Lateral stress changes and shaft friction for model displacement piles in sand
Lateral stress changes and shaft friction for model displacement piles in sand
The paper describes a series of tests performed in a drum centrifuge on instrumented model displacement piles in normally consolidated sand. These tests examined the influence of the pile installation method, the stress level, and the pile aspect ratio on the increase in lateral effective stress on the pile shaft during static load testing to failure. A parallel series of constant normal load and constant normal stiffness (CNS) laboratory interface shear experiments was performed to assist interpretation of the centrifuge tests. It is shown that although the cycling associated with pile installation results in a progressive reduction in the stationary horizontal effective stress acting on a pile shaft and densification of the sand in a shear band close to the pile shaft, this sand dilates strongly during subsequent shearing to. failure in a static load test. The dilation (the amount of which depends on the cyclic history) is, constrained by, the surrounding soil and therefore leads to large increases in lateral effective stresses and hence to large increases in mobilized shaft friction. The increase in lateral stress is shown to be related to the radial stiffness of the soil mass constraining dilation of the shear band and to be consistent with measurements made in appropriate CNS interface shear tests. The paper's findings assist in the extrapolation of model-scale pile test results to full-scale conditions.
Centrifuge tests, Displacement pile, Sand, Shaft friction
1039-1052
Lehane, Barry M.
7cf1e729-8a86-4a98-9306-fc25fe849b7e
White, David J.
a986033d-d26d-4419-a3f3-20dc54efce93
August 2005
Lehane, Barry M.
7cf1e729-8a86-4a98-9306-fc25fe849b7e
White, David J.
a986033d-d26d-4419-a3f3-20dc54efce93
Lehane, Barry M. and White, David J.
(2005)
Lateral stress changes and shaft friction for model displacement piles in sand.
Canadian Geotechnical Journal, 42 (4), .
(doi:10.1139/t05-023).
Abstract
The paper describes a series of tests performed in a drum centrifuge on instrumented model displacement piles in normally consolidated sand. These tests examined the influence of the pile installation method, the stress level, and the pile aspect ratio on the increase in lateral effective stress on the pile shaft during static load testing to failure. A parallel series of constant normal load and constant normal stiffness (CNS) laboratory interface shear experiments was performed to assist interpretation of the centrifuge tests. It is shown that although the cycling associated with pile installation results in a progressive reduction in the stationary horizontal effective stress acting on a pile shaft and densification of the sand in a shear band close to the pile shaft, this sand dilates strongly during subsequent shearing to. failure in a static load test. The dilation (the amount of which depends on the cyclic history) is, constrained by, the surrounding soil and therefore leads to large increases in lateral effective stresses and hence to large increases in mobilized shaft friction. The increase in lateral stress is shown to be related to the radial stiffness of the soil mass constraining dilation of the shear band and to be consistent with measurements made in appropriate CNS interface shear tests. The paper's findings assist in the extrapolation of model-scale pile test results to full-scale conditions.
This record has no associated files available for download.
More information
Published date: August 2005
Keywords:
Centrifuge tests, Displacement pile, Sand, Shaft friction
Identifiers
Local EPrints ID: 419842
URI: http://eprints.soton.ac.uk/id/eprint/419842
ISSN: 0008-3674
PURE UUID: db46c10e-3db2-43ea-a32c-d28493f9289b
Catalogue record
Date deposited: 23 Apr 2018 16:30
Last modified: 16 Mar 2024 04:32
Export record
Altmetrics
Contributors
Author:
Barry M. Lehane
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics