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Abstract—In this paper, we study the interacting multiple
model (IMM) estimator for networked control systems with
packet loss but without packet acknowledgment (ACK). The
ACK is a signal sent by the actuator to inform the estimator
of whether control packets are lost or not. A system with ACK is
usually called a TCP-like system; otherwise, it is called a UDP-
like system. We show that the stability of the IMM estimator for
UDP-like systems is determined by the observation packet arrival
rate (p.a.r.) and is independent of the control p.a.r. and control
inputs. The IMM estimator is stable if the observation p.a.r. is
greater than a critical value. We show that this critical value is
the same as the critical value for the stability of the optimal
estimator for its corresponding TCP-like system. If control
inputs eventually tend to zero, the error covariance of the IMM
estimator converges to that of the optimal estimator for TCP-like
systems. We characterize the impact of the control/observation
p.a.r. and the control input on estimation performance. Finally,
we prove that the average estimation performance of the IMM
estimator approximates that of the optimal estimator within a
finite bound, and is superior to that of the linear minimum mean
square error estimator.

Index Terms—networked control systems; interacting multiple
model estimator; stability; packet losses; packet acknowledgment

I. INTRODUCTION

A. Background and motivation

In recent years, increasing attention has been paid to
networked control systems (NCSs), in which information
among sensors, controllers, and actuators is exchanged via
networks [1]. The introduction of networks brings numer-
ous advantages—including lower installation and maintenance
costs, increased system flexibility, and a significant reduction
in wiring—but it also causes some network-induced con-
straints, such as transmission delays and packet losses. For
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NCSs that suffer from packet losses, two fundamental com-
munication protocols are commonly used: the transmission
control protocol (TCP) and the user datagram protocol (UDP).
In TCP, the lost data will be retransmitted until the send-
ing node receives packet acknowledgment (ACK) from the
receiving node. Such an ACK scheme guarantees successful
data transmission but leads to several drawbacks, such as
network congestion and communication delay. For unreliable
networks, these drawbacks in turn prevent the ACK from being
transmitted in time (without delay and loss) to implement the
TCP scheme [2–4]. In UDP, no acknowledgment scheme is
used and thus no retransmission for the lost data is required.
The UDP scheme, at the price of less reliable delivery, avoids
energy consumption for retransmitting the lost data, simplifies
the protocol implementation, and allows for more timely
communication, making it a preferable choice for real-time
NCSs [5]. A system with the ACK scheme is usually called a
TCP-like system, and the one without ACK is called a UDP-
like system (see Fig. 1). This paper studies state estimation
problems for UDP-like systems.

For TCP-like systems, the optimal estimator has been well
known to be the time-varying Kalman filter, and its stability
condition was established in the pioneering work [6]. There-
after, the optimal estimation issues for TCP-like systems have
been extensively investigated, and fruitful results have been
obtained. These results mainly focus on three key aspects:
stability [7–10], convergence [11, 12], and performance [13,
14]. For UDP-like systems under the special conditions “the
observation matrix C is square and invertible, and there is no
observation noise,” the optimal estimator has been obtained in
[15] and is presented in Eqs. (8) and (9). However, for general
UDP-like systems, the optimal estimator is obtained only for
the system without observations lost, and its computational
load grows exponentially [16]. Hence, it cannot be used in
practice. To address the computational complexity, various
linear [2, 15, 17, 18] and nonlinear [19, 20] sub-optimal
estimators have been proposed to approximate the optimal
estimator, but they are not good approximations in terms of
the estimation criterion, since the criterion for these linear
estimators (see Definition 5) differs from the criterion for the
optimal estimator (see Definition 1). From [19, 20], it is clear
that the nonlinear estimators are not obtained according to
either one of these two criteria above. As one of the most cost-
efficient estimation schemes, the interacting multiple model
(IMM) estimator is proven to be a good approximation for the
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optimal estimator, since it is able to obtain the estimate fairly
close to the optimal one [21–23], which motivates us to apply
the IMM estimator to UDP-like systems, and then explore its
properties, especially the three aforementioned key aspects:
stability, convergence, and performance. Moreover, we are also
interested in whether the IMM estimator, performing like the
optimal one, is superior to other sub-optimal estimators, such
as the frequently used LMMSE estimator.

B. Literature review and contributions

The IMM estimator, a hybrid state estimation algorithm for
Markov jump systems, was first proposed in [21]. Owing to
its excellent estimation performance and low computational
cost, it has gained broad applications in various fields [23].
However, due to the complicated structure and the nonlinear
nature of the IMM estimator, it is challenging to theoretically
determine its stability and performance, which are usually
evaluated by the Monte Carlo method, an experimental sim-
ulation method. As reported in the recent work [24], a sharp
contrast to its popularity and broad applications is that not
only no condition is there to ensure the stability of the IMM
estimator except [24], but also few theoretical studies are
there to evaluate its performance except [22, 25]. Moreover,
the convergence of the IMM estimator and the theoretical
comparison of its performance with the LMMSE estimator
are rarely studied. We also note that numerous variants of
the IMM estimator, that is, the improved or modified IMM
estimators, have been developed for different purposes—such
as to accelerate computational speed [26, 27], to improve the
estimation performance [28, 29], to track different types of
targets [30, 31]—while, to the best of the author’s knowledge,
few variants are developed to achieve a performance that is
theoretically superior to other sub-optimal estimators, or to
facilitate the study of stability and performance.

To our best knowledge, few results are reported on the
application of the IMM estimator to UDP-like systems. To
characterize its stability and performance in a theoretical view
still remains difficult for UDP-like systems, since

• The aforementioned three available methods fail to apply
to UDP-like systems. 1) The stability conception for the
IMM estimator and the Lyapunov approach proposed
in [24] are not fit for the IMM estimator for UDP-
like systems. 2) The hybrid approach proposed in [22]
requires that the observation matrices for each mode
are the same, which clearly does not hold for UDP-like
systems. 3) The structure of the IMM estimator is too
complex, so that the authors of [25] had to introduce
several approximations in derivations to develop an off-
line algorithm to evaluate the estimation performance.
This method is efficient, but it is not a mathematically
rigorous one we desire.

• No heuristic results and methods are available from
the study of the optimal estimator. Except for the no
observation loss case [16], few results have been reported
on the optimal estimator for the general UDP-like system,
that is, the UDP-like system with both control inputs and
observations lost. It is clear that, unlike the case in [16],

the optimal estimator will no longer remain stable for
the general UDP-like system as long as the observation
packet arrival rate (p.a.r.) diminishes to some extent, but
the stability condition is unclear.

• Due to the complicated and nonlinear structure of
the IMM estimator, how the parameters of interest—
e.g. the control/observation packet loss rate and the
control inputs—affect the IMM estimator’s stabili-
ty/convergence/performance is unknown, and the ap-
proaches developed in [22, 24, 25] cannot help to reveal
the relationship among them either.

It may be concluded from the discussion above that even
the IMM estimator and UDP-like systems have gained broad
applications, the problems on determining the stability, con-
vergence, and performance of the IMM estimator for UDP-
like systems are still challenging and remain unsolved, which
motivates our work in this paper. Our main results and
contributions are summarized as follows:
1) (Stability) We show that the stability of the IMM estimator

is only determined by the observation p.a.r. and is indepen-
dent of the control p.a.r. and control inputs. Specifically,
the IMM estimator is stable only if the observation p.a.r.
is greater than a critical value. This critical value is the
same as its counterpart for the optimal estimator for its
corresponding TCP-like system.

2) (Convergence) The error covariance (EC) of the IMM
estimator for the UDP-like system converges to the EC
of the optimal estimator for the corresponding TCP-like
system, if control inputs eventually tend to zero.

3) (Performance) The results on estimation performance in-
clude five points: (i) The smaller the observation p.a.r. is,
the worse the estimation performance becomes. (ii) The
graph of the relationship between the control p.a.r. and the
conditional estimation performance is similar to a parabolic
curve; (iii) As the magnitude of control inputs becomes
larger, the expected EC remains bounded if there is no
observation lost, and becomes unbounded, otherwise. (iv)
The average estimation performance of the IMM estimator
approximates that of the optimal estimator within a finite
bound and is superior to that of the LMMSE estimator.

4) Whether all the results above obtained for the IMM estima-
tor still hold for the optimal estimator is so far unknown.
As a minor contribution, we conduct some numerical
simulations and the results suggest that all the results above
also hold for the optimal estimator, which may shed light
on the study of the optimal estimator.

The rest of the paper is organized as follows: In Section II,
the system setup and problems are formulated. In Section III,
the standard and the modified IMM estimators for the UDP-
like systems are proposed. The stability, convergence, and
performance of the IMM estimator are studied in Sections IV,
V, and VI, respectively. In Section VII, numerical examples are
given to illustrate main results. Conclusions are presented in
Section VIII. All the proofs of lemmas are given in Appendix.

Notations:
• Nx(µ, P ) denotes the Gaussian probability density func-

tion (pdf) of the random variable x with mean µ and
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covariance P . The subscript x sometimes is omitted for
brevity when it is clear from the context.

• x ∼ Nx(µ, P ) means that the pdf of the random variable
x is Nx(µ, P ).

• P(·) denotes a probability measure.
• p(·) and p(·|·) denote the pdf and the conditional pdf,

respectively.
• E[·] denotes probability expectation.
• (·)′ denotes the transpose of a matrix or vector.
• [·]2M denotes (·)′M(·) for some Hermitian matrix M .
• (·)2I with the identity matrix I means (·)(·)′.
• tr(M) denotes the trace of a matrix M .
• M† denotes the Moore-Penrose generalized inverse of a

matrix M .
• σ(M) and σ(M) denote the maximum and minimum

singular values of a matrix M , respectively.
• For a vector z, ||z|| , z′z; For a matrix M , ||M || , σ(M).
• X ≻ (or ≽) Y means X−Y is a real symmetric positive

definite (or semidefinite) matrix.
• sat(u, U) with u = (u1, . . . , uq)

′ ∈ Rq and U > 0 ∈ R
denotes a saturation function: sat(u, U) = (ū1, . . . , ūq)
where, for 1 ≤ j ≤ q, ūj = uj if |uj | ≤ U and ūj =
sign(uj)U otherwise. sign(x) = 1 if x > 0, sign(x) = −1
if x < 0, and sign(x) = 0 if x = 0.

