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ABSTRACT

The presence of process variations in manufacturing any
product is inevitable. Manufacturing variations can result in per-
formance loss, high scrap, redesign and product failure. This
paper proposes a methodology for robust design against manu-
facturing process variations. The proposed method is employed
to seek compressor blade designs which have less sensitive aero-
dynamic performance in presence of manufacturing uncertain-
ties. A novel geometry modeling technique is presented to model
the manufacturing uncertainty in compressor blades. A Gaus-
sian Stochastic Process Model is employed as a surrogate to the
expensive CFD simulations. The probabilistic performance of
‘each design is evaluated using Bayesian Monte Carlo Simulation.
This is combined with a Multiobjective Optimization process to
allow explicit trade-off between the mean and standard devia-
tion of the performance. The aim is to provide the designer with
a Pareto-Optimal robust design set to choose the design which
meets the performance specifications in presence of manufactur-
ing uncertainty. Keywords: Robust Design; Bayesian Monte
Carlo; Manufacturing Variations; Process Capability; Compres-
sor Blades

INTRODUCTION

Manufacturing variations can lead to loss in quality due
to performance degradation, non-conformance to specifications,
high cost of redesign or scrap and failure. Although the man-
ufacturing process is stochastic in nature, the traditional meth-
ods assume deterministic conditions during the design activity.
As a result, the manufactured product may differ from the pro-
posed ideal design and its performance may be sensitive to man-
ufacturing variations. Further to assure that a product meets the
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design specification, tight tolerance or a higher precision man-
ufacturing process is selected, which can lead to considerable
increase in manufacturing cost. Hence, it is important to con-
sider the effect of manufacturing variations on a product during
the design phase and select a design which is less sensitive to
such variations. More often than not the design engineers do not
have enough information about the downstream manufacturing
process capability [1]. This can lead to designs with infeasible
manufacturability or tolerances which are costly or impossible to
achieve using existing manufacturing processes. In recent years
there have been many attempts to provide the designer with pro-
cess capability data [2]. Process Capability is the expected prob-
ability distribution of the manufactured products using a manu-
facturing process in ideal conditions [3], see figure 1. Numerous
methods for measuring process capability exist in the manufac-
turing literature [3-6]. In the presence of prior knowledge about
the process capability of the manufacturing processes one can
model the manufacturing uncertainty and propagate it through
the design system.

A robust design problem is one in which a design is sought
that is relatively insensitive to small changes in uncertain param-
eters. Robust design primarily deals with minimizing the ef-
fect of uncertainty on the system without reducing the sources
of uncertainty [7]. In the 1970s, Taguchi emphasized the need
to reduce variation in products and processes to improve their
quality [8,9]. Welch et al [10, 11] proposed a system for qual-
ity improvement via computer experiments as an alternative to
Taguchi’s method. Statistical decision theory has also been used
to formulate robust design as an optimization problem. The mini-
max strategy [12] can be used to find a design with optimal worst
case performance [13]. Huyse et al [14, 15] used the idea of
Bayes risk minimization to achieve consistent improvement of
the performance over a given range of uncertainty parameters.
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Figure 1. Ideal and observed process capability

The main limitation of these methods is that the uncertainty
analysis is very computationally expensive which makes it infea-
sible for applications to industrial problems. The aim of this pa-
per is to present a methodology for fast uncertainty analysis with
applications to robust design problems. The proposed method is
applied to aerodynamic design of compressor blades. Bayesian
Monte Carlo Simulation is employed for evaluating the statistics
of aerodynamic performance in the presence of manufacturing
uncertainty. A multi-objective optimizer is employed to explic-
itly trade-off between the mean and standard deviation of the per-
formance. Finally, the performance of a selected robust design is
compared with an optimal design obtained using a standard de-
terministic formulation.

ROBUST DESIGN METHOD

The presence of some degree of uncertainty in characteriz-
ing any real engineering system is inevitable. In aerodynamic
design, the most common geometric uncertainties observed are
due to erosion, icing, damage or manufacturing variations. Tra-
ditional design methods tend to optimize designs for their nom-
inal performance. These deterministic methods, when used for
product design, either tend to over optimize or produce solutions
that perform well at design points but may have poor off-design
characteristics. Robust design methods take into account these
uncertainties and seek designs which are less sensitive in perfor-
mance.

