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Abstract

This paper studies the long-term asset allocation problem of an investor with different

risk aversion attitudes to the short and the long term. We characterize investor’s prefer-

ences with a utility function exhibiting a regime shift in risk aversion at some point of the

multiperiod investment horizon that is estimated using threshold nonlinearity methods.

Our empirical results for a portfolio of cash, bonds and stocks suggest that long-term risk

aversion is higher than short-term risk aversion and increases with the investment horizon.

The exposure of the investment portfolio from stocks to bonds and cash increases with

the degree of risk aversion.
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1 Introduction

The optimal portfolio decisions of long-term investors depend on the economic and financial

environment, in particular, the universe of financial assets available to the investor, their ex-

pected returns and risks, and the preferences and circumstances of investors. In a long-term

optimal portfolio context, these preferences are usually modeled as the discounted sum of a

stream of period utility functions characterized by a risk aversion coefficient. In this sense the

degree of investor’s risk aversion plays a fundamental role in determining optimal investment

strategies.

This approach entertains the same parameter for describing the investor’s risk aversion over

different investment horizons. This assumption can be appropriate for myopic asset allocation

problems involving one-period-ahead investment decisions, however, for investment decisions

involving more than one period the assumption can be too simplistic and overlook the possibility

of changes in individual’s risk aversion between the short and the long term. Thus, for long-term

asset allocation problems it may be more appropriate to consider different types of period utility

functions reflecting different risk perceptions with respect to the investment horizon1. The main

aim of this paper is to do this in an optimal asset allocation framework. More specifically, we

assess the implications from an optimal portfolio theory perspective of extending the standard

multiperiod optimal asset allocation problem to a setting characterized by two different types

of utility function reflecting each a different risk aversion attitude to the short and the long

term. For simplicity, we entertain the family of power utility functions characterized by two

different relative risk aversion coefficients describing investors’ preferences to the short and the

long term, respectively.

Unfortunately, intertemporal asset allocation models are hard to solve in closed form unless

1For example, it is not difficult to construct a narrative causality theory of how unexpected electoral or
referendum results can provoke different short/long term attitudes towards risk.
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strong assumptions on the investor’s objective function such as log preferences or a lognormal

distribution for asset returns are imposed. This situation has begun to change as a result of

several developments in numerical methods and continuous time finance models such as Barberis

(2000) and Brennan et al. (1997, 1999). Approximate analytical solutions to the Merton (1973)

model have been developed in Campbell and Viceira (1999, 2001, 2002) and Campbell et al.

(2003) for models exhibiting an intertemporal elasticity of substitution close to one. Recent

parametric alternatives to solving the investor optimal portfolio problem over several periods

have been proposed by Aı̈t-Sahalia and Brandt (2001) and Brandt and Santa-Clara (2006). We

follow a similar methodology and develop a suitable framework in which to derive the optimal

portfolio decision of investors over multiperiod investment horizons.

The distinctive and innovative feature of our framework is that investors’ preferences are

modelled by a power utility function that takes two different relative risk aversion coefficients

depending on how close the investment horizon is to the present. To the best of our knowledge,

this is the first paper to differentiate between short and long term risk aversion and analyze the

consequences from a long-term optimal portfolio perspective. For the sake of generality, we also

entertain the possibility of dynamics in the risk aversion coefficients. The presence of dynamics

in the investor’s relative risk aversion coefficient is not new in the financial literature. Brandt

and Wang (2003), for example, obtain dynamics in the relative risk aversion coefficient as a

consequence of entertaining utility functions that incorporate habit formation. In contrast to

these authors we propose a structural model to describe the dynamics of relative risk aversion.

In our model, the coefficients characterizing risk aversion to the short and long term are assumed

to be parametric functions of a set of state variables used to describe the information set. By

doing so, we contemplate the possibility of changes in investor’s risk aversion not only driven

by the structure of the investment horizon but also by time-varying economic conditions.

In the proposed model the optimal portfolio weights characterizing the optimal asset al-
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location are determined by a parametric linear portfolio policy rule driven by the dynamics

of the set of state variables reflecting the information set. Under this assumption we obtain

a set of Euler equations that can be estimated and tested using the generalized method of

moments (GMM). The system of Euler equations is overidentified allowing us to test different

features of the model such as the role of the state variables in driving the optimal allocation

to stocks and bonds or the presence of dynamics and nonlinearities in risk aversion. Thus,

the second main contribution of the paper is to propose a likelihood ratio test to formalize

the existence of a regime shift in investors’ risk aversion between the short and the long term.

The econometric methodology to implement the test is similar in spirit to Andrews (1993),

Andrews and Ploberger (1994) and Hansen (1996) that discuss how to make inference when a

nuisance parameter is not identified under the null hypothesis (Davies (1977, 1987) problem).

In our setting, we assume the period separating the short term from the long term to be un-

known but estimated from the data. Under the null hypothesis there is a single risk aversion

regime implying that the period signaling the structural break (nuisance parameter) in the risk

aversion coefficient is not identified. In this scenario standard statistical inference procedures

cannot be applied to statistically assess the presence of a threshold nonlinearity. Instead, we

apply a p-value transformation implemented through a multiplier method to the multiperiod

Euler equations defining the optimality conditions of the individual’s maximization problem,

see Hansen (1996) for early applications of the methodology.

We apply this methodology to analyze the optimal portfolio choice of a long-term investor

that can invest in three assets - a one-month Treasury bill as riskless security, a long-term

bond, and an equity portfolio. This empirical application closely follows similar studies such as

Brennan et al. (1997), Brandt (1999) and Campbell et al. (2003). Our choice of state variables

to proxy the dynamics of the investment opportunity set is motivated by the literature on

predictive regressions for financial returns. It is defined by the detrended short-term interest
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rate, the U.S. credit spread, the S&P 500 trend and the one-month average of excess stock and

bond returns. Our empirical findings suggest that investors exhibit two different types of risk

aversion and that the threshold separating the short from the long term is around the seventh

month of the investment horizon. These findings also reveal that long-term risk aversion is

higher than short-term risk aversion and increases with the number of periods defining the

individual’s investment horizon. The analysis of the optimal portfolio weights also suggests

that the exposure of the investment portfolio to cash and bonds compared to stocks increases

with the degree of risk aversion (flight to quality). This phenomenon is more pronounced for

very high levels of risk aversion in which investors’ optimal asset allocation moves away from

stocks and bonds to cash (flight to safety).

The rest of the article is structured as follows. Section 2 presents the model and derives the

system of Euler equations obtained from the first order conditions of the multiperiod maximiza-

tion problem of an individual exhibiting different risk aversion to the short and the long term.

Section 3 discusses the implementation of GMM to estimate the optimal portfolio weights and

the risk aversion coefficients and briefly discusses the corresponding asymptotic theory. Sec-

tion 4 presents two types of econometric tests to assess the parametric assumptions used in

the development of our model. First, we introduce in detail a threshold nonlinearity test to

assess statistically the presence of two regimes in the individual’s risk aversion function, and

second, we discuss several specification tests to assess the suitability of the parametric policy

rules proposed in the paper. Section 5 presents an empirical application to compare the optimal

allocation to a portfolio of stocks, bonds and cash between investors with different attitudes

towards risk with respect to the investment horizon. Section 6 concludes.
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2 The Model

2.1 The investor’s multiperiod objective function

We introduce first the following utility function that characterizes the preferences of individuals

with different attitudes towards risk aversion in the short and the long term:

κ0∑
j=0

βjEt

[
W 1−γ

t+j

1− γ

]
+

K∑
j=κ0+1

βjEt

[
W 1−γ∗

t+j

1− γ∗

]
, (1)

where Et[·] denotes the conditional expectation with respect to the sigma-algebra generated by

all the information available to the individual at time t; Wt denotes real wealth, the discount

factor β measures patience, the willingness to give up wealth today for wealth tomorrow, and

the coefficients γ and γ∗ capture risk aversion to the short and long term, respectively. The

parameter κ0 denotes the period separating the short from the long term and is defined over

K investment horizons. This function extends naturally standard formulations proposed in the

literature to model the preferences of long-term investors. In this literature, investors have

time-invariant period utility functions characterized by power utility functions with the same

coefficient γ across investment horizons.

The above objective function can be extended to also accommodate dynamics in the coeffi-

cients γ and γ∗. By doing so, we entertain the possibility of individuals exhibiting a time-varying

relative risk aversion on wealth. Brandt and Wang (2003) achieve a similar objective by intro-

ducing the presence of habit formation in the individual’s utility function. In our setting, we

introduce a risk aversion function γt(j;κ0) that, in order to guarantee the positiveness of the

relative risk aversion coefficient, is defined as

γt(j;κ0) = exp ((γ′ + η′1(j > κ0))Zt+j) , (2)
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where Zt+j = (1, Z1,t+j, . . . , Zn−1,t+j)
′ denotes a vector of n − 1 macroeconomic and financial

variables reflecting all the information available to the investor at time t + j; γ and η are

the corresponding vectors of model parameters. This piecewise linear formulation follows the

spirit of Gonzalo and Pitarakis (2012, 2017) on threshold predictive regression and Perron

(1989, 1997) and Andrews (1993) on structural breaks. More compactly, the multiperiod utility

function becomes
K∑
j=0

βjEt

[
W

1−γt(j;κ0)
t+j

1− γt(j;κ0)

]
. (3)

The individual begins life with an exogenous endowment of wealthWt = 1. This endowment

accumulates over time according to the equation

Wt+1 = (1 + rpt+1)Wt. (4)

At the beginning of period t+ 1 the individual receives income from allocating resources in an

investment portfolio offering a real return rpt+1. The portfolio return is defined as

rpt+1(αt) = rf,t+1 + α′
tr

e
t+1, (5)

with ret+1 = (r1,t+1 − rf,t+1, . . . , rm,t+1 − rf,t+1)
′ denoting the vector of excess returns on the m

risky assets over the real risk-free rate rf,t+1, and αt = (α1,t, . . . , αm,t)
′ denoting the different

allocations to risky assets. In order to be able to solve a multiperiod maximization problem

that accommodates in a parsimonious way arbitrarily long investment horizons we entertain

the parametric portfolio policy rule introduced in Aı̈t -Sahalia and Brandt (2001) and used

extensively in Brandt and Santa-Clara (2006) and Brandt et al. (2009). More specifically,

αt+j = ΛZt+j, (6)
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with Λ a m×n matrix of model parameters associated to the state variables Zt. Time variation

of the optimal asset allocation is introduced through the dynamics of the state variables. This

specification of the portfolio weights has two main features. First, it allows us to study the

marginal effects of the state variables on the optimal portfolio weights through the set of

parameters Λ, and second, it avoids the introduction of time consuming stochastic dynamic

programming methods2.

2.2 Optimal portfolio choice under risk aversion

In this section we derive the first order conditions of the long-term optimal portfolio choice

problem for a risk-averse individual with preferences described above. The investor’s wealth

process at time t + j can be expressed in terms of the compound j−period gross return and

the initial wealth Wt that we consider to be equal to one. More formally,

Wt+j =
j

Π
i=1

(1 + rpt+i(ΛZt+i−1)). (7)

Using this characterization of the wealth process simple algebra shows that the individual’s

maximization problem can be written as

max
{Λ}


K∑
j=0

Et

βj

(
j

Π
i=1

(1 + rpt+i(ΛZt+i−1))

)1−γt(j;κ0)

1− γt(j;κ0)


 . (8)

2This approach forces the individual’s optimal portfolio policy rule to be linear and with the same parameter
values over the long term horizon. More sophisticated models can be developed that entertain different para-
metric portfolio policy rules for different investment horizons j = 1, . . . ,K, however, this approach significantly
increases the computational complexity of the methodology and is beyond the aim of this study.
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The first order conditions of this optimization problem with respect to the parameter Λ provide

the following system of mn Euler equations:

Et

[
K∑
j=1

βjψh,s
t,j (Z; θ0, κ0)

]
= 0 (9)

with θ0 = (Λ0, γ0, η0) and

ψh,s
t,j (Z; θ0, κ0) =

(
j∑

i=1

Zs,t+i−1r
e
h,t+i

1 + rpt+i(Λ0Zt+i−1)

)(
j

Π
i=1

(1 + rpt+i(Λ0Zt+i−1))

)1−γ0t(j;κ0)

, (10)

for h = 1, . . . ,m and s = 1, . . . , n; γ0t(j;κ0) = exp ((γ′0 + η′01(j > κ0))Zt+j). The matrix Λ0

is the solution to the first order conditions of the maximization problem for a given set of

parameters γ0 and η0.

The set of conditional moments (9) is equivalent to the following set of conditions

E

[
K∑
j=1

βjψh,s
t,j (Z; θ0, κ0)Ut

]
= 0,

for all ℑt−measurable functions Ut and for all t, 1 ≤ t ≤ T − K, with T > K the sample

size. Following Giacomini and Komunjer (2005), we assume the existence of a n × 1 vector of

variables U∗
t that are observed at time t and that contain all of the relevant information in the

sigma-algebra ℑt. We refer to U∗
t as the information vector. The general requirement on {U∗

t }

is that it is a strictly stationary and mixing series. In our framework, we consider U∗
t to be

the vector of state variables Zt. Under these assumptions, the set of mn conditional moment

conditions (9) becomes a set of mn2 unconditional moment conditions given by

E

[
K∑
j=1

βjψh,s
t,j (Z; θ0, κ0)Zs̃,t

]
= 0, (11)
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indexed by h = 1, . . . ,m and s, s̃ = 1, . . . , n. Let git(θ0, κ0) =
K∑
j=1

βjψh,s
t,j (Z; θ0, κ0)Zs̃,t with

i = 1, . . . ,mn2 an index that accounts for all possible combinations of h = 1, . . . ,m and

s, s̃ = 1, . . . , n on the right hand side of the expression; and let gt(θ0, κ0) be the mn2 vector

that stacks all these variables. Condition (11) becomes

E [gt(θ0, κ0)] = 0. (12)

The main advantage of this approach is that the system of mn first order conditions de-

rived from the maximization problem (8) yields an overidentified system of mn2 unconditional

moment conditions. This property is exploited in the econometric section to derive suitable

estimators of the optimal portfolio weights and risk aversion coefficients at the same time as

carrying out statistical tests for the parametric specifications (2) and (6).

3 Econometric methods: estimation

This section presents suitable methods to estimate the optimal portfolio weights and the pa-

rameters driving the dynamics of the risk aversion coefficient. Let gN(θ0, κ0) be the vector that

stacks the sample moment conditions 1
N

N∑
t=1

git(θ0, κ0) with N = T −K and i = 1, . . . ,mn2. The

idea behind GMM is to choose an estimate of θ0, namely θ̂N , so as to make the sample moments

gN(θ̂N , κ0) as close to zero as possible.

Let GN(θ, κ0) = gN(θ, κ0)
′V̂ −1

N gN(θ, κ0) with V̂N a consistent estimator of the long-run

covariance matrix of
√
NgN(θ0, κ0), defined as

V0(θ0, κ) =
1

N

N∑
t=1

N∑
s=1

E[gt(θ0, κ0)gs(θ0, κ0)
′]. (13)

This matrix captures the strong serial correlation in the sequence gt(θ0, κ0) due to enter-
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taining a multiperiod investment horizon in the individual’s objective function. An esti-

mator of V0 can be obtained by applying HAC variance estimators. More specifically, let

ΓN(j) = 1
N

N∑
t=j+1

gt(θ̂N , κ0)gt−j(θ̂N , κ0)
′ be the sample covariance matrix between gt and gt−j

constructed with the estimator θ̂N . A suitable Newey-West HAC estimator is

V̂N(θ̂N , κ0) = ΓN(0) +
l∑

j=1

l − j

j
(ΓN(j) + ΓN(j)

′) , (14)

with l a bandwidth parameter that determines the maximum order of autocorrelation taken

into account by the estimator. Using this notation, we obtain an estimator of θ0 as the solution

to the minimization problem

min
θ∈Θ

GN(θ, κ0), (15)

with Θ the parameter space for θ. In a first stage, to obtain a consistent estimator of θ0,

namely θ̃N , we use the identity matrix as an initial candidate for V̂N . In a second stage, the

minimization process is repeated replacing the identity matrix by the matrix V̂N(θ̃N , κ0). This

minimization process is iterated until a satisfactory solution is obtained with θ̂N denoting the

estimator of the model parameters obtained in the last step.

