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Abstract

Spatial quantum coherence between two separated driven-dissipative polariton condensates cre-
ated non-resonantly and with a different occupation is studied. We identify the regions where the
condensates remain coherent with the phase difference continuously changing with the pumping
imbalance and the regions where each condensate acquires its own chemical potential with phase
differences exhibiting time-dependent oscillations. We show that in the mutual coherence limit
the coupling consists of two competing contributions: a symmetric Heisenberg exchange and the
Dzyloshinskii-Moriya asymmetric interactions that enable a continuous tuning of the phase relation
across the dyad and derive analytic expressions for these types of interactions. The introduction
of non-equal pumping increases the complexity of the type of the problems that can be solved by
polariton condensates arranged in a graph configuration. If equally pumped polaritons condensates
arrange their phases to solve the constrained quadratic minimisation problem with a real symmetric

matrix, the non-equally pumped condensates solve that problem for a general Hermitian matrix.
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I. INTRODUCTION

One of the hallmarks of the early discoveries of the Bose-Einstein condensation in a
weakly interacting gas of alkali-metal atoms was the observation of interference fringes in
two overlapping condensates that remarkably demonstrated the existence of macroscopic
spatial quantum coherence [I]. The superfluidity of these condensates, however, can only be
verified by some characteristic signatures such as the presence of persistent currents. There-
fore, many early theoretical and experimental efforts in ultracold Bose-Einstein condensates
(BECs) were focused on the creation of a Josephson junction between two condensates [2, 3]
and the studies of the coherent atomic oscillations between two weakly coupled Bose-Einstein
condensates [4]. Such matter-wave interference experiments are important for the under-
standing matter at its most basic level and were proposed to be used in the development
of high-precision interferometric sensors. An integrated interferometer based on a coherent
matter-wave beam splitter has already been constructed on an atom chip [5].

Driven-dissipative condensate systems, such as exciton-polariton (or just polariton) con-
densates, are capable of introducing even richer matter wave interference physics than equi-
librium systems due to the typical presence of persistent currents even in the steady state
configurations. Polaritons are mixed light-matter quasiparticles that form due to the strong
coupling of photons in a microcavity and excitons in a semiconductor quantum well [6]. They
are composite bosons that at low densities can form a condensed (coherent) state above a
critical density [6HS|]. Polariton condensates are intrinsically nonequilibrium systems with
the steady states set by the balance between pumping and losses due to the short lifetime
of polariton as photons leak through the confining mirrors. The first theoretical prediction
that the non-resonantly pumped polariton condensates separated by the distances larger
than the spatial extent of the pumping profile may phase lock [9] quickly followed by the
experimental demonstration of such locking for three condensates created at the corners of
a equilateral triangle and four condensates arranged at the corners of a square [10] raising
an issue about the nature of the phase locking [I1]. The Josephson oscillations of two cou-
pled trapped spinor polariton condensates were also experimentally achieved [I3] studying
transport-related effects like Bloch oscillations. It was shown that the phase coupling of
trapped condensates depends on the interplay between the Josephson coupling strength and

the internal linear polarization splitting of each condensate. However, in the absence of a



potential barrier separating remote polariton condensates (as in trapped condensates), and
the concomitant Josephson coupling, interactions between two equally pumped condensates
lead to a symmetric Heisenberg exchange type of coupling that imposes either in-phase or
anti-phase configuration across a polariton dyad [12]. It was shown that the phase cou-
pling depends both on the separation distance and outflow velocity of polaritons from the
reservoirs of hot excitons created by incoherent pumping [12]. In these studies only equally
pumped condensates were addressed.

