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An investigation into the properties of fricative production in normal and disordered speech is 

described. Methods for analysing and characterising fricative productions from acoustical signals 

can help provide better knowledge of the fricative production mechanisms. Being able to measure 

changes in the acoustical signal that relate to changes in production is extremely useful for the 

analysis of speech production in general, and for assessing long-term effects on speech of aids 

such as cochlear implants. 

Parametric analysis based on mathematical models of the noise source and filter function of the 

tract (e.g. spectral tilt, and pole and zero frequencies) has been able to explain the behaviour 

of some elements of fricative production. However, not all aspects of fricative production can be 

accounted for by such models. Distinguishing characteristics and ranges of variation of all the 

fricatives have not been satisfactorily captured. The turbulent noise sources that are generated 

near constrictions within the tract behave in complex ways that cannot be solved by current 

models. In order to proceed, extra information gathered from fricative productions is needed. 

Spectral analysis is one of the most important tools available when analysing acoustical speech 

data, since it provides information pertaining to the source and resonant characteristics - and 

hence aspects of the shape - of the tract. For vowel analysis, spectral methods have been 

straightforward to use, and usually provide a clear picture of many aspects of the behaviour of 

the production mechanisms. However, fricative spectra have a large variance if the signal is not 

treated properly. This variance can swamp features of interest. The feasibility of using time 

and ensemble averaging techniques to reduce the variance is examined, but fricative productions 

can be considered neither stationary nor ergodic, and so these averaging techniques are limited. 

Frequency smoothed estimates are explored, but found to be of limited use, since they are biased 

in regions where the spectrum is not flat. 

Multitaper analysis is an alternative method of generating spectral estimates with reduced vari­

ance, without relying upon assumptions of stationarity or ergodicity, and which provides accurate 

information pertaining to spectral features. It is optimal over short segments of stochastic data, 

and so variations in the spectrum over time, as well as over tokens can be estimated. 
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In order to gain a first estimate of typical variations across productions, to which abnormal 

productions can be compared, it was necessary to analyse some 'normal' speech. Recordings 

were made of six normal hearing subjects of each gender, and of Southern English accent, reading 

a corpus of real words containing IV 1 FV 2/ segments, where IF I was one of the eight English 

fricatives. Six vowel contexts were incorporated, resulting in a set of 3,456 fricative tokens. 

Of these, the 1,728 voiceless fricative tokens were used in an extensive analysis. In addition, 

recordings were made of two male and two female postlingually deafened subjects fitted with 

cochlear implants reading a standard corpus of real words. 

Spectral moments have become a popular method for characterising the overall shape of fricative 

spectra that have a large variance. The parameters with which the moments are calculated are 

explored, and it is shown that when frequency range, magnitude scale and 'zero reference' are 

chosen carefully, stable moments that can separate the sibilants can be generated. A high 

correlation between the odd moments, and the even moments is found, and so the first two 

moments are best to consider. However, no other improvements can be made, and spectral 

moments are shown to be insensitive to some changes that are clearly significant when other 

tools such as spectrograms are used. 

Multitaper spectra are used to develop several new parameters that allow for improved classifi­

cation by place, and characterisation of spectral variance. These analyses provide extensive new 

information pertaining to fricative production, which is straightforward to interpret. Results of 

across speaker, within-speaker, within vowel-context, and within-token spectral variations are 

presented for all the voiceless fricatives. Correlations of overall spectral intensity to spectral 

shape, and spectral correlations are also shown. 
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Chapter 1 

Introduction 

In this work, the variations in normal fricative productions are characterised, with a view to 

being able to better describe productions made by speakers with impaired hearing. 

It is known that hearing perception plays a role in monitoring speech production, although in 

precisely what capacity is still largely debated. This is easily demonstrated by hearing impaired 

speakers, whose speech is often disordered. A hearing impaired speaker may have some level of 

hearing restored with the use of some artificial device (for example, a cochlear implant), and 

often this will affect the speech, as well as the speech perception, of the subject. 

Evaluation of the speech of such speakers is important in terms of both understanding what role 

hearing plays in production, and also how devices such as cochlear implants may be improved. 

While the speech perception of such a subject at any stage of hearing ability can be evaluated 

quite easily, measurement of the quality of the speech production of the subject presents some 

significant obstacles. 

The characteristics of the acoustical speech signal determine what is perceived by a listener. 

A firm understanding of these characteristics must be obtained in order to better understand 

normal perception, as well as improve aided perception. 

The acoustical speech signal is generated by the vocal tract, and so, at any point during produc­

tion, the articulatory state of the vocal tract determines the characteristics of the signal being 

produced. The perception of speech, then, is governed by the acoustical signals that are in turn 

controlled by the state of the vocal tract. 

Different speech sounds are classified by the manner in which they are created by the vocal 

tract. Speech sounds created in a certain manner will have characteristic acoustical features; 

further, these different sounds are also perceived as distinct. Adjustments within a particular 

manner of production are known as place changes, and will result in changes in the properties 

of the acoustical signal. 

In other words, voicing, airflow, the manner of production, and place of production determine 

the acoustical waveform produced, and this waveform will determine the perception of a listener. 

As a first hypothesis, it should therefore be possible to determine both the manner and place of 

1 
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production, as well as the expected perception of a sound, from the acoustical waveform alone. 

Indeed, for certain classes of speech sounds, this is true to a certain extent. The appearance of 

several strong formants in the acoustical waveform allows the approximate positions of the vocal 

articulators to be determined, and the expected perception of the signal can be hypothesised. 

The view above is rather a simplified one however. In fact, for a given phoneme, the articulatory 

setup can vary to a great degree. Often, the context of the phoneme, the rate at which the talker 

is speaking, the emphasis of the particular word, the ambient noise and many other factors 

each contribute to exactly how the phoneme is formed. Each of these articulatory changes will 

contribute to some change in the resulting acoustical signal, although the perception of the 

acoustical signal will usually remain constant. 

Additionally, certain distinct manners of production, while easily distinguished by listeners, 

produce waveforms with apparently very similar characteristics. An example of these are the 

fricatives. They are produced when the vocal tract forms a narrow constriction through which 

air is forced. This generates turbulence noise. The English fricatives are the voiceless If,e,s,f I, 
and their voiced counterparts Iv,o,z,3f. (While Ihl is often described as a glottal fricative, its 

place varies significantly with phonetic context, making it acoustically variable; perhaps for this 

reason, it is often excluded from studies of English fricatives.) 

A solid understanding of fricative acoustical production has yet to be found. While traditional 

source-filter models have provided some insights into production, they still leave many questions 

unanswered. 

Moreover, perhaps as a result of their stochastic nature, distinguishing characteristics in the 

acoustical signal among the fricatives have remained largely allusive. Usually, they are either 

subject to variations which make them confusable with other fricatives, or are entirely indistin­

guishable. 

New methods for analysing fricative signals need to be explored. A review of much of the work 

done in these areas follows. 

1.1 Evaluating normal and disordered fricative production 

The speech of subjects with some degree of hearing loss is often examined to help clarify the role 

of hearing in speech production (Lane, Wozniak, and Perkell1994). Having a means to measure 

the improvement or reduction in performance of a subject also allows decisions to be made about 

the subject's response to various treatment (e.g. Lane and Webster (1991)). 

The development of cochlear implants (CIs) has allowed those who are profoundly deaf to have a 

certain level of hearing-function restored. Initially, limitations in the physical production of these 

devices determined how much, and the manner in which information could be supplied to the 

auditory nerve. While improvements in this area continue, it no longer seems to be the limiting 

factor in restoring hearing-function. It now becomes the task to ascertain a more fundamental 

understanding of the intricacies of the normal hearing system, if further improvements are to be 

made. 
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The perception test scores of cochlear implant patients can return to very high levels following 

cochlear implantation, but this is not the case for all subjects. Additionally, the speech of these 

subjects can return to near-normal quality. In some cases however, the speech of a cochlear 

implant user will continue to be degraded in some aspect. 

For a given aspect of disordered speech, it becomes desirable that the main cause for this degrada­

tion in performance be found. If the implant is not providing the auditory nerve with a particular 

important cue, the speech is likely to be affected in the long term. Accurately measuring the 

way in which the speech production is affected therefore becomes an important task. 

Consider the fricative production of a cochlear implant user. The cochlear implant can perhaps be 

considered as optimised for supplying the auditory nerve with information on formant positions 

(Wilson 1993). Various 'processing strategies' have been attempted, and while most of these 

attempt to deliver at least some of the information present in fricatives, it seems possible that 

this area is the source of some perception difficulties (Matthies, Svirsky, Lane, and Perke1l1994). 

In order to evaluate the fricative production, the resulting acoustical signal can be compared to 

a 'normal' speaker's production. In this case, the aspects of the acoustical signal that reflect the 

production behind it are required, so that a comparison to normal productions can be made l
. 

Measuring normal production variation is therefore an important first step to describing disor­

dered speech. The normal range of productions made by a single speaker, as well as the variations 

typical across a number of speakers, must be known. 

But what aspects of the acoustical signal should be measured? Many attempts have been made 

to determine which aspects of the acoustical signal represent states of the various production 

mechanisms used to form it. For vowel sounds, the formant positions of the acoustical spectrum 

suggest the shapes and sizes of various cavities in the vocal tract. For the fricatives however, the 

problem appears to be much harder. 

The acoustical properties of fricatives are rather different from sounds such as vowels. The acous­

tical differences result from the fundamental differences in which they are produced. The main 

source of excitation of the tract during vowel production is a pseudo-periodic signal generated 

by the glottis. During voiced fricative production, additional sources are set up at forward posi­

tions in the tract, and these additional sources are stochastic in nature. In the case of voiceless 

fricatives, the glottal source is dropped altogether. 

If air is forced through a sufficiently constricted passage within the tract, the airflow becomes 

turbulent, and this generates noise sources in forward positions. These differences in tract 

excitation sources lead to a number of significant differences in the resulting acoustical waveforms. 

Due to the nature of the turbulent sources, excitation continues at much higher frequencies than 

for vowel production. Further, the resonant chambers posterior to the noise source are not 

excited as much as those anterior, often resulting in much lower energy at lower frequencies 

(O'Shaughnessy 1987): most energy exists above 2.5kHz for the palatal fricatives, above 3.2kHz 

for the alveolar fricatives, and with very little energy at any region in the spectrum for the labial 

and dental fricatives. 

1 A method that accomplishes this task well may also be capable of good phonemic discrimination. The task 
of phonemic discrimination on its own though, while having uses in various automatic speech recognition (ASR) 
systems, does not have to satisfy the criterion of being able to discriminate the means of production, which is an 
important task in speech and hearing research. 
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1.2 History 

1.2.1 Acoustic description and classification 

Attempting to locate the important cues in real fricatives is therefore essential to both the study 

of understanding perception, and also production. It is also the task of work involving other 

automated systems such as automatic speech recognition (ASR), and voice verification systems. 

An important subtle difference should always be borne in mind when discussing cues. Percep­

tual cues are the most likely to yield good ASR performance, and better understanding of the 

human perceptual system. However, the perceptual cues will not necessarily relate to the means 

of production. On the other hand, production cues will contain information that correlates 

strongly to the manner and place of production, while not necessarily being significant in terms 

of their perceptual effects. To highlight this distinction, the different viewpoints of fundamental 

production-perception theories can be considered, and these are discussed briefly in §1.2.4. 

Hughes and Halle (1956) stated that since the voiceless and voiced fricatives / s,f,f,z,3, v / are 

easily classifiable by normal hearing subjects in any phonetic context - real or nonsensical -

it can be presumed that the perceptual cues for these fricatives lie wholly within the acoustical 

signal. The spectra of the central 50-ms portions of these fricative were then examined for such 

cues2 . Fricative segments were gated from the centre of productions of normal words spoken by 

three speakers. When the spectra were examined, the distinctiveness of different fricatives could 

only be described in fairly crude terms: the total amount of energy in certain arbitrary frequency 

bands, and the magnitude of a frequency peak in a band; no attempts were made to explain the 

patterns in terms of the production mechanism. A procedure for the automatic classification of 

central fricative segments was implemented, based upon the observations of spectra for the three 

subjects. The testing of the automatic classifier was performed on fricative segments acquired in 

the same manner as before, with the same three speakers, plus two new speakers. High success 

rates of such testing procedures are to be expected, but are not a particularly useful measure of 

the goodness of the classifier. In the next stage of experimentation, listening subjects were asked 

to classify the same fricative segments as were supplied to the automatic classifier; of interest 

was the finding that where productions were incorrectly identified by the human listeners, these 

productions were usually also misidentified by the automatic system. 

In another early work, Strevens (1960) attempted to explain differences in the voiceless fricative 

spectra of /<I>,f,e,s,J,C;,x,X,h/ in terms of place of their production within the vocal tract. It was 

acknowledged that for speakers to produce a given fricative, many different articulatory postures 

exist, and therefore care should be taken when describing precise manners of production. The 

production reasons behind the common intensity differences across fricatives are considered, and 

an assumption is made that the spectral shape will not be altered greatly for a given fricative 

when produced with different levels of air-flow. In contention with previous findings (Harris 1954; 

Hughes and Halle 1956), it was reported that listeners experienced no difficulty in classifying the 

voiceless fricatives spoken in isolation. However, it seems that in this perceptual test, listeners 

may have had access to the start and end transitions. Productions by thirteen subjects of non­

sense words with sustained fricatives were used in order to avoid unwanted 'spurious components' 

2 An examination of /9/ was not performed since Harris (1954) had already demonstrated that the perceptual 
cues for differentiating the non-sibilants were mostly confined to changes in the formants in the vowel-transitions. 
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(transitional effects) that would be present in real-word speech. Analysis of amplitude spectra 

was found to be of little use, since peaks in one spectral slice will often conflict with another 

spectral slice of the same utterance. However, spectrograms of each production were found to be 

more useful, and an "average line spectrum" - indicating the main high-energy regions - was 

found to be the best descriptive measure. Various analyses up to 12 kHz (the limit of recording 

capabilities at the time) were performed in order to locate the upper frequency limits of fricative 

production, and evidence was found that information may exist above this point. Similarities in 

the spectra of fricatives with the same place of articulation were found. 

Template matching of the spectra at vowel-stop transitions was developed by Blumstein and 

Stevens (1979) as a classification metric to support speech production and perception theoreti­

cal hypotheses. Spectra up to 5 kHz were classified into three broad description templates: The 

'diffuse-rising' template (where spectral energy peaks are greater magnitude in the high-frequency 

region), was found to positively identify alveolar burst spectra with about 76% accuracy. The 

'diffuse-falling' template (describing spectra where peaks have greater magnitude in the low­

frequency region) was able to positively identify bilabial closure and burst spectra with around 

77% accuracy. The 'compact' template (where a single spectral peak dominates in the centre of 

the spectrum) was found to positively identify around 75% of velar burst spectra. When com­

bined with the correct-rejection scores, the classifier was able to achieve positive classification 

scores of these three classes of around 85%. The results were used to investigate the effects 

of vowel-context (coarticulation) on spectra, and to provide evidence for acoustic invariance. 

Although it was found that the templates were better suited to classification in some vowel 

contexts than in others, it was argued that the overall success rates suggest an acoustic invari­

ance. However, these conclusions are made without consideration of other theoretical frameworks 

(see §1.2.4). 

In the continuing search for a context-invariant measure of stop place, locus equations were a 

production-motivated approach developed by Sussman, McCaffrey, and Matthews (1991). The 

technique uses straight line regression fits to data points formed by plotting the vowel's second 

formant onset frequency against the vowel's second formant target frequency. Locus equations 

then, do not attempt to describe the noise signal in any way, merely the formant transitions 

occurring in the adjoining vowel, and so are of limited use in non-vowel contexts. The statistical 

calculations of goodness were again made using the learning data, and only revealed trends across 

the stops. In later work (Sussman and Shore 1996), locus equations were tested to see whether 

they could serve as indicators of place of articulation for obstruents, including lsi and Izj. 
Again, trends were observed, but firm evidence of discriminatory ability was not found. More 

recently, L6fqvist (1999) used a magnetometer system to measure the articulatory movements 

to investigate the correlation between locus equations and coarticulation between consonant and 

vowel in CV sequences. This investigation found no evidence to suggest that locus equation 

slope serves as an index of the degree of coarticulation between consonant and vowel. 

The need for ASR machines to be able to discriminate across the fricative using as few pa­

rameters as possible was outlined by Jassem (1979). With this aim in mind, a completely 

different approach was used: methods for classifying a large database of 1035 fricative spec­

tra Uf,s,J,~,X,V,Z,3,¥I) taken from Polish nonsense words spoken by three male subjects were 

implemented using a highly heuristic approach, without incorporating any knowledge of produc­

tion whatsoever. High-order polynomial curves fitted to spectra, together with broad energy-
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band measures, and a 'centre of gravity' measurement (previously described by Weinstein et al. 

(1975)), were used for the purposes of description. Again, the performance of the classifier was 

tested on the learning data set, giving a result of very limited use. 

The methodology of using spectral 'centre of gravity' as a spectral characterisation measurement 

was later expanded to include higher-order moments. Forrest, Weismer, Milenkovic, and Dougall 

(1988) developed spectral moments to characterise voiceless obstruents. The first four moments: 

spectral mean (centre of gravity, centroid), variance, skewness and kurtosis, of normalised spec­

tral density plots on linear frequency as well as Bark-scale frequency axes up to 10 kHz were 

considered. However, amplitude data were discarded3 . The classification abilities of spectral 

moments were evaluated properly for the voiceless obstruents, using data on which the system 

had not been trained. Spectral moments were found to be capable of good classification of the 

voiceless obstruents. However, discrimination of the fricatives If,9,s,JI was not so successful. 

When testing the discriminatory capabilities of spectral moments, even when using the training 

set, discrimination was found to be poor. The Bark-scale moments were found to give slightly 

better results. It is suggested that since fricative intensity is not incorporated into the mea­

surements, it may well provide crucial extra discriminatory data. However, when the sibilants 

were considered in isolation, the classification performance of spectral moments was good, and 

when tested on unseen data, showed 95% success rates for this task. It was found that the 

skewness measure was most responsible for these discriminations. In an attempt to improve the 

discriminatory capability across If I and 191, a spectral slice from within the transition region of 

the fricative was incorporated. While improving the results slightly, they remained very poor. 

The limitations of LPC analysis - a strong tool in vowel peak tracking and synthesis - were 

summarised by Wrench (1995), who developed a multiple centre of gravity analysis (MCA) 

approach to classify fricatives, and compared his results to LPC peak-picking analysis and single 

'centre of gravity' measures. However, this approach did not yield particularly useful results. 

The problems of the large-variance spectral estimates commonly being used in fricative analy­

ses was investigated by Shadle, Moulinier, Dobelke, and Scully (1992). A corpus incorporating 

the fricatives If,v,9,o,s,z,J,sl was generated and spoken by two speakers. Sustained-fricative 

contexts were used to generate time-averaged spectra, and IVFV I contexts were used to gen­

erate ensemble-averaged spectra. Some of the issues involved when generating time-averaged 

and ensemble-averaged spectra were discussed: an assumption of stationarity is required in the 

case of time-averaging, and of ergodicity in the case of ensemble-averaging. Additionally, aver­

aging techniques require the labelling of 'events' in the time waveform, which can sometimes be 

problematic. Evidence that the fricatives are nonstationary is presented, and the role of vowel 

context on this nonstationarity is discussed. The benefits of using reduced-variance spectral es­

timates are also highlighted, in terms of the increased clarity of formants, and (hence) describing 

differences between the non-sibilants. 

In later work, the robustness of spectral moments was investigated by Shadle and Mair (1996), 

who noted that moments are sensitive to the frequency range considered, as well as the 'effort' 

level of the speaker and in some cases, vowel context. A maximum frequency range of 17 kHz 

was considered in the analysis. It was found that the variations that typically existed across 

tokens within a fricative were generally greater than across fricatives. The conclusions of this 

3It was also not clear at which amplitude the 'zero' reference lay. This is discussed in §2.3 and §5.1.3. 
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study were that spectral moments do not reliably distinguish the fricatives. The interpretation 

of this study was in contrast to that of the results found in the study of Jongman and Sereno 

(1995): locus equations and spectral moments were investigated in terms of their classification 

ability of /9,0/ and /f,v/, at vowel onset and offset of the fricative. Using only three subjects, 

and without testing on unseen data, perhaps unsurprisingly, clear mean distinctions across the 

non-sibilants (in terms of spectral skewness and kurtosis, and locus equation slope and intercept) 

were found. 

In later work, Jongman, Wayland, and Wong (2000) reviewed several of the major descriptive 

methods, including fricative duration, overall and 'relative' amplitude (the change in amplitude 

from preceding vowel), spectral moments and locus equations. Spectral estimates are made at 

the beginning, middle and end of the fricative, as well as at vowel onset. In an attempt to im­

prove the performance of these methodologies, some adjustments are made. The window-length 

used to calculate the spectrum is increased from 20 to 40 ms; it was argued that the resulting 

"better resolution in the frequency domain at the expense of resolution in the temporal do­

main" is preferred due to the "relatively stationary articulatory configuration" during fricative 

production4 . Analysis was performed up to 11 kHz, on ten male, and ten female subjects, each 

speaking the mostly-nonsense words /FVp/ where F=/f,v,9,0,s,Z,J,3/ and V=/i,e,re,a,o,u/. The 

mean values of spectral peak location, spectral moments, locus equations, overall amplitude, 

relative amplitude and noise duration were presented, and Bonferroni tests were made to test 

the confidence that these means were generated from different distributions. Bark scale moments 

were reported to be negligibly different from linear scale moments, and so were not presented. 

Claims were made about the distinguishing ability of many of the measurements, but the statis­

tical methods used to draw these conclusions may be questioned. Certainly, trends emerged, but 

no data were presented of variability within the groups. In order to find their total classification 

ability, discriminant analysis was performed using all measures. The accuracy for non-sibilant 

identification was reported to be 66%, while for sibilants it was 88%. Further analysis was per­

formed to find which of the measures were contributing most significantly to the classification, 

and it was found that spectral peak location, normalised amplitude, relative amplitude, and 

spectral mean at fricative onset and midpoint contributed most significantly to this classification 

rate. While this study provided useful trend data across the fricatives, the concluding remarks 

that several of these measures serve to distinguish all places of articulation is inaccurate. The 

often contradictory conclusions within the literature about the distinguishing capabilities of the 

various measures is also noted by Ali et al. (2001)5. 

Jesus and Shadle (2002) developed some of the spectral measurements that had been outlined in 

some earlier studies. Portuguese fricatives /f,v,s,Z,J,3/ in sustained and nonsense /VFV / word 

contexts were spoken by two male and two female subjects. Spectra were calculated using 10-

ms windows, and both ensemble, and time-averaging methods were used to reduce the variance 

of the spectral estimate. High-frequency and low-frequency 'spectral tilt' were measures of the 

mean spectral slope on either side of, and intersecting, the frequency of maximum amplitude. 

Additionally the' dynamic amplitude' (the minimum amplitude below 2 kHz subtracted from the 

4The claim of stationarity within fricatives had not been properly tested however, and was contrary to the 
findings of Shadle et al. (1992). Additionally, it is not clear why the 'improved' spectral resolution should improve 
the performance of the spectral moments. 

5 Unfortunately, the Ali et al. (2001) study goes on to exemplify the seemingly common (yet inaccurate) 
practice of testing the discriminatory capabilities of one's classifier using the learning data set, and publishing 
the results as classifying ability (or more impressively, success of determining production place). This topic is 
discussed further in §1.2.5. 
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maximum amplitude above 500 Hz) was also measured. Some interesting trends were observed in 

relation to 'effort level' at which the fricatives were spoken, and although the sibilants could be 

separated using these measures, the small subject set should be borne in mind. The non-sibilants 

remained inseparable. 

A certain amount is now known about the distinguishing features in the spectral shapes of the 

fricatives. The sibilants generally have a broad energy peak, in the 2.5-3-kHz region for I f,3/, 
and in the 4-5-kHz region for Is,zj. The non-sibilants generally have a much flatter spectrum 

than the sibilants, but no characteristics could be seen to distinguish between 16,01 and If,v/. 
While it is suspected that valuable information lies in the transition regions, this has not yet 

been successfully captured by a reliable measure. 

1.2.2 The study of fricative perception 

Many of these studies use artificial, synthesised speech for investigating fricative perception. 

Using synthesised speech of course allows the signal under test to be manipulated, and hence 

completely controlled. By making adjustments to the signal, and observing the perceptual 

responses produced by subjects, some understanding of perceptual cues can developed. 

However, where an artificial fricative is being used, adjusting some parameter of this fricative 

will inevitably also adjust other cues, which both may be unknown, and important to perception 

and production. It is also occasionally taken that a specific synthetic parameter represents some 

'articulatory measure', and the perceptual effects of adjusting this parameter are often misrep­

resented. Care must therefore be taken when using synthetic fricatives, since it is impossible to 

eliminate the possibility that alternative causes lie behind observed effects. 

The use of real speech means that no 'artificial' cues will be present. However, as before, when 

manually manipulating real speech in some way, the same problems are generated: by introducing 

a notch-filter, or temporal break in the signal, many other cues are additionally being generated, 

and it should always be considered that these additional unidentifiable changes are the chief 

cause for any results. 

Studies of fricative perception have found a number of clues as to the nature of important cues 

for discrimination. It has been found that some major perceptual cues, especially for the non­

sibilants lie in the transition regions of the fricative, rather than the steady-state portion (Harris 

1954). This result has implications for fricative description and classification methods. 

Perceptual classification of the fricatives Is,z,f,v,6,01 in 17 preschool children was investigated 

by Abbs and Minifie (1969). Since it had been recognised by previous studies that cues for 

some of the fricatives lie in the vowel transition regions, stimuli were in the form of unedited 

IFV lor IVF I nonsense words, i.e. a complete, naturally produced signal, by a single male adult. 

The stimuli were presented in pairs, so that a confusability table could be constructed. High­

est discrimination error rates existed between If-6 I, and between Iv-ai, where neither voicing 

differences nor obvious spectral differences exist. To gain a further understanding of when dis­

crimination errors were occurring, the stimuli were analysed for fricative and vowel durations, 

peak fricative amplitudes and centre frequency, and energy bandwidths of the fricative. Sibilant 

spectra were found to have high density, high frequency and short spectra; these observations 
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were used to explain the high discrimination rates between these and the non-sibilants. Dif­

ferentiation of the voiced-voiceless seemed to be facilitated by the reduced duration of voiced 

fricatives. 

The perceptual effect of differing degrees of variability in I s,f I productions across twenty speakers 

in a ICV I context was investigated by Newman, Clouse, and Burnham (2001). Recordings were 

filtered to 9.5 kHz, and spectral analysis was performed on a moving 15-ms window, incremented 

in 5-ms steps, and commencing at frication onset. Mean and variance values for each of the four 

spectral moments were calculated for each of these windows following the procedure outlined 

by Forrest et al. (1988). When listening to the unedited tokens, it was found that the task 

of discriminating the sibilants of speakers with more variable productions (in terms of spectral 

moments) took longer. Conversely, discrimination of speakers with more distinct productions, 

was quicker. In both cases accuracy remained consistently high. It was concluded that, when 

present, spectral moment-like cues are used to distinguish the fricatives, but when these are 

insufficient, other cues, perhaps in the vowel transition region are used. 

In some cases, real speech is edited in a limited manner. In a study by Yeni-Komshian (1981), 

the sibilants Is,z,f,31 in IFVFVFVI contexts (where F=/a,i,u/), spoken by one male and one 

female, were edited so that fricative, and vowel-transition regions were isolated. Various portions 

of the vowel and/or fricative were played to eight subjects, in an attempt to learn the effects of 

coarticulation on the perception of both. Strong evidence was found that fricative-vowel coartic­

ulation affects the perception of the sibilants6 . The conclusions of this investigation were tested 

by Jongman (1989) who considered a larger set of fricatives (jf,s,9,f,v,z,o/) in a similar manner. 

Fourteen subjects listened to extracted portions of the productions of a single speaker. Plots 

of 'relative information transmitted' were presented to show how the increase in (duration of) 

information to the listening subjects related to percentage chance of successful classification. It 

was also noted that identification of place of articulation was much more affected by fricative 

duration than were manner and voicing. Another similar investigation of the location of percep­

tual cues for discriminating If I and 191 which remain largely unclassifiable was later performed 

by Hata, Moran, and Pearson (1994). This was done using perceptual experiments of isolated 

segments of the fricatives F=/f,91 (excluding any vowel waveforms) in IFVFI contexts produced 

by a female speaker, and downsampled7 to just 10 kHz. It was found that when presenting the 

frication portion alone, If I was identified correctly more often than 19;' When the entire fol­

lowing vowel was included, identification of If I significantly improved, while identification scores 

for 191 were unchanged. It was found that more than 30ms of the following vowel needed to 

be included in order for the perception to improve. Perception scores remained somewhat low 

even when the entire vowel was presented, and it was suggested that the frequency range being 

used may have been insufficient for discrimination. It must be considered that the effects of ma­

nipulating speech in the artificial manner in these studies may have had a large uninterpretable 

effect on their results and hence findings. 

Although speech perception scores remain high even when rather drastic lowpass filtering is im­

plemented, it is entirely possible that higher-frequency cues exist and contribute to a greater 

degree when lower-frequency information is missing. The suggestion of fricative perceptual cues 

lying in higher-frequency ranges may also contribute to the poor performance of perceptual 

6 Also included is a detailed discussion about the possible causes of classification failure regarding those portions 
of each production that were removed, which are consistent with the theories of Kent and Minifie (1977). 

7Presumably after bandpass filtering to 5 kHz. 
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studies of fricatives under lowpass conditions. The role of these higher-frequency cues was inves­

tigated by Lippmann (1996). Nonsense la-CVCI syllables (where C E Ip,t,k,b,d,g,f,8,s,f,v,o,z,31 
and V E li,a,u,r,£,u/) were spoken by an adult female. Six notch filters were used to manipulate 

the recorded tokens. Each notch filter had a passband from DC to 800 Hz. Upper passbands were 

from fu = 3.15, 4, 5, 6.3, 8 and 10 kHz up to 20 kHz. When subjects were asked to identify the 

consonants under different notch-filter conditions, it was found that performance fell smoothly 

from 91.6% for fu = 3.15 kHz to 73.9% for fu = 8 kHz. It then dropped more sharply when 

more high-frequency information was discarded. When analysing the fricative perception alone, 

a number of interesting observations were made. Perception of lsi was near 100% for values of 

fu ~ 8 kHz, after this, scores fell sharply. Scores for Izl were also near 100% up to fu = 6.3 kHz, 

after which they fell sharply. However, for the fricatives If,3,8/, scores were only high for values 

of fu ~ 4 kHz, after which they fell steadily. These findings agreed with those previously discov­

ered by Lacerda (1982), that eliminating the apparently most distinctive spectral features had 

little effect on the perception of the fricative. This has important implications for the way we 

think about speech perception, and hence, the assumptions about the nature of 'cues' in speech, 

although the artificial editing of the speech sound must be considered as having an effect itself. 

Fricative synthesisers have important roles in both commercial and research applications. The 

only manner in which the 'successfulness' of such a synthesiser can be measured, is by testing 

human perception of the resulting sounds that can be produced. In their development of such a 

synthesiser, Heinz and Stevens (1961) used a model of the vocal tract, consisting of a single noise 

source, and a pole-zero filter arrangement. When isolated stimuli consisting of single bands of 

noise with varying centre frequency was presented to subjects, differing responses were elicited. 

Centre-frequencies around 2-2.5 kHz produced If I responses, around 5kHz produced lsi, and 

around 8 kHz produced both If I and 181 responses. Synthetic fricative-vowel syllables were 

then generated, and agreement with the findings of Harris (1954) was established concerning 

the importance of vowel transitions in the perception of non-sibilants. These findings were in 

agreement with previous studies (Harris 1954; Hughes and Halle 1956). 

Many perceptual experiments make use of synthetic fricatives in order to try and establish 

perceptual cues (e.g. Gurlekian 1981; Stevens et al. 1992; Hedrick and Ohde 1993; Cheesman and 

Greenwood 1995; Formby and Childers 1996). Other studies use both synthesised and natural 

speech stimuli, occasionally concatenating the two (e.g. Nittrouer and Studdert-Kennedy 1987; 

Zeng and Turner 1990; Whalen 1991; Johnson 1991; Nittrouer 2002). As previously discussed, 

great care must be taken over the interpretation of perceptual results using artificial stimuli. 

In some cases, the use of highly-controlled synthetic fricatives can be justified, but their use 

is often exploited beyond interpretable limits. The findings of many of these studies could 

easily be interpreted differently to the conclusions published. One of the most commonly-used 

synthetic-speech analysis tools is the continuum: a single parameter of the stimulus waveform 

can be varied through a range of values. When this parameter is adjusted, the perception of 

the sound invariably also changes; but from this care should he taken over drawing conclusions 

that the specific artificial 'cue' that was adjusted was solely responsible. That is, the adjustment 

of one artificial parameter will invariably alter many other possible cues. In general though, 

these studies provide useful supporting evidence of the existence of perceptual cues in the vowel­

transition regions, and also of the effects on perception of the interdependency between cues 

(such as relative amplitude and spectral shape (Hedrick and Ohde 1993)). 
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Evidence of the problems faced when using edited natural, or synthetic speech can be seen by 

designing a perceptual experiment in which both sources are used as stimuli. The disparate 

results of such a study were briefly mentioned by Stevens et al. (1992), although this was 

considered insignificant. 

Some studies attempt to model the important acoustical properties of fricatives, and observe 

the effects on perception of changes in 'acoustical cues'. However, since these changes do not 

generally relate to changes in tract configuration, the effects on perception are of limited value. 

A more feasible approach would appear to be that of modelling production and observing the 

effects on perception of 'changes in production'. The synthesisers used in such studies generally 

rely upon source-filter models of the tract that work well for vowel synthesis. However, these 

models do not generally take into consideration the complex effects of multiple forward sources 

for given configurations, and therefore produce acoustical signals that may not be representative 

of the configuration in question. Measures of changes in perception to some artificial change in 

'configuration' must also be questioned. 

As an alternative approach to tackle the problems of using either synthetic, or artificially edited 

speech, while maintaining good control over certain 'parameters', Fletcher and Newman (1991) 

implemented a visual articulatory feedback mechanism. A palatometer was fitted to two adult 

males, allowing observation of the positions of contact with the tongue. These same two male 

subjects were used in a further perceptual study, in which correlations between contact-positions 

with the palatometer, and perceived sibilant were calculated. The effects of such invasive mea­

surements of production place are unfortunate, but unavoidable, and nevertheless provide rea­

sonable approximations to normal speech. However, the choice of subjects for the perceptual part 

of the study meant that the findings of perception of specific place changes are of questionable 

statistical validity. If the perceptual part of the experiment could be repeated under stricter 

conditions, highly valuable information pertaining to theories of perception of place could be 

ascertained. 

In a very different approach, the importance of certain acoustical characteristics on fricative 

perception was examined by testing the speech perception scores of CI subjects with a strategy 

that emphasised certain features. The 'transient emphasis spectral maxima' (TESM) strategy 

developed by Vandali (2001), boosted electrode-potential at times and frequencies of brief tem­

poral features. This emphasis on brief temporal - particularly low-level - acoustical features 

resulted in an improved performance in fricative perception. 

1.2.3 Analysis of speech production 

This section presents studies that have concentrated on observing and describing the actual 

production characteristics, rather than the acoustical characteristics of fricatives. Often, metrics 

discussed in the previous section are used. As mentioned earlier, one of the main purposes of 

developing tools to measure the 'characteristics' of fricatives is so that variations in production 

under different conditions can be measured. 

The idea that positional information in the vocal tract could be extracted from the acoustical 

signal was demonstrated by Strevens (1960), who considered that since articulatory configuration 
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was the chief cause of acoustical changes, the measurement of these acoustical signals should -

when combined with other physical measurements - contain information about the state of the 

vocal tract. Crude measurements of speech intensity and of pulmonic air-pressure revealed that 

the amount of pulmonic air-pressure required to elicit a certain sound intensity varied according 

to place of constriction. Analysis of spectra revealed that the place of articulation produced 

distinctive features in the spectrum. Front fricatives (labial and dental /ip,f,8/) tended to have 

the broadest (i.e. least 'peaked') spectra, and generally the lowest intensity. The mid fricatives 

(alveolar and palatal /s,J,(;)) had a more 'peaked' spectrum, with a peak occurring around 3-

4 kHz, and generally eliciting the greatest intensity. And the back fricatives (velar, uvular and 

pharyngal /x,X,h/), had intermediate intensity, and a more 'formant-like' spectral structure. 

Soli (1981) studied the spectra of the sibilants /S,Z,J,3/ in /F / and /FV / contexts (where 

V=/a,i,u/) in a single male talker. Mean LPC spectra were used to gain a reduced-variance 

spectral estimate. From the [s,z] productions, peaks in the F2 region of the following vowel were 

reliably seen before vowel onset, and it was suggested that this may occur when the constriction 

is insufficient to cancel these resonances. For [fl, spectral peaks relating to both F2 and F3 of the 

following vowel were observed, where F3 generally defined the main peak of the fricative spec­

trum. It was suggested that the peaks observed in the fricative LPC spectra resulted from back 

cavity resonances, although the effects of back cavity resonances had previously been thought to 

be different in fricatives and vowels, due to the antiresonance set up by the forward noise source. 

The relationship between the duration of a fricative, and its voicing was explored in the fricatives 

/f,8,s,v,o,z/ of just three male subjects by Baum and Blumstein (1987). Contrary to their 

expectations, it was found that, while mean durational differences did exist, the variations among 

them produced significant overlaps, so that very little information concerning the nature of 

voicing in fricatives could be gained from this measure alone. These findings were confirmed by 

Crystal and House (1988), who additionally found that fricative duration was also noticeably 

affected by its position within a word, as well as whether it appeared in connected speech or 

citation form. 

Useful information pertaining to production theories has also been gathered by comparing dif­

ferences between child and adult speech. Spectral mean (up to 9.6kHz), and amplitude in the 

sibilant production of eight children and four adults in /FiFi/ and /FuFu/ contexts was com­

pared by McGowan and Nittrouer (1988). Peaks in fricative spectra thought to pertain to F2 

in the vowel spectra were selected 'by eye', and were found to be higher in females than males, 

and higher in children than in adults. This is explained by the reduced size of the back cavity, 

and hence increased resonance. Additionally, it was found that these fricative spectral peaks 

were more more distinctly affected by vowel context in children than in adults. In later work 

(Nittrouer, Studdert-Kennedy, and McGowan 1989) evidence was found that mean sibilant cen­

troid measurements became more distinct with age, although higher-order moments provided no 

additional evidence of this (Nittrouer 1995). 

Frontally misarticulated [s] productions are often considered to resemble normally articulated [8] 

productions, both perceptually, and in terms of articulatory configuration. Baum and McNutt 

(1990) tested 10 children with disordered [s] production against 10 children with normal [s] pro­

ductions. Interestingly it was found that [8] productions in the disordered subjects had mean 

durations closer to that of normal [s] productions, whereas the durations of [s] productions were 
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similar across both groups. However, the amplitude was found to be a more distinctive measure 

difference between lei and lsi tokens in both groups of subjects, yet no significant changes 

were found in the amplitude data of the misarticulating subjects. In terms of spectral mean, 

in both groups some subjects maintained spectral differences in their [s] and [e] productions, 

whereas others did not, and while these distinctions may not be readily heard by a listener, they 

nevertheless indicate that an internal differentiation between the two fricatives occurs. These 

findings were a strong demonstration of the power of acoustical measurement tools over percep­

tual acoustic measurements, and hence, for example, the unsuitability of labelling misarticulated 

[s] as [e]. 

In the study of Fletcher and Newman (1991) mentioned earlier, a palatometer allowed accurate 

measurements to be taken of the place of constriction in Is,fl productions by two male speakers 

This positional information was compared across the subjects, and it was found that the sibilants 

were produced in quite different positions on the alveolar ridge across speakers, although groove 

width was more consistent. 

A closer analysis of the vowel transitions and voicing differences in the fricatives If,v,s,zl in 

different contexts, from acoustic analysis (up to 4.8 kHz) was performed by Stevens, Blumstein, 

Glicksman, Burton, and Kurowski (1992). Measurements of duration were in accordance with 

previous studies: voiced fricatives on average being around 30 ms shorter than unvoiced (although 

this was a smaller difference than found in previous studies), and the preceding vowel being longer 

when followed by a voiced fricative. The duration of a fricative is longer when in utterance-final 

context (around 41 ms) and shorter when in inter-utterance context (around 24ms). Progressive 

30-ms Hanning windows were used with a 20-ms overlap, and running approximately from mid­

vowel to mid-fricative positions. As expected, the Fl peak reduces in amplitude over IVF I 
transitions, and increases over IFV I. This Fl peak - thought to represent glottal vibration 

- sometimes continued after frication had commenced in unvoiced fricatives, but also often 

discontinued in the central regions of voiced fricatives. This led to conclusions that features 

other than the duration of glottal vibration must be present in signaling the voicing feature in 

fricatives. 

Spectral moments were used to measure the degree of production variability in the sibilants, 

within and across subjects, by Newman, Clouse, and Burnham (2001), as mentioned earlier 

(§1.2.2). Of the four moments calculated, the centroid (Ml) and skewness (M2) measures were 

found to differentiate the fricatives to the greatest degree. The study clearly demonstrated that 

within a speaker, the variations of Ml and M3 for a given sibilant would usually not overlap the 

variation of values for the other sibilant, although this was not always true. In isolation then, 

these measures were seen to be insufficient at completely distinguishing productions of different 

sibilants, suggesting the existence of alternative cues. However, they also highlighted the signifi­

cant degree of variations in production within a speaker, and within a given fricative. Although 

the sibilants were usually clearly separated by these measures within a single talker, when com­

paring across speaker, it was found that in some cases, the values for one subject's production of 

[J1 would completely overlap with another subject's [s] values. When combined with the previous 

suggestion, it seems most probable that other cues must exist that are not being considered. 

However, in the perceptual portion of this study, listeners took longer in classifying the sibilants 

of speakers with less distinct (i.e. containing large overlap) spectral moments. This could suggest 

that, while serving as the primary cue, alternative cues are used if this cue is insufficient. In a 
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further analysis, it was found that a high statistical correlation existed between the centroid and 

skewness values of a given subject, although this was considered as a reinforcing role8 . FUrther 

investigation of the within-speaker variations in sibilant productions was undertaken by Munson 

(2001). The centroid was considered over time in the sibilants in limited contexts. Evidence was 

presented that sibilant production variability depends upon context. 

When the hearing system is altered by deafness, and following artificial stimulation, analysis of 

speech production may lead to clues about the hearing system's role in production. Lane and 

Webster (1991) demonstrated the role of self-hearing in speech production by looking at the de­

terioration of post lingually deafened adults. A form of spectral mean (Jassem 1979) was used for 

the purposes of measuring differences in [s] and [8]. Measurements of the centroid showed a re­

duced production distinction between the sibilants compared to normal hearing subjects. When 

limited hearing capability is restored by artificial means such as cochlear implants, measures 

of speech production often move towards 'normal' values (Lane, Wozniak, and Perkell 1994). 

Matthies, Svirsky, Lane, and Perkell (1994) used spectral moments to demonstrate the improve­

ments over time (Le. movement towards 'normal' values) in the productions of sibilants in three 

out of five CI subjects. In a later study (Matthies, Svirsky, Perkell, and Lane 1996), evidence 

was also presented that the improvements in spectral moment values (centroid and skewness) 

were probably connected to improvements in articulatory configuration, using a electromagnetic 

midsagittal articulometer (EMMA). 

Clearly, there is much that remains to be discovered about the effects of cochlear implants on 

speech production. It is important that analysis in this area is undertaken with the utmost care, 

and with careful consideration of underlying assumptions. 

1.2.4 Speech production-perception theory 

Within the studies reviewed, apparently significant features have been observed at different 

points along the chain of human communication. Articulatory features, such as manner and 

place correspond to characteristic features in the resulting acoustical signal. Certain features in 

the acoustical signal, such as spectral shape, have been found to be important in determining 

what will tend to be perceived by a listener. And specific changes in hearing ability correspond 

to different changes in both perception, and production. 

However, it must always be considered that the different features that are observed in experi­

mental analysis may, or may not be important to the underlying processes of speech production 

and perception. FUrther, even if it can be established that a particular feature is important to 

these fundamental processes, it is important to consider precisely what role the feature plays. 

An exciting area of speech research is that of theorising about and establishing the underlying 

processes of speech production and perception. A number of theories about speech perception 

and production exist, and it is appropriate to mention a few of the important ones here, since 

they will inevitably contribute to our interpretation of experimental results. 

Although it was originally theorised that speech could be broken down into small phonemic 

segments that conveyed clear and complete sequences representing tokens, this was quickly found 

8The calculation of spectral moments may incorporate methodological instabilities that contribute to the 
degree of variation and inter-correlation. These are investigated in §2.3 and in Chapter 5. 
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to be a problematic approach to speech perception. The main confounding factor was found to 

result from phonemic segments overlapping with each other, sometimes to such an extent that a 

short phoneme could disappear altogether. These overlaps were found to result from articulatory 

configurations of phonemes overlapping to various degrees. Theories that tried to account for this 

coarticulation effect, while maintaining the original ideas of ordered sequencing were reviewed 

by Kent and Minifie (1977). Coarticulation itself was found to be subject to unaccountable 

variations, and new theories of speech production and perception evolved. 

A good comparison of these is presented by Hawkins (1999b). These theories are often quite 

diverse, and unfortunately often lead to conclusions that cannot be easily tested by experimen­

tation, if at all. They are all, of course, based on experimental results, and modelled on certain 

findings. However, often different experimental findings are considered more significant, and are 

explained more convincingly by an alternative theory. Common to all theories, however, is that 

they must explain all experimental results, and though this is usually attempted, explanations 

are sometimes of questionable plausibility. 

For example, the motor theory, which has long been one of the more popular suggested theories 

of perception, relies heavily on some awkward underlying assumptions (Hawkins 1999a). One of 

the more intriguing problems regarding speech perception is that, in order to transmit a single 

specific abstract 'token', speakers can and do produce an immense variety of different acoustical 

signals to represent this 'token', and yet these signals will all invariably be perceived by a listener 

as the single correct 'token'. How can this vast range of acoustical signals all be interpreted as 

the single intended token? Motor theory suggests that, although the acoustical signal produced 

to represent a specific token is highly variable, the underlying production mechanism required 

to do so is not. It is suggested that from the acoustical signal, a special 'speech module' within 

the brain allows the underlying articulatory movements that were used to generate the signal, to 

be abstractly 'viewed'. From this invariant articulation abstraction, the intended token can be 

recognised. However, little is offered in the way of explanation of how the articulatory movements 

are decoded from the acoustical signal, other than that it is innate to the speech module, and 

present from birth. 

An explanation for the way in which the articulatory configuration can be recovered from the 

acoustical signal is proposed by Stevens (1989) in his 'quantal' theory. It is proposed that the 

acoustical speech signal can be broken down into invariant properties and variant properties. The 

invariant properties are those relevant to the articulatory configuration, while the variant proper­

ties do not contribute, and are 'discarded'. These invariant cues within the speech are enhanced 

by optimised production and perceptual systems. Specifically, a given important acoustic feature 

will change nonlinearly with respect to the movement of the articulator, so that the acoustical 

signal will only change significantly when the articulator also does. A similar arrangement is 

proposed to exist in the perceptual system. Quantal theory offers an attractive explanation for 

many findings of production and perception. However, in many cases it does not. 

The occurrence of a highly-variable acoustical signal representing a single token was considered 

from a very different perspective by Lindblom (1983). Rather than viewing the acoustical signal 

as having invariant 'cues' and variant 'noise', it was considered that in fact the variations that 

are produced for a single intended 'token' result from additional influences that playa critical 

role in transmitting the meaning in an optimal manner. A trade-off is set up between producing 
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transmitting clear, easily identifiable acoustical information, and conveying this information in a 

manner appropriate to the situation. Coarticulation, while reducing the clarity of the intended 

token, allows the speed of information transmission to increase, ultimately increasing the overall 

transmitted information. It is suggested that acoustical data are optimised to supplement (and 

hence clarify from ambiguity) an expected input. Hyper- and Hypo-articulation (H & H) theory 

offers a theoretical production framework that expects the differing degrees of variability that is 

observed in speech. Investigating these variabilities (rather than the 'invariabilities') may result 

in an increased understanding of human speech production and perception. 

1.2.5 Summary 

Perceptual cues that can discriminate the fricatives must exist somewhere within the acoustic 

signal. However, determining precisely which features of the acoustical signal represent these 

cues has been a highly problematic area. This is due in part to the large variabilities across 

productions, combined with the effects of interactions with context of the fricatives. Theories 

of underlying speech production and perception processes have helped to predict and eliminate 

some of these problems (e.g. coarticulation), but classical theories do not account for all that is 

seen. 

Some studies consider the production mechanisms behind the signals in order to evaluate them, 

and attempt to explain spectral shapes in these ways. Other studies take a more 'observational' 

approach, and use statistical results to locate likely discriminatory cues. The difference between 

production and perception cues should be borne in mind for each of these studies. 

In some cases, measurements of production are used to establish articulatory information, but 

how reliable are these measurements at predicting articulatory configurations? Other studies 

attempt to use various measures of the acoustical signal to speculate about likely explanations 

for perception capability, but is this really reliable when so little is still understood about the 

fricatives? 

In the study of fricative production, subjects may either be asked to read real word lists, or 

'nonsense' words, in some cases producing sustained fricatives, that rarely occur in speech. The 

use of sustained fricatives is likely to lead to better understanding of the noise portion of the 

fricative, but is unlikely to produce results related to variations that typically occur in speech. 

The behaviour of voicing in fricatives is often examined in real or nonsense word corpora, but 

again, the variations of natural speech are unlikely to occur. 

Many of the more basic measures that can be used in speech production usually produce unreli­

able information. Simple duration and amplitude measurements do not tend to yield informative 

results, although they often suggest trends. 

Traditional spectral methods that have been invaluable in vowel-speech analysis, such as LPC, 

also become unreliable when considering fricatives. Other spectral methods, such as template 

matching, have been developed to try and find distinguishing features in the spectrum, but these 

have been very limited in terms of information they return about production, and classification 

ability is also limited. 
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The large variations in fricative spectral estimates have often been seen as both unimportant and 

problematic, and so broad spectral energy measures have often been favoured. Of these broad 

descriptors, the most successful have been moments, which capture the overall spectral shape, 

with little importance attached to narrow frequency peaks. However, a number of problematic 

issues surround the use of spectral moments. Their broad descriptive capability means that they 

are unable to capture apparently important finer frequency spectral details, correlations have 

been found in Ml and M3, and although able to discriminate many sibilant spectra, they often 

fail at this task, and invariably fail at distinguishing the non-sibilants. Whether these problems 

result from fundamental limitations in the technique, or from errors in the methodologies is 

in important issue. For example, some early studies assumed that sound pressure level (SPL) 

variations would not drastically alter the spectral shape, but more recently this has been shown 

to be incorrect. There is strong evidence to suggest the interaction between relative amplitude 

and spectral shape plays an important role in perception. So adjustments to moments may be 

needed. 

It has been found that perceptual cues for discriminating non-sibilants lie mostly in the vowel 

transition regions. This has been confirmed by automatic speech classification investigations, and 

also perceptual studies. Occasionally, the transition regions are incorporated into classification 

methodologies. Of these, locus equations have not been found reliable, and although spectral 

moments have been used in the voicing region of fricatives, it is not clear whether this usage is 

justifiable for portions of the signal that contain significant spectral peaks. 

However, spectral moments have been used to describe the speech of subjects with some form 

of speech disorder, or speech affected by hearing ability. In this regard, spectral moments have 

generally been able to indicate improvements over time in most subjects. 

Preliminary studies suggest that valuable information lies in the peak positions and magnitudes 

of fricative power spectra, but the inaccuracies of spectral estimation have meant that these have 

been difficult to uncover. 

Finally, in the testing stage of many descriptive measures, it has become common practice to 

test the classification ability on the same set of data as was used to determine differences across 

tokens. This of course can provide insight into possible significant measures, but is far from 

establishes what the significant features of all tokens will be. In order to do this, the measures 

being tested must be tried upon unseen data. 

A few additional points remain concerning common practices in fricative analysis. The range 

of frequencies to be considered in analysis has often been under 11 kHz, and sometimes as low 

as '"'-'4.5 kHz. There is strong evidence to suggest that fricatives contain significant information 

above these frequencies. Additionally, practices in obtaining spectral estimates must be reex­

amined: it now seems common to use estimates with variances that, as will be shown in clue 

course, are extremely significant. While averaging techniques exists, and have been employed 

in a few studies, alternative methods for obtaining more accurate spectral estimates should be 

investigated. 
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1.3 Approach 

Parameters have been found that partially distinguish some of the English fricatives, but these 

are commonly subject to large variations across productions. These variations are often so large 

that the boundaries for different fricatives often overlap, and yet these fricatives remain correctly 

perceived. This suggests that some of the most important distinguishing cues have yet to be 

found. 

In §2.1 we investigate some of the theory behind fricative production, and the problems facing 

parametric analysis. Many of the popular fricative characterisation methods involve grouping 

the energy in the spectrum into broad bands, or describing the overall distribution of spectral 

energy in very broad terms (such as moments) before further classification stages occur. This 

approach is well-suited to dealing with the problematic large variances seen in fricative spectra. 

The large variances in fricative spectra usually result from first estimates of the stochastic signal 

that are not consistent. Techniques that exist for reducing the spectral estimate variance are 

commonly not implemented. Several methods of reducing the variance of spectral estimates 

in typical fricative signals are investigated, and the practicality of each is discussed in §2.2. 

Generally, the classical techniques tend to rely on assumptions that do not always hold well. 

Modern techniques are also investigated, and found to be well-suited to the analysis of fricative 

signals. 

It may be expected that improvements in spectral estimation should lead to an improvement in 

performance of the more popular fricative classification techniques, such as moments. In §2.3, 

the fundamental properties of spectral moments are carefully examined. 

In order to continue investigating fricative production, it is necessary to acquire suitable test 

data. The details of the procedures followed are given in Chapter 3. A real-word corpus (given 

in Appendix A) was devised, and read by six normal-hearing speakers of each gender. 

Improved spectral estimates allow more careful observations of typical productions to be mea­

sured, and this is investigated in Chapter 4; using these spectral estimation methods, improved 

spectrograms of fricatives can be generated, and these are presented in Appendix B for the voice­

less fricatives in two vowel contexts, for all speakers. The effects of incorporating better spectral 

estimates into the spectral moment methodology are explored in Chapter 5. Other important 

aspects of spectral moment calculation do not seem to have been considered in the literature, 

and these are also explored. 

With the variance of the estimate reduced, attempts are made to measure the variation in 

fricative production in different contexts in Chapter 6. Differences and similarities between 

fricative spectra are quickly located. Differences across speakers, across vowel contexts, and 

within fricative tokens are explored, and many of the results of these analyses are given in 

Appendices C and F. Patterns in production were observed using spectral correlation, which 

was previously impossible using large-variance spectral estimates; results for male fricatives only 

are given in Appendices D and E. 

The foremost task is not to classify, but to determine which features of the acoustical signal 

reflect aspects of production. Moments have been useful in the analysis of cochlear implant 

user's fricative productions where incorrect place is observed. Other problems with production 
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may also exist. Finding methods that enable more subtle spectral details to be described may 

be useful in such analyses. With measurements of productions from normal-hearing speakers in 

hand, the analysis of four cochlear implant users is undertaken in Chapter 7. 

This work presents significant improvements and new analysis methods that can be made use of 

in future studies of normal and disordered fricative production, and Chapter 8 concludes with a 

discussion of a number of possible future applications. 



Chapter 2 

Theory 

2.1 Fricatives as stochastic processes 

In order to analyse fricatives, consideration must be taken over how they are produced, and 

hence, what characteristics they may be expected to exhibit. Fricatives are produced in a wholly 

different manner to vowels, and so it is appropriate that a different set of analysis tools may be 

used. By considering what is known and what is not known about fricative production, tools 

can be developed that are best suited to analysis of these signals. 

2.1.1 Turbulent jets as acoustic source 

The source of noise is generated near a constriction in the vocal tract. When the air flow is chan­

nelled through a constriction, the air particles accelerate, creating a jet of air which has very 

different characteristics to laminar airflow. Such jets of air have distinguishing characteristics, 

among which are highly randomised subsidiary vortices and turbulent eddies. These eddies can 

occur at different places along the constriction and at the exit of the constriction, depending 

on the airflow, configuration of the constriction and surface conditions. These turbulent eddies 

generate a random sound pressure source (Meyer-Eppler 1953; Fant 1970; Flanagan 1972). Ad­

ditionally, the jet of air released from a constriction may be targeted towards an obstacle (such 

as the teeth) or a surface (such as at the glottis), in which case additional, and often more intense 

sources of turbulence noise are often produced (Stevens 1998). Rapid transient changes in flow 

(as for the affricates) can also act as sources of noise (Scully, Castelli, Brearley, and Shirt 1992). 

We take a moment to review some of the theoretical and analytical fundamentals of turbulence 

noise sources. 

The airflow during fricative production can be treated as an incompressible fluid. This approx­

imation holds well as long as the velocity of the air particles does not approach the speed of 

sound (Schlichting 1960). During laminar flow, particles follow the direction of the tube, or 

constriction they are within. If the tube is long and straight, the flow will have greatest velocity 

in the centre of the tube, while at the edges it will approach zero. Fluid particles in the flow are 

acted upon by the pressure gradient within the tube. Their inertial force is partially determined 

20 
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by the density of the fluid () and the free-stream velocity V. Particles also interact with each 

other due to frictional forces, and these are partially determined by the coefficient of viscosity f-t. 

Both of these forces are influenced by the particle velocity. The ratio of inertial force to friction 

force hence describes the nature of the flow, and is termed the Reynolds number, defined 

(2.1) 

where d is the characteristic dimension (or effective width (Meyer-Eppler 1953)) of the tube, 

and the ratio l/ = JiJ () is known as the kinematic viscosity. 

The characteristic dimension of some tube of arbitrary cross-sectional shape is proportional to 

the ratio of the cross-sectional area to perimeter. Consider the airflow through some tube: if 

the volume flow within the tube remains constant, an increase in the surface area within the 

tube (and therefore an increase in the characteristic dimension), will increase the 'inclination' 

of the airflow to become turbulent. The Reynolds number then, is essentially an index that 

corresponds to a particular configuration of flow. For an excellent illustrative account of such 

flows, see Van Dyke (1982). 

Because particle velocity varies as a function of distance from the edge of the tube, these frictional 

forces result in shear forces upon the fluid particles. As the Reynolds number of a system 

increases, the nature of the flow changes from a laminar flow to a a more chaotic turbulent 

flow. The onset of significant turbulence occurs once a critical threshold R > Rc is overcome, 

where the critical Reynolds number Rc is determined by factors such as the configuration of 

the constriction and surface properties, and is generally found by experimental measurement. 

The onset of turbulent flow coincides with the generation of acoustical noise. The mean cross­

sectional velocity V of flow within the tube then becomes related to the pressure drop across the 

constriction Pd as 

(2.2) 

(Flanagan 1972) (sometimes called the overpressure). The pressure drop across the constriction 

is therefore proportional to the squared particle velocity. 

From theoretical and practical analysis, a number of different relationships of far-field sound 

pressure to overpressure have been suggested. From physical models of fricative production, 

Meyer-Eppler (1953) demonstrated that an approximation of the sound pressure Ps at a fixed 

distance from the source of turbulence was given by Ps ex R2 - R~, where Rc ~ 1800 for plastic 

tube models. From this, the relationship of sound pressure to overpressure was approximately 

Ps = kl~Pd - k2 where kl and k2 are constants. However, analysis of these results by Stevens 

(1971) led to the conclusion that the sound pressure was less sensitive to constriction area, and 

more to overpressure, resulting in the relationship Ps ex p~.5d, and this relationship has been 

used since (e.g. Scully and Allwood 1985). 

The shape of a constriction therefore plays some role in determining the resulting sound intensity, 

and the rate of increase in intensity with pressure. The situation is further complicated by the 

introduction of some obstacle, or surface incident to the turbulent flow, as often occurs during 

fricative production, and so more complex methods are required to analyse these. 
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Monopoles, dipoles and quadrupoles are theoretical representations used to describe sources of 

noise that are generated by different mechanisms (Landahl 1975), and each of these different 

source types exhibits different known characteristics (Goldstein 1976). For instance, under cer­

tain assumptions, the sound power generated by a quadrupole source is usually proportional to 

V 8 , and for a dipole is usually proportional to V 6
• A turbulent free jet is considered to generate 

quadrupole sources. When such a jet is directed towards an object or surface, additional dipole 

sources are constructed. Since each type of source exhibits different characteristics, they are a 

useful tool when considering fricative production, and are often used to help explain observed 

behaviour of various models (e.g. Stevens 1971; Shadle 1990; Stevens 1998). 

For example, since for low flow velocities (specifically, for V < c where c is the speed of sound), 

the conversion of kinetic energy of the turbulent flow into sound power is more efficient for dipoles 

than for quadrupoles, it may be expected that a jet directed towards an obstacle or surface will 

exhibit greater acoustical intensity. Evidence of such behaviour has been supported by models 

of the constricted vocal tract by Shadle (1990); the far-field sound intensity was increased by up 

to 30dB when an obstacle emulating the teeth was introduced into the flow of the air-jet. 

A very limited amount is known of the spectral properties of turbulent noise sources. Goldstein 

(1976) demonstrated that in general, for a free jet, the quadrupole noise source spectrum will be 

in the form of a very broad peak, the maximum of which is located at a frequency proportional to 

Vjd. The most complete analysis of source characteristics in more vocal-tract-like configurations 

has been undertaken by Shadle (1985), who showed that this overall shape was altered by the 

introduction of an obstacle (and hence, dipole sources). Whereas for a quadrupole the source 

spectrum rolls off either side of the maximum, for the dipole-quadrupole combination source, the 

spectrum generally did not roll off significantly at low frequencies. Additionally, the quadrupole­

type source retains its overall shape with changing intensity. Quadrupole-dipole sources are 

relatively insensitive to changes in flow at low frequencies, but the increase in spectral amplitude 

grows with increasing frequency. 

2.1.2 Interaction of source and tract 

Unlike vowel production, where the main excitation source occurs at the glottis, which can be 

considered as one end of the cavity system, turbulent noise set up during fricative production 

interacts with cavities both posterior and anterior to the sources. These cavities further shape 

the spectrum in complex ways. 

For a fixed configuration, the vocal tract will exhibit specific resonance characteristics. The 

positions and magnitudes of resonant frequencies (or 'formants') are characteristic of the system 

configuration. The characteristic spectrum is defined as the response to an excitation occurring 

at the glottal end of the tract. However, as the source moves to a position significantly forward 

in the tract, a number of significant changes occur. 

Perhaps most significant is that where only resonances existed in the glottis-excited vowel sys­

tem, when the source is brought forward, anti-resonances may be excited. These anti-resonances 

are frequencies of infinite impedance looking towards the glottis from the source. These anti­

resonances have distinctive effects on the shapes of spectra resulting from forward sources. Specif­

ically, the location of the noise source within the tract has a significant effect on the frequencies 
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of zeros in the system (Fant 1970; Stevens 1971; Flanagan 1972). 

A common early approach to modelling the vocal tract with a forward source was the multi-tube 

approximation (e.g. Fant 1970; Flanagan 1972), based on a series of interconnected tubes. The 

tubes are intended to emulate the chambers within the tract, and these exhibit resonances and 

anti-resonances. Electrical circuit representations of multi-tube approximations of the tract are 

in abundance in the literature, and are good at describing the roles of cavities as resonators, the 

changes in transfer-function when the tract changes shape, the effects of varying sources, and 

so on. The models are generally considered accurate up to approximately 4 kHz, beyond which 

the assumption of plain waves becomes less accurate. However, in general their use in predicting 

fricative behaviour is limited (Scully 1990), perhaps as a result of their over-simplification of the 

processes occurring within the tract. From such models nonetheless, Fant (1970) demonstrated 

that forward excitation would both excite the natural resonances in the tract, but also produce a 

number of anti-resonances, or zeros, although it could not be predicted where these would occur 

for a given tract configuration. These zeros would appear as troughs in the spectrum when 

not located near any poles, and a pole and zero in close proximity would tend to cancel each 

other out. Generally, many of the back-cavity poles are attenuated by zeros, giving spectra their 

characteristic 'broad' shape. It was also demonstrated that the forward excitation produces a 

characteristic zero at low frequencies. The characteristics of several fricatives were summarised 

by concluding that [fj has no, or a very high resonance frequency (due in part to the lack of a 

resonant cavity in front of the constriction). The [sJ configuration displayed the properties of a 

high-pass filter with high cutoff frequency. The large resonant cavity in front of the [Jl constriction 

gave it a single resonant frequency lower than [sJ or [fj. It seemed likely that multiple sources 

could exist, and Fant (1970) concluded his work by pointing out the importance of increased 

measurements of productions. 

The experiments performed by Shadle (1990) revealed a significant amount of new information 

about forward production, with physical models incorporating flow obstructions, and with ap­

propriate explanations for various findings. In addition to the zero found close to 0 Hz during 

forward excitation, an additional complex-conjugate pair of zeros are generated at a distance in­

versely proportional to the distance between the constriction, and the sound source. It was also 

noted that since this distance is usually very short, a small change (say, "-'lmm) will move the 

first free zero by a significant amount (possibly several hundred hertz). In addition, the distance 

between source and constriction was found to be inversely proportional to the amplitude of the 

radiated sound. 

Nevertheless, the considerable variability in the observed spectral characteristics of fricatives is 

still not accounted for by current models (Stevens 1998). 

2.1.3 A partially-known stochastic process 

A sustained voiceless fricative sound - for example [JIJl - is characterised by random turbulent 

airflow that generates acoustical noise. The resulting far-field signal can be considered as a 

stationary stochastic process. This implies that, for a fixed tract configuration and lung pressure, 

time series (and hence the frequency spectrum) produced by the system will be different over 

any two time intervals, despite having identical underlying statistical properties. Such stochastic 
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systems can only be effectively described qualitatively in terms of estimated statistics, rather 

than quantitatively. 

This stochastic process can be modelled as a noise source acting on a pole-zero filter, and so the 

spectral 'peaks' and 'troughs' can be described by a number of poles and zeros. It seems likely 

that the positions of these poles and zeros are significant to the production of fricative sounds, 

albeit via a highly nonlinear relationship. The frequency location of poles, and hence peaks in 

the spectrum are generally determined by resonant frequencies in the tract. The positions of 

zeros, and hence troughs in the spectrum are determined in large part by the precise position of 

the forward noise source, although the interaction of source position and zero location is hard to 

deduce from the speech signal alone. Variations of air pressure will lead to changes in turbulent 

characteristics, and so intricate relationships between fricative intensity and the spectrum are 

likely to exist. 

To clarify some facts that are known about turbulent-type production, it may be appropriate 

to briefly consider a first-order approximation of a multiple-forward-source tract system. It 

is known that a fixed tract will exhibit fixed poles intrinsic to its shape. Next, consider a 

quadrupole or dipole source positioned somewhere in the tract. This source will excite the poles 

in the tract function, and if it is in a forward position in the tract, will also generate a particular 

configuration of zeros. The overall output spectrum of the system so far will be approximately 

represented by the product of source spectrum, tract poles, and zeros caused by the forwru·d 

position of the source. However, if the particle velocity is changed (as a result of an increase in 

overpressure) then it can be expected that the source spectrum will change, and so the source 

spectrum is velocity-dependent. It has also been observed that such a change in flow will also 

result in a positional change of the source, resulting in a change in the zeros generated by this 

source. It should also be considered that within the system, a number of both quadrupole and 

dipole sources will be present. A further complication therefore arises, since the flow velocity in 

one part of the tract will in general be dependent upon configurations posterior in the tract. 

Multiple zeros at a range of frequencies are introduced for a given configuration with forward ex­

citations. The problem of estimating the source distributions from the resulting acoustical signal 

becomes much more complex, and the solution is no longer unique. Further, the interactions of 

multiple sources is overwhelmingly complicated. It rapidly becomes clear why capturing specific 

articulatory information from the output spectrum is such a difficult task. 

Despite expectations that such systems are highly complex, it is entirely possible that they 

may also exhibit statistical covariances. Good analysis tools should try and make use of this 

data. However, perhaps as a result of inadequate treatment of fricative signals, the reverse 

is often implemented, and the contributions of features of known importance are suppressed. 

In particular, care should be taken over the degree of frequency-smoothing that is performed 

(discussed in §2.2.2.3), which can degrade spectral peaks and troughs. The use of spectral 

moments as a broad descriptive metric is discussed in §2.3 and Chapter 5. 

The voiceless fricatives appearing in connected speech, while exhibiting some of the stochastic 

characteristics of sustained voiceless fricatives, introduce multiple nonstationary elements (Scully 

and Allwood 1985; Scully 1990). For example, the tract cross-sectional area varies over time in 

fricatives in jVFV j context (Scully, Grabe-Georges, and Castelli 1992). Also, it is likely that the 

forward noise source location moves during production, and this will be reflected by changes ill 
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amplitude, moving zeros and hence troughs (Shadle and Scully 1995); furthermore, these changes 

are affected in different ways by specific vowel context: they cite an example of a subject whose 

[s] productions were found to be most significantly affected in /usu/ context. The signal must 

therefore be considered a nonstationary stochastic process. 

It has been suggested many times in the literature that the central region of a spoken fricative 

can be considered reasonably stationary. However, this seems to be a loose assumption and 

any nonstationary regions in real speech that are treated as stationary will produce increasingly 

inaccurate results as larger time-series data segments are relied upon. Unfortunately, this 'brief 

stationarity' introduces problems in stochastic frequency analysis, and is discussed in §2.2.2.2; 

the effects resulting from erroneously assuming the signal to be stationary will be demonstrated 

later in §4.2. 

Compounding the complexity of the process is the evidence that, on repeating a spoken fricative, 

a single speaker will often vary the precise manner in which the fricative is generated (Scully 

and Allwood 1985). This means that our nonstationary stochastic process is also not ergodic. 

This has implications for ensemble-averaging techniques, and will be discussed in §2.2.2.1. Addi­

tionally, since the productions across speaker vary significantly (Scully 1990), but generally with 

invariable perceptual results, it is clear that methods of measuring acoustical differences across 

productions are needed. 

These facts mean that in order to analyse fricative signals, great care must be taken. Indeed, a 

rather fragile set of additional constraints and assumptions must be made if any measurements 

are to be taken at all, and these are discussed in §2.2. 

The fricative production system is based on one or more noise-sources, whose location may vary 

across productions, and which excite a system of chambers that produce anti-resonances as well 

as resonances (that may also vary significantly across productions), and whose precise locations 

will help describe the system. It has been found that knowledge of these precise source properties 

is highly significant if either the source, or the overall system is to be modelled. Additionally, 

even very 'simple' articulation adjustments result in complex acoustic pattern changes (Scully 

et al. 1992). Nevertheless, we can expect that correlations connecting these variables exist, and 

if measurable, would be invaluable in our understanding of fricative production (Scully, Castelli, 

Brearley, and Shirt 1992): 

The multiplicity of acoustic effects resulting from the articulatory actions are not 

independent of each other however: the acoustic sources are linked by the unified aero­

dynamic system of the whole respiratory tract; the actions which control the sources 

also determine changes in formant frequencies and bandwidths. Co-varying acoustic 

pattern changes should be expected, governed by the aerodynamic and acoustic pro­

cesses of speech production working on the particular articulatory scheme chosen by 

the speaker. It seems likely that any or all of these acoustic patterns, including their 

pattern of co-occurrences, may be useful to listeners and may be important when 

characterising and modelling sequences containing fricative consonants. 

Measuring the covariances between configurations across productions may lead to increased 

insight as to the nature of fricative production, and this is explored in Chapter 6. 
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One of the most important tasks therefore becomes that of making precise measurements of 

productions of the system, and rather than ignoring knowledge about the production procedures, 

making as much use as possible of them, and carefully observing the typical changes that occur 

between productions. 

2.2 N onparametric spectral estimation 

This section serves as a reminder of some key principles concerning the spectral estimation 

of stochastic processes, as well as introducing a few modern methods that have recently been 

developed. A thorough treatment of Fourier and statistical theory is not given here, since these 

topics are well-covered elsewhere in the literature (e.g. see Bendat and Piersol 1986; Percival 

and Walden 1993). Familiarity with fundamental signal processing principles such as Nyquist 

criterion, linear filters, and so on, is assumed. No rigorous proofs are undertaken, but the 

procedures of the above authors are followed. 

It must be noted that many well founded principles of spectral estimation of stochastic processes 

are often overlooked in the area of speech analysis, and hence §2.2.1 starts us off with a refresher 

of the most important aspects, including Fourier interpretation of stochastic processes, statistical 

errors in estimates, the periodogram, and data tapers. Section 2.2.2 reviews some established 

procedures in suitable treatment of fricative signals, ensemble averaging, time averaging, and 

frequency smoothing, which are surprisingly often absent from many fricative analysis research 

publications. 

Section 2.2.3 introduces multitaper spectral analysis, a valuable new tool available to speech 

science, although not often used. Again, rigourous analysis of this methodology is present in 

the literature. In particular, the reader is referred to Percival and Walden (1993), and Thomson 

(2000). Many of the key principles in these works are presented in this section, since they are of 

significant importance in the spectral analysis of fricatives. 

2.2.1 Principles 

Before we begin describing some of the more advanced signal processing techniques required for 

proper treatment of fricative signals, it is necessary to consider the basic facts and quantities 

associated with spectral estimation of stochastic processes. Unless stated, a sampling frequency 

Us = 1/ !1t) of 1 Hz can be assumed. 

2.2.1.1 Fourier methodology 

Fourier theory outlines fundamental principles for describing time series data in terms of the 

amplitudes and frequencies of the cosine and sine waves that it is composed of. Generally, any 

given time series can be described in the following form: 

N/2 

Xt = J.L + I: [Akcos(21ffkt)) + Bksin(21fikt)] (2.3) 
k=l 
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where J-L is the mean value of the discrete time series Xt, and Ak and Bk are the amplitudes of 

the cosine and sine components at frequencies !k of the time series Xt. 

In the case of a stochastic process, the coefficients of the frequency components are interpreted 

as random variables, whose variances u% = E {A~} = E {B%} are of interest, and hence are the 

variables we are trying to estimate for the process. If we assume J-L = 0, then the discrete power 

spectral density function is defined 

(2.4) 

for 1 ::; k ::; N /2. The power spectrum describes the contributions of energy around the frequen­

cies fk. The spectral density function for a process allows spectral properties of the process to 

be more easily interpreted than from time-series data. We can expect that tract resonances, and 

turbulence noise source shapes may show up as distinctive spectral features. 

2.2.1.2 Errors and statistical measures in random variable estimation 

Since we can rarely hope to observe the complete ensemble of sample sequences of any given 

stochastic process, we can only hope to form an approximate estimate of the characteristics of 

the process. Such an estimate will inevitably be the subject of errors, and we now take a moment 

to compare the different types of error which we can expect to encounter. 

The bias b{·} of an estimate ( of some variable ( is the systematic error, defined 

(2.5) 

A good estimate will have reducing bias with increasing sample size. 

The random error that exists when trying to measure a parameter, known as the variance var{·} 

of the estimate, is defined 

(2.6) 

and an ideal estimator will have decreasing estimate variance with increasing sample size. 

An estimator whose bias and variance disappear as the number of samples under analysis ap­

proaches infinity, such that 

lim E {(} = ( 
N-+oo 

(2.7) 

is of course most desirable, and said to be consistent. 

Finally, it is desirable that two estimators of uncorrelated parameters (1 and (2 of the process, 

are themselves uncorrelated, so that 

(2.8) 
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where covL .} is the covariance between two variables, defined as 

(2.9) 

2.2.1.3 The periodogram 

The discrete Fourier transform of the discrete signal Xt,N, which is equal to zero when t is outside 

[1, N], is given by 

00 

GYJl(f) L x e-i2rrft 
t,N (2.10) 

t=-oo 

N L xte-i2rrft (2.11) 
t=l 

where the parenthesised superscript is used to indicate the type of estimate under consideration 

(in this case, a 'p' for 'periodogram'). From (2.3), (2.4) and (2.11), it can be shown that the 

power spectral density function defined in terms of the Fourier transform, can be written as 

{ / /2} G~)(f) 
S(f) == lim E , 

N-too N 
(2.12) 

where S(f)dj is the expected contribution, over all possible realisations of the process, to the 

power from components with frequencies in the interval around j. 

An appropriate approximation for a finite sample sequence would appear to be 

(2.13) 

where .6.t is the sampling period. This estimate is known as the periodogmm of the power 

spectrum. Let us take a moment to consider the properties of this spectral estimate. 

If Xt is set to unity everywhere, the expected response for a DC signal can be observed. The 

periodogram estimate is equal to Fejer's kernel F(f), which is shown on the right of Figure 2.1. 

This well known response demonstrates that, for a single underlying frequency component, the 

response will be distributed between a number of 'lobes'. The main lobe, centred on the fre­

quency under examination, contains the most energy, but much of the energy for this response 

is dispersed over the rest of the frequency range, in what are known as the 'sidelobes'. In fact, 

whatever sequence Xt is set to, the expected power spectrum will be equal to the convolution of 

the sequence's actual power spectrum, with Fejer's kernel: 

f(N) 

E { S(p) (f) } = r F(f - j')S(f')df' 
J-f(N) 

(2.14) 

The redistribution of energy away from the frequencies at which that energy originates is known 

as 'leakage', and is undesirable, since it introduces bias, and significant spectral correlation, 

especially near prominent spectral peaks. That is, for any process that is not spectrally '£lat', 
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FIGURE 2.1: Rectangular time window (N = 32) (left) and frequency response, known as 
Fejer's kernel (right). 

and at frequencies where the underlying power spectral density is low, the estimate will indicate 

much higher energy than actually exists. 

The 'flatness' of a power spectrum can be described in terms of its dynamic range, simply the 

quantity 

(
max {SU)}) 

10log10 min {SU)} (2.15) 

Percival and Walden (1993) show that the properties of Fejer's kernel are such that, as N ap­

proaches infinity, the bias of the estimate vanishes. However, in practical terms, even with large 

time series, the bias can be significant. For example, for a spectrum with known dynamic range 

of around 60dB, when N = 1024 the nonlocal bias (i.e. far from the main spectral peaks) was 

shown to be of the order of 18dB. 

In order to calculate the expected variance of the estimator, we first assume that the random 

variables Ak and Bk of the magnitudes of the cosine and sine components of the process have 

Gaussian distributions. Then, since the periodogram spectrum can be written as 

(2.16) 

and the sum of v squared Gaussian variables has a chi-squared distribution with v degrees of 

freedom, 

2 y2 y;2 y2 Xv = 1 + 2 + ... + v' (2.17) 

then it is straightforward to show that, at any given frequency, the periodogram estimate is a 

chi-squared distribution with two degrees of freedom: 

SA(p)(f ) _ (J"~At 2 
G k - -2-X2 (2.18) 

for 0 ::; !k ::; fN. Now, since E {Xn = v and var {Xn = 2v, then it is trivial to show that 

(2.19) 
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that is, the mean value for the estimator is equal to the value being estimated, but on observation 

of the variance, the rather more disastrous result 

(2.20) 

for 0 ::; fk ::; fN is found. This result show that, irrespective of sample size N, the variance of 

the periodogram estimate is equal to the value that we are trying to estimate. 

In most cases this error should be viewed as too large for this estimator to be of any use. 

However, spectral estimates with variance errors of this size are highly common in the fricative 

speech literature. 

In summary, for any stochastic process whose underlying power spectrum is not flat, the peri­

odogram estimate is the subject of large bias error near spectral peaks. Moreover, in regions of 

high energy, it has large variance. 

2.2.1.4 Data tapers 

In order to reduce the leakage from the main lobe into the sidelobes, and hence the bias, the peri­

odogram is invariably calculated under a data taper or window. Data tapers work by smoothing 

the extremities of the time series data to be analysed, which results in a reduction of the side­

lobes of the response. A data taper that accomplishes this will of course lead to power spectral 

estimate with much lower bias, which is desirable. 

For a given length of time series data, a discrete data taper ht takes the form of a number of 

weights that are used to pre-emphasise the time series data, prior to calculating the Fourier 

transform, and hence estimating the power spectrum. 

(2.21 ) 

where :E ht == 1. This estimate is known as the modified periodogram, and commonly in speech 

analysis, Hanning or Hamming windows are used. A Hanning window of length N = 32 is shown 

on the left of Figure 2.2. It is necessary to briefly remind ourselves of the properties of these 

tapers. 

The expected estimate calculated under a Hanning data taper is 

j f(N) 
E {S(dt)(f)} = 1i(f - fl)S(f')df' 

-f(N) 
(2.22) 

where 1i(f) is the power spectral response of the Hanning window, shown on the right of Fig­

ure 2.2. Note the reduction in magnitude of the sidelobes, but also the increase in width of the 

main lobe. This results in a decrease in the bias, and hence the estimate is invariably more 

appropriate. For further discussion on data tapers, their spectral responses, and estimate bias, 

see Priestley (1999) pp.556-574. 

This estimate is commonly used in fricative analysis research. However, while it satisfactorily 

reduces bias, it does not tackle the large estimate variance problem discussed in §2.2.1.3. 
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FIGURE 2.2: Hanning time window (N = 32) (left) and frequency response (right). 

In fact, by introducing the data taper, much of the data towards the edges of the data window 

is almost 'discarded', as a result of the small weightings at these points. This has the effect of 

increasing the estimate variance further, by a factor of approximately two (Bendat and Piersol 

1986). 

That is, much of the fricative analysis literature makes use of estimates whose variance error 

is nearly twice as large as the underlying distribution itself. This may be one of the root 

causes of the difficulties and general lack of success to date, of characterisation methods that 

attempt to track spectral features (and hence, tract resonances) during fricative production. The 

general popularity of spectral moments in the face of such spectral estimators becomes clearer, 

as discussed in §2.3. 

To properly deal with the large estimate variance, some form of averaging must take place. 

2.2.2 Averaging methods 

In the last section it was shown how data tapers can be used to reduce the bias error of the 

spectral estimator. For our estimator to be of any practical use however, it is necessary for the 

large variance of the estimate to be dealt with. In order to reduce it, some assumption about 

the underlying process must be made, and hold true, so that some form of averaging process can 

be used to generate a more accurate estimate. 

2.2.2.1 Ensemble-averaging 

As previously discussed, the analysis of random data requires some form of averaging if consistent 

estimates of parameters describing that data are to be obtained. 

If the process can be considered ergodic (i.e. if the statistical properties of the process are inde­

pendent of sample sequence), the variance of the estimate of the power spectrum can be reduced 

using an ensemble of sample sequences. As long as the assumption can be made that the statis­

tical properties of the process are independent of sample sequence, consistent estimates of these 

characteristics can be calculated by averaging over a number of sample sequences. 
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A consistent estimate of the power spectrum of a stationary random process can be calculated 

over Nd sample sequences by 

Nd 

s(e)(J) = ~d L s~mp)(J) 
u=l 

(2.23) 

where S~mp) (J) is the spectral estimate of sample sequence u. Unfortunately, the feasibility of 

using this method in practice means we are often limited to a small number of sample sequences 

over which to form an average estimate. Nevertheless, it is straightforward to show that the 

variance of the estimate is reduced to 

var { s(e) (J) } = S~) , (2.24) 

while the expected form of the estimator remains as (2.22). From this result it is clear that, for 

any Nd independent sample sequences of the stochastic process, the variance of the new estimate 

is reduced by a factor of N d · 

However, the success of ensemble averaging relies upon the assumption that the underlying 

process is ergodic. If it is desired that the power spectra of individual sample sequences from 

some non-ergodic stochastic process be analysed, this method is of limited use. 

These facts give rise to problems in attempting to form consistent power spectral density es­

timates using ensemble averaging techniques. A method of consistent spectral estimation is 

therefore desired that does not require an ensemble. 

2.2.2.2 Time-averaging 

A discrete stochastic process {xt} is said to be weakly stationary if E{ xt} = Il, and cov{ Xt, Xt+r } = 

Sr for T = 0, ±1, ±2, ... , where Il, Sr are finite constants independent of t. Another measure of 

stationarity is whether the statistical moments of the process are independent of time. If a 

process is stationary, the variance of the estimate of the spectrum can be reduced by averaging 

the power spectra from several independent windows of time series data. 

The method formalised by Welch (1967) splits the sample sequence of length N into N B smaller 

subsequences, each oflength N s. Each ofthe subsequences consist of samples l, l + 1, l + 2, ... , 1+ 

Ns - 1. The power spectrum of each subsequence (which of course has reduced spectral resolu­

tion) is then estimated by 

(2.25) 

The estimated power spectra of several subsequences can be combined in order to reduce the 

variance of the estimate. However, it is not necessary to average over all subsequences, since 

very little information is gained by moving between neighbouring subsequences. Rather, the 

data window advances through the sample process by some constant N a, where 0 < Na < Ns 
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usually. That is, Welch's segmented averaging method of spectral estimation is 

(2.26) 

In the case where the subsequences used in (2.26) are completely non-overlapping, the variance 

ofthe spectrum will again be ofthe form (2.24), where Nd :::::: N B /2. However, it is more common 

in the engineering literature for the windows to overlap by around 50% (corresponding to a value 

of Na :::::: NB/2). This allows some of the data that would have been attenuated by the data 

taper to be recovered. In this case of 50% taper overlap, it has been shown that the effective 

number of degrees of freedom is approximately 

36N§ 
19NB -1 

which is equivalent to the factor by which the variance of the estimate will be reduced. 

(2.27) 

This result indicates much better accuracy for power spectral estimation using time averaging. 

The expected form of the response remains as (2.22), suggesting no deterioration of the spectral 

bias, although the resolution is reduced by a factor of N B. However, we must bear in mind 

that this method relies heavily on the signal being stationary. Treating a random signal with 

nonstationary properties as stationary will clearly distort the spectral density estimate, since the 

frequency representation of a nonstationary signal is ill-defined. 

2.2.2.3 Frequency smoothing 

If the process under examination is neither stationary, nor ergodic, then averaging the spectral 

density estimate over a small interval of frequencies is an alternative method of reducing the 

variance of the estimate, so long as the underlying spectrum is smooth. When averaging over 

the frequency interval, the spectral density estimates at each of the nearby frequencies can be 

weighted, using a spectral window, W(J). The frequency smoothed estimate is hence given by: 

j f(N) 
SUs)(J) == W(J - ¢)S(d) (¢)d¢ 

-f(N) 
(2.28) 

Naturally, the choice of spectral window can be optimised if detailed knowledge of the underlying 

process is known. Typically in speech analysis, the Daniell spectral window may be used (simply 

an even weighting over the M neighbouring frequencies): 

k-M < k < k±M 
2 - - 2 

elsewhere 
(2.29) 

and we will only consider the properties of this spectral window here. A multitude of different 

spectral windows are in existence; for a more detailed discussion of some of these, see Percival 

and Walden (1993), and Priestley (1999). 

Figure 2.3 shows four example responses, after a Daniell window (of increasing values of M) has 

been used to smooth the responses calculated using a Hanning window, shown in Figure 2.2. The 
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FIGURE 2.3: Frequency response of frequency-smoothed spectra for M = 2 (top-left), M = 4 
(top-right), M = 6 (bottom-left) and M = 8 (bottom-right), using Hanning window (N = 32). 

first thing to be noticed is the flat, wider response of the main lobe. This highlights the frequency 

range over which the averaging takes place, and also over which the assumptions of flatness must 

hold. The frequency smoothed estimate will decrease the variance of estimate, so long as the 

underlying spectrum is smooth. This process will therefore have the effect of greatly increasing 

the spectral correlation between nearby frequency values, and also significantly increase the local 

bias, an expression for which is (as given by Percival and Walden (1993)): 

(2.30) 

where 

(3w == 12 r f 2 W(f)df 
( 

f(N) ) 1/2 

J-f(N) 

(2.31 ) 

showing that the local bias is influenced by both non-smooth features near the frequency region 

of interest, as well as the size of the spectral window. Nevertheless, the overall reduction in the 

variance of the resulting spectral estimate is again of the form (2.24), where Nd = M /2. 

Great attention should also be paid to the considerable increase in the bias of this estimate with 

increasing M, since the sidelobes of this response have grown significantly with the frequency 

smoothing operator. In fact, this new bias, resulting from the spectral smoothing operator, is 

most effectively reduced by choosing a more appropriate data taper under which to weight the 

time series data, before any frequency smoothing operations are performed. One such set of data 
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tapers are discussed now in §2.2.3. 

2.2.3 Introduction to multitaper analysis 

Data tapers have generally been designed with some specific property in mind, in order to suit 

some specific task. For example, to view the formants in vowel speech spectra, the Hanning 

and Hamming windows commonly have the most suitable properties. When used for the power 

spectral estimation of stochastic processes however, their use should be reevaluated. 

The development of the multitaper methodology for good spectral estimation of stochastic pro­

cesses has been significantly contributed to by Slepian (1978) and Thomson (2000). We now 

take a moment to describe the rationale behind the multitaper methodology, following the work 

by Percival and Walden (1993). 

Consider some sample sequence. In order to estimate the spectral density of this sequence, 

without significant spectral leakage, the data must be weighted in a suitable manner. However, 

by weighting with a smooth window that reduces sidelobe leakage, some of the time-series data 

are invariably lost, leading to an increase in the variance of the estimate. If these data could be 

recovered in some way, the variance of the estimate could be reduced. 

Consider then, a set of orthogonal data tapers, which could each be used to estimate the spectrum 

of a different (orthogonal) portion of the sample sequence data. If each of the data tapers has a 

good spectral response (i.e. one with small sidelobe leakage), then the spectral estimates using 

each of the tapers will have small bias, although the variance of each estimate will be large. 

However, due to the linearity of the Fourier transform, the responses of our orthogonal set of 

time windows will themselves be orthogonal. In this case, the orthogonal spectral estimates can 

be averaged to produce a new estimate with reduced variance. 

The concentration of a time signal, or data taper, can be defined: 

JT/2 Ih(t)12dt 
0:2 (T) = _-_T....:./_2_---",_ 

- J~oo Ih(t)12 dt 
(2.32) 

which is the fraction of the taper's total energy, in the time interval T centred around O. A 

similar expression exists for the frequency concentration of a taper's spectral response: 

(2.33) 

The orthogonal set of tapers should attempt to maximise (2.32), while restricting (2.33) to 

some predefined 'acceptable' bandwidth 2W. It has been shown that the solutions to this 

maximisation problem take the form of an orthogonal set of eigenfunctions 'ljJ,,(.; c) (where c == 
1fWT), corresponding to the data tapers themselves, known as prolate spheroidal sequences, or 

Slepian sequences in recognition of his significant contributions. Each of these eigenfunctions 

has a corresponding eigenvalue A", proportional to the energy of each taper. 

Four Slepian sequences computed for M = 4 and N = 32 are shown on the left of Figure 2.4, with 
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their corresponding responses on the right. As can be seen, the first Slepian sequence is rather 

similar to the familiar Hanning window: the data at the ends of the sequence are attenuated, 

and the sequence is smoothly introduced in order to minimise sidelobe leakage. As can be seen 

from its corresponding frequency spectrum on the right, the sidelobes indeed drop rapidly from 

the main peak. The main peak is 2W Is wide, as defined by (2.33). 

The second Slepian sequence is rather different to most tapers that are usually found in the 

speech literature. Peculiarly, the window goes negative for some duration. This would not 

be used to calculate deterministic frequency spectra, since it would introduce significant phase 

distortion. However, the phase of a stochastic process is of no importance. Again, the response 

consists of a large primary lobe, with rapidly attenuated sidelobes. Of interest is that the width 

of the main lobe is the same as all the other responses (as determined by (2.33)), although the 

peak of the main lobe is shifted slightly. This corresponds to the expected orthogonal responses, 

which, when combined, will work to reduce the estimate. 

Each Slepian taper can be used to form an estimate: 

simt) (I) == D.t 1 t 'l/Jt,Kxte-i27r ftt:.t 12 
t=l 

(2.34) 

Each of these estimates will have good sidelobe characteristics (because (2.32) has been min­

imised), but a large variance (more so since the tapering operation reduces the amount of data 

present with which each estimate is formed). 

However, since these spectral estimates are orthogonal to each other, their average response 

(2.35) 

will have a variance reduced by a factor of M, as more of the time series data is incorporated 

into the estimate. Additionally, since the bandwidth has been restricted by (2.33), we can expect 

that the combined response of s(mt) (I) will have optimal bias properties. 

For a given application, the acceptable resolution bandwidth factor W (where 0 < W ~ 1/4) 

will determine the family of Slepian sequences to be used in an analysis. The time-frequency 

resolution tradeoff is still controlled by the length N of windows that we choose to use, and the 

quantity NW is known as the bandwidth product. As W is increased, the width of the main 

lobe increases, but so does the number of Slepian windows M ~ 2NW that can be used in 

the analysis, whilst still limiting the resolution. Typical values for the bandwidth product are 

4 ~ NW ~ 6 (Thomson 2000). 

Examples of combined responses for this estimate are shown in Figure 2.5, for increasing M. The 

most significant difference between these responses, and those of frequency smoothed Hanning 

estimates in Figure 2.3, is that, due to the orthogonality of the Slepian sequences, the bias near to 

the main peak does not accumulate, whereas for the Hanning windows, it does. The importance 

of this is that the multitaper estimate can be expected to have significantly reduced bias near 

steep spectral peaks (and troughs), especially for small N, making it an excellent choice for 

spectral estimation over short intervals of slowly non-stationary stochastic processes. 
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It has been shown that, in order to reduce the bias of a spectral estimator, the data must be 

suitably tapered. However, in doing so, the variance of the estimate increases to almost twice 

the magnitude of the underlying spectrum itself. 

In order to reduce this variance, some form of averaging must take place. In some fields, ensemble 

averaging is a feasible method of obtaining independent sample sequences from which to estimate 

the process spectrum. However, in the field of speech production, the practical problems related 

to this method are significant. It is well known that the production by a single speaker of 

identical words in identical contexts and situations will be produced with varying manner on 

each attempt. The mechanisms governing these changes in manner is not understood, and so 

must be treated as having a random element. 

Time averaging is also a suitable method for reducing the variance of the estimate, provided the 

underlying process is stationary. However, in speech production, it is known that the articulators 

within the tract are constantly on the move in order to form the next phoneme. It seems unlikely 

that fricative production can be considered stationary enough for time-averaging techniques to 

work without distorting the true picture. 

If fricative production is assumed to be neither ergodic, nor stationary, then only short sample 

sequences of time-series data may be used to estimate the spectrum. For short sample sequences, 

frequency smoothing operations will reduce the variance of the estimate, but also introduce 
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significant bias to the spectral estimate. 
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Multitaper analysis provides an optimal way of reducing the bias of spectral estimates calculated 

over short intervals of sample sequence data. It is therefore highly likely that it is one of the 

most accurate methods available for the spectral examination of fricative production. However, 

the method has rarely been used for fricative analysis (see Blacklock and Shadle (2003)). 

Figure 2.6 serves as a comparison of the response of Daniell frequency smoothing using Hanning 

data tapers (left), and of multitaper estimation. These two responses correspond to estimates 

that should have similar variance. Figure 2.7 highlights the region in which the multitaper's 

superior bias reduction can be viewed. 

Demonstrations using speech signals of the differences between the different methods of reducing 

spectral variance and bias errors are given in Chapter 4. 

2.3 Properties of spectral moments 

Moments are used as a way of describing a given energy distribution with a small number of 

parameters. Specifically, the distribution is modelled as some deviation from a normal curve. 
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The first moment describes the mean energy location, or centroid of the distribution. The second 

moment describes the spread ofthe energy; that is, a distribution with most energy occurring near 

its centroid will have a smaller second moment than a distribution that has energy more evenly 

distributed across the range. The first two moments completely describe a normal distribution. 

For non-normal distributions, higher order moments ?ontain more information pertaining to 

the shape. The third moment, the skewness, is a measure of unevenness in energy distribution 

around the mean: a positive result indicates most energy is to the right of the mean, a negative 

result indicating most energy lies to the left of the mean. The fourth moment, known as kurtosis 

or peakedness is a measure of energy concentration in the immediate vicinity of the centroid. 

Higher order moments can be calculated for distributions, but these become increasingly abstract 

in terms of what they represent visually. The higher the order of moments used to describe the 

distribution, the greater the distribution can deviate from a normal curve. An infinite number 

of moments are required to describe any arbitrary shape. 

Spectral moments then, apply these principles to spectra that can loosely be described as 

approximately-normal in shape. In order to do this, an arbitrary set of frequency and am­

plitude scales must be selected over which the analysis is to be performed. Since the moments 

of a distribution will be highly sensitive to whichever set of scales are used, it is important to 

take care in consideration. 

2.3.1 Principles 

Consider a discrete variate X that takes the values Xl, X 2 ... X N • Each of these values oc­

curs with respective likelihoods p(Xd ,p(X2 ) ... p(XN ), where LP(Xn) = 1. Then the raw 

moments of X are defined (Kenney and Keeping 1964) 

N 

m~ = LX~p(Xn)' (2.36) 
n=l 

where r is the moment order. The value m~ is known as the mean of the distribution. 

Central moments are taken about the mean X = m~ 

N 

mr = L(Xn - Xrp(Xn). (2.37) 
n=l 

The value m2 is commonly known as the variance of the distribution. Furthermore, standardised 

moments may be calculated by normalising with respect to the function standard deviation 

(Ix =,;m2 

(2.38) 

The value 1'1 = a3 is commonly known as the skewness, while a4 is called the kurtosis of the 

distribution. Since the value of a4 for a normal distribution is equal to 3, the excess of kurtosis 

1'2 = a4 - 3 is more commonly used. 
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Commonly, only the first four moments are considered, since these represent changes in the shape 

of the distribution that are clearly visible. Although a finite (and small) set of moments will 

always describe an infinite number of distributions, we can optimise the chances of 'recovering' 

the original distribution. In order to do this, it must be ensured that the distribution to be 

parameterised is well-suited to a 4-moment distribution, prior to calculation of moments. That 

is, for the spectral moment parameterisation method to work effectively, the model must hold 

well. Let us now remind ourselves of the meaning of the third and fourth order moments. 

Briefly, the skewness (third order moment) of a distribution describes the asymmetry around the 

mean, particularly of the tail ends of a distribution. A positive value for the standard skewness of 

a distribution indicates that the tail is larger at values above the mean, and conversely, negative 

values represent greater probabilities of events below the mean. 

Kurtosis (the fourth order moment) is a measure of the "peakedness" of a smooth distribution. 

A flat distribution will have a standard kurtosis value close to zero, while one which has greater 

probability of values near its mean will have a large standard kurtosis. 

Of course we are free to consider higher order moments for the purposes of characterisation. 

Statistical methods can be used as a basis for determining the significance of the various moment 

measures. 

2.3.2 Definitions 

One of the earliest uses of the first spectral moment, usually referred to as the 'centre of gravity', 

was by Strevens (1960) to describe the distribution of energy in fricative power spectra. Although 

no specific values were calculated, Strevens reported clear visual differences in energy distribution 

for the different fricatives, and used the analogy of a spectral 'centre of gravity' to describe these 

patterns. 

More specific measures of the 'centre of gravity' of fricatives were performed by Weinstein et al. 

(1975). Spectra were considered over a 0-5-kHz frequency range. If S(f) represents the spectral 

amplitude, the centre of gravity for a given frame is given by fc = kc6.f, where kc is the largest 

integer for which 
",k:127 S(k6.f) 
L..Jk-kc > Bc· 
L~~~c-l S(k6.f) -

where 6.f = 5000/128. The quantity Bc is specified in the text as having a value of ~, but 

presumably this should be unity. The values of fc for five consecutive frames in the centre of 

the fricative are averaged together to form a single estimate of the 'centre of gravity' for that 

fricative. No further information is supplied about scales. 

Jassem (1979) studied the spectra of fricatives over a total frequency range from 0-8 kHz. When 

compiling various quantitative features for use in multivariate analysis, the frequency range was 

divided equally into two and three 'fragments', and only the 'centre of gravity' of each of these 

fragments was calculated. Few other details about the calculation are given. 

Forrest, Weismer, Milenkovic, and Dougall (1988) continued to develop the idea of calculating 

the centre of gravity by including higher order moments. The data were bandpass filtered to 
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70 Hz-10 kHz, and sampled at 20 kHz. The fricative portions of the speech signal were selected 

by hand. 20-ms data-windows (corresponding to 400 sample-points) were used in the analysis. 

A 400-point Hamming window was applied on each data-window, before zero-padding to create 

a new 512-point data-window. A 512-point FFT of this data window was calculated (X(k)), and 

the normalised power spectrum designated 

(2.39) 

for k in [1,256]. The first four moments were then defined: 

k=l 

256 

Ln 2)fk - Ll)np(k) for n = {2,3,4}, 
k=l 

where fk = kl:1f and I:1f = 10000/256. Further, the coefficients of skewness and kurtosis are 

defined l3 = L3/~ and l4 = (L4/L~) - 3 respectively. Additionally, a second method of 

moment acquisition is defined using a Bark frequency scale, as defined by Syrdal and Gopal 

(1986), whereby the power spectrum on linear frequency scale is mapped to the Bark scale, and 

weighted accordingly before moments are calculated. In all calculations then, it appears a linear 

power scale was used (i.e. corresponding to values of IXkI2, not 2010g10 IXkl). 