In the general case given by absence of knowledge of the true population parameter κ0,

we propose a two-step estimation procedure for estimating the model parameters.3 For each

κ ∈ [Kmin, Kmax] with 1 < Kmin < Kmax < K, we define the set of parameter estimators θ̂N(κ)

as

θ̂N(κ) = argmin
θ∈Θ

GN(θ, κ). (16)

3A similar two-step procedure for estimation of the model parameters using GMM methods is proposed by
Seo and Shin (2016). These authors derive the asymptotic distribution of the model parameters including the
threshold. In contrast to the conventional theory for threshold estimators derived from least squares, see, for
example, the literature initiated by Chan (1993) and Hansen (1996), the threshold parameter estimator proposed
by these authors is asymptotically normal irrespective of whether the regression function is continuous.
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The second step of the estimation process consists of finding the strategic horizon of the in-

vestors’ multiperiod objective function that minimizes GN(θ̂N(κ), κ) on κ. More formally,

κ̂N = argmin
κ∈[Kmin,Kmax]

GN(θ̂N(κ), κ). (17)

The resulting estimator is the vector (θ̂N(κ̂N), κ̂N) that will be denoted as (θ̂N , κ̂N) hereafter.

Applying standard results already derived in Chan (1993), Andrews (1993) and Hansen

(2000) for least squares methods and in Seo and Shin (2016) for GMM, we state without formal

proof that

κ̂N
p→ κ0. (18)

We are also interested in making inference on the model parameters θ0 = (Λ0, γ0, η0). Abusing

of notation, we interpret the quantities θ0 and θ̂N as vectors of dimension (mn+2n)×1. A direct

application of the asymptotic theory developed in Hansen (1996, 2000), Gonzalo and Pitarakis

(2002) and Gonzalo and Wolf (2005) for least squares procedures, and more specifically, theorem

1 in Seo and Shin (2016) for GMM estimation, shows that

√
N
(
θ̂N(κ̂N)− θ0

)
d→ N

(
0,
(
D(κ0)

′V −1
0 (θ0, κ0)D(κ0)

)−1
)

(19)

with D(κ0) ≡ E[∂gt(θ,κ0)
∂θ

] a mn2 × (mn+ 2n) matrix.

4 Econometric methods: hypothesis testing

This section presents a threshold nonlinearity test to statistically assess the presence of two

regimes in risk aversion. Our parametric test also accommodates the presence of dynamics in

both short and long-term risk aversion functions. We also exploit the overidentified system of
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equations (12) to propose a specification test for the parametric formulation of the risk aversion

function (2) and the policy rule (6).

4.1 Threshold nonlinearity tests

Following the literature on threshold and structural break models we will distinguish two cases.

One in which the timing of the break κ0 is known, and a second case, in which κ0 is not

identified under the null hypothesis. The quantity of interest is the risk aversion function (2)

that is reproduced here for the sake of clarity in the exposition:

γt(j;κ0) = exp ((γ′ + η′1(j > κ0))Zt+j) with j = 1, . . . , K.

A simplified version of this function that does not entertain dynamics in risk aversion is

γ(j;κ0) = exp (γj + ηj1(j > κ0)), with γj = γc and ηj = ηc for j = 1, . . . , K. For the lat-

ter case, the null hypothesis rejecting nonlinearity in risk aversion is formulated as

H0 : ηc = 0 against HA : ηc ̸= 0.

In the extended version that incorporates linear dynamics in risk aversion the null hypothesis

is

Hη
0 : ηc = η1 = . . . = ηn−1 = 0 against Hη

A : ηs ̸= 0 for some s = c, 1, . . . , n− 1.

These tests are standard for κ0 known and appropriate test statistics can be deployed by

exploiting the overidentified system of equations (12). More specifically, a suitable nonlinearity

test for the above null hypotheses is the likelihood ratio test

LK(κ0) = N
(
GN(θ̂0N , κ0)−GN(θ̂N , κ0)

)
, (20)
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with θ̂0N denoting the model parameter estimates under the null hypothesis and θ̂N the corre-

sponding model parameter estimates obtained from the unrestricted model. It is important to

note that the covariance matrix used for computing both statistics GN(θ̂0N , κ0) and GN(θ̂N , κ0)

is obtained from the unrestricted model. Under these conditions, the asymptotic distribution

of the test statistic under the null hypothesis Hη
0 satisfies

LK(κ0)
d→ χ2

n, (21)

with n the number of parameters defining the nonlinear segment of (2).

The most interesting case is to test for the presence of nonlinearities in the preferences of

long-term investors when κ0 is not known. In this case κ0 ∈ [Kmin, Kmax] is a nuisance parameter

that cannot be identified under the null hypotheses H0 and Hη
0 of constant/linearity of the

risk aversion function, respectively. Hansen (1996) shows, in very general settings, that the

composite nonlinearity test is nonstandard. As proposed by this author, see also Davies (1977,

1987) or Andrews and Ploberger (1994) in different contexts, hypothesis tests for nonlinearity

can be based on different functionals of the relevant test statistic computed over the domain of

the nuisance parameter. In our framework, the relevant test statistic is lK = sup
κ∈[Kmin,Kmax]

LK(κ)

with sup the supremum of the functional version of (20).

To derive the asymptotic distribution of the relevant test we define the processes SN(θ̂N , κ) =
√
N gN(θ̂N , κ) and its counterpart under the null hypothesis Hη

0 defined as S0N(θ̂0N , κ) =
√
N gN(θ̂0N , κ). Both processes have the asymptotic covariance kernel defined as

Σ0(κ1, κ2) =
1

N

N∑
t=1

N∑
s=1

E[gt(θ0, κ1)gs(θ0, κ2)
′], (22)
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with κ ∈ [Kmin, Kmax]. The empirical counterpart of (22) is

Σ̂N(κ1, κ2) = Γ̃N(0) +
l∑

j=1

l − j

j

(
Γ̃N(j) + Γ̃N(j)

′
)
, (23)

with Γ̃N(j) =
1
N

N∑
t=j+1

gt(θ̂N , κ1)gt−j(θ̂N , κ2)
′ the functional counterpart of ΓN(j) defined above.