II. SYSTEM SETUP AND PROBLEM FORMULATION

A. System setup

Consider the following system:

xk = Axk−1 + θkBuk + ωk (1)

yk=

{
Cxk + υk, for γk = 1
no observation, for γk = 0

(2)

where xk ∈ Rn is the system state, uk ∈ Rq is the control
input, and yk ∈ Rp is the observation. ωk and υk are zero
mean Gaussian noises with covariance Q ≻ 0 and R ≻ 0,
respectively. θk and γk are i.i.d. Bernoulli random sequences
with P(θk = 1) = θ and P(γk = 1) = γ, and model the
control and observation packet losses, respectively. That is,
γk = 1 means that the observation yk has been successfully
received by the estimator; γk = 0 means that the observation
is lost and thus the estimator receives nothing. θk = 1 means
that the control input uk has been successfully delivered to the
actuator, otherwise θk = 0. The control inputs are assumed to
be bounded, that is, ||uk|| < +∞ for all k. θ and γ are also
known as the packet arrival rates of control and observation,
respectively.

Figure 1 describes the state estimation for open-loop and
closed-loop UDP-like systems. As shown later, the estimation-
related results obtained in this paper are applicable to both
open-loop and closed-loop UDP-like systems, since it is the
value of uk, not the way it comes from, that is required in the
IMM estimator.

The estimator receives the observation from the sensor, and
it thus knows the status of the observation packet losses, that
is, the value of γk, while the value of θk is unknown due to the
lack of ACK. Accordingly, in view of Markov jump systems,
there are two unknown (or unobservable) jump modes, that is,

Fig. 1. State estimation for open/closed-loop UDP-like systems. The
blocks P, S, E, C, and A denote the plant, sensor, estimator, controller and
actuator, respectively. The symbol

⊗
is used to emphasize that there is no

acknowledgment signal from the actuator to the estimator.

Mode 0: θkB = 0 and Mode 1: θkB = B, which correspond to
the events θ

[0]
k , {θk = 0} and θ

[1]
k , {θk = 1}, respectively.

Assumption 1. The pair (A,Q1/2) is controllable, and the
pair (A,C) is observable. x0 ∼ Nx0(x̄0, P0), ωk, υk, θk, and
γk are mutually independent.

B. Problem formulation

This section further explains why the IMM estimator is
required and what problems we are devoted to solve.

Definition 1. An estimate of xk, denoted by x̂k, is said to
be optimal in the minimum mean square error (MMSE) sense,
if x̂k minimizes E[||xk − x̂k||2|Ik], where Ik , {γk, Y k},
γk , {γ1, . . . , γk}, and Y k , {y1, . . . , yk}.

It is well known [32] that the desired optimal estimate
x̂k = E[xk|Ik]. To obtain E[xk|Ik], p(xk|Ik) is required.
However, for UDP-like systems, p(xk|Ik) is a Gaussian
mixture with an exponentially increasing number of terms,
making its computation time-consuming and intractable [16].
The IMM estimator [21] is the right technique to deal with
such kinds of pdf. By the total probability law, p(xk|Ik) =∑1

i=0 p(xk|θ[i]k , Ik)p(θ[i]k |Ik). Define x̂
[i]
k , E[xk|θ[i]k , Ik] and

λ
[i]
k , P(θ[i]k |Ik). The IMM estimator is able to approximately

calculate x
[i]
k and λ

[i]
k , and then give the desired approximate

optimal estimate x̂k = E[xk|Ik] =
∑1

i=0 λ
[i]
k x̂

[i]
k . The IMM

estimator for UDP-like systems is presented in Section III.

Definition 2. The estimation error covariance Pk is said to be
stable in the mean sense (or stable for short), if supE[Pk] <
+∞.

The IMM estimator is said to be stable/convergent, if Pk

is stable/convergent, where the convergence of Pk follows the
conventional definition of the convergence of matrices in a
norm space. The estimation performance of the IMM estimator
is evaluated by E[Pk] [22, 25].

The main tasks are to solve the following problems:
• Problem 1: How do the control/observation p.a.r. and

the control input affect the stability, convergence, and
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estimation performance of the IMM estimator?
• Problem 2: As a good approximation for the optimal

estimator, can the IMM estimator be proved to be near
the optimal one and superior to the LMMSE estimator?

The table below illustrates where these problems are studied
and where the answers are given.

Problems Sections Main results
1 IV/V/VI-A/VI-B Theorems 1/2/3/4
2 VI-C/D Theorems 5/6

III. IMM ESTIMATORS FOR UDP-LIKE SYSTEMS

By following the IMM algorithms proposed in [21, 22, 24],
the standard IMM estimator for UDP-like systems is presented
in Algorithm 1. Meanwhile, we propose a modified estimator
to compare the estimation performance between the standard
IMM and the LMMSE estimators. The modification, only
involving the parameter α in (6a), is so minor that the standard
and the modified IMM estimators are presented in Algorithm 1
together. By letting α = 0 (α = 1), Algorithm 1 yields the
standard (modified) IMM estimator for UDP-like systems.

The proof of Algorithm 1 is given in Appendix.
Condition 1: C is square and invertible, and there is no

observation noise, that is, R = 0.
For UDP-like systems under the special condition, Con-

dition 1, when the observation yk is successfully received,
the state can be perfectly observed by xk = C−1yk and no
estimation is required. Consequently, the optimal estimator can
be presented in a simple form, which has been obtained in
[15], as follows:

When γk=1, x̂k = C−1yk and Pk = 0; (8)

when γk=0,

{
x̂k = Ax̂k−1 + θBuk

Pk = APk−1A
′+Q+θ̄θBuku

′
kB

′.
(9)

Corollary 1. For UDP-like systems under Condition 1, x̂k

and Pk calculated by the standard (or the modified) IMM
estimator in Algorithm 1 reduce to (8) and (9). That is, under
Condition 1, the IMM estimator takes the same form as the
optimal estimator.

Proof: Proof of (8). When γk = 1 and Condition 1 is sat-
isfied, from (6b), we have Kk = P̄

[∆]
k C ′(CP̄

[∆]
k C ′ +R)−1 =

C−1. By (6c), x̂[i]
k = x̄

[i]
k +Kkz

[i]
k = x̄

[i]
k +Kk(yk −Cx̄

[i]
k ) =

C−1yk. By (7a), x̂k =
∑1

i=0 x̂
[i]
k λ

[i]
k = C−1yk

∑1
i=0 λ

[i]
k =

C−1yk where
∑1

i=0 λ
[i]
k = 1 can be easily obtained by the

definitions of λ[i]
k , c, and θ[i] in Algorithm 1.

By (6d) and noting that Kk = C−1 and R = 0, we have
P

[i]
k = (I −KkC)P̄

[∗]
k (I −KkC)′ +KkRK ′

k = 0. Note that
x̂
[i]
k = x̂k = C−1yk which has been obtained above and that

P
[∗]
k , P

[i]
k . From (7b), Pk = P

[∗]
k +

∑1
i=0 λ

[i]
k (x̂k − x̂

[i]
k )2I =

0 +
∑1

i=0 λ
[i]
k (C−1yk − C−1yk)

2
I = 0. The proof of (8) is

completed.
Proof of (9). When γ1 = 0, from the mode probability

updating and the measurement-update estimation steps, we
have λ

[i]
k = θ[i], x̂

[i]
k = x̄

[i]
k , and P

[i]
k = P̄

[∗]
k . By (3),

(4), and (7a), x̂k =
∑1

i=0 x̂
[i]
k λ

[i]
k = θ[0]x̄

[0]
k + θ[1]x̄

[1]
k =

θ̄Ax̂k−1 + θ(Ax̂k−1 +Buk) = Ax̂k−1 + θBuk.

Algorithm 1 The standard IMM estimator (α = 0) and the
modified IMM estimator (α = 1) for UDP-like systems.

In the following, the superscript i ∈ {0, 1} indicates that to
which mode (Mode 0 or 1) the parameters correspond.
1) Mixing The mixed initial conditions x̂

[0|i]
k−1 and P

[0|i]
k−1 for

the mode-matched Kalman filter i are

x̂
[0|i]
k−1 = x̂k−1, P

[0|i]
k−1 = Pk−1. (3)

2) Kalman filtering and mode probability updating
• Time-update prediction:

x̄
[i]
k = Ax̂k−1 + iBuk, P̄

[i]
k = APk−1A

′ +Q , P̄
[∗]
k .

(4)

• Mode probability updating: Let θ[0] , θ̄ and θ[1] , θ.
The prior mode probability λ̄

[i]
k = θ[i].

If γk = 0, the posterior mode probability λ
[i]
k = θ[i].

If γk = 1,

Residual: z[i]k , yk−Cx̄
[i]
k

Residual covariance: PY
k = CP̄

[∗]
k C ′+R

Likelihood function: ϕ[i]
k , Nyk

(Cx̄
[i]
k , PY

k )

p(yk|Ik−1) = θ̄ϕ
[0]
k + θϕ

[1]
k , c (5)

Posterior mode probability: λ[i]
k = θ[i]ϕ

[i]
k /c.

• Measurement-update estimation:
If γk = 0, then x̂

[i]
k = x̄

[i]
k and P

[i]
k = P̄

[∗]
k .

If γk = 1, then

P̄
[∆]
k = P̄

[∗]
k + αλ

[0]
k λ

[1]
k Buku

′
kB

′ (6a)

Kk = P̄
[∆]
k C ′(CP̄

[∆]
k C ′ +R)−1 (6b)

x̂
[i]
k = x̄

[i]
k +Kkz

[i]
k (6c)

P
[i]
k = Φ(P̄

[∗]
k ,Kk). (6d)

where Φ(P,K) , (I −KC)P (I −KC)′ +KRK ′.
3) Combining Let P [∗]

k , P
[i]
k .

x̂k =
1∑

i=0

x̂
[i]
k λ

[i]
k (7a)

Pk = P
[∗]
k +

1∑
i=0

λ
[i]
k (x̂k − x̂

[i]
k )2I (7b)

Note that P
[∗]
k , P

[i]
k = P̄

[∗]
k . From (7b) and (4), Pk =

P
[∗]
k +

∑1
i=0 λ

[i]
k (x̂k − x̂

[i]
k )2I = APk−1A

′ + Q + θ̄(Ax̂k−1 +
θBuk − Ax̂k−1)

2
I + θ(Ax̂k−1 + θBuk − Ax̂k−1 − Buk)

2
I =

APk−1A
′ + Q + θ̄(θBuk)

2
I + θ(θ̄Buk)

2
I = APk−1A

′ + Q +
θ̄θBuku

′
kB

′. The proof of (9) is completed.

IV. STABILITY OF THE IMM ESTIMATOR

In this section, we study the stability of the IMM estimator.