In a further investigation into the capabilities of spectral moments, Jongman, Wayland, and 

Wong (2000) considered spectra up to 11 kHz of speech sampled at 22kHz (after lowpass filtering 

to 11 kHz). Data-windows of 40-ms duration (representing 880 data-points) from the centre of 

fricatives were first weighted with 40-ms Hamming windows, followed by fast Fourier transform 

(FFT) calculation. It is not stated whether the data were padded or clipped, but since it is 

declared that a higher frequency resolution than the Forrest et al. study was obtained, it is 

reasonable to assume that the data were zero-padded to 1024 points before a 1024-point FFT 

was calculated. The procedure given by Forrest, Weismer, Milenkovic, and Dougall (1988) was 

then followed: linear and Bark-scale frequency ranges were analysed, but only linear power scales 

were apparently used. 

2.3.3 Spectrum frequency range selection 

Historically, speech spectra have been considered up to typically 8-10 kHz, sometimes because 

it has been suggested that information at higher frequencies is superfluous to the task of speech 

discrimination, but in other cases simply as a result of limitations in recording equipment (e.g. 

Strevens 1960). However, since the ultimate aim is to describe the production mechanisms by 

the acoustical signals, it seems appropriate to consider a range that includes as much of the 

produced spectrum as possible. 

Another factor that should be considered when determining an appropriate frequency range 

over which spectral moments can be calculated, is that it should result in a distribution that 

adequately fits the model: namely that it should be approximately-normal, and the number of 

moments being used should adequately describe the degree of deviation from a normal curve, 
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and hence capture well its overall shape. If the number of moments being used is insufficient for 

describing the distribution, then the metric becomes inaccurate. If these errors are large, then 

significantly different distributions may produce similar sets of moments, which of course greatly 

limits their use. 

Since normal distributions extend to infinity, but only have an asymptotically small amount of 

energy in these tails, the frequency range we select over which to analyse our spectrum should 

capture a spectral shape that approaches "zero" near the edges. In addition, only a single main 

"peak" should be contained within the frequency range, since multiple peaks will not be well 

described by the first four moments alone. 

2.3.4 Spectrum magnitude scale selection 

The first four moments describe a shape that is rather distinctively bell-shaped, if a little lop­

sided. It may therefore be necessary to adjust the magnitude scale of our power spectrum in 

order to obtain this characteristic, so that the moments act in a more complete manner: the 

distribution of maximum likelihood described by any set of the first four moments will always 

be approximately Gaussian. 

Because speech sounds consist of a very wide range of energy intensities, power spectra often 

span several orders of magnitude at different frequencies in a single sound. The result is that 

power spectra on linear magnitude scale have a very "spiky" appearance, often rendering them 

difficult to read. A common practice is to plot power spectra on a logarithmic scale, often in 

decibels (dB). This has the effect ofreducing the amplitude range to within readable limits, and 

greatly reducing the number of large energy spikes. For simplicity, we shall denote the estimated 

decibel power spectrum 

(2.40) 

The use of a decibel magnitude scale gives spectra an appearance much closer to that of a normal 

distribution, and hence, this step should be taken if spectral moments are to be calculated. By 

using a decibel magnitude scale, another subtle consideration is revealed: where should the 

base-line, or "zero-reference" be positioned? That is, the moments should be calculated from 

the normalised spectral distribution n(fk) where 

(2.41) 

where r z < S(fk) for all Ik ::; IN is some arbitrary constant reference, and 2N is the window-size. 

Peculiarly, this does not usually seem to be mentioned in the literature. 

There are two main considerations: firstly, the zero-reference must be sufficiently low that all 

spectra under consideration lie above it. It is unclear how to interpret regions where the spectrum 

drops below the zero reference. On the other hand, it is still desirable that the "tails" of 

the distribution approach the zero-reference near its edges. The first four moments will not 

characterise well distributions that have a high energy density at either end of the spectrum. 

We shall see in Chapter 5 that simultaneously satisfying all the conditions in §2.3.3 and §2.3.4 
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is usually impossible, and that large concessions must be made in order to obtain a workable 

system. Additionally, basic measures to subtract known ambient-noise from speech recordings 

could be undertaken, but is rarely seen to be done in the literature. 

2.3.5 A note on pre-emphasis 

Occasionally in the literature, pre-emphasis of the signal is undertaken, with little explanation 

as to how or why. 

'Iraditionally, pre-emphasis of the low-energy signal typically found at higher frequencies, was 

used to make better use of the amplitude resolution of the recording media. It is also used as a 

method of 'flattening' the spectrum prior to spectral estimation, in order to reduce the bias that 

can arise when estimating non-flat spectra. 

In regard to the calculation of spectral moments, there may be a case for using pre-emphasis 

to optimise the spectral shape. As already mentioned, the closer to a nearly normal curve 

the spectral distribution under examination is, the more accurately the first four moments will 

describe the shape. Indeed, in much of the spectral moment literature, pre-emphasis is used 

prior to spectral moment calculation, but details are rarely given. 

The most considerable problem facing a standard pre-emphasis step in spectral moment calcu­

lation is the potential diversity of fricative spectra. If a fixed pre-emphasis method is used, then 

we cannot hope to improve all spectra. If the methodology incorporates some nonlinear function 

of the spectral shape, then we cannot expect the spectral moments to be reliable. 

2.3.6 Reconstruction using the Gram-Charlier expansion 

In order to determine how well spectral moments have captured the shape of a distribution, it is 

first necessary to reconstruct a distribution from the moments and any other knowledge available 

from the 'results'. A comparison of the reconstruction to the original distribution will reveal how 

well (i.e. how uniquely) the spectral moments describe that distribution. It will indicate which 

features are well described, and where problems may arise. 

Any distribution can be uniquely described by an infinite set of moments. Conversely, a finite set 

of moments can describe an infinite set of distributions. The Gram-Charlier expansion constructs 

the distribution of maximum likelihood for a given set of the first four moments (Kenney and 

Keeping 1964): 

Assume the x-axis variable has been standardised, and denote it by ¢ = (x-vr)/O'. 
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By repeatedly differentiating the function e-¢2/2 we obtain: 

where Hn(¢) is a polynomial in ¢, of degree n, called the nth Hermite polynomial. 

By repeated integration by parts, it is easy to show that 

(2.42) 

Hence if 'IjJ(¢) stands for (21f)1/2 e-¢2/2 and if we assume that a given frequency 

function can be expanded in a series 

(2.43) 

we can formally obtain the constants in the series by means of (2.42). Multiplying 

(2.43) by Hn(¢) and integrating term by term, we have 

i: g(¢)Hn(¢)dt = I>r i: 'IjJ(r) (¢)Hn(¢)d¢ = (-l)nn!cn 
r 

(2.44) 

since all terms in the sum except for that which r = n give zero on integration. 

Substituting Ho = 1, HI = ¢, H2 = ¢2 - 1, H3 = ¢3 - 3¢, H4 = ¢4 - 6¢2 + 3, we 

obtain 

Co i: g(¢)d¢ = 1 

CI - i: ¢g(¢)d¢ = 0 

C2 i: (¢2 - l)g(¢)d¢ = 0 

C3 -,l/3! 

C4 (0:4 - 6 + 3)/4! = ,2/24 

therefore 

(2.45) 

This is the Gram-Charlier A Series. It has been shown that the series is not conver­

gent except under rather restrictive conditions. However, the important point is that 

a few terms provide a good approximation to g( ¢). 

45 

That is, the first few moments can be used to reconstruct a reasonable approximation to the 

distribution from which the moments were calculated. How well this reconstructed distribution 
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matches the intended distribution will tell us how well the spectral moments can be expected to 

perform. 

2.3.7 Spectral moments of large-variance spectral estimates 

In §2.2, it was shown that spectra estimated from a single Fourier-transformed window of data 

will have a large error variance at any given frequency. If the estimated distribution has a large 

variance, then the higher-order moments can be expected to be less reliable, since they place 

increasing emphasis on variations in the tails of the distribution, where a large error variance is 

known to exist. 

However, if the distribution under examination is not approximately Gaussian, moments calcu­

lated will become insensitive to changes in the distribution that we may wish to capture. The 

moments of a non-Gaussian distribution will be less sensitive to change anywhere in the distribu­

tion than if the same amount of change occurred in a distribution that was close to a Gaussian. 

For instance, an increase of 2dB in a specific region in a flat distribution will correspond to 

a much smaller change in the calculated moments than if the same increase occurred in the 

same region in a distribution that was close to Gaussian. These expected properties of spectral 

moments are demonstrated in Chapter 5. 

2.4 Summary 

Fricative analysis can be approached in a number of different ways. One approach is to con­

struct mathematical models of the vocal tract. This relies upon detailed knowledge of noise 

sources and interactions. Turbulent noise sources however are highly complicated, and a limited 

amount is known about their behaviours, spectra, and interactions with other sources. With 

the introduction of obstacles into the path of turbulent jets, the complexity increases further. 

Mathematically modelling such a system becomes unmanageable. 

Nonparametric analysis methods are a somewhat more appealing approach that have not been 

fully explored. The turbulence noise generated during fricative production should be treated as 

stochastic process, and yet often in the fricative analysis literature this is not performed suitably. 

Appropriate nonparametric spectral estimation methods are examined. A certain amount is 

known about fricative production, and analysis tools need to make use of all the information 

present, so it is important that the non parametric data are as accurate as possible. 

Well founded principles of good spectral estimation procedures for stochastic processes are often 

overlooked in the fricative analysis literature. 

In order to obtain an unbiased estimate of time-series data, a suitable data taper must be used. 

In doing so, the amount of information being used to calculate the estimate is reduced, and 

this increases the variance of the error of the estimate. In the case of a modified periodogram 

estimate, the variance error of the estimate at any given frequency is greater than underlying 

quantity being estimated at that frequency. If fine spectral details are to be examined closely, 

this estimate is highly unsatisfactory. 
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In order to reduce the variance error, a consistent estimate is required: more data need to 

be incorporated into the calculation, without attempting to increase the amount of information 

within the estimate. While using a longer data-window increases the amount of data incorporated 

into the estimate, it also increases the resolution of the estimate, and since (without further 

treatment) this results in no overall reduction in the error variance, the modified periodogram 

is said to be 'inconsistent'. 

Where the underlying system is known to be stationary, time-averaging can be used to generate 

a consistent estimate. Alternatively, ensemble-averaging methods can be used to reduce the 

variance of the estimate where the underlying system is known to be ergodic. Unfortunately, 

neither stationarity nor ergodicity can be verified unless the other is known to be true. In speech 

analysis, neither assumption would appear to be particularly likely however. If it is instead 

assumed that neither is true, alternative methods of obtaining a consistent estimate must be 

considered. In this case, frequency smoothing may be used; however, it can be shown that 

frequency smoothed estimates that reduce the variance by a significant amount, also introduce 

a significant amount of local bias. 

Multitaper analysis provides an alternative method of improving the estimate. The amount of 

data incorporated into the estimate is maximised, while the local bias is minimised. Multitaper 

analysis excels over the other methods where spectral estimation over short time intervals of 

non-stationary non-ergodic processes is required. It therefore seems likely to be very well suited 

to fricative analysis. 

Spectral moments have previously been implemented in a number of different ways. Frequency 

range selection and magnitude scale selection are two of the most obvious choices that are likely to 

be significant in determining the effectiveness of the spectral moments. While various parameters 

have been used in previous studies, no attempts appear to have been made to investigate the 

effects these parameters have on the performance of spectral moments. 

The Gram-Charlier expansion allows the distribution of maximum likelihood to be constructed 

given the first four moments. The first four moments are an incomplete basis, and hence any 

given set of the first four moments will describe all of an infinite number of different distributions. 

The Gram-Charlier expansion can be used to clarify which features of a distribution have the 

greatest levels of influence over the spectral moments that are calculated. 
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Method 

The speech of cochlear implant users is the subject of much examination. In particular, studying 

the effects on fricative production of partially-known changes to the auditory system by cochlear 

implant device provides us with information about the production and perception systems. How­

ever, tools for describing and analysing fricative productions are of limited availability. Such tools 

would ideally be able to measure changes and differences of both normal and disordered fricative 

productions. 

In order to continue, some sample speech data from subjects with normal hearing, and from 

subjects with abnormal hearing is required. We begin by considering what criteria the subjects 

should satisfy. 

Since analysis of the disordered speech of cochlear implant users is a significant incentive for this 

work, we begin by presenting information about cochlear implant subjects whose speech and 

hearing backgrounds are well documented. In order to evaluate whether new fricative production 

measurements are suitable for use with disordered speech, only a limited number of tokens are 

required. This coincides with the amount of speech data readily available from cochlear implant 

subjects: intensive speech recording sessions of speakers with some hearing or speech impairment 

is often more stressful than for subjects of normal speech and hearing. 

The criteria by which subjects of normal hearing are chosen may be based upon the backgrounds 

of the cochlear implant subjects, amongst other considerations. The speech of the normal hearing 

subjects is to be analysed in order to discover typical variabilities across fricative tokens; a 

suitable corpus is discussed. 

Finally, the methods for recording, storing and editing speech data are presented. Equipment 

descriptions, procedures used during recording sessions, and post-recording data processing such 

as data segmentation and calibration, are included. 

3.1 Subject Requirements 

Being able to measure changes in the speech of subjects whose production is affected by a known 

cause of hearing-loss would be most useful. For example, cochlear implant subjects offer an exccl-

48 
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lent opportunity for understanding the relationships between hearing and speech. To commence 

analysis of these relationships, it is necessary to acquire one or more subjects exhibiting inter­

esting speech disorders. A small number of subjects of varying speech development backgrounds 

may be selected in order to explore different kinds of production variations. 

To describe the degree of 'abnormality' of disordered speech, or to measure changes that may 

occur after some known change in hearing status (cochlear implant activation, for example), it 

is first necessary to establish a measure of 'expected values' from an analysis of normal speech. 

Therefore, 'normal' speakers are required so that a reasonable sample of 'normal' fricative pro­

ductions can be obtained. A sufficient number of these subjects should be present in order to 

gain a coarse measure of typical ranges and variabilities. 

3.1.1 Cochlear implant subjects 

In order to improve the performance of a cochlear implant, users undergo routine checkups. The 

subject's hearing and speech perception is evaluated, and parameters of the device are often 

adjusted. An appointment for hearing evaluation is also usually undertaken prior to implant 

insertion. These routine evaluations of hearing and speech perception are also a convenient time 

to attempt to measure any changes in the speech production of subjects. 

Subjects taking part in routine cochlear implant adjustment procedures at the University of 

Southampton Cochlear Implant Centre are readily available test subjects with well-documented 

hearing disorders. Of these, two males (MCI-13 and MCI-14) and two females (FCI-15 and 

FCI-16) with cochlear implants are used for generating test-data for later measurement. These 

subjects were chosen for their different speech and hearing backgrounds, since this should provide 

us with data that can be used to test various production description methods. 

3.1.1.1 Subject selection 

All subjects are English speakers who were classified as having profound deafness prior to im­

plantation. Unless otherwise specified, subjects' deafness was post-lingual. All subjects were 

implanted with Cochlear CIN-24 internal electrode arrays. Specifics about age of implantation 

and processing strategies for the individual subjects follow. 

Subject MCI-13 was implanted at 66 years of age, using an ESPRIT-24 processor device im­

plementing the SPEAK processing strategy. Speech data for this subject were taken from a 

recording one year post implantation. 

Subject MCI-14 received a cochlear implant in his left ear at age 66, implementing the SPEAK 

strategy on an ESPRIT-24 processor. This subject does not originate from the South of England, 

and can be considered to have a slight Northern-regional accent. The data from recordings made 

one year post implantation are used for this subject. 

Subject FCI-15 lives in the South of England. At age 35 she was fitted with a Nucleus CI24M 

in her left ear; (total insertion of the electrode array was achieved). During her initial tuning 

week, she tried the CIS and ACE strategies of her ESPRIT-24 speech processor, and received 

speech and language therapy for approximately 10 months, after which she changed to using the 
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SPEAK speech processing strategy. Data used here are from recordings made at one and two 

year post-implantation. 

Subject FCI-16 was diagnosed with hearing loss due to neonatal jaundice at 3 years of age, and 

hence deafness may be considered pre-lingual. Progressive hearing loss continued until profound 

deafness became established at 17 years of age. At this time the subject was fitted with an 

ESPRIT-24 processor (SPEAK strategy). This subject has predominantly lived in the South of 

England. Data are taken from recordings made one year post implantation. 

3.1.1.2 Corpus 

Only real words are considered. This effectively eliminates an extra degree of variability in the 

interpretation of 'nonsense' words by speakers, which are not of interest, and may mask other 

variabilities. In particular, from past experience it has been found that subjects with affected 

hearing often have much greater difficulty than normal-hearing subjects when faced with the task 

of reading a rhyming list of mixed real and nonsense words. It seems that while normal-hearing 

subjects are immediately able to see the pattern of similarity in the expected sound for the list of 

words, this does not always occur in the speakers with affected hearing. In order for the results 

of normal speakers to be comparable with the results of speakers with affected-hearing, a real 

word corpus seemed to be the best choice. 

The corpus used to evaluate the speech of cochlear implant subjects for this, and other studies, 

consisted of the following sections: 

• 15 sentences of "It's a h/V /d again.", where /V / E {Ii, I, £, lE, a, J, u, u, A, <E, 0, e, aj, 

aw, jul}. 

• 6 sentences of "It's a /C/od again.", where /C/ E {lp, t, k, b, d, gl}. 

• 15 short sentences. 

• The Rainbow passage (Fairbanks 1960). 

• 14 lists of common words, each containing approximately 16 words (Parker 1999). 

• The Dog and Duck passage (Parker 1999). 

• In some cases, a further passage titled "Sue's Seaside Trip" , which focusses on the subject's 

production of all sibilants, using many words from Parker's lists. 

This corpus was designed to capture a range of different speech characteristics in disordered 

speakers. Productions of only a few words from the Parker (1999) word lists were used for the 

analysis in Chapter 7. 

3.1.2 Normal hearing subjects 

We wish to estimate typical fricative production variability within and across vowel contexts for 

a number of tokens and speakers. It was decided to limit variability initially by using subjects 

of same gender, age range and accent background. 
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3.1.2.1 Subject selection 

Seven male subjects (M-OO through to M-06), and six female subjects (F-07 through to F-12) 

between the ages of 20 and 30 were chosen who all lived in the south of England since birth and 

have native British English-speaking parents. One of the male subjects (M-OO) whispered most 

of the corpus, and so all data for this subject were discarded. Only one subject (M-03) had any 

special phonetic knowledge. 

The limitations on regional accent were imposed for several reasons. Firstly, since the effects 

of vowel context on fricative production is under examination, some control on the vowel con­

text is needed, and this would not be possible if regional accents were included. Additionally, 

the cochlear implant subjects have similar regional accent backgrounds, and so this limitation 

provides us with good comparative material. 

3.1.2.2 Corpus 

A sample of speech including fricatives is required in order to allow us to observe the behaviour 

of existing characterisation metrics, demonstrate the properties of spectral estimation techniques 

when used with fricative signals, and develop new methods of characterisation. 

The corpus is designed so that the English voiceless fricatives and voiced fricatives can be stud­

ied in real words containing /V1F V2/ contexts where /F/ E {/f,8,s,f,v,o,z,3j}, /Vl/,/V2/ E 

{ji,u,aj}. Symmetrical contexts (where V1=V2) could only be found for all fricatives when 

V1=V2=/i/. The set of vowel contexts used thus consists of /iFi/, /iFa/, /uFi/, /uFa/, /aFi/ 

and /aFuj. Only real words were included in the corpus, for the purposes described in §3.1.1.2. 

This set of vowel contexts is being referred to when 'all vowel contexts' is specified later in the 

text. Tables of words in which the desired /VFV / combinations appear, are given in Appendix A. 

The context has been fixed as /V1F V 2/, largely to keep the problem of segmentation consistent. 

While it is recognised that fricatives often occur in clusters and other contexts, it is not necessary 

to tackle all the issues of segmentation and coarticulation in order to begin work on better 

fricative analysis methods. 

In order to simulate typical (but not extreme) variations in production, the order of words was 

varied. Each page was designed so that a given word will appear both at the start, at the end, 

and at every point within a line of words to be read (see Appendix A). The first page of words 

was used as a test-page, to familiarise the subjects with the words to come, and also to allow 

the recording gain to be adjusted (see §3.2). 

3.2 Data acquisition 

The following methods of speech recording and analysis were consistently applied for all seventeen 

subjects. 
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3.2.1 Recording equipment and setup 

Recordings were made in a sound-proofed quiet-room. The subject was seated in a chair with 

headrest, with a music-stand placed in front of them displaying the corpus. A Bruel & Kjc£r 

(B&K) 4133 microphone, fitted to a B&K 2639 preamplifier, was held by a floor-stand at a 

distance of 1m from (and directed towards) the subject's mouth. The output of the preamplifier 

was fed into a B&K 2636 amplifier, which was set to give a bandpass of 22 Hz to 22 kHz. The 

output of the amplifier was connected to one channel of a Sony DAT TCD-D7 corder with a 

sampling rate of 48 kHz, with 16-bit amplitude resolution. The recording setup is shown in 

Figure 3.1. The music stand was positioned underneath the microphone, so as to minimise 

1m 

B&K 2639 B&K 4165 

B&K 2636 
1-----------------------------------------------, 
! Ai hpf Ipf Ao! 
I I 
I I 
I I 

I 
I 
I 

I I 
I I I _______________________________________________ J 

~I 

Sony TCO-07 _________ ~~I_~~~d_~ _________ ~ 
: Ad 1 

: OD: I I 
I 
I 
I 
I 
I 
I 

~ __________________________ 1 

FIGURE 3.1: Recording Setup. 

interference with recording. A laryngograph was also used during recording sessions of cochlear 

implant subjects. This signal was fed into a separate channel of the DAT, but the laryngograph 

data are not used in this work. 

For each subject, the B&K 2636 amplifier's input and output gains (Ai and Ao respectively) 

were both initially set to 20dB. While the subject read the first test-page of corpus, the gain of 

the TCD-D7 was adjusted so that levels did not quite reach maximum limits, where the signal 

level would become clipped. If the speaker was particularly loud, and the minimum gain on the 

DAT was not low enough to prevent signal clipping, the B&K 2636 gain settings were reduced 

by 10dB. The subject would then read the entire corpus, page by page. Subjects were instructed 

to sit still, and attempt to keep their head in the same position throughout the session. 

After the corpus had been read, 30s of ambient noise were recorded. Next, Ai and Ao were 

reduced in (calibrated) levels of 10dB so that the 60s of calibrated 94dB SPL test-tone signal 

(produced by B&K 4230 calibrator) was presented to the TCD-D7 at a suitable level. The 

test-tone was recorded so that all signals could be calibrated to absolute SPL at a later stage. 

Settings of all equipment were noted for each subject to aid calibration procedures. 

3.2.2 Data storage and initial segmentation 

All data were transmitted to PC hard-disk from the DAT, and stored as WAY-format files. Each 

token spoken during the session for each subject was manually edited using Syntrillium's 'Cool 

Edit 2000' to a small file containing the fricative and about half of the preceding vowel and of 
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FIGURE 3.2: Example of selection of lifil fricative segment from the word 'beefy' using Cool 
Edit 2000. The dark, 'inverse' central block is the selected segment. 
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the following vowel. This was done to ensure the entire fricative would certainly be captured, 

and so that transients occurring at the fricative boundaries could later be studied. It would 

also allow some automatic segmentation algorithm to systematically locate a 'central' region of 

each fricative (by some arbitrary definition), which would allow large volume processing to be 

performed automatically. 

The 'spectral view' was used to determine the approximate location of the centre of the vowels 

surrounding the fricative, and save these short jVFV j segments of data, as indicated in Fig­

ure 3.2. If the vowels were of differing lengths, less of the longer vowel would be included, so 

that the fricative remained in the centre of the segment. This procedure was performed for each 

of the 1,728 voiceless fricative tokens by all male and female normal-hearing speakers, and also 

for some sample tokens from the speakers with cochlear implants . 

3.2.3 Data alignment 

An automated system was required to capture, and save, a 'central ' region of each voiceless 

fricative of the 1,728 jVFV j segments of the normal-hearing subjects. These 'central' regions of 

the fricative can be referred to as fricative 'tokens', and are much more straightforward to work 

with when large numbers of tokens are being processed. 

We define the boundaries of each fricative token as a point where the frication noise becomes 

sufficient, compared to the frication occurring in the vowel segments on either side. A suitable 

measure of frication noise is straightforward to acquire using the method described by Scully, 

Castelli , Brearley, and Shirt (1992), whereby the signal below 3.9 kHz is filtered out, and the 

magnitude of the remaining signal is the measure of frication noise. 

The frication noise over time q?(n) for each jiFij production segment was calculated over N 512-

point (1O.6-ms) data windows, advancing by 256 points (5.3 ms) through each jVFV j segment. 
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FIGURE 3.3: Example lasal segment from the word 'parcel' produced by subject MCI-13. Top 
plot shows spectrogram of segment. Bottom plot shows total 'frication noise'. Vertical lines 
are explained in the text. 

A typical plot of .p(n) through an lasal segment from the word 'parcel' produced by subject 

Mel-I3 is shown in Figure 3.3. The low levels of frication noise at the edges indicate the vowel 

regions, and the rise in frication noise is straightforward to see. 

The value of maximum frication .p(max) in the central 30% of each file, 

.p(max)(n(max) ) = max {.p(n)} 
N /3<n<2N/ 3 

(3 .1) 

was located, where n(max) is the value of n at which this maximum frication occurs. The minimum 

values of frication either side of this, were calculated 

.p(lmin) = min {.p(n)} , 
n < n(max) 

.p(rmin) = min {.p(n)}. 
n >n( max) 

(3.2) 

(3.3) 

The function .p(n) was stepped through systematically for 1 < n < N . The data for x(n) were 
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discarded until 

<I>(n) > 0.5 ( <I>(max) + <I>(Imin)) . (3.4) 

At the value of n where this threshold was exceeded, the 'start' of the fricative token was defined. 

We continue to step through the data until 

<I>(n) < 0.5 (<I>(max) + <I> (rmin) ) (3.5) 

at this value of n the 'end' of the fricative token is defined. The vertical bars in Figure 3.3 

indicate where the data segmentation has taken place relative to the frication levels over time of 

this production. As can be seen, the segmentation procedure works well in this case. In fact, this 

data segmentation procedure worked successfully for the large majority of fricative production 

of the normal hearing speakers. 

Occasionally however, the segmentation routine wrongly locates the start and end points. In 

particular, data for the subjects with disordered speech often produce tokens that are not well 

suited to this segmentation approach. As an example, consider subject FeI-I5, who often forms 

complete closure during [s] productions. The frication levels, and automatic segmentation start 

and end points for such a production are shown in Figure 3.4. 

Results of the automatic segmentation routine were scrutinised, and on the occasions where it 

had unsuccessfully located the central fricative region satisfactorily, the start and end points 

were defined by hand, attempting to retain the overall segmentation criteria. 

The resulting fricative tokens are therefore of a variable length, as expected. In addition, this 

segmentation procedure tends to include some of the transition regions, which appear to be 

important in the identification of at least some fricatives. In some later chapters, more central 

regions of the fricative tokens are required for analysis. In these cases, the central portions of 

these fricative tokens are very straightforward to locate automatically and use. 

3.2.4 Calibration and filtering procedures 

The process for converting the recorded data for each subject into standard units of dB SPL was 

largely automated using MatLab 6. Files containing the recording of the 94dB SPL test-tone (we 

denote with variable 'tt'), the ambient noise recording ('n'), and the speech recording ('x') were 

loaded. The total B&K 2636 gain set during speech and ambient noise recording (Ai[s] + Ao[sJ), 
and during the calibration test-tone recording (Ai[c] + Ao[cJ) were noted for every recording 

session. The difference (Ai[s] + Ao[s] - (Ai[c] + Ao[c])), was then stored ('tt_deficit'). The 

following operation then took place each time speech data from a specific recording session were 

analysed: 

%Load relevant files 

[n,nfs,nbits]=wavread('amb_noise.wav'); 

[tt,ttfs,ttbits]=wavread('testtone.wav' ,win_len); 

tt_deficit=load('tt_deficit.mat'); 
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FIGURE 3.4: Example lusal segment from the word 'parcel' produced by subject FCr-I5. Top 
plot shows spectrogram of segment_ Bottom plot shows total 'frication noise '_ Complete 
closure during the [s] production leads to the segment location method being unable to cope. 

%Calibration procedure ... 

tt=tt*(10-(tt_deficit/20)); % Convert tt_deficit value from dB 

tt_energy=fft(tt,win_len); 

%Calculate energy in test tone 

tt_psd=2*(abs(tt_energy(1:win_len/2)).-2)/(win_len*ttfs); 

tt_power=sum(tt_psd); 

cal_boost=((10-(94/10))/tt_power)-(1/2); %Boost factor 

n=n*cal_boost; 

x=x*cal_boost; 

test=tt*cal_boost; 
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The spectrum of the newly 'calibrated' test tone could be observed from 'test ', so that the 

expected response to a 94dB signal could be checked_ The response calculated using a 512-point 
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FIGURE 3.5: Modified periodogram response of 94dB SPL test-tone, N=512. 
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modified periodogram is shown in Figure 3.5. Note that the peak does not quite reach 94dB 

SPL, due to leakage. Multitaper analysis would of course not usually be a suitable method for 

measuring the spectrum of such a tone, but in this case it serves as a guide for analysis performed 

later. 

Filtering was also automatically performed using MatLab 6. In order to attenuate unwanted 

low-frequency room noise (that can be seen on spectral plots in Chapter 4) and energy above 

20kHz (resulting from the 48-kHz sampling frequency of the DAT), frequency bins outside the 

range of interest were discarded. Unless otherwise indicated, all data were filtered to remove 

information below 216 Hz and above 20,063 Hz. 



Chapter 4 

Analysis: spectral estimation of 

fricatives 

The properties of each of the spectral estimation methods described in §2.2 are now explored 

from a practical perspective. Recorded acoustical speech data of subjects M-0l-M-06 are used 

for this purpose, so that only normal characteristics of each spectral estimation method will be 

present. 

We examine the assumptions upon which the various averaging techniques discussed in Chapter 2 

are based. The problems encountered when these assumptions break down are demonstrated, and 

commonly seen features in spectral estimates and spectrograms are shown to often be artifacts 

of the estimation technique. 

Finally, recommendations for the spectral analysis of fricatives are discussed, based on the ob­

servations presented. 

4.1 The first estimate 

Figure 4.1 is the power spectral estimate calculated from a 512-point rectangular window placed 

in approximately the centre of the fricative /s/ in the word "fleecy" spoken by subject M-04. 

As shown in §2.2.1.3, this estimate of the spectrum is biased and has a large variance. The bias 

is due to the large side-lobe leakage that occurs when using a rectangular window, so that the 

relatively high energy densities in the lower frequency regions of the signal leak into neighbouring 

regions. This gives the impression of greater energy than actually exists in regions where the 

energy content is actually low. 

4.1.1 Reducing side-lobe leakage: the modified periodogram 

This bias is reduced significantly by multiplying the original data by a window that has a response 

with attenuated side-lobes. A commonly used family of windows are Blackman-Tukey windows 

58 
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FIGURE 4.1: Periodogram spectral estimate using using 10.6-ms (512-point) Daniell window 
from centre of [s] from production of "fleecy" by subject M-04. Dotted line indicates ambient 
noise. 

59 

)"(k) = 1 - 2r + 2rcos(7fkjM) for Ikl ::; M, and 0 otherwise, where setting r = 0.25 results in 

the Hanning window, and r = 0.23 the Hamming window. Figure 4.2 shows the power spectral 

density estimate of the same data windowed with the Hanning window, superimposed onto the 

previous estimate. Notice that the energy trough in the 100-Hz-1.5-kHz frequency region has 

dropped significantly in energy (presumably towards the underlying values). Originally these 

would have been biased by the leakage from the large-valued peak at 2 kHz. 

This new estimate, having improved bias properties, is commonly used in speech analysis (e.g. 

O'Shaughnessy 1987). Yet as mentioned in §2.2.1.3, if the signal under analysis is a fricative, then 

the process must be considered stochastic, and so the variance of this estimate is still large. This 

variance can be demonstrated by superimposing a 95% confidence interval on a periodogram 

spectral estimate. Figure 4.3 shows a modified spectrogram of a 512-point section from the 

centre of [f] in a production by subject M2 of the word "beefy", with 95% confidence bounds. 

Considering the possible values from one frequency to the next, there are often large overlaps in 

the frequency response, so it is quite reasonable to assume that, where dO j df is positive at some 

f = ih, dGjdf may in fact be negative at this frequency. This combines with the effect near 

peaks of very large variance in the estimate, to make locating maxima and minima from this 

estimate subject to large error. This in turn means that searching of peaks and troughs is error 

prone. Since a common aim in speech research is to locate peaks that may result from one or 

more poles in the vocal tract, and in the case of fricatives, the location of troughs resulting from 

zeros caused by antiresonances, an estimate with large variance is of questionable usefulness ill 

these areas. 
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Another important aspect of speech is the way in which the signal properties change over time, 

due to the constantly changing nature of the production system. Indeed, a common theory is that 

much of the information in speech is contained within the change in signal rather than the signal 

itself. It is therefore useful to be able to track changes over time of the underlying production 

mechanism from changes in the resulting acoustical signal properties over time. Commonly 

the peaks in speech spectra can be tracked, and the orientation of the production mechanism 

determines the position of these. It should also be possible to track the changes in orientation 

of the production mechanism during fricative production from the signal spectra so that, for 

example, it can be determined at which points in the production of the fricative the mechanisms 

are stationary, and at which points they are subject to more rapid change. In order to do this, 

the spectrum is computed from one time interval to the next. However, due to the large variance 

associated with this first estimate, changes in the spectrum that are comparable in size to the 

(considerable) variance of the estimate are impossible to recognise: the variance of the estimate 

overwhelms changes in the underlying system spectrum. 

4.1.2 Estimate variance: white dots in the spectrogram 

Again referring to Figure 4.3, note that some estimates of the spectrum that have a large negative 

deviation appear as particularly deep spikes up to about 20dB in size. There seem to be no similar 

positive spikes however. From the equations governing the estimate variance, both large positive 

and large negative errors may be expected. 
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In fact, the presence of these severe negative spikes is a result of the common practice of using 

a logarithmic scale when displaying power spectra. They give the spectral estimate a certain 

'asymmetrical spiky' appearance. These spikes show up as undesirable artifacts in generated 

spectrograms. 

