While eddies enable a fine-grained per-tuple 

optimisation, we argue that it would be very expensive for the RDF model. An RDF 
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document (or stream) consists of a large number of small triples, compared to the relational 

model, where a smaller number of records or tuples are composed, usually of more than 

three attributes. Holding statistics and choosing a route order for every small triple would 

cause a large computational overhead. We opt for more coarse adaptivity at an intra-query 

level as in (Babu and Widom, 2004; Cammert et al., 2008). In other words, R4’s optimiser 

is plan-based, as opposed to the routing-based strategy used in CQELS. 

The RDF model also causes more joins than the relational model, as a single triple does not 

hold much information. This makes it more crucial to have a good beta network topology. 

Therefore, due to the fact that we flattened the alpha network into single alpha nodes, we 

focus on optimising the join node ordering. The order of joins in the Rete network largely 

determines the performance of the plan, as join nodes are far more expensive than stateless 

filter nodes. While different equivalent plans should produce the same number of output 

results, different join orderings will cause a different size of intermediate results, affecting 

both processing costs and memory consumption, which ultimately mark throughput. A 

poorly-ordered plan might suffer even more, as stream characteristics change at runtime. 

The optimiser needs to ensure that the order of join nodes of the running plan is efficient 

for the current conditions. 

Placing the more selective operators early in the network usually results in smaller 

intermediate results, which leads to faster processing and lower memory consumption. For 

example, assume we want to join three streams (A, B, and C), and each produces 10 

triple/sec into a window of 10 seconds. Also, assume that there is a shared variable among 

all of them and that the join selectivity of A⋈B = 0.1, A⋈C = 0.2, and B⋈C = 0.3. As 

joins are commutative operators, there are three possible distinct ways to join the three 

streams: (A⋈B)⋈C, (A⋈C)⋈B, and (B⋈C)⋈A. The first join of the first plan will 

produce 100 triples every second, which means its beta memory size may grow up to 1000 

triples. For the second and third plans, the first join’s output rates are 200 triples/sec and 

300 triples/sec, while its beta memory size are 2000 triples and 3000 triples, respectively. 

In this example, it is obvious that the first plan will outperform the other plans. 

However, ordering joins based only on their selectivities does not always guarantee an 

optimal plan, as there are other factors that determine the performance of the network. In 

the example above, if stream A’s input rate was 100 triples/sec instead of 10, output rates 

of the first join in the three plans would be 1000, 2000, and 300. This means that the first 

plan is no longer the optimal plan; instead, the third plan, which is ranked worst using the 
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lowest-selectivity-first heuristic, is now the best. Another important factor that affects the 

cost is the window size. Giving stream A a big window would have a similar effect to 

giving it a higher input rate. Therefore, a cost model that takes all these factors into 

account is needed. Using a cost model, the optimiser can estimate the costs of different 

possible orderings of joins and select the cheapest. The ultimate goal of the adaptive 

optimiser is to maximise throughput.  

The adaptive optimisation process for continuous reasoning involves three parts of the 

system that work together to maintain good performance in changing streaming conditions. 

First, the monitor periodically tracks stream statistics, uses them to measure the cost of the 

currently running plan, and reports the cost to the optimiser. The optimiser compares the 

new cost to previously reported costs; if they significantly differ, it starts the re-

optimisation process. Using a dynamic programming algorithm based on the cost model, it 

tries to find a cheaper plan. If a cheaper plan is found, it is communicated to the rule 

engine, and a plan migration is ordered. The rule engine then runs the chosen plan. This 

process is illustrated in Figure 6.1. 

 

Figure 6.1: Adaptive optimisation process 

In the next subsections, we first lay out the cost model used to estimate costs of join 

operators and plans. Then, the adaptation approach and its stages, including monitoring, re-

optimisation, and plan migrations, are described in more detail. 

Optimiser 
Estimates costs of different 

plans, chooses cheapest 

Monitor 
Observes stream stats, 

measures plan cost 

Rule engine 
Runs chosen plan, 

manages migration 

Measured cost Chosen plan 

Rules 
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6.3 Cost Model 

Most optimisers in modern database systems are cost-based (Viglas and Naughton, 2002). 

Cost models are used to estimate costs of different equivalent plans in order to choose the 

most efficient. Some stream processing engines also use cost models instead of heuristics 

(e.g. (Viglas and Naughton, 2002; Cammert et al., 2008)). In streaming contexts, however, 

costs of operators are generally rate-based as opposed to relational, cardinality-based cost 

models (Schmidt, 2006).  

As we are only interested in finding an efficient join ordering, and because joins are 

usually the most expensive operators in the network, we model the cost of the network as 

the summation of its joins’ costs. We follow the research on estimating the cost of a 

windowed join – as in Kang et al., (2003), Ayad and Naughton (2004), and Cammert et al., 

(2008) – and use a per-unit-time cost model. In this model:  

Cost of an operator = input rate * cost of handling one tuple 

To model the cost of an individual join operator, we consider all the tasks that are 

performed by this operator. As described in Section 4.3.3, a join node that takes input from 

two windowed streams would perform the following tasks when a tuple is received from 

either side: the tuple is inserted into the corresponding window; the other window performs 

a garbage collection, which is then probed for matches; any results are then generated. 

Using L and R to refer to the left and right input streams to a join node, we represent the 

cost of a join operator as follows20:  

C(L⋈R) = Cinsert + Cinvalidate + Cprobe + Cresult. 

In order to find the individual costs of these operations, we use the notions of input and 

output rates, window sizes, and selectivity. While these can be measured for running plans, 

we need a way to estimate them without actually creating and running the joins to avoid 

this unnecessary overhead. The following subsections explain how we calculate these 

different parameters in order to find each individual cost in the previous formula. Table 6.1 

identifies the different parameters used throughout this section, where L and R denote the 

left and right input streams (as in the previous formula), and o refers to the output stream. 

 

                                                           

20 Throughout this section, we use L and R to refer to the left and right input streams to a join node, and o 
to refer to the output stream. 
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Table 6.1: Cost model terms 

λi Arrival rate of tuples from a source input i 

λL Arrival rate of tuples for the left input of a join 

λR Arrival rate of tuples for the right input of a join 

λo Output rate of tuples from the current operator 

WL Size of the left input window (number of tuples) 

WR Size of the right input window (number of tuples) 

Wo Size of the output window (number of tuples) 

BL Number of hash buckets in the left input window 

BR Number of hash buckets in the right input window  

f Selectivity factor 

CI Cost of inserting a tuple into a memory  

CH Cost of evaluating the hash function of a single tuple 

CV Cost of removing a tuple from a memory 

CE Cost of re-organising the heap 

CP Cost of a single evaluation of the join predicate 

CG Cost of generating a new tuple 

CT Cost of checking a tuple’s timestamp 

M Size of a left tuple (number of triples comprising it) 

dS(a) Number of distinct values of attribute a in stream S 

6.3.1 Constant costs 

First, we estimated the system-dependant costs (CI, CH, CV, CE, CP, CG and CT), used in 

insertion, invalidation, probing, and result generation cost formulas, by measuring the 

actual time used by the CPU to perform each task. For example, we measured the time 

taken to hash 1000 tuples and divided the result by 1000 to determine the cost of a single 

evaluation of the hash function (i.e. CP). 

6.3.2 Estimating join’s selectivity (f) 

One of the most important variables to estimate in the cost model is the join’s selectivity 

factor. In Babu et al. (2004), a profiler is used to estimate the selectivites of pipelined 

filters, where a periodic sample of the input is passed to different alternative paths to 

calculate the operators’ selectivities. However, with the big number of joins expected using 

the RDF model, this can be quite expensive. We need a cheaper way that finds reasonably 

good estimates of joins’ selectivities.  
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Cost models of windowed joins similar to ours – in Cammert et al. (2008) and Gomes and 

Choi (2008) – use the join selectivity factor without discussing how to estimate its value. 

In Ayad and Naughton (2004) and Getta and Vossough (2004), a join selectivity is 

described as a multiplication of the selectivities of all previous nodes in the network. This 

goes back to system R optimiser (Selinger, 1979), where the selectivity of (pred1) and 

(pred2), i.e. f (pred1⋈pred2), equals f (pred1) * f (pred2). However, because this assumes 

independence of the input values, using this with the RDF model results in severe 

underestimations of the number of output results of the join. RDF data usually demonstrate 

a high correlation between triples. For instance, an RDF triple <observation_x, 

observedBy, sensor_y> will always co-occur with a triple like <observation_x, 

observedProperty, property_z>. If we have 100 unique observations and are asked to join 

(?x, observedBy, ?y) with (?x, observedProperty, ?z), we expect the cardinality of the 

output results to be 100, as every observation contains information about the two 

predicates. However, using the above join selectivity estimation method underestimates the 

number of results to one: f(L⋈R) = f(L)*f(R) = 1/100 * 1/100 = 1/10000, so Wo = WL * WR 

* f(L⋈R) = 100 * 100 * 1/10000 = 1. On the other hand, it can be reasonable to assume the 

independence of observed temperature values from two different streams in a join like (?y, 

observedValue, ?x)⋈(?z, observedValue, ?x). 

To address this problem, we apply a method based on an observation introduced in 

Neumann and Moerkotte (2011). They observe that many of the correlations between triple 

patterns stem from the fact that RDF uses multiple triples to describe the same entity, so 

searching for one of them is practically as selective as searching for all of them. In our 

graph-based RDF stream model, a stream is comprised of small graphs representing those 

entities, in the example above, weather observations. Therefore, we differentiate between 

the selectivities of joining triple patterns from a single graph – self-joins or intra-graph 

joins – and joining triple pattern from different graphs. 

 In the first case, the cardinality of joining multiple triple patterns from the same graph is 

equal to the number of graphs in the windowed stream, as they always co-occur. We 

consider triple patterns from one graph with bound objects as well as bound predicates. For 

example, joining (?x type Observation) with (?x observedValue >30) is an intra-graph join, 

but the selectivity of the first pattern is different than the second. While all 100 

observations satisfy the first pattern, assume that only 10 observations satisfy the second. 

By making the join as selective as the most selective pattern, i.e. f(L⋈R) = min(f(L),f(R)) = 
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min(1/100,1/10) = 1/100, so Wo = WL * WR * f(L⋈R) = 100 * 10 * 1/100 = 10, which is the 

correct number of results. 

In the second case, where joins happen between different graphs – either from the same 

stream or different streams – we assume independence. So, generally, for intra-graph joins, 

f(L⋈R) = min(f(L),f(R)) and, for inter-graph joins, f(L⋈R) = f(L)*f(R). 

6.3.3 Estimating window sizes (Wo) 

A join’s right parent is always an alpha node. Hence, its window size can be measured at 

any time during the cost estimation phase, as they already exist and are not affected by the 

adaptive re-optimisation. In addition, it can be calculated using the following formula: 

Wo(𝜎a) = WS * f(𝜎a),  

where WS = the window length for tuple-based window, or WS = λi * TS, where TS is the 

time-based window length. 

On the other hand, the left parent of a join node is another join node, and its window size 

needs to be estimated since it might not be existent when the optimiser tries to investigate 

new ways to join the alpha nodes. If we can estimate the join selectivity factor, then the 

join’s window size can simply be estimated as: 

Wo = WL * WR * f(L⋈R). 

While this formula appears exactly the same as the one used for finding the cardinality of a 

relational join – replacing window sizes with table cardinalities – it does actually take into 

account the temporal nature of sliding windows. This is explained by Ayad and Naughton 

(2004) as follows: A join’s output window size is the number of valid tuples resulting from 

the join. A tuple stays valid as long as none of the tuples that comprise it have expired. If 

left and right input rates are steady and left and right window sizes at the beginning are WL 

and WR, the resulting window size for the already existing tuples in the windows will be 

WL * WR * f(L⋈R). We consider tuples arriving from the left side; each arriving tuple 

produces WR * f(L⋈R) new tuples. However, we expect the same number of tuples in the 

resulting window to be invalidated as the earliest tuple in the left window becomes 

expired. The same logic applies to tuples arriving at the right side. Hence, the previous 

formula presents a good average estimate of the join results’ window size. 



Chapter 6 

123 

6.3.4 Estimating output rates (λo) 

In R4, as we use left-deep plans, right input rates are always the output rates of alpha 

nodes, while left input rates are the output rates of previous beta nodes. Output rates of 

alpha nodes are simply the output rates of raw streams multiplied by the selectivity of the 

filter predicate, as follows: 

λo(𝜎a) = λi * f(𝜎a). 

The stream output rate can either be known in advance or averaged at the source node. The 

selectivity factor of an alpha node can be defined as the percentage of tuples satisfying the 

filter predicate relative to the number of tuples input from the stream. As in database 

systems, it can be estimated as: 

f(𝜎a) = 1/dS(a), 

The number of distinct tuples can be measured online as the number of hash buckets of the 

corresponding alpha memory. Alpha memories are always available and are not affected 

by the re-optimisation process. 

Finding the output rate of a join node is more complicated, as it has two inputs. We first 

find the output rate of a Cartesian product. In a Cartesian product node, every incoming 

tuple from the left parent is joined with every tuple in the right parent’s window (and vice 

versa). Therefore: 

λo(L×R) = λL WR + λR WL.  

Then, by defining the selectivity factor of a join node as the percentage of tuples satisfying 

the join predicate relative to a Cartesian product, we can estimate a join node’s output rate 

as: 

λo(L⋈R) = ( λL WR + λR WL ) f(L⋈R). 

Now, we discuss each individual cost in the previous formula – first in abstract terms, then 

in terms of our implementation. 
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6.3.5 Insertion cost (Cinsert) 

Every time unit, the join node receives a number of tuples from both sides, equalling the 

output rate of its left and right parents. For each incoming tuple, there is a constant cost of 

adding the tuple to the corresponding memory. Therefore: 

Cinsert = ( λL + λR ) * CI
. 

The constant cost is implementation dependant. As explained in Chapter 4, R4 uses a hash 

map and a priority queue – implemented as a binary tree – to model an alpha or beta 

memory. Therefore, CI includes the cost of hashing the tuple, inserting it into a hash 

bucket, and adding it to the queue. While adding an element to a binary tree usually incurs 

a logarithmic cost in the length of the tree (Mehlhorn and Sanders, 2008), we found it to be 

constant in our experiments. Java’s implementation of a priority queue adds the new 

element to the leaves and then uses the comparator to pop it up the tree until it finds its 

correct location. As the comparator orders tuples by increasing timestamps, and because 

incoming tuples usually arrive in order, they usually stay at the leaves – hence, the constant 

cost, as follows: 

Cinsert = ( λL + λR ) * (CI + CH). 