Taguchi Method

The most popular robust design method is Taguchi’s method
which aims at exploiting the interactions between the parame-
ters of the system to reduce variability. In this method, the in-

puts are classified as (1) control factors (X = {x1,%2,...,X,} € %)
and (2) noise factors (§ = {&,,&,,...,&;} € E). Control fac-
tors are the parameters which can be easily controlled by the
designer whereas noise factors are the parameters that are dif-
ficult or expensive to control. To obtain the objective function
Taguchi methods employ a Signal to Noise Ratio (SNR) to de-
fine a quantitative measure of the variability. The objective is
to maximize SNR which leads to a reduction in variations. An
overview of Taguchi’s experimentation strategy and parameter
design method can be found in [7]. The use of SNR for robust
design may lead to non-optimal solutions [16] and loss of in-
formation in data [17]. Another major criticism of the Taguchi
method is the use of a cross product array of control and noise
factors to evaluate SNR. This requires a large dataset and is com-
putationally expensive [10, 18]. For a detailed critical overview
of Taguchi methods the reader is referred to [19,20].

Combined Array Based Methods

Welch et al. [10] and Box et al. [21] suggested the use of
combined array and metamodeling techniques to alleviate some
of the limitations of Taguchi’s method. In the combined array
approach both the control and noise factors are varied together
using DOE techniques. This saves computational effort as com-
pared to the cross product array method. In the combined array
(CA) based metamodel strategy for robust design a DOE (Design
of Experiments) is performed over the {x,£} € R7™9. Let us de-
note this new variable as X, then the response at the DOE points

‘using the analysis code can be represented as [8(), y(x(?)]. This

dataset can be utilized for finding the robust design by minimiz-
ing some loss function. The training dataset, obtained using the
CA method, can also be used to train a metamodel () for pre-
dicting the response quantity y(X) [11]. Using the metamodel,
the robust design problem could be formulated as

x* =arg mxm /f?(x,&)P(%)dE. (1)

Trosset et al. [22] proposed a four step procedure to improve the
metamodel based approach. The steps are (1) choose initial set
of points by varying the design and noise variables &, (2) com-
pute the function y(X) at these points, (3) construct a surrogate
objective function ¥, (4) evaluate the integral in equation 1 and
minimize. The minimax method has also been employed to seek
a design with the optimal worst case performance [12]. How-
ever, the minimax principle is conservative as it seeks to protect
the decision maker against the worst case scenario [22].

Multi-Objective Robust Design
Many researchers have proposed to minimize a single ob-
jective to achieve robust design. These methods can be classified
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into two groups where the aim is to minimize (1) the expectation
of the objective function in its neighborhood [15,23-25], (2) the
variance of the objective function [26]. [27] discussed the draw-
backs of minimizing the expectation of the objective function.
He argued that positive and negative deviations in the function
value in the neighborhood of a target may cancel each other and
mislead to a non-robust optimal design. Minimizing the variabil-
ity function alone can lead to designs that are robust but not opti-
mal and hence not desirable [27,28]. Therefore, it is desirable to
optimize both the expectation and variance of the objective func-
tion. Robust design can be presented as a multiobjective problem
with the goals of minimizing the (1) mean y value of the perfor-
mance, and (2) the variance 62 of the performance. This method
allows explicit tradeoff between the mean and variability of the
performance. The multiobjective formulation can be expressed
as:

X" =arg mygn{u,c} 2
where
u= [ S EPEE ®
and
o= /9S (7 u)*P(E)dE. @

Conventional methods simplify the equations 3 and 4 to obtain
a combined objective function of the form u(x) + Wo(x) [29].
These methods are referred to as Weighted Sum (WS) methods.
The WS methods can only be used if the Pareto front is convex
and fails to produce an even distribution of points from all parts
of the Pareto set [30]. Genetic Algorithms (GA) are inherently
well suited for Multi-objective problems like robust design, as
they have the ability to find multiple Pareto-optimal solutions in
one single simulation run. In this study we employ the NSGA-II
algorithm [31] to solve the multi-objective problem. The NSGA-
II method is fast as it has a computational complexity of O(MN?)
(where M is the number of objectives and N is the population
size) when compared to other non-dominated GA with computa-
tional complexity O(MN?). NSGA-II method also uses elitism
to enhance the performance of the GA and prevent the loss of
good solutions once they are found.

All the above mentioned methods require statistics obtained
from solving equations 3 and 4. More often than not, the above
integrals are impossible or too expensive to evaluate. In the next
section we propose a fast uncertainty analysis method

BAYESIAN MONTE CARL.O METHOD

Monte Carlo Simulation (MCS) can be applied to compute
the statistics of the response quantities of interest provided suffi-
cient number of samples is used. MCS [32,33] employs a random
number generator to select points say X, = [x(l), x(z),.“,x(")],
in the design space where the response quantity y{) = y(x(i)) is
evaluated using a computational model. The statistics can be ex-
pressed as:

y(x). ®)

R
0=

D) =y=

i=1

where ¥ is referred to as the Monte Carlo estimate. The variance
of the Monte Carlo estimate is:

1 2

Vary) = s OGO -9 =2 @
i=1

n(n

where o, is the sample estimate of the variance of y(x). The
variance computed using equation 6 can be used to evaluate the
accuracy of the Monte Carlo estimate. It can be deduced from
equation 6 that the standard error of ¥ is independent of the di-
mension of the design space and is given by o,/4/n. Hence,
MCS estimate has a convergence rate of O(1//n).