Spectrograms are formed by calculating spectral estimates at incremental periods over an acous­

tical signal. In speech the spectrogram has become a powerful tool that allows a good visual 

representation of formants and speech dynamics. During fricative segments, the spectral esti­

mates that are used to form the spectrogram are subject to increased variance, and as a result, 

the aforementioned large negative spikes appear. A common practice to increase the clarity of 

spectrograms is to define some baseline power value that will be set as white, use the maximum 

power value to define black, and use linear grey scale between these values. The baseline is usu­

ally set high enough that it intersects with the large negative spikes (as it usually is), so that the 

resulting spectrogram is peppered with white dots, as demonstrated in the typical spectrogram 

shown in Figure 4.4. 

In order to resolve these issues, some method of reducing the variance of estimates is required. 
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FIGURE 4.4: Spectrogram of [isi] production from 'fleecy' by subject M5 . N = 512, overlap= 
480. Notice the appearance of white dots in the fricative portion. 

4.2 Time-averaging and fricative stationarity 
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As mentioned in §2.2.2.2, a common method used to reduce the estimate variance of a stationary 

process is to average the spectra calculated at several different times during a stationary portion 

of the stochastic signal. In speech analysis, this process presents several limitations . 

Firstly, it requires that some portion of the fricative of interest is stationary. IT it was known a 

priori that this assumption holds, then a much improved estimate could be assured. However, 

in trying to ascertain which parts of the fricative are stationary, and which are not, a spectral 

estimate with small variance of each segment is required. A time-averaged estimate formed over 

a non-stationary region of the process will give spurious results, from which little can be deduced 

with assurance. 

What may be expected in a time-averaged spectral estimate formed over non-stationary data? 

Consider the position of a distinctive spectral peak. IT this peak maintains amplitude but changes 

frequency smoothly over the course of the time-averaging period, this would be represented as 

a single broad energy band at somewhat lower magnitude. Indeed, it may not be recognisable 

as a peak at all. Alternatively, if the peak 'jumps' from one frequency to another, this will 

be represented as a double-peak. Of course, any actual broad energy band in the underlying 

system will appear in the estimate as a broad energy band, while any actual double-peak will also 

produce a double-peak in the spectrum. These qualities of the time-averaged spectral estimate 

make it particularly difficult to interpret over sections of data that are suspected to contain 

non-stationary components, or equally over data that are of unknown stationarity. 
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The spectral estimates shown in Figure 4.5 serve to highlight some of the potential uncertainties 

that are faced when interpreting the results of time-averaging. The large number of peaks that 

appear must now be interpreted as positions of the peaks over the averaging interval. As an 

example, consider the time-averaged spectral estimate shown in Figure 4.5.a, which has been 

generated by averaging 6 adjacent Hanning windowed segments of data in the middle of the 

fricative lSI in the word 'quichey', produced by subject M-Ol. The first clue that this estimate 

is unusual is the appearance of a double-peak at approximately 2.2 kHz. We may postulate that 

this double peak is in fact the time-averaged representation of a single peak that has moved over 

the time-averaging interval. Conversely, the strong peak around 2 kHz in the spectral estimate of 

/s/ from 'fleecy' in Figure 4.5.b, strongly suggests the position of a resonant frequency, although 

any amplitude changes that occurred have been averaged. Similar occurrences can be seen in the 

last two spectra of Figure 4.5. In §4.5.1 it is demonstrated that the 'ghost' peak just below the 

main peak at 2 kHz in Figure 4.5.d is actually due to a spectral peak that increases in frequency 

and amplitude during the course of the time-average. 

The central region of the fricative is usually selected for calculating a time-averaged estimate, 

since it has been supposed that this is the region of greatest stationarity. However, the degree of 

stationarity in this region must be evaluated thoroughly. For the task of determining which parts 

of the fricative are stationary, sOpIe other method of minimising the estimate variance must be 

used. 
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In regions of the signal that are known to be non-stationary, such as vowel-fricative boundaries, 

this method of spectral estimation is particularly inappropriate. 

Overall, then, time-averaging is limited where the stationarity of a signal has not yet been 

established, or where one wishes to explore the non-stationary aspects of a signal. 

4.3 Ensemble averaging and ergodicity 

One commonly employed method for reducing the estimate variance which attempts to overcome 

some of the problems of time-averaging is the ensemble average. In order for ensemble averaging 

to function as shown in §2.2.2.1, several realisations of the ergodic random process under ex­

amination are required. Since each of these is assumed to be generated by the same underlying 

process, a better estimate of this process may be obtained. 

In terms of speech, for ensemble averaging to work successfully requires that a speaker is able 

to consistently produce the same signal using precisely the same motions of production on each 

realisation. Again the paradoxical situation arises where it is impossible to measure whether the 

production mechanism for fricative production is ergodic without a small-variance estimate of 

each realisation. Indeed, of considerable interest is a means of measuring the variations between 

productions, but this is not possible using ensemble-averaging, since it relies upon the assumption 

that all productions are identically produced. 

Another difficulty that arises in forming ensemble-averaged estimates is that of identifying equiv­

alent events in two separate fricative productions. Unfortunately, the start and end points of a 

fricative are ill-defined. Any definition for these points must be anchored to some known specific 

event in the production mechanism for the process. 

Figure 4.6 shows time-plots of six productions of liJil from the word 'quichey' by subject M-06, 

on identical time and amplitude scales. It can be seen by eye that these fricative productions 

are of varying duration. This is not a rigourous analysis. However, the fact remains: no matter 

what definition of duration is defined, each of the above productions will be of different length. 

This at once suggests that the production mechanism - at least for this speaker producing this 

fricative - is non-ergodic. 

A typical procedure for generating an ensemble average is demonstrated by Shadle, Moulinier, 

Dobelke, and Scully (1992). 'Start' and 'end' event labels are defined using the vowel-fricative 

transition, and fricative-vowel transition. Other methods incorporate use of an electromyogram 

(EMG) across the larynx to more accurately determine voicing onset and offset positions. Since 

the time intervals between these event labels are subject to some variation, a system of 'temporal 

warping' is needed to make the durations uniform, so that 'events' across productions can be 

located. Of course, such 'temporal warping' must be rather an arbitrary stage, and so must l)f~ 

treated as liable to produce misinformation. 

An ensemble-averaged spectral estimate formed from central fricative portions of [)] from six 

productions of 'quichey' by subject M-01 is shown in Figure 4.7, along with the ensemble­

averaged spectra for three other unvoiced fricatives by this subject. 



Chapter 4 Analysis: sp ectral estimation of fricatives 

(a) 

(c) 

qui chey1, subject #6 quichey2, subject #6 quichey3, subject #6 
40 40 40 

<b 20 
~ ~ ~ 

c c c ., 
0 "0 

:;, 
:2 
15. 

~ -20 

-40 -40 
0 100 200 300 0 100 200 300 100 200 300 

Time (ms) Time (ms) Time (ms) 

quichey4, subject #6 quichey5, subject #6 quicheyS, subject #6 
40 40 40 

<b 20 <b 20 

E E ~ 

c ., ., 
0 "0 0 "0 

:;, :;, 
:2 :2 
15. 15. 

~-20 ~-20 

-40 
100 200 300 0 100 200 300 100 200 300 
Time (ms) Time (ms) Time (ms) 

FIGURE 4.6: /'Ui/ from six "quichey" productions, subject M-06. 

.,.,!:---!------!.,..----!:",..---;;,----:!,. ,,,,,,,,,,,,,,",, 

" 

i" 

i:~ 
! , " 

'o-! 

.,.,~-___!:---__!.-----7;"----;;c---,!,,. ,,,,,,,,,,,,,,",, 

(b) 

(d) 

" 

." '---'.--.~ 

.",!:-----!:---~.---;;,,,----;;c-----!. ,.......,,,,",, 

" 

.",~----!:---__!.-----7;"----;;c,, ---.;,. 

'-"'"" 

F IGURE 4.7: Ensemble-average spectral est imates using 6 windows from centre of separate 
fricative productions. (a) U1 from centre of "quichey". (b) [s] from centre of "fleecy". (c) [e] 
from centre of "teethy" . (d) [fj from centre of "beefy" produced by M-Ol . 

65 



Chapter 4 Analysis: spectral estimation of fricatives 66 

A comparison of these ensemble-averaged spectra, with those formed by time-averaging in fig­

ure 4.5 certainly shows similarities in terms of overall energy distribution. However, a closer 

examination reveals that some of the most striking features of these spectra are not present in 

both estimates. 

For example, while the time-averaged spectrum for /9/ in Figure 4.5.c shows two distinctive 

peaks at approximately 2 kHz and 3 kHz, for the ensemble-averaged case in figure 4. 7.c, the peak 

at 3 kHz has been obliterated. In the time-averaged estimate for /f/ in Figure 4.5.d, a double 

peak is the prominent feature around 2kHz, but for the ensemble-averaged case in Figure 4.7.d, 

the double peak has also disappeared. The main peak magnitudes for /s/ and /S/ in these two 

sets of plots also display contradictory information. For example, the 33dB peak at around 2 kHz 

in Figure 4.5.b has fallen to around 28dB in the ensemble average in Figure 4.7.b, and a new 

'peak' at around 26dB has appeared in the 11.5-kHz region, where the time-averaged estimate 

showed a 19dB falling slope. 

This is sufficient demonstration that observations based on estimates relying on assumptions 

that have not been proven, and may not hold well, may be misleading if interpreted without due 

consideration. 

Finally, the practical value of ensemble averaging in situations where a particular production 

needs to be analysed is greatly limited. Only under considerably controlled circumstances can 

anything approaching a reliable ensemble be gathered. When studying the pathological speech of 

speakers who may have especially large variation in production, the method is almost impossible 

to use. 

4.4 Properties of frequency-smoothed estimates 

The simple method of frequency smoothing described in §2.2.2.3 has the attractive properties 

that it does not rely upon assumptions of ergodicity or stationarity, but rather of the underlying 

spectral shape itself. For a perfectly white spectrum, its ability to reduce the estimate variance 

is flawless. For non-white spectra, it presents a simple tradeoff between variance and local bias. 

Specifically, if the spectral window to be convolved with the spectrum is too small, the variance 

will not be reduced sufficiently, and will remain unmanageably large. If the spectral window is 

too wide, local bias dominates: regions of the underlying spectrum with large first differential 

will be flattened, and peaks in the spectrum will lose their height, and gain width. Features lose 

their definition. 

So how is the spectral window's shape and size determined? To answer this, knowledge of the 

underlying spectral shape is required, and again the paradox arises. This time, knowledge of the 

physical system may guide the choice. 

Many of the considerations and aspects concerning the implementation of frequency-smoothing 

are given in the next section on multitaper analysis. For now, consider that the best bandwidth 

resolution (but highest variance of the estimate) that can be obtained using a sampling rate of 

48 kHz, and 512-point data windows is 1:::,.1 = 93.75 Hz. The overlaid spectral estimates in fig­

ures 4.8 and 4.9 have been generated using rectangular spectral windows of M = {2, 4, 8,16, 32} 
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(bandwidths of 188,375, 750,1500 and 3000Hz respectively). For small M, the variance domi­

nates; for large M, the spectrum loses its shape. How the optimal value for M will be decided 

is discussed in more detail shortly_ 

4.5 Benefits of multitaper analysis 

As shown in §2.2.3, multitaper analysis is the optimal method of obtaining a reduced-variance 

estimate where a single short realisation of a stochastic process is required. It makes use of 

a larger amount of the original data, without introducing bias, while reducing the estimate 

variance by optimal use of an advanced form of frequency smoothing_ The final representation is 

of tremendous value where accurate measurement of the spectrum within well-defined frequency­

limits is required. 
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Recall the estimate calculated using a modified periodogram in §4.1, shown in Figure 4.3. Using 

the same data, but analysing with the multitaper technique (10.6-ms, 512-point data windows, 

NW = 4) gives us the spectral estimate in Figure 4.10. Note that the 95% confidence interval 

is greatly reduced from that of Figure 4.3. Also notice the apparently sharp spectral peaks and 

troughs that have not been blunted by too-severe frequency smoothing. 

A result of this reduced-variance spectral estimate is that actual changes in the underlying system 

(that were previously swamped by the variance of the estimate) can now be measured. As an 

example, it can be used to illustrate the change in peak position over time that we postulated 

was the cause of the double-peak in Figure 4_5_d (see §4_2). 

Figure 4.11 shows multitaper spectral estimates of the six adjacent 10_6-ms windows that were 

used to form the ensemble averaged estimate in Figure 4.5. While appearing rather cluttered, 

the plot clearly shows the gradual change over time in the frequency and amplitude of the peak 
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around 2 kHz. Such variations need to be studied, but have previously been ignored as a result 

of time-averaging. This example suggests how much variation might typically be expected over 

a 64-ms interval of a fricative. It also highlights how much of this variation has been previously 

swamped by the high variance in poor spectral estimates, and not captured by broad measures 

such as spectral moments. 

4.5.2 Comparison to frequency smoothing 

In §2.2.3 it was shown that the power frequency response for the combined multitaper transform 

is a wide, flat-topped main-lobe with small trailing side-lobes. It was demonstrated that a similar 

response is obtained by convolving the power frequency response of say, a Hanning window with 

a rectangular frequency window: essentially the process undertaken during frequency smoothing. 

A comparison can now be made between multitaper estimation and frequency smoothing. Since 

the multitaper estimate makes use of a larger proportion of data within each window, and since 

the prolate spheroidal sequences are optimal at maximising energy while minimising bandwidth, 

the multitaper estimate should always be considered the best estimate where frequency tradeoff 

methods are being compared. 

Spectra from central lSI and lsi spectra are shown in figures 4.12 and 4.13, for smoothed 

periodogram spectra for M = {2, 4, 8}, and in the larger figures 4.14 and 4.15 for M = 6, 

superimposed on multi taper spectra with NW bandwidth product of 4. An approximation to 
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the main lobe of the response of combined multitaper analysis with NW = 4 bandwidth product 

is to set M = 4 in the convolution of the modified periodogram spectrum with a Daniell window. 

The resolution of the spectrum without smoothing is 18/512 = 94Hz. With M = 4 smoothing, 

this resolution is reduced to M 18/512 = 375 Hz. While the responses look similar in terms of 

their main-lobe widths, the multitaper analysis reduces the variance by a factor of nearly 7, while 

frequency smoothing with M = 4 will only reduce the variance by a factor of 4 in regions of the 

underlying spectrum that are fiat. This explains why many regions of the frequency-smoothed 

estimates in figures 4.12.b and 4.13.b still appear more 'spiky' than the multitaper estimates, 

despite having similar resolutions. 

Setting M = 6 (as demonstrated in figures 4.14 and 4.15) in the frequency-smoothed spectrum 

apparently provides a closer estimate to that of the multi taper spectrogram (and, we assert, to 

the true spectrum). However, a few points are worth mentioning. Firstly, the increase in M 

means an increase in the main lobe width, and this results in a further reduction in the spectral 

resolution to M 18/512 = 563 Hz. This means that two frequency points that lie closer together 

than this are heavily correlated, and cannot be used reliably. 

Secondly, the local bias is increased. The M = 6 smoothed spectrum generates a better approx­

imation to the multitaper spectrum in the main peak of Figure 4.14 by reducing large variances 

in this region. However, a problem arises in using a fixed value of M, which may give a gooe! 

spectral estimate for one segment of data, but may not be the best choice for another. This can 

be demonstrated by considering the suppression of the small energy peak around 3 kHz in figures 
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Further increasing the size of the rectangular frequency window to M = 10 results in an estimate 

that is starting to seriously bias spectral features. 

4.5.3 The multitaper spectrogram 

Multitaper spectral estimates have been shown to be very reliable by minimising estimate vari­

ance, while maintaining low local bias (compared to other frequency-smoothing methods), and 

without relying upon assumptions of ergodicity or stationarity. 

Unlike ensemble-averaged, or time-averaged spectral estimates, multitaper estimates can be used 

in the construction of spectrograms. Such a spectrogram has been constructed for the same data­

set as that used to generate Figure 4.4, and is shown in Figure 4.16. 

At once the differences between these two interpretations of the same data can be assessed. The 

large variance of the original estimate gives the fricative portion a coarse appearance, while the 

multitaper estimate is far more 'predictable'. Indeed, the new representation is the one desired, 

since it reflects the fact that the underlying production mechanism is not varying rapidly, but is 

smooth. 

Consider nOW the representation by this multi taper spectrogram of the vowel structure On either 

side of the central fricative. A result of the spectral smoothing is that the very fine formant 
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structure of the vowels on either side of the fricative has lost its definition. This is strong 

demonstration that the multitaper technique, while well-suited to fricative analysis, is the in­

correct choice for analysing vowels. The computations within the multitaper procedure are 

completely unnecessary for the study of deterministic and pseudo-deterministic signals such as 

vowels: no extra information is acquired, and spectral resolution is lost. 

Spectrograms constructed using multitaper spectral estimates, are presented for all voiceless 

fricative productions from the normal-hearing speakers, in Appendix B. These spectrograms 

include information up to 20 kHz, and demonstrate the large variations that exist across tokens. 

4.6 Summary 

The estimates commonly used in the literature are subject to large variances, which can obscure 

spectral features, and present difficulties for peak-tracking. 

The methods for attempting to reduce estimate variance have been shown to sometimes be 

problematic, and cause limitations in the aspects of data that can be analysed: time-averaging 

prevents changes over time from being measured, while ensemble-averaging prevents changes 

over production from being measured. 

Multitaper analysis allows a reduced-variance spectral estimate for a single window of fricative 

data to be generated, by making use of more information than a single periodogram, and repre-
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senting this at an optimal resolution by maximising the energy while minimising the bandwidth. 

While frequency smoothing often produces comparatively similar results , it does not do so in a 

reliable manner. That is, the best results from frequency-smoothing come after M has been ad­

justed with reference to the multitaper spectral estimate. Even so, the multitaper spectrograms 

excel where short windows of time-series data are to be examined, since a greater proportion of 

data are incorporated into the estimate. 

Since multitaper analysis does not rely upon assumptions of stationarity, it is now possible to 

study with greater accuracy changes in the spectrum over time. Because no ensemble-averaging 

takes place, differences between productions can be studied. These features are of great value, 

and are investigated in detail in Chapter 6. 



Chapter 5 

Analysis: spectral moments 

Spectral moments have become one of the most popular methods for characterising fricative 

productions. They have been used to measure differences in productions of the same fricative 

across and within subjects. They have been found to be beneficial in comparisons of normal and 

disordered speech, and also for measuring changes in disordered production that may occur over 

long periods of time after the hearing system has been significantly changed. 

However, in some instances they have been found to produce inconclusive results. Their ability 

to discriminate between the voiceless sibilants has generally been found to be good; however, 

they have so far not been able to distinguish the non-sibilant voiceless fricatives. 

The performance of spectral moments is examined. Several parameters that have up until now 

been chosen rather arbitrarily, are considered. Adjustments that may result in small improve­

ments in the performance of spectral moments are presented in §5.1. 

It has often been considered that significant cues may lie in the spectral changes that occur over 

time. Tracking the changes in spectral moments of fricative productions over time has been 

attempted in a few places in the literature. Typical variations over time of spectral moments are 

examined in §5.2. 

Finally, a discussion of the findings is presented. 

5.1 Adjustments to spectral moments 

A number of parameters inherent in the spectral moment methodology require careful consid­

eration. These parameters can generally be chosen arbitrarily, and still produce an apparently 

satisfactory set of results. However, by more careful consideration of these parameters, it may 

be possible to improve the performance of spectral moments somewhat. 

Two main criteria are open to improvement. Spectral moments are employed to capture the shape 

of a spectral distribution. Each moment describes a particular characteristic of a distribution, 

and if the methodology has been properly optimised, each moment should be sensitive to a single 

aspect of the spectral shape; moreover, correlation across the moments should be minimised. This 
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Multitaper Periodogram 
Centroid 7.8 x 103Hz 7.5 x 103 Hz 
Variance 24.9 x 106Hz2 23.5 X 106Hz2 

Skewness 73.2 x 109Hz3 75.5 X 109Hz3 

Kurtosis -318.4 x 1012Hz4 -193.2 X 1012Hz4 

TABLE 5.1: Moments generated from multitaper and periodogram spectra of example UJ token. 

is achieved by ensuring that the distribution to be characterised by spectral moments is almost 

Gaussian. If the distribution does not resemble a Gaussian distribution, then the moments will 

become less sensitive to spectral shape, and more highly correlated to each other. The closer 

the distributions are to Gaussians, the better the spectral moments will perform, and hence the 

better their distinguishing capabilities. 

All spectral moments are calculated from a single 1O.6-ms mid-fricative data window, unless 

otherwise stated. The term 'fricative token' is used to mean a single, mid-fricative 10.6-ms data 

window. 

5.1.1 Spectral moments of multitaper spectra 

Spectral moments have until now used modified periodogram spectral estimates over some por­

tion of the fricative under examination. It is known that the spectral estimates resulting from 

a simple modified periodogram are subject to large variance error. In some instances, time or 

ensemble averaging techniques have been used in attempts to reduce these errors. However, 

it remains unclear as to whether fricative production satisfies the conditions necessary for the 

averaging techniques to produce reliable, informative results. 

Multitaper analysis produces consistent spectral estimates, with reduced variance error. These 

spectral estimates can therefore be used to calculate the spectral moments 

Keeping all other factors constant, the spectral moments calculated from each type of spectral 

estimate are compared. Frequency scales are up to 20 kHz unless otherwise stated. As a first 

example, consider the centre of an [J] token in an jiJij context. Periodogram, and multitaper 

spectral estimates for such a token, from male subject M-02 are shown in Figure 5.1. The 

moments calculated from the multi taper spectrum and from the periodogram spectrum are 

shown in table 5.1. 

We first note that the minimum values in the periodogram spectral estimate lie within only a 

few decibels of -20dB SPLjHz, meaning that, at least for this token, the zero reference should 

not be set higher than about -20dB SPLjHz. The multitaper spectrum however, shows that 

the zero reference could be set substantially higher, around -5dB SPLjHz, without any clipping 

of the spectrum occurring. Setting the 7.ero reference is discussed more fully in §5.1.3. 

The Gram-Charlier distributions also indicate which features of the spectrum the spectral mo­

ments are most sensitive to: the broad peak position, and the fall-off of the tails have influenced 

the moments strongly, but the finer spectral peaks shown most clearly by the multi taper spec­

trum at around 4kHz and 7kHz have not had much 'influence'. 
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Comparing the moments (given in table 5.1) from the multitaper spectrum to those calculated 

using the periodogram spectrum, it can be seen that the low-order moments are fairly similar, 

and this is reflected in the similar Gram-Charlier reconstructed distributions. This is to be ex­

pected, since they are basically averaging operators over the whole spectrum, so that individual 

estimation errors are 'smoothed' out. This makes the low-order spectral moments good descrip­

tors of spectral distributions with large variance across their frequency range, and so are quite 

well-suited to the task of describing spectra calculated from crude estimates. 

The skewness operator is simply a measure of which side of the spectrum has greater mean 

energy, and so can also be expected to give similar results. However, for the fourth-moment, 

(and for higher-order moments), small variations in the tails of the distribution will become 

exaggerated. Since the errors in the tails of the periodogram spectrum are much greater than 

for the multitaper spectrum, larger variations of values for these high-order moments would be 

expected. 

We wish to examine how significant the variations due to spectral error variance in calculated 

spectral moments are, compared to typical variations across productions. Figure 5.2 compares 

the 3rd and 4th spectral moments calculated from periodogram, and multitaper spectral esti­

mates. Each set of moments is calculated from a single 10.6-ms mid-fricative data segment. The 

voiceless sibilants, in all vowel contexts, as produced by all male subjects, are presented. Blue 

plus-signs indicate /s/, red circles /ff. Figure 5.2 suggests that the improved multitaper spectral 
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estimate does not alter the calculated spectral moments greatly. On the occasions when it does, 

the effect is usually to bring outliers closer to the mean group value. Closer analysis reveals that 

the most extreme outliers are caused by spectra which exist below the set zero reference at some 

frequencies; the reduced variance of the multitaper estimates means this is less common, and so 

the moments become slightly more stable. 

Using multitaper spectral estimates to calculate spectral moments means that the zero reference 

can potentially be set higher, thus increasing the sensitivity of the spectral moments, while 

reducing moment variations due to error in the spectral estimate. In §5.1.3 the effects of varying 

the zero reference prior to calculation of spectral moments are explored. 

5.1.2 Appropriate frequency-range selection 

Fricative studies have traditionally focussed on frequencies below about 10 kHz. There have 

been a number of motivational reasons for limiting the frequency analysis methods to around 



Chapter 5 Analysis: spectral moments 80 

half the human perceptual range. Certainly it is well established that human perception of 

fricatives remains high when the signal above, say, 8 kHz is filtered out; hence, limiting the 

search for primary discriminatory cues to this frequency scale seems justifiable. Nevertheless, 

studies have shown that perception cues exist well above 8 kHz (Lippmann 1996), suggesting 

that the production mechanism is generating cues at higher frequencies. 

In the fricative perception analysis of cochlear implant users, who generally can only make use 

of information up to a maximum of around 5 kHz, comparisons to perceptual capabilities of 

normal-hearing subjects presented with similar frequency-limited signals is clearly warranted. 

However, when studying the production of fricatives by such subjects, there is no reason not to 

suspect changes in the higher frequency regions of the signals, where potential cues may lie, and 

which may indicate subtle changes in production. 

Analysis of fricative production should not begin by discarding information at frequencies that 

are not often required for good perception classification. Indeed, some interesting production 

characteristics can be quickly observed by considering just a few multitaper spectra of typical 

fricative productions. 

An example mid-vowel spectrum of [i] from a production of the word "beefy" is presented in 

Figure 5.3 (top). Note that energy at all frequencies, including those above 11kHz, is at least 

10dB above ambient room noise, and has a mean of approximately 5dB SPL/Hz in the 10-20-

kHz frequency range, indicating that indeed, the production mechanism is producing energy in 

the higher frequency ranges. 

The middle plot in Figure 5.3 shows the mid-fricative [f] spectrum of the same production. It 

is not difficult to notice that the large proportion of energy in this fricative occurs above 6 kHz, 

at a mean level of approximately 18dB SPL/Hz in the 6-20-kHz frequency range. Significantly, 

these energy levels are also greater than for the vowel spectrum, suggesting that this is possibly 

an important aspect of the fricative production. 

Finally, the bottom plot in Figure 5.3 shows a spectral slice on the [fi] fricative-vowel boundary, 

where the energy has dropped in the high-frequency range to lower levels than any other point 

during vowel or fricative production, almost dropping to ambient room noise levels above 11 kHz. 

This short temporal occurrence may also reflect another cue characteristic of the fricative, that 

could only be captured if the frequency range used is great enough. 

Using data from all male subjects, the effects of varying frequency range on spectral moment 

sensitivity is demonstrated in Figure 5.4. The first and second spectral moments for all voiceless 

fricatives in all vowel contexts as produced by all male subjects are presented. 

It is inevitable that we will occasionally need to quantify the 'separation' of such multivariate 

fricative clusters. This will clarify any degree of improvement in fricative cluster separability 

when using different descriptive parameters. Tests of certainty that distributions have different 

means (such as p-tests) are insufficient for the purposes of describing the degree by which two 

clusters of tokens are separated. A more suitable method for quantifying the separation of two 

clusters is Fisher's linear discriminant, given 

(5.1) 
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where ILl and IL2 are the means of each fricative cluster, Vl and V2 are the covariance matrices 

of each fricative cluster, and d is the direction vector between the two clusters. The value 

J represents the distance between the two clusters, in terms of the variances of each cluster. 

Generally a value of J ~ 4 indicates that the clusters are well separated, while values of J ;S 2 

indicates that the clusters are well within two standard deviations of each other, and hence are 

likely to be overlapping. 

Returning to Figure 5.4, notice that when the 20-kHz frequency range is used, the first and 

second spectral moments appear to be weakly correlated (C = 0.58, where C is the coefficient of 

correlation). The effect of reducing the frequency range from 20 kHz to 10 kHz is more distinct 

however, and of importance is the reduction in correlation of first and second spectral moments 

(to C = -0.22). The separation of the sibilant clusters has also increased from J = 3.19 to 

J = 3.94. This slight reduction in the apparent correlation between the first two moments, has 

resulted from a rather arbitrary change in frequency range selection. Knowledge of expected 
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production spectra has not been used in determining an optimal frequency scale. In fact , the 

reduced correlation of the lower plot partially results from a reduced sensitivity of the spectral 

moments. The reduction in frequency scale has not been accompanied by a suitable change in 

zero reference, and so the 'tails' of the spectral distributions are generally higher than for the 

D-20-kHz frequency range. Spectral moments will be insensitive to changes in distributions with 

high tails, and so changes in frequency range selection must be accompanied by careful selection 

of the zero reference. 

Another correlation can be seen by plotting the first and second spectral moments against total 

spectrum magnitude before normalisation. Figure 5.5 demonstrates these correlations for 0- 20-

kHz, and a D-10-kHz frequency ranges. Notice the moderate correlation of the first moment 

to total spectral amplitude (C = 0.56 for the 0- 20-kHz range, and C = 0.61 for the 0- 10-kHz 

range). Of course, this is to be expected, due to the fixed nature of power normalisation. As the 

overall intensity of the fricative increases, the spectral shape moves up the y-axis , further from the 

zero reference. After normalisation, the higher distributions will thus inevitably appear 'flatter '. 

Since /s/ spectra generally have significantly more energy at lower frequencies, the normalisation 

process will effectively redistribute the energy of louder productions to the right, and hence the 

first moments of /s/ are particularly correlated. The second moments are loosely negatively 

correlated when the D-lO-kHz frequency range is used (C = -0.64) , although very little overall 

correlation is found in the second moments when using the 0- 20-kHz range (C = -0.05) . 
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It may be that correlations exist between the spectral shape of a fricative, and its total spectral 

amplitude. However, it is almost impossible to determine whether such a correlation exists 

using spectral moments, due to the expected correlations imbedded in their calculation, when 

considering distributions with high tails. 

5.1.3 Selection of zero-reference 

One of the first steps needed to calculate the moments of a spectral distribution, is to determine 

a suitable zero reference to use when normalising the spectrum so that it can be treated as a 

distribution with total area equal to unity (as discussed in §2.3). It is worthy of note again that 

the literature seems to make no mention of setting the zero reference. 

A number of practical considerations force us to choose a somewhat arbitrary zero reference 

value. For instance, it may be chosen as some fixed number of decibels below the spectral 

peak, or even at the ambient noise floor. While these arbitrary decisions may eliminate certain 

problematic variables, they also tend to create several new ones. It is important to consider the 

effect upon the spectral moment methodology itself, when choosing the zero reference. 

To ensure that the spectral moments are sensitive to the shape of the power spectrum, the 

distribution must approximately resemble that of a Gaussian curve. That is, the tails of the 

distribution should be close to zero, and it should comprise of a single, broad peak. If this is 

not the case, the resulting spectral moments will be insensitive to the changes in spectral shape 

that we are attempting to capture, which in turn will lead to difficulties in the interpretation of 

results. 

Ideally then, spectra would be considered from a zero reference close to the low and high­

frequency tails of spectrum. However, another of the most important requirements is that no 

point in the distribution lies below the zero-reference, since this would present problems when 

the normalisation step is performed. The distribution must be positive everywhere, or the 

resulting calculated moments will become nonsensical. Given the typical range of variations in 

fricative production, it is straightforward to demonstrate that satisfying both of these conditions 

simultaneously, using a fixed zero reference for a large set of tokens, is almost impossible. 

In fact, fixing the zero reference around -10dB SPL/Hz was found to be approximately the 

highest value of zero reference that would ensure no multi taper voiceless fricative spectra ventured 

below r z , using a frequency range of 0-10kHz, across all our male and female subjects, and 

across all voiceless fricative tokens (for modified periodogram spectra, rz had to be set to -20dB 

SPL/Hz in order to achieve a similar amount of stability). If set higher than this, the zero 

reference starts to seriously clip the spectral data with increasing regularity, causing the spectral 

moments to become increasingly unstable, resulting in more and more outliers. 

Unfortunately, many fricative tokens have spectra well above this reference. On normalisation of 

these spectra, the tails of the distribution do not approach zero, and hence, the spectral moments 

become less sensitive to changes in these regions. An undesirable side-effect is that the odd-order 

moments become highly correlated to each other, as do the even-order moments. 

To take an example, consider the multitaper spectrum shown in the bottom-left of Figure 5.1. 

Consider the frequency range 800 Hz to 12 kHz. This shape can be described well by a Gaussian 
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curve, so long as the zero-reference is sufficiently close to the 'tails', as demonstrated in Figure 5.6. 

The moments calculated from the curve (see table 5.2) normalised using Tz = 10dB SPL/Hz 

are fairly well suited using this zero-reference: the tails of the resulting distribution are close to 

'zero'. The curve normalised using Tz = - 10dB SPL/Hz of course appears much 'flatter', and the 

moments and Gram-Charlier distribution reflect this. The moments will have reduced sensitivity, 

since variations in the distribution will seem less significant than the equivalent variation using 

Tz =10dB SPL/Hz. 

. " '--
FIGURE 5.6: Normalised spectrum from centre of [J] from "quichey" with Gram-Charlier curves 
calculated from corresponding moments, Tz = lOdE SPL (left), Tz = - lOdE SPL (right). 

T z = 10dB SPL T z = -lOdB SPL 
Centroid 5.5 x lOilHz 5.9 x lOilHz 
Variance 6.1 x 106 Hz2 8.3 X 106 Hz2 

Skewness 6.4 x 109Hz3 5.1 X 109Hz3 

Kurtosis -21.1 x 1012Hz4 - 67.6 X 1012Hz4 

TABLE 5.2: Spectral moments generated from multitaper spectra of example U1 tokens, with 
different zero-references (see Figure 5.6). 