Definition 3. Let {γk} be a sequence of i.i.d. Bernoulli
random variables with P(γk = 1) = γ, and let {Tk} be a
sequence of random matrices with an initial value T0 ≽ 0.
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Whenever we say the stability of E[Tk] is determined by γ
with respect to a critical value γc, it means that there exists
a real value γc ∈ [0, 1) such that

supE[Tk] < +∞ for ∀T0 ≽ 0, when γ > γc;

supE[Tk] = +∞ for some T0 ≽ 0, when γ < γc.

This γc is called the critical value for the stability of E[Tk].

Theorem 1 (Stability). For the UDP-like system in (1) with
bounded control inputs,

(i) the stability of E[Pk] is determined by the observation
p.a.r. γ with respect to a critical value γc, and is
independent of the control p.a.r. θ and control inputs
{uk};

(ii) the critical value γc for the stability of the IMM estimator
for the UDP-like system is the same as that for the
stability of the optimal estimator for its corresponding
TCP-like system.

To prove Theorem 1, we give some preliminaries and
lemmas.

Let X and Y be two random variables. Then

cov(X) = E
[
cov(X|Y )

]
+ cov

(
E[X|Y ]

)
, (10)

which is an existing result established in [33].
Let γ̄k , 1 − γk, Uk , Buku

′
kB

′, Kk , I − KkC,
and ∆k , γkλ

[0]
k λ

[1]
k KkUkK′

k + γ̄kθθ̄Uk. For bounded control
inputs {uk}, Uk is bounded as well. Denote the bound of Uk

by U (that is, Uk ≼ U ), and let ∆ = θθ̄U . Define

g(P, γ) , APA′ − γAPC ′(CPC ′ +R)−1CPA′ +Q (11)

Lemma 1. Let P ≻ 0 and K = PC ′(CPC ′ +R)−1. Then
(i) σ(KC) < 1; (ii) 0 < σ(I−KC) < 1; (iii) σ(I−KC) > 0.

Lemma 2. The following parts (i), (ii), and (iii) hold for both
the standard and the modified IMM estimators.

(i) For γk = 0, P [∗]
k = P̄

[∗]
k ,

x̂k = Ax̂k−1 + θBuk (12a)

Pk = P
[∗]
k + θθ̄Buku

′
kB

′. (12b)

(ii) For γk = 1, then

x̂k = Kk(Ax̂k−1 + λ
[1]
k Buk) +Kkyk (13a)

Pk = P
[∗]
k + λ

[0]
k λ

[1]
k KkBuku

′
kB

′K′
k. (13b)

(iii) θθ̄ ≽ E[λ[0]
k λ

[1]
k ] and ∆ ≽ E[∆k].

(iv) The following equations hold for the standard IMM
estimator.

Pk = P̄
[∗]
k −γkP̄

[∗]
k C ′(CP̄

[∗]
k C ′+R)−1CP̄

[∗]
k +∆k

(14)

P̄
[∗]
k+1 = g(P̄

[∗]
k , γk) +A∆kA

′. (15)

Define three sequences of matrices as follows:

Mk+1 = g(Mk, γk) (16)

Mk+1 = g(Mk, γk) +A∆A′ (17)

P tcp
k = Mk − γkMkC

′(CMkC
′ +R)−1CMk (18)

with M1 = M1 = P̄
[∗]
1 = AP0A

′ + Q. From [6], it is clear
that Mk and P tcp

k are the prediction and the estimation error
covariances of the optimal estimator for the TCP-like system
corresponding to the UDP-like system in (1), respectively.

Lemma 3. Some existing results are given as follows:

(i) [6, Lemma 1-c)] If X ≼ Y , then g(X, γ) ≼ g(Y, γ).
(ii) [6, Lemma 1-a)] Φ(X,K) ≽ Φ(X,KX) for ∀K, where

KX , XC ′(CXC ′ + R)−1. That is, Φ(X,KX) =
minK Φ(X,K).

(iii) [6, Lemma 1-b)] g(P, γ) = (1 − γ)(APA′ + Q) +
γ(AΦ(P,KP )A

′+Q), when KP = PC ′(CPC ′+R)−1.
(iv) [6, Theorems 2 and 3] The stability of E[Mk] is deter-

mined by the observation p.a.r. γ with a critical value
γm.

(v) [34, Theorem 1] If R, P0, and Q ≻ 0, then the critical
value γm for the stability of Mk+1 = g(Mk, γk) is a
function of A and C, and is independent of {R,P0, Q}.

Lemma 4.

E[Mk] ≼ E[P̄ [∗]
k ] ≼ E[Mk]. (19)

Proof of Theorem 1: By viewing Q + A∆A′ in
g(Mk, γk) + A∆A′ as a new Q, and noting that g(Mk, γk)
and g(Mk, γk) + A∆A′ have the same A and C, it follows
from Lemma 3(iv) and (v) that the critical value γm for the
stability of E[Mk] is the same as that for E[Mk]. By (19),
the stability of E[P̄ [∗]

k ] are the same as that of E[Mk] and
E[Mk]. Therefore, the stability of E[Mk], E[Mk], and E[P̄ [∗]

k ]
is determined by γ with respect to the same critical value γm.

From (4), it follows that if E[P̄ [∗]
k ] is unstable then E[Pk−1]

must be unstable as well. From (14) and Lemma 2(iii), we
have E[Pk] ≼ E[P̄ [∗]

k ] + ∆, which implies that if E[P̄ [∗]
k ] is

stable, so is E[Pk]. Therefore, the stability of E[Pk], E[P̄ [∗]
k ],

and E[Mk] is equivalent. Hence, E[Pk] is determined by the
p.a.r. γ with respect to the same critical value γc , γm, and is
independent of the control p.a.r. θ and {uk}, which completes
the proof of part (i).

Part (ii) can be proved by noting the fact in Lemma 3(iv)
that Mk is the error covariance of the optimal estimator for
the corresponding TCP-like system and that γc , γm.

V. CONVERGENCE OF THE IMM ESTIMATOR

This section studies the convergence of the IMM estimator,
that is, the convergence of Pk. Note that Pk contains P̄

[∗]
k ,

which is determined by the modified Riccati equation P̄
[∗]
k+1 =

g(P̄
[∗]
k , γk)+A∆k−1A

′. It has been shown in [6] that E[P̄ [∗]
k ]

computed by this modified Riccati equation is not necessarily
convergent. Thus, in general, Pk is not necessarily convergent
either. Nevertheless, under some conditions its convergence
can be characterized as in the following theorem.

Theorem 2 (Convergence). Consider the UDP-like system in
(1) with γc < γ < 1, where γc is the critical value for the
stability of the IMM estimator. If the control input uk tends to
zero, the error covariance of the IMM estimator for the UDP-
like system converges to that of the optimal estimator for its
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corresponding TCP-like system. That is,

lim
k→∞

Pk − P tcp
k = 0,

where P tcp
k is defined in (18).

To prove Theorem 2, we present a lemma as follows.
Define

ḡ(P, γ,Q,R) , APA′ − γAPC ′(CPC ′ +R)−1CPA′ +Q.

Lemma 5. Let M
[∗]
k+1 = ḡ(M

[∗]
k , γk, Q+∆Q, R) with M

[∗]
1 =

P̄
[∗]
1 and ∆Q ≽ 0. Then lim∆Q→0 M

[∗]
k = Mk for all k, where

Mk is defined in (16).

Proof of Theorem 2: The prediction error covariance
for TCP-like systems Mk+1 = g(Mk, γk) = ḡ(Mk, γk, Q,R)

with M1 = P̄
[∗]
1 . For the IMM estimator, P̄

[∗]
k+1 =

g(P̄
[∗]
k , γk) + A∆kA

′ = ḡ(P̄
[∗]
k , γk, Q + A∆kA

′, R). By the
definition of ∆k and noting that 0 ≤ λ

[i]
k ≤ 1 and that

σ(Kk) < 1 by Lemma 1(ii), we have ∆k tends to 0 when
uk → 0 (k → +∞). From Lemma 5, it follows that P̄

[∗]
k

converges to Mk. By subtracting (18) from (14),

Pk − P tcp
k

=
(
P̄

[∗]
k − γkP̄

[∗]
k C ′(CP̄

[∗]
k C ′ +R)−1CP̄

[∗]
k

)
+∆k

−
(
Mk − γkMkC

′(CMkC
′ +R)−1CMk

)
.

Letting P̄
[∗]
k → Mk and ∆k → 0, we readily have

limk→+∞ Pk − P tcp
k = 0, which completes the proof.

VI. PERFORMANCE ANALYSIS OF THE IMM ESTIMATOR

In this section, we study the impact of the observa-
tion/control p.a.r. and control inputs on the performance of
the IMM estimator. Then we prove that the IMM estima-
tor approximates the optimal estimator and outperforms the
LMMSE estimator. Finally, we develop a method to improve
the control performance of state feedback control systems by
the IMM estimator.

A. Impact of packet losses on estimation performance

1) Impact of the loss of observations: For the loss of
observation, its impact on the average estimation performance
E[Pk] is stated in Theorem 1. As the observation p.a.r.
γ diminishes, more observations are lost and the resulting
estimation performance becomes worse.

2) Impact of the loss of control inputs: The control p.a.r. θ
does not affect the stability of the IMM estimator, but it affects
its estimation performance. However, the relationship between
E[Pk] and θ not only appears irregular from the experimental
point of view (see the graph of E[P50] in Fig. 4), but also
is difficult to be analytically characterized from the technical
point of view, since

• E[Pk] is not convergent, since it is known from (14) that
E[Pk] will contain E[P̄ [∗]

k ], which is not convergent, as
explained in Section V.

• The monotonic relationship between Pk and Pk−1 is not
preserved like the standard Riccati equation and is not

easy to be determined either, that is, Pk−1 ↑ does not
imply Pk ↑ 1 (P ↑ means the value of P becomes larger).

• During the process of recursive computations, {θ, uj , yj}
are implicitly contained in both the numerator and de-
nominator of each λ

[i]
k with k > j, making the relation-

ship between E[Pk] and θ complicated.
• The control p.a.r. θ is assumed to be invariant at every

time instant. When θ varies, it means the control p.a.r.
at every time instant varies simultaneously. The variation
of the control p.a.r. at every individual time instant j
for 1 ≤ j ≤ k will impact E[Pk], and these cumulative
impacts over 1 to k − 1 make the relationship between
E[Pk] and θ not easy to be determined.

The last reason stated above inspires us to study the relation-
ship between the conditional expected error covariance and
the control p.a.r. at some specific time instant. That is, we
study the relationship between E[Pk|Ik−1] and θ[k], where
θ[k] , P(θk = 1) is the control p.a.r. at time k. Note
that θ appears in (12b) and implicitly lies in λ

[i]
k in (13b).

