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Abstract. Comprehensive mechanical characterisation of stainless steel reinforced Bi2223
superconducting tapes was conducted using purpose built rigs. This included the effect of axial
(tensile and compressive) and bending strain on the critical current (/) of reinforced Bi2223
tape. In addition, the axial tensile and transverse compressive stress properties of the tape were
measured and evaluated. It was found that the / —bending strain characteristic of the tape was
improved as a result of sheath reinforcement, compared to an identical tape without
reinforcement. A mechanism for this improvement based on the homogenising effect of the
reinforcement on strain is proposed. To avoid /, degradation, the maximum axial stress on the
reinforced tape should not exceed 350 MPa, or the tensile strain should be less than 0.65%.
Furthermore, no /. degradation was observed for transverse compressive stresses up to 100
MPa, while an axial compressive strain of about 0.3% causes about 10% drop in the critical
current.

1. Introduction
As a result of significant developments in high temperature superconducting (HTS) wires, or tapes,
medium scale power machines have been constructed and demonstrated [1,2]. In these power
applications of superconductors, the tapes experience significant stresses and strains during initial
device fabrication and subsequent machine operation. These stresses and strains are known to degrade
the critical current of the tape. Hence the /-stress and strain characterisation of the conductor is an
important parameter to be taken into account before designing and building practical HTS devices.
This paper describes the experiments undertaken to determine the /-dependence on stress and
strain of superconducting tapes at 77 K, as part of a project at the University of Southampton to
design, build and test a high temperature superconducting generator [1]. The stainless steel reinforced
Bi2223 tape, with a nominal I, of >115 A at 77 K, were manufactured by American Superconductors.
The present results were crucial for modelling and predicting performances during operation of the
generator and also represent a means of quality control to ensure suitability of the tapes and coils for
use in the machine.

2. Axial strain measurement

Tensile and compression characteristics of superconducting tapes were undertaken. A tensile test
machine was used for the stress-strain (o-£) characteristics of tapes with loads up to 25 kN applied
through a load cell. Sample extension was measured by strain gauges mounted on the tape using a
half bridge circuit to compensate for temperature changes. Critical current values for various strains
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were normalized by using the / value at zero-strain, I, (0), and are denoted as I, ,. For the tensile

test, superconducting tapes with flexible current leads and voltage taps were carefully gripped using
purpose built non-slip chucks, and immersed in liquid nitrogen. In contrast, for the axial compression
tests, an unsupported HTS tape specimen (10 cm long) has a very large slenderness ratio resulting in a
low buckling load. Hence two tapes were soldered to the outer surface of an annealed copper tube and
were positioned diametrically opposite to provide structural symmetry. The pre-strain due to the
differential thermal contraction of the soldered tape and the copper tube at 77 K were taken into
account by measuring the linear thermal contraction of both which was used to correct the axial
compression strain experienced by the tape.
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Figure 1 Axial tensile stress-strain-normalized critical ~ Figure 2 Effect of axial strain normalized
current relationship for Bi-2223 reinforced tape. critical current of Bi-2223 reinforced tape.

The stress-strain characteristic and the normalized critical current [ -axial tensile stress curve at 77
K are presented in Figure 1. It can be seen that there is no critical current degradation until the tensile
stress reaches 350 MPa, at 0.65% strain, when an abrupt drop in the I  occurs. This is followed by a
gradual degradation until the sample fracture at a stress of about 524 MPa and a strain of 2.4%. Itis of
interest to note that this abrupt drop takes place while the stress-strain characteristic is still essentially
proportional. The yield strength of the tape can be as large as 410 MPa (0.2% offset strength), which
is more than six times the value for the conventional Ag sheathed tape [3]. This enhancement in
performance can be attributed to the stainless steel reinforcement of the tape.

Figure 2 shows an asymmetric profile for a Bi-2223 reinforced tape under axial strain. The
asymmetry is attributed to pre-compression of the ceramic filaments by the metal matrix during the
cool-down from the annealing temperature to the 77 K test temperature according to the commonly
accepted irreversible I, reduction model proposed by ten Haken et al [4]. At low tensile strain levels,
the plateau is partly due to relaxation of pre-compression. However, there is a small (0.06%) but
noticeable plateau in the compressive regime, indicating an intrinsic /_ tolerance within the ceramic
core. At large strain levels, the abrupt drop is thought to be due to the propagation of cracks. The

compressive strain limit £, ,, (at 90% of the I_at zero strain) is about —0.3%, which is smaller in

magnitude than the tensile strain limit of 0.65%.