However, pushing the zero reference above - 10dB SPL starts to produce a few spurious results: 

spectra which exist below the zero reference result in extreme outlying sets of moments. Setting 

rz to OdB SPL/Hz, a greater proportion of the spectra do not cope well with the normalisation 

procedure. With increasing T z, the number of spurious results grow faster than the slight benefits 

from the better fit occasionally produced, and so little is gained by pushing the zero reference 

too high. 

Figure 5.7 demonstrates the high degree of structural correlation across the odd and even order 

moments, using a 0-20-kHz frequency range, and T z = -20dB for all voiceless fricatives produced 

in all vowel contexts by all female subjects. The coefficient of correlation for the first and third 

moments are C = -0.97, and for the second and fourth moments C = 0.96. This correlation is a 

result of the methodological approximations that have to be conceded when generating spectral 

moments. 

It may seem that , since a fixed zero reference produces moments that are often either insensitive, 

or unstable, an appropriate step would be to set it as some function of the spectral peak am­

plitude, or perhaps the mean spectral amplitude. However, it is clear that variables such as the 
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spectral peak, and the mean spectral amplitude are highly nonlinear functions of the amplitude 

at the tail frequencies of the distribution; such a function could not be made to produce stable 

results. 

Clearly, the amplitude of the spectrum (or zeroth moment) should be recorded, in order to 

evaluate whether correlations between total spectral amplitude and spectral moments can be 

used to improve the separation of the spectral moments. Figure 5.8 attempts to plot Oth, 1st 

and 2nd moments in a three-dimensional plot, to see if the incorporation of total amplitude aids 

separation. If the plot in Figure 5.8 is rotated, it can be seen that even in this three-dimensional 

space, the non-sibilants completely overlap. Including the total spectral amplitude data does 

not improve the separation of the spectral moments. 

The main problem is that the spectral shape of fricatives is highly variable, and often does not 

assume the form of anything resembling a Gaussian curve. A fine example of this can be seen 

in the mid-/fl spectrum in Figure 5.3. This very flat spectral shape is common amongst the 

non-sibilants, and this is clearly one of the root causes of the inability of spectral moments to 

differentiate ~hem. 

5.1.4 Summary 

The reduced variance error of multitaper spectral estimation allows the zero reference to be 

raised, without risking spectral clipping. The closer to the tails of the distribution the zero 

reference can be raised, the more sensitive the spectral moments will be to changes in the spectral 

shape. Nevertheless, it has been found that a zero reference of -lOdB is most satisfactory for 

minimising the number of spurious spectral moment values. 

A high degree of correlation exists amongst even moments, and amongst odd moments (demon­

strated in Figure 5.7). These correlations cannot be reduced by raising the zero reference above 

around -lOdB SPL/Hz (due to the growing number of spurious sets of moments resulting from 

the sheer variability across productions), it becomes apparent that the first two moments are 

likely to yield as much information as any other combination of moments. 
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While variations in frequency range potentially allow the spectral moments to become sensitive 

to different aspects of production power spectra, it remains unclear how the frequency range is 

best selected. Frequency ranges up to around 10 kHz appear slightly more stable, since the tails 

of the resulting distributions appear to be slightly less variable with respect to an appropriate 

zero reference. 

Figure 5.9 shows the 1st and 2nd spectral moments for all voiceless fricatives (in all vowel 

contexts), using a frequency range of D-I0kHz, and a zero reference of -10dB SPL/Hz, as 

produced by all male and female subjects. This combination of frequency scale and zero reference 

was found to give the best spectral moments: the correlation coefficients are low (C = -0.11 

and C = -0.13 for males and females respectively), and the separation between the sibilants is 

good (J = 3.55 and J = 8.43 for males and females respectively). Note that the non-sibilants 

remain completely overlapped (J = 0.70 and J = 0.08 for males and females respectively), due 

to their non Gaussian-like spectral shape. The apparent increased separation amongst female 

sibilants compared to the male sibilants, is a good example of how careful consideration must 

be taken before drawing conclusions from spectral moments. It may be tempting to draw some 

conclusion about 'better articulation' by the female subjects compared to their male counterparts. 

However, in light of what we now know of the properties of spectral moments, it seems highly 

likely that the greater separability results from some increase in the suitability of female spectra 

for characterisation by spectral moments. 
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In order to gain an understanding of the typical range of expected variations within a fricative 

production, the spectral moments can be plotted over time. 

Plots of spectral moments over time have been generated for all subjects and for all voiceless 

fricatives in all vowel contexts. What follows is generally true of the typical characteristics 

observed. To aid our discussion, we make use of a small set of 'typical' spectral moments over 

time. 

The moments over time of liFil segments (where IF I is one of the voiceless fricatives) from 

productions of subject M-01, are shown in figures 5.10 to 5.13, using a frequency range of 0 

to 12kHz, and rz=OdB SPL/Hz. This combination of frequency range and zero reference have 

been chosen to maximise the sensitivity of the spectral moments, while limiting the number of 

'spurious' spectral moment values. 
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The vowel-fricative and fricative-vowel 'boundaries' are reasonably straightforward to recognise 

from these plots: within the 'central' vowel and 'central' fricative regions, the plots tend to change 

slowly over time; however, at boundaries, the moments often 'jump', or 'dip' in a pronounced 

manner. A good example of this can be seen in the central bottom plot of Figure 5.10, where 

the [I-i] boundary produces a characteristic jump in all the spectral moment values. Often the 

boundaries are not so pronounced, but invariably some distinct wiggle can be observed. At the 

boundaries of the fricative, it is common for the overall amplitude of the speech (and the entire 

spectrum) to drop. Often this will result in a spectral distribution that drops below the zero 

reference at some frequencies, causing the spectral moments to become highly unstable, and 

resulting in the jumps seen at the fricative boundaries of the spectral moment plots over time. 

The shapes of the even order moment curves over time seem to be insensitive to fricative place. 

This may at least partially be a result of the insensitivity of the spectral moments due to the 

distributions not approaching zero at the tails. 

The odd-order moments seem to be more sensitive, both to the place of production, and to 

changes that occur over time. Productions of lsi and lSI tend to have smooth first spectral 

moment plots over time, steadily rising after onset, and falling just before offset. The third 

spectral moments for lsi and lSI follow a very similar trajectory, but mirrored horizontally, so 

that it has an appearance similar to the first moment, but 'upside down'. 

The non-sibilant spectral moment shapes over time are not greatly different from the sibilants. 

However, the odd moments are generally subject to a higher amount of variability, notably so 

over the central portion of the fricative. Considering the definition of a stationary process is 

one whose statistical characteristics are independent of time (see §2.2.2.2), it is reasonable to 

say that the non-sibilants often appear non-stationary, even over their central regions. This 

has important implications for the use of time-averaging when trying to generate a consistent 

spectral estimate of mid-non-sibilant spectrum. 

Spectral changes over time clearly occur, most especially during non-sibilant production. It has 

previously been expected that the characteristics of such changes over time may be related to 

the place of production for non-sibilants. However, while the spectral moments certainly seem 

to suggest such changes, characteristic differences in these spectral moment changes over time 

are not apparent. 

5.3 Discussion 

It has been shown that the use of multitaper spectra in the calculation of spectral moments does 

not produce greatly differing results from those calculated using modified periodogram spectra, 

with the exception of stabilising the higher-order moments due to reduced estimate variance in 

the tails, where the spectrum is especially prone to dropping below the zero reference. 

Since the overall variance of the estimate is greatly reduced, the zero-reference can be raised to a 

higher level without risking much of the spectrum becoming 'negative': if the zero-reference can 

be raised sufficiently, the spectrum becomes better-suited to being modelled by a normal curve, 

and hence, more sensitive to changes in spectral shape. 
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Figure 5.7 demonstrates the high degree of correlation amongst odd, and even moments. This 

is at least partially a result of the inescapable high-tailed spectral distributions that are being 

modelled as Gaussian curves. These correlation patterns cannot be greatly altered by using 

different frequency ranges, or zero references, due to the range of production variations. 

The best results for spectral moments are therefore elicited by the 1st and 2nd moments. Spectral 

moments for fricative sibilant spectra have been shown to have good separation, if an appropriate 

combination of frequency range and zero reference is used, as seen in Figure 5.9. 

A few existing studies have attempted several different approaches to setting the zero reference, 

although in some cases, the issue is not addressed at all. Functions of the maximum peak am­

plitude have been used to determine the zero reference. However, this approach will invariably 

introduce nonlinear correlations between the moments. More significantly, such nonlinear ap­

proaches make the interpretation of results very difficult. Such approaches may have applications 

in automatic speech recognition tasks, but they are of limited value if the results are to be used 

in some analysis of speech production. 

The variations in spectral moments over time during the production of fricatives has been ex­

amined. No distinguishing characteristics of the variations over time have been found. However, 

strong evidence suggesting the non-stationarity of the voiceless fricatives has been presented. 

Notably, the non-sibilant voiceless fricatives appear to be particularly variable over time. The 

implications for these findings are twofold. 

Firstly, since the moments of the process are known to vary over time, the validity of using 

time-averaging methods for improving the spectral estimate is called into question. The quite 

distinct non-stationary odd moments of the non-sibilants suggest that the use of time-averaging 

techniques will not necessarily produce useful results. 

Secondly, while no features of the variation over time of the spectral moments have been found to 

distinguish the non-sibilants, the evidence of their non-stationarity strongly supports the notion 

that such temporal distinguishing cues exist. In order to catch such temporal changes, it may 

be necessary to more carefully capture and track distinct spectral features, rather than just the 

broad distribution of energy. 



Chapter 6 

Measurement, and characteristics 

of variation 

Until now, a very limited amount of work has been undertaken to attempt to capture variations 

that occur across spectra. When it has, it has tended to use very broad descriptive techniques, 

that relay little information about detailed spectral features. This has largely been due to the lack 

of a suitable spectral estimation tool that both produces spectral estimates with small variance 

error, and also that does not need to compound data over which the analysis of variance is under 

examination, such as time and ensemble averaging techniques. 

In this chapter, we undertake such analyses, using spectral estimates calculated using the multita­

per methodology. We have seen that multitaper analysis excels when short windows of stochastic 

time-series data are to be analysed, and an estimate with low variance error is required. Such 

an analysis tool makes estimation of the variance of the process possible. 

We begin by exploring the typical spectral variability that can occur in productions of voiceless 

fricatives across speakers of the same gender. This analysis allows us to view the maximum 

variability we are likely to encounter when we later consider the productions, for example, within 

a single speaker's fricative tokens. 

Analysis of the spectral variation of the sibilants is found to produce some very useful results. 

We then turn our attention to the non-sibilants, for which these new analysis of spectral variance 

methods provide interesting new insight. 

Appendices C, D, E and F contain plots relating to the results of this chapter. 

6.1 Spectral variability in voiceless fricative production 

Of interest is an estimate of the total variability within the productions of a single fricative, by 

speakers of the same gender. That is, for a given fricative, how much spectral variation exists 

within the speakers of a single gender, given that vowel context, and precise time position within 

the production are unknown? 
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6.1.1 Analysis of within-gender spectral variance 

We begin by limiting our analysis to a 64-ms data window in the centre of all recorded fricative 

tokens. The central portion of each fricative token has deliberately been considered since it 

should be the region least influenced by vowel context. Clearly, as the window of analysis 

extends towards the fricative boundaries, an increase in variability can be expected. For now, 

the task is restricted to the fricative centre. 

In order to ensure that variability present during the central fricative region is captured, the 

64-ms window is divided into six adjacent 10.6-ms windows. These windows are treated inde­

pendently for the purposes of variability measurement. 

The multitaper 1O.6-ms mid-fricative /F / spectrum on decibel scale is denoted 

(n(ik)) [g,/F l,v,8,r,nl 
(6.1) 

where 9 is the subject gender, s is the subject number and 1 ~ v ~ 6 corresponds to the six vowel 

contexts /uFi/, /iFi/, /aFi/, /iFa/, /uFa/ and /aFu/; 1 ~ r ~ 6 is the repetition number, and 

1 ~ n ~ 6 is the particular 10.6-ms window within the token. For the time being, the multitaper 

spectral estimates are calculated using 512-point data windows. 

The sample production mean spectrum of fricative /F / across all male (or female) subjects, in 

all vowel contexts, is then given by 

J.L[g,jF II {nUk)} [g,jF/I 

1 6 6 6 6 ~ 

-L:L:L:L:(nUk)) , 
1296 v=l 8=1 r=l n=l [g,/F/,v,8,r,nl 

and the sample production spectral variance under the same criteria is given by 

2 
C;[g,/F/I = var{n(ik)} 

[g,jF II 

1 6 6 6 6 ( ~ ~)2 
1295 ~ ~?;?; (n(ik)) [g,/F/,v,8,r,nl - {nUk)} [g,/F/I 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

Higher order moments could be calculated, but for now the mean and variance shall suffice. 

The results of sample production spectral mean and variance are shown in figures 6.1 (males) 

and 6.2 (females). The solid lines represent the mean spectrum J.L[g,/F II' while the dashed lines 

show the spectral variance C;~,/F II· This is the first time that the variance of production has 

been estimated: such an analysis of production variance using modified periodograms produces 

variance plots that are of no use due to the incorporation of the estimate variance. 

These plots offer some exciting new insights. While the mean plots act as a guide to the position 

in the spectrum being examined, as well as showing general spectral 'features', the variance plots 

are perhaps of much greater interest. The spectral variance plots indicate at which frequencies 

the sound intensity is subject to high variability, and at which frequencies it is more consistent. 

We begin by considering both male and female /s/ productions. In both plots, the mean spectrum 
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plot.) 
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suggests a low peak generally appears at ",,2 kHz, surrounded by troughs at "" 1 kHz and ",,3 kHz. 

The low peak appears to be the subject of a large amount of variability; however, the troughs 

surrounding it have particularly small variance in comparison to the rest of the spectrum. 

Over the ",,3 to ",,5-kHz range, the mean lsi spectra rise quite rapidly, and then remain high 

over the ",,5 to "" 10-kHz range for men, and the ",,5 to "" 13-kHz range for women. The initial 

rapid slope around the ",,3 to ",,5-kHz interval appears to be the subject of a high degree of 

variability. If the frequency positions of the lower and upper points of this slope are subject to a 

small amount of shifting left and right along the frequency axis, then this would account for this 

high degree of spectral variance in this region. The ",,5 to "" 13-kHz range is generally subject to a 

high degree of variance, with the exceptions of one or two regions of smaller variance, specifically 

",,6 kHz for men and ",,8 kHz for women. 

There is another dip in the variability of male lsi productions around 11 kHz, although no similar 

dip is found for female productions. Above ",,11kHz, both male and female spectra are subject 

to large variation, at least when considered across speakers and vowel contexts. 

The mean III spectra for both males and females show a pronounced trough at ",,1 kHz, followed 

by a steep slope up to the main peak, which appears at around 3 kHz for men and 4 kHz for 

females. Again, the position of the slope seems to be subject to a high degree of variability for 

the females, but much less so for the male productions. In both cases however, the spectral peak 

coincides with a region of low variance, and this is of great interest. Male I I I production spectra 
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191 (bottom-right) spectra, taken from non-sibilants in all contexts, by all female subjects. 
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are generally the subject of large variance at frequencies above the main mean spectral peak, 

although for females this variability is reduced at these higher frequencies. 

While the mean sibilant spectra are rather distinct in terms of their main peak and troughs, 

the non-sibilant mean spectra appear very similar to each other. Both have mean peaks around 

2 kHz, and slight troughs either side: just below 1 kHz, and 3 kHz (although for the mean 

female spectra, the 3-kHz trough is hardly pronounced at all) . Of interest is that the troughs 

coincide with low production variance, except perhaps for female /e/ spectra. Otherwise, the 

mean spectra are generally featureless, and tend to have very high production variance over 

the majority of the frequency range. For males, the /f/ spectra contain the most production 

variance above, say, 6 kHz; however, for female non-sibilants, /e / contains the most spectral 

variance above, say, 2 kHz. It appears the most striking aspect of the non-sibilants is their lack 

of spectral features, and large production variability. We shall return to the non-sibilants in 

§6.1.3. 

6.1.2 Characteristics of the voiceless sibilants 

The frequencies at which mean spectral features of the sibilants occur often coincide with fre­

quencies of low production spectral variance. In particular, it can be seen that the spectral 

maxima for /S/ productions, approximately coincide with the pronounced spectral trough of / s/ 

productions, and it is noted that in both cases, these mean spectral features are coupled with 

low production variance. 
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FIGURE 6.3: Sibilant tokens mean spectra (solid lines) with two standard deviations bounds 
(dashed lines) either side. lsi tokens (blue, thin) and III tokens (red, thick) in all contexts, 
from all male subjects (see text) . 
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. In order to view to what extent these spectral features of low variability are distinguishing 

features of the sibilant, it is straightforward to generate plots of the mean spectra, with bounds 

of two standard deviations above and below the mean spectra. Such plots of male lsi and lSI 
spectral 'variations' are shown superimposed in Figure 6.3. The plot shows f.L[rnale,/s/) (solid thin 

blue line), f.L[rnale,/ J /) (solid thick red line), f.L[rnale ,/s/) ± 2S'[rnale,/s/) (dashed thin blue lines), and 

f.L[rnale,/ J /) ± 2S'[rnale,/ J /) (dashed thick red lines). 

The region around 2.5 kHz is most striking: it shows that the maximum magnitudes for lSI 
productions reach similar values to the minimum magnitudes for lsi productions. That is , the 

spectral trough at 2.5 kHz of lSI productions rarely rises above 27dB SPL/Hz, while the spectral 

peak at the same frequency in lsi productions rarely drops below 22dB SPL/Hz. 

The frequency h of the main spectral peak in a token sibilant spectrum is located 

nU~)[/F/,v,s ,r) = max {(OUk)) } 
A>lkHz [g ,/F/,v,s,r) 

(6.6) 

where l 

:;;: 1 6 A 

(nUk)) = - L (nUk)) . [g ,/F/,v,s,r) 6 n=l [g ,/F/,v,s,r,n) 
(6.7) 

IThe time averaged spectrum is used for clarity purposes only, so that a single point on the scatter plot 
corresponds to a single token. The scatter points using every window are very similar, but of course, much 
denser. 
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FIGURE 6.4: Scatter plot of energy in 2.5-kHz interval, against peak frequency for all male 
sibilant tokens. Blue plus-signs are lsi , while red circles are /If. 
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A scatter plot of the energy in the 2.5-kHz band (2484 Hz- 2578 Hz) against spectral peak lo­

cations is shown in Figure 6.4 for all male sibilant tokens. This plot shows clearly the power 

at 2.5 kHz as a function of peak frequency for the sibilants. Both measures seem to be heavily 

influenced by place, although there is some overlap. 

In fact , the two sibilants are distinguished well using only the energy measure at 2.5 kHz. We 

might expect that this energy measure will also be influenced by the total intensity of the 

fricative. A scatter plot of energy at 2.5 kHz against total spectral energy is given in Figure 6.5. 

This time, the correlation between the total fricative intensity, and the energy in the 2.5-kHz 

band can be recognised (C = 0.54 and C = 0.66 for lsi and lSI respectively), and this aids the 

distinction between the two sibilants (J = 4.53) . 

We now perform similar analysis on the female sibilant tokens. We begin with Figure 6.6, showing 

J..L[female,/s/J (solid thin blue line), J..L[female,/ J /J (solid thick red line) , J..L[female,/s/J ± 2C;[female,/s/J 

(dashed thin blue lines), and J..L[female,/ J /J ± 2C;[female,/ J /J (dashed thick red lines) . This time, the 
region of maximal separation is shifted up in frequency slightly, to around 3 kHz. It can clearly 

be seen that in this region, the two standard deviation confidence bounds for the sibilant spectra 

do not overlap at all, suggesting a distinguishing feature of the sibilants. The scatter plot of 

spectral peak frequency against energy in the 2953-Hz- 3047-Hz frequency interval in Figure 6.7, 

demonstrates how distinguishing the energy measure is, even compared to a measure such as the 

main peak frequency. 

Figure 6.8 highlights the strength of the energy measure in a narrow band around 3 kHz, as 
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FIGURE 6.5: Scatter plot of energy in 2.5-kHz interval, against total spectral intensity for all 
male sibilant tokens. Blue plus-signs are /s/ , while red circles are /ff. 
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a distinguishing feature of the sibilants, by plotting it against the total spectral energy. The 

sibilants are completely separated using these energy measures for female tokens (J = 18.23), 

and the corellation of overall amplitude to energy density around 3 kHz can be seen (C = 0.31 

and C = 0.61 for lsi and Iff respectively). 

6.1.3 Variability in the non-sibilants 

As was shown in figures 6.1 and 6.2, analysis of the mean and variance of non-sibilant spectra 

reveal neither distinguishing spectral features, nor prominent regions of low variance. Superim­

posed plots of spectral mean with two standard deviation bounds can be produced as before. 

Figure 6.9 shows f.1-[g ,/f/l (solid thick green line), f.1-[g,jo/l (solid thin black line), f.1-[g,/f/l ± 2~[g,jf/l 
(dashed thick green lines) , and f.1-[g ,/o/l ± 2~[g,jo/l (dashed thin black lines) , for g=males (top 

plot) and g=females (bottom plot) . This plot clearly demonstrates an important factor in con­

founding the attempts to classify the non-sibilants by spectral shape: the mean shapes are 

very similar, and have such high variability that the two-standard deviation confidence interval 

overlaps everywhere. 

Both spectra have a common trough around 1 kHz, and a main peak located around 2 kHz, 

although these features are subject to a large variance. Generally speaking, /0/ tokens appear 

to have lower amplitude than Iff tokens, but again, there is a large degree of variability, so these 

points are in no way distinguishing features . 
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FIGURE 6.6: Sibilant tokens mean spectra (solid lines) with two standard deviations bounds 
(dashed lines) either side. lsi tokens (blue, thin) and If I tokens (red, thick) in all contexts, 
from all female subjects (see text) . 
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A plot of spectral peak position and total spectral energy for mid-fricative male tokens, for all 

voiceless fricatives is shown in Figure 6.10. While no differences in distributions for the non­

sibilants were expected in this plot, it does appear that trends emerge with peak position. It 

would appear that If I tokens often have a spectral peak around 2 kHz. On the occasions when 

the peak is not located here, it appears most likely to occur around 4kHz, or alternatively 7kHz. 

Very few other positions of spectral peak location are observed for mid-fricative If I tokens. 

These trends are slightly contrasted with those of the mid-fricative Ie I tokens. Spectral peaks of 

central Ie I tokens also commonly occur around 2 kHz, although exceptions are far more common. 

The exceptions appear to be more evenly distributed over the 3- 12-kHz range, although the 

region around 6 kHz is also well populated. 

The equivalent plot for all female tokens is shown in Figure 6.1l. The trends for female non­

sibilant peak position are similar to those noted for the male tokens. The vast majority of mid­

fricative If I tokens tend to have a peak around 2 kHz (more often than for the male productions). 

When not near 2 kHz, the peak tends to occur around 4.5 kHz, 8 kHz or 12 kHz, although these 

are quite rare. Mid-fricative lei tokens also often have peaks near 2 kHz, but much less commonly 

than for If I tokens. The main peak position for the remainder of the Ie I tokens has a more 

even likelihood distribution across the 3- 18-kHz range, although there are significant clusters 

that overlap with the If I tokens than for male tokens. 

For completeness, the plots of total mean energy density and energy density around 2.5 kHz for 

all male fricatives and around 3 kHz for all female fricat ives are given in Figure 6.12. As we have 
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Main peak location and total energy, males. 
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seen, such plots are particularly useful for separating the sibilants. Their use in separating the 

non-sibilants is not so obvious, although the distributions are slightly different . 

Clearly, in order to determine the major differences in non-sibilant production, a more thorough 

analysis of the tokens must be performed. The large production variances observed for the non­

sibilants may be the result of large differences across different speakers. It may additionally 

be the result of a large degree of production variation across fricative tokens in different vowel 

contexts for each speaker. Finally, the production variation could occur within each token. The 

total production v~ance seen in figures 6.1 and 6.2 may be due to any or a combination, of 

these potential sources of variation. 

6.1.4 Within-speaker spectral variability 

We begin by observing the non-sibilant token production variation by speaker. The sample 

production mean spectrum of fricative IF I in all vowel contexts, for a given speaker s , is given 

by 

J.t[lF /, s] = {o'(/k) } [IF/, s] (6.8) 

1 6 6 6 

216 ~ ~ ~ (o'(fk)) [IF/, v,s,r,n] , 
(6.9) 
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FIGURE 6.11: Spectral peak position and total spectral energy for mid-fricative female tokens, 
all voiceless fricatives. Legend: [s] (blue plus-signs); fJ1 (red circles); [fj (green crosses); [0] 
(black dots). 

and the sample production spectral variance under the same criteria is 
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2 
<;"[/F / ,s] (6.10) 

(6.11) 

Figures C.9 to C.ll show the production spectral mean J1-[/F/,s] and variance <;"[/F/ ,s] of If I tokens 

in all vowel contexts, by male speaker. These can be compared with the /61 token production 

characteristics shown in figures C.12 to C.14. 

Firstly, the mean spectra still appear to be very similar for /fl and 161. Secondly, it can be seen 

that the production variance is still often high, although in some places it drops; most noticeably, 

the variance tends to be lowest around the 4-kHz region for both non-sibilants. The variance 

tends also to be high above around 12 kHz, although there are a few exceptions. Generally 

speaking, it appears that If I productions have a slightly lower overall spectral variability. 

The male data can be compared to the female data in figures C.23 to C.2B. Again, the non­

sibilant mean spectra are very similar for If I and /61 . The female production variances are 

generally high everywhere. Again, broadly speaking it would appear that If I productions have 

a slightly lower degree of spectral variance overall. 

From these non-sibilant production mean and variance spectra, it can be seen that a significant 
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proportion of production variability in the non-sibilants can be accounted for by a high degree 

of within-speaker variation. Some speakers certainly produce the non-sibilants more consistently 

than others however, and it remains to be seen whether the variability is a result of vowel context, 

across-token variations, or even due to within-token variations. The most general trend observed 

is that If I production appears to have slightly lower within-speaker variability than 10;' 

6.1.5 Within-vowel-context spectral variability 

In order to estimate the mean spectrum for fricative IF I in a given vowel context v by a single 

speaker s, we use 

J.£[lF /,v,s) {nUk) } [IF /,v,s) 
(6.12) 

1 6 6 ~ 
- L L (nUk) ) , 
36 r=l n=l [IF /,v ,s ,r,n) 

(6.13) 
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var {nUk)} 
[/F /,v,s] 

C;2 
[IF /,v,s] (6.14) 

1 6 6 ( A A)2 - 0Uk) - 0Ud 
35 ~~ ( ) [/F/,v,s,r,n] { } [IF/,v,s] 

(6.15) 

We are trying to ascertain whether the amount of variability seen for individual non-sibilant 

productions across vowel contexts, is due to changes in the production due to vowel context, 

or more inherent within the fricative production. On observation of f-t[/ F/,v,s], and C;[I F/,v,s] for 

/F / = /f,9 / and V= /iFi,aFu/, it became apparent that a large amount of variability still exists 

within a particular vowel context. 

As an example of this within-vowel-context variability, figures 6.13 and 6.14 show f-t[jF/,v,s] (solid 

lines), and C;UF/,v,sj (dashed lines), for /F/=/f,9/, v=/iFi,aFu/, and s=M-Ol. Speaker M-01 has 

been selected for his apparently low production variability within the non-sibilants (see figures 

C.g and C.12). However, it can clearly be seen that a high degree of spectral variation exists 

for /9/ productions within the /i9i/ vowel context, suggesting that spectral variability for the 

non-sibilants is sometimes high, even within a given vowel context. 
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6.1.6 Within-token spectral variation 

It is evident that distinguishing features of the non-sibilants are not present in the spectral 

shape. The mean spectra for the non-sibilants are extremely similar. In order to discover 

whether distinguishing features appear as variability over time, we can continue to calculate the 

within-token spectral variation, thus: 

Jt[lF / ,v,s,r] {n(ik) } 
[IF /,v,s,r] 

(6.16) 

(6.17) 

the token's production spectral variance under the same criteria being 

.,2 
[IF / ,v,s,r] var {nUk)} 

[IF /,v,s,r] 
(6.18) 

1 N
w 

( ) 2 L n(ik) - nUk) 
N w - 1 n==! ( ) [IF /,v,s,r,n] { } [IF /,v,s,r] 

(6.19) 

Notice that the number of windows within the token has been changed from 6 to N w . In order 

to achieve a satisfactory estimate of the spectral variability over the course of a fricative token, 

we need to try and maximise the number of sample data. In order to achieve this, the data 

window length was reduced from 1O.7ms (512-points) to 2.7ms (128-points), but additionally, 

a larger portion of each token was considered (see §3.2.3). Since the data segments used in 

these calculations are of variable length, it is appropriate at this point to observe the segment 

lengths obtained from the calculations performed in §3.2.3. The mean lengths and the standard 

deviations of length are given in table 6.1 

(ms) II Mean length I Std. deviation II 
Male lsi 108.8 17.8 
Male If I 99.7 18.7 
Male If I 112.1 26.1 
Male lei 100.3 24.9 

Female lsi 116.7 20.6 
Female If I 105.2 22.0 
Female If I 130.4 25.5 
Female lei 111.8 30.5 

TABLE 6.1: Means and standard deviations of fricative segment lengths calculated using the 
procedures described in §3.2.3. All units are milliseconds. 

Example plots of within-token spectral variation are shown in Figure 6.15 and 6.16 for non­

sibilant tokens produced by subject M-Ol. These plots are obviously smoother because of the 

reduced spectral resolution resulting from the reduced window sizes. These example plots are 

characteristic of all the male non-sibilant tokens, although exceptions are not rare. It appears 

that a reasonably distinguishing feature is that of the level of spectral variation within each 

non-sibilant token, If I tokens tending to be higher overall. 

Also, note the higher variability in the lower frequencies below around 1 kHz. Since we are now 
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capturing a larger portion of the fricative token, we are including more data near the boundaries 

of the fricative. We may therefore expect this increase in variability at these lower frequencies. 

Section F.3 in the Appendix shows additional plots of spectral variance over time for example 

fricative tokens by speaker and vowel context. These generally show that, while the sibilants 

have low spectral variance, the non-sibilants more frequently have a higher degree of spectral 

variance. The higher variability usually occurs within a wide frequency band of, say, 6 kHz in 

width; however, the location of this high-variance frequency band does not appear to have any 

consistent trends associated with it. 

One approach to observing how distinguishing the level of within-token spectral variability is, 

is to plot the total spectral variability for each token for every token. A scatter plot of total 

spectral energy 

L {O(fk)} 
k [IF I,v,s,rj 

(6.20) 

against total spectral variability 

L var {O(fk)} 
k [/F/,v,s,rj 

(6.21) 
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is shown for all male non-sibilant tokens, in Figure 6.17. This plot indicates a possibly distin­

guishing characteristic of non-sibilant place (p < 0.0001, J = 0.96). The same plot for female 

non-sibilant tokens, shown in Figure 6.18 is not so convincing (despite p < 0.0001, J = 0.96) . 

These results are not improved by separation by vowel context, Nevertheless there is certainly 

a strong suggestion that information pertaining to the production place is present within the 

spectral variability over the duration of the fricative. 

Section F.4 in the Appendix separates these results by speaker and context (for liFil and lafu/ 
contexts). These results are of interest, since they suggest that vowel context does not consis­

tently alter the degree of within-token variation, at least for the two vowel contexts considered. 

6.1. 7 Alternative measures of variability over time 

A number of other methods have been used to attempt to capture the characteristics of the 

variation in spectrum over the course of non-sibilant tokens. Of these, one of the more successful 

methods is that of tracking the spectral peak through the non-sibilant. Observation of multitaper 

spectrograms suggests evidence that 101 spectra are generally flatter , and more consistent over 

their discourse, while If I productions tended to be less regular, with regions of higher energy 

appearing and disappearing. The data window for this analysis was set to 512-points (1O.6ms). 

In, order to attempt to capture this apparent difference in productions, the mean spectral peak 
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FIGURE 6.18: Scatter plot showing mean spectral energy against total spectral variance for all 
non-sibilant tokens, all female subjects. Green crosses are If I while black dots are 10;' 

frequency is calculated: 

V(fF / ,v,s,r] {(f~)(fF/,v,s,r] } (6.22) 

1 Nw 

N L(f~)(fF/,v,s,r,n] 
w n=l 

(6.23) 

where the peak frequency of a given spectral window (hh/F/, v,s,r] is defined 

(6 .24) 

assuming h is unique for all fk. The variance of the spectral peak frequency through time was 

calculated 

2 
Q(fF /,v,s,r] var {(f~)(fF/,v,s,r]} (6.25) 

1 ~ 2 

N
w 

-1 L ((f~)(fF/,v,s,r,n] - {(h)(fF/,v, s,r]}) 
n=l 

(6.26) 

Typical peak variability plots over time are shown in figures 6,19 and 6.20. These figures demon­

strate nicely differences that can be observed in the non-sibilant multitaper spectrograms: 191 
productions are commonly fiat, and regular over time; this corresponds to a peak position that 

tends to jump around, since there is little difference in height of spectral maxima between spec­

tra. However, If I productions often seem to have a dominant region of higher energy, and this 
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corresponds to a peak that tends to linger in only one or two regions. 
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A plot of spectral peak variability against mean spectral peak for male tokens of non-sibilants 

in all vowel contexts is shown in Figure 6.21. As expected, most of the If I tokens have very low 

peak frequency variability, and are clustered in the bottom-left. The 191 tokens are more evenly 

distributed over the variance scale. The number of tokens with low peak variability is clarified 

with the use of the histograms in Figure 6.22. The large majority of If I tokens have a very low 

(close to zero) peak frequency variability, while the majority of 191 tokens do not. 

Of significant interest is that these results are almost the inverse as those discovered for the 

spectral variance found for the male non-sibilant tokens in §6.1.3: there, If I tokens were found 

to have the larger degree of variability, while using this different measure, they are found to have 

the smaller variability. This however, adds to the evidence that information pertaining to the 

place of production is inherent in the variability of the spectrum and its features over time. 

