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A B S T R A C T

A numerical model based on the Reynolds equation to study textured tilting pad thrust bearings considering mass-
conserving cavitation and thermal effects is presented. A non-uniform and adaptive finite volume method is
utilized and two methods are compared and selected regarding their efficiency in handling discontinuities; spe-
cifically placing additional nodes closely around discontinuities and directly incorporating discontinuities in the
discrete system. Multithreading is applied to improve the computational performance and three root-finding
methods to evaluate the bearing equilibrium are compared; namely Newton-Raphson method, Broyden's
method with Sherman-Morrison formula and a continuation approach with fourth-order Runge-Kutta method.
Results from the equivalent untextured bearing are utilized to accelerate the computation of the textured bearing
and results are validated by comparison with CFD data.
1. Introduction

Surface texturing is becoming a promising method for enhancing the
performance of hydrodynamic bearings in terms of increasing the oil film
thickness and reducing the frictional loss for a safer and more efficient
bearing operation. However, successful industrial applications of
textured bearings are still limited. One of the main challenges is the
dependency of optimum texturing parameters on the type of contact and
the operating conditions [1]. A poor texture selection may even lead to a
deterioration of the bearing performance. This makes the design of
optimized texture patterns a challenging task, which generally requires
the utilization of advanced computational models due to the large
number of parameters involved. Hence, a successful application of sur-
face texturing relies to a great degree on fast and robust mathematical
models that allow an accurate evaluation of the impact of surface textures
on the performance of bearings under a wide range of conditions.

The key task in the theoretical analysis of hydrodynamic bearings is
the solution of the Reynolds equation to obtain the pressure field, which
after integration yields the bearing's main performance parameters, such
as load carrying capacity, friction and power loss. While solving the
Reynolds equation is quite straightforward for conventional bearings, a
number of issues are encountered when simulating textured bearings. For
example, texturing can result in the development of multiple cavitation
zones and consequently a mass-conserving mathematical treatment of
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cavitation becomes necessary [2,3]. Also, the fine meshes generally
required to capture the complex geometry of textured bearings result in
significantly increased computation times. Furthermore, textures intro-
duce numerous discontinuities in the film thickness distribution, which if
untreated, can lead to considerable discretization errors. One of the most
popular discretization methods in the field of hydrodynamic lubrication
is the finite volume method (FVM) due to its simplicity and mass-
conserving properties. Unlike methods based on the weak solution of
the Reynolds equation, e.g. finite element methods, the FVM is based on
boundary flux approximations, i.e. derivatives at film discontinuities
directly depend on the mesh size. Consequently, discontinuities should
be treated in order to avoid large discretization errors or high compu-
tation times caused by finemeshes. Twoways to deal with discontinuities
in finite difference based approaches are available: A local mesh refine-
ment [4,5] and a direct incorporation of discontinuities in the discrete
system as proposed by Arghir et al. in 2002 [6]. However, these methods
have not been evaluated previously regarding their capability of
decreasing discretization errors or reducing computation times. Despite
the benefits, discontinuities are rarely directly handled in finite differ-
ence based numerical approaches, resulting in unnecessarily fine meshes
and high computation times.

Another key step in the analysis of hydrodynamic bearings is the
evaluation of the bearing equilibrium, i.e. the specific film geometry that
balances the applied load. This generally requires solving the Reynolds
7
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Nomenclature

a coefficient for the discrete system (m.s or kg/s)
a coefficient for viscosity temperature relationship
A control volume face dimension (m or rad)
B interface Bernoulli coefficient (Pa)
BP Bernoulli coefficient (kg/s)
b coefficient for the discrete system (m.s)
cp lubricant specific heat (J/kg/K)
D damping parameter
df discontinuity coefficient
ep; ee; et tolerance value for pressure, equilibrium and

temperature solver
F nonlinear system for equilibrium solver
f interpolation factor
G homotopy function
h local film thickness (m)
hp film thickness at pivot (m)
htexture texture depth (m)
ii total number of nodes in radial direction
J Jacobian matrix
JP jump coefficient (kg/s)
jj total number of nodes in circumferential direction
kcon convection parameter
m; n coefficients for viscosity temperature relationship
npad number of pads
nr number of textures in radial direction
nθ number of textures in circumferential direction
p local pressure (Pa)
pcav cavitation pressure (Pa)
Q volumetric flow rate (m3/s)
q mass flow rate (kg/s)
r radial coordinate (m)
ri inner pad radius (m)
ro outer pad radius (m)
rp radial coordinate of pivot (m)
T temperature (�C)
Tf friction torque (Nm)
T�K temperature (�K)
u average fluid velocity (m/s)
w0 applied specific load (MPa)
x solution vector for equilibrium solver
x; y Cartesian coordinates (m)
α relative texture extend in circumferential direction

αr ; αθ pitch and roll angle (rad)
β relative texture extend in radial direction
Γ diffusion coefficient (m.s)
δr radial distance from centre of pressure to pivot (m)
δW difference in load carrying capacity and applied load (N)
δθ circumferential distance from centre of pressure to

pivot (rad)
εp; εe; εt fractional residuals for pressure, equilibrium and

temperature solver
η lubricant dynamic viscosity (Pa.s)
Θ fractional film content
θ circumferential coordinate (rad)
θp circumferential coordinate of pivot (rad)
θpad pad angle (�)
λ homotopy parameter
ν40; ν100 lubricant kinematic viscosity at 40 �C and 100 �C (cSt)
νcSt lubricant kinematic viscosity (cSt)
ξ pressure drop coefficient
Π frictional power loss (W)
ρ lubricant density (kg/m3)
ρr texture density in radial direction
ρθ texture density in circumferential direction
ω rotational speed (1/s)
ωp;ωΘ relaxation parameter for pressure and fractional

film content
D þ pressurized regions
D 0 cavitated regions
F computational domain

Subscripts and superscripts
�;þ value just before and after discontinuity
eff effective quantity
i; j control volume indices
ir quantity at pad inner radius
k iteration number
max maximum
min minimum
opt optimum
out quantity at pad outlet
sup supplied quantity
W ;E; S;N;P

west, east, south, north, central nodal value
w; e; s; n west, east, south, north boundary value
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equation multiple times for different film geometries. Due to the
increased complexity in solving the Reynolds equation for textured
bearings, effective methods for finding the bearing equilibrium are
crucial. While numerous root-finding methods to evaluate the bearing
equilibrium are available, the majority of numerical studies are based on
the Newton-Raphson method due to its simplicity and quadratic
convergence. However, this method requires the determination of the
Jacobian matrix at each iteration and an initial film thickness guess
sufficiently close to the actual solution in order to converge. Other
methods, such as Broyden's method or continuation methods may pro-
vide enhanced stability and computational performance when applied
instead of the Newton-Raphson method or in combination with the
Newton-Raphson method.

The aim of this work was the development of a fast and robust nu-
merical model to analyse the influence of surface texturing on the per-
formance of tilting pad thrust bearings. To allow for parametric studies
and the optimization of texture designs, the model is optimized in terms
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of computational speed and robustness. The model is based on a finite
volume discretization of the Reynolds equation while considering mass-
conserving cavitation and thermal effects. Two methods of handling
discontinuities (local mesh refinement and the direct incorporation in the
discrete system) and three different root-finding methods (Newton-
Raphson method, Broyden's method and a continuation method) are
compared and selected based on computation speed and numerical sta-
bility. Computation times are decreased by utilizing results from the
equivalent untextured bearing and results are validated through com-
parison with data from commercial CFD published in literature.

2. The model

2.1. Bearing geometry and film thickness

A point-pivoted tilting pad thrust bearing and details of its pads are
shown in Fig. 1.
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Under the assumption that bearing and runner are perfectly aligned, it
is sufficient to model only one of the pads and subsequently extrapolate
the results to obtain the overall bearing performance. Each pad is sup-
ported by a point pivot, allowing them to tilt freely about a certain radial
line, given by the pitch angle αr , and a certain tangential line, given by
the roll angle αθ. During operation, each pad will self-adjust its tilt angles
to realize a film geometry that balances the encountered operating con-
ditions. Using a polar coordinate system, the local film thickness at each
point on the pad can be expressed as:

hðθ; rÞ ¼ hp þ r sin
�
θp � θ

�
sin αr þ

�
rp � r cos

�
θp � θ

��
sin αθ (1)

where hp is the film thickness at the pivot and θp; rp are the coordinates of
the pivot. The considered operating conditions result in purely hydro-
dynamic lubrication with large lambda ratios and therefore surface
roughness is not considered.