3. Transverse compression measurement

In the transverse compression test, Figure 3, a bar of 10 mm diameter was pressed onto a set of three
tapes glued side by side with a 0.5 mm gap between; current leads and voltage taps were attached to
the middle tape only, and were positioned to measure the voltage across the compressed section of the
tape. The other two tapes helped to prevent tipping of the bar. The transverse compressive stress
dependence of the normalized critical current I, of the reinforced tape at 77 K, self field is shown in
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Figure 3. The stress limit o, ,, is found to be about 100 MPa. This high compressive stress,

compared to Ag and Ag alloy sheathed tapes, can be attributed to the high strength of the stainless

steel reinforcement sheath.

4. Bending strain measurement
The effects of bending strain on /_at 77 K were also
measured using a set of eight holders, of radii 54, 41,
30, 15, 12.5, 10, 7.5 and 5 mm. A specimen of the
reinforced tape (RT), of length 95 mm, was
instrumented, and successively mounted onto the
holders to progressively decrease the bending radius
to 5 mm. The experiments were then repeated with
tape from which the stainless steel reinforcement had
been removed (NRT).

Figure 4 shows the / -bending strain characteristic
of the Bi-2223 tape with (RT), and without (NRT)
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Figure 3 Effect of transverse compressive
stress on [ of Bi-2223 reinforced tape.

reinforcement. For the RT, there is no drop in /_ up to a strain of 0.25% (bending radius of 48 mm),

followed by a gradual decrease to 50% of I at a
strain of 2.4% (bending radius of 5 mm). The
degradation for the NRT seems to be always greater,
although the difference is not significant for bending
strains less than 0.4%, when the NRT performance
declines rapidly.  For strain above 0.8% the
differences in I, degradation between RT and NRT
maintains a near constant value of 0.20 up to a
bending strain of 2.4% at the smallest bending radius.
The bending strain limits &, o, for RT and NRT are

0.95% and 0.45%, respectively.

5. Improvement mechanism in bending strain
tolerance for reinforced tapes

The significant improvement in the / -bending strain
characteristic of the reinforced tape is attributed to
the homogenising effect on axial strain provided by
the reinforcement; the argument is most easily
developed in the context of tension, but readily
extends to bending, which consists of tension and
compression above and below the neutral axis.
Close investigation of the tape cross section shows
that the individual filaments within the tape are not
of uniform cross-sectional area — if one were (o
prepare a second photomicrograph from some other
location along the tape, one would expect the total
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Figure 4 Effect of bending strain on
normalized critical current of Bi-2223 tapes
with and without reinforcement.
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Figure 5 Schematic representation of an
individual filament.

cross-sectional area of all the ceramic fibres to be largely unchanged, while the cross-sectional area of
individual fibres occupying the same nominal location within the cross-section would be different.
Consider an idealisation of one such fibre whose cross-sectional area is assumed to reduce linearly
from a maximum value A, to a minimum area a, over some gauge length L (Figure 5), representing
sausaging of the filaments; the generic cross-sectional area may be expressed as

A(x)=A(1-x/L)+ax/L.
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The critical current of this fibre will be determined by the maximum axial strain, which will occur at
the smallest cross-section and may be expressed as

& = FI(Ea),

where F is the axial force carried by the fibre, and E is the Young’s modulus. For a typical element of
length dx, the change in length §L due to the applied force F is

OL=¢ xdx

where ¢ is the local strain, calculated as

& =F/IExXA(x)).

On the other hand, the apparent axial strain over the gauge length L may be calculated as

17 1% F
gapparenl == Jé‘L = J d X
L; L § EA(x)
Substitute A(x) into the above equation, and ¢,,,,,,, can be rewritten as

Eopparen = FIn(A/a)/(E(A-a)):
this is what is measured on the surface of the tape. For an area ratio A/a =2, the maximum strain is

44% greater than the apparent strain. It is concluded that the effect of tape reinforcement is to level
out the “peaks and troughs” in the axial strain, and so reduce the maximum axial strain closer to the
apparent value and, in turn, increase the critical current.

6. Summary

Mechanical tests on Bi2223 tapes at 77 K indicate that in order to avoid /. degradation, the maximum
tensile (hoop) stress on the reinforced tape should be no more than 350 MPa, or the tensile strain
should be less than 0.65%. To maintain the /_, above 0.9, the axial compressive strain should not

4

exceed —0.3%. The transverse compressive stress should not exceed 100 MPa to avoid an abrupt drop
in performance. The bending radius of the coil should not be less than 13mm (corresponding to 0.9%
bending strain) due to the effect of bending strain on the tape during the winding operation.

The results show that the specifications and properties of the tape fulfilled the requirements for the
design and construction of the superconducting generator, and confirm that the reinforced tape has
much better handling characteristics. A mechanism for this improvement, based on the homogenising
effect of the reinforcement on strain, is proposed.
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