The MCS method has many limitations and is often em-
ployed as the method of last resort. Firstly, a large sample size is
required for accurate inferencing, which rules out its application
to computationally expensive high fidelity simulations models.
Another drawback of MCS is that the random samples gener-
ated for evaluation are not essentially space filling. Unlike field
and laboratory experiments, which have randomness and non-
repeability, computational models are deterministic. Therefore,
to extract the most information it is important to choose the train-
ing points which fill the design space in an optimal sense [34]. Fi-
nally, the major drawback is that MCS ignores the information in
the existing dataset. MSC only uses the observations of response
quantity [y(l), ¥y, ., y(”)] for estimating the statistics and does
not take into account the points x(1), x)___x at which they
were observed [35].

Several pseudo MCS methods have been proposed to ad-
dress the deficiency of basic MCS sampling. Some of the widely
used pseudo MCS methods are Stratified MCS, Latin Hypercube
Sampling (LHS) [36] and orthogonal array (OA) sampling. The
underlying idea of Stratified MCS [37] and LHS is to divide the
design space into regions of equal probability (bins) and gen-
erate pseudo random points, such that no two points lie in the
same bin. Many researchers have also used interpolation and
regression response models to make MCS computationally less
expensive. However, these methods again do not fully utilize the
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information available in the observed dataset.

Bayesian Monte Carlo

A method is sought which alleviates the above mentioned
concerns. The problem at hand is to predict the response at a
new point using the information available in the existing dataset.
By using Bayes Theorem the conditional probability for y+1) at
any new point x™+1) given the observed data [X,, 9] is

PO, 9)

%) 2

P(y(n+l)]9’,',) —

Equation 7 needs prior knowledge of the probability distribu-
tion of the response 9. The observed response outputs, 9, =
Lv(l)..‘y(")]T can be thought to be the realization of a stochas-
tic process. In absence of any prior knowledge of the properties
of these random variables, we assume that they are realizations
of a Gaussian stochastic process with mean 3 and covariance I".
Once the joint probability distribution function is known the in-
formation available in the existing dataset can be used for mak-
ing predictions at any new data point. Having assumed a Gaus-
sian prior over the response outputs, the output at any new point
and, the joint probability P(y""*1),97) is Gaussian. Hence, the
conditional probability P(y™*1)|%;,) given by equation 7 is also
Gaussian. The posterior distribution is given by

1
PO |97) o< exp [-E%HFIL%L ®)

where I, is the (n+1) x (n+ 1) covariance matrix for the
vector %i1 = (Y1, y?, ...,y T Ideally the mean B and co-
variance I" should depend on the training dataset. The mean
is usually taken as zero and the covariance I is a parametrized
function. The parametrized covariance function can be tuned to
dataset using Maximum Likelihood Estimation techniques; see
for example [38-42].

For the case, when the input vector is uncertain the out-
put response statistics can be efficiently estimated analytically
or using simulation techniques via equation 8 [38,43]. It may
be noted that this method alleviates the drawbacks of MCS dis-
cussed above. At the same time it provides us with a emulator
(Gaussian Process Model), which can be used as a cheap sur-
rogate for expensive analysis tools [44]. In the next section we
present its application to robust design for compressor blades in
the presence of manufacturing process capability information.

MANUFACTURING UNCERTAINTY MODELING

Process capability is a measure of how a manufacturing pro-
cess will perform. The most common quantitative definition of
process capability is the process spread, or 66. The performance
of a manufacturing process can be measured using the dimen-
sions of parts produced by the process. In the limiting case, the
process is assumed to have a normal distribution with standard
deviation ¢. In practice, the observed variations in the process
will be greater than that predicted by process capability due to
temperature variations, tool wear, material properties etc, see fig-
ure 1. Once a manufacturing process for manufacturing compres-
sor blade is fixed (flank milling or point milling) and the process
capability is known, the manufacturing variations can be mod-
eled. Figure 2 shows the manufacturing uncertainty band around
the nominal compressor blade. The task at hand is to simulate
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Figure 2. Manufacturing uncertainty band in compressor blade

a manufacturing process such that the observed manufactured
blades have a normal distribution with 66 = Ah.