In the present model, each texture pattern is defined by the number of
textures in circumferential and radial direction (nθ and nr), the relative
texture extend in circumferential and radial direction (α and β), the
texture density in circumferential and radial direction (ρθ and ρr) and the
texture depth htexture. This methodology ensures a simple generation of a
variety of texture designs, including fully textured, partially textured,
grooved and pocketed pads (see Fig. 2). To texture the inlet, the first
texture row is simply elongated towards the inlet. Only partially textured
pads and angular sector shaped textures with flat bottom profile are
considered, as this type of texture pattern most closely reassembles a
stepped configuration, which has been shown to have the most beneficial
impact on the bearing performance [7,8].
2.2. Fluid mechanics

The present model is based on the steady-state Reynolds equation for
incompressible fluids. Cavitation does not usually occur in textured tilt-
ing pad thrust bearings as the overall convergence builds up enough
pressure to prevent pressures from falling below the cavitation pressure.
However, under operating conditions that result in particularly low
convergence ratios or whenever deep textures are analysed, cavitation
Fig. 1. Bearing geometry and film thickness: (a) Pad details with coordinate system and
(b) tilting pad thrust bearing geometry.
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may occur inside individual textures close to the pad inlet at the outer
pad radius. Therefore, a mass-conserving form of the Reynolds equation
is used, where the well-known Jakobsson-Floberg-Olsson (JFO) bound-
ary conditions are incorporated [9,10]. Based on the approaches by
Ausas [2] and Bartel [11], the applied modified Reynolds equation reads:

∂
∂r

�
r
ρh3

η

∂p
∂r

�
þ 1

r
∂
∂θ

�
ρh3

η

∂p
∂θ

�
¼ 6ωr

∂ðΘρhÞ
∂θ

(2)

where p is the local pressure, ρ the lubricant density, η the lubricant
dynamic viscosity and Θ the fractional film content, which is defined as:

Θ ¼ 1 and p> pcav in pressurized region
�
D þ� (3)

Θ<1 and p ¼ pcav in cavitated regions
�
D 0� (4)

where pcav is the cavitation pressure. Here, pcav ¼ 10�6 Pa rather than 0
Pa to avoid numerical instability. Equation (2) is valid over the entire
solution domain (F ) and can be solved for pressure and fractional film
content simultaneously.
2.3. Discretization

A FVM is used to discretize the modified Reynolds equation, since for
textured bearings this method has been shown to be a good compromise
between accuracy and implementation complexity [12,13]. The
computational domain is divided into a number of discrete control vol-
umes (CVs) while a node is placed at the centre of each CV [14]
(see Fig. 3).

For textured pads, a non-uniformmesh is applied instead of a uniform
mesh for the following reasons.

� A fine mesh can be used for textured pad areas, where the complex
texture geometry requires a fine mesh, and a coarse mesh for untex-
tured areas, where a coarse mesh is sufficient to describe the simple,
smooth geometry resulting in a more efficient solution of the Rey-
nolds equation.

� CV faces can be aligned with film thickness discontinuities to mini-
mize discretization errors [6].

� Additional nodes can easily be placed around discontinuities to
decrease discretization errors.

Three different methods of discretization are considered and
compared in this study: A conventional non-uniform finite volume dis-
cretization (NUFVD), a version of the NUFVD method where additional
nodes are placed around discontinuities (NUFVDþA) and a modified
NUFVD method, where discontinuities are directly incorporated during
the derivation of the discrete system (MNUFVD) [6]. Details of this three
methods are given below.

2.3.1. Non-uniform finite volume discretization (NUFVD)
The finite volume formulation of the Reynolds equation is based on

the conservation of mass (continuity equation). Consequently, it is
possible to simply balance the flows into and out of a CV:

qw � qe þ qs � qn ¼ 0 (5)

where the flows over the cell faces are defined as:

qw ¼ �Aw

rw

ρwhw
3

ηw

�
∂p
∂θ

�
w

þ 6ωAwrwΘwρwhw (6)

qe ¼ �Ae

re

ρehe
3

ηe

�
∂p
∂θ

�
e

þ 6ωAereΘeρeheqe (7)



Fig. 2. Exemplary film thickness distributions for typical texture designs: (a) 3 � 3 textures, (b) 15 � 15 textures, (c) pocket and (d) 5 radial grooves.

Fig. 3. Non-uniform finite volume discretization of the thrust pad with details of a control
volume.
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qs ¼ �Asrs
ρshs

3 �∂p�
(8)
ηs ∂r s

qn ¼ �Anrn
ρnhn

3

ηn

�
∂p
∂r

�
n

(9)

where Aw, Ae, As and An are the dimensions of the CV's west, east, south
and north face respectively. The pressure gradients at the CV faces are
approximated by central finite difference formulae. The second terms of
equations (6) and (7) are the Couette components of the flow and are
approximated by upwind schemes, hence values are simply passed along
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downstream, i.e. Θw ¼ ΘW and Θe ¼ ΘP. The interfacial diffusion coef-
ficient at the west cell boundary is defined as:

Γw ¼ ρwh
3
w

ηw
(10)

where hw, ρw and ηw are evaluated by linear approximations according to:

hw ¼ ð1� fwÞhW þ fwhP (11)

with the interpolation factor

fw ¼ δθwW
δθwW þ δθwP

(12)

Interfacial diffusion coefficients at the other cell boundaries are
calculated accordingly. Finally, identifying the coefficients aW , aE , aS, aN ,
aP, aΘW, aΘP and rearranging, the equations for the nodal values of
pressure and fractional film content are obtained:

pP ¼ 1
aP

ðaEpE þ aWpW þ aNpN þ aSpS þ aΘWΘW þ aΘPΘPÞ (13)

and

ΘP ¼ � 1
aΘP

ðaEpE þ aWpW þ aNpN þ aSpS � aPpP þ aΘWΘW Þ (14)

Formulating these equations for every internal node results in a linear
algebraic system, which can be solved with appropriate boundary con-
ditions. A full list of the coefficients used is given in Appendix B.

2.3.2. Non-uniform finite volume discretization with additional nodes
(NUFVDþA)

One way of handling discontinuities is to place additional nodes
around all discontinuities, i.e. around texture edges [4,5,15]. The utilized
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methodology is outlined in the following only for the east side of a certain
CV, as the procedure is equivalent for the other sides. During the mesh
generation coordinates of all discontinuous CV boundaries are stored.
Subsequently, the circumferential size of both adjacent CVs is evaluated.
Additional CVs are then placed on both sides of the discontinuity, having
a circumferential size of

ΔθCV ¼ df ⋅MIN
�
Δθi;j;Δθi;jþ1

�
(15)

where i and j are the positions of the CV in radial and circumferential
direction respectively, and df is the discontinuity coefficient (see Fig. 4).
Using a very small value for the discontinuity coefficient can result in
instability whereas a very big value will not result in notable discretization
error improvements. Test simulations have shown that good results are
achieved with df ¼ 0:1 and therefore this value is used in this study.

2.3.3. Modified non-uniform finite volume discretization (MNUFVD)
The sudden variation in film thickness results in a sudden variation in

pressure and consequently the pressure distribution becomes discontin-
uous itself. This is often referred to as concentrated inertia effect and can be
considered by setting up a generalized Bernoulli equation just before and
after the jump in film thickness:

p� þ ρu�2

2
¼ pþ þ ρuþ2

2
þ ξ

ρ½MAXðu�; uþÞ�2
2

(16)

where “�” denotes the location just before the jump (upstream) and “þ”

the location just after the jump (downstream). p and u denote the local
pressure and average fluid velocity at these locations and ξ is an addi-
tional correction factor or pressure drop coefficient.