Our interest in the coupling of driven-dissipative condensates is not limited by the goal
of the understanding the basic physics of the matter wave interference. Polariton graphs or
polariton lattices were recently proposed and realised as a new physical platform to be used
as an analogue Hamiltonian optimizer [19] 20], where individual polariton condensates are
imprinted into vertices of an arbitrary two-dimensional graph by spatial modulation of the
pumping laser. A large variety of real life optimization problems can be mapped into certain
universal classical spin models such as an Ising, XY or Heisenberg models, in such a way that
the variables are mapped into “spins”, their interactions are represented by “couplings,” and
the cost function is represented by a “Hamiltonian” [14]. Various physical platforms have
been proposed to simulate universal classical spin models including superconducting qubits
[15], optical lattices [16], and photon laser networks [I7] among others (for the review of
these and other systems also see [18]). Based on well-established semiconductor and optical
control technologies, polariton graph optimizers benefit from flexible tunability that allows
for a variety of coupling strengths between the vertices to be realised by simply adjusting the
characteristics of the pump. In the case of optically imprinted polariton lattices with freely
propagating polariton condensates, we recently demonstrated that the phase-configuration
acquired in a polariton dyad or triad is chosen so as to maximise polariton occupancy [12],
while by expanding to square, and rhombic lattices as well as to arbitrary polariton graphs
we simulated minimization of an XY Hamiltonian through bosonic stimulation [19]. The
bottom-up approach of bosonic stimulation is achieved in polariton simulators by gradually
increasing the excitation density to condensation threshold. This mechanism has a po-
tential advantage over classical or quantum annealing techniques, where the global ground
state is reached through time-dependent transitions over metastable excited states with an
exponential growth of the cost of the search with the size of the system [21H24].

By controlling the separation distance and the in-plane wave-vector we acquire several



degrees of freedom in the tunability of inter-site interactions, whereas the continuous cou-
pling of polaritons to free photons allows for in-situ read out of all the characteristics of the
polariton condensates such as energy, momentum, and most critically their relative phase.
Such flexibility gives the necessary tools to further realize nontrivial matter states not possi-
ble or difficult to observe in other systems. We have already shown the potential of polariton
graphs for creating discrete giant vortices [25] and frustrated states [26], controllable next
nearest neighbour interactions [26], dynamic phase transitions [12], and realising the spectral
gaps [27].

In this paper, we show that varying the relative population of two polariton condensates
adds a new degree of freedom that would allow for an additional control on the coupling
between condensates. We analytically derive the closed form expression for the coupling
interactions between equally pumped polariton condensates assuming an exponential profile
of the individual polariton densities. For unequally populated polariton condensates the
coupling strength is derived from a series expansion with respect to their outflow wave-
vector difference. We analyse the limit under which two condensates remain coherently
coupled. We show that phase configuration maximising the polariton occupancy across a
dyad corresponds to the minimisation of the sum of the symmetric Heisenberg exchange
and asymmetric Dzyloshinskii-Moriya interactions [28]. We show that using the non-equal
pumping in a polariton dyad to control the coupling between the condensates allows accessing

a wider class of optimization problems than equal pumping.

II. SYMMETRIC HEISENBERG AND ASYMMETRIC DZYALOSHINSKII-
MORIYA INTERACTIONS

In the following, we investigate the case of two unequally pumped exciton reservoirs with
Gaussian pumping profiles and explore the limit of coherent coupling across the dyad. For
two spatially separated condensates, we approximate the wave-function of the system as the

sum of the two wavefunctions of the individually created condensates:

P(r) = Ua(|r —rq) + Wa([r — rof), (1)



where the wavefunction of a condensate located at r = r; can be approximated [20] by

\I’z(\r - I"i\) ~ Pz‘(|1' - I‘iD eXp[ik?ci|I‘ - I'i’ + iei]u (2)

where 6; is the space independent part of the phase, k.; is the maximum wave-vector k(r)
that polaritons reach within their lifetime by converting their potential to kinetic energy [35],
and p;(|r — r;|) is the density of the isolated condensate created by a single pumping source
centered at r;; for an approximate expression for p; as a function of the system parameters
see [20].

The total number of polaritons across the dyad is given by N = [ |¢(r)[*dr, where

integration is over the entire area of the microcavity and

N & [ 10— v + (e = ral) P =
= [ e [0l = )P+ [l eaP] +
+ /dr (U1(jr —r)¥5(Jr — ra]) + cc] =

= N1+ Nz + Jcos AG + Dsin A9, (3)

where A0 = 60, — 0, is the phase difference between two polariton condensates, N; =
J19;(Jr — r;])]*dr is the number of polaritons of an individual condensate indexed by i,

and the interaction strengths J and D are expressed as

J = 2/\/p1(|r—1‘1|)\//02(|r_r2|)