Parametrization and Analysis

To model manufacturing uncertainty we need to find a
method which can describe geometry variations in a given tol-
erance band around the nominal geometry. These could be vari-
ations in chord, camber and thickness. Here we present an ef-
ficient method using combination of Hick-Hennes functions and
splines for modeling manufacturing variations. To parametrize
the blade section geometry we use a linear combination of Hicks-
Henne functions super-imposed on a baseline shape. For the
problem under consideration, we have used 10 Hicks-Henne
functions, five each for the upper and lower airfoil section, to
parametrize the compressor fan blade. The Hicks-Henne shape
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functions can be expressed as
bi(x) = sin*(mx™) , m; =In(0.5)/In(xy) i=1,2,..n  (9)

where x is the normalized chord-wise coordinate starting from
the trailing edge encompassing the whole airfoil and back to the
trailing edge. (0 < x < 1), xu, are preselected-selected values
corresponding to the location of the maxima and # is the num-
ber of Hicks-Henne functions used. In the present study, the
locations of xy, for i = 1,2,....,5 are chosen in a manner to en-
sure clustering near the leading edge. This ensures more points
where the curvature is higher and thus more variety in shapes
near the leading edge. Some typical shapes are shown in fig-
ure 3 Once a parametrized geometry model is available, they

Figure 3. Small perturbations in the design variables within the tolerance
band is used to model the manufacturing variations at each design point

parameters can be varied to produce a normal distribution for
simulating the manufacturing process. This is combined with the
Rolls-Royce propriety code PADRAM, a parametric design and
meshing routine employed for automating the geometry creation
and grid generation process [45]. PADRAM makes use of both
transfinite interpolation and elliptic grid generation o generate
hybrid C-O-H meshes. An orthogonal body fitted O mesh is used
to capture the viscous region of the airfoil whilst an H mesh is
used near the boundary where stretched cells are required, for ex-
ample in the wake region. After grid refinement studies we select
a mesh of the order of 28,000 cells in two dimensions.

A non-linear, unstructured viscous flow solver HYDRA is
used for the CFD simulation [46]. It solves the Reynolds Aver-
aged steady Navier-Stokes (RANS) equations with the Spalart-
Allmaras turbulence model. To accelerate convergence to steady-
state HYDRA employs a multigrid algorithm with precondition-

ing [47]. A four level multigrid is used for the present simula-
tions. The inlet boundary conditions for the CFD analysis are
Total temperature = 290 Kelvin, Total Pressure = 63400 Pascal,
‘Whirl Angle = -37.28 Degrees and the outlet boundary condition
is Static Pressure = 52000 Pascal. An initial uniform flow condi-
tion with Density = 0.7675 kg/m?>, Velocity = 0 and Pressure =
66932 Pascal is considered. The converged CFD solution is used
to calculate the pressure loss at the nominal geometry and typi-
cally takes 1200 seconds (0.5 hour) using a Intel(R) Xeon(TM)
CPU 3.06GHz dual processor machine.

Probabilistic Analysis

Bayesian Monte Carlo Simulation (BMCS) is employed in
conjunction with the above mentioned parametric model and
CFD analysis tool, to simulate the manufacturing process for
the baseline geometry. A normal distribution for the noise vari-
ables is assumed with the tolerance limits assigned to lie at
[~60,+6G]. A 100,000 point BMCS is run using the surro-
gate model to generate the probability distribution of the pres-
sure loss. The histogram for the pressure loss is shown in Fig.
4. The BMCS using the surrogate model takes less than 8 min-
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Figure 4. Histogram of performance of baseline geometry with manufac-
turing uncertainty

utes to carry out 100,000 evaluations on an Intel(R) Xeon(TM)
CPU 3.06GHz dual processor machine. This shows substantial
savings in computational time, as compared to using the high-
fidelity CFD model for probabilistic studies which would have
taken 2000000 minutes (33333.34 hours) for the same analysis.
The results obtained suggest that manufacturing variations can

118
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deteriorate the aerodynamic performance of a blade significantly.
In the worst case there can be 14% degradation in pressure loss
coefficient. It also suggests almost 4% shift in mean performance
from the nominal performance.