The process LK(κ) is defined as

LK(κ) = S ′
0N(θ̂0N , κ)Σ̂N(κ, κ)

−1S0N(θ̂0N , κ)− S ′
N(θ̂N , κ)Σ̂N(κ, κ)

−1SN(θ̂N , κ). (24)

Under some suitable regularity conditions on the uniform convergence of Σ̂N(κ1, κ2) to Σ0(κ1, κ2)

over its compact support, see Hansen (1996) for more technical details, the process SN(θ̂N , κ)

converges weakly to a multivariate zero mean Gaussian process, S(θ0, κ), defined by the covari-

ance function Σ0(κ, κ). Similarly, under the null hypothesis Hη
0 , the process S0N(θ̂0N , κ) con-

verges to a multivariate zero-mean Gaussian process S0(θ0, κ) with covariance kernel Σ0(κ, κ).

Under these conditions, the process LK(κ) converges in distribution to the following chi-square

process

L0(κ) = S ′
0(θ0, κ)Σ0(κ, κ)

−1S0(θ0, κ)− S ′(θ0, κ)Σ0(κ, κ)
−1S(θ0, κ), (25)

with n degrees of freedom and determined by the number of restrictions imposed by Hη
0 . The

continuous mapping theorem implies that the statistic lK = sup
κ∈[Kmin,Kmax]

LK(κ) converges in

distribution to l0 = sup
κ∈[Kmin,Kmax]

L0(κ). Since the null distribution of (25) depends upon the

covariance function Σ0(κ, κ), critical values cannot be tabulated. To obtain the p−values of the

test we derive a p-value transformation similar in spirit to the work of Hansen (1996) based on

a multiplier bootstrap.

Let F0(·) denote the distribution function of l0, and define pN = 1 − F0(lK). The above

result shows that pN converges in probability to p0 = 1− F0(l0) that under the null hypothesis
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is uniform on [0, 1]. Thus the asymptotic null distribution of pN is free of nuisance parameters.

The rejection rule of our test is given by pN < α with α the significance level and pN the

asymptotic p-value. The random variable l0 can be written as a continuous functional of the

Gaussian processes S(θ0, κ) and S0(θ0, κ) which are completely described by the covariance

function Σ0(κ, κ). To implement the p-value transformation, we operate conditional on the

sample Xt = {(r′t+1, Z
′
t)

′}Nt=1. More specifically, we define the multivariate mean-zero Gaussian

processes ŜN(θ̂N , κ) and Ŝ0N(θ̂0N , κ) conditional on the sample Xt. These processes are vectors

of dimension mn2 that can be generated by simulating a sequence of i.i.d. univariate N(0, 1)

random variables {vt}Nt=1. More specifically, each element of the multivariate process ŜN is

defined as

Ŝi,N(θ̂N , κ) =
1√
N

N∑
t=1

git(θ̂N , κ) vt. (26)

Similarly, each element of the multivariate process Ŝ0N is

Ŝi,0N(θ̂0N , κ) =
1√
N

N∑
t=1

git(θ̂0N , κ) vt. (27)

The introduction of the zero-mean random variable vt implies that, conditional on the sample

Xt, the covariance function of the simulated process ŜN(θ̂N , κ) is equal to the sample covariance

Σ̂N(κ, κ) of the process SN(θ̂N , κ). The corresponding conditional chi-square process is

L̂K(κ) = Ŝ ′
0N(θ̂0N , κ)V̂

−1
N (θ̂N , κ)Ŝ0N(θ̂0N , κ)− Ŝ ′

N(θ̂N , κ)V̂
−1
N (θ̂N , κ)ŜN(θ̂N , κ) (28)

and the corresponding test statistic is l̂K = sup
κ∈[Kmin,Kmax]

L̂K(κ).

Let F̂0 denote the conditional distribution function of l̂K and p̂N = 1 − F̂0(l̂K). Following

similar arguments to the proof of Theorem 2 in Hansen (1996), it can be shown that the quantity

p̂N is asymptotically equivalent to pN under both the null and alternative hypotheses. The
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conditional distribution function F̂N is not directly observable so neither is the random variable

p̂N . Nevertheless, these quantities can be approximated to any desired degree of accuracy using

standard simulation techniques. The following algorithm shows the implementation of this p-

value transformation. Let Kb define a grid of b points over the compact set [Kmin, Kmax], and let

κi for i = 1, . . . , b be the set of equidistant points in such grid with κ1 = Kmin and κb = Kmax.

For j = 1, . . . , J with J denoting the number of bootstrap replications, execute the following

steps:

i) generate the sequence {vjt}Nt=1 i.i.d. random variables;

ii) conditional on the sampleXt = {(r′t+1, Z
′
t)

′}Nt=1, set the quantities Ŝ
j
N(θ̂N , κi) and Ŝ

j
0N(θ̂0N , κi);

iii) set L̂j
K(κi) = Ŝj

0N(θ̂0N , κi)V̂
−1
N (θ̂N , κi)Ŝ

j
0N(θ̂0N , κi)− Ŝj

N(θ̂N , κi)V̂
−1
N (θ̂N , κi)Ŝ

j
N(θ̂N , κi);

iv) set l̂jK = sup
κi∈Kb

L̂j
K(κi).

This gives a random sample (l̂1K , . . . , l̂
J
K) from the conditional distribution F̂N . The percentage

of these artificial observations which exceeds the actual test statistic lK : p̂
J
N = 1

J

J∑
j=1

1
(
l̂jK > l̂K

)
is according to the Glivenko-Cantelli theorem a consistent approximation of p̂N as J → ∞. In

practice, the null hypothesis H0 is rejected if p̂JN < α.

4.2 Specification test

The system of equations defined in (12) entails the existence of testable restrictions of our econo-

metric specification determined by the nonlinear risk aversion function (2) and the parametric

portfolio weights (6). Estimation of θ0 = (Λ0, γ0, η0) sets to zero mn + 2n linear combinations

of the mn2 sample orthogonality conditions gN(θ0, κ) for each κ ∈ [Kmin, Kmax]. The correct

specification of the model implies that, for a fixed κ0, there are mn2 −mn− 2n linearly inde-

pendent combinations of gN(θ̂N , κ0) that should be close to zero but are not exactly equal to
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zero. This hypothesis is tested using the Hansen test statistic (Hansen, 1982).

Remember that GN(θ̂N , κ̂N) = gN(θ̂N , κ̂N)
′V̂ −1

N (θ̂N , κ̂N)gN(θ̂N , κ̂N). Under the null hypoth-

esis of correct specification of the model, this statistic satisfies

N GN(θ̂N , κ̂N)
d→ χ2

mn2−mn−2n. (29)

The null hypothesis of correct specification of the overidentified system of equations is rejected

at a significance level α if the test statistic is greater than the critical value χ2
mn2−mn−2n,1−α.

It is worth noting that the N−rate consistency of the threshold parameter estimate obtained

from (17) allows one to replace κ0 by the estimator κ̂N without producing any change on the

asymptotic distribution of the test.

5 Empirical application

We are interested in analyzing empirically the effect of considering two regimes in investor’s

risk aversion. To do this, we study the optimal portfolio decisions corresponding to investment

horizons at four years (K = 48). We provide the analysis for K = 12 to K = 36 in an

online appendix. For the sake of comparison, we entertain three scenarios: the benchmark case

characterized by constant and static risk aversion, the case characterized by a risk aversion

coefficient linearly related to our set of state variables, and the threshold type specification

that extends the previous two scenarios by incorporating risk aversion to the short and the long

term.

We follow seminal studies such as Brennan et al. (1997), Brandt (1999) and Campbell et al.

(2003), and consider three investment assets: a one-month Treasury bill as riskless security, a

long-term bond, and an equity portfolio. There are no short-selling restrictions and the discount

factor to measure investor’s patience is β = 0.95. Our data covers the period January 1980 to
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December 2016. Monthly data are collected from Bloomberg on the S&P 500 and G0Q0 Bond

Index. The G0Q0 Bond Index is a Bank of America and Merrill Lynch U.S. Treasury Index

that tracks the performance of U.S. dollar denominated sovereign debt publicly issued by the

U.S. government in its domestic market. The nominal yield on the U.S. one-month risk-free

rate is obtained from the Fama and French database. The consumer price index (CPI) time

series, used to transform nominal variables into real variables, and the yield of the Moody’s

Baa- and Aaa-rated corporate bonds are obtained from the U.S. Federal Reserve.

The time-variation of the optimal portfolio weights is described by a set of state variables

that have been identified in the empirical literature as potential predictors of the excess stock

and bond returns and the short-term ex-post real interest rates. These variables are the de-

trended short-term interest rate (Campbell, 1991), the U.S. credit spread (Fama and French,

1989), the S&P 500 trend (Aı̈t-Sahalia and Brandt, 2001) and the one-month average of the

excess stock and bond returns (Campbell et al., 2003). The detrended short-term interest rate

detrends the short-term rate by subtracting a 12-month backwards moving average. The U.S.

credit spread is defined as the yield difference between Moody’s Baa- and Aaa-rated corporate

bonds. The S&P 500 trend, or momentum, state variable is defined as the difference between

the log of the current S&P 500 index level and the average index level over the previous 12

months. We demean and standardize all the state variables in the optimization process (Brandt

et al, 2009).

[Insert Table 1 about here]

Table 1 reports summary statistics for the excess S&P 500 index return, excess G0Q0 bond

index return and the short-term ex-post real interest rates. The results show higher mean and

volatility for the stock index compared to the bond index and short-term real interest rate

series. The skewness reveals a negative skew of the excess stock returns and a positive skew of
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the bond and cash series. The estimates of the kurtosis parameters also reflect the leptokurtic

behavior of the three assets. Interestingly, the excess bond return has larger skewness and lower

kurtosis than the S&P 500 index. This anomalous result highlights the outperformance of the

G0Q0 index over the S&P 500 index mainly explained by the values of the series during the

2007-2009 period and, in particular, by the consequences of the subprime crisis on the valuation

of the different risky assets.

5.1 Empirical results

The parameter estimates driving the optimal portfolio rules and dynamic risk aversion coeffi-

cients are estimated using a two-step Gauss-Newton type algorithm with numerical derivatives.

The method is implemented in Matlab and code is available upon request. In a first stage we

initialize the covariance matrix V̂N with the matrix Imn⊗Z ′Z of dimensionmn2, and in a second

stage, after obtaining a first set of parameter estimates, we repeat the estimation replacing this

matrix by the Newey-West estimator (14) with l = 12 lags. The choice of this number of lags is

to obtain an estimator sufficiently robust to the presence of serial correlation in the asymptotic

covariance matrix V0. Table 2 reports estimates of the model parameters (optimal portfolio

weights and risk aversion coefficients) for the three different types of investors for an invest-

ment horizon of four years (K = 48). The first column contains the estimates of the nonlinear

process distinguishing between the short and the long term. The second column reports the

parameter estimates of a simplified version of this model characterized by linear dynamics in

the risk aversion coefficient. The third column contains the benchmark static model employed

in the literature.

The empirical analysis presented below reveals four main features. First, the period that

separates the short from the long term is found to be around the seventh month of the investment

horizon. Second, the likelihood ratio tests discussed above provide strong statistical evidence
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of the presence of dynamics and nonlinearities in the individuals’ risk aversion coefficient. In

particular, our novel nonlinearity likelihood ratio test reveals the presence of nonlinearities in

risk aversion when compared to the linear dynamic and constant cases. We show in the online

appendix that these differences are more relevant as the investment horizon increases. Third,

we observe that the allocation to bonds and stocks is negatively correlated. This finding is

indicative of the existence of flight to quality effects from stocks to bonds especially during

market distress episodes. Fourth, during these periods we observe a significant increase in the

allocation to bonds between the constant risk aversion model and the nonlinear dynamic model.