6.3.6 Invalidation cost (Cinvalidate) 

Every time unit, the number of expired tuples in the left or right memory that need to be 

removed can be estimated to be equal to the output rate of the corresponding parent. This is 

especially accurate for tuple-based windows, in general, and time-based windows in steady 

state conditions where streams’ output rate does not change often, as follows: 

Cinvalidate = ( λL + λR ) * CV
. 

As opposed to the insertion cost in R4, the cost of deleting a tuple is actually logarithmic in 

the length of the tree, as it requires re-organisation of the queue. Whenever an element is 

deleted from the queue, which is usually the root of the tree (as it has the smallest 

timestamp), it is replaced by the last inserted tuple. The tree implementation then uses the 

comparator to push down this tuple until it finds its correct location, which should be in the 

leaves, as it has the biggest timestamp. This means it would be compared with a number of 

elements equal to the length of the tree. After deleting the stale tuple from the queue and 

re-organising it, the tuple should also be removed from the hash map, incurring a constant 

cost CH. Therefore: 
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Cinvalidate = ( λL* log2(WL+1) +  λR * log2(WR+1) ) * CE  + (λL + λR) * CH
.  

6.3.7 Probing cost (Cprobe) 

When a new tuple arrives at one side, the join node searches the other side’s window to 

find matches. The number of comparisons that needs to be done for each input depends on 

the join algorithm. For nested loop joins, every incoming tuple from the left side needs to 

be compared with each tuple in the right window (and vice versa), as follows:  

Cprobe = ( λL WR + λR WL ) * CP
.  

For symmetrical hash joins used in R4, there is the constant cost of hashing the incoming 

tuple; the comparison cost will be a function of the number of tuples in the matching 

bucket. If we assume uniform distribution of tuples across buckets, each bucket will 

contain Wi/Bi tuples, as follows: 

Cprobe =  (λL * WR/BR + λR * WL/BL) * CP + (λL + λR) * CH
. 

6.3.8 Result generation cost (Cresult) 

If the searching process results in a match, there is a cost of generating the new result. 

While Kang’s cost model (Kang et al., 2003) does not consider this cost, it is explicitly 

calculated in Cammert (2008) as a constant cost for each generated tuple, as follows: 

Cresult =  λo * CG
. 

However, in R4, the cost of creating a result is not simply a constant. There is the constant 

cost of creating the new tuple, and then, there is the cost of assigning its timestamp. This 

cost is found to be a function of the number of triples in the left tuple because we need to 

search them to find the latest start time and earliest end time stamps to assign them to the 

result. Thus, if M is the size of the left tuple: 

Cresult =  λo * ( CG + M * CT ). 

6.4 Monitoring 

Every set amount of time, the monitor measures the cost of the currently running plan. It 

uses the same cost model presented in the previous sections, but as the plan is actually 

running, it uses measured window sizes and input rates instead of estimates. The monitor 

works in a bottom-up fashion, starting from the source nodes until the last join in the 
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network, as every join needs information about its parent’s window sizes and output rates. 

At the source nodes level, it updates the average output rates of every incoming stream. At 

the alpha network, it updates the output rates and window sizes of each alpha node. Then, 

it starts finding the cost of every join node, updating its window size and output rate at the 

same time. Finally, the monitor finds the cost of all joins and reports it to the optimiser. 

The monitoring interval value can either be set by the user or decided by the system. 

Choosing a small interval increases monitoring overhead but provides a better chance for 

the optimiser to respond to quickly changing stream statistics. We can start with a small 

value and increase it if stream characteristics stay stable. Whenever it observes a change, 

the monitoring interval can be reduced again until the observed statistics stabilise.  

6.5 Optimisation algorithm 

The optimiser receives updates from the monitor about the current plan cost. While 

reacting to any change in the cost means a highly adaptive system, it has also some side 

effects (Babu and Bizzaro, 2005). Besides the increased overhead, this can lead to a case 

called thrashing. An Adaptive Query Processing system is thrashing if most of its resources 

are spent in adptivity-related overhead such as plan switching, not in query execution 

(Babu and Bizarro, 2005). Another reason to avoid adapting to every change is that this 

change might be transient, which means by the time the system switches into the new plan 

suitable for the change, the change is gone and the new plan is not suitable anymore. To 

avoid these problems, the optimiser keeps a window of plan costs and finds the average. If 

the new average cost significantly differs from the previous average, it starts the re-

optimisation process. 

The optimiser now starts trying to find a cheaper plan for the current conditions. Using 

dynamic programming techniques, we implemented two algorithms that use the cost model 

to find a new efficient plan.  

6.5.1 Optimal plan algorithm 

The first algorithm finds the optimal left-deep plan that is guaranteed to have a lower cost 

than all other possible left-deep plans based on the cost model. Working bottom-up, it 

starts by finding all possible plans of one-join size that join only two alpha nodes. It 

estimates every plan’s cost and adds them to the first level table. In the second round, each 

one-join plan from the first level table is joined with every alpha node except those 
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participating in the current plan. This results in new, two-join plans that join three alpha 

nodes. Each new plan increments its cost with the new join’s estimated cost; then, it is 

added to the second level table. This process continues until, after the final round – which 

is equal to the number of alpha nodes minus one – the last table contains plans that join all 

alpha nodes. The optimiser then simply chooses the cheapest plan from the table. 

 

Listing 6.1: Optimal plan algorithm 

The pseudo code of the algorithm is presented in Listing 6.1. We have two lists 

representing potential left parents and right parents, initially containing all alpha nodes of 

the current rule. We then have three loops: the first represents the rounds, the second loops 

potential left parents, and the third loops potential right parents. In the first round (as a 

special case), where left parents are alpha nodes, lines 5 and 6 ensure that an alpha node 

does not get joined with itself. By deleting the current left parent alpha node from potential 

right parents, we prevent subsequent left parent alpha nodes from joining with the current 

Procedure: Find optimal plan 

Input: alpha nodes in the current plan a1, a2, a3, …, an 

Output: New plan optP 

1 rightParents = { a1, a2, a3, …, an} 

2 leftParents = { a1, a2, a3, …, an} 

3 for (r=0; r<n-1; r++) 

4 for (i=0; i<leftParents.length; i++) 

5  if (leftParents[i] ∈ rightParents) 

6   remove leftParents[i] from rightParents 

7  if (leftParents[i] is a join node) 

8    rightParents = { a1, a2, a3, …, an} 

9    remove all alpha nodes in leftParents[i].plan from rightParents 

10   for (j=0; j<rightParents.length; j++) 

11    if (leftParents[i] and rightParents[j] have a shared variable) 

12     jn = join (leftParents[i], rightParents[j]) 

13     newPlan = leftParents[i].plan 

14     newPlan.add(jn) 

15     newPlan.cost += jn.cost 

16    table[r].add(newPlan) 

17   leftParents = all last joins in table[r] plans 

18 optP = cheapest plan in table[r] 

19 return optP 
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node, which results in a duplicate join node. For example, if we have three alpha nodes (A, 

B, and C) in the first round, we first hold A as the left parent. By deleting A from the right 

parents list, A is joined with B and, then, with C. In the left parents loop, B is the left 

parent, and the right parents list does not contain A; therefore, we do not join B with A (a 

duplicate to A join B). This is equivalent to having the second and third loops as: 

However, this logic does not hold for subsequent rounds, so we chose to remove nodes 

from the list of right parents. Lines 11–16 check if there is a possible join between the 

current left and right parents, create a join node, and add it to a new plan – which is 

initialised as the left parents’ plan – and increment the new plan’s cost with the new join’s 

estimated cost. The new partial plan is stored in the current level table. 

In the following rounds, the list of left parents will now be filled with join nodes (line 17). 

As the list of right parents is now empty, it is re-filled in line 8. Then, line 9 ensures that 

the left parent join node does not get joined with an already joined alpha node in the 

current plan, e.g. node (A&B) does not join A or B. The programme continues until the 

final round, where all plans join all alpha nodes. It chooses the cheapest plan and returns it. 

To get an idea about the overhead of this algorithm, we estimate the number of join nodes 

it creates. We consider a star-joined plan, in which every alpha node shares a variable with 

each other alpha node. If we assume there are n alpha nodes in this plan, the first round 

will create (n-1)+(n-2)+(n-3)+…+1 = n(n-1)/2 partial plans of one-join size. Each will be 

joined with n-2 alpha nodes in the second round, resulting in n(n-1)/2 * (n-2) partial plans 

of two-join size. Each of these is joined with n-3 alpha nodes in the third round, i.e. there 

are n(n-1)/2 * (n-2)* (n-3) partial plans of three-join size. In the final round, each partial 

plan is joined with one remaining alpha node, so the number of plans is n(n-1)/2 * (n-2) * 

(n-3) * … * 1 = n(n-1)/2 * (n-2)!. This number serves as a worst-case scenario, as we 

assumed a star-shaped plan; other shapes result in a smaller number of alternative plans. 

6.5.2 Greedy algorithm 

The second algorithm uses a greedy approach to minimise the overhead. As in the first 

algorithm, it starts by finding all possible two-alpha joins and their costs. However, instead 

of saving and working on all of them in the next round, it only saves the cheapest one. This 

cheapest join then gets joined with all remaining alpha nodes, and the cheapest resulting 

for(i=0; i<leftParents.length; i++) 
 for(j=i+1; j<rightParents.length; j++). 
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join is saved to get joined in the next round, and so on. Listing 6.2 shows a pseudo code of 

this algorithm. After joining the last alpha node, we get a new plan that is not guaranteed to 

be optimal, but the overhead can be significantly lower than the first algorithm.  

Listing 6.2: Greedy plan algorithm 

While the number of join nodes created in the first round is the same as in the previous 

algorithm, it is significantly lower in the next rounds. In the second round, instead of 

joining every partial plan from the first round with the n-2 remaining alphas, only the 

cheapest partial plan is joined, resulting in n-2 partial plans of two-join size. Ultimately, 

there will be one complete plan and n(n-1)/2 + (n-2) + (n-3) + … +1 = n(n-1)/2 + (n-1)(n-

2)/2 partial plans. This is also based on a star-shaped rule; other shapes require a smaller 

number of partial plans. 

6.6 Plan migration 

When the optimiser successfully finds a cheaper plan, it orders the rule engine to start a 

plan migration. Switching immediately from the old plan to the new plan will cause a loss 

Procedure: Find greedy plan 

Input: alpha nodes in the current plan a1, a2, a3, …, an 

Output: New plan grP 

1 rightParents = { a1, a2, a3, …, an} 

2 leftParents = { a1, a2, a3, …, an} 

3 for (r=0; r<n-1; r++) 

4 for (i=0; i<leftParents.length; i++) 

5  if (leftParents[i] ∈ rightParents) 

6   remove leftParents[i] from rightParents 

7  for (j=0; j<rightParents.length; j++) 

8    if (leftParents[i] and rightParents[j] have a shared variable) 

9     jn = join (leftParents[i], rightParents[j]) 

10     estimate jn’s cost and it to table[r] 

11   jn = cheapest join in table[r] 

12   remove jn.rightParent from rightParents 

13   if (jn.leftParent is an alpha node) 

14    remove jn.leftParent from rightParents 

15   clear leftParents 

16  add jn to leftParents 

17   add jn to grP 

18   grP.cost += jn.cost 

19 return grP 
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of possible results. This is because the new plan joins have empty memories, while the old 

joins’ windows are full with intermediate results, which can be possibly joined by newly 

arriving tuples. To avoid this problem, we run both plans simultaneously until the new 

plan’s joins are full with intermediate results and all the old plan join windows’ tuples are 

expired. This period of time is equal to the largest window size of input streams 

participating in this plan. To avoid duplications in the output results, we only print the 

results of the old plan until the plan migration stage finishes; then, the new plan prints out 

its results, while the old plan is disconnected. 

6.7 Conclusion 

This chapter presented our second contribution: a cost-based adaptive optimiser for RDF 

streams. The optimisation process in R4 runs as follows: first, R4 produces an initial plan 

based on a number of known optimisation heuristics, such as plan sharing and avoiding 

Cartesian products. After running the initial plan, the monitor starts collecting statistics 

about the performance of operators, that are then used by the adaptive optimiser to find a 

cheaper plan. The adaptive optimiser estimates different plans costs based on a cost model. 

When a cheaper plan is found, the optimiser instructs the rule engine to start the migration 

process. In the next chapter, we validate the cost model, and evaluate the adaptive 

optimiser performance in different setting. 
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Chapter 7: Evaluating R4’s Optimiser 

Chapter 5 presented a comparative evaluation of the main reasoning engine. As the 

previous chapter addressed the optimisation problem in semantic stream processors, 

detailing the optimisation process carried out by R4, we now evaluate the performance of 

R4’s optimiser. Before we evaluate the adaptive optimiser, which responds to changes in 

streams’ characteristics by adapting the order of join nodes in its Rete networks, we 

investigate two known optimisation techniques: namely, minimising window sizes 

(Motwani et al., 2003) and sharing parts of the Rete networks between different rules 

(Forgy, 1982).  

In Section 7.1, we examine the effect of minimising window size on the processing time 

and completeness of results. Then, Section 7.2 tests the ability of R4’s optimiser to share 

operators between different rules and shows how this can improve the performance of the 

system. Finally, Section 7.3 evaluates the adaptive optimiser: first, by verifying its cost 

model and, second, by comparing the costs of the plans chosen by the adaptive optimiser 

with the plans chosen by the static optimiser in both stable and unstable streaming 

conditions. For all these experiments, we apply the same datasets used in the real-world 

scenario in the SemSorGrid4Env project described in Chapter 5, Section 5.1. 

7.1 Quality of results vs. window size 

In the information retrieval domain, in general, the measurements most commonly used to 

test the quality of results are precision and recall (Manning et al., 2008). The precision of a 

system is the proportion of retrieved material that is actually relevant. In contrast, the recall 

of a system is the proportion of relevant material that is actually retrieved (Van Rijsbergen, 

1979). This pair is widely used to measure what is known as the effectiveness of the 

retrieval system. In other words, it is a ‘measure of the ability of the system to retrieve 

relevant documents while, at the same time, holding back non-relevant one’ (Manning et 

al., 2008). 