From the proof of Lemma 2(i) and (ii), and the definitions of
λ̄
[i]
k , p(θ

[i]
k |Ik−1) = θ[i] and λ

[i]
k , p(θ

[i]
k |Ik), it is clear that

this θ is in fact the control p.a.r at the time k and is just the
θ[k] defined above. In the following, we investigate how this θ
in (12b) and (13b) affects E[Pk|Ik−1]. The subscript [k] of θ[k]
is omitted for brevity, which will not cause confusion. Unless
otherwise stated, the θ in this subsection (Sec. VI-A 2)) refers
to θ[k]. We use the symbol E[Pk(θ)|Ik−1] to emphasize that
E[Pk|Ik−1] is a function of θ.

Definition 4. A matrix function f(θ) is said to have the same
monotonicity as the parabolic function θ(1− θ) over 0 ≤ θ ≤
1, denoted by f(θ) ∝ θ(1− θ), if f(θ) = f(1− θ) and

f(θ1) ≺ f(θ2), for 0 ≤ θ1 < θ2 ≤ 1/2;

f(θ1) ≻ f(θ2), for 1/2 ≤ θ1 < θ2 ≤ 1.

Theorem 3. Consider the UDP-like system in (1) with γ >
γc under bounded control inputs. The relationship between
the control p.a.r. θ and the conditional average estimation
performance is

E[Pk(θ)|Ik−1] ∝ θ(1− θ).

Before proving Theorem 3, we present a lemma as follows.

Lemma 6. Define L(θ) , E[λ[0]
k λ

[1]
k |Ik−1]. Then

(i) L(θ) =
∫ ∞

−∞

θθ̄ϕ
[0]
k ϕ

[1]
k

θ̄ϕ
[0]
k + θϕ

[1]
k

dyk

(ii) L(θ) = L(θ̄)

(iii)
∫ ∞

−∞

ϕ
[0]
k

(ϕ
[0]
k + ϕ

[1]
k )2

dyk =

∫ ∞

−∞

ϕ
[1]
k

(ϕ
[0]
k + ϕ

[1]
k )2

dyk

(iv) L(θ) ∝ θ(1− θ)

1In (13b), Pk = P
[∗]
k + λ

[0]
k λ

[1]
k KkUkK′

k . From (4) and (6d), it follows
that Pk−1 ↑ leads to P̄

[∗]
k ↑ and then P

[∗]
k ↑. However, by [35, Lemma 9(2)],

P̄
[∗]
k ↑ results in Kk(Kk)

′ ↓. Thus, the monotonic relationship between Pk

and Pk−1 is not easy to be determined.
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(v) L(θ) ≤
√
θ̄θ

2
exp(−1

2
[CBuk]

2
Λ), where Λ = (PY

k )−1

Proof of Theorem 3: From (14), it follows that, under
the condition Ik , {γk, Y k}, P̄ [∗]

k and Kk are deterministic.
Note that Uk is assumed to be known and thus is deterministic
as well. Therefore, the quantity Pk|Ik−1 contains random
variables yk and γk, where yk lies in λ

[i]
k . By the taking

mathematical expectation of (14) with respect to {yk, γk}, and
noting the definition of L(θ) in Lemma 6,

E[Pk(θ)|Ik−1] = P̄
[∗]
k − γP̄

[∗]
k C ′(CP̄

[∗]
k C ′ +R)−1CP̄

[∗]
k

+ γL(θ)KkUkK′
k + γ̄θθ̄Uk. (20)

Clearly, E[Pk(θ)|Ik−1] is determined by L(θ) and θθ̄. The
proof is completed by noting that L(θ) ∝ θ(1 − θ) = θθ̄ in
Lemma 6(iv).

Remark 1. Note that L(θ) ∝ θ(1 − θ) and that θ(1 − θ)
is the entropy of θk, a notion to measure the uncertainty of
a random variable. From (20), it follows that the conditional
average estimation becomes worse, as the uncertainty of θk
increases.

B. Impact of control inputs on estimation performance

For the impact of control inputs, we study how the in-
crement of control input magnitude affects the estimation
performance, and the results are formulated as follows.

Theorem 4. Consider the UDP-like system in (1).
(i) If γc < γ < 1, lim||Uk||→+∞ E[Pk] = +∞ 2;

(ii) If γ = 1 and C has full column rank, then

lim
||Uk||→+∞

E[Pk] < +∞.

Proof of (i): For the system with γc < γ < 1, from (14),
E[Pk] = E[P [∗]

k ] + γ̄θθ̄Uk + γE[λ[0]
k λ

[1]
k KkUkK′

k] ≽ γ̄θθ̄Uk.
Hence, part (i) holds.

Proof of (ii): When γ = 1, Ik = Y k and, in (15), ∆k =

Kkλ
[0]
k λ

[1]
k UkK′

k.

EY k [Kkλ
[0]
k λ

[1]
k UkK′

k] = EY k−1

[
KkEyk

[λ
[0]
k λ

[1]
k |Y k−1]UkK′

k

]
≼ EY k−1 [L(θ)Uk], (21)

where the first equality is obtained by the independence of Kk

and yk, and (21) is obtained by (33) and the fact σ(Kk) < 1
in Lemma 1(ii).

Note that Uk = (Buk)
2
I , and that Λ , (PY

k )−1 is nonsin-
gular due to PY

k = CP̄
[∗]
k C ′ +R. Thus, CΛC ′ is nonsingular

since C has full column rank. Then, σ(CΛC ′) > 0. Let
l = Buk. From Lemma 6(v), it follows that L(θ)Uk ≼√

θ̄θ
2 exp(−1

2 [Cl]2Λ)(l)
2
I . Define H(uk) , tr(L(θ)Uk). We

have

H(uk) ≤
√
θ̄θ

2
exp(−1

2
l′(C ′ΛC)l)||l||2

≤
√
θ̄θ

2
exp(−1

2
σ(CΛC ′)||l||2)||l||2 , Q(l).

2This result accounts for the need of the bounded input assumption.

It is known from Algorithm 1 that both PY
k and P̄

[∗]
k are

independent of Uk. From the knowledge of calculus, it is clear
when ||Uk|| → +∞, ||l|| → +∞ and lim||l||→+∞ Q(l) = 0.
Thus, Q(l) is bounded with its bound denoted by Q, which
implies H(uk) ≼ Q for all k. Hence, E[∆k] ≼ Q. By (15)
and using the established result that E[g(X, γ)] ≼ g(E[X], γ)
for a random variable X [6, Lemma 1(h)],

E[P̄ [∗]
k+1] = E[g(P̄ [∗]

k , 1) +A∆kA
′] ≼ g(E[P̄ [∗]

k ], 1) +AQA′.
(22)

Let T1 = E[P̄ [∗]
1 ] and define {Tk} by the standard Riccati

equation: Tk+1 = g(Tk, 1) + AQA′. By using (22) and
the mathematical induction method, it is easy to prove that
E[P̄ [∗]

k ] ≼ Tk. It is well known that under Assumption 1 Tk is
convergent and thus is bounded. Therefore, E[P̄ [∗]

k ] is bounded.
From (14), we have E[Pk] ≼ E[P̄ [∗]

k + ∆k] ≼ E[P̄ [∗]
k ] + Q.

The proof is completed.

C. Comparison with the LMMSE estimator

As a good approximation for the optimal estimator, the
IMM estimator is expected to outperform the frequently used
LMMSE estimator, but to our best knowledge, few results have
been reported on comparing the LMMSE estimator with the
IMM estimator or its variant. We propose a variant of it, called
the modified IMM (mIMM) estimator, with its estimation
performance theoretically comparable with that of the IMM
and the LMMSE estimators. The modified IMM (mIMM)
estimator has been given in Algorithm 1 in Section III by
letting the α = 1 in (6a).

Definition 5 (Optimal linear estimation). An estimate of xk,
denoted by x̂L

k , is said to be an optimal linear estimation in the
MMSE sense, if x̂L

k is a linear function of {γ1y1, . . . , γkyk}
and x̂L

k minimizes E[||xk − x̂L
k ||2], where γkyk = ∅ (an empty

set) when γk = 0.

Denote the prediction and the estimation error covariances
of the LMMSE estimator for UDP-like systems by P̄L

k and
PL
k , respectively. They have been obtained in [15, 17] and are

shown in Algorithm 2.

Algorithm 2 The LMMSE estimator for UDP-like systems

Time-update prediction: Let Uk , Buku
′
kB

′.

P̄L
k+1 = APL

k A′ +Q+ θθ̄Uk+1, with PL
0 = P0.

Measurement-update estimation:
If γk+1 = 0, then PL

k+1 = P̄L
k+1.

If γk+1 = 1, then

KL
k+1 = P̄L

k+1C
′(CP̄L

k+1C
′ +R)−1

PL
k+1 = (I −KL

k+1C)P̄L
k+1 = Φ(P̄L

k+1,K
L
k+1)

P̄L
k+1 = AP̄L

k A′ − γkAP̄
L
k+1C

′(CP̄L
k+1C

′ +R)−1CP̄L
k+1A

′

+Q+ θθ̄Uk+1 = ḡ(P̄L
k , γk, Q+ θθ̄Uk+1, R).
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Theorem 5. For UDP-like systems, the estimation perfor-
mance of the standard IMM estimator is superior to that of
the LMMSE estimator in the mean sense, that is,

E[Pk] ≼ E[PL
k ].

Before proving Theorem 5, we present a lemma.
Denote the estimation error covariance of the mIMM esti-

mator (actually, a sub-optimal IMM estimator) by P sub
k .

Lemma 7. Pk ≼ P sub
k

Proof of Theorem 5: P sub
k can be calculated via

Algorithm 1 by letting α = 1 and P sub
k = Pk. From (6d),

(12b), and (13b), it is easy to obtain that

P sub
k = γ̄k(P̄

[∗]
k + θθ̄Uk) + γk(Φ(P̄

[∆]
k ,Kk). (23)

From Algorithm 2, we have

PL
k = γ̄kP̄

L
k + γkΦ(P̄

L
k ,KL

k ). (24)

From Algorithms 1 and 2, it is clear that PL
0 = P0, and thus

E[P sub
0 ] ≼ E[PL

0 ] naturally holds. Suppose that it also holds
for 1, . . . , k − 1. We check the case k as follows.

By subtracting (23) from (24), PL
k − P sub

k = γ̄kP̄
L
k +

γkΦ(P̄
L
k ,KL

k ) − γ̄k(P̄
[∗]
k + θθ̄Uk−1) − γkΦ(P̄

[∆]
k ,Kk) =

γ̄kA(P
L
k−1 − P sub

k−1)A
′ + γk(Φ(P̄

L
k ,KL

k ) − Φ(P̄
[∆]
k ,Kk)).