A way to incorporate this effect in a general finite volume dis-
cretization was proposed by Arghir et al. [6] and subsequently used to
analyse textured slider bearings by Dobrica and Fillon [16]. In Ref. [16] it
was also shown that the application of this method extends the validity of
the Reynolds equation for flows with higher Reynolds numbers or deeper
textures. Thus, implementing this method allows the application of
Reynolds-based models for most configurations, avoiding the more
time-consuming solution of the full Navier-Stokes system of equations.
This method is adapted in the following for the present non-uniform,
polar system in two dimensions. Note that the MNUFVD method in its
present form is limited to the pressurised regions of the solution domain
(D þ), where the Reynolds equation is elliptic. For this reason, this
method is only used if cavitation does not occur. The approach is pre-
sented only for the west cell boundary, as the procedure is equivalent for
Fig. 4. Schematic showing the placement of two additional control volumes around a
discontinuity.
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the other boundaries.
Without the presence of a discontinuity, values for film thickness and

pressure at the west boundary of a certain CV are identical with the
values at the east cell boundary of the CV just upstream, i.e. hwi;j ¼ hei;j�1
and pwi;j ¼ pei;j�1. As described in Ref. [6], this no longer holds true if the
west cell boundary is discontinuous, hence hwi;j≠h

e
i;j�1 and pwi;j≠p

e
i;j�1.

However, the interface flux continuity must still be respected, i.e. qwi;j
must equal qei;j�1. Using additional interface values for film thickness and
pressure at the cell boundaries, the aforementioned flow rate expression
can be written as:

�Aw
i;j

rwi;j
Γw
i;j

pPi;j � pwi;j
δθwPi;j

þ 6ωAw
i;jr

w
i;jρ

w
i;jh

w
i;j ¼ �Ae

i;j�1

rei;j�1
Γe
i;j�1

pei;j�1 � pPi;j�1

δθePi;j�1

þ 6ωAe
i;j�1r

e
i;j�1ρ

e
i;j�1h

e
i;j�1 (17)

Rearranging and introducing the coefficients bwi;j and bei;j�1,
one obtains:

bwi;jp
w
i;j þ bei;j�1p

e
i;j�1 ¼ bwi;jp

P
i;j þ bei;j�1p

P
i;j�1 þ 6ωAe

i;j�1r
e
i;j�1ρ

e
i;j�1h

e
i;j�1

� 6ωAw
i;jr

w
i;jρ

w
i;jh

w
i;j (18)

The required expressions for the interface pressures pwi;j and pei;j�1 are
obtained from the generalized Bernoulli equation (eq. (16)):

pwi;j ¼ pei;j�1 þ Bw (19)

where the interface Bernoulli coefficient for the west cell boundary is
defined as:

Bw ¼ �
ρ
�
uwi;j

	2

2
þ
ρ
�
uei;j�1

	2

2
� ξ

ρMAX
h
uei;j�1; u

w
i;j

i2
2

(20)

The required average velocities are calculated from the corresponding
flow rates:

uwi;j ¼
qwi;j
hwi;j

and uei;j�1 ¼
qei;j�1

hei;j�1
(21)

Equations (18) and (19) now allow the evaluation of the interface
pressure values as:

pwi;j ¼
bwi;j

bwi;j þ bei;j�1
pPi;j þ

bei;j�1

bwi;j þ bei;j�1
pPi;j�1 þ

bei;j�1

bwi;j þ bei;j�1
Bw

þ 6ωAe
i;j�1r

e
i;j�1ρ

e
i;j�1h

e
i;j�1

bwi;j þ bei;j�1
� 6ωAw

i;jr
w
i;jρ

w
i;jh

w
i;j

bwi;j þ bei;j�1
(22)

pei;j�1 ¼
bwi;j

bwi;j þ bei;j�1
pPi;j þ

bei;j�1

bwi;j þ bei;j�1
pPi;j�1 �

bwi;j
bwi;j þ bei;j�1

Bw

þ 6ωAe
i;j�1r

e
i;j�1ρ

e
i;j�1h

e
i;j�1

bwi;j þ bei;j�1
� 6ωAw

i;jr
w
i;jρ

w
i;jh

w
i;j

bwi;j þ bei;j�1
(23)

Repeating this procedure for the interface pressures at the east, south
and north CV faces and substituting the obtained expressions in the
general continuity equation allows to set up equations for the nodal
values of pressure and fractional film content:

pP ¼ 1
aP

ðaEpE þ aWpW þ aNpN þ aSpS þ aΘWΘW þ aΘPΘP þ BP þ JPÞ
(24)

and

ΘP ¼ � 1
aΘP

ðaEpE þ aWpW þ aNpN þ aSpS � aPpP þ aΘWΘW þ BP þ JPÞ
(25)
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with the jump coefficient

JP ¼ 6ωAe
i;j�1r

e
i;j�1ρ

e
i;j�1h

e
i;j�1b

w
i;j

bwi;j þ bei;j�1
� 6ωAw

i;jþ1r
w
i;jþ1ρ

w
i;jþ1h

w
i;jþ1b

e
i;j

bei;j þ bwi;jþ1
(26)

and the Bernoulli coefficient

BP ¼ aWBw þ aEBe þ aSBs þ aNBn (27)

The remaining coefficients are given in Appendix C. Expressions (24)
and (25) are similar to the expressions used for the NUFVD and
NUFVDþA methods, however, two new parameters are present: BP,
which describes the effects of concentrated inertia at discontinuities
through the generalized Bernoulli equation and JP, which directly in-
corporates the jump in the film thickness distribution caused by texturing
in the discrete equations.

Whenever the jumps in film thickness and pressure are neglected, the
equations reduce to the ones found for the NUFVD and NUFVDþA
method. If the jump term is included, film thickness discontinuities are
incorporated and the first order pressure derivatives become discontin-
uous. In this case the problem remains linear, as the interface film
thicknesses are already known. If both the jump in film thickness and
pressure are considered, i.e. JP≠0 and BP≠0, both effects are incorporated
in the solution and the pressure and its first order derivatives become
discontinuous. In this case, an additional preceding loop is required to
deal with the nonlinearity of the discrete system by updating the veloc-
ities based on the flow rates found in previous iterations. Formulating
this set of equations for all internal nodes of the solution domain enables
an iterative solution of the system.

2.4. Mesh generation

For untextured pads a uniform mesh is used, i.e. CVs are distributed
evenly over the pad area. For textured pads, a uniformmesh is inefficient
as only the complex textured portion of the pad requires a fine mesh.
Hence, a non-uniform mesh is applied. The mesh generation is adaptive,
i.e. CV edges are automatically aligned with the pad boundaries and
texture edges. For improved computational performance, the present
model allows to define different mesh densities for different pad areas: (i)
The number of CVs inside each texture, (ii) The number of CVs in-
between adjacent textures and (iii) The number of CVs for the untex-
tured portions of the pad in circumferential and radial direction
(see Fig. 5).

2.5. Numerical solution of the Reynolds equation

An iterative Gauss-Seidel method with successive relaxation is used to
solve the discrete Reynolds equation. A mass-conserving cavitation al-
gorithm similar to that proposed by Ausas [2] is applied, which correctly
divides the solution domain into pressurized and cavitated areas and thus
ensures an accurate prediction of film rupture and reformation bound-
aries. The following expressions are used for relaxation:

pki;j ¼ ωp⋅pki;j þ
�
1� ωp

�
⋅pk�1

i;j (28)

Θk
i;j ¼ ωΘ⋅Θk

i;j þ ð1� ωΘÞ⋅Θk�1
i;j (29)

where k denotes the iteration and ωp and ωΘ are the relaxation param-
eters for pressure and fractional film content respectively. Over-
relaxation is used for pressure values and under-relaxation for frac-
tional film content values. The convergence of the procedure is checked
by the following criterion:

εp ¼
Xjj�1

j¼2

Xii�1

i¼2




pki;j � pk�1
i;j






pki;j

 þ
Xjj�1

j¼2

Xii�1

i¼2




Θk
i;j � Θk�1

i;j







Θk
i;j




 � ep (30)
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where εp is the sum of all nodal normalized fractional residuals of both
pressure and film content and ep is a predefined tolerance value (here
ep ¼ 10�5). No-slip boundary conditions are assumed at the fluid-solid
interfaces and classic Dirichlet boundary conditions are imposed for
pressures at all pad sides (here 104 Pa).