Stream processing systems try to maximise both the precision and recall of the results they 

produce. However, it is not always possible to produce 100% correct and complete results 

when the systems are limited to a bounded amount of memory (Babcock et al., 2002). 

Approximation techniques used to handle the potentially unbounded input streams can 

affect both the precision and recall of the produced answers. The sampling technique 
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provides approximate answers that are not always correct, while the windowing technique 

provides incomplete but correct answers. The incompleteness used here regards the whole 

input stream, and is applied in situations when windowing is used as a mere resource 

management technique, i.e, not part of the intended semantics of the rule. In the second 

case, windows are used as temporal constraints, and results should be both correct and 

complete with regard to the applied window. As we do not use sampling techniques, we 

focus on examining the recall measurement21. 

To evaluate the quality of R4’s results, we observed the completeness of results while 

applying different window sizes. We ran the system on two datasets – Dataset2 and 

Dataset3 – from Table 5.1. A rule that asks for all available swell period measurements 

observed by a sensor that has also observed a high wave (Listing 7.1) is applied. For every 

high wave observation, the system should search the windows for all swell period 

observations by this sensor. We stream the dataset, sending 169 observations every second 

(2366 triples) instead of every half an hour in the real-life streaming rate. In case of the 

second dataset, which has all half-hourly observations from a whole day, a 48 seconds 

window size would be equivalent to 24 hours window in the real-life streaming rate, and so 

should find all swell period values for every sensor with a high wave reading. Minimising 

windows caused the system to only find swell period readings that were observed near the 

high wave observation.  

 

Listing 7.1: Completeness of results experiment rule 

We first used Jena with the same rule and datasets to find the number of complete results 

for each dataset. To calculate the recall, we simply divided the number of retrieved results 

by the number of complete results.  

                                                           

21 We compared R4’s output to Jena’s output and ensured that all retrieved results are correct.  

Forall ?s ?v ?v2( 

If  And( ?ob [ssn:observedProperty -> waves:Wind_Wave_Height] 

?ob [ssn:observedBy ?s] 

?ob [ssn:observationResult ?result] 

?result [ssn:hasValue ?value] 

?value [ssnExt:hasQuantityValue ?v] 

External (pred:numeric-greater-than(?v 4.00)) 

?ob2 [ssn:observedProperty -> waves:Swell_Period] 

?ob2 [ssn:observedBy -> ?s] 

?ob2 [ssn:observationResult -> ?result2] 

?result2 [ssn:hasValue -> ?value2] 

?value2 [ssnExt:hasQuantityValue -> ?v2]) 

Then  ?s [ssnExt2:swellValue -> ?v2]) 
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Table 7.1 and Figure 7.1 show the increasing recall values in correlation with increasing 

window size. For each running, we also calculated the average response time. The table 

also shows the trade-off between the response time and completeness of results. While 

maximising window size means getting more results, it also means the response time will 

increase, as the system will spend more time processing the larger memories. 

   

Figure 7.1: Window size vs. recall 

Table 7.1: Recall and response time for different window sizes 

Dataset Window size 

(seconds) 

No. of results Recall Average 

response time 

(ms) 

Standard 

deviation 

Dataset 2 1 11 0.28 2.52 0.23 

2 21 0.53 2.88 0.39 

4 36 0.90 3.04 0.56 

6 40 1.00 3.20 0.84 

12 40 1.00 3.20 0.66 

Dataset 3 1 65 0.10 2.92 0.80 

2 163 0.25 3.88 0.77 

4 271 0.42 4.67 0.80 

6 339 0.52 5.91 1.01 

12 492 0.75 6.22 1.40 

24 613 0.94 7.99 1.08 

36 644 0.99 8.47 1.24 

48 653 1.00 6.65 1.16 
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7.2 Operator Sharing 

 

Listing 7.2: Operator sharing experiment rule 

R4 enables sharing of operators and their memories between multiple rules. To examine 

how operator sharing can affect the memory consumption of the system, we created two 

rules that can share some of their operators. The two rules are then executed in two 

settings: they share their operators in the first setting, while they run separately in the 

second. For both settings, we periodically measure the memory size of all stateful 

operators. Then, we compare the shared network memory consumption to the unshared 

one. 

The implemented rules are presented in the RIF in Listing 7.2. The first rule finds wave 

heights greater than a specified threshold, along with the sensor ID that observed it. The 

second rule finds the average wave height across all 24 sensors every half hour. The 

unshared Rete networks are illustrated in Figure 7.2, while the shared network is depicted 

in Figure 7.3. It shows that, for this particular use case, most filter operators are shared, 

and three out of four joins are also shared. 

We ran those rules on Dataset3, which contains nearly 100k triples. We set the global 

window size to 8 seconds (equivalent to 4 hours, as we run in the same input rate as the 

previous experiment). All alpha and beta memories report their sizes every second. We 

calculate the total size of these memories every second in both settings and compare them 

to show the effect of operator sharing on memory consumption. Full numerical results can 

be found in Appendix C. Here, we represent two charts: one shows only the totals of 

Forall ?ob ?v ?s ( 

  If  And( ?ob [ssn:observedProperty -> waves:Wind_Wave_Height] 

?ob [ssn:observedBy -> ?s] 

?ob [ssn:observationResult -> ?result] 

?result [ssn:hasValue -> ?value] 

?value [ssnExt:hasQuantityValue -> ?v] 

External (pred:numeric-greater-than(?v 2.00))) 

  Then  ?s [ssnExt2:highAlert -> ?v]) 

Forall ?ob ?v ?avg( 

  If  And( ?ob [ssn:observedProperty -> waves:Wind_Wave_Height] 

?ob [ssn:observedBy -> ?s] 

?ob [ssn:observationResult -> ?result] 

?result [ssn:hasValue -> ?value] 

?value [ssnExt:hasQuantityValue -> ?v] 

(?avg = External (func:numeric-avg(?v)) ) 30 m 

  Then  ?s [ssnExt2:average -> ?avg]) 
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memory sizes for both settings, and the other shows the growth of all window sizes over 

time. 

 

 

Figure 7.2: Two separate Rete networks for two rules without sharing 

 

 

Figure 7.3: Shared Rete network for two rules 
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Figure 7.4: Total memory sizes for shared and unshared plans 

Figure 7.4 simply shows that the shared plan consumes less memory than the unshared 

one. The extra memory saved by the shared plan can be exploited by enlarging the shared 

windows in order to maximise coverage and increase the completeness of the results. 

 

 

Figure 7.5: Individual memories growth over time 
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Figure 7.5 shows the behaviour of the windows in the shared plan over time. The windows 

all start from zero and grow incrementally until they reach their predefined limit (8 

seconds), at which point they start dropping expired tuples while receiving new tuples at 

the same time. The pace at which they evolve, however, is different. The figure shows that 

the highest memory size belongs to alpha memories with only one condition matching the 

predicate (a2, a3, a4, and a6). In this use case, these predicates are not selective, as there is 

one triple matching each predicate in every observation. The first alpha memory (a1) is 

connected to a more selective filter, its selectivity determine the selectivities of its 

following join nodes (b1, b2, b5). The lowest memory size is associated with the b4, which 

is beta memory of the last join in the first rule, connecting five triple patterns, in which two 

of them are selective. Alpha and beta memories of the unshared plan follow the same 

patterns, but as some nodes and their memories are duplicated, we get the higher memory 

cost. 

7.3 Evaluating the adaptive optimiser 

R4 has an adaptive optimiser that responds to changing streams’ characteristics during 

runtime by adapting the order of join nodes in the running networks. The adaptive 

optimiser communicates with the monitor to receive real-time statistics about the cost of 

the running plan, tries to find a cheaper plan based on a cost model, and instructs the rule 

engine to migrate to the new plan if found.  

Before evaluating the performance of the adaptive optimiser, we need to validate the 

employed cost model. Experiments in Section 7.3.1 test the optimiser’s ability to correctly 

estimate the performance of different plans by comparing measured plans’ costs and 

estimations based on the cost model. Section 7.3.2 evaluates the decisions taken by the 

adaptive optimiser at stable conditions. We compare the cost of the plan chosen by the 

adaptive optimiser (based on the cost model) to the cost of the initial plan chosen by the 

static optimiser. Finally, Section 7.3.3 repeats the previous experiment but under unstable 

conditions, where stream conditions change during the lifetime of the running rule.  

7.3.1 Verifying the cost model 

The cost-based optimisation process in R4 uses real-time statistics about the input streams 

to measure the cost of the running plan and estimate costs of possible alternative plans 

using the cost model, presented in Section 6.3. The cost model is a vital part of the 
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optimisation process, as it can lead to wrong decisions if it does not estimate costs of 

different plans correctly. While it is not expected to provide accurate measures of the costs, 

it should be able to correctly rank different plans based on their costs, especially when their 

costs vary significantly. This section presents experiments that compare the estimated costs 

of different plans to their actual costs. 

7.3.1.1 Methodology 

To verify the cost model, we run two experiments for two rules: simple and complex. The 

simple one (triple patterns are shown in Listing 7.3) takes input from a single stream and 

has intra-graph joins only, while the complex rule (Listing 7.4) takes input from multiple 

streams and has both intra- and inter-graph joins. For each experiment, we compare the 

measured and estimated costs of all feasible plans. Feasible plans are plans that follow the 

shared variable condition employed by the static optimiser. 

Both measured and estimated costs are calculated using the cost model. However, the 

measured cost is based on the actual run-time statistics of input and output rates, beta 

memories’ sizes, and operators’ selectivities. On the other hand, the estimated cost is based 

on estimations of operators’ output rates, beta memories’ sizes, and operators’ selectivites. 

To further verify the cost model in the first experiment, we compare the measured plan 

cost – based on the cost model – to the actual performance of the plan in terms of its 

response time, i.e., the time between receiving new elements till producing the last output 

of each update. 

The first experiment’s rule represents a basic pattern matching with three conditions (or 

triple patterns) that checks if an observation’s result is above a specified threshold. For this 

rule, there are only two feasible plans: (A⋈B)⋈C, and (B⋈C)⋈A, as plan (A⋈C)⋈B 

violates the shared variable condition. For clarity, we omit parentheses and the join symbol 

in the following and use the conditions’ ordering to represent plans, e.g., (A⋈B)⋈C is 

represented as ABC and (B⋈C)⋈A as BCA. For each plan, we print latency, measured 

cost, and estimated cost every second while inserting a stream of 700 graphs (9800 triples) 

per second input rate. We use a 1.1 million triples input file that contains observations 

collected over 10 days. We manipulated the observation results so that they only match the 

rule condition (greater than 100) after 70 seconds to check the cost model’s sensitivity to 

the changing selectivity. 
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Listing 7.3: Triple patterns of Rule 1 

In the second experiment, the rule checks if there are two sensors observing the same high 

result. In total, there are 16 different feasible plans to implement this rule. We chose five of 

them that are expected to have different costs, including: ABCFED, DEFCBA, CBAFED, 

FEDCBA, and FCBADE. We run each plan individually, printing measured and estimated 

costs every second. As the plan receives input from two streams, we obtained observations 

of two sensors and stored them in two files to stream them at a faster rate. In this 

experiment, the first stream input rate is 2000 triples/second, and the other stream’s input 

rate is 1000 triples/second, while the CCO sensors provide data at an output rate of 98 

triples (seven graphs or observations) per 30 minutes. The content of the streams is not 

manipulated in this experiment, and both streams are assigned global window sizes of five 

seconds. 

 

Listing 7.4: Triple patterns of Rule 2 

7.3.1.2 Results 

For the first experiment, Figure 7.6 compares the measured and estimated costs for each of 

the two alternative plans plotted every second during the lifetime of the rule. The figure 

shows that the second plan (BCA) outperforms the first one in the first 70 seconds and has 

the same cost as the first plan after that. This is because triple pattern C is very selective at 

the beginning, while the selectivities of patterns A and B are equal to one, i.e. every input 

graph has one triple matching A and one triple matching B. This means that joining pattern 

C with B first results in small beta memories for the whole network. On the other hand, 

joining pattern A with B first results in a join node that has an output rate equal to the 

original stream input rate (700 matches/second), leading to a big beta memory following 

this join. As we manipulated the input stream so that every graph after second 70 matches 

A ?ob1 ssn:observationResult ?result1 

B ?result1 ssn:hasValue ?value1 

C ?value1 ssnExt:hasQuantityValue (?v>100) 

D ?ob2 ssn:observationResult ?result2 

E ?result2 ssn:hasValue ?value2 

F ?value2 ssnExt:hasQuantityValue (?v>100) 

 

A ?ob ssn:observationResult ?result 

B ?result ssn:hasValue ?value 

C ?value ssnExt:hasQuantityValue (?v>100) 
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triple pattern C, all joins now have the same selectivity, which means that both plans have 

the same cost. 

Figure 7.6: Estimated and measured costs for Rule 1 plans 

In this setting, the figure also shows that the measured and estimated costs of both plans 

are identical. While it is not usually the case, the cost model can accurately calculate the 

cost of simple plans, where only intra-graph joins are used. The input observations 

(graphs) represent perfect characteristic sets. In this case, the output rate of the whole plan 

is based on the output rate of the most selective pattern (pattern C in this case). As we get 

actual statistics from the alpha network, selectivities and output rates of the beta network 

nodes, and therefore, the cost, can be accurately calculated. 

Matching measured and estimated costs proves that the optimiser performs well in terms of 

estimating different parameters that are used in calculating the estimated cost based on the 

cost model, including output rates, beta memories’ sizes, and operators’ selectivities. 

Furthermore, in this setting, we also measure the actual plan latency and compare it to the 

measured cost to see how well the cost model formulas reflect the real-life cost. Figure 7.7 

shows that, while the plans’ costs produced by the cost model underestimate the actual 

time taken to process the input, they reflected the same trend. Before 70 seconds, both 

show that Plan 2 outperforms Plan 1. At 70 seconds, the costs of both plans increase – Plan 

1 slightly and Plan 2 significantly. After this turning point, both methods show that both 
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plans perform equally. The underestimation could be due to the constant costs of handling 

one triple in the cost model formulas being underestimated in addition to the fact that the 

cost model only calculates the costs of join nodes; other costs such as filtering at the alpha 

network, generating results at the terminal node, and communication costs between nodes 

are not included.  