For the second term in the equation above, Φ(P̄L
k ,KL

k ) −
Φ(P̄

[∆]
k ,Kk) ≽ Φ(P̄L

k ,KL
k ) − Φ(P̄

[∆]
k ,KL

k ) = (I −
KL

k C)(P̄L
k − P̄

[∆]
k )(I − KL

k C)′ ≽ σ2
KL

k
(P̄L

k − P̄
[∆]
k ), where

the first and the last inequalities are obtained by Lemma 3(ii)
and Lemma 1(iii), respectively. By the hypothesis E[P sub

k−1] ≼
E[PL

k−1], we have

E[PL
k − P sub

k ] ≽ γ̄AE[PL
k−1 − P sub

k−1]A
′ + γσ2

KL
k
E[P̄L

k − P̄
[∆]
k ]

≽ γσ2
KL

k
E[P̄L

k − P̄
[∆]
k ]. (25)

By noting that P̄ [∗]
k = AP sub

k−1A
′+Q and using (24) and (6a),

P̄L
k − P̄

[∆]
k

= APL
k−1A

′ +Q+ θθ̄Uk − (AP sub
k−1A

′ +Q+ λ
[0]
k λ

[1]
k Uk)

= A(PL
k−1 − P sub

k−1)A
′ + (θθ̄ − λ

[0]
k λ

[1]
k )Uk.

From the hypothesis above and Lemma 2(iii), it follows
E[P̄L

k −P̄
[∆]
k ] ≽ AE[PL

k−1−P sub
k−1]A

′+E[(θθ̄−λ
[0]
k λ

[1]
k )]Uk ≽

0. By (25), E[PL
k ] ≽ E[P sub

k ] is proved. Then, by Lemma 7,
E[PL

k ] ≽ E[Pk]. The proof is completed.

D. Comparison with the optimal estimator

In most literature, the fact that the IMM estimator is an good
approximation for the optimal estimator is usually illustrated
by numerical simulations. However, from a theoretical point
of view, it is still unsure that whether the approximation error
will be accumulated to a certain extent that the IMM estimator
diverges from the optimal one. The following theorem gives an
answer to this question, and it gives the condition under which
the distance between them is bounded in the mean sense.

Denote the optimal state estimate x̂opt
k and its estimation

covariance by P opt
k .

Theorem 6. Consider the UDP-like system in (1) and (2)
with bounded control inputs. Let γc be the critical value for
the stability of the IMM estimator. If the observation p.a.r.
γ > γc, then the distance Dk , P opt

k − Pk is bounded in the
mean sense, that is,

−d ≼ E[Dk] ≼ d,

where d is a positive definite constant matrix and only depends
on the initial value P0.

Before proving Theorem 6, we give a lemma as follows,
whose proof is given in Appendix.

Lemma 8. For UDP-like systems with bounded control inputs
and γ > γc, the average LMMSE error covariance E[PL

k ] is
bounded, that is, E[PL

k ] ≼ d, where d is a positive definite
constant matrix and only depends on the initial value P0.

Proof of Theorem 6: For the LMMSE estimate x̂L
k ,

according to Definition 1, it is clear that P opt
k = E[(xk −

x̂opt
k )2I |Ik] ≼ E[(xk − x̂L

k )
2
I |Ik]. By Definition 5 and taking

the mathematical expectation with respect to Ik, E[P opt
k ] ≼

E[(xk − x̂L
k )

2
I ] = PL

k . Obviously, E[P opt
k ] ≼ E[PL

k ]. From
Theorem 5 and Lemma 8, it follows that

E[Pk] ≼ E[PL
k ] ≼ d and E[P opt

k ] ≼ E[PL
k ] ≼ d, (26)

where d is given in Lemma 8. (26) means that both E[Pk]
and E[P opt

k ] lie between 0 and the upper bound d, which in
fact implies that the distance between E[Pk] and E[P opt

k ] is
bounded. E[P opt

k ] ≼ d ⇒ E[P opt
k ] − E[Pk] ≼ d − E[Pk] ≼

d ⇒ E[P opt
k − Pk] ≼ d. Similarly, it is easy to obtain −d ≼

E[P opt
k − Pk]. The proof is completed.

Remark 2. Theorem 6 suggests that Pk approximates P opt
k

within a finite bound in the mean sense, but Pk is not
necessarily an upper bound of P opt

k . This result also implies
the average distance between x̂k and x̂opt

k is bounded. That is,
E[||x̂k− x̂opt

k ||2] = E[||(x̂k−xk)+(xk− x̂opt
k )||2] ≤ 2(E[||x̂k−

xk||2] + E[||xk − x̂opt
k ||2]) = 2tr(E[Pk] + E[P opt

k ]) ≤ 4tr(d).

VII. NUMERICAL EXAMPLES

In this section, numerical examples are presented to il-
lustrate the obtained results for the IMM estimator and the
properties of the optimal estimator.

Consider the system in (1) with following parameters:

A =

[
σ 0
0 0.5

]
, σ > 1, B =

[
−1
1

]
,

C =

[
−1 1
0 1

]
, Q = R =

[
20 0
0 20

]
.

Some specifications for the simulations are given as follows:
1) For the convenience of computing the critical value, we
choose the form above for A, since, for such a structure of A,
the critical value for the TCP-like system is γc = 1−1/σ2 [6].
2) It is known from [16] that the computation of the optimal
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estimator for UDP-like systems is in fact NP-hard. Thus,
its simulation time is chosen to be 30. 3) Unless otherwise
stated, the simulations for the optimal estimator are performed
using the same system parameters and control inputs as the
corresponding simulations for the IMM estimator.

A. Numerical examples for the IMM estimator

Stability: For σ with different values {1.0541, 1.1952,
1.4142, 1.8257}, the corresponding critical values γc are
{0.1, 0.3, 0.5, 0.7}, respectively. Under bounded control inputs
(||uk|| < 5) and different control p.a.r.s, Fig. 2 shows that
E[Pk] is stable as long as γ is greater than the critical value
γc, and this critical value γc is the same as that of the optimal
estimator for the corresponding TCP-like system, as stated in
Theorem 1.

Convergence: Under uk = 10 exp(−k/5) and different
pairs of {θ, γ}, Fig. 3 shows that Pk, the EC of the IMM
estimator for the UDP-like system, converges to Sk, the EC of
the optimal estimator for the corresponding TCP-like system,
as claimed in Theorem 2.

Estimator performance: (i) The impact of the observation
p.a.r. on estimator performance is illustrated in Fig. 2. (ii)
As shown in Fig. 4, the relationship between E[Pk] with
k = 50 and the control p.a.r. θ appears irregular, but the
graphs of E[Pk|Ik−1] with k = 30 and 100 are similar to the
parabolas with the symmetry axis at θ = 0.5, as formulated in
Theorem 3. (iii) How the increment of control input magnitude
affects the performance is illustrated in Fig. 5, in which it can
be seen that the expected EC of the IMM estimator remains
bounded when C has full column rank and observations are
successfully transmitted (that is, γ = 1), and tends to infinity
when observations are randomly lost (that is, γ < 1), like the
phenomenon described in Theorem 4. (iv) Fig. 6 shows that
under different circumstances E[PL

k − Pk] is positive, which
implies that the IMM estimator is superior to the LMMSE one
in the mean sense, as described in Theorem 5.
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B. Numerical examples for the optimal estimator

The IMM estimator is a good approximation for the optimal
estimator, and we naturally wonder what are the results on
these properties of the optimal estimator. Thus, the numerical
simulations on the key properties are performed in parallel
using the same system parameters for both the IMM and
the optimal estimators, except for the comparison with the
LMMSE one, as the optimal estimator no doubt outperforms
the LMMSE one. As shown above, the optimal estimator
has the same properties as that of the IMM estimator. The
properties of the optimal estimator are shown experimentally,
but, to our best knowledge, they are not presented in the exist-
ing literature, and might shed light on the further theoretical
investigation of the optimal estimator.
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C. Motivating examples of using IMM estimator to improve
LQG control performance

In the previous sections, we have addressed some estimation
problems on the IMM estimator for UDP-like systems. In
this section, we give some simulation examples to show its
application in control problems. We first propose a motivating
idea, a controller re-design method, on improving control
performance of a linear quadratic Gaussian (LQG) controller
by the IMM estimator, then show the effectiveness of the
proposed method by simulation examples. Finally, for future
investigation, we provide some suggestions on how to theoret-
ically analyze this method and design controllers by the IMM
estimator.

1) A motivating idea: The LQG controller design for TCP-
like systems has been extensively studied in [15, 17, 36, 37],
while for general UDP-like systems, whether an optimal LQG
controller exists or not remains unknown. Some sub-optimal
LQG controllers, such as [2, 18], are developed with an

objective to minimize the LQG cost JN , which is also called
the LQG performance and is defined as follows:

JN = E[x′
NWxN ] +

N∑
j=1

E[x′
j−1Wxj−1 + θju

′
jΛuj ].

The IMM estimator yields excellent estimation performance
in various applications [24], which motivates us to consider
that whether a better state estimator can improve in some way
the control performance of the LQG controller for UDP-like
systems. We propose an implementation of this idea as follows.

2) A controller-redesign method by using the IMM estima-
tor: For general UDP-like systems, we consider two scenarios:

• There is no bounded input constraint on the controller
considered. Denote the controller by

uk = Lkx̂k−1. (27)

• The controller considered has a bounded input constraint,
which is denoted by

uk = sat(Lkx̂k−1, U), (28)

where the saturation function sat() is defined in the
notation list in Sec. I, and U is an upper of this controller.

By the IMM estimator, we propose a re-designed control
law to improve the LQG performance of the controllers (27)
and (28) as follows:

uk = sat(Lkx̂
imm
k−1 , U

∗
), (29)

where x̂imm
k denotes the IMM estimate, and the upper bound

U
∗

is determined as follows:

• For the controller (28) with a bounded input constraint,
let U

∗
= U in (29). It would be unreasonable to let

U
∗
< U in (29), as it will impose more constraints on

the re-designed controller (29).
• For the controller (27) without a bounded input constraint,

we first need to determine an upper bound for the
controller (27)—as the IMM estimate x̂imm

k can be stably
calculated when control inputs are bounded—but, it is
easy to determine an upper bound U

∗
such that imposing

this upper bound onto the controller (27) has little, even
no, impact on its LQG performance. The desired upper
bound U

∗
can be determined in the following way: for a

given upper bound U , run numerical simulations with the
control input uk = sat(Lkx̂k−1, U), and then compute
the corresponding LQG cost J . Enlarge U until the
desired U

∗
is found, such that J and J are close within

a satisfied small gap, e.g., |J − J̄ | ≤ 10−8.