In contrast, the optimal allocation to stocks is robust to the form of the risk aversion coefficient

even under market distress.

Table 2 also reveals interesting insights about risk aversion. The constant risk aversion

coefficient γc is 3.372 and corresponds to a relative risk aversion coefficient of 29, obtained as

the exponent of γc. The column of the bottom panel reporting the linear dynamics in the

risk aversion coefficient provides overwhelming statistical evidence of the significance of the

four state variables used in our analysis. These results are supported by the corresponding

likelihood ratio test comparing the linear and constant risk aversion models that yields a p-

value of zero. This is also observed for different investment horizons in the extended version of

the empirical application reported in the online appendix. The analysis of nonlinearities in risk

aversion also reveals interesting findings. In particular, there is strong evidence of nonlinearity

reflected in the value of the parameter ηc. The risk aversion coefficient corresponding to the

nonlinear model is γc + ηc that is equal to 4.424, and yields a value of relative risk aversion

of 83. The overall risk aversion level clearly increases from the short to the long term. The

difference between the short and the long term is characterized by a threshold value κ0 that is

estimated from the data. The estimates of θ0 in Table 2 correspond to κ̂N = 7. The presence of

nonlinearity in the risk aversion coefficient is tested using the likelihood ratio test introduced
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in the previous section comparing the linear model against the model with two regimes. The

p-value is zero for K = 48. The relevance of the state variables in driving the nonlinearities in

risk aversion is mixed. The results in Table 2 only show the statistical significance of the S&P

500 trend. However, unreported results obtained for non-optimal κ’s also show the statistical

significance of the one-month average of excess stock and bond returns.

[Insert Table 2 about here]

The analysis of the optimal portfolio allocation reveals interesting insights related to the

form of risk aversion. There is clear evidence of the influence of the state variables in driving

the dynamics of the optimal allocation to the bond index. In particular, the four state variables

are statistically significant under the three different types of risk aversion scenarios considered

in the paper. The allocation to stocks is also quite revealing of the importance of the state

variables, with the results being more significant as the investment horizon increases, see also

online appendix for K = 12, 24, 36. Overall, the results show the statistical significance of

the detrended short-term interest rate, the U.S. credit spread and the one-month average of

the excess bond and stock returns. These results are common across risk aversion scenarios.

The analysis of the parameter values also sheds interesting findings. Thus, the state variables

have a positive effect on the optimal portfolio weights reflected in positive estimates of the

λs,· parameters. In contrast, the state variables have a negative effect on the optimal portfolio

weights allocated to the bond index, as indicated by the negative parameter estimates of λb,·.

These results imply negative comovements between the optimal allocation to the S&P 500 index

and the G0Q0 bond index.

We illustrate this analysis further by plotting the dynamics of the risk aversion function γt.

The top panel of Figure 1 reports the constant and linear dynamic risk aversion coefficient (2)

defined as γ(j) = exp(γ̂c) and γt(j) = exp(γ̂′Zt+j), respectively. The bottom panel of Figure 1
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plots the nonlinear version of the risk aversion function (2). For comparison purposes, we report

separately the short-term dynamics exp(γ̂′Zt+j) and the long-term dynamics exp((γ̂′+ η̂′)Zt+j).

The top panel of Figure 1 exhibits notable fluctuations in risk aversion during the first half

of the 1980 decade due to the sharp increase in oil prices that led to a worldwide economic

recession. This trend is compensated during the 2000 − 2006 Great Moderation period. This

period was characterized by economic stability, strong growth, low inflation and low and stable

interest rates. During this episode the dynamic risk aversion coefficient is below the constant

risk aversion coefficient exp(γc). The bottom panel illustrates the additional effect of long-

term risk aversion to the short-term risk aversion component. The contribution of long-term

risk aversion to the overall risk aversion function is very significant during the first half of

the decade of 1980 and the 2007-2009 crisis period. We also observe spikes in long-term risk

aversion during the second half of the 1990 decade.

[Insert Figures 1 and 2 about here]

Figure 2 reports the dynamics of the optimal portfolio allocations to the S&P 500 index

(αst), the G0Q0 bond index (αbt) and the one-month Treasury bill (αct) for K = 48 over the

crisis period January 2007 to December 2011. We focus on the comparison between the constant

risk aversion scenario and the case of nonlinear dynamics in risk aversion. The top panel reports

the optimal allocation to stocks, the middle panel reports the optimal allocation to bonds and

the bottom panel the optimal allocation to the Treasury bill (cash). The sum of the three

weights is equal to one by construction. The dashed black line corresponds to the dynamic

nonlinear strategy, the dotted red line to the dynamic linear strategy and the solid blue line

to the constant risk aversion strategy. The allocation to stocks is very stable across time and

oscillates between −0.5 and 0.5. Periods of financial distress accompanied by increases in risk

aversion are corresponded by decreases in the optimal allocation to stocks. Periods of economic
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boom accompanied by a decrease in the overall level of risk aversion entail increases in αst.

It is worth noting the large drop in the optimal allocation to stocks during 2008-2009. The

comparison of the optimal allocation to stocks between the constant and nonlinear risk aversion

functions is not significant, though, and suggests that the presence of dynamics in individuals’

risk aversion does not have a dramatic effect on the allocation to stocks. This result contrasts

with the allocation to bonds reported in the middle panel of Figure 2. This allocation increases

in periods of higher risk aversion providing evidence of a negative correlation between the

allocation to stocks and bonds. Finally, the analysis of the optimal allocation to cash suggests

that this financial instrument is used as a safety asset in periods of financial distress in which

risk aversion increases considerably, see, for example, the large allocation to cash during the

2007-2009 crisis period reported in the bottom panel of Figure 2.