 

Figure 7.7: Measured costs vs. latency for Rule 1 plans 

 

The second experiment also compares measured and estimated costs but for a more 

complex rule. The chosen plans are as follows: Plan 1 (ABCFED) matches stream 1 

patterns (with the most selective pattern – pattern C – at the end) with stream 2 patterns 

(the most selective pattern F has to precede other patterns, as it is the only one that shares a 

variable with stream 1 patterns). Plan 2 (DEFCBA) matches stream 2 patterns (with the 

most selective pattern – pattern F – at the end) with stream 1 patterns. Plans 3 and 4 

(CBAFED and FEDCBA) are similar to the previous two but with the most selective 

patterns for each stream first. The last plan (FCBADE) is different, as it performs the inter-

graph join first. As expected, Figure 7.8 (with measured costs), shows that plans 3 and 4 

outperform plans 1 and 2, as they have the more selective patterns first. Between them, 

plans with stream 2 patterns first outperform their equivalent plans where stream 1 patterns 

0

0.002

0.004

0.006

0.008

0.01

0.012

0 10 20 30 40 50 60 70 80 90 100 110 120

P
la

n
 c

o
st

 (
se

co
n

d
s)

Running time (seconds)

Plan1-latency

Plan1-measured cost

Plan2-latency

Plan2-measured cost



Chapter 7 

142 

are placed first. This is because stream 2 has a lower input rate than stream 1. Plan 5 

performs between Plans 2 and 3. 

More importantly, this ranking is preserved in Figure 7.9, which shows estimated costs of 

the five plans22. While the measured and estimated costs do not exactly match, the cost 

model was accurate enough to rank different plans correctly. 

 

Figure 7.8: Measured costs for Rule 2 plans 

7.3.2 Optimisation performance under stable conditions 

After we ensured that the cost model could reasonably estimate different plan costs, we 

now measure the performance gains after employing the cost-based adaptive optimiser. 

The absence of streams’ statistics beforehand means that the initial plan chosen by the 

static optimiser can be inefficient. However, as soon as the monitor collects some statistics, 

the adaptive optimiser uses them to find and switch to a more efficient plan. In this section, 

                                                           

22 We split the results into two figures, as they do not look clear in a single graph; raw results and a single 

graph for measured and estimated costs can be found in Appendix C. 
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we compare the measured costs of the initial plan and the new plan chosen by the adaptive 

optimiser when stream conditions – input rates and selectivities – are stable. 

 

Figure 7.9: Estimated costs for Rule 2 plans 

7.3.2.1 Methodology 

We apply the same two – simple and complex – rules from the previous section (Listings 

7.3 and 7.4). For each, we first run the static optimiser only, identify the chosen plan, ask 

the monitor to print the measured cost of the running plan every second until the end of the 

streamed files, and find the average cost. We apply the same process using the adaptive 

optimiser twice, first using the greedy algorithm and then using the optimal algorithm. We 

only show the cost of the plan chosen by the optimal algorithm if it is different to the one 

chosen by the greedy algorithm. Moreover, to show the overhead of adaptivity, we run the 

adaptive optimiser (using the greedy algorithm) in two settings: the first one switches to 

the new chosen plan immediately without employing the migration process (during which 

both old and new rules are running), and the second applies the plan migration process. 

For each rule, we compare the costs of plans chosen by the static and adaptive optimisers 

using a variety of parameters that affect plan costs. These include using different global 
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window sizes for the input streams, different stream input rates, different operators’ 

selectivities, and different numbers of join nodes. 

7.3.2.2 Results 

Varying window sizes: 

For the first rule, Figure 7.10 compares different plans’ costs using window sizes varying 

from 1–15 seconds. The selectivity of operators reflects the real-life sensor data, as we 

have not manipulated the content of streams, while the input rate is fixed at 70 

graphs/second (almost 1000 triples/second). The initial plan generated by the static 

optimiser follows the same order the rule was written in (i.e. ABC), while both the greedy 

and optimal algorithms of the adaptive optimiser chose the order CBA, putting the most 

selective pattern first. For all the different window sizes used, the adaptive plan’s cost is 

44% less than the initial plan. 

We also notice that increasing the window size only slightly increases the plan cost for 

both static and adaptive plans. A bigger window size means elements will stay longer in 

memories, affecting mainly the probe cost (and possibly the result generation cost, as there 

is a bigger chance of matches but not the insertion or deletion costs). Thanks to the hash-

based implementation of alpha and beta memories, bigger windows do not dramatically 

increase plan costs.   

However, increasing window sizes has another side affect, which is a more expensive plan 

migration. The figure shows this clearly; as for the first window size, the plan migration 

stage only caused less than a 2% increase in the adaptive plan cost, while the last window 

(15 seconds) caused almost a 20% increase. This behaviour is expected, as our 

implemented plan migration strategy runs both the old and new plans for an amount of 

time equal to the window size in order to ensure complete results (with regard to the 

requested window size). The plans’ costs presented are averaged over a period of 100 

seconds. Running the same rule for longer time in the same stable conditions reduces the 

cost of migration relevant to the static plan, i.e. the static plan cost will remain the same, 

while the high cost of migration will be averaged over a longer period, resulting in a lower 

cost. 
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Figure 7.10: Average plans’ costs using different window sizes for Rule 1 

For the second rule, we chose window sizes of one and five seconds, trying their different 

combinations for the two streams, as shown in Figure 7.11. Both streams have the same 

input rate of 1000 triples/second. The static plan puts the first stream triple patterns with 

the same order as they appear in the rule (ABC) and then the second stream patterns in 

reversed order (the most selective pattern first: FED) to follow the shared variable 

condition. On the other hand, the greedy algorithm finds that joining the most selective 

pattern of the two streams (C and F) is the cheapest among two-alpha-nodes networks. It 

then joins the remaining patterns of the first stream (A and B) and then the patterns of the 

second stream (D and E) for the first, second, and last setting, producing the plan 

CFBAED. For the third setting, as the window of the first stream is bigger, it joins the 

remaining patterns of the second stream before those of the first stream, producing the plan 

CFEDBA. The optimal algorithm chooses a different order: CBFEAD for the first, second, 

and last settings and FECBDA for the third setting. 

We notice that the optimal plans only marginally outperform the plans generated by the 

greedy algorithm. Gains over static plans are between 15% to 25%, which is less than in 

the previous experiment. The reason could be that the second half of this rule is already 

optimised in the initial plan, placing the most selective pattern first in order to follow the 

shared variable static optimisation technique. Finally, we notice that plan migration costs 

are similar in the last three settings, as the adaptive optimiser has to run both old and new 

plans until the bigger window of both streams finishes.  
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Figure 7.11: Average plans’ costs using different window sizes for Rule 2 

Varying input rates: 

In this experiment, we fix window sizes at five seconds and vary the streams’ input rates. 

Figures 7.12 and 7.13 compare costs of static and adaptive plans for different input rates 

for Rules 1 and 2. The same observations made in the previous experiment are noticed 

here, including that both greedy and optimal algorithms pick the same plan for the simple 

rule and different plans for the second rule but with marginal cost differences, and that 

gains over the static plan are higher in Rule 1. However, an important difference that can 

be noticed is the steep increase of plan costs with a higher input rate. Unlike increasing 

window sizes that only affect the probing cost, increasing input rates affect all join 

operations. Higher rates mean more insertions, leading to more deletions when they expire, 

and also to more probing operations.  
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Figure 7.12: Average plans' costs using different input rates for Rule 1 

 

Figure 7.13: Average plans' costs using different input rates for Rule 2 

Varying selectivities: 

Operators’ selectivities are based on the values contained in the streamed data. Selectivities 

of operators are measured using the selectivity factor, which takes values between 0 and 1. 

A low selectivity factor near 0 means that the operator is highly selective, producing only a 

small fraction of its input as output. On the other hand, a high selectivity factor near 1 

means that the operator produces most of its input as output, indicating low selectivity. 

 In the previous two experiments, we controlled window sizes and input rates but have not 

manipulated the actual dataset, so they reflect real-world observation values. In this 

experiment, we fix window sizes and input rates, while varying the input data values to 
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result in different selectivities. We prepared several datasets, changing observation results 

(triples matching triple pattern C) in each of them to match certain selectivity. For 

example, half of the observations in the ‘0.5’ dataset match the rule conditions, and all of 

the observations in the ‘1’ dataset will make it to the output. 

Figure 7.14 shows that the best gains are obtained when the selectivity is low. When the 

selectivity goes up to 0.75, the cheaper plan found by the adaptive optimiser (CBA) 

becomes more expensive than the static plan (ABC) with the migration costs. This 

situation can be avoided by applying a threshold before changing to any cheaper plan e.g., 

changing plans only if the new plan is 25% cheaper than the current plan. When the 

selectivity is 1, the adaptive optimiser finds that the cost of the new plan is the same as the 

cost of the old one (as now all triple patterns have the same selectivity), and therefore, it 

does not change plans. 

 

Figure 7.14: Average plans' costs using different selectivities for Rule 1 

For the second setting, we join the stream of ‘0.1’ selectivity with the streams of ‘0.01’, 

‘0.05’, and ‘0.1’ selectivities. Results are similar to the previous setting, getting better 

gains with lower selectivies. However, in this case, the greedy algorithm failed to find a 

cheaper plan. It chooses to join patterns C and F first (as described in varying window 

sizes experiment), which ends up in a plan that is more expensive than the static plan. 
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Figure 7.15: Average plans' costs using different selectivities for Rule 2 

 

 

Listing 7.5: Triple patterns added to Rule 1 

 

Varying number of joins: 

In this experiment, we check how the adaptive optimiser performance scales while 

increasing the number of joins. For the first setting, we add one more triple pattern to Rule 

1 each time, causing one more join, until we reach the rule of seven triple patterns 

presented in Listing 7.5. 

Figure 7.16 shows that adding triple patterns G and H to the front of the rule causes a big 

increase in the static plan cost, as these patterns are not selective (every graph in the 

dataset satisfies them). The adaptive plan cost also increases to a lesser extent, as these 

patterns are placed at the end of the network. Adding the third triple pattern (I) is beneficial 

to the static plan, as it is a selective pattern. The adaptive plan cost is not changed, as its 

first join of C and B is already more selective than this. 
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G ?ob rdf:type ssn:Observation 

H ?ob ssn:featureOfInterest :PhysicalMetOcean 

I ?ob ssn:observedProperty :Mean_Wave_Direction 

J ?ob ssn:observedBy ?sensor 

A ?ob ssn:observationResult ?result 

B ?result ssn:hasValue ?value 

C ?value ssnExt:hasQuantityValue (?v>100) 
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Listing 7.6: Rule 2 after joining one more stream 

With Rule 2, instead of adding more triple patterns to two parts of the rule concerning the 

two input streams, we add more streams, asking for the matching observation results across 

three and four streams. The original Rule 2, which matches two streams with five joins, 

adds two more streams, increasing the number of joins to eight and 11. Similar to the 

previous experiments’ varying window sizes and input rates, the optimal algorithm 

produces plans that only slightly outperform the greedy plans for five and eight joins. 

Having 11 joins, however, causes the current implementation of the optimal algorithm to 

crash (out of memory exception). The total number of possible plans (disregarding the 

shared variable condition) is equal to 10!, i.e. 3,628,800 plans. Even for more efficient 

implementations of the algorithm, we expect that it would take too long to find a good plan 

– that stream conditions might change again before applying the new plan, rendering it 

useless. For big beta networks in a highly fluctuating stream environment, the fast, 

suboptimal greedy algorithm would be preferable. 

 

A ?ob1 ssn:observationResult ?result1 

B ?result1 ssn:hasValue ?value1 

C ?value1 ssnExt:hasQuantityValue (?v>100) 

D ?ob2 ssn:observationResult ?result2 

E ?result2 ssn:hasValue ?value2 

F ?value2 ssnExt:hasQuantityValue (?v>100) 

K ?ob3 ssn:observationResult ?result3 

L ?result3 ssn:hasValue ?value3 

M ?value3 ssnExt:hasQuantityValue (?v>100) 
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Figure 7.16: Average plan’s cost for an increasing number of joins in Rule 1 

 

Figure 7.17: Average plan’s cost for an increasing number of joins for Rule 2 

7.3.3 Optimisation performance under unstable conditions 

The experiments in the previous section showed that the adaptive optimiser in almost all 

cases was able to produce a cheaper plan. However, the gain over the static plan depends 

mainly on the rule itself and if there is any room for improvement. For example, if the 

simple rule (Rule 1) was originally written with the most selective pattern first, the 

adaptive optimiser would not be able to provide any improvements. Yet, the adaptive 

optimiser’s main goal is not only to provide a better plan than the initial one but to adapt to 

a changing environment. In this section, we evaluate the adaptivity of the optimiser by 
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testing it under an unstable environment, where stream conditions change during the 

lifetime of the rule. 

7.3.3.1 Methodology 

We observe the cost of the static and adaptive plans over runtime while varying stream 

conditions. Out of the four parameters that affect plan costs tested in the previous section, 

only input rates and selectivities are related to streams; window sizes and number of joins 

are related to rules decided by the user, and therefore, are not expected to change rapidly 

during runtime. Therefore, we conduct two experiments measuring how the optimiser 

responds to changes in stream input rates and changing selectivities. For both experiments, 

we use the rule presented in Listing 7.6 that joins three streams, checking if they all 

observe the same value. All streams in both experiments are observed through a window 

size of three seconds. 

In the first experiment, we run the rule for 60 seconds. During the first 20 seconds, we set 

the first stream to a high input rate of 3000 triples/second, while the second and third 

streams have medium, 300 triples/second, and low, 30 triples/second, input rates, 

respectively. At 20 seconds, we swap the input rates of the first and third streams so that 

the first has the low rate and the last has the high rate while the second remains the same. 

After another 20 seconds, we swap the rates of the first and the third streams again so that 

they return to their original rates. 

For the second experiment, a similar setting is used. We prepare three input streams with 

manipulated observation values to reflect the following selectivities: high (0.1), medium 

(0.05), and low (0.01) selectivity factors for the first, second, and third streams, 

respectively. After 45 seconds, data in the three streams begin to reflect different 

selctivities, in which the first stream becomes highly selective (low selectivity factor 0.01) 

and the third stream data represent lower selectivities (high selectivity factor 0.1). At 90 

seconds, they go back to reflect their original selectivities. 