Remark 3. For the controller (27) without a bounded input
constraint, the performance J , in fact, can be viewed the limit
of J as U → + ∞. From the knowledge of limit theory, it
follows that |J − J̄ | can be arbitrarily small by enlarging U .
Therefore, the way above to determine U

∗
is feasible, which

will be verified in Fig. 7.
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3) Simulation results and feasibility of the proposed
method: We apply the proposed controller-redesign method
to two LQG controllers, which are developed in [2] and
[18], respectively, and illustrate its effectiveness in improving
the LQG performance of these two controllers by numerical
simulations. Some specifications on simulations are given as
follows:

On controllers with a bounded input constraint: It needs
pointing out that, in this section, for a controller with a
bounded input constraint, what we are interested in is to
improve its LQG performance when this controller exists, not
to design a controller with a bounded input constraint. We
discovered that the LQG controllers developed in [2] and [18]
are still able to stabilize the system when the upper bound is
not too small. Therefore, to simulate an LQG controller with
a bounded input constraint, we first design the LQG controller
by the methods proposed in [2] or [18], and then determine an
upper bound U , like U given in the top two figures in Fig. 8 for
the scalar/MIMO system, such that the resulting closed-loop
system is still stable.

On system models used in simulations: We first use two
systems: one is a scalar system with the following parameters:
A = 1.1, B = C = Q = R = W = Λ = 1; and the
other is a 4th order MIMO system3. They are frequently
used to evaluate LQG controllers for UDP-like systems. Then,
we randomly generate some systems for simulations. It is
impossible to test all kinds of systems. We consider the
randomly-generated systems with the following form: A = a1,
B = b1, and C = c1 for single variable systems; and
A = diag(a1, . . . , an), B = (b1, . . . , bn)

′, C =
[
c11 ... c1n
c21 ... c2n

]
for multi-variable systems, Q = 0.01 · In, and R = 0.01 · Iq ,
where ai, bi, c1, cij are mutually independent random variables
uniformly distributed on [−1.5, 1.5]. The reasons to adopt the
form above are the following: 1) most of the systems can be
diagonalized; 2) the form above may cover a class of systems
close to the frequently used scalar and 4th order systems above
(when the 4th order system is diagonalized); 3) the condition
for the stability of the IMM estimator (Theorem 1) requires
that γ > λc and a lower bound of λc is known in [6] to be
1 − ρ−2

A , where ρA = max |ρi| and ρi are the eigenvalues of
A. For the case γ = 0.7 considered in the following Table I,
due to 0.7 > λc > 1 − ρ−2

A and ρA = max(|ai|), we have
|ai| < 1.8257. We set ai ∈ [−1.5, 1.5], leaving some margin
for the stability.

Define some performance-related symbols for the LQG
controller uk = Lkx̂k−1 developed in [18] as follows:

JJFI uk = Lkx̂k−1 (30a)

J
JFI

uk = sat(Lkx̂k−1, U
∗
) (30b)

J
JFI

IMM uk = sat(Lkx̂
imm
k−1 , U

∗
) (30c)

JJFI
IMM uk = Lkx̂

imm
k−1 (30d)

where the symbol involving J denotes the LQG perfor-
mance of the controller on its right-hand side. The symbols
{JAJC , J

AJC
, J

AJC

IMM , JAJC
IMM} for the LQG controller devel-

3Please refer to [2, 15] for the parameters of this MIMO system.

oped in [2] can be defined by replacing “JFI” in the equations
above with “AJC”.

Fig. 7 shows a comparison of the LQG performances of
the two controllers and the proposed method for both the
scalar and the MIMO systems, when there is no bounded input
constraint. In Fig. 7, J

AJC or JFI

IMM ≤ JAJC or JFI means that
the proposed method (29) yield a better LQG performance
than the two LQG controllers. In the following, for brevity,
denote “AJC or JFI” by ⋆. It is also shown in Fig. 7 that
J⋆ and J

⋆
overlap. Actually, the numerical simulations return

that J
⋆ − J⋆ = 0. It suggests that imposing the desired upper

bound U
∗
= 105 to these two LQG controllers has no impact

on their LQG performance, and thus the way to determine U
∗

is feasible.
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Fig. 7. Comparisons of the LQG performances of the controllers in [2, 18]
and the proposed method, without a bounded input constraint. (N = 20000)

Fig. 8 presents the simulation results on the controller
developed in [2] ([18]) for the scalar (MIMO) system with
a bounded input constraint, and the upper bound U is shown
in the top two figures. The graphs of other cases are similar
to Fig. 8, and are not presented here for brevity. J

⋆

IMM ≤ J
⋆

means that the proposed method improves the performance of
the controller developed in [2, 18] with bounded inputs.
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TABLE I
AVERAGE IMPROVEMENT OF THE LQG PERFORMANCE

AJC: θ = γ JFI: θ = γ
0.7 0.8 0.9 0.7 0.8 0.9

n = 1 10.14% 16.03% 14.70% 9.85% 9.48% 8.49%
n = 2 14.72% 17.55% 15.35% 7.61% 8.83% 7.14%
n = 3 12.97% 16.33% 14.74% 10.92% 9.19% 7.82%
n = 4 13.61% 14.91% 15.62% 8.44% 9.07% 8.32%

Table I shows the average LQG performance improvement
of the proposed method with respect to the controllers devel-
oped in [2, 18]. Take the top-left number 10.14% in Table I
for example. To calculate this number, we randomly generate
103 systems with the aforementioned form and the system
order n = 1, then compute the LQG performance JAJC of
the controller developed in [2] and that J

AJC

IMM of the pro-
posed method for each randomly-generated system under the
control/observation p.a.r. θ = γ = 0.7. (For each randomly-
generated system, we have checked that it is feasible to design
an LQG controller by the method developed in [2, 18].) Final-
ly, we calculate the average LQG performance improvement
(that is, 10.14%) of all these (JAJC − J

AJC

IMM )/JAJC . For
each case in Table I, we randomly generate 103 systems.
The simulation results show that the proposed method indeed
is able to improve the LQG performance of the controllers
developed in [2, 18] for all these randomly-generated sys-
tems with or without a bounded input constraint, That is,
J⋆ ≥ J

⋆

IMM (J
⋆ ≥ J

⋆

IMM ) for the controller without (with)
a bounded input constraint. Table I shows the case that there
is no bounded input constraint, but a table for the bounded
input case is not given here, since for a fixed upper bound,
some randomly-generated systems are stable, but others may
be not. Thus, we cannot obtain a table like Table I, under
some fixed upper bound. These simulation results suggest
that the feasibility and effectiveness of the proposed method
in improving the LQG performance of the LQG controllers
developed in [2, 18].

4) Some suggestions: The simulation results above show
the effectiveness of the proposed method. However, a theo-
retical proof of J

⋆

IMM ≤ J⋆ (or J
⋆
) for systems without

(or with) a bounded input constraint will involve the details
of controller design, which is challenging—especially when
control inputs are bounded—and beyond the scope of this
paper. Thus, some suggestions on controller design and LQG
performance analysis are given as follows.

On the upper bound of control inputs: By the methodologies
on designing LQG controllers for systems with bounded
inputs, such as the quadratic programming approach [38] and
the stochastic linearization method [39], one may obtain the
impact of the upper bound U

∗
on the LQG performance.

After knowing the impact of upper bounds, it is possible to
consider the control law uk = Lkx̂

imm
k−1 in (30d) for the case

of no bounded input constraint. We also present the simulation
results of this control law in Fig. 74, which shows that J⋆

IMM

and J
⋆

IMM also overlap. It means the LQG performances of

4J⋆
IMM is not shown in Fig. 8, as the control law in (30d) is equal to that

in (30c), that is, J⋆
IMM = J

⋆
IMM , for the bounded input constraint case.

uk = Lkx̂
imm
k−1 and uk = sat(Lkx̂

imm
k−1 , U

∗
) are quite close.

Controller design: It is known that for general UDP-like
systems, finding the optimal control uk is quite involved and
computing the optimal estimate x̂opt

k is impractical, while it
would be interesting to study the existence of the optimal
control gain L∗

k such that uk = L∗
kx̂

opt
k minimizes the LQG

cost, with x̂opt
k approximately computed by the IMM estimator.

If such control strategy exists, it may provide a better LQG
performance than some LQG controllers, such as [2] and [18],
with the state estimated by linear estimators.

LQG performance analysis: For a given LQG controller
uk = Lkx̂k−1, e.g., the one proposed in [2] or [18], one may
consider finding the optimal quantity x̆k, for the given Lk,
such that uk = Lkx̆k−1 minimizes the LQG cost. It would be
possible to obtain 1) a new control law uk = Lkx̆k−1 with
a better LQG performance than uk = Lkx̂k−1, and 2) the
relationship between x̆k and x̂opt

k , which is a possible way to
analyze and explain how the IMM estimator affects the LQG
performance by noting that x̂opt

k ≃ x̂imm
k .

VIII. CONCLUSION

In this paper, we have studied the stability, convergence,
and performance of the IMM estimator for UDP-like systems,
and revealed the impact of the control/observation packet
arrival rate and the control input on the estimation performance
of the IMM estimator, and proved that the IMM estimator
outperforms the LMMSE estimator in the mean sense. Finally,
we have proposed a controller re-design method to improve
the LQG performance of LQG controllers developed in [2, 18]
for general UDP-like systems, and illustrated the effectiveness
by numerical simulations.

APPENDIX

Proof of Algorithm 1 : (Mixing) According to the
standard IMM algorithm, the mixed initial conditions x̂

[0|i]
k−1

and P
[0|i]
k−1 for the mode-matched filter i are defined and

computed as follows:

x̂
[0|i]
k−1 , E[xk−1|θ[i]k , Ik−1]

= E[xk−1|Ik−1] = x̂k−1 (31)

P
[0|i]
k−1 , E[(x̂[0|i]

k−1 − xk−1)
2
I |θ

[i]
k , Ik−1]

= E[(x̂k−1 − xk−1)
2
I |Ik−1] = Pk−1, (32)

where (31) and (32) are obtained by definitions of x̂k−1 and
Pk−1, and by noting that θ[i]k = {θk = i} is independent of
Ik−1. Thus, (3) holds.

(Time-update prediction) Based on the initial conditions
x̂
[0|i]
k−1 and P

[0|i]
k−1 , for Mode 0 (that is, θk = 0, xk = Axk−1 +

ωk), by using Kalman filter, we have x̄
[0]
k = Ax̂k−1 and

P̄
[0]
k = APk−1A

′ +Q, which proves that (4) holds for Mode
0. Similarly, it is easy to check that it also holds for Mode 1.