Peak variability results for female non-sibilant tokens are shown in Figure 6.23. Once again, the 

female tokens do not follow the trend noticed in the male tokens strictly, (although there still are 

more If I tokens with near-zero spectral peak variance than for 19/), but this is overshadowed 

by the large number of tokens with very large spectral peak variability for both non-sibilants, as 

highlighted by the histogram plots in Figure 6.24. 

These measures of variability can of course be applied to the sibilants, whose structure is generally 

A ~ 51 
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more predictable. Nevertheless, the results may be of int erest. The peak variabilities for sibilant 

tokens is shown in Figure 6.25 

The results for this analysis of spectral peak frequency variance, separated by speaker and by 

vowel context (again, for /iFi/ and /(}Fu/ contexts) are presented in §F.5. Again, the vowel 

context appears not to have a significant or consistent impact on the degree of variability. 
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6.2 Spectral covariance 

113 

So far, our analysis has been restricted to estimating the variance as a function of frequency. It 

is also possible to calculate the covariance of the spectra at any two frequencies since this may 

reveal within-spectrum dependencies. 

In order to continue the analysis of the voiceless fricatives in the vowel contexts considered so 
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far, spectral covariance matrices can be constructed: 

C[g,/F IJ (6.27) 

(6 ,28) 

and the spectral correlation coefficient matrix is then defined 

(6.29) 

(6.30) 
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The window size for calculating the spectral covariance was set to 512-points (10.6ms). The 

correlation of the spectrum to the total spectral energy can be calculated using this procedure. 

Appendix D shows the plots of correlation of total spectral intensity to spectral distribution 

for all male subjects producing all voiceless fricatives in all vowel contexts, both for combined 

speakers, and by speaker. Perhaps unsurprisingly, we find that the spectral distribution has a 

fairly linear relationship with total spectral intensity: as the intensity of the fricative increases, 

the power across the entire spectrum rises by a proportional amount, all the way up to 20 kHz. 

Occasionally, frequencies below about 2 kHz exhibit less of a dependence on the total intensity, 

most notably for the sibilants. These plots are otherwise unhelpful, and so we move on. 

Appendix E show plots of the spectral correlation coefficient matrices for all voiceless fricative 

tokens produced by male subjects; again, starting with results for combined speakers, and then 

by individual speaker. (The calculation of the plots for individual speakers is similar to (6.28) 

and (6.30), except that the sum over subjects is removed). Firstly, consider how these matrices 

should be interpreted: 

• Large values are represented by 'warmer' colours, red indicating the values approaching 

unity, while the 'cooler' colours represent the lower value, dark blue being the closest to 

zero. 

• The correlation coefficients are the normalised covariance values. The matrix gives a mea­

sure of the probability that two variables are correlated. Thus, the main diagonal is always 

equal to unity. 

• Values near the main diagonal tend to have high values, since the energy distribution in 

most areas of the fricative is in the form of narrow bands of energy. 

• Very small squares on the diagonal that rapidly change to low-values indicate narrow bands 

of energy that are independent of nearby values, but which generally moves as a single small 

block. 

• A large-valued square centred on the diagonal therefore most likely indicates that the 

energy in the range of frequencies in this band generally moves as a single block. 

While these spectral correlations are very interesting, they unfortunately exhibit little distin­

guishing information. General trends are difficult to spot, although when considered individ­

ually, they reveal a certain amount about the individual speaker's productions of a particular 

fricative. 

Generally speaking, the sibilants appear to have much lower degree of spectral correlation: the 

energy in one part of the spectrum will not generally be indicative of the amount of energy 

in another part. Conversely, the fricatives appear to have a slightly higher degree of spectral 

correlation, particularly in the form of a few broad bands of energy that seem to 'adhere' together. 

Female data for these spectral correlations are not presented, since they generally provide very 

similar information. Plots of within-token spectral correlations were also calculated, using smaller 

(64-point) data windows, and hence at a coarser frequency resolution. However, these plots 

did not yield obvious place information, and so have not been included in the appendices. A 

more thorough analysis of such plots may reveal information of interest, although this was not 

undertaken in this work. 
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6.3 Discussion 

We have shown that the use of multitaper estimates in the spectral analysis of fricatives is 

beneficial. The reduced variance of the estimate allows the estimation of spectral variation 

across productions, providing us with a very clear picture of distinguishing characteristics within 

the sibilants. 

Analysis of spectral variance has been accomplished through the implementation of multitaper 

spectral estimation. Such an analysis could not be performed using basic modified periodogram 

spectral estimates, since the variance of the estimate would have swamped the underlying spec­

tral variances. Furthermore, time and ensemble averaging techniques would also make such an 

analysis almost impossible, due to the very nature of the underlying assumptions about the 

process. This analysis of variance then, potentially provides us with new information pertaining 

to fricative production. 

Using these techniques, it is straightforward to locate regions of the spectrum that are highly 

variable, and those that are more stable, across speakers, vowel contexts, or even individual 

tokens. It was quickly discovered that the region around 2.5 kHz for male tokens, and the 3-

kHz region for female tokens, is both one of low variance, and of a distinguishing feature of 

the sibilants. Coupled with the total spectral energy with which this region of the spectrum is 

loosely correlated, strong evidence has been found that these regions may be a distinguishing 

feature of the two sibilants, and figures 6.5 and 6.8 describe these findings most effectively. 

It is not asserted that our analysis serves to prove the effectiveness of these measures as general 

classification metrics, since no suitable statistical tests have been performed with which such 

a statement could be qualified. Indeed, the number of subjects, and the size of corpus -

while extensive for the purposes of this study - are probably not sufficient to claim accurate 

knowledge of some larger data set. Nevertheless, the usefulness of the examined techniques 

cannot be refuted. The results obtained are both intuitive, and also fit current general theories 

on fricative production. 

Spectral variance analysis clearly demonstrated the limitation of attempting to capture differ­

ences in the non-sibilants based on spectral shape. The expected variability of the spectral shape 

over any arbitrary mid-fricative segment is often large, and spectral features that consistently 

distinguish the non-sibilants are not apparent. Nevertheless, significant trends have been ob­

served: most If I tokens have spectral peak position near 2 kHz. When not located at 2 kHz, the 

peak tends to occur near 4 kHz, or 7 kHz for males, or 8 kHz for females. Generally, Ie I tokens 

also often have their main spectral peak near to 2 kHz, but more often than for If I tokens, it is 

elsewhere, commonly around 6 kHz for males, but otherwise more evenly distributed. 

Evidence has also been found to suggest that the variability of non-sibilant tokens over time 

may show different characteristics for lei and Iff. For non-sibilant tokens produced by males, 

it appeared that the total amount of spectral variability over the total length of a given token 

was often lower for lei tokens. Tracking the spectral peak frequency through non-sibilant tokens 

also provides evidence that differences between the non-sibilants exists in the form of spectral 

variations over time. Categorising these results by vowel context reveals little additional infor­

mation. 
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Plots of spectral covariance also provide a new representation to view characteristics of fricative 

tokens. While distinguishing trends are hard to pinpoint, the spectral covariance plots seem 

to provide information about interdependencies that exist within the spectrum during fricative 

production. 

Evidence now exists that information pertaining to place can be discovered by using good spectral 

estimation techniques that minimise estimate variance, in order to measure variations in the 

underlying process spectrum. Moreover, these measurements have a highly intuitive appeal in 

comparison to, say, spectral moments. Comparing these results to the best spectral moment 

results in Chapter 5 demonstrates the importance of using good spectral estimation techniques 

prior to establishing characterisation metrics. It is hoped that these new techniques can be 

applied to fricative tokens produced by disordered speakers. 



Chapter 7 

Preliminary measurements of 

cochlear implant users 

One of the main motivating factors for improving fricative production analysis is that of better 

describing the fricative production of speakers with hearing that has been changed. In this way, 

it is hoped that subtle changes to speech quality that are brought about by changes in hearing 

can be measured more accurately. 

In this chapter, examples of fricative productions of two male and two female cochlear implant 

subjects are examined. In this way, the advantages and disadvantages of the various analysis 

techniques can be compared. 

We begin by analysing the male subject data, using classical analysis techniques such as spectro­

grams and spectral moments with the most reliable parameters as discussed in Chapters 4 and 

5. We continue to compare these analysis methods with some of the new methods developed in 

Chapter 6. 

The female subjects provide some more diverse productions, and the same methods of analysis 

are undertaken. Data for subject FCI-15 is taken from 1 year post, and 2 years post implantation, 

since a comparison over this interval reveals a significant change in production of Is;' 

7.1 Male productions 

Multitaper spectrograms for productions of lasal from 'parcel' are given for both male cochlear 

implant subjects in figures 7.1. From these plots, the productions appear similar to those for 

normal hearing subjects, as can be seen in Appendix B: lower energy at low frequencies around 

3 kHz, but quite high energy, at least in the 4-16-kHz range. While these two productions are 

quite dissimilar from each other, they are typical within the range of variation we have come 

to expect among the sibilants, at least at all frequencies other than around 3 kHz; and at this 

frequency we note low energy for both. 

Figure 7.2 shows two non-sibilant tokens for these two speakers. Again, the spectrograms appear 
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"" 

FIGURE 7.1: Multitaper spectrograms of /asa/ productions from 'parcel', subject MCI-13 (left) 
and MCI-14 (right). 

nne(ms) TIme(ms) 

FIGURE 7.2: Multitaper spectrograms of /afau/ productions from 'telephone', subject MCI-13 
(left) and MCI-14 (right). 
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to be similar to the productions from 'normal' hearing subjects shown in Appendix B. Figure 7.3 

shows the calculated first and second spectral moments using the methods described in Chapter 

5. An interval 64ms long located mid-fricative was used to calculate each mean spectrum from 

which the spectral moments could be calculated. These spectral moments can be compared 

to those in Figure 5.9. Principal component analysis (PCA) has been used to construct ellipses 

that enclose 85.35% of the data points for 'normal' male productions. The lsi production of 

MCI-13 has rather a low centroid value compared to the productions of normal hearing male 

subjects, suggesting this production is more lSI-like. The second moment for this production is 

within satisfactory limits however. The lsi production of MCI-14 is within the ranges suggested 

by the normal hearing male subjects, although the second moment is quite high. The If I tokens 

for both male cochlear implant subjects appear to have normal centroid values, but rather high 

second moment values. 

Plots of total spectral energy against peak location, calculated from 64-ms mid-fricative data 

segments for these tokens are given in Figure 7.4. These plots can be compared to those of 

the normal-hearing subjects in Figure 6.10. The plots suggest spectral peak position values 

similar to those found for normal-hearing speakers. The If I token of subject MCI-13 is also at 

2 kHz, suggesting good similarity to 'typical' productions. The If I production for MCI-14 has a 

high-frequency spectral peak, but is still within 'normal' limits . 
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FIGURE 7.3: 1st and 2nd moments of lsi (blue plus) and If I (green cross), subjects MCI-13 
(top) and MCI-14 (bottom). PCA has been used to construct ellipses that enclose 85% of the 
'normal' production points: If I blue, lsi red, If I green, 191 black (see Figure 5.9) . 
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The energies in the 2.5-kHz band for each ofthe Is/ tokens are within satisfactory limits. The /s/ 

token of MCI-13 lies near the top-right-hand corner of Figure 6.5, suggesting a typical 'louder' 

production. The /s/ token of MCI-14 is quieter, and has correspondingly lower energy in the 

2.5-kHz band, ending up nearer the bottom-left-hand corner of the distribution in Figure 6.5. 

The mean spectra, and the spectral variance calculated over each fricative token, as described 

by equations (6.17) and (6.19) in §6.1.6, were calculated for fricative tokens by male cochlear 

implant subjects, and are shown in figures 7.5 and 7.6. These plots again suggest that the 

spectral variability over the duration of the fricatives of these subjects, is similar to those seen 

in the productions of normal-hearing subjects (which can be found in §F.3.1), except perhaps 

the /s/ of MCI-14. This /s/ token shows level of spectral variability somewhat higher than the 

/s/ tokens produced by the normal hearing male subjects. In fact, similar spectral variance 

distributions can be found in some of the /S1 tokens of the normal hearing male subjects (e.g. 

M-05 in Figure F .28). This may suggest that this /s/ token has some production characteristics 

that are closer to / f / , and although such an observation is largely speculative, it remains that 
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FIGURE 7.6: Fricative mean spectrum (solid line) , and spectral variance (dashed) over lasal 
productions from 'parcel' (left), and lafaul productions from 'telephone' (right), MCI-14. 
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FIGURE 7.8: lasal productions from 'parcel', subject Fel-15, one year post implant. Multi­
taper spectrogram (left) and traditional modified periodogram spectrogram (right). 
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the lsi production most certainly appears to have a greater degree of variability than might 

normally be expected. Scatter plots of mean spectrum, and total spectral variability are given 

in Figure 7.7, and these can be compared to the non-sibilant total spectral variance plot in 

Figure 6.17. For subject MCI-13, the If I token lies somewhere near the centre of most If I 
tokens for normal hearing male subjects, and is well outside the region more commonly occupied 

by 19;' The If I token of MCI-14 also lies in the centre of typical If I tokens by the normal 

hearing males, although it is within the region of significant overlap with 191 tokens. 

7.2 Female productions 

We now consider a production of lasal by subject FCI-15, approximately one year after implant 

insertion. A multitaper spectrogram and traditional spectrogram are shown in Figure 7.8. It 

is straightforward to observe that the production by subject FCI-15 has failed to produce any 

significant energy above around 500 Hz. The multitaper spectrogram correctly shows no energy 

in the upper frequency region. However, careful observation of the traditional spectrogram 

reveals small 'patches' of energy up to around 16kHz; this is clearly misleading, since total 

closure has occurred for this production. In fact, these patches of energy are due to the low 

level background noise, which of course can also be considered a stochastic process. A modified 

periodogram spectral estimate of this background noise will inevitably result in erroneous 'spikes' 

of energy that are simply a result of the large error variance. Since the multi taper periodogram 

is better suited to representing this noise, it provides a slightly clearer picture of the production 

in this case. 

A production of lasal by subject FCI-15 one year later, at two years post-implantation, is 

shown in Figure 7.9. It appears that the production of this token has improved over this year­

long interval. Frication noise is significant up to approximately 18 kHz. Closer analysis also 

reveals that the main spectral peak is possibly at a rather low frequency for a typical Is;' Also, 

there is a 'pause' mid fricative , at which point frication noise ceases momentarily. 

Figure 7.10 shows the multitaper spectrograms for If I productions of the female cochlear implant 

subjects. While the production of FCI-16 appears similar to those produced by normal hearing 
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FIGURE 7.9: Multitaper spectrogram of /asa/ production from 'parcel', subject FCI-15 two 
years post implant (left), and subject FCI-16 one year post implant (right). 
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FIGURE 7.10: Multitaper spectrograms of /afau/ productions from 'telephone', subject FCI-15 
(left) and FCI-16 (right) . 
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subjects (see §B.2), the token of FCl-15 again has a strange temporary attenuation of frication 

noise mid-fricative. On listening to this production, the fricative is apparently whistled. 

We now take a moment to consider the results obtained when various analysis methods for 

fricatives are used on these types of 'abnormal', highly nonstationary productions on various 

analysis methods. 

Figure 7.11 shows the first and second spectral moments calculated for each of the female frica­

tive tokens. Consider first the lsi of subject FCl-15, the centroid of the spectrum is around 

5 kHz, while the second moment is around 7.3 x 106 Hz2 . Comparing these results to those of 

normal hearing female subjects in Figure 5.9 it can be seen that this production lies within the 

range normally associated with female lSI tokens, and indeed, this corresponds to the subject 

production notes for FCl-15. The lsi token of FCl-16 lies well within the range corresponding 

to productions by the female normal-hearing subjects. The If I tokens also lie within 'normal' 

limits. 

Scatter plots of total spectral energy, and peak frequency for the female cochlear implant subjects 

are shown in Figure 7.12. These plots can be compared to those in the plot for normal-hearing 

females in Figure 6.11. The spectral peak of the lsi production by FCl-15 occurs within the lSI 
region defined by the normal-hearing female subjects, and this agrees with the lSI-like spectral 

moment values for this token. To serve as a comparison, an example lSI token selected manually 
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from a production of the word 'shoe' by FCI-15 is also shown in the upper plot of Figure 6.11; this 

If I token lies within the region heavily populated by [f] productions of normal hearing subjects, 

and highlights the similarity in spectral peak position between these two sibilant productions of 

subject FCI-15. Figure 7.13 demonstrates again the similarity between these two productions, 

using the energy at 3 kHz against total spectral energy measure that was able to completely 

separate the normal hearing female sibilant productions (c.f. Figure 6.8). 

From the lower plot in Figure 7.12, it can be seen that the 6-kHz peak frequency of the lsi 
token of FCI-16 however, lies well within the values defined for typical normal-hearing female 

[s] tokens. In both plots for the female cochlear implant subjects, the If I tokens have spectral 

peaks near 8 kHz. This also corresponds to one of the peak positions often observed for normal 

hearing female If I tokens when it does not occur at 2 kHz. 

Plots of mean spectrum, and spectral variance over the duration of the female cochlear implant 

fricative tokens - as calculated in equations (6.17) and (6.19) - are given in figures 7.14 and 

7.15. The lsi token plot in Figure 7.14 excludes the obvious pause mid-lsi production for 
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FCl-IS (including it simply raised the spectral variance, as expected). We see that indeed, the 

mean spectrum resembles that of a typical If/spectrum for the normal hearing female subject 

tokens. The spectral variance shown for the If I token of FCl-IS also shows a very high level in 

the 6- 1O-kHz region, compared to those typically seen in productions by normal-hearing females 

(see §F.3.2)j although occasionally the spectral variance can be high among the normal hearing 

female If I tokens, it is rarely as large as for this 'whistled' production. 

The mean spectrum of the lsi token of FCl-16 appears more similar to those of normal female 

lsi spectra, but on this occasion, a much higher degree of spectral variance has occurred than 

typically found amongst lsi tokens by the normal hearing female subjects. 

Scatter plots of total spectral variance and mean spectrum are shown for the female cochlear 

implant tokens in Figure 7.16. The value for non-sibilants can be compared to those calculated 

for the normal hearing female tokens in Figure 6.18. While the values for the If I token of FCl-IS 

are within comparable values, the production of FCl-16 appears to be within the range of values 

normally only occupied by lei tokens of the normal hearing female subjects. 
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Two of the most established methods of fricative analysis are the spectrogram, and spectral 

moments. A number of improvements have been made to each method, and these have been 

shown to generally help produce slightly clearer results, which is especially important when 

considering disordered speech. Erroneous patches of energy in spectrograms generated using 

modified periodograms are eliminated with the aid of multitaper estimates. Our knowledge of 

suitable frequency and amplitude scales for spectral moment calculation in order to maximise 

the distance between sibilant clusters, and minimise correlation amongst the moments, mean 

that calculations of disordered productions are given the best chance of accurate description. 

A number of new methods have also been able to be developed using improvements in spectral 

estimation from multitaper analysis. Measures of the spectral variations occurring over the 

duration of fricative tokens are now possible, and provide interesting and intuitive information 

about individual fricative productions. Moreover, these new analysis techniques seem to provide 
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a greater diversity of information, and in several cases, have yielded evidence of 'abnormalities' 

in productions that appeared to have 'normal' spectral moment values. 

At the very least, these new measures seem to provide invaluable supplementary information 

about productions. Moreover, they may provide useful information on their own, and since they 

deal more elegantly with nonstationary elements within fricatives than spectral moments, they 

may be favoured where disordered productions are leading to temporal features. Additionally, 

the measures are more easily interpretable: spectral peak location, energy density at certain 

frequencies, and measures of the degree of change over the course of a production can be loosely 

related to the underlying acoustical mechanisms, and with further work, these relationships 

should begin to become clearer. 



Chapter 8 

Conclusion 

8.1 Summary 

Fricative analysis presents a significant challenge. Too little is known about the turbulent noise 

sources that are generated within the tract during fricative production. The interactions of multi­

ple noise sources are largely unknown, and usually effectively impossible to calculate. Mathemat­

ical models of fricative production inevitably over-simplify the processes within the tract. While 

much has been learnt from such models, their usefulness when applied to fricative production is 

limited. 

Nonparametric measurements of the output of the system are likely to provide useful information 

pertaining to various characteristics of production. Since a certain amount is known of the 

characteristics of the acoustical signal generated during fricative production, methods of analysis 

should incorporate these characteristics where possible. For example, it is known that the peaks 

in the spectrum correspond to resonances within the tract, and so studying the behaviour of these 

is more likely to lead to better understanding of fricative production that other measurements 

that are less grounded on the physics of production. 

8.1.1 Classic spectral estimation techniques 

The turbulence noise generated during fricative production should be treated as a stochastic 

process. Yet often in the fricative analysis literature this is overlooked, despite well founded texts 

on the issue (e.g. Bendat and Piersol 1986). While windowing of time-series data (to reduce the 

spectral bias) is usually performed, it is not usual to attempt to reduce the variance error of the 

estimate, which is generally large. For the purposes of studying spectral peak positions and so 

on, a modified periodogram estimate is unsatisfactory. Nevertheless, this estimate is commonly 

used in the fricative analysis literature. 

In order to reduce the variance error of the estimate, several classic averaging methods exist. 

Time averaging can be used when the process can be considered stationary, and ensemble­

averaging can be used where a process is ergodic. However, there is little to suggest that fricative 

production can be considered either stationary or ergodic. An alternative method of reducing the 
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variance when these assumptions do not hold is frequency smoothing. However, this relies upon 

the underlying spectrum being smooth, and in order to generate an estimate that significantly 

reduces the variance error, it also reintroduces significant local bias. 

8.1.2 Data acquisition 

In order to gain a first estimate of typical variations across productions, analysis of some 'normal' 

speech was necessary. A large corpus of real words containing each of the eight English fricatives 

in /V1FV2 / contexts has been devised. Six vowel contexts are incorporated, and words were 

repeated six times, each time in a slightly different word order. This corpus was read by six male, 

and six female normal hearing subjects of Southern English accent background. This resulted 

in a data set of 1,728 voiced, and 1,728 unvoiced fricative tokens. However, only the voiceless 

fricative tokens are considered here. 

To supplement these data, the speech of two male and two female post-lingually deafened cochlear 

implant subjects was recorded. A real word corpus was used, so that a small set offricative tokens 

from these subjects could be used to compare possibly disordered speech results to those of the 

normal hearing subjects. 

8.1.3 Multitaper analysis 

Multitaper analysis provides an alternative method of obtaining a spectral estimate with min­

imised error. The quantity of data incorporated into the estimate is maximised using the prolate 

spheroidal functions, or Slepian sequences, as data tapers on a short interval of time-series data. 

The local bias is minimised at the same time due to the specific properties of the Slepian se­

quences. 

Most importantly, multitaper analysis does not rely upon assumptions of stationarity, or er­

godicity. It therefore outperforms the alternative averaging methods, where consistent spectral 

estimation over short time intervals of non-stationary non-ergodic processes is required. These 

properties make multitaper analysis an excellent candidate for fricative spectral analysis. 

Multitaper analysis enables changes in the spectrum over time to be observed more easily. Com­

parisons across productions can also be made. Finally, multitaper spectrograms can be generated 

that do not contain the 'speckle' usually found in spectrograms of fricatives, and in some cases, 

multitaper spectra are more straightforward to read. 

8.1.4 Best results for spectral moments 

Spectral moments provide a broad measure of the overall energy distribution within a spectrum. 

The Gram-Charlier expansion has been used to demonstrate the elements of spectra that are 

most influential to the calculation of spectral moments. They are not significantly influenced by 

the movements of narrow spectral peaks or troughs. Rather, they are more sensitive to significant 

changes in energy distribution. 
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A number of choices concerning the implementation of spectral moments have to be made, most 

significantly frequency range selection, magnitude scale selection, and zero reference. These 

choices can significantly affect the effectiveness and sensitivity of the spectral moments. His­

torically, various approaches have been implemented, but often with little reasoning given. It 

has been shown that in fact, these choices can make significant differences to the outcomes of 

spectral moment calculations. If the zero reference is set too low, the spectral moments become 

insensitive to changes in the energy distribution of the spectrum. If it is set too high, there is 

an increased risk of the spectrum dropping below it, generating spurious moment results. 

The spectral moment methodology was adapted to use multitaper spectral estimates, rather 

than modified periodogram estimates. It seems probable that higher-order spectral moments 

are stabilised when multitaper spectral estimates are used, due to a decrease in variation in 

the tails of the distributions. The Gram-Charlier expansion allowed us to view which features 

of a spectral distribution most influence the spectral moments calculated for that distribution. 

Various frequency ranges were tried, and 0-10 kHz seems to produce among the best results. 

Logarithmic (decibel) magnitude scales should be used since the spectra have more Gaussian­

like qualities. This highlights a further important parameter: the zero reference, above which 

the spectral distribution can be normalised. This normalisation procedure is required in order 

to calculate the spectral moments. The zero reference must not be set so high that some spectra 

drop below it. However, the sensitivity of the spectral moments to changes in spectral shape is 

reduced as the zero reference is lowered. A zero reference of -10dB SPL/Hz with a frequency 

range of 0-10 kHz is found to be a good balance that can deal with the significant degree of 

variation that exists across tokens; but these settings still result in a high degree of correlation 

between the even order moments, and between the odd order moments. It is found that the 1st 

and 2nd spectral moments provide the greatest amount of information, and have been shown 

to be capable of separating the voiceless sibilants well, although separation of the non-sibilants 

could not be achieved. 

Plotting the spectral moments through time during fricative productions revealed evidence that 

the statistical properties of fricatives are often nonstationary. The non-sibilants were subject to 

the highest levels of spectral moment nonstationarity, although no distinguishing characteristics 

in these variations over time could be established. Nevertheless, this evidence of nonstationarity 

has serious repercussions concerning the use of time-averaging methods. 

8.1.5 Analysis of spectral variance 

Attempting to track the spectral changes that occur across productions, or through time within 

a fricative token, was previously difficult to perform accurately due to the large variance error 

of typical spectral estimates available. If attempts were made to reduce this variance, some 

assumption of stationarity or ergodicity would typically have to be made, and this still limits 

the accuracy of such analysis. 

The use of multitaper spectral estimates therefore provides us with a new means of gathering 

information pertaining to fricative production. The variability across, and within tokens can be 

explored due to the much reduced variance of the estimate. 

Multitaper spectral estimates were calculated from mid-fricative data. Spectra from six separate 
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10.6-ms windows within each mid-fricative token from every vowel context of every speaker 

for all speakers of a given gender were generated. The results were used to calculate mean 

spectral shapes, and spectral variances across all productions. The same analysis was performed 

to estimate within-speaker spectral mean and variance, and within-vowel-context and speaker 

spectral mean and variance. Finally, spectra were calculated from adjacent 2.7-ms data-windows 

across the whole duration of each fricative token. The spectral mean and variance over the 

duration of each fricative could then be estimated. 

These analyses of production variabilities quickly reveal regions of the spectrum that are highly 

variable, and those that are more stable, across speakers, vowel contexts, or individual tokens. 

For example, it was discovered that the level of energy in the 2.5-kHz region in male sibilant 

productions was subject to a notably low level of variance. Additionally, this region coincides 

with the main spectral peak for If I tokens, but a prominent trough for lsi productions. The 

findings were similar for females, although the region of minimum variance is apparently slightly 

higher, around 3 kHz, again where the distinguishing spectral features of the sibilants occur. 

These results suggest that these regions may be a distinguishing feature of each of the sibilants, 

and this is most effectively demonstrated by figures 6.5 and 6.8. 

However, it must be stressed that it is not our assertion that these measures relate to any 

'classification' capability. Rather, this work attempts to investigate the existence of important 

characteristics within the variations of fricatives, and this is shown to be true. 

The spectral shapes of the non-sibilants were found to be very similar, and overlapped signif­

icantly at every frequency in the spectrum. However, significant trends were observed. The 

frequency of the spectral peak in If I tokens usually occurs around 2 kHz, and if not here, would 

generally be found at either 4kHz, or 7kHz (for males) or 8kHz (for females). However, for 191 
tokens, the peak frequency is prone to much larger degree of variation. 

Evidence has been found that the spectral variability of the non-sibilants over time may have 

different characteristics for If I and 19/. A very crude measure of the total spectral variability 

over time reveals that male 191 tokens generally have a much lower degree of within-token 

spectral variation than If I tokens, although similar findings were not found for females. 

An alternative method for attempting to capture that degree of variation over time was to track 

the spectral peak frequency through non-sibilant tokens. The variability of the spectral peak 

frequency also suggested that male 191 productions were much less variable than If I productions, 

though again, this could not be verified for the female productions. 

Little additional information was provided by categorising spectral variance measures by vowel 

context. This finding may have implications concerning the effect of vowel context on fricative 

production. 

Many potential techniques exist for capturing the subtle spectral variations that occur within 

fricative productions. Spectral covariance plots have been generated, but found little distinguish­

ing information across the fricatives. Nevertheless, they provide intuitive appeal, and renewed 

efforts in this area may produce better results. 

An analysis of spectral variations in fricative productions has revealed interesting new informa­

tion, that is straightforward to interpret, and which agrees with the general theories of fricative 
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production. While some of these results have provided useful distinguishing information, other 

results are less obvious, but reveal a significant amount about productions nonetheless. 

8.1.6 Analysis of disordered speech 

The new analysis techniques have been applied to a number of speech productions of subjects 

with cochlear implants. 

In several cases these productions are clearly disordered, and this is often shown clearly in all of 

the spectral analysis techniques. In other less obvious cases, particularly productions with some 

slightly abnormal temporal 'fluctuation', the traditional methods (spectrograms and spectral 

moments) often do not suggest that the production is in any way abnormal. However, the new 

methods of spectral variance more commonly present evidence of abnormal productions. 

These new techniques provide a diverse array of indispensable additional information, and it 

appears, additional important features of production. They are in particular better suited to 

dealing with productions containing unusual temporal features, since they are based upon as­

sumptions that the fricatives are nonstationary. 

8.2 Future Work 

It has been shown that the production of fricatives is subject to physical processes that produce 

variations in different regions of the spectrum that depend upon the target fricative. It is 

through the analysis of these variations that a better understanding of fricative production will 

be obtained, and while the physical reasoning behind these is of ultimate interest, they are largely 

beyond the scope of this thesis. However, the results we have obtained are a strong foundation 

from which theorism and experimentation of the more intricate aspect of fricative production 

can begin. 

Of course, many additional areas remain to be explored, using the methods developed here. 

While voiced fricatives were incorporated into the word corpus, they have not been analysed 

here. However, multitaper analysis should provide better spectral estimates of voiced fricatives, 

and in this regard, it is hoped that attempts to describe the voiced fricatives will advance on 

previous efforts. Spectral moments have elsewhere been applied to the voiced fricatives, although 

their use is highly limited, since a significant characteristic of the spectral shape of the voiced 

fricatives is the spectral peaks due to voicing, and such features are known to not be well captured 

by spectral moments. 

It also seems necessary to place more emphasis on the boundary regions of the fricatives, since 

it seems more likely than ever that information pertaining to the non-sibilants is to be found 

here. The data collected for this thesis are suitable for the analysis of the boundary region. 

However, this was not attempted, since observation of the multitaper spectrograms provided no 

clear approach along which to proceed. It is possible that such analysis may be able to make 

use of the spectral covariance methods investigated. 
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These new methods are to be used in a more thorough analysis of cochlear implant subjects. 

Changes over time of the productions of such subjects should be more readily interpretable from 

these more intuitive analysis techniques, and problems concerning nonstationary elements are 

much less likely to be encountered. 

New opportunities have been opened up for analysis of fricative productions. The search for 

acoustical fricative production characteristics continues, and promises to be most rewarding. 
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Corpus 

The following words were used to capture the fricatives in the desired vowel contexts. 

I Context II If I lei lsi If I 
liFil 'beefy' 'teethy' 'fleecy' 'quichey' 

j'iFal 'beefer' 'ether' 'Lisa' 'Letitia' 

j'uFil 'goofy' 'toothy' 'Lucy' 'sushi' 

j'uFal 'loofah' 'Luther' 'juicer' 'fuchsia' 

laF'il 'atrophy' 'Athena' 'casino' 'machine' 

laF'ul 'buffoon' 'Methuselah' 'bassoon' 'parachute' 

Context II Iv I 101 Izl /31 
liFil 'D.V.D.' 'I will see thee' 'easy' 'Gigi' 

j'iFal 'leaver' 'breather' 'teaser' 'seizure' 

j'uFil 'groovy' 'smoothie' 'boozy' 'bijou,l 

j'uFal 'Hoover' 'smoother' 'cruiser' 'Hoosier' 

laF'il 'Davina' 'I sing to thee' 'magazine' 'regime' 

laF'ul 'the voodoo-doll' 'give Eva those' 'bazooka' 'jejune' 

Each page of words, or 'script' to be read by the speaker is now presented. Each 'script' is 

separated by a horizontal line. The first 'script', on each of the following pages, was used as a 

test page only. 