NUMERICAL STUDIES

In the robust design method employed we first select the de-
sign space and use DOE techniques to rationally choose a set of
compressor blade sections as m initial candidate points. These
blades are modeled using the parameterization method discussed
earlier in this paper. PADRAM is used to produce high quality
hybrid meshes and the multigrid RANS solver HYDRA is used
for CFD simulations to calculate the total pressure loss over the
compressor blade sections. The resulting dataset is used to train
the covariance parameters for the Gaussian prior using maximum
likelihood estimation. The mean and standard deviation of the to-
tal pressure loss at each design point (over the noise variables) is
evaluated using a 10,000 point BMCS. The steps involved in the
proposed robust design methodology are shown in figure 5.

ayepdn

Figure 5. Flowchart for BMCS based Robust Design

NSGA-IT is used in conjunction with the surrogate model to
search the entire design space to obtain Pareto-optimal solutions.
A low-crowding algorithm, which maximizes the euclidean dis-
tance between the Pareto points, is used to select points which
are then verified by running full scale CFD simulations. Figure 6
shows the initial dataset, subsequent updates points and the fi-

nal Pareto Front after ten updates. Note that exact aerodynamic
analysis using the high fidelity code was conducted only at 300
points.
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Figure 8. Final Pareto front with all explored points

Significant improvement in Pareto front as compared to the
initial Pareto front is obtained, see figure 7.

0.045- + Initial DOE Points I
Q Points on Initial Pareto Front
0.04F + = = Initial Pareto Front |
2 - *  Final GA Generation Points
S o Points on Final Pareto Front
+ =—= Final Pareto Front
0.035 -
G 003 E
.: 0.025 -
=
T o0zt -
K
@ L A
2 0.015
0.011 B
S
ES
0.005[ g
ol L L L L ) L
0.95 1 1.05 1.1 1.15 1.2 1.25
Normalized Mean Pressore Loss
Figure 7. Improvement in Pareto Front from initial Pareto Front

1.3



Proceedings of the 6th ASMO UK Conference on Engineering Design Optimization, Page 248

Comparison with Deterministic Design

It is sensible to compare the robust blades obtained with a
deterministically optimized blade to understand the trade-offs
obtained. To provide a benchmark against which the results of
a multiobjective robust design search can be compared, we per-
form a traditional deterministic optimization study. Determinis-
tic design methods seek to optimize the nominal performance of
the system, i.e., optimize blade geometries for low pressure loss
coefficients. A simulated annealing algorithm, with direct search
employed for initial guess, is employed. This search is performed
in conjunction with the surrogate model and the initial dataset. A
robust design from the final Pareto Set is selected for compar-
ison. The total pressure loss for the deterministically optimal
blade and robust blade is verified using CFD solution. The nom-
inal performance of the deterministicaily optimal blade is better
as compared to the robust blade. BMCS of 100,000 points over
the manufacturing variations (noise space) is performed for both
the designs. Figure 8 shows the comparison in the performance
of the two blades. As expected, the optimal blade obtained from
the deterministic optimization has better nominal performance
but the performance deteriorates significantly in the presence of
manufacturing variations. The histogram of the robust geometry

Blade Nominal Mean Standard | Mean
Designs Performance | Performance | Deviation | Shift
Baseline 1.0 1.0317 0.0295 | 3.17%
Deterministic 0.9387 0.9724 0.0335 | 3.59%
Robust 0.9610 0.9711 0.0231 1.05%
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Figure 8. Comparison between probabilistic performance of Robust
blade and Deterministic Optimal blade

shows less variability in pressure loss coefficient as compared to
the design obtained using a deterministic approach. The com-
parison of the statistics of the baseline, deterministic and robust
design is shown in table 1. There is also a considerably lower
shift in the mean performance of 1.05% from the nominal per-
formance for the robust blade geometry as compared to almost

o — - Cros —
0.85 0.9 0.95 1 1.05 1.1 1.15

Table 1. Comparison between the Baseline, Deterministically Optimal
and Robust Design

3.59% for the deterministic optimal blade geometry, see Table 1.
The standard deviation of the robust blade [6 = 0.0231] is lower
than the standard deviation of the deterministically optimal blade
[6 = 0.0335]. It can be observed that low variability has been
achieved in the robust design at the expense of a marginal loss
in the nominal performance. However, the mean performance of
the robust blade [z = 0.9711] is better than the mean performance
for the deterministically optimal blade [u = 0.9724].

CONCLUSION

An efficient robust design methodology was proposed and
its application to the design of compressor blades for a given
manufacturing process capability was demonstrated. A robust
design from the obtained Pareto set was selected for comparison
with a deterministically optimal blade design. A BMCS based
robust design method was executed and the robust design was
found to be considerably less sensitive to manufacturing varia-
tions as compared to the deterministic optimal design. The robust
design was also found to have better performance than determin-
istic optimal design in all respects, [Mean, Standard Deviation,
Mean Shift], except the nominal performance. Significant com-
putational savings for the robust design studies was also reported.
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