(Mode probability updating) A key assumption in the
IMM estimator is that the conditional pdf of x

[0|i]
k−1 is Gaus-

sian, that is, p(xk−1|θ[i]k , Ik−1) = Nxk−1
(x̂

[0|i]
k−1, P

[0|i]
k−1) =

Nxk−1
(x̂k−1, Pk−1). From (1) and (2), we have

p(xk|θ[i]k , Ik−1) = Nxk
(x̄

[i]
k , P̄

[∗]
k )
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p(yk|θ[i]k , Ik−1) = Nyk
(Cx̄

[i]
k , PY

k ),

where PY
k = CP̄

[∗]
k C ′+R. Hence, p(yk|θ[i]k , Ik−1) = ϕ

[i]
k . By

the total probability law and the fact that θ[i]k is independent
of Ik−1, p(yk|Ik−1) =

∑1
i=0 p(yk|θ

[i]
k , Ik−1)p(θ

[i]
k |Ik−1) =

θ̄ϕ
[0]
k + θϕ

[1]
k , which proves (5).

The prior mode probability λ̄
[i]
k , p(θ

[i]
k |Ik−1). Since

θ
[i]
k is independent of Ik−1, p(θ

[i]
k |Ik−1) = p(θ

[i]
k ) = θ[i].

If γk = 0, there is no useful observation available for
updating (or correcting) the mode probability, then the pos-
terior mode probability λ

[i]
k , p(θ

[i]
k |Ik) = p(θ

[i]
k |Ik−1) =

λ̄
[i]
k = θ[i]. If γk = 1, yk is used to update the

posterior mode probability. By Bayesian formula, λ
[i]
k ,

p(θ
[i]
k |Ik) = p(θ

[i]
k |Ik−1)p(yk|θ[i]k , Ik−1)/p(yk|Ik−1) =

λ̄
[i]
k ϕ

[i]
k /c = θ[i]ϕ

[i]
k /c. Thus, the mode probability updating

step holds.
(Measurement-update estimation) When γk = 0, no

useful observation is available for updating the prediction.
Thus, x̂[i]

k = x̄
[i]
k and P

[i]
k = P̄

[∗]
k hold for both the standard

and the modified IMM estimators.
When γk = 1, for the standard IMM estimator, α = 0

and P̄k = P̄
[∗]
k . It is clear that the equations (6b)–(6d) are

the standard measurement-update steps in Kalman filtering.
Hence, (6) holds for the standard IMM estimator. When γk =
1, for the modified IMM estimator, the filtering gain Kk is
designed by (6a) and (6b) with α = 1. By (6c), xk−x̂

[i]
k = (I−

KkC)(xk − x̄
[i]
k )−Kkυk. Thus, it is clear that the estimation

error covariance takes the form as in (6d).5 Therefore, (6)
holds for both the standard and the modified IMM estimators.

(Combination) Eq. (7) is known as the combination step
in the IMM estimator. Clearly, x̂k =

∑1
i=0 x̂

[i]
k λ

[i]
k holds.

Pk =

∫ ∞

−∞
(xk − x̂k)

2
Ip(xk|Ik)dxk

=

1∑
i=0

∫ ∞

−∞
(xk − x̂k)

2
Ip(xk|θ[i]k , Ik)p(θ[i]k |Ik)dxk

= λ
[0]
k

∫ ∞

−∞

(
(xk − x̂

[0]
k )− (x̂k − x̂

[0]
k )

)2
I

× p(xk|θ[0]k , Ik)dxk + λ
[1]
k

∫ ∞

−∞
((xk − x̂

[1]
k )−

(x̂k − x̂
[1]
k ))2Ip(xk|θ[1]k , Ik)dxk

= P
[∗]
k +

1∑
i=0

λ
[i]
k (x̂k − x̂

[i]
k )2I .

The proof of Algorithm 1 is completed.
Proof of Lemma 1: Using the matrix inverse lemma

XC ′(CXC ′ +Y )−1 = (X−1 +C ′Y −1C)−1C ′Y −1 [32], we
have KC = (P−1+C ′R−1C)−1C ′R−1C. It has been proved
in [40, Theorem 7.7.3 and Corollary 7.7.4] that if X ≻ 0 and

5Actually, (6d) can also be readily proved by the fact in [32] that for a
given filtering gain Kk in (6c) with appropriate dimension, the estimation
error covariance P

[i]
k always takes the form as in (6d), no matter what value

Kk takes. Only when Kk is determined by (6b) with α = 0, the resulting
estimation x̂

[i]
k is optimal in the MMSE sense; otherwise, x̂[i]

k is a sub-optimal
estimation.

Y ≽ 0, then σ(X−1Y ) < 1 is equivalent to X ≻ Y . By
viewing P−1 + C ′R−1C and C ′R−1C as X and Y , part (i)
is proved. From part (i), it is clear that 0 < σ(I −KC) < 1
holds. Part (iii) is a straightforward result of Part (ii).

Proof of Lemma 2: Proof of (i): For γk = 0, by (7) and
(4), we have x̂k =

∑1
i=0 x̂

[i]
k λ

[i]
k =

∑1
i=0 x̄

[i]
k θ[i] = θ̄Ax̂k−1+

θ(Ax̂k−1 + Buk) = Ax̂k−1 + θBuk. Since ek = xk − x̂k =
A(xk−1− x̂k−1)+ (θk − θ)Buk +ωk, it is easy to obtain that
Pk = APk−1A

′ + θ̄θBuku
′
kB

′ + Q = P̄
[∗]
k + θ̄θBuku

′
kB

′,
which proves (12).

Proof of (ii): For γk = 1, from (7), (6c), and (4),

x̂k =

1∑
i=0

x̂
[i]
k λ

[i]
k

= λ
[0]
k ((I −KkC)Ax̂k−1 +Kkyk)

+ λ
[1]
k ((I −KkC)(Ax̂k−1 +Buk) +Kkyk)

= Kk(Ax̂k−1 + λ
[1]
k Buk) +Kkyk,

which proves (13a). From (7b), it follows that to prove
(13b) is to prove

∑1
i=0 λ

[i]
k (x̂k − x̂

[i]
k )2I = λ

[0]
k λ

[1]
k KkUkK′

k.
From (6c) and (13a), x̂k − x̂

[0]
k = Kk(Ax̂k−1 + λ

[1]
k Buk) +

Kkyk − (KkAx̂k−1 + Kkyk) = Kkλ
[1]
k Buk. Similarly,

x̂k − x̂
[1]
k = −Kkλ

[0]
k Buk. Then

∑1
i=0 λ

[i]
k (x̂k − x̂

[i]
k )2I =

λ
[0]
k (Kkλ

[1]
k Buk)

2
I + λ

[1]
k (Kkλ

[0]
k Buk)

2
I = λ

[0]
k λ

[1]
k KkUkK′

k,
where λ

[0]
k + λ

[1]
k = 1 is used.

Proof of (iii): Note that θk is a Bernoulli random variable.
It is evident that cov(θk) = θθ̄. In the sequel, we compute
cov(θk|Y k). By the definition that λ

[i]
k , P(θ[i]k |Y k), the

conditional expectation E[θk|Y k] = 1 · P({θk = 1}|Y k) + 0 ·
P({θk = 0}|Y k) = P(θ[1]k |Y k) = λ

[1]
k and the conditional co-

variance cov(θk|Y k) =
∑1

θk=0(θk − E[θk|Y k])2P(θk|Y k) =

(0 − λ
[1]
k )2λ

[0]
k + (1 − λ

[1]
k )2λ

[1]
k = λ

[0]
k λ

[1]
k . Observe that

in (10), cov
(
E[X|Y ]

)
≽ 0. From (10), it follows θθ̄ =

cov(θk) ≽ E[cov(θk|Yk)] = E[λ[0]
k λ

[1]
k |Y k], which implies

θθ̄ ≽ E[λ[0]
k λ

[1]
k ]. By this result and Lemma 1(ii), it is easy

to obtain ∆ ≽ E[∆k]. Part (iii) is proved.
Proof of (iv): By computing (1−γk)∗(12b)+γk∗(13b) and

using the equality in the Riccati equation that Φ(P̄ [∗]
k ,Kk) =

(I − KkC)P̄
[∗]
k , (14) can be readily obtained. From (4) and

the definition of g(·), it follows that (15) holds.
Proof of Lemma 4: We prove this lemma by the

mathematical induction. Since M1 = M1 = P̄
[∗]
1 , (19) holds

for k = 1.
Suppose that (19) holds for 1, . . . , n. By Lemma 3(iii),

Mn+1 = γ̄n(AMnA
′ +Q) + γn(AΦ(Mn,KMn

)A′ +Q)

P̄
[∗]
n+1 = γ̄n(AP̄

[∗]
n A′ +Q) + γn(AΦ(P̄

[∗]
n ,K

P̄
[∗]
n
)A′ +Q).

Subtracting Mn+1 from P̄
[∗]
n+1 in (15) and using Lem-

ma 3(ii) yield P̄
[∗]
n+1 − Mn+1 ≽ γ̄nA(P̄

[∗]
n − Mn)A

′ +

A∆nA
′ + γnA(Φ(P̄

[∗]
n ,KMn

) − Φ(Mn,KMn
))A′, where

Φ(P̄
[∗]
n ,KMn

) − Φ(Mn,KMn
) = (I − KMn

C)(P̄
[∗]
n −

Mn)(I−KMn
C)′ ≽ σ(I−KMn

C)2(P̄
[∗]
n −Mn). Noting that

E[P̄ [∗]
n −Mn] ≽ 0 (by hypothesis), ∆n ≽ 0, and the minimum
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singular value σ(I−KMn
C) > 0 (by Lemma 1(iii)), we have

E[P̄ [∗]
n+1 −Mn+1] ≽ 0, which proves E[P̄ [∗]

k ] ≽ E[Mk].
Similarly, by following the same line of arguments

above, Mn+1 − P̄
[∗]
n+1 ≽ γ̄nA(Mn − P̄

[∗]
n )A′ + A(∆ −

∆n)A
′ + γnA(Φ(Mn,KMn

) − Φ(P̄
[∗]
n ,KMn

))A′, where
Φ(Mn,KMn

) − Φ(P̄
[∗]
n ,KMn

) = (I − KMn
C)(Mn −

P̄
[∗]
n )(I − KMn

C)′ ≽ σ(I − KMn
C)2(P̄

[∗]
n − Mn). Noting

that E[Mn − P̄
[∗]
n ] ≽ 0, E[∆ − ∆n] ≽ 0 (by Lemma

2(iii)), and σ(I − KMn
C) > 0 (by Lemma 1(iii)), we have

E[Mn+1 − P̄
[∗]
n+1] ≽ 0, which proves E[Mk] ≽ E[P̄ [∗]

k ].
Proof of Lemma 5: It is pointed out in the proof

of Theorem 2 in [34] that ḡ(P, γ,Q,R) is a monotonically
increasing function with respect to P , Q, and R. Given a real
number α > 1, we define two sequences

Zk+1 = ḡ(Zk, γk, Q/α,R/α), Z1 = P̄
[∗]
1 /α;

Zk+1 = ḡ(Zk, γk, αQ, αR), Z1 = αP̄
[∗]
1 .