If the MNUFVD method is used and concentrated inertia effects are
considered (BP≠0), an additional preceding loop deals with the intro-
duced nonlinearity of the discrete system. This loop calculates the
average fluid velocities based on the flow rate results of the previous
iteration and evaluates the required Bernoulli coefficients. To save
computation time, this preceding loop is only performed for CVs actually
having discontinuous boundaries. The solution of the Reynolds equation
is performed directly in MATLAB whenever the discrete system is linear.
If the system is nonlinear, the computation is performed in a sub-routine
that runs in C as this was found to result in better performance.
2.6. Bearing equilibrium

The equilibrium is reached, if the pad angles and clearance define a
film geometry that balances the applied load and causes no resultant
moments around the pivot. This type of problem can be formulated as a
nonlinear system:

F
�
αr; αθ; hp

� ¼
2
4 δW

�
αr; αθ; hp

�
δθ
�
αr; αθ; hp

�
δr
�
αr; αθ; hp

�
3
5 ¼ 0 (31)

where δW is the difference between the load carrying capacity and the
applied load, δθ and δr are the distances between the centre of pressure
and the position of the pivot in circumferential and radial direction
respectively. In the following, three different ways to solve this problem
are discussed briefly. Detailed descriptions can be found in literature, e.g.
Refs. [17,18]. As the numerical analysis of hydrodynamic bearings al-
ways involves the solution of a nonlinear problem similar to the one
given in equation (31), the methods investigated below are also appli-
cable for other types of textured or conventional bearings.

2.6.1. Newton-Raphson method
The Newton-Raphson method is one of the most popular techniques

to solve nonlinear root-finding problems and has been used extensively in
the study of hydrodynamic bearings. An initial approximation of the
solution vector xk¼1 ¼ ðα1r ; α1θ ; h1pÞt is updated iteratively by the following
expression:

xkþ1 ¼ xk � J
�
xk
��1F

�
xk
�

(32)

where k denotes the number of the current iteration and JðxkÞ�1 is the
inverse of the local Jacobian matrix at xk. The Jacobianmatrix associated
with point-pivoted pads takes the form:

J
�
xk
� ¼

2
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�
xk
�
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777777775

(33)

In the present work, finite difference formulae are utilized to calculate
the partial derivatives of the Jacobian. Consequently, a single determi-
nation of the Jacobian matrix requires the complete evaluation of both
pressure and film content distributions for four different film thickness
distributions and a subsequent computation of load carrying capacity and
centre of pressure. As the elements of the Jacobian are independent from
each other, a simultaneous evaluation on multiple processor cores is
possible and utilized in the present model.



Fig. 5. Example mesh for a texture pattern with 9 � 9 textures: 7 � 7 CVs inside textures and 3 � 3 CVs in-between adjacent textures; 20 and 10 CVs for the untextured pad area in
circumferential and radial direction respectively; Additional CVs placed around all discontinuities according to equation (15).
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The Newton-Raphson iteration procedure stops when either conver-
gence or a user-defined maximum number of iterations is reached. The
convergence criterion used in this work is:

εe ¼ jδW j
W0

þ jδθj
θp

þ jδrj
rp

� ee (34)

where the tolerance value for the equilibrium solver used here is 10�3 if
not otherwise specified. Although the authors experienced a good
convergence behaviour of Newton's method for most circumstances, a
particularly poorly chosen initial guess for the film thickness distribution
may, at times, lead to numerical instability. Therefore, an empirical nu-
merical damping method is utilized, where the Jacobian is replaced by a
damped Jacobian:

Jdamped ¼
�
D
k2

þ 1
�
J (35)

where D is the damping parameter. Several test simulations have shown
that a damping parameter of D ¼ 1:5 results in improved stability and
computation time for most cases, therefore this value is used whenever
damping is required, otherwise D ¼ 0 and equation (35) reduces to the
normal Jacobian matrix.

2.6.2. Broyden's method
The major drawback of Newton's method is the necessity to evaluate

the Jacobian matrix at each iteration, resulting in high computation
times. Broyden's method is a Quasi-Newtonmethod that only requires the
determination of the Jacobian matrix once. Although the convergence of
this method is only superlinear as compared to the quadratic conver-
gence of Newton's method, the computation effort during each iteration
can be reduced significantly. The first improvement to an initial guess is
obtained according to Newton's method, i.e. equation (32), requiring the
determination of the Jacobian. For subsequent iterations new solutions
are found with the following expression:

xkþ1 ¼ xk � A�1
k F

�
xk
�

(36)

The only difference to Newton's method is the use of the inverse of Ak

instead of the inverse of the Jacobian matrix. A�1
k is calculated based on a

secant method and the matrix inversion formula of Sherman and Mor-
rison [17]. The convergence criterion is the same as the one used for
Newton's method. In the present model the initial guess is usually first
updated by other algorithms or available results from previous calcula-
tions before starting the iteration with Broyden's method. If damping is
required, the same damping procedure as introduced above for Newton's
method is applied.
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2.6.3. Continuation method
The aforementioned Newton-type methods generally require a fairly

good approximation in order to converge. A possible remedy is a
continuation or homotopy method [17,18], where the problem FðxÞ ¼ 0
is transformed into a collection of problems parameterized by the
homotopy parameter λ. Here, this is achieved by defending a convex
homotopy Gðλ;xÞ, which allows the connection of the functions Gð0;xÞ
and Gð1;xÞ as:

Gðλ;xÞ ¼ FðxÞ þ ðλ� 1ÞFðxð0ÞÞ (37)

For λ ¼ 0, equation (37) is a problem with known solution, corre-
sponding to an initial film thickness guess xð0Þ. For λ ¼ 1, equation (37)
is the original problem, corresponding to the film thickness encountered
when the bearing is in equilibrium xð1Þ. It is now possible to proceed
from λ ¼ 0 to λ ¼ 1 in a finite number of steps by formulating
x'ðλÞ ¼ �JðxðλÞÞ�1Fðxð0ÞÞ, which is a system of ordinary differential
equations. The method used to solve this set of equations is the classic
fourth-order Runge-Kutta method. Convergence is checked according to
equation (34) after the procedure terminates.

2.7. Thermal effects

To approximate the temperature rise of the lubricant due to viscous
shearing, an effective temperature method is applied [19], where the
effective temperature is evaluated by:

Teff ¼ Tinlet þ kcon
Π

Qinρcp
(38)

where Π is the frictional power loss, Qin is the pad inflow, cp the lubricant
specific heat and kcon is the amount of heat removed by convection,
typically 50% � kcon � 100% [20,21]. In the present study kcon ¼ 75%.
Tinlet is the lubricant temperature at the pad inlet, which is calculated
considering the hot-oil-carry-over-effect [22,23], where it is assumed
that the oil entering a particular pad is a mixture of cold oil from the oil
supply and hot oil transported over from the preceding pad:

Tinlet ¼ ToutQout þ TsupQsup þ TirQir

Qout þ Qsup þ Qir
(39)

where Tout and Qout are the temperature and mass flow rate at the pre-
ceding pad's outlet, Tsup and Qsup the supply temperature and supplied
mass flow rate and Tir andQir the temperature and mass flow rate leaving
the preceding pad's inner radius.

The maximum pad temperature is approximated by the empirical
relation [21]:
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Tmax ¼ 2Teff � Tinlet (40)
The viscosity variation with temperature is modelled using the
expression proposed by McCoull and Walther [21]:

log10½log10ðνcSt þ aÞ� ¼ n� mlog10ðT�KÞ (41)

where νcSt is the lubricant kinematic viscosity in centistokes, T�K the
temperature in degrees Kelvin and a, n and m are lubricant dependent
parameters. In the present study, a ¼ 0:6 and n,m are calculated based on
the lubricant. The effective temperature, corresponding effective vis-
cosity and inlet temperature are updated iteratively until thermal equi-
librium is reached. The following convergence criterion is used for the
temperature solver:

εt ¼




Tkþ1
eff � Tk

eff





Tkþ1
eff

� et (42)

where et is a predefined tolerance value (here et ¼ 10�4). All interme-
diate results obtained during one temperature iteration (results of the
equilibrium solver, different pressure and film content distributions) are
generally stored and used as first approximations for the next tempera-
ture iteration to decrease computation time.
2.8. Overall numerical procedure

A simplified flow chart of the model is illustrated in Fig. 6 and
explained briefly in the following.

After importing the input variables from a text file, the mesh is
generated and the discrete system is prepared by applying the NUFVD,
Fig. 6. Simplified flow chart
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NUFVDþA or MNUFVD method. The Reynolds equation is then solved
using the Gauss-Seidel relaxation procedure until convergence is
reached. Once pressure and fractional film content distributions are
known, it is checked whether the bearing is in equilibrium and if not, pad
angles and clearance are updated by the Newton-Raphson, Broyden or
continuation method until the bearing is in equilibrium. Lastly, results
are checked for thermal equilibrium and inlet temperature, effective
temperature and corresponding effective viscosity are updated if
required. Once all results are converged, the bearing performance pa-
rameters are evaluated. This procedure is either conducted for a bearing
with untextured pads, textured pads or both. In the latter case results
from the untextured bearing can be used as first approximations for the
textured bearing to evaluate the impact of texturing on the bearing
performance and decrease computation times as shown in the re-
sults section.