7.3.3.2 Results 

Figures 7.18 and 7.19 show the effect of changing input rates and selectivities on the costs 

of the static and adaptive plans. A similar pattern is observed in both figures23, showing 

                                                           

23 We note that Figure 7.19 provides more neat patterns, because selectivities, input rates, window sizes 
are all controlled, while selectivities in Figure 7.18 reflect unmanipulated real-world data. 
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that the adaptive optimiser immediately responds to the changing conditions by switching 

to a more efficient plan, maintaining a low cost most of the running time. The static plan 

cost, on the other hand, rises and falls with the changing conditions without any control. 

During the first part of the experiment, the static plan follows the order of the original rule, 

joining the first stream with the second and, then, the third. This results in a high cost, as 

the first stream has a higher input rate in the first experiment and a lower selectivity in the 

second one. The adaptive optimiser chooses to join the third stream with the second and 

first stream, producing a lower cost plan. When the first change occurs, the cost of the 

static plan drops down, as the first stream now has the lowest input rate (or highest 

selectivity in the second setting). The adaptive optimiser immediately notices that its 

current plan (that joins the third stream first) becomes inefficient and successfully changes 

to a plan that joins the first stream first (as in the static plan). However, it goes through a 

short period of high costs during plan migration, as it has to run both plans simultaneously. 

After the second change, the static plan goes into its original high cost, while the adaptive 

optimiser successfully changes plans to join the third stream first, maintaining its low cost 

after the end of migration. 

 

Figure 7.18: Adaptivity while changing input rates 
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Figure 7.19: Adaptivity while changing stream selectivities 

 

7.4 Conclusion 

This chapter has presented experiments that investigate the trade-off between window sizes 

and completeness of results; advantages of operator sharing, along with a thorough 

evaluation of R4’s adaptive optimiser.  

Observing the increased completeness of results and increased processing time in 

correlation with increasing windows sizes in the first experiment (Section 7.1) positively 

supports our second hypothesis. 

Hypothesis 2: It was expected that the trade-off between the completeness of the 

output results and the processing time could be controlled by varying the resource 

allocation.  

Second, the increase of total window sizes in the unshared plan over the shared one in the 

second experiment (Section 7.2) positively supports our third hypothesis. 

Hypothesis 3: It was anticipated that resource usage would be reduced by our 

approach of enabling node sharing, where possible, between the rules. 

Finally, the different experiments carried out in sections 7.3.2 and 7.3.3 show the 

effectiveness of the adaptive optimiser in maintaining lower plan costs – even under 

changing conditions – which positively supports our fourth hypothesis. 
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Hypothesis 4: It was anticipated that system performance would be improved by 

monitoring the characteristics of the streams in order to re-organise the reasoning 

networks. 

However, there are two main factors that we have not considered in our evaluation of the 

adaptive optimiser. First, our evaluation is based on only two rules, which may have 

introduced a degree of bias into the results; future evaluation could improve on this by 

considering a wider range of rules that correspond to other use cases that go beyond the use 

case considered. Secondly, while we considered the overhead associated with plan 

migration, the overhead associated with monitoring has not been evaluated. Although it 

can be controlled by minimising and maximising the monitoring interval (which affects the 

adaptivity), the monitoring overhead should be evaluated and added to the cost of adaptive 

optimisation. 
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Chapter 8: Conclusions and Future Work 

The work presented in this thesis falls within the semantic stream reasoning domain, which 

aims to integrate semantic reasoning techniques with data streams. This can potentially fill 

the gap between the IoT paradigm (where data streams are generated and processed, but 

with no standard format or semantic reasoning abilities) and the Semantic Web area (where 

reasoners work on standardised semantic data efficiently, but not at a high change rate, as 

in streams).  

The primary aim of this research was to enable efficient rule-based reasoning over RDF 

data streams using dataflow networks, where reasoning is implemented natively over 

streams using data flow networks. We also addressed the optimisation issue by enabling 

the reasoning networks to adaptively change at run time, in order to cope with their 

environmental conditions. A summary of the research and contributions is provided in 

Section 8.1, and possible improvements recommended for future work in Section 8.2. 

8.1 Summary 

Several requirements were identified that were relevant to our main research question 

(outlined in Chapter 1): 

How could we efficiently (by using minimal resources and ensuring high 

throughput) and effectively (by providing timely results with high precision and 

recall) enable rule-based reasoning over RDF data streams using data flow 

networks? 

The requirements included integrating the streaming and static data, ensuring low latency, 

utilising memory, supporting inference, and managing a dynamic environment. The 

primary objective of the research for this thesis was to create R4, a rule-based reasoner for 

RDF streams, using the Rete algorithm. R4 is based on a continuous reasoning framework 

that addresses the stated requirements as follows. R4 tackles the integration requirements 

by enabling unified and native processing of the static and streaming RDF data. While this 

feature made it necessary to implement R4 from scratch, rather than reuse existing 

semantic reasoners and stream processing systems (as in the early semantic stream 

processing systems, such as C-SPARQL), there are two main advantages to this approach. 

Firstly, it avoids the overheads involved in transforming the RDF streams to the underlying 



Chapter 8 

158 

stream engine model. Secondly, it involves full control over the low-level processing 

plans, enabling better optimisation opportunities. 

R4 supports background reasoning and domain, user-defined rules using Rete networks in 

a unified way. This helps to address the inference support requirement. The incremental 

reasoning enabled by the Rete algorithm helps to keep the latency to a minimum, avoiding 

costly re-computation. As intermediate results need to be maintained using this approach, 

we addressed the memory utilisation problem by using the windowing technique. Every 

partial or complete result was assigned an expiration time so that resource usage was kept 

under control as the engine continuously removed expired elements. The resource 

utilisation requirement was further addressed as the intermediate results between the 

different plans could be shared. 

R4 supports adaptive optimisation to further improve performance, and to address the 

requirement of managing a dynamic environment. As stream characteristics change at run 

time, what was at first an optimal plan may perform increasingly poorly. The running plan 

in R4 can be adapted to a more efficient one using a cost-based model that is specifically 

designed for RDF streams. 

After testing the implemented R4 system using a number of use cases, we conducted a 

comparative evaluation of its performance, first comparing it to a static reasoner, proving 

our first hypothesis that a stream reasoner would outperform a static reasoner in terms of 

throughput and response time. We then compared R4 to two stream reasoning engines, 

Sparkwave and Etalis, and discovered that R4 outperformed them both. Lastly, we 

evaluated the performance of the adaptive optimiser using different settings (stable and 

changing). The adaptive optimiser generated more cost-effective plans than those 

generated by a static optimiser for all of these settings. 

8.1.1 Contributions 

R4, a continuous rule-based processing reasoner that works natively on RDF streams, was 

the main contribution to this thesis. We applied the incremental Rete algorithm to 

overcome the challenge of RDF stream reasoning, and tackled issues such as memory 

management and sharing memories of different window sizes. R4 creates Rete networks 

for background reasoning entailment rules and domain-specific, user-defined rules in the 

same way and connects the first to the latter. The results from both networks were assigned 

expiration times and re-entered into the networks to generate further results. This is 
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different to the way in which Sparkwave (Komazec et al., 2012) applies the Rete algorithm 

to the problem. As Sparkwave does not support reentrancy, it handles background 

reasoning using a schema pre-processing step and an additional network (ε-network) that 

produces entailments to be used by the main Rete network. INSTANS (Rinne et al., 2012a) 

also uses the Rete networks to incrementally process RDF streams. However, it does not 

discuss the challenge of background reasoning. In addition, the insertion and removal of 

RDF statements is handled using explicit INSERT and DELETE queries, unlike our 

garbage collection approach embedded in the beta nodes. 

Our second contribution is the cost-based adaptive optimiser. We based our cost model on 

the body of work produced by the stream management community, while undertaking 

RDF-specific issues, such as selectivity estimation. Except for CQELS (Le-Phuoc et al., 

2011), the semantic stream processing engines reviewed in Chapter 3 do not support 

adaptive optimisation. On the other hand, CQELS employs an Eddies-based adaptivity 

approach at the very fine-grained level of triples. We believe that our more coarse-grained 

adaptivity approach at the level of plans is more suited to the RDF model as it avoids the 

overhead of adding routing information to every triple. 

The extension of Rule Interchange Format (RIF) Core was another minor contribution to 

our research. Adding window constructs enables users to define time constraints to be used 

by the processing engine. These windows can be defined at import level, which works as a 

global window across all the rules in the document, or at formula level, creating local 

windows that override global ones. 

8.2 Future Work  

This research focused on enabling efficient rule-based reasoning for RDF streams. We 

support reasoning for rules that can be expressed in the RIF Core rule language. To 

enhance efficiency, we applied the incremental Rete algorithm and supported adaptive 

optimisation to keep the performance at a high level, even in dynamic conditions. This 

work could be further improved in three main directions, namely supporting the adaptive 

control of the window size, increasing expressivity by assisting non-monotonic reasoning, 

and increasing efficiency and scalability by supporting distributed processing.  
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8.2.1 Adaptive window size 

R4’s adaptive optimiser is capable of changing the processing plan at run time to a more 

efficient plan based on a cost model. However, in some cases (e.g. stream bursts), even the 

most cost-effective plan does not result in adequate performance. In devising a plan cost 

using a cost model in terms of the time needed to process a number of elements equal to 

the input rate, with the input rate being defined as the number of incoming triples per 

second, any plan cost of ≥ 1 second is considered to be inefficient. For example, if a stream 

input rate is 2000 triples/second, where the cheapest plan cost is 2 seconds, then at the end 

of the first second, the plan would have processed only half of what had arrived at the 

beginning, but would be faced with another 2000 triples arriving at second 2. The 

accumulation of unprocessed elements means that the system loses its responsiveness. 

In this case, maintaining responsiveness may be considered more important than 

completeness of the results. Therefore, a feasible solution is to apply window reduction. In 

Section 7.1, we saw how the trade-off between the completeness of results and processing 

times could be controlled by the window sizes. We suggest that the optimiser should be 

enabled to adaptively control the window sizes in order to handle situations of data 

overflow. 

Reducing the window sizes can be carried out globally, or at local operator level. Global 

window reduction can be compared to other load shedding techniques, such as sampling, 

as effectiveness may vary between the approaches. The number of results and memory and 

processing costs were compared when applying window reduction and sampling in 

Cammert et al. (2008). They found that the window reduction technique returned more 

results than the sampling technique. 

Furthermore, window reduction can be performed locally in some nodes. In this case, 

nodes that contribute little to the final output results should have reduced window sizes. To 

apply this technique, the monitor should be extended to continuously measure how each 

node’s output extends throughout the network. This can be especially beneficial with 

ontological background reasoning as R4 follows a forward chaining approach, whereby 

many entailed results are not actually used. 

8.2.2 Expressivity 

The expressivity of R4 could be improved by supporting the more expressive dialect of 

RIF, namely RIF Production Rule Dialect (PRD) (de Sainte Marie et al., 2013). RIF PRD 
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extends RIF Core mainly by allowing different forms of actions in the head part of the rule, 

including Assert, Retract, and Modify, thus enabling non-monotonic reasoning. RIF PRD 

formulas also allow negation, which is not supported by RIF Core. In its current form, our 

continuous rule-based reasoning framework cannot support negation and non-monotonic 

reasoning as retraction is only supported for expired results. As reasoning in our 

framework is incremental, retracting a triple or a token before it expires means that all 

subsequent nodes and memories should be notified to retract any elements that were 

produced as a result of the presence of that triple. As we used the time intervals with an 

expiration time approach, each join node independently removed expired elements from its 

parent memories without communicating with the other nodes. Therefore, invalidating an 

element before its expiration time would result in incorrect answers (false positives). 

The negative tuples approach is a different way of removing expired elements found in the 

literature of stream processing which avoids reliance on timestamps (Hammad et al., 

2003). According to this approach, a window operator emits a positive tuple for every 

arriving tuple, and a negative tuple (effectively the same tuple but with a negative sign) 

when this tuple expires. All subsequent operators should be able to deal with positive and 

negative tuples. Negative tuples can be used not only to ask for the removal of expired 

tuples, but also to retract invalid tuples. However, the main drawback to this approach is 

that it doubles the number of tuples going through the network, which reduces the 

efficiency of the system. We expect this to affect RDF stream processing to a higher extent 

(than relational streams) because of the fine-grained nature of the RDF model. For 

instance, a simple relational to RDF mapping tool would generate five triples for a single 

relational tuple with five attributes. Therefore, instead of undergoing a complete shift to 

this approach in order to support retraction, we propose the adoption of a hybrid method in 

which the current expiration timestamp approach is retained and negative tuples only used 

when it is necessary to invalidate an element before it expires. All operator algorithms 

should be updated with instructions for operators to follow upon receiving a negative tuple.  

8.2.3 Distribution  

An important challenge in stream processing in general is distributed processing. Data 

streams are usually distributed in nature. For some high volume streams produced by 

widely distributed sources, simply collecting all the streams to be processed in a single 

machine can be inefficient (Babcock et al., 2002). Performing some processing on data 

locally at the source (e.g. filtering) can improve performance by reducing expensive data 



Chapter 8 

162 

transfer costs (e.g. SNEE (Galpin et al., 2011)). The ability to distribute processing over 

multiple machines also enables more scalable systems, as they can scale in two 

dimensions: the hardware performance of each computing node and the number of nodes 

(Urbani et al., 2009)). A distributed stream reasoner should be also more fault-tolerant than 

a centralized reasoner, since it avoids a single point of failure and enables the migration of 

operators between the affected nodes. Furthermore, overloading problems can be avoided 

by supporting automatic load balancing over the available nodes. 

We suggest a distributed system architecture for R4, in which data flow networks can be 

distributed among multiple machines that can communicate and dynamically share load 

with each other. Figure 8.1 shows a dataflow network distributed among several hosts. To 

enable this, we discuss the communication and load management problems. 