6 Conclusion

This paper studies the long-term asset allocation problem of an individual with different risk

aversion attitudes towards the short and the long term. These different risk aversion coefficients

also incorporate dynamics that are driven by variations in economic conditions and proxied by

a vector of state variables. Our optimal asset allocation strategy is obtained from a parametric

linear portfolio policy that accommodates an arbitrarily large number of assets in the portfo-

lio. The parameters defining this model are estimated using GMM procedures applied to an

overidentified system of Euler equations describing the first order conditions of the individual’s

multiperiod maximization problem.

The empirical application to a portfolio of three assets - a one-month Treasury bill as riskless

security, a long-term bond, and an equity portfolio finds significant empirical evidence of the

presence of dynamics in risk aversion. More importantly, we also find differences in short and
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long-term risk aversion. The threshold separating the short from the long term is observed to

be around the seventh month of the investment horizon. The long-term risk aversion coefficient

has a significant role in determining the optimal allocation to fixed income assets such as the

one-month Treasury bill and the G0Q0 bond index but not to the allocation to stocks that

remains very stable across risk aversion scenarios. In particular, we find a large exposure of the

investment portfolio to cash and bonds as risk aversion increases and such that for very high

levels of risk aversion, the allocation tilts from bonds to cash. The estimation of the parameters

driving the linear portfolio policy reveals the different contributions of the state variables in

determining the optimal portfolio weights. More specifically, we find that the detrended short

term interest rate, the U.S. credit spread and the one-month average of the excess stock and

bond returns have a positive effect on the allocation to stocks, however, the S&P 500 trend is

not statistically significant. In contrast, the four state variables have a strong negative effect on

the optimal allocation to bonds. These findings provide further empirical evidence of a strong

negative correlation in the allocation between stocks and bonds and the allocation between

stocks and cash.
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asset Mean Std dev 10% perc. Median 90% perc. Skewness Kurtosis

S&P500 index 0.0031 0.0364 -0.1166 0.0067 0.0399 -1.1773 7.9628

G0Q0 Bond index 0.0023 0.0155 -0.0161 0.0025 0.0208 0.1534 5.3247

rf 0.0010 0.0031 -0.0027 0.0010 0.0047 0.4547 5.3857

Table 1. Summary statistics of the excess stock return, excess bond return and short-term ex-post real

interest rates over the period January 1980 to December 2016 (444 observations). The return horizon

is one month.
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stock parameters bond parameters

nonlinear linear constant nonlinear linear constant

λs,c 0.186
[0.000]

0.231
[0.000]

0.241
[0.000]

λb,c 0.526
[0.000]

0.496
[0.000]

0.474
[0.000]

λs,1 0.089
[0.006]

0.092
[0.000]

0.066
[0.018]

λb,1 −0.162
[0.003]

−0.200
[0.000]

−0.305
[0.000]

λs,2 0.039
[0.086]

0.032
[0.013]

0.085
[0.000]

λb,2 −0.673
[0.000]

−0.762
[0.000]

−0.686
[0.000]

λs,3 −0.002
[0.930]

−0.014
[0.256]

−0.004
[0.727]

λb,3 −0.339
[0.006]

−0.345
[0.000]

−0.367
[0.000]

λs,4 0.335
[0.000]

0.400
[0.000]

0.485
[0.000]

λb,4 −0.294
[0.000]

−0.317
[0.000]

−0.402
[0.000]

short term regime long term regime

nonlinear linear constant nonlinear linear constant

γc 3.442
[0.000]

3.576
[0.000]

3.372
[0.000]

ηc 0.982
[0.001]

– –

γ1 −0.086
[0.321]

−0.188
[0.000]

– η1 −0.321
[0.370]

– –

γ2 0.425
[0.000]

0.412
[0.000]

– η2 0.577
[0.236]

– –

γ3 0.128
[0.264]

0.183
[0.000]

– η3 0.508
[0.111]

– –

γ4 0.277
[0.272]

0.125
[0.080]

– η4 −0.249
[0.588]

–

κo 7

Table 2. Parameter estimates of the three different versions of the individual’s objective function

(3) for K = 48 and β = 0.95. The parameters λ correspond to the portfolio allocations associated

to the state variables Zt: λ·,c is for the constant term, λ·,1 corresponds to the detrended short-term

interest rate, λ·,2 to the U.S. credit spread, λ·,3 to the S&P 500 trend and λ·,4 to the one-month

average of the excess stock and bond returns. Similarly, the vector γ describes the sensitivities of

the risk aversion function (2) with respect to the state variables for the linear segment and η the

corresponding sensitivities for the nonlinear segment of the function. κ0 denotes the estimate of the

threshold value corresponding to these parameter estimates. P-values are in squared brackets.
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Figure 1. Dynamics of risk aversion over the period January 1980 to December 2016 for K = 48,

β = 0.95. Top panel compares the constant and linear versions of the risk aversion function (2). Flat

line for constant risk aversion and dashed line for dynamic risk aversion. Bottom panel compares the

two segments defining the nonlinear version of (2). Dotted line for the short-term dynamics of risk

aversion (γ parameters in (2)) and dashed for the long-term dynamics (η parameters in (2)).
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Figure 2. Dynamics of the optimal portfolio allocation to stocks, bonds and cash over the period

2007-2011 for K = 48, β = 0.95. Dashed black line for the dynamic nonlinear strategy and solid blue

line for the constant risk aversion strategy.
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