As the impact of texturing highly depends on the operating condi-
tions, it is typically necessary to run multiple simulations for the range of
operating conditions expected. Therefore, the present model allows to
perform parametric studies by simply specifying load and speed steps in
the input file. Moreover, parametric studies can also be performed for
varying texture design parameters, such as texture depth or density to
optimize texture patterns for a given application. To reduce computation
time, parametric studies are performed simultaneously on multiple pro-
cessor cores. Once all simulations are performed, results are stored in a
combined *.csv file.

3. Numerical experiments

This section is devoted to comparing the aforementioned numerical
methods in terms of computation speed and robustness. All scripts are
of the numerical model.



Table 2
Input parameters for the mesh study.

Description Symbol Quantity

Film thickness at pivot position (μm) hp 50
Pitch angle (μrad) αr 400
Roll angle (μrad) αθ �185
Rotational speed (rpm) ω 3000
Effective temperature (�C) Teff 70
Texture depth (μm) htexture 15
Texture extent in circumferential direction (%) α 70
Texture extent in radial direction (%) β 70
Texture density in circumferential direction (%) ρθ 63.25
Texture density in radial direction (%) ρr 63.25
Inlet textured? yes
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written in MATLAB 2016b and simulations are performed on a desktop
workstation with 16 GB RAM and Intel Core i7-3770 @ 3.40 GHz CPU
with four physical/eight logical cores. All numerical experiments are
conducted on the point-pivoted tilting pad thrust bearing investigated in
Refs. [22,23]. Geometrical details and considered operating conditions
are given in Table 1.

For the purpose of this study, a relatively simple texture design with
5 � 5 textures is used to introduce discontinuities in the film thickness
distribution in order to keep the computation times low and facilitate
comparing the different numerical methods. However, conclusions will
still hold true for more complex texture designs as higher numbers of
textures only scale the size of the encountered discrete systems.
3.1. Comparison of discretization methods

To compare the three discretization methods in terms of computa-
tional speed and accuracy, a mesh study is conducted. The model is run
for a given film thickness and effective temperature, i.e. only the fluid
solver is utilized. The pre-defined film thickness and effective tempera-
ture are chosen to be approximately corresponding to a bearing operation
at 1.0 MPa specific load. All input parameters are given in Table 2.

After running numerous simulations, it was found that the predicted
load carrying capacity is the parameter most influenced by the mesh size.
Therefore, this parameter is used for the mesh study. The procedure used
to compare the discretization methods is similar to the one used by
Woloszynski et al. [13] and is briefly explained in the following. The
Reynolds equation is solved for an initial coarse mesh and subsequently
the corresponding load carrying capacity is evaluated. This is done for
the NUFVD, NUFVDþA and MNUFVD method successively. The
MNUFVD method is used without the consideration of concentrated
inertia effects at discontinuities, i.e. BP ¼ 0. The initial mesh consists of 2
CVs inside each texture, 1 CV in-between adjacent textures, 4 CVs for the
untextured pad area in circumferential direction and 2 CVs each for the
untextured pad areas in radial direction; or in short notation: 2/1/4/2.
This corresponds to a mesh with a total of 20 � 20 CVs, hence 400� of
freedom (DOF). The mesh is then iteratively refined using a global
refinement factor of 1.25 and the calculations are repeated. This is done
for a total of 17 meshes, resulting in a finest mesh with 458329 DOF
(71/36/142/71). For every refinement, the consecutive error, i.e. the
difference in predicted load carrying capacity between the current and
previous mesh iteration, is evaluated. After all consecutive errors are
known for all discretization methods and meshes, the predicted load
carrying capacity of the method and mesh resulting in the smallest
consecutive error is used as a reference value. This allows to evaluate the
required DOF to reach a certain error with respect to the reference value
for all three discretization methods and meshes.
Table 1
Bearing geometry and operating conditions considered.

Description Symbol Quantity

Bearing geometry
Number of pads npad 6
Inner pad radius (mm) ri 57.15
Outer pad radius (mm) ro 114.3
Pad angle (�) θpad 50
Circumferential coordinate of pivot (�) θp 30
Radial coordinate of pivot (mm) rp 85.725
Operating conditions
Applied specific load (MPa) w0 0.5 … 2.0
Rotational speed (rpm) ω 1500 and 3000
Lubricant ISO VG 46
Density (kg/m3) ρ 855
Viscosity at 40 �C (cSt) ν40 42.646
Viscosity at 100 �C (cSt) ν100 6.499
Supply oil flow rate (l/min) Qsup 15
Supply oil temperature (�C) Tsup 50
Lubricant specific heat (J/kg/K) cp 2035
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Fig. 7 shows the predicted load carrying capacity for the different
meshes and discretization methods. Results are plotted over DOF rather
than a mesh index as additional CVs are added when using the
NUFVDþA method.

A clear trend towards a common load carrying capacity of approxi-
mately 3885 N can be observed for all methods. For all meshes studied,
the MNUFVD method showed the smallest consecutive errors, followed
by the NUFVDþA method. Largest errors were obtained with the NUFVD
method. Therefore, the reference value is determined by the MNUFVD
method at the finest mesh (Wref ¼ 3884:95 N). The relative differences to
the reference value can now be evaluated for all methods and meshes
(see Fig. 8).

It is evident that the MNUFVD exhibits superior performance, fol-
lowed by the NUFVDþAmethod. Highest errors are obtained when using
the NUFVDmethod. As the expected influence of surface texturing on the
load carrying capacity usually lies in a single figure percent range, the
DOF required to achieve errors of 1%, 0.5% and 0.1% are compared.
Note however that the evaluated required DOF are approximations as the
meshes are refined incrementally. The conventional NUFVD method re-
quires 5700, 31862 and 458329 DOF to achieve errors of 1%, 0.5% and
0.1% respectively. If additional nodes are placed around discontinuities
(NUFVDþA), these errors can be achieved with much coarser meshes.
Only 3364, 4225 and 17956 DOF are required to achieve errors of 1%,
0.5% and 0.1% respectively, resulting in a considerably more efficient
solution of the Reynolds equation. The lowest number of DOF is required
by the MNUFVD method, where errors of 1%, 0.5% and 0.1% are ach-
ieved with 961, 1444 and 9120 DOF respectively.

The pressure distribution obtained with the NUFVDþA method for
17956 DOF is shown in Fig. 9 for example. For reference, the pressure
distribution for the equivalent untextured pad is also plotted.

It is evident that the texture pattern has a significant influence on the
pressure development and is clearly reflected in the pressure distribution.
Although closer to the pad inlet pressures are partially below the
equivalent untextured pad, the maximum pressure is considerably
increased from 1.88MPa to about 2.39MPa at the last texture row's edge,
resulting in a higher load carrying capacity and potentially superior
bearing performance. Fig. 10 shows the pressure distribution at the pad's
mean radius for the three discretization methods investigated. It can be
seen that the NUFVD method highly overestimates the maximum pres-
sure and load carrying capacity due to the inaccurate approximation of
the film at discontinuities. Placing additional nodes around the discon-
tinuity lines results in a better representation of the real geometry and
provides pressure values very close to the ones obtained with the
MNUFVD method where additional pressure and film thickness values
are considered directly on discontinuity lines without increasing the
required DOF.

To compare the discretization methods in terms of computational
speed, the CPU time required to solve the Reynolds equation is also
evaluated. Although the mesh preparation takes slightly longer for both
the NUFVDþA and MNUFVD method, the influence is very small and
therefore not considered. Hence, times required for the sole solution of



Fig. 7. Load carrying capacity as predicted by the different discretization methods for
different meshes.

Fig. 8. Relative differences to the reference value for different discretization methods and
meshes.
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the Reynolds equation are compared. Note that encountered computa-
tion times are relatively low for all methods due to the simplicity of the
analysed texture pattern. Therefore, the more complex implementation
of the NUFVDþA and MNUFVD methods may not be justified for the
present example. However, when simulating more complex texture pat-
terns or conducting parametric/optimization studies the application of
these methods becomes necessary. As the computation time significantly
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depends on the relaxation parameter (ωp) and the optimum relaxation
parameter (ωp;opt) depends on the mesh details and discretization method
used, simulations are performed with a fixed relaxation parameter of
1.98 as well as with the individually optimized relaxation parameter. The
respective optimum relaxation parameters are iteratively found and
optimized to three decimal places. Given computation times are arith-
metic means of five consecutively run simulations.