Note that Z1 = αP̄
[∗]
1 = αM1. Suppose that Zk = αMk.

Zk+1 = ḡ(Zk, γk, αQ, αR) = ḡ(αMk, γk, αQ, αR)

= AαMkA
′ − γkαAMkC

′(CMkC
′ +R)−1CMkA

′ + αQ

= αMk+1.

According to the mathematical induction method, we have
Zk = αMk. Similarly, it is easy to verify that Zk = Mk/α
holds.

By noting that Q+∆Q with ∆Q → 0 is equivalent to αQ

with α → 1+ (that is, α → 1 and α > 1), M
[∗]
k can be

rewritten as M
[∗]
k+1 = ḡ(M

[∗]
k , γk, αQ,R).

Observe that Z1 ≼ M
[∗]
1 holds for α > 1. We suppose that

Zk ≼ M
[∗]
k . Because of the monotonicity of ḡ(P, γ,Q,R),

M
[∗]
k+1 = ḡ(M

[∗]
k , γk, αQ,R) ≽ ḡ(Zk, γk, Q/α,R/α) =

Zk+1. By the mathematical induction method, it follows that
Zk ≼ M

[∗]
k . By following the same line of arguments, we

have M
[∗]
k ≼ Zk. Consequently, 1

αMk ≼ Zk ≼ M
[∗]
k ≼

Zk = αMk. Letting α → 1+ and noting the aforementioned
equivalence between α → 1+ and ∆Q → 0, we have
lim∆Q→0 M

[∗]
k = Mk for all k. The proof is completed.

Proof of Lemma 6: Proof of (i): According to ϕ
[i]
k and

(5) in Algorithm 1,

L(θ) , E[λ[0]
k λ

[1]
k |Ik−1]

=

∫ ∞

−∞
λ
[0]
k λ

[1]
k p(yk|Ik−1)dyk =

∫ ∞

−∞

θθ̄ϕ
[0]
k ϕ

[1]
k

θ̄ϕ
[0]
k + θϕ

[1]
k

dyk,

which proves part (i).
For notational brevity, let t , yk − C(Ax̂k−1 + 1

2Buk),

δu , CBuk/2, Λ , (PY
k )−1, η ,

√
2πPY

k . Let ϕ[0](t) ,
1
η exp(− 1

2 [t+ δu]
2
Λ) and ϕ[1](t) , 1

η exp(−1
2 [t− δu]

2
Λ).

By the notations defined above and some simple algebraic
computations, it is easy to check the following three equalities
hold.

L(θ) =
∫ ∞

−∞

θθ̄ϕ[0](t)ϕ[1](t)

θ̄ϕ[0](t) + θϕ[1](t)
dt , L0 (33)

∫ ∞

−∞

ϕ
[0]
k

(ϕ
[0]
k + ϕ

[1]
k )2

dyk =

∫ ∞

−∞

ϕ[0](t)

(ϕ[0](t) + ϕ[1](t))2
dt , L1∫ ∞

−∞

ϕ
[1]
k

(ϕ
[0]
k + ϕ

[1]
k )2

dyk =

∫ ∞

−∞

ϕ[1](t)

(ϕ[0](t) + ϕ[1](t))2
dt , L2.

Proof of (ii): By noting that ϕ[0](−t) = ϕ[1](t) and letting
z = −t,

L(θ) = L0 =

∫ −∞

+∞

θθ̄ϕ[0](−z)ϕ[1](−z)

θ̄ϕ[0](−z) + θϕ[1](−z)
d(−z)

=

∫ +∞

−∞

θθ̄ϕ[1](z)ϕ[0](z)

θ̄ϕ[1](z) + θϕ[0](z)
d(z) = L(θ̄),

which proves part (ii).
Proof of (iii): Similarly, by letting z = −t and using

ϕ[0](−z) = ϕ[1](z),

L1 =

∫ −∞

+∞

ϕ[0](−z)

(ϕ[0](−z) + ϕ[1](−z))2
d(−z)

=

∫ ∞

−∞

ϕ[1](z)

(ϕ[1](z) + ϕ[0](z))2
d(z) = L2,

which proves part (iii).
Proof of (iv): To study the monotonicity of L(θ), we

calculate the derivative of L(θ) in (33) as follows:

dL(θ)
dθ

=

∫ ∞

−∞

θ̄2ϕ[0] − θ2ϕ[1]

(θ̄ϕ[0] + θϕ[1])2
dt.

When 0 < θ < 1/2, θ̄ = 1− θ > θ. We have

dL(θ)
dθ

>
1

(1− θ)2

∫ ∞

−∞

θ̄2ϕ[0] − θ2ϕ[1]

(ϕ[0] + ϕ[1])2
dt

=
θ̄2 − θ2

(1− θ)2

∫ ∞

−∞

ϕ[0]

(ϕ[0] + ϕ[1])2
dt > 0,

where the last equality is obtained by using part (iii). Similarly,
for 1/2 < θ < 1, we have

dL(θ)
dθ

<
θ̄2 − θ2

(1− θ)2

∫ ∞

−∞

ϕ[0]

(ϕ[0] + ϕ[1])2
dt < 0.

Note that L(θ) in part (i) is a continuous function with respect
to θ. From the monotonicity of L(θ) established above and
the fact L(0) = L(1) (by part (ii)), it is clear that L(θ) takes
the minimum value at θ = 0, 1 and the maximum value at
θ = 1/2. Part (iv) is proved.

Proof of (v): Let ϖ = tΛδ′u + δuΛt
′.

ϕ[0](t) = η−1 exp(−0.5([t]2Λ +ϖ + [δu]
2
Λ))

ϕ[1](t) = η−1 exp(−0.5([t]2Λ −ϖ + [δu]
2
Λ)).

Then

ϕ[0](t)ϕ[1](t) = η−2 exp(−([t]2Λ + [δu]
2
Λ)) (34)

θ̄ϕ[0](t) + θϕ[1](t) = η−1 exp(−0.5([t]2Λ + [δu]
2
Λ))

×
(
θ̄ exp(−0.5ϖ) + θ exp(0.5ϖ)

)
.

(35)

Observe that θ̄ exp(−0.5ϖ) + θ exp(0.5ϖ) ≥
2
√

θ̄θ exp(−0.5ϖ + 0.5ϖ) ≥ 2
√
θ̄θ. By (34) and (35),

θ̄θϕ[0](t)ϕ[1](t)

θ̄ϕ[0](t) + θϕ[1](t)
≤

√
θ̄θ

2η
exp(−1

2
([t]2Λ + [δu]

2
Λ)).
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Observe that
∫∞
−∞

1
η exp(−1

2 [t]
2
Λ) = 1, we have L(θ) ≤

√
θ̄θ
2 exp(−1

2 [δu]
2
Λ), which proves part (v).

Proof of Lemma 7: According to Definition 1, it is well
known [32] that the desired optimal estimate

x̂k = E[xk|Ik] =
∫ ∞

−∞
xkp(xk|Ik)dxk

=

∫ ∞

−∞
xk

1∑
i=0

p(xk|θ[i]k , Ik)p(θ[i]k |Ik)dxk =
1∑

i=0

x̂
[i]
k λ

[i]
k

where x̂
[i]
k and λ

[i]
k are defined in Section II. The stan-

dard assumption adopted in the IMM estimator is that
p(xk−1|θ[i]k , Ik−1) is a Gaussian pdf. Under this assumption,
x̂
[i]
k and λ

[i]
k can be calculated via Kalman filter as obtained

in Algorithm 1 by the standard IMM estimator, and thus
the standard IMM estimator yields x̂k that minimizes Pk =
E[(xk−x̂k)

2
I |Ik]. In other words, the modified IMM estimator

provides another estimate, denoted by x̂s
k, whose estimation

EC P sub
k = E[(xk− x̂s

k)
2
I |Ik] = E[(xk− x̂k+ x̂k− x̂s

k)
2
I |Ik] =

E[(xk − x̂k)
2
I + (x̂k − x̂s

k)
2
I +2(xk − x̂k)(x̂k − x̂s

k)|Ik]. Since
x̂k = E[xk|Ik], P sub

k = Pk + E[(x̂k − x̂s
k)

2
I |Ik] ≽ Pk, which

proves this lemma.
Proof of Lemma 8: The recursive equation for the

prediction error covariance P̄L
k for UDP-like systems has been

obtained in [15] and is given in Algorithm 2. That is,

P̄L
k+1 = ḡ(P̄L

k , γk, Q+ θθ̄Buk+1u
′
k+1B

′, R).

Define Qu , Q + θθ̄BŪB′ where Ū is an upper bound of
uku

′
k, and then construct a matrix sequence

M̄L
k+1 = ḡ(M̄L

k , γk, Qu, R), with M̄L
0 = P̄L

0 . (36)

By using the mathematical induction method and following
the same line of arguments as those in the proof of Lemma 4,
it is easy to prove that P̄L

k ≼ M̄L
k . M̄L

k+1 = ḡ(M̄L
k , γk, Qu, R)

is a modified Riccati equation, whose stability has been
established in [6]. It is shown in [6] the stability of M̄L

k is
determined by a critical value denoted by γM . By comparing
M̄L

k with the prediction error covariance Mk for TCP-like
systems in (16), the modified Riccati equation g(Mk, γk) in
(16) and ḡ(M̄L

k , γk, Qu, R) in (36) have the same A and C.
By Lemma 3(iv)(v) and Theorem 1(ii), we have γM = γc,
and E[M̄L

k ] ≼ d for some constant d if γ > γc, where d
depends on the initial value P̄0. Therefore, when γ > γc,
E[P̄L

k ] ≼ E[M̄L
k ] ≼ d. From Algorithm 2, PL

k = P̄L
k −

γkK
L
k CP̄L

k ≼ P̄L
k . Therefore, E[PL

k ] ≼ E[P̄L
k ] ≼ d. The

proof is completed.
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