 

Figure 8.1: A distributed dataflow network 

 

8.2.3.1 Communication Framework  

Communication on the Web is based on the request-response approach using the HTTP 

protocol. In this approach, a client asks for information from a server and the server 

responds by submitting the information to the client. This protocol is sufficient for 

downloading static documents. However, modern Web applications need a more dynamic 

approach, as HTTP does not support real time communication where the server can 

automatically push updates to clients. To overcome these drawbacks, many protocols have 
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been developed to support transportation of streaming and real time data. These include 

RTSP (Schulzrinene et al., 1998), XMPP (Saint-Andre, 2004), Pubsubhubbub24, MQTT25.  

Several factors should be considered to determine which protocol to use:  

 Distribution style: a push-based protocol will better satisfy the real-time 

requirements  

 Latency: the time it takes for data to propagate between the network nodes should 

be as low as possible  

 The underlying transport protocol: HTTP-based protocols will be more suitable for 

Web applications  

 Implemented libraries and active developer communities  

The Real Time Streaming Protocol (RTSP) can be excluded for using a pull-based 

distribution style and its higher latency, as it requires at least three request-response 

sequences. While the other three protocols support a publish/subscribe communication, 

MQTT can also be excluded for not being HTTP-based. Pubsubhubbub is a simple, 

pub/sub, HTTP-based protocol with latency kept at minimum. However, it appears to have 

fewer implementations and libraries than XMPP. The eXtensible Message and Presence 

Protocol (XMPP) is an open protocol for message-oriented middleware which can provide 

near real time communication. It has many features that satisfy the above requirements: 

push-based distribution style, minimum latency, Web based protocol, and widely deployed 

and tested libraries for both server and client sides. It is actually a decentralised system; 

anyone can run their own XMPP server. 

Using XMPP as a communication protocol, each host runs as an XMPP server and client at 

the same time. These hosts subscribe to their preceding nodes in the network, as instructed 

by the optimiser. The interaction framework involves two stages: the handshaking stage 

and the data streaming stage. The first stage is more complicated and expensive than the 

second one, but it only happens once, while the lightweight second stage is long-lasting.  

8.2.3.2 Dynamic Load Management 

For a distributed dataflow network to perform efficiently, load needs to be balanced 

between the multiple hosts so that the processing capacity is used to its fullest advantage. 

Random allocation of tasks may result in some hosts being overloaded while other hosts 

are idle or lightly loaded. A load distribution mechanism is needed to transfer tasks from 

                                                           

24 Available at: <http://pubsubhubbub.appspot.com/>  

25 Available at: <http://mqtt.org/>  
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the poorly performing, overloaded hosts to lightly loaded hosts, so that tasks can take 

advantage of resources that would otherwise go unused. Furthermore, the dynamic 

characteristics of streaming data require an adaptive load balancing algorithm that takes 

account of the runtime changing system-state information. 

As in the adaptive optimisation mechanism, a central network optimiser can be used to 

make decisions of when and where to move loads between the participating hosts. These 

decisions are to be based on the run-time performance and load statistics of each host 

collected and periodically reported by local monitors of these hosts. As in the Borealis 

correlation load balancing algorithm (Abadi et al., 2005), we can define the load in terms 

of CPU utilisation for each host and operator. For a specific period of time, the load of an 

operator is the fraction of the CPU time needed by that operator over the length of the 

period. In other words, if the average tuple arrival rate in period i for operator o is λ(o) and 

the average tuple processing time for operator o is p(o), then the load of o in period i is λ(o) 

p(o). The load of a host in a given period is defined as the sum of all its operators’ loads in 

that period. 

We move now from the information policy of the load management mechanism to the 

transfer policy, i.e. deciding which hosts are suitable to participate in a task transfer, either 

as senders or as receivers. As used in both Flux (Shah et al., 2003) and the Borealis 

correlation algorithm, a relative pairwise policy can be followed. After the central 

optimiser receives information about the loads of all hosts, it orders the hosts by their 

average load. Then the first (the most loaded) host is paired with the last (the least loaded) 

host and the second host with the penultimate host, and so on, such that the ith host in the 

ordered list is paired with the (n-i+1)th host in the list. For each pair, the optimiser 

considers moving load from the first host to the second. However, to minimise the load 

migration overhead—which can nullify the possible benefits of the redistribution—some 

threshold tests can be applied for each pair before deciding to move load. If the donor’s 

load is less than the average load of all hosts, or if the load difference between the two 

hosts is less than a predefined threshold, or if the receiver’s load is above a threshold, then 

this pair is not considered for a load redistribution, and the optimiser moves to the next 

pair. When a pair is selected for load migration, operators are selected from the donor host 

to be moved based on their individual loads, such that the selected operator’s total load is 

less than (donor’s load – receiver’s load)/2. Then the load migration process starts. 



Chapter 8 

165 

 

 

Figure 8.2: Moving operator upstream 

The optimiser starts the load migration process by asking the donor host to suspend the 

execution of the selected operators to be moved. At the same time, the optimiser also asks 

the receiver host to instantiate these operators and provides it with the addresses of their 

predecessors so they can subscribe to them. The donor host is then asked to send the states 

of these operators to the receiver host. Once the transfer is complete, the optimiser sends 

alerts to the successor operators in the original plan to subscribe to the new locations and 

then asks the donor host to delete the moved operators. 

As the above mechanism does not consider bandwidth issues, a simple optimisation 

technique for a distributed data flow network can also be employed as follows: For any 

connection with limited bandwidth, or with traffic bigger than a predefined threshold, we 

consider moving the sending operator on the edge downstream, or moving the receiving 

operator on the other end of the connection upstream. First, we check the output 

throughput of the sending operator and compare it to the throughput of its predecessor. If 

the sender produces more triples than its predecessor, then the sender should be moved 

downstream. If it produces fewer triples, then we compare it to the receiver’s throughput. 

If the receiver produces less output than the sender, then we move the receiver upstream. 

This technique is similar to the “Box Sliding” technique briefly described in Cherniack et 

al., (2003), where an operator with a selectivity value of more than one is moved 

downstream, while operators with low selectivity are moved upstream. However, in its 

simple mechanism, this technique might only perform well—i.e. reduce network traffic—if 

both the sending and the receiving operators have only one input. If either one of them has 

other inputs then moving it to another site without taking consideration of the other inputs 

may increase network traffic. An example is illustrated in Figure 3.4. Here, the receiving 

operator C has another input on the same host. Moving C to Host1 because C is more 
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selective than B will cause F to send its output using the same connection. A carefully 

designed load balancing algorithm is needed that takes these cases into account. 
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Appendix A RDFS++ Background Reasoning 

RDFS++ reasoning supports the main RDFS predicates (domain, range, subPropertyOf, and 

subClassOf) in addition to a number of lightweight but useful OWL predicates (sameAs, 

inverseOf, and TransitiveProperty). In this appendix, we present the entailment rules used to 

reason over these predicates, followed by a shared Rete network to evaluate these rules. 

(* rdfs2 *) 

Forall ?x ?p ?y ?c( 

  If  And( ?p [rdfs:domain -> ?c] 

        ?x [?p ->?y]) 

  Then ?x [rdf:type -> ?c]) 

 

(* rdfs3 *) 

Forall ?x ?p ?y ?c( 

  If  And( ?p [rdfs:range -> ?c] 

         ?x [?p ->?y]) 

  Then  ?y [rdf:type -> ?c]) 

 

(* rdfs5 *) 

Forall ?x ?y ?z( 

  If  And( ?x [rdfs:subPropertyOf -> ?y] 

         ?y [rdfs:subPropertyOf -> ?z]) 

  Then  ?x [rdfs:subPropertyOf -> ?z]) 

 

(* rdfs6 *) 

Forall ?x ?p ?y ?q( 

  If  And( ?p [rdfs:subPropertyOf -> ?q] 

         ?x [?p -> ?y]) 

  Then  ?x [?q -> ?y]) 
 

(* rdfs9 *) 

Forall ?x ?y ?a( 

  If  And( ?x [rdfs:subClassOf -> ?y] 

         ?a [rdf:type -> ?x]) 

  Then  ?a [rdf:type -> ?y]) 

 

(* rdfs11 *) 

Forall ?x ?y ?z( 

  If  And( ?x [rdfs:subClassOf -> ?y] 

         ?y [rdfs:subClassOf -> ?z]) 

  Then  ?x [rdfs:subClassOf -> ?z]) 

 
(* owlinv *) 

Forall ?x ?p ?y ?q( 

  If  And(?x [?p -> ?y] 

        ?p [owl:inverseOf -> ?q]) 

  Then  ?y [?q -> ?x]) 

 

(* owlinv2 *) 

Forall ?p ?q( 

  If ?p [owl:inverseOf -> ?q] 

  Then  ?q [owl:inverseOf -> ?p]) 
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Listing A.1: RDFS++ rules in RIF Core 

 

 

(* owltra *) 

Forall ?x ?p ?y ?z( 

  If  And(?x [?p -> ?y] 

        ?y [?p -> ?z] 

        ?p [rdf:type -> owl:TransitiveProperty]) 

  Then  ?x [?p -> ?z]) 

 

(* owlsame *) 

Forall ?x ?p ?y ?z( 

  If  And(?x [?p -> ?y] 

        ?x [owl:sameAs -> ?z]) 

  Then  ?z [?p -> ?y]) 

 

(* owlsame2 *) 

Forall ?x ?y( 

  If ?x [owl:sameAs -> ?y] 

  Then  ?y [owl:sameAs -> ?x]) 
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Figure A.1: RETE network for RDFS++ rules 
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Appendix B Raw Comparative Evaluation Data 

This appendix contains the raw evaluation data for some of the experiments described in 

Chapter 5. Section B.1 contains the processing time results for the first and second 

experiments described in Section 5.2.1, while section B.2 contains the processing times of 

systems in the experiments of Section 5.2.2. 

B.1 R4 vs. Jena vs. JenaRete 

First experiment 

 

System 

Dataset 

size 

(triples) 

Processing time (seconds) 

Average 

Standard 

deviation Run 1 Run 2 Run 3 Run 4 Run 5 

Jena 

2366 0.31 0.28 0.27 0.29 0.27 0.29 0.02 

14098 0.55 0.48 0.47 0.49 0.47 0.49 0.03 

114562 1.76 1.86 1.76 1.61 1.65 1.73 0.10 

462560 5.80 5.34 5.49 6.07 5.60 5.66 0.29 

1121974 14.49 14.49 14.31 14.60 14.25 14.43 0.15 

JenaRETE 

2366 0.27 0.24 0.23 0.24 0.23 0.24 0.02 

14098 0.46 0.41 0.41 0.41 0.41 0.42 0.03 

114562 1.49 1.47 1.47 1.36 1.41 1.44 0.06 

462560 4.83 4.78 4.85 4.69 4.78 4.79 0.06 

1121974 11.98 13.61 12.74 13.13 12.80 12.85 0.60 

R4 

2366 0.18 0.12 0.12 0.12 0.12 0.13 0.03 

14098 0.45 0.36 0.35 0.35 0.36 0.37 0.04 

114562 1.67 1.68 1.65 1.82 1.60 1.68 0.08 

462560 4.05 3.97 3.97 4.12 3.81 3.98 0.12 

1121974 8.10 8.03 7.67 8.19 8.17 8.03 0.21 
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Second experiment 

Setting 1: 

System 
Update 
number 

Response delay (milliseconds) 

Average 
Standard 
deviation Run 1 Run 2 Run 3 Run 4 Run 5 

Jena 

1 188 163 165 165 159 168.00 11.45 

2 70 63 61 64 59 63.40 4.16 

3 49 46 44 44 46 45.80 2.05 

4 45 40 37 34 39 39.00 4.06 

5 36 34 33 32 33 33.60 1.52 

6 34 36 35 34 33 34.40 1.14 

7 42 39 41 39 41 40.40 1.34 

8 52 53 49 50 53 51.40 1.82 

9 51 53 48 49 56 51.40 3.21 

10 33 33 33 29 32 32.00 1.73 

11 32 33 32 29 33 31.80 1.64 

12 33 32 33 28 33 31.80 2.17 

13 33 33 33 30 33 32.40 1.34 

14 34 34 54 53 54 45.80 10.78 

15 49 49 31 29 31 37.80 10.26 

16 44 42 44 45 43 43.60 1.14 

17 32 29 31 25 31 29.60 2.79 

18 31 30 32 28 32 30.60 1.67 

19 36 31 35 30 35 33.40 2.70 

20 29 25 30 25 39 29.60 5.73 

21 279 291 273 341 346 306.00 34.89 

22 214 254 216 231 232 229.40 16.06 

23 214 224 218 223 242 224.20 10.73 

24 210 236 221 206 218 218.20 11.63 

25 178 183 186 185 185 183.40 3.21 

26 182 186 194 193 198 190.60 6.47 

27 174 174 181 166 180 175.00 6.00 

28 228 197 216 229 232 220.40 14.43 

29 244 231 240 246 256 243.40 9.10 

30 162 203 165 175 174 175.80 16.21 

31 162 166 167 168 169 166.40 2.70 

32 165 167 170 168 168 167.60 1.82 

33 176 166 179 182 180 176.60 6.31 
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34 162 176 168 171 168 169.00 5.10 

35 163 162 169 164 169 165.40 3.36 

36 162 162 170 161 171 165.20 4.87 

37 187 160 190 178 189 180.80 12.56 

38 209 195 210 202 191 201.40 8.39 

39 174 188 199 166 160 177.40 15.99 

40 174 164 181 162 167 169.60 7.83 

41 172 162 234 159 164 178.20 31.56 

42 188 163 171 166 178 173.20 10.04 

43 159 162 182 178 159 168.00 11.11 

44 164 180 188 165 166 172.60 10.81 

45 165 164 162 165 166 164.40 1.52 

46 167 166 166 168 167 166.80 0.84 

47 171 162 193 181 180 177.40 11.63 

48 160 177 160 185 188 174.00 13.40 

JenaRETE 

1 205 147 149 151 148 160.00 25.20 

2 48 52 51 57 53 52.20 3.27 

3 38 35 38 45 35 38.20 4.09 

4 32 35 35 37 34 34.60 1.82 

5 38 40 39 40 39 39.20 0.84 

6 27 29 28 27 26 27.40 1.14 

7 26 27 30 29 26 27.60 1.82 

8 38 40 43 38 38 39.40 2.19 

9 30 32 34 32 31 31.80 1.48 

10 31 32 34 32 27 31.20 2.59 

11 34 32 34 33 28 32.20 2.49 

12 30 31 34 35 29 31.80 2.59 

13 30 31 31 33 29 30.80 1.48 

14 54 50 61 59 58 56.40 4.39 

15 24 26 26 27 25 25.60 1.14 

16 37 39 39 37 38 38.00 1.00 

17 23 26 26 24 25 24.80 1.30 

18 25 27 27 26 26 26.20 0.84 

19 30 31 31 27 31 30.00 1.73 

20 24 26 26 21 25 24.40 2.07 

21 41 43 44 45 42 43.00 1.58 

22 38 40 44 40 37 39.80 2.68 

23 62 62 71 60 68 64.60 4.67 
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24 37 38 46 36 37 38.80 4.087 