As shown in Fig. 11, the conventional NUFVD method results in the
highest computation times for all cases considered. Considerable im-
provements can be achieved by using the NUFVDþA method. For the
case of non-optimized relaxation parameters, the computation is 1.7, 7.8
and 399 times faster as compared to the conventional NUFVD method to
achieve errors of 1%, 0.5% and 0.1% respectively. When using optimized
relaxation parameters, a speedup by a factor of 1.6, 12.3 and 137 is
possible for errors of 1%, 0.5% and 0.1% respectively. Notably lowest
computation times are encountered when the MNUFVD method is used.
The CPU time needed to solve the Reynolds equation is 5.6, 22.6 and 767
times lower as compared to the NUFVD method when a fixed relaxation
parameter is used. For optimized relaxation parameters speedup values
change to 10, 63 and 431. For all cases considered realizable improve-
ments increase with an increase in DOF.

For comparison, if concentrated inertia effects are considered in the
MNUFVD method with ξ ¼ 0 for the case of ωp ¼ ωp;opt , computation
times increase from 0.014, 0.024 and 0.264 to 0.388, 0.641 and 4.495 s
to reach errors of 1%, 0.5% and 0.1% respectively. These CPU times are
required if the nonlinear discrete system is solved directly in MATLAB.
Solving the same problem in C reduces those computation times to 0.031,
0.055 and 0.625 s, being about 1 order of magnitude faster. However,
this is only the case whenever the discrete system is nonlinear.

In conclusion, significant improvements in discretization error and
computational speed can be achieved by treating discontinuities with the
NUFVDþA or MNUFVD method. If a non-uniform discretization is
already available, a modification to allow a placement of additional
nodes as required by the NUFVDþA method is rather simple. Although
superior, the MNUFVD method is more complex to implement and is
limited to problems without cavitation. However, as mentioned above,
cavitation does not usually occur for textured tilting pad thrust bearings.
In fact, cavitation did not occur for any of the simulations presented in
this paper. If cavitation occurs for the majority of operating conditions
(e.g. journal bearings or parallel slider bearings), the reader may be
interested in the FBNS algorithm [24].

3.2. Comparison of solution strategies for the equilibrium solver

The three root-finding methods for nonlinear systems introduced
above for solving the equilibrium problem are compared in terms of
computational speed and numerical stability. For simplicity, the
following abbreviations are used from here on forth: N: Newton-Raphson
method/B: Broyden's method with Sherman-Morrison formula/C:
continuation method with fourth-order Runge-Kutta technique. Also,
combination of these methods are compared: C2(þB): continuation
method with two steps and consecutive solution with Broyden's method
in case convergence is not reached by the continuation method alone/
N3þB: Newton's method performed for three iterations and consecutive
solution with Broyden's method.

Simulations are performed for the same bearing and texture design as
above, operating at 3000 rpm and 1.0 MPa specific load. Discretization is
performed using the MNUFVDmethod without considering concentrated
inertia for 9120 DOF and the temperature is pre-defined and constant
at Teff ¼ 70 �C.

3.2.1. Quality of initial guess unknown
Firstly, cases are considered where the quality of the film thickness

guess is unknown, which corresponds to an initial user-defined guess.
Hence, no previous knowledge of the film thickness is available. Simu-
lations are run with the available root-finding methods for three different



Fig. 9. Predicted pressure distribution for the textured pad with the NUFVDþA method and 17956 DOF and predicted pressure distribution for the equivalent untextured pad as obtained
with a uniform mesh of 51 � 51 CVs (*.fig file available online).

Fig. 10. Pressure distribution at the mean radius as predicted by different discretization methods for mesh 5: 5/2/10/5.
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qualities of the initial guess: A good initial guess 10% away from the
actual solution, an average guess 50% away from the solution and a poor
guess 100% away from the solution. For comparison, all simulations are
repeated for the case of one computational thread and four threads with
and without damping. Total computation times to find the equilibrium
are shown in Fig. 12 and more detailed in Table 3.

As seen in Fig. 12 (a), a particularly poorly chosen initial guess will
not be sufficient for most methods to converge. The only method
converging for this case is the C2(þB) method, requiring three additional
Broyden iterations to converge, resulting in a total CPU time of 11.8 s.
Note that this requires a total of 38 solutions of the Reynolds equation: 32
times for the four required computations of the Jacobian matrix for each
step of the continuation method, four times for the Jacobian matrix
required for the first Broyden iteration and two more times for iterations
two and three of Broyden's method. For the guess of average quality, all
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but the N1þB method converge. In this case the fastest methods are the
N, C1(þB) and N4þB method with computation times ranging from 6.4 s
for the C1(þB) method to 6.9 s for the N method. If the guess is close
enough to the actual solution, all methods run stable and provide
converged solutions. This time the conventional Newton method is
fastest, requiring only three iterations, i.e. a total of 12 solutions of the
Reynolds equation and resulting in a CPU time of 3.1 s. It is evident that
the parallelization of the determination of the Jacobian matrix improves
Newton's method enough to overshadow the advantage of Broyden's
method. Broyden's method converges on its own, requiring 5 iterations,
i.e. only 8 solutions of the Reynolds equation as compared to the 12
solutions Newton's method requires. The fact that Newton's method is
faster anyway can be explained by the speedup achieved by multi-
threading the evaluation of the Jacobian. For the MNUFVD method with
9120 DOF, the speedup factor by parallelization is approximately 2.7.



Fig. 11. CPU time required to solve the Reynolds equation for different discretization methods, desired errors and relaxation parameters.
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This means that four solutions of the Reynolds equation take effectively
only just about as long as 1.5 serial solutions of the Reynolds equation.
Although the first iteration of Broyden's method also benefits from par-
allelization, Newton's method is slightly faster than Broyden's method
nevertheless.

This is not the case when no multithreading is utilized (see Fig. 12
(b)). Here, the advantage of Broyden's method to only have to calculate
the Jacobian once is more influential. This, for the case of a good quality
guess, results in Broyden's method being the fastest with 5.7 s CPU time,
being about 1.5 times as fast as the conventional Newton method. For the
average guess, Broyden's method is fastest again, being approximately
1.4 times as fast as Newton's method. The slowest method is the C2(þB)
method, which is 2.3 and 4.2 times slower than Broyden's method for the
average and good guess respectively. For the poor guess, no comparison
is possible as none of the methods except C2(þB) converge.

Results are different when the proposed damping procedure is
applied (see Fig. 12 (c)). Now, for the case of a poor initial guess, all
methods but C1(þB) converge. Fastest method is the conventional
Newton-Raphson method, requiring six iterations and resulting in 6.75 s
total computation time. Although Broyden's method usually demands a
guess relatively close to the actual solution, the damping procedure re-
sults in a stable solution even for the poor initial guess. The computation
time for this case is about twice as high as compared to the damped
Newton method. For the average and good quality cases, the damped
Newton method is fastest again. Longest computation times are generally
encountered for the C2(þB) method and interestingly C1(þB) only
converges for the good quality guess.

When damping is applied and the Jacobian is evaluated in series,
Broyden's method is fastest for an average guess, being about 8% faster
than Newton's method (see Fig. 12 (d)). For a good initial guess, N1þB is
fastest with 9.4 s and for a poor initial guess N3þB with 15.9 s. Again,
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highest computation times are required by the C2(þB) method, being as
high as 33.8 s for the case of a poor quality guess. A point that is not
discussed in detail is the fact that required iterations to solve the Rey-
nolds equation depend on the film geometry as well. However, the in-
fluence is insignificant and is therefore not considered in the present
comparison. For example, the required iterations to solve the Reynolds
equation are 918, 918, 921 and 905 for the film geometry corresponding
to the actual solution, the good quality guess, the average quality guess
and the poor quality guess respectively.

In conclusion, the advantages of Broyden's method are generally
overshadowed by the speedup achieved by parallelizing the evaluation of
the Jacobian matrix. Therefore, a conventional Newton method is rec-
ommended whenever the quality of the first guess is unknown. If only
one thread is available, the implementation of Broyden's can result in
considerable improvements in terms of computation times, although
damping may be required for poor quality guesses to improve stability.
As an alternative to damping, a continuation method with at least two
steps seems to provide improved numerical stability although CPU times
are increased and the implementation is more complex.