X coslker |t — 11| — kea|r — rafldr, (4)
D =2 [ Vol = mal)v/oalle — ]
X sin[kq|r — r1| — keo|r — ra|]dr. (5)

From all the possible phase differences, A = [0, 27), the one that maximises the number of
particles in Eq. (3], will condense first as was established in [I2] for the equally pumped po-

lariton dyad. Equivalently, in the generic case of a polariton dyad with unequal populations,



the system will reach threshold at the phase difference configuration A6 that minimises

Hp = —(J cos AG + Dsin Af), (6)

where Hp is the sum of the symmetric Heisenberg exchange and the asymmetric
Dzyaloshinskii-Moriya (DM) interactions [28], that are usually studied in the context of a
contribution to the total magnetic exchange interaction between two neighboring magnetic
spins [29].

We can draw here an analogy with the superexchange interactions between two neigh-
boring sites established in BECs of ultracold atoms loaded into optical lattices [30] that
allowed to carry out the analog simulation of frustrated classical magnetism in triangular
optical lattices [I6]. In addition, the spin-orbit coupling in optical lattices can give rise to
the DM spin interactions [31], therefore, allowing the simulation of spiral order and multi-
ferroic effects. In the case of polariton condensates, therefore, the unequal pumping allows

to simulate these effects as well.

III. ANALYTICAL EXPRESSIONS FOR THE COUPLING STRENGTHS

In the following, we obtain analytical expressions of the coupling strengths J and D by
positioning the condensates at r; = (—d/2,0) and ry = (d/2,0), where d = |r; — ra| is the

separation distance, and transforming into elliptic coordinates (u, v) with

r = §Coshucos v, (7)
d . .
y = §smhu8my, (8)
o _ .2
d’r = : (sinh® p + sin® v)dpudv, 9)

where (1 is a nonnegative real number and v € [0, 27), so that the expressions for the absolute

values simplify to

d
v —rq| = é(coshu—i-cosu), (10)

d
lr —ro| = Q(coshu—cosy). (11)



Assuming an exponential decay of the amplitude for an individual condensate
Vpi(lr — r;|) = A;exp(—f|r —r;|), where A; and § correlate with the shape of the pumping
profile [20], and substituting Eqs. (10)-(L1) we obtain

1 0o 2w
J = §A1A2d2/ e'BdCOSh“/ (sinh? ju + sin®v)
0 0

x cos(0k, dcosh u — 6kFdcosv)dvdp, (12)
1 o 2
D = §A1A2d2 / e~ Pdeoshp / (sinh? p + sin® v)
0 0
x sin(dk, dcosh u — 6k} dcosv)dvdy, (13)

where we denoted dkT = (k. & k.)/2. Integrating firstly over v and then expanding
the integrand for small 6k up to the third order, we obtain analytical expressions for the
coupling strengths of the two unequally pumped condensates in terms of the Bessel functions

(J,) and the modified Bessel functions of the second kind (K,):

+

s GRS Kal5) — G0 PF |, (14

B
(k) (B) — (5k >ZG], (15)

) k;+
where

d
F = 2—B2J0 (0kFd){BdK\(Bd) + 3K,(5d) } +
d Jy(5k}d
+ D ara(pa) + K6, (16)
G = 6%2J0 (6kFd){BdK,(Bd) 4+ 3K5(8d) } +
i J1<§kc d)

T8 okt

{(BdK,(Bd) + K2(Bd)}, (17)

We note here that the integrals can be analytically calculated up to any desired precision of

(0k.)™. An exact analytical expression for two equally pumped polariton condensates with



Ay = Ay =Aand ko = ke = k. (D = 0) reads

1

1

5 Ji(ked)Ko(Bd) |- (18)

If the pumping width is large (f is small) the sign of the interactions is determined by
Jo(kcd) as was found in [12].

Figure (1| shows the analytically and numerically calculated J and D as functions of the
distance separating two condensates for small differences between the outflow wavevectors.
The agreement improves even further when higher orders of dk_ in are taken into
account. We note that a discrepancy between the polariton wavevectors k.; and k., may lead
to significant non-zero values of the coupling strength D that may even exceed values of J.
In particular, for the range of experimental parameters it is possible to obtain a continuous
phase transition between anti-ferromagnetic coupling for equal pumping (A8 = 7w, J < 0

and D = 0) and ferromagnetic coupling for unequal pumping (A0 =0, J ~ 0 and D > 0).

IV. LOSS OF COHERENCE IN A POLARITON DYAD

To determine the levels of the pumping imbalance and the distances for which polariton
condensates in a polariton dyad remain coherently coupled we use the complex Ginzburg-
Landau equation (cGLE) with a saturable nonlinearity [32, 33] written for a polariton wave-

function v in 2D:

2
2 = 1 inR) VP Vol +
+ heRo+ 3 (RaR =) (19)
OR
- = — (m+ RelY") R+ P(r), (20)

where m is the effective polariton mass, Uy and ggr are the polariton-polariton and exciton-
polariton interaction strengths respectively, Rg is the transfer rate from the exciton reservoir
to the polariton condensate, 7o is the polariton radiative decay rate, yr is the exciton
reservoir non-radiative decay rate, R is the density of the exciton reservoir, 7, is the energy
relaxation term, and P is the pumping profile replenishing the exciton reservoir. Previously,

we calibrated the parameters in Eq. using an extensive set of experimental data [19], so
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FIG. 1: The strengths of (a) the symmetric Heisenberg exchange J and (b) the asymmetric
Dzyaloshinskii-Moriya interactions D as functions of the separation distance d. The solid (dashed)
lines show the normalised coupling strengths found numerically (analytically) from Eqs. (4))-
(Eqs. —). Colours correspond to the different population imbalances characterized
by the percentage differences of the condensates’ wavevectors, Ak = 0%, 6% and 8%, where
Ak =100% - (ke2 — ke1)/ke1. The parameters are ke = 1.6um ™%, 8 = 0.2um ™",

that we can take the results of the numerical simulations as the experimentally representative
results. For the range of pumping parameters where there is a mutual coherence across
the polariton dyad, the condensates share the same global chemical potential i,,, which
can be found from Eq. by substituting ¢ — 1 exp(—ipeont/h). For each separation
distance d we numerically integrate Eq. starting with many random phase difference
configurations and choosing the one that maximizes the total number of particles as this
corresponds to the state that will lase first [I2]. We depict the resulting phase differences in
Fig. 2(a). Here the phase difference A in the polariton dyad is shown in a color scale as a
function of the pumping imbalance AP and the separation distance d. If two condensate in

a dyad are coherently coupled they share the same chemical potential and achieve a steady



AP [%]

FIG. 2: (a) Contour plot of the phase difference Af = 0; — 65 in the polariton dyad as a function
of the pumping imbalance AP = 100% - (P> — P1)/P; and the separation distance d. The pumping
corresponding to P is the same used in our experimental work [19] and is kept fixed. The phase
difference is measured either for the steady state or at a fixed moment of time for time-dependent
oscillations that characterize the loss of phase locking between the condensates. Fragmentation of
the contour plot, therefore, represents the region with the loss of the phase locking (coherence)
between the condensates. (b) Density cross-sections of the polariton dyad along the line connecting
the condensate centers positioned at the distance d = 6.4um apart and pumped with AP =
{—28,0,45}%.

state. Above some critical pumping imbalance (which is different for different separation
distances) the coherence is lost, each condensate has its own chemical potential and the phase
difference oscillates in time. This region is shown as fragmented on Fig. [2f(a). Figure [2f(a)
demonstrates that the whole range of phase differences from 0 to 7 is achievable without
losing coherence in a polariton dyad by adjusting the intensity of one of the pumps and
the distance between the condensates. Figure (b) depicts the density cross-sections of the
polariton dyad along the line connecting the condensate centers. The change in the pumping
intensity of one of the spots changes the phase locking from 7 phase difference configuration
to almost ferromagnetic configurations.