25 42 41 38 37 37 39.00 2.345 

26 38 37 65 34 39 42.60 12.661 

27 37 39 50 65 38 45.80 11.946 

28 36 38 36 54 40 40.80 7.563 

29 37 36 35 37 39 36.80 1.483 

30 35 36 35 35 38 35.80 1.304 

31 37 35 35 34 38 35.80 1.643 

32 36 57 37 39 43 42.40 8.591 

33 41 43 40 41 43 41.60 1.342 

34 41 44 42 42 42 42.20 1.095 

35 41 43 39 50 42 43.00 4.183 

36 40 42 40 39 43 40.80 1.643 

37 41 45 41 42 40 41.80 1.924 

38 39 88 89 39 90 69.00 27.395 

39 82 39 32 32 36 44.20 21.335 

40 32 38 33 29 32 32.80 3.271 

41 32 35 33 30 33 32.60 1.817 

42 34 34 32 29 33 32.40 2.074 

43 32 32 29 30 36 31.80 2.683 

44 34 30 30 28 42 32.80 5.586 

45 31 29 28 28 32 29.60 1.817 

46 31 30 29 27 37 30.80 3.768 

47 30 28 30 29 31 29.60 1.140 

48 28 28 30 28 30 28.80 1.095 

R4 

1 113 117 110 114 112 113.20 2.588 

2 44 47 45 30 45 42.20 6.907 

3 21 24 23 22 22 22.40 1.140 

4 18 18 18 18 17 17.80 0.447 

5 20 21 23 21 24 21.80 1.643 

6 14 15 15 14 14 14.40 0.548 

7 14 14 13 12 14 13.40 0.894 

8 20 19 20 19 19 19.40 0.548 

9 12 12 12 13 12 12.20 0.447 

10 13 13 14 13 13 13.20 0.447 

11 20 21 19 19 20 19.80 0.837 

12 12 11 12 12 11 11.60 0.548 

13 12 12 12 11 12 11.80 0.447 
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14 12 11 11 11 11 11.20 0.45 

15 19 19 20 19 19 19.20 0.45 

16 11 12 12 11 12 11.60 0.55 

17 12 12 12 12 13 12.20 0.45 

18 20 20 21 20 25 21.20 2.17 

19 14 14 13 14 13 13.60 0.55 

20 12 12 11 11 11 11.40 0.55 

21 34 35 38 42 36 37.00 3.16 

22 17 17 17 18 17 17.20 0.45 

23 17 17 17 18 17 17.20 0.48 

24 28 32 27 15 29 26.20 6.54 

25 16 15 15 26 16 17.60 4.72 

26 15 14 15 14 15 14.60 0.55 

27 26 26 14 14 27 21.40 6.77 

28 14 16 28 25 15 19.60 6.43 

29 14 15 16 15 15 15.00 0.71 

30 26 27 13 29 27 24.40 6.47 

31 15 14 26 15 14 16.80 5.17 

32 14 15 14 15 15 14.60 0.55 

33 24 24 25 22 24 23.80 1.10 

34 15 15 14 14 14 14.40 0.55 

35 37 36 37 38 47 39.00 4.53 

36 21 19 20 20 13 18.60 3.21 

37 13 14 13 13 14 13.40 0.55 

38 13 14 13 13 21 14.80 3.49 

39 20 21 20 20 13 18.80 3.27 

40 14 14 15 13 13 13.80 0.84 

41 13 15 14 14 20 15.20 2.78 

42 21 21 21 19 14 19.20 3.03 

43 13 14 14 14 21 15.20 3.27 

44 20 20 13 19 13 17.00 3.67 

45 14 13 21 13 14 15.00 3.39 

46 14 14 14 14 21 15.40 3.13 

47 19 20 13 20 13 17.00 3.67 

48 14 14 20 14 21 16.60 3.58 
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Setting 7: 

 

System 
Update 
number 

Response delay (milliseconds) 

Average 
Standard 
deviation Run 1 Run 2 Run 3 Run 4 Run 5 

Jena 

1 1134 1045 989 1089 1003 1052.00 60.23 

2 922 904 785 952 792 871.00 77.28 

3 1107 1152 1013 1076 1081 1085.80 50.62 

4 550 534 530 523 595 546.40 28.92 

5 1382 1423 1440 1408 1433 1417.20 23.06 

6 1801 1854 1823 1821 1791 1818.00 24.23 

7 1174 1259 1242 1166 1254 1219.00 45.24 

8 1215 1197 1171 1258 1159 1200.00 39.12 

9 1264 1304 1410 1264 1335 1315.40 60.72 

10 1221 1354 1221 1165 1328 1257.80 79.85 

JenaRETE 

1 871 819 819 895 880 856.80 35.56 

2 591 606 606 738 665 641.20 61.11 

3 758 747 747 837 788 775.40 38.31 

4 387 379 379 436 443 404.80 31.94 

5 671 665 665 677 686 672.80 8.90 

6 657 643 643 1268 672 776.60 274.96 

7 494 485 485 479 477 484.00 6.63 

8 1248 1150 1150 542 1150 1048.00 286.03 

9 589 556 556 557 585 568.60 16.86 

10 491 497 497 517 486 497.60 11.78 

R4 

1 658 687 654 672 678 669.80 13.76 

2 464 464 467 481 575 490.20 47.92 

3 319 291 296 284 306 299.20 13.66 

4 524 531 324 568 547 498.80 99.17 

5 387 391 672 407 398 451.00 123.78 

6 331 329 333 349 345 337.40 8.99 

7 671 390 410 418 401 458.00 119.53 

8 372 687 320 719 727 565.00 201.32 

9 313 319 672 325 329 391.60 156.87 

10 393 350 312 330 337 344.40 30.44 
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B.2 R4 vs. Sparkwave and Etalis 

Experiment 1: Varying window size 

 

System 

Window 

size 

Processing time (seconds) 

Average 

Standard 

deviation Run 1 Run 2 Run 3 Run 4 Run 5 

Etalis (seq) 

0.1 465.72 459.49 455.15 466.94 462.27 461.91 4.78 

1 449.76 440.35 443.13 445.40 454.19 446.56 5.48 

2 446.02 453.88 449.32 448.29 442.39 447.98 4.24 

5 442.49 452.26 447.06 454.82 440.78 447.48 6.06 

10 450.85 452.71 445.60 447.68 451.87 449.74 3.00 

Etalis 

(and) 

1 11097.22 11402.08 11243.72 11534.86 11273.36 11310.25 165.87 

2 11353.66 11479.98 11581.19 11959.85 11463.37 11567.61 233.64 

5 11645.02 11711.14 11452.99 11550.24 11611.83 11594.24 98.03 

10 11601.35 11482.45 11526.07 11397.74 11474.88 11496.50 74.64 

Sparkwave 

0.1 25.64 27.65 26.87 27.40 27.71 27.05 0.86 

1 73.01 78.36 75.08 73.27 72.70 74.48 2.36 

2 103.43 105.41 105.24 103.77 104.01 104.37 0.90 

5 163.84 162.40 161.42 162.91 168.53 163.82 2.77 

10 223.97 210.54 233.86 235.70 223.97 228.81 11.78 

R4 

0.1 8.86 9.09 8.68 8.81 8.70 8.83 0.17 

1 12.49 12.15 12.32 12.20 12.08 12.25 0.16 

2 13.61 14.70 14.59 14.74 14.00 14.33 0.50 

5 14.66 15.67 15.27 15.55 15.08 15.25 0.40 

10 17.79 18.11 16.93 17.23 16.45 17.30 0.66 
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Experiment 2: Varying schema size 

 

System 

No. of 

subclasses 

Processing time (seconds) 

Average 

Standard 

deviation Run 1 Run 2 Run 3 Run 4 Run 5 

Etalis (seq) 

40 516.11 501.57 521.73 494.61 496.77 506.16 12.08 

200 529.27 529.70 538.59 547.13 531.89 535.31 7.58 

585 523.97 535.20 523.50 519.50 530.18 526.47 6.20 

1100 530.78 541.13 535.80 537.04 512.62 531.47 11.17 

Sparkwave 

40 149.93 151.81 145.28 146.40 152.43 149.17 3.20 

200 209.04 216.86 220.21 215.87 206.42 213.68 5.74 

585 196.11 199.40 197.07 179.93 196.85 193.87 7.89 

1100 215.04 193.56 199.78 191.44 199.96 199.95 9.23 

R4 

40 14.22 14.37 13.45 13.45 14.05 13.91 0.43 

200 15.33 16.20 16.74 15.99 16.30 16.11 0.51 

585 14.69 15.68 15.34 14.53 14.97 15.04 0.47 

1100 14.54 14.99 14.64 15.25 14.27 14.74 0.38 

 

Figure B.1: Processing time of R4, Sparkwave, and Etalis with different schemas 
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Appendix C  Raw Optimisation Evaluation Data 

This appendix contains the raw evaluation data for some of the experiments described in 

Chapter 7. Section C.1 presents the average response time with different window sizes 

(described in Section 7.1). Section C.2 presents total and individual memory growth 

(experiments of Section 7.2). Section C.3 has some of the adaptive optimiser experiments 

(described in Section 7.3).   

C.1 Window size vs. completeness 

 

Dataset 

Window 

size 

Average response time (milliseconds) 

Average 

Standard 

deviation Run 1 Run 2 Run 3 Run 4 Run 5 

Ds2 

1 2.60 2.40 2.60 2.20 2.80 2.52 0.23 

2 3.00 3.40 2.40 3.00 2.60 2.88 0.39 

4 3.40 3.80 2.80 2.40 2.80 3.04 0.56 

6 4.00 3.60 2.40 2.20 3.80 3.20 0.84 

12 3.40 3.80 2.60 3.80 2.40 3.20 0.66 

Ds3 

1 4.35 2.61 2.52 2.54 2.59 2.92 0.80 

2 5.26 3.52 3.59 3.61 3.44 3.88 0.77 

4 6.09 4.17 4.37 4.30 4.44 4.67 0.80 

6 7.67 5.54 5.57 5.70 5.09 5.91 1.01 

12 8.54 5.61 5.33 6.50 5.11 6.22 1.40 

24 9.39 6.83 8.67 7.07 8.02 8.00 1.08 

36 9.13 10.04 6.96 7.52 8.67 8.47 1.24 

48 7.59 8.15 5.44 6.11 5.98 6.65 1.16 
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C.2 Operator sharing 

Experiment 1: Total memory growth 

 

Running time Memories size (triples) 

1 944 1523 

2 1891 3049 

3 2837 4574 

4 3784 6100 

5 4730 7625 

6 5676 9150 

7 6640 10702 

8 7569 12201 

9 7565 12194 

10 7567 12196 

11 7583 12221 

12 7572 12201 

13 7571 12203 

14 7581 12216 

15 7563 12189 

16 7571 12200 

17 7563 12189 

18 7584 12222 

19 7560 12183 

20 7574 12209 

21 7587 12225 

22 7568 12197 
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Experiment 2: Individual memory growth 

 

time a1 a2 a3 a4 a5 b1 b2 b3 b4 a6 b5 

1 24 169 169 169 123 24 24 48 1 169 24 

2 48 338 338 338 249 48 48 96 2 338 48 

3 72 507 507 507 374 72 72 144 3 507 72 

4 96 676 676 676 500 96 96 192 4 676 96 

5 120 845 845 845 625 120 120 240 5 845 120 

6 144 1014 1014 1014 750 144 144 288 6 1014 144 

7 171 1183 1183 1183 874 171 171 342 8 1183 171 

8 192 1352 1352 1352 1001 192 192 384 8 1352 192 

9 191 1352 1352 1352 1003 191 191 382 8 1352 191 

10 191 1352 1352 1352 1005 191 191 382 8 1352 191 

11 194 1352 1352 1352 1003 194 194 388 8 1352 194 

12 191 1352 1352 1352 1009 191 191 382 9 1352 191 

13 192 1352 1352 1352 1002 192 192 384 9 1352 192 

14 193 1352 1352 1352 1007 193 193 386 8 1352 193 

15 190 1352 1352 1352 1008 190 190 380 7 1352 190 

16 191 1352 1352 1352 1008 191 191 382 9 1352 191 
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C.3 Adaptive optimisation 

C.3.1 Cost model experiments 

The table shows the costs of five plans, for each the measured cost (m), then the estimated cost 

(e). 