3.2.2. Quality of initial guess known
As discussed above, Broyden's method performs best for initial

guesses of good quality. One way to be capable of assessing the quality of
the initial approximation of the film thickness distribution and therefore
efficiently applying Broyden's method, is the use of results from a pre-
vious simulation of the equivalent untextured bearing. The idea behind
this is to first run a complete bearing simulation for the equivalent
untextured bearing and then use all obtained results as first approxima-
tions for the textured bearing. Although surface texturing alters the
bearing equilibrium, changes are usually subtle. Hence, it can be assumed
that results from the untextured bearing are good quality approximations



Fig. 12. Total simulation times for different equilibrium solver strategies: (a) 4 threads without damping, (b) 1 thread without damping, (c) 4 threads with damping and (d) 1 thread with
damping.
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for the textured bearing. The simulation of an untextured bearing is
straightforward and can be done with relatively coarse and uniform
meshes. Hence, only requiring a fraction of the time required to simulate
a complexly textured bearing.

To analyse possible improvements by this methodology, simulations
are run for the same conditions as above, using an average quality guess
for the textured bearing as well as the untextured bearing. For the
untextured bearing, a coarse uniform mesh with 11 � 11 CVs is used.
Three methods are compared: Running only the simulation for the
textured bearing with Newton's method (N), running the simulation first
for the untextured bearing with Newton's method and subsequently for
the textured bearing with Newton's method while using the results of the
untextured bearing (UTþN) and running the simulation first for the
untextured bearing with Newton's method and subsequently for the
textured bearing with Broyden's method while using the results of the
untextured bearing (UTþB). Computation times are given in Fig. 13 (a)
and in more detail in Table 4.

When four threads are utilized, the simulation with Newton's method
takes 6.4 s. By using the UTþN method, the total computation time can
be reduced to 3.4 s if Newton's method is used for both the untextured
bearing and the textured one. Six iterations and 0.5 s are needed for the
untextured bearing and 2.9 s and three iterations for the textured one.
The initial guess for the textured bearing in this case is the solution of the
untextured bearing, here: αr ¼ 380 μrad, αθ ¼ �173 μrad and
hp ¼ 46 μm. For the textured bearing this corresponds to a guess of very
good quality, being on average about 4% away from the actual solution.
If the textured bearing is solved with Broyden's method only, the
execution time further decreases to 2.9 s. In this case only three Broyden
iterations are necessary. Hence, computation times can be decreased by
factors of approximately 1.9 and 2.2 by the UTþN and UTþB methods
respectively. If the simulations are run on one thread only, these factors
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increase to about 2.1 and 3.7. The non-parallelized simulation of the
untextured bearing takes 0.25 s, being faster than the parallelized
computation due to the communication overhead, which is notable for
the small scale problem having just 11 � 11 CVs. Once again, achievable
improvements are higher for the non-parallelized simulations.

The quality of the film thickness guess can also be approximated
during consecutive temperature iterations. New effective and inlet tem-
peratures will change the equilibrium film thickness less and less with
increasing temperature iterations. Hence, it can be assumed that the film
thickness from a previous temperature iteration is a good quality guess
for the next temperature iteration. To assess possible improvements, the
complete model is now run including the temperature solver. An initial
guess of 50 �C is used for both inlet temperature and effective tempera-
ture. Used initial guesses for the film thickness are 50% away from the
corresponding actual solution. Results are presented in Fig. 13 (b)
and Table 5.

If only Newton's method is applied, seven temperature iterations are
required to reach thermal equilibrium. A total of 92 solutions of the
Reynolds equation are necessary for this case and execution times are
22.9 and 61.2 s for four threads and one thread respectively. For the first
temperature iteration, 6 N iterations are necessary to find the bearing
equilibrium and for the remaining six temperature iterations 4, 4, 3, 2, 2
and 2 iterations. If Newton's method is only applied for the first tem-
perature iteration and for all remaining iterations Broyden's method
(NT1þB), computation times are reduced by factors of 1.03 and 1.4 to
22.2 and 42.5 s for four threads and one thread respectively. For these
cases, the equilibrium position corresponding to the first temperature
iteration is solved with 6 N iterations, the following six temperature it-
erations with 6, 6, 3, 2, 2 and 2 Broyden iterations, resulting in a total of
63 solutions of the Reynolds equation. If effective temperature, inlet
temperature and equilibrium position are first found for the equivalent
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untextured bearing, then used as first approximations for the textured
bearing and all equilibrium positions of the textured bearing are found
with Broyden's method only (UTþB), computation times reduce further
to 9 and 14.4 s for four threads and one thread respectively, resulting in a
speedup by factors of 2.6 and 4.3 as compared to the conventional
approach. The simulation of the equivalent untextured bearing with
11 � 11 CVs requires seven temperature iterations to find thermal
equilibrium, where only Newton's method is applied. Computation times
for the untextured bearing are 0.8 and 1.7 s for one thread and four
respectively. Again, due to the communication time required, the
computation is faster if only one thread is utilized. The improved guesses
for inlet and effective temperature lower the required temperature iter-
ations for the textured bearing from seven to four. 3, 2, 2 and 2 Broyden
iterations are required for the UTþB method, resulting in a total of 21
solutions of the Reynolds equation.

Using results from the equivalent untextured bearing may be inter-
preted as a special kind of multigrid method with the difference that
textures are ignored and a coarse uniform mesh is used for the initial
simulation. These results are then used as initial approximations for the
textured case, where a fine, non-uniform mesh is used. The method is
capable of reducing computation times for textured bearings signifi-
cantly, especially when strategically combined with Broyden's method.
Although introduced here for tilting pad bearings, this method is readily
adaptable for other kinds of textured contacts under hydrodynamic
conditions.

4. Comparison with CFD results

To assess the accuracy of the present model, simulations are per-
formed for the tilting pad thrust bearing investigated through CFD by
Zouzoulas and Papadopoulos [23]. Results are compared for the bearing
performance characteristics considered most important, namely mini-
mum film thickness, friction torque per pad, maximum temperature and
maximum pressure. To evaluate the accuracy over a wide range of con-
ditions, results are compared for eight different operating conditions
(0.5, 1, 1.5 and 2.0 MPa at 1500 and 3000 rpm) and three different pad
designs (untextured, pocket and circumferential grooves).

All simulations are run with a universal initial film thickness guess of
αr ¼ 300 μrad, αθ ¼ �150 μrad and hp ¼ 35 μm to also assess the sta-
bility of the present model. The initial guess for effective and inlet tem-
perature is 50 �C, and tolerance values of ep ¼ 10�5, ee ¼ 10�2 and
et ¼ 10�4 are used. Note that the quality of these guesses significantly
depends on the operating conditions. A total of three simulations are run,
i.e. one simulation per pad design, where the eight operating conditions
are evaluated simultaneously on eight computational threads. For the
untextured pad, a uniform mesh with 101 � 101 CVs is used and
exclusively Newton's method is applied for the first temperature iteration
followed by Broyden's method for the remaining temperature iterations.
For the pocketed pad, the simulation is first run for the equivalent
untextured pad with 11 � 11 CVs and then Newton's method is applied
for the first temperature iteration and Broyden's method for the
remaining temperature iterations. The mesh for the pocketed pad con-
sists of a total of 109 � 89 CVs. To simulate the grooved pad, again the
equivalent untextured solution as obtained with 11 � 11 CVs is used,
however, the textured pad is then simulated by applying a continuation
method with two steps for the first temperature iteration, followed by
Broyden's method for the remaining temperature iterations. This is done
because numerical instability is encountered when using Newton's
method only, due to the fluctuations in the quality of the initial guess.
The mesh for the grooved pad consists of 109 � 98 CVs. The MNUFVD
method is used for the both the pocketed and grooved pad. The relaxa-
tion parameter for pressure is set to 1.93 and 1.98 for the untextured pad
and textured pads respectively. Results of the validation study are shown
in Fig. 14 in terms of the relative differences.

Despite the use of a uniform initial guess, all performed simulations



Fig. 13. Total CPU time for different equilibrium solver strategies for two cases: (a) temperature is pre-defined and (b) temperature is found with the iterative temperature solver.

Table 4
Total CPU time and required iterations for different equilibrium solver strategies for a pre-
defined temperature.