The critical values of the population imbalance in the polariton dyad, under which the
condensates will remain coherent, are provided in Fig. [3[(a) where Ap,, between the maxima
of the polariton densities at the threshold for phase decoupling is shown as a function of
the separation distance d. We also calculated the chemical potentials of the condensates
in a dyad for the two particular separation distances d = 6.4um and d = 13um shown in
Fig. (b) The condensates are coherently coupled for small pumping imbalances in a finite
region around AP = (0. Beyond this region the mutual coherence is lost and each condensate
acquires its own chemical potential. The appearance of such splitting manifests itself via

time-dependent phase difference oscillations.
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FIG. 3: (a) The critical population imbalance for the loss of coherence in polariton dyad Ap., =
100% - (|1 (r1)]? — |9 (r2)|?) /|1 (r2)|? for mutually coherent condensates in a polariton dyad as
a function of the separation distance d. The chemical potentials of polariton condensates in a
polariton dyad as functions of AP = 100% - (P> — P1)/P; for the distances (b) d = 6.4um and
(¢) d = 13um. Condensates share the same chemical potential where two lines join together in a
finite region around AP = 0. Beyond this region the condensates become decoupled and acquire
different pu.

V. ANALOG HAMILTONIAN SIMULATOR AND QUADRATIC MINIMIZA-
TION PROBLEMS

If n condensates are pumped with the same intensity they achieve the global minimization
of the classical XY Hamiltonian Hxy = —Y ' Jicos(d; — 6;) [19]. By writing z; =
cos 6;+1sin 6; we convert the minimization of the XY Hamiltonian into the constant modulus

constrained quadratic minimization problem
minz”?Qz, subject to |z|=1, (21)

where z = {z;} is a complex n x 1 vector, and Q is a real symmetric n X n matrix with the
elements Q = {—J;;},i # j, and Q;; = 0.
If n condensates are pumped with different intensities the Hamiltonian given by Eq. @

can be generalized to the case of n condensates centered at r;, i = 1,...,n to

Hp = — Z ‘]ij COS(QZ- - 9]) — Z D,’j sin(@i — Qj) (22>
=1 i=1
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This represents the constant modulus complex quadratic optimisation problem
minz”? Gz, subject to |z|=1, (23)

with G being a Hermitian matrix with elements G = —{J;; £iD;;},i < j, and G;; = 0.
Such a Hermitian quadratic optimization model appears in application to signal pro-
cessing [30] and is known as phase retrieval problem which arises in X-ray tomography of
biomedical imaging [37], astronomical imaging [38], diffraction imaging [40], optics [39], mi-
croscopy [41], and many other applications [42]. Phase retrieval is the fundamental problem
of recovering a general signal (or image) from the magnitude of its Fourier transform. The
signal detectors can often record only the squared modulus of the Fresnel or Fraunhofer
diffraction pattern of the radiation that is scattered from an object. So the information
about the phase of the optical wave reaching the detector is lost making the information
about the scattered object or the optical field to be incomplete. To extract the information
about the phases usually requires a priori information about the signal, such as positivity,
real-valuedness, atomicity, support constraints, and so on [43], since the large computational
complexity of the phase retrieval problems limits the application of direct methods to small-
scale problems. Indeed, it was proved in [44] that the optimization problem is strongly
NP-hard in general even for a semi-positive Hermitian matrix G. For this problem even
finding an approximate solution using semidefinite programming and the randomization-
rounding procedure guarantees a worst-case performance ratio of /4 [44]. Polariton con-
densates arranged in a graph and interacting via symmetric Heisenberg and non-symmetric

DM coupling can therefore be used as an analog solver for such hard problems.

VI. CONCLUSIONS

In conclusion, we study the coherence and phase locking between spatially separated po-
lariton condensates that are pumped nonresonantly at various intensity. Depending on the
separation distance between condensates, the pumping difference and the flow velocities of
polaritons two condensates in a polariton dyad may either synchronize with a phase differ-
ence in [0, ) or become decoherent with the phase difference undergoing the time-dependent

oscillations. This is in a contrast with the equally pumped polariton dyad where the con-
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densates are always coherent with phase locking with 0 or m phase difference. We derive
the analytic expressions for the coupling strengths. For equally pumped condensates we
account for the finite width of the pumping configuration to make an improvement of the
previously found estimates [12]. In the case of non-equal pumping the analytic expressions
for the coupling strengths are derived as a series expansion in terms of the outflow velocity
differences. Using the numerical integration of the governing mean field equations we cal-
culated the phase diagram for the phase difference in a polariton dyad indicating the region
where the coherence is lost. Our theoretical predictions could potentially broaden the range

of optimisation problems that can be addressed with polariton optimizers.
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