 P1-m P1-e P2-m P2-e P3-m P3-e P4-m P4-e P5-m P5-e 

1 0.00231 0.00239 0.00193 0.00199 0.00177 0.00185 0.00167 0.00174 0.00176 0.00185 

2 0.00119 0.00125 0.00097 0.00105 0.00092 0.00098 0.00085 0.00092 0.00092 0.00102 

3 0.00137 0.00132 0.00116 0.00113 0.00108 0.00103 0.00103 0.00099 0.00118 0.00108 

4 0.00122 0.00130 0.00101 0.00112 0.00093 0.00102 0.00088 0.00099 0.00090 0.00108 

5 0.00133 0.00129 0.00113 0.00110 0.00104 0.00100 0.00100 0.00097 0.00112 0.00104 

6 0.00132 0.00128 0.00113 0.00109 0.00103 0.00099 0.00099 0.00096 0.00110 0.00102 

7 0.00126 0.00127 0.00107 0.00109 0.00098 0.00098 0.00093 0.00095 0.00100 0.00101 

8 0.00123 0.00129 0.00104 0.00109 0.00094 0.00100 0.00091 0.00096 0.00093 0.00102 

9 0.00119 0.00130 0.00101 0.00110 0.00091 0.00101 0.00088 0.00097 0.00088 0.00105 

10 0.00119 0.00134 0.00102 0.00113 0.00091 0.00105 0.00088 0.00099 0.00087 0.00109 

11 0.00126 0.00136 0.00101 0.00113 0.00097 0.00108 0.00087 0.00100 0.00094 0.00111 

12 0.00125 0.00135 0.00107 0.00114 0.00097 0.00106 0.00094 0.00101 0.00098 0.00111 

13 0.00134 0.00133 0.00113 0.00112 0.00105 0.00104 0.00099 0.00099 0.00113 0.00108 

14 0.00132 0.00132 0.00108 0.00111 0.00104 0.00104 0.00095 0.00098 0.00107 0.00106 

15 0.00129 0.00134 0.00106 0.00113 0.00100 0.00105 0.00092 0.00099 0.00101 0.00109 

16 0.00128 0.00134 0.00105 0.00110 0.00099 0.00105 0.00092 0.00097 0.00099 0.00105 

17 0.00128 0.00133 0.00106 0.00110 0.00100 0.00104 0.00092 0.00097 0.00100 0.00105 

18 0.00130 0.00133 0.00108 0.00111 0.00101 0.00104 0.00095 0.00097 0.00104 0.00106 

19 0.00125 0.00134 0.00103 0.00112 0.00096 0.00105 0.00089 0.00098 0.00094 0.00107 

20 0.00125 0.00134 0.00104 0.00112 0.00096 0.00105 0.00090 0.00099 0.00095 0.00108 

21 0.00130 0.00133 0.00111 0.00112 0.00102 0.00105 0.00097 0.00098 0.00107 0.00107 
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22 0.00126 0.00134 0.00107 0.00112 0.00098 0.00105 0.00094 0.00099 0.00100 0.00109 

23 0.00124 0.00130 0.00104 0.00109 0.00096 0.00101 0.00090 0.00096 0.00095 0.00103 

24 0.00129 0.00129 0.00109 0.00108 0.00101 0.00101 0.00095 0.00095 0.00104 0.00101 

25 0.00135 0.00129 0.00116 0.00109 0.00106 0.00100 0.00102 0.00096 0.00116 0.00102 

26 0.00138 0.00131 0.00115 0.00110 0.00109 0.00103 0.00101 0.00097 0.00119 0.00105 

27 0.00130 0.00134 0.00107 0.00113 0.00102 0.00106 0.00093 0.00099 0.00103 0.00109 

28 0.00174 0.00140 0.00148 0.00117 0.00145 0.00111 0.00135 0.00104 0.00184 0.00117 

29 0.00145 0.00137 0.00121 0.00116 0.00116 0.00108 0.00108 0.00102 0.00132 0.00114 

30 0.00136 0.00133 0.00115 0.00113 0.00107 0.00105 0.00101 0.00099 0.00117 0.00109 

31 0.00131 0.00136 0.00111 0.00115 0.00102 0.00107 0.00098 0.00101 0.00107 0.00112 

32 0.00132 0.00132 0.00110 0.00111 0.00103 0.00104 0.00096 0.00098 0.00108 0.00107 

33 0.00147 0.00134 0.00124 0.00111 0.00119 0.00105 0.00110 0.00098 0.00135 0.00106 

34 0.00134 0.00133 0.00111 0.00111 0.00105 0.00105 0.00097 0.00097 0.00112 0.00106 

35 0.00126 0.00132 0.00103 0.00110 0.00097 0.00104 0.00090 0.00096 0.00096 0.00104 

36 0.00121 0.00131 0.00102 0.00110 0.00092 0.00103 0.00088 0.00096 0.00090 0.00105 

37 0.00127 0.00134 0.00106 0.00111 0.00098 0.00106 0.00093 0.00098 0.00099 0.00106 

38 0.00135 0.00135 0.00113 0.00110 0.00106 0.00106 0.00099 0.00097 0.00113 0.00104 

39 0.00137 0.00134 0.00117 0.00112 0.00109 0.00106 0.00104 0.00099 0.00120 0.00109 

40 0.00145 0.00135 0.00125 0.00114 0.00117 0.00107 0.00111 0.00100 0.00135 0.00111 

41 0.00151 0.00135 0.00131 0.00115 0.00122 0.00107 0.00117 0.00101 0.00146 0.00113 

42 0.00143 0.00133 0.00122 0.00113 0.00114 0.00104 0.00109 0.00100 0.00131 0.00110 

43 0.00153 0.00135 0.00133 0.00115 0.00125 0.00106 0.00119 0.00101 0.00150 0.00112 

44 0.00138 0.00129 0.00116 0.00110 0.00109 0.00100 0.00101 0.00096 0.00121 0.00104 

45 0.00155 0.00131 0.00132 0.00111 0.00126 0.00102 0.00118 0.00097 0.00153 0.00106 

46 0.00107 0.00091 0.00091 0.00078 0.00087 0.00072 0.00081 0.00068 0.00103 0.00074 
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Figure C.1: Measured and estimated costs of five equivalent plans 

 

C.3.2 Comparing static and adaptive plans 

Varying window size/Single stream 

Plan 

Window 

size (s) 

Cost (seconds) 

Average 

Standard 

deviation Run 1 Run 2 Run 3 Run 4 Run 5 

static 

1 3.3E-04 3.3E-04 3.3E-04 3.3E-04 3.3E-04 3.3E-04 1.2E-06 

3 3.6E-04 3.6E-04 3.6E-04 3.6E-04 3.6E-04 3.6E-04 4.3E-07 

5 3.8E-04 3.8E-04 3.8E-04 3.8E-04 3.8E-04 3.8E-04 0.0E+00 

7 3.9E-04 3.9E-04 3.9E-04 3.8E-04 3.9E-04 3.9E-04 1.1E-06 

11 4.1E-04 4.1E-04 4.1E-04 4.1E-04 4.1E-04 4.1E-04 0.0E+00 

15 4.3E-04 4.4E-04 4.3E-04 4.3E-04 4.3E-04 4.3E-04 1.7E-08 

adaptive 1 2.1E-04 2.1E-04 2.1E-04 2.1E-04 2.1E-04 2.1E-04 5.2E-07 
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3 2.3E-04 2.3E-04 2.3E-04 2.3E-04 2.3E-04 2.3E-04 3.4E-07 

5 2.5E-04 2.5E-04 2.5E-04 2.5E-04 2.5E-04 2.5E-04 0.0E+00 

7 2.5E-04 2.5E-04 2.5E-04 2.5E-04 2.5E-04 2.5E-04 1.3E-07 

11 2.7E-04 2.7E-04 2.7E-04 2.7E-04 2.7E-04 2.7E-04 0.0E+00 

15 2.8E-04 2.8E-04 2.8E-04 2.8E-04 2.8E-04 2.8E-04 1.4E-08 

Adaptive 

with 

migration 

1 2.2E-04 2.1E-04 2.1E-04 2.1E-04 2.1E-04 2.1E-04 7.4E-07 

3 2.4E-04 2.4E-04 2.4E-04 2.4E-04 2.4E-04 2.4E-04 3.0E-07 

5 2.7E-04 2.7E-04 2.7E-04 2.7E-04 2.7E-04 2.7E-04 0.0E+00 

7 2.8E-04 2.8E-04 2.8E-04 2.8E-04 2.8E-04 2.8E-04 2.6E-07 

11 3.1E-04 3.1E-04 3.1E-04 3.1E-04 3.1E-04 3.1E-04 0.0E+00 

15 3.4E-04 3.4E-04 3.4E-04 3.4E-04 3.4E-04 3.4E-04 1.1E-08 

 

Varying input rate 

Plan Rate (t/s) 

Cost (seconds) 

Average 

Standard 

deviation Run 1 Run 2 Run 3 Run 4 Run 5 

static 

1000 3.8E-04 3.9E-04 3.8E-04 3.9E-04 3.8E-04 3.8E-04 2.5E-06 

3000 1.3E-03 1.3E-03 1.3E-03 1.3E-03 1.3E-03 1.3E-03 0.0E+00 

5000 2.4E-03 2.4E-03 2.4E-03 2.4E-03 2.4E-03 2.4E-03 0.0E+00 

7000 3.3E-03 3.3E-03 3.3E-03 3.3E-03 3.3E-03 3.3E-03 4.8E-19 

11000 5.9E-03 5.9E-03 5.9E-03 5.9E-03 5.9E-03 5.9E-03 0.0E+00 

adaptive 

1000 2.6E-04 2.6E-04 2.6E-04 2.6E-04 2.6E-04 2.6E-04 5.3E-07 

3000 8.9E-04 8.9E-04 8.9E-04 8.9E-04 8.9E-04 8.9E-04 0.0E+00 

5000 1.6E-03 1.6E-03 1.6E-03 1.6E-03 1.6E-03 1.6E-03 2.4E-19 

7000 2.2E-03 2.2E-03 2.2E-03 2.2E-03 2.2E-03 2.2E-03 0.0E+00 

11000 3.8E-03 3.8E-03 3.8E-03 3.8E-03 3.8E-03 3.8E-03 4.8E-19 

Adaptive 1000 3.1E-04 3.1E-04 3.1E-04 3.1E-04 3.1E-04 3.1E-04 8.7E-07 
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with 

migration 

3000 1.1E-03 1.1E-03 1.1E-03 1.1E-03 1.1E-03 1.1E-03 0.0E+00 

5000 1.9E-03 1.9E-03 1.9E-03 1.9E-03 1.9E-03 1.9E-03 0.0E+00 

7000 2.7E-03 2.7E-03 2.7E-03 2.7E-03 2.7E-03 2.7E-03 0.0E+00 

11000 4.6E-03 4.6E-03 4.6E-03 4.6E-03 4.6E-03 4.6E-03 0.0E+00 

 

Varying selectivities 

Plan 

Selectivity 

factor 

Cost (seconds) 

Average 

Standard 

deviation Run 1 Run 2 Run 3 Run 4 Run 5 

static 

0.01 3.8E-04 3.8E-04 3.8E-04 3.8E-04 3.8E-04 3.8E-04 3.3E-06 

0.1 3.8E-04 3.8E-04 3.9E-04 3.8E-04 3.9E-04 3.8E-04 1.7E-06 

0.25 4.0E-04 4.0E-04 4.1E-04 4.0E-04 4.0E-04 4.0E-04 2.2E-06 

0.5 4.3E-04 4.3E-04 4.3E-04 4.3E-04 4.3E-04 4.3E-04 1.9E-06 

0.75 4.7E-04 4.8E-04 4.7E-04 4.7E-04 4.7E-04 4.7E-04 1.5E-06 

1 5.0E-04 5.0E-04 5.0E-04 5.0E-04 5.0E-04 5.0E-04 1.3E-06 

adaptive 

0.01 2.6E-04 2.6E-04 2.5E-04 2.6E-04 2.6E-04 2.5E-04 1.0E-06 

0.1 2.7E-04 2.7E-04 2.7E-04 2.7E-04 2.7E-04 2.7E-04 1.6E-06 

0.25 3.1E-04 3.1E-04 3.1E-04 3.0E-04 3.0E-04 3.1E-04 1.0E-06 

0.5 3.7E-04 3.6E-04 3.7E-04 3.7E-04 3.7E-04 3.7E-04 1.1E-06 

0.75 4.4E-04 4.4E-04 4.4E-04 4.4E-04 4.4E-04 4.4E-04 1.5E-06 

1 4.9E-04 5.0E-04 5.0E-04 5.0E-04 5.0E-04 5.0E-04 9.3E-07 

Adaptive 

with 

migration 

0.01 3.1E-04 3.1E-04 3.1E-04 3.1E-04 3.1E-04 3.1E-04 2.3E-06 

0.1 3.2E-04 3.3E-04 3.3E-04 3.3E-04 3.3E-04 3.3E-04 1.6E-06 

0.25 3.6E-04 3.6E-04 3.6E-04 3.6E-04 3.6E-04 3.6E-04 1.2E-06 

0.5 4.3E-04 4.3E-04 4.3E-04 4.3E-04 4.3E-04 4.3E-04 8.0E-07 

0.75 5.1E-04 5.1E-04 5.1E-04 5.1E-04 5.1E-04 5.1E-04 8.7E-07 

1 3.1E-04 3.1E-04 3.1E-04 3.1E-04 3.1E-04 3.1E-04 2.3E-06 
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Varying number of joins 

Plan 

No. of 

joins 

Cost (seconds) 

Average 

Standard 

deviation Run 1 Run 2 Run 3 Run 4 Run 5 

static 

2 3.6E-04 3.6E-04 3.6E-04 3.6E-04 3.6E-04 3.6E-04 5.3E-07 

3 6.0E-04 6.1E-04 6.1E-04 6.1E-04 6.1E-04 6.1E-04 1.8E-06 

4 8.5E-04 8.6E-04 8.5E-04 8.6E-04 8.6E-04 8.6E-04 1.2E-06 

5 6.4E-04 6.4E-04 6.4E-04 6.4E-04 6.4E-04 6.4E-04 1.1E-06 

6 6.9E-04 6.9E-04 6.8E-04 6.9E-04 6.9E-04 6.9E-04 1.3E-06 

adaptive 

2 2.3E-04 2.3E-04 2.3E-04 2.3E-04 2.3E-04 2.3E-04 6.8E-07 

3 3.5E-04 3.5E-04 3.5E-04 3.5E-04 3.5E-04 3.5E-04 2.7E-07 

4 4.6E-04 4.6E-04 4.6E-04 4.6E-04 4.6E-04 4.6E-04 1.1E-06 

5 4.7E-04 4.7E-04 4.7E-04 4.7E-04 4.7E-04 4.7E-04 1.3E-06 

6 5.2E-04 5.2E-04 5.2E-04 5.2E-04 5.2E-04 5.2E-04 1.2E-06 

Adaptive 

with 

migration 

2 2.4E-04 2.4E-04 2.4E-04 2.5E-04 2.4E-04 2.4E-04 5.1E-07 

3 3.6E-04 3.7E-04 3.7E-04 3.7E-04 3.7E-04 3.7E-04 8.6E-07 

4 4.9E-04 4.9E-04 4.9E-04 4.9E-04 4.9E-04 4.9E-04 6.2E-07 

5 4.9E-04 4.9E-04 4.9E-04 4.8E-04 4.9E-04 4.9E-04 1.1E-06 

6 5.4E-04 5.5E-04 5.4E-04 5.5E-04 5.5E-04 5.5E-04 1.4E-06 
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