Method 4 threads 1 thread

CPU
time

Iterationsa RE
solved

CPU
time

Iterationsa RE
solved

N 6.36 6 24 17.09 6 24
UTþN 3.39 3 12 8.21 3 12
UTþB 2.93 3 6 4.56 3 6

a For method N and UTþN Newton iterations, for method UTþB Broyden iterations.

Table 5
Total CPU time and required iterations for different equilibrium solver strategies when
applying the iterative temperature solver.

Method 4 threads 1 thread

CPU
time

Iterationsa RE
solved

CPU
time

Iterationsa RE
solved

N 22.9 6/4/4/3/
2/2/2

92 61.2 6/4/4/3/
2/2/2

92

NT1þB 22.2 -/6/6/3/2/
2/2

63 42.5 -/6/6/3/2/
2/2

63

UTþB 9.0 3/2/2/2 21 14.4 3/2/2/2 21

a For method N Newton iterations, for methods NT1þB and UTþB Broyden iterations.
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converged, demonstrating the stability of the present model. The
computation times were 55.2, 115.5 and 193.8 s for the untextured,
pocketed and grooved pad respectively. It is evident that the obtained
results for maximum pressure and friction torque by both models are
remarkably similar, showing a maximum difference of just 3.3%.
Generally, maximum pressure values are slightly overestimated by the
present model, whereas predicted friction torque values are under-
estimated for the pocket design and evenly spread between �1.7% and
2.4% for the other two designs. Hence, obtained differences for pmax and
Tf are relatively independent of the operating conditions. Larger differ-
ences are encountered for the predicted minimum film thickness and
maximum temperature. Minimum film thickness values are under-
estimated for most cases, being slightly overestimated only for the
untextured and grooved pad operating at 0.5 MPa and 3000 rpm. The
largest difference for hmin is encountered for the untextured pad, being
about �8.9% for an operation at 2.0 MPa and 1500 rpm. The differences
in Tmax show the most significant dependence on the operating
204
conditions, ranging from �10.5% to 10.9% for the untextured pad. For
the pocketed and grooved pad differences in Tmax range from �5.7%
to 3.5%.

It is noteworthy that temperatures are generally overestimated for an
operation at 1500 rpm and underestimated for an operation at 3000 rpm.
This is due to the application of a constant convection parameter
(kcon ¼ 75%), which overestimates convection at 1500 rpm and un-
derestimates convection at 3000 rpm. It is evident that differences are
more scattered for the untextured pad. This is related to the effective
temperature method where a constant temperature is assumed over the
entire pad area. This causes an underestimation of the tilt angles as local
temperatures closer to the pad outlet are underestimated and local
temperatures closer to the pad inlet overestimated. The higher the dif-
ference between inlet and outlet temperature, the higher the error in the
predicted tilt angles. As these temperature differences are considerably
smaller and less dependent on the operating condition for the pocketed
and grooved pad, encountered differences between the present model
and CFD are smaller and less scattered. In fact, it is likely that most dif-
ferences are caused by the application of a simplified effective temper-
ature method rather than solving the energy and heat conduction
equations. However, in particular the results for friction torque and
maximum pressure are remarkably close to the much more time
consuming CFD simulation. In fact, the CFD simulation took approxi-
mately 64 h for each pad design according to the authors [23]. Hence, the
present model is roughly three orders of magnitude faster than a com-
parable CFD study. Averaging the absolute values of all obtained differ-
ences into a single value yields 3%, which the authors deem sufficient for
the purpose of texture design, especially considering the significant
improvement in computational speed, which allows the numerical opti-
mization of texture designs.

It should be noted that elastic deformation, the influence of surface
roughness and turbulence effects were neglected in the present model
and the CFD study. If more realistic results are required, the aforemen-
tioned effects should be considered.

5. Conclusions

This paper presents a numerical model to analyse textured tilting pad
thrust bearings under hydrodynamic conditions. The Reynolds equation
with mass-conserving cavitation is applied and thermal effects are
considered using an effective temperature method. To improve accuracy
and computational speed, three discretization methods are compared: a



Fig. 14. Comparison of the results as predicted by the present model and CFD data from Ref. [23] for different pad designs and operating conditions.
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non-uniform finite volume discretization (NUFVD), a version of this
method where additional nodes are placed around discontinuities
(NUFVDþA) and a modification to this method where discontinuities are
directly incorporated in the discrete Reynolds equation (MNUFVD). Also,
possible performance improvements by taking advantage of multiple
processor cores are analysed and three equilibrium solvers (Newton-
Raphson, Broyden's method and continuation with fourth-order Runge-
Kutta) and combinations of those are compared. The performance of the
numerical tool is enhanced by using results from the equivalent untex-
tured bearing and the accuracy of the model is validated by comparison
with data from commercial CFD software reported in literature. Themain
conclusions are:

� A special treatment of discontinuities can substantially decrease the
computation time required to solve the Reynolds equation by
retarding discretization errors, where the MNUFVD method results in
higher performance improvements than the NUFVDþA method. In
general, the lower the desired discretization error and hence, the finer
the mesh, the higher the achievable speedup by the NUFVDþA and
MNUFVD methods.

� Utilizing Broyden's method instead of Newton's method can be highly
beneficial whenever the initial guess for the bearing equilibrium is
sufficiently close to the actual solution. However, a parallel evalua-
tion of the Jacobian matrix overshows this advantage in most cases.
The algorithm with the best convergence behaviour is the continua-
tion method with two steps. Newton's algorithm converges for most
205
scenarios and is comparably fast. The proposed damping procedure
highly improves Newton's and Broyden's method in terms of numer-
ical stability.

� Improving the initial film thickness guess by using results from the
equivalent untextured bearing significantly reduces required CPU
times, regardless of the equilibrium solvers utilized. In fact, the
simulation of the untextured bearing and subsequent simulation of
the textured bearing is much faster than the sole simulation of the
textured bearing.

� The model is successfully validated by comparison with CFD data,
where differences are smallest for predicted friction torque and
maximum pressure values and highest for minimum film thickness
and maximum temperature values. For the three texture configura-
tions analysed, average errors are 5.3, 1.4, 3.6 and 1.7% for hmin, Tf ,
Tmax and pmax respectively, while the present model is approximately
three orders of magnitude faster than the CFD simulation.
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Appendix B. List of coefficients for NUFVD and NUFVDþA methods
A Γ

aW ¼ w w

rwδθPW
(B.1)
aE ¼ AeΓe

reδθPE
(B.2)
aS ¼ AsΓsrs
δrPS

(B.3)
aN ¼ AnΓnrn
δrPN

(B.4)
aP ¼ aW þ aE þ aS þ aN (B.5)
aΘW ¼ 6ωAwhwρwrw (B.6)
aΘP ¼ �6ωAeheρere (B.7)

Appendix C. List of coefficients for MNUFVD method
w e
aW ¼ bi;jbi;j�1

bwi;j þ bei;j�1
(C.1)

w w
bwi;j ¼
Ai;jΓi;j

rwi;jδθwPi;j
(C.2)

e e
bei;j�1 ¼
Ai;j�1Γi;j�1

rei;j�1δθePi;j�1

(C.3)

e w
aE ¼ � bi;jbi;jþ1

bei;j þ bwi;jþ1
(C.4)

e e
bei;j ¼ � Ai;jΓi;j

rei;jδθePi;j
(C.5)

w w
bwi;jþ1 ¼ � Ai;jþ1Γi;jþ1

rwi;jþ1δθwPi;jþ1

(C.6)

s n
aS ¼
bi;jbi�1;j

bsi;j þ bni�1;j
(C.7)

s s s
bsi;j ¼
Ai;jri;jΓi;j

δrsPi;j

(C.8)

n n n
bni�1;j ¼
Ai�1;jri�1;jΓi�1;j

δrnPi�1;j

(C.9)

n s
aN ¼ � bi;jbiþ1;j

bni;j þ bsiþ1;j
(C.10)

n n n
bni;j ¼ �Ai;jri;jΓi;j

δrnPi;j
(C.11)

s s s
bsiþ1;j ¼ �Aiþ1;jriþ1;jΓiþ1;j

δrsPiþ1;j

(C.12)
aP ¼ aW þ aE þ aS þ aN (C.13)
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w w w w e
aΘW ¼ 6ωAi;jri;jρi;jhi;jbi;j�1

bei;j�1 þ bwi;j
(C.14)

e e e e w
aΘP ¼ �6ωAi;jri;jρi;jhi;jbi;jþ1

bei;j þ bwi;jþ1
(C.15)
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