1 Reversed vowel order. 
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"fleecy" "teethy" "quichey" "beefy" 

"Lisa" "ether" "Letitia" "beefer" 

"Lucy" "toothy" "sushi" "goofy" 

"juicer" "Luther" "fuchsia" "loofah" 

"casino" "Athena" "machine" "atrophy" 

"bassoon" "Methuselah" "parachute" "buffoon" 

"beefy" "teethy" "fleecy" "quichey" 

"beefer" "ether" "Lisa" "Letitia" 

"goofy" "toothy" "Lucy" "sushi" 

"loofah" "Luther" "juicer" "fuchsia" 

"atrophy" "Athena" "casino" "machine" 

"buffoon" "Methuselah" "bassoon" "parachute" 

"teethy" "fleecy" "quichey" "beefy" 

"ether" "Lisa" "Letitia" "beefer" 

"toothy" "Lucy" "sushi" "goofy" 

"Luther" "juicer" "fuchsia" "loofah" 

"Athena" "casino" "machine" "atrophy" 

"Methuselah" "bassoon" "parachute" "buffoon" 

"fleecy" "quichey" "beefy" "teethy" 

"Lisa" "Letitia" "beefer" "ether" 

"Lucy" "sushi" "goofy" "toothy" 

"juicer" "fuchsia" "loofah" "Luther" 

"casino" "machine" "atrophy" "Athena" 

"bassoon" "parachute" "buffoon" "Methuselah" 

"quichey" "beefy" "teethy" "fleecy" 

"Letitia" "beefer" "ether" "Lisa" 

"sushi" "goofy" "toothy" "Lucy" 

"fuchsia" "loofah" "Luther" "juicer" 

"machine" "atrophy" "Athena" "casino" 

"parachute" "buffoon" "Methuselah" "bassoon" 

"beefy" "fleecy" "teethy" "quichey" 

"beefer" "Lisa" "ether" "Letitia" 

"goofy" "Lucy" "toothy" "sushi" 

"loofah" "juicer" "Luther" "fuchsia" 

"atrophy" "casino" "Athena" "machine" 

"buffoon" "bassoon" "Methuselah" "parachute" 

"fleecy" "beefy" "quichey" "teethy" 

"Lisa" "beefer" "Letitia" "ether" 

"Lucy" "goofy" "sushi" "toothy" 

"juicer" "loofah" "fuchsia" "Luther" 

"casino" "atrophy" "machine" "Athena" 

"bassoon" "buffoon" "parachute" "Methuselah" 



Appendix A Corpus 138 

"Gigi" "easy" "D.V.D." "seething" 

"seizure" "teaser" "Ieaver" "breather" 

"Hoosier" "cruiser" "Hoover" "smoother" 

"regime" "magazine" "Davina" "I sing to thee." 

"groovy" "boozy" "smoothie" 

"the voodoo-doll" "I will see thee" "give Eva those" 

"D.V.D." "seething" "easy" "Gigi" 

"Ieaver" "breather" "teaser" "seizure" 

"Hoover" "smoother" "cruiser" "Hoosier" 

"Davina" "I sing to thee." "magazine" "regime" 

"groovy" "smoothie" "boozy" 

"the voodoo-doll" "give Eva those" "I will see thee" 

"seething" "easy" "Gigi" "D.V.D." 

"breather" "teaser" "seizure" "Ieaver" 

"smoother" "cruiser" "Hoosier" "Hoover" 

"I sing to thee." "magazine" "regime" "Davina" 

"smoothie" "boozy" "groovy" 

"give Eva those" "I will see thee" "the voodoo-doll" 

"easy" "Gigi" "D.V.D." "seething" 

"teaser" "seizure" "Ieaver" "breather" 

"cruiser" "Hoosier" "Hoover" "smoother" 

"magazine" "regime" "Davina" "I sing to thee." 

"boozy" "groovy" "smoothie" 

"I will see thee" "the voodoo-doll" "give Eva those" 

"Gigi" "D.V.D." "seething" "easy" 

"seizure" "Ieaver" "breather" "teaser" 

"Hoosier" "Hoover" "smoother" "cruiser" 

"regime" "Davina" "I sing to thee." "magazine" 

"groovy" "smoothie" "boozy" 

"the voodoo-doll" "give Eva those" "I will see thee" 

"D.V.D." "easy" "seething" "Gigi" 

"Ie aver" "teaser" "breather" "seizure" 

"Hoover" "cruiser" "smoother" "Hoosier" 

"Davina" "magazine" "I sing to thee." "regime" 

"groovy" "boozy" "smoothie" 

"the voodoo-doll" "I will see thee" "give Eva those" 

"Gigi" "seething" "easy" "D.V.D." 

"seizure" "breather" "teaser" "Ieaver" 

"Hoosier" "smoother" "cruiser" "Hoover" 

"regime" "I sing to thee." "magazine" "Davina" 

"smoot hie" "boozy" "groovy" 

"give Eva those" "I will see thee" "the voodoo-doll" 
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FIGURE B .l : Multitaper spectrograms: ['iIi] productions from "quichey", subjects M-Ol and 
M-02. 
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FIGURE B .2: Multitaper spectrograms: ['iIi] productions from "quichey", subjects M-03 and 
M-04. 
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FIGURE B.3: Muititaper spectrograms: ['iIi) productions from "quichey" , subjects M-05 and 
M-06. 
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FIGURE B.4: Muititaper spectrograms: ['isi] productions from "fleecy", subjects M-Ol and 
M-02. 
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FIGURE B.5: Muititaper spectrograms: ['isi] productions from "fleecy", subjects M-03 and 
M-04. 
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FIGURE B .6: Muititaper spectrograms: ['isi] productions from "fleecy", subjects M-05 and 
M-06. 
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FIGURE B .7: Muititaper spectrograms: ['i9iJ productions from "teethy", subjects M-Ol and 
M-02. 
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FIGURE B.8 : Multitaper spectrograms: ['i8i] productions from "teethy", subjects M-03 and 
M-04. 
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FIGURE B.9: Multitaper spectrograms: ['iSil productions from "teethy") subjects M-05 and 
M-06. 
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FIGURE B .lO: Multitaper spectrograms: ['ifiJ productions from "beefy", subjects M-Ol and 
M-02. 
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FIGURE B.ll: Muititaper spectrograms: ['ifiJ productions from "beefy" , subjects M-03 and 
M-04. 
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FIGURE B .12: Muititaper spectrograms: ['ifi] productions from "beefy", subjects M-05 and 
M-06. 
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FIGURE B.13: Multitaper spectrograms: ['ufi] productions from "sushi , subjects M-Ol and 
M-02. 
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FIGURE B.14: Muititaper spectrograms: [,uJi] productions from "sushi, subjects M-03 and 
M-04. 
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FIGURE B.15: Muititaper spectrograms: ['uJi] productions from "sushi, subjects M-05 and 
M-06. 
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FIGURE B.16: Muititaper spectrograms: ['usi] productions from "Lucy", subjects M-Ol and 
M-02. 
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FIGURE B.17: Multitaper spectrograms: ['usi] productions from "Lucy", subjects M-03 and 
M-04. 
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FIGURE B.18 : Muititaper spectrograms: ['usi] productions from "Lucy") subjects M-05 and 
M-06. 
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FIGURE B .19: Muititaper spectrograms: ['uSi] productions from "toothy" ) subjects M-Ol and 
M-02. 

158 



Appendix B Multitaper Spectrograms 

20 

16 

4 

4 

toothy1 , subject #3 

50 100 150 200 250 300 
Time (ms) 

toothy4, subject #3 

50 1 00 150 200 250 300 
Time (ms) 

toothy1 , subject #4 

50 100 150 200 250 300 
Time (ms) 

toothy4, subject #4 

50 100 150 200 250 300 
Time (ms) 

20 

20 

16 

4 

20 

16 

4 

toothy2, subject #3 

50 100150200250300 
Time (ms) 

toothy5, subject #3 

50 1 00 150 200 250 300 
Time (ms) 

toothy2, subject #4 

50 100 150 200 250 300 
Time (ms) 

toothy5, subject #4 

50 100 150 200 250 300 
Time (ms) 

4 

20 

toothy3, subject #3 

50 100 150 200 250 300 
Time (ms) 

toothyS, subject #3 

50 100 150 200 250 300 
Time (ms) 

toothy3, subject #4 

50 100 150 200 250 300 
Time (ms) 

toothyS, subject #4 

50 100150200250300 
Time (ms) 

FIGURE B.20: Multitaper spectrograms: ['u9iJ productions from "toothy" l subjects M-03 and 
M-04. 
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FIGURE B.21 : Multitaper spectrograms: ['uSi] productions from "toothy" , subjects M-05 and 
M-06. 
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FIGURE B .22: Muititaper spectrograms: ['uti] productions from "goofy", subjects M-Ol and 
M-02. 
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FIGURE B.23: Muititaper spectrograms: ['ufiJ productions from "goofy", subjects M-03 and 
M-04. 

162 



Appendix B Multitaper Spectrograms 

goofy1 , subject #5 
20r. ----~~~--~ 

20 

16 

4 

20 

16 

4 

50 1 00 150 200 250 300 
Time (ms) 

goofy4, subject #5 

50 1 00 150 200 250 300 
Time (ms) 

goofy1 , subject #6 

50 100 150 200 250 300 
Time (ms) 

goofy4, subject #6 

50 100 150 200 250 300 
Time (ms) 

16 

goofy2, subject #5 

50 1 00 150 200 250 300 
Time (ms) 

goofy5, subject #5 
20c. ~----------~ 

20 

20 

50 100 150 200 250 300 
Time (ms) 

goofy2, subject #6 

50 100150200250300 
Time (ms) 

goofy5, subject #6 

50 100 150 200 250 300 
Time (ms) 

20 

goofy3, subject #5 

~; ; 
E' , 

50 100 150 200 250 300 
Time (ms) 

goofyS, subject #5 

50 100 150200 250 300 
Time (ms) 

goofy3, subject #6 

50 100 150 200 250 300 
Time (ms) 

goofyS, subject #6 

50 100 150 200 250 300 
Time (ms) 

FIGURE B .24: Mult itaper spectrograms: ['ufiJ productions from "goofy") subjects M-05 and 
M-06. 
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FIGURE B. 25 : Multitaper spectrograms: ['iIi] productions from "quichey", subjects F-07 and 
F-08. 

165 



Appendix B Muititaper Spectrograms 

quichey1 , subject #9 

50 100 150 200 250 300 
Time (ms) 

quichey4, subject #9 

50 100150200250300 
Time (ms) 

quichey1, subject #10 
20r-~------~---. 

4 

4 

50 100 150 200 250 300 
Time (ms) 

quichey4, subject #10 

50 1 00 150 200 250 300 
Time (ms) 

quichey2, subject #9 

50 100 150 200 250 300 
Time (ms) 

quicheyS, subject #9 
20.-----~------, 

16 

4 

4 

50 1 00 150 200 250 300 
Time (ms) 

quichey2, subject #10 

50 100 150 200 250 300 
Time (ms) 

quichey5, subject #10 

• 

50 1 00 150 200 250 300 
Time (ms) 

16 

16 

4 

quichey3, subject #9 

50 1 00 150 200 250 300 
Time (ms) 

quicheyG, subject #9 

50 100 150 200 250 300 
Time (ms) 

quichey3, subject #10 

50 100 150 200 250 300 
Time (ms) 

qulcheyG, subject #10 
20r-~------~---. 

4 

50 100150200250300 
Time (ms) 

FIGURE B .26: Multitaper spectrograms: ['ifi] productions from "quichey", subjects F-09 and 
F-IO. 
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FIGURE B.27: Multitaper spectrograms: ['iJi] productions from "quichey", subjects F-l1 and 
F-12. 
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FIGURE B .2S: Multitaper spectrograms: ['isi) productions from ''fleecy'', subjects F-07 and 
F-OS. 
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FIGURE B .29: Multitaper spectrograms: ['isi] productions from "fleecy" , subjects F-09 and 
F-IO. 
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FIGURE B.30 : Muititaper spectrograms: ['isiJ productions from "fleecy", subjects F-ll and 
F-12. 
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FIGURE B.31: Muititaper spectrograms: ['iSi] productions from "teethy" , subjects F-07 and 
F-OS. 
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FIGURE B.32: Multitaper spectrograms: ['i9i) productions from "teethy", subjects F-09 and 
F-IO. 
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FIGURE B.33: Muititaper spectrograms: ['iSi] productions from "teethy", subjects F-ll and 
F-12. 
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FIGURE B.34: Muititaper spectrograms: ['ifiJ productions from "beefy", subjects F-07 and 
F-08. 
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FIGURE B.35: Muititaper spectrograms: ['ifi] productions from "beefy", subjects F-09 and 
F-IO. 
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FIGURE B .36: Multitaper spectrograms: ['ifi] productions from "beefy", subjects F-ll and 
F-12. 
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FIGURE B .37: Multitaper spectrograms: ['uJiJ productions from "sushi, subjects F-07 and 
F-08. 
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FIGURE B.38: Muititaper spectrograms: ['uJiJ productions from "sushi, subjects F-09 and 
F-IO. 
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FIGURE B .39: Muititaper spectrograms: ['ufi) productions from "sushi , subjects F-ll and 
F-12. 
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FIGURE BAO : Muititaper spectrograms: ['usiJ productions from "Lucy", subjects F-07 and 
F-08. 
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FIGURE B.41: Muititaper spectrograms: ['usi] productions from "Lucy", subjects F-09 and 
F-IO. 
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FIGURE B.42: Multitaper spectrograms: ['usi] productions from "Lucy", subjects F-ll and 
F-12. 
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FIGURE B.43 : Muititaper spectrograms: ['uBi) productions from "toothy", subjects F-07 and 
F-08. 
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FIGURE B.44: Multitaper spectrograms: ['uSi] productions from "toothy") subjects F-09 and 
F-IO. 
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FIGURE B.45: Muititaper spectrograms: ['u9i] productions from "toothy" , subjects F-ll and 
F-12. 
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FIGURE B.46 : Muititaper spectrograms: ['ufi] productions from "goofy" 1 subjects F-07 and 
F-OB. 
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FIGURE B.47: Multitaper spectrograms: ['ufi] productions from "goofy") subjects F-09 and 
F-IO. 
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FIGURE B.48 : Multitaper spectrograms: ['ufi] productions from "goofy", subjects F-ll and 
F-12. 
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FIGURE C.1: Mean spectrum (solid) and production variance (dashed) from central lsi (left) 
in lusi,isi,asi,isa,asu,usal contexts, and If I (right) in lufi,ifi,afi,ifa,afu,ufal contexts, all male 
subjects. 
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FIGURE C.2: Mean spectrum (solid) and production variance (dashed) from central If I (left) 
in lufi,ifi,ifa,afu,ufal contexts, and 191 (right) in lu9i,i9i,a9i,i9a,u9a,a9ul contexts, all male 
subjects. 
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FIGURE C.3: Mean spectrum (solid) and production variance (dashed) from central /s/ in 
/usi,isi,asi,isa,asu,usa/ contexts, subject M-Ol (left) and M-02 (right). 
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FIGURE C.4: Mean spectrum (solid) and production variance (dashed) from central /s/ in 
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FIGURE C.5: Mean spectrum (solid) and production variance (dashed) from central /s/ in 
/usi,isi,asi,isa,asu,usa/ contexts, subject M-05 (left) and M-06 (right). 
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FIGURE C_6: Mean spectrum (solid) and production variance (dashed) from central If I in 
lufi,ifi,afi,ifa,afu,ufal contexts, subject M-Ol (left) and M-02 (right)_ 
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FIGURE C_7: Mean spectrum (solid) and production variance (dashed) from central If! in 
lufi,ifi,afi,ifa,afu,ufal contexts, subject M-03 (left) and M-04 (right)_ 
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FIGURE C_8: Mean spectrum (solid) and production variance (dashed) from central If! in 
lufi,ifi,afi,ifa,afu,ufal contexts, subject M-05 (left) and M-06 (right)_ 
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FIGURE C.g: Mean spectrum (solid) and production variance (dashed) from central If I in 
lufi,ifi,ifa,afu,uful contexts, subject M-Ol (left) and M-02 (right). 
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FIGURE C.l1: Mean spectrum (solid) and production variance (dashed) from central If I in 
/ufi,ifi,ifa,afu,ufal contexts, subject M-05 (left) and M-06 (right). 
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FIGURE 0.12: Mean spectrum (solid) and production variance (dashed) from central /9/ in 
/u9i,i9i,i9a,a9u,u9a,a9i/ contexts, subject M-Ol (left) and M-02 (right). 
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FIGURE 0.13: Mean spectrum (solid) and production variance (dashed) from central /9/ in 
/u9i,i9i,i9a,a9u,u9a,a9i/ contexts, subject M-03 (left) and M-04 (right). 
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FIGURE 0.14: Mean spectrum (solid) and production variance (dashed) from central /9/ in 
/u9i,i9i,i9a,a9u,u9a,a9i/ contexts, subject M-05 (left) and M-06 (right). 
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FIGURE C.15: Mean spectrum (solid) and production variance (dashed) from central /s/ (left) 
in /usi,isi,asi,isa,asu,usa/ contexts, and /f/ (right) in /ufi,ifi,afi,ifa,afu,ufa/ contexts, all female 
subjects. 
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FIGURE C.16: Mean spectrum (solid) and production variance (dashed) from central /f/ (left) 
in /ufi,ifi,ifa,afu,ufa/ contexts, and /9/ (right) in /u9i,i9i,a9i,i9a,u9a,a9u/ contexts, all female 
subjects. 
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FIGURE C.17: Mean spectrum (solid) and production variance (dashed) from central /s/ in 
/usi,isi,asi,isa,asu,usa/ contexts, subject F-07 (left) and F-08 (right). 
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FIGURE C.18: Mean spectrum (solid) and production variance (dashed) from central /s/ in 
/usi,isi,asi,isa,asu,usa/ contexts, subject F-09 (left) and F-lO (right). 
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FIGURE C.19: Mean spectrum (solid) and production variance (dashed) from central /s/ ill 
/usi,isi,asi,isa,asu,usa/ contexts, subject F-ll (left) and F-12 (right). 
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FIGURE C.20: Mean spectrum (solid) and production variance (dashed) from central If! in 
lufi,ifi,afi,ifa,afu,ufal contexts, subject F-07 (left) and F-08 (right). 
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FIGURE C.2!: Mean spectrum (solid) and production variance (dashed) from central If I in 
lufi,ifi,afi,ifa,afu,ufal contexts, subject F-09 (left) and F-!O (right). 
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FIGURE C.22: Mean spectrum (solid) and production variance (dashed) from central If I in 
lufi,ifi,afi,ifa,afu,ufal contexts, subject F-ll (left) and F-12 (right). 
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FIGURE C.23: Mean spectrum (solid) and production variance (dashed) from central If I in 
lufi,ifi,ifa,afu,ufal contexts, subject F-07 (left) and F-08 (right). 
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FIGURE C.24: Mean spectrum (solid) and production variance (dashed) from central If I in 
lufi,ifi,ifa,afu,ufal contexts, subject F-09 (left) and F-10 (right). 
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FIGURE C.25: Mean spectrum (solid) and production variance (dashed) from central If I in 
lufi,ifi,ifa,afu,ufal contexts, subject F-ll (left) and F-12 (right). 
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FIGURE C.26: Mean spectrum (solid) and production variance (dashed) from central /9/ in 
/u9i,i9i,i9a,a9u,u9a,a9i/ contexts, subject F-07 (left) and F-08 (right) . 

."L--{-_-!-----;:-----;-, --!1D;;---;'~2 --;;,,--;,;-, --;;;"--c;!,, ,,,,,,,,,,,-

.. 
" .. 
3D 

,v .. 

" r"_f\v_' __ 'f'/-/~' 

a 10 12 14 111 11 20 --
FIGURE C.27: Mean spectrum (solid) and production variance (dashed) from central /9/ in 
/u9i,i9i,i9a,a9u,u9a,a9i/ contexts, subject F-09 (left) and F-IO (right). 
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FIGURE C.28: Mean spectrum (solid) and production variance (dashed) from central /9/ in 
/u8i,i8i,i8a,a8u,u8a,a8i/ contexts, subject F-ll (left) and F-12 (right). 
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FIGURE D_l: Coefficients of correlation of amplitude to spectrum in central lsi and If I spectra, 
across all subjects_ 
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FIGURE D_2: Coefficients of correlation of amplitude to spectrum in central 181 and If I spectra, 
across all subjects_ 
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FIGURE D.3: Coefficients of correlation of amplitude to spectrum of 6 central /s/ spectra, 
subjects M-Ol and M-02. 
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FIGURE D.4: Coefficients of correlation of amplitude to spectrum of 6 central /s/ spectra, 
subjects M-03 and M-04. 
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FIGURE D.5: Coefficients of correlation of amplitude to spectrum of 6 central /s/ spectra, 
subjects M-05 and M-06. 
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FIGURE D.6: Coefficients of correlation of amplitude to spectrum of central III spectra, sub­
jects M-Ol and M-02 . 
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FIGURE D.7: Coefficients of correlation of amplitude to spectrum of central III spectra, sub­
jects M-03 and M-04. 
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FIGURE D.8: Coefficients of correlation of amplitude to spectrum of central III spectra, sub­
jects M-05 and M-06. 
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FIGURE D.9: Coefficients of correlation of amplitude to spectrum of central /9/ spectra, sub­
jects M-Ol and M-02. 
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FIGURE D.lO: Coefficients of correlation of amplitude to spectrum of central /9/ spectra, 
subjects M-03 and M-04. 
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FIGURE D.ll: Coefficients of correlation of amplitude to spectrum of central /9/ spectra, 
subjects M-05 and M-06. 
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FIGURE D.12: Coefficients of correlation of amplitude to spectrum of central If I spectra, 
subjects M-Ol and M-02. 
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FIGURE D.13: Coefficients of correlation of amplitude to spectrum of central If I spectra, 
subjects M-03 and M-04. 
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FIGURE D.14: Coefficients of correlation of amplitude to spectrum of central If I spectra, 
subjects M-05 and M-06. 
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_ ,(\HZ) 

FIGURE E.1: Coefficients of correlation of central /s/ (left) and /1/ (right) spectra, across all 
male subjects. 

FIGURE E.2: Coefficients of correlation of central /6/ (left) and /f/ (right) spectra, across all 
male subjects. 
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FIGURE E.3: Coefficients of spectral correlation of central III spectra, subjects M-Ol and 
M-02. 

FIGURE E.4: Coefficients of spectral correlation of central III spectra, subjects M-03 and 
M-04. 

FIGURE E .5: Coefficients of spectral correlation of central III spectra, subjects M-05 and 
M-06. 
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FIGURE E.6: Coefficients of spectral correlation of central /s/ spectra, subjects M-Ol and 
M-02. 

.,- .,-
FIGURE E.7: Coefficients of spectral correlation of central /s/ spectra, subjects M-03 and 
M-04. 

" 1(kHl) ., (kJU) 

FIGURE E .8: Coefficients of spectral correlation of central /s/ spectra, subjects M-05 and 
M-06. 
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., ,,",, 

FIGURE E.g: Coefficients of spectral correlation of central /0/ spectra, subjects M-Ol and 
M-02. 

- 1 (kHz) 

FIGURE E .IO: Coefficients of spectral correlation of central /0/ spectra, subjects M-03 and 
M-04. 

., ,,",, _,(kHQ 

FIGURE E .1l: Coefficients of spectral correlation of central /0/ spectra, subjects M-05 and 
M-06. 
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.,-
FIGURE E .12: Coefficients of spectral correlation of central Iff spectra, subjects M-Ol and 
M-02. 

FIGURE E .13: Coefficients of spectral correlation of central Iff spectra, subjects M-03 and 
M-04. 

.,-

FIGURE E .14: Coefficients of spectral correlation of central Iff spectra, subjects M-05 and 
M-06. 
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Within vowel-context 

measurements, by speaker 

In all graphs, lsi tokens are represented by a blue cross, If I by a red circle, If I by a green cross, 

and 101 by a black dot. 

F.1 1st and 2nd spectral moments by subject and example 

vowel context 
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FIGURE F.l: 1st and 2nd moments of all fricatives in /iFi/ context, subjects M-Ol to M-03. 
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FIGURE F .2: 1st and 2nd moments of all fricatives in /iFi/ context, subjects M-04 to M-06. 
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FIGURE F .3: 1st and 2nd moments of all fricatives in laFuI context, subjects M-01 to M-03. 
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FIGURE F.4: 1st and 2nd moments of all fricatives in /aFu/ context, subjects M-04 to M-Ofi. 
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FIGURE F.5: 1st and 2nd moments of all fricatives in /iFi/ context, subjects F-07 to F-09. 

218 



Appendix F Within vowel-context measurements, by speaker 

I 
-'!!. 

~ 
g 
~ 

'" I 
i 
~ 

x 1<f1st and 2nd rnornerts for JlFV context. Freq. range:~10000Hz. rz:=..1OdB SPl. SlJl1G-10 
9.5 

8.5 

. x 

7.5 

+ 

o 
6(~~--4~~~~4~400~~~~--~~~--~~~--5=~~~5400~~~5600~--~5600~--~OOOO 

1st moment (ceriroid) (Hz) 

x 1 0'1 st end 2nd moments for IIFV context. Freq. range:0-10000Hz. rz=-10dB SPL. 50011-11 
9.5 

+ 

8.5 + 

8 + 

+ 

7.5 

o 

6(~·~--4~~~~4~400~~~~--~~~--~~~--5=~~~5400~~~5600~--~5600~--~OOOO 
1st moment (ceriroid) (Hz) 

x 1(f1st and 2nd moments for ARt coricxt. Frcq. range:0-10000Hz, rz=-10dB SPL. sub12-12 
9.5 

8.5 

8 i 

7.5 

7 - 0 

0 0 

+ 

+ 

6(~·~--4~~~~4~400=-~~~--~~~--~~~--~~~~~~OO~~5600~--~5600~--~OOOO 
l si moment (_mid) (Hz) 

FIGURE F.6: 1st and 2nd moments of all fricatives in /iFi/ context, subjects F-10 to F-12. 
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FIGURE F.7: 1st and 2nd moments of all fricatives in laFuI context, subjects F-07 to F-09. 
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FIGURE F .8: 1st and 2nd moments of all fricatives in laFuI context, subjects F-10 to F-12. 
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F.2 Energy measurements by subject and example vowel 

context 

Energy at 2.5 kHz (for male tokens) and 3 kHz (for female tokens) is plotted against total spectral 

energy. 
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FIGURE F .9: Energy at 2.5 kHz against total spectral energy of all fricatives in /iFi/ context, 
subjects M-Ol to M-03. 
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FIGURE F .I0: Energy at 2.5 kHz against total spectral energy of all fricatives in jiFij context, 
subjects M-04 to M-06. 
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subjects M-Ol to M-03. 
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FIGURE F .12: Energy at 2.5 kHz against total spectral energy of all fricatives in /aFu/ context, 
subjects M-04 to M-06. 
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FIGURE F .13: Energy at 3kHz against total spectral energy of all fricatives in /iFi/ context, 
subjects F-07 to F-09. 
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FIGURE F.14: Energy at 3kHz against total spectral energy of all fricatives in /iFi/ context , 
subjects F-IO to F-12. 
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FIGURE F .15: Energy at 3kHz against total spectral energy of all fricatives in laFuI context, 
subjects F-07 to F-09. 
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F IGURE F .16: Energy at 3 kHz against total spectral energy of all fricatives in laFuI context , 
subjects F-IO to F-12. 
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F.3 Mean spectrum and spectral variability 

All solid lines represent mean spectrum calculated over the full length of the token, while dashed 

lines show the spectral variance calculated over the full length of the token. 

F .3.1 Male example tokens 
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FIGURE F .29: Mean spectrum and spectral variability calculated over time of example /i9i/ 
tokens, subjects M-Ol and M-02. 
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FIGURE F.30: Mean spectrum and spectral variability calculated over time of example /i9i/ 
tokens, subjects M-03 and M-04. 
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FIGURE F.32: Mean spectrum and spectral variability calculated over time of example /a9u/ 
tokens, subjects M-Ol and M-02. 
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tokens, subjects M-03 and M-04. 
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FIGURE F.34: Mean spectrum and spectral variability calculated over time of example /a9u/ 
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FIGURE F.36: Mean spectrum and spectral variability calculated over time of example jifij 
tokens, subjects M-03 and M-04. 
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F .3.2 Female example tokens 
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FIGURE F.41: Mean spectrum and spectral variability calculated over time of example /isi/ 
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FIGURE F.42: Mean spectrum and spectral variability calculated over time of example /isi/ 
tokens, subjects F-09 and F-lO. 
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tokens, subjects F-07 and F-OB. 
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FIGURE F.46: Mean spectrum and spectral variability calculated over time of example jasuj 
tokens, subjects F-ll and F-12. 
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tokens, subjects F-07 and F-08_ 
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FIGURE FA9: Mean spectrum and spectral variability calculated over time of example liJil 
tokens, subjects F-ll and F-12_ 
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FIGURE F.50: Mean spectrum and spectral variability calculated over time of example /aJu/ 
tokens, subjects F-07 and F-OS. 
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FIGURE F.51: Mean spectrum and spectral variability calculated over time of example /aJu/ 
tokens, subjects F-09 and F-IO. 
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FIGURE F.52: Mean spectrum and spectral variability calculated over time of example /aJu/ 
tokens, subjects F-l1 and F-12. 
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FIGURE F.53: Mean spectrum and spectral variability calculated over time of example /i9i/ 
tokens, subjects F-07 and F-OS. 
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FIGURE F.54: Mean spectrum and spectral variability calculated over time of example /i9i/ 
tokens, subjects F-09 and F-lO. 
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FIGURE F.55: Mean spectrum and spectral variability calculated over time of example /i9i/ 
tokens, subjects F-ll and F-12. 
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FIGURE F.56: Mean spectrum and spectral variability calculated over time of example /a9u/ 
tokens, subjects F-07 and F-OS. 
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FIGURE F.57: Mean spectrum and spectral variability calculated over time of example /a9u/ 
tokens, subjects F-09 and F-IO. 
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FIGURE F.5S: Mean spectrum and spectral variability calculated over time of example /a9u/ 
tokens, subjects F-l1 and F-12. 
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tokens, subjects F-07 and F-OS. 
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so .. 
,. ,. 

I' .... -' 

10 12 14 18 18 20 10 12 14 HI 18 20 
Frecp!ItICy{lcHZ) --

FIGURE F.6l: Mean spectrum and spectral variability calculated over time of example lifil 
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FIGURE F.62: Mean spectrum and spectral variability calculated over time of example /afu/ 
tokens, subjects F-07 and F-08. 
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FIGURE F.63: Mean spectrum and spectral variability calculated over time of example /afu/ 
tokens, subjects F-09 and F-IO. 
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FIGURE F.64: Mean spectrum and spectral variability calculated over time of example /afu/ 
tokens, subjects F-ll and F-12. 
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context 
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FIGURE F, 65 : Total spectral variability of all fricatives in /iFi/ context, subjects M-Ol to 
M-03, 
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FIGURE F.66: Total spectral variability of all fricatives in /iFi/ context, subjects M-04 to 
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FIGURE F .67: Total spectral variability of all fricatives in laFuI context, subjects M-Ol to 
M-03. 



Appendix F Within vowel-context measurements, by speaker 

c 

~ 

Total spedraI variabllty, /aFu/conIelI!, sUljed" 

400 

~--~4~00~--~~--~~~--~1~~---1~~~--~14OO~--~1~~~--1~~~--:c'~· 
SpedraJ variabllty 

Tot., spedraI variabli ty, /aFu/ conIelI!, sUljed 115 
1~ 

1~ 

1400 

1~ + 

+ 
"i!1~ + + tI 
8. 
OJ 

+ + 

~ 

~ 

o 0
1 

,Jl 0 
0 

400 

~--~4OO~---~~--~~~--~1~~--~1~~~--714OO~--~1~~~--1~~~--~~' 
Specb'alvarlabilty 

1~ 

1~ 

1400 

1~ 

~ 

400 

+ 

o + 
+ 

o 

o 

o 

Tot.1 spedraI \ItI~ablity, /aFu/ conIelI!, sUJjec1116 

+ 

+ 

+ 

o 

o 

~~~4~00~--~~--~~~--~1~~---1~~~--~14OO~--~1~~~--1~~~--:c'~· 
Spectral variabiity 

FIGURE F ,68: Total spectral variability of all fricatives in laFuI context, subjects M-04 to 
M-06, 

253 



Appendix F Within vowel-context measurements, by speaker 254 

Total spednIl van.billy, ~FU coolell!, _1fT 
1800 + 

+ 
0 + 

1800 0 

8 0 

1400 0 

1200 

! 
e 1000 
tl 
8. en 

800 

600 

400 

~ 400 600 800 1000 1200 1400 1600 1800 2000 
Spectral varinl>ity 

Total spectral variability, AFV con:eld, Sltlfed 118 
1800 

1600 + + ++ 
0 

1400 I> 
0+- + 

1200 0 

! 0 

x 

~1000 

8. 
"' 800 

600 

400 

~ 400 600 800 1000 1200 1400 1600 1800 2000 
Spectral variability 

Total spectral van.bllly, ~FU coolext, _119 
1800 

1600 

1400 * 
0 

1200 + + 

~ + 

~1000 % 0 0 

8. 
"' 0 

800 

600 

400 

~ 400 600 800 1000 1200 1400 1600 1800 2000 
Spectral vannl>ity 

FIGURE F.69: Total spectral variability of all fricatives in /iFi/ context, subjects F-07 to F-09. 
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FIGURE F . 70 : Total spectral variability of all fricatives in jiFi/ context, subjects F-IO to F-12. 
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FIGURE F,72: Total spectral variability of all fricatives in /aFu/ context , subjects F-IO to 
F-12. 
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F.5 Peak variability by subject and example vowel context 
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FIGURE F .73: Peak variability of all fricatives in jiFij context, subjects M-Ol to M-03. 



Appendix F Within vowel-context measurements; by speaker 260 

Peakvarlance, S\b4-4.AFlI 
140 

120 

100 

8 
lao 
i 
:;; 60 

:\l :\. 

0 
0 1000 2000 3000 4000 5000 6000 7000 8000 

Peak variance 

Peak variance, ~5. I1FV 
140 

120 

100 

8 
lao 
[ 
:;; 60 

:\l . . 

+ 

40 + 

20 

0 
0 1000 2000 3000 4000 5000 6000 7000 8000 

Peak variance 

Peak variance. stbEHi,I1FlI 
140 

120 

100 

8 
tao 
~ 

!l. ++ 
:; 60 ++ 
:\l 

+ 
40 + 

20 

0 
0 1000 2000 3000 4000 5000 6000 7000 8000 

Peak variance 

FIGURE F.74: Peak variability of all fricatives in /iFi/ context, subjects M-04 to M-06. 
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FIGURE F.75: Peak variability of all fricatives in laFuI context, subjects M-Ol to M-03. 
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FIGURE F.76 : Peak variability of all fricatives in /aFu/ context, subjects M-04 to M-06. 
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FIGURE F.77: Peak variability of all fricatives in /iFi/ context, subjects F-07 to F-09. 
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FIGURE F.78 : Peak variability of all fricatives in /iFi/ context, subjects F-IO to F-12. 
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FIGURE F .79: Peak variability of all fricatives in /aFu/ context, subjects F-07 to F-09. 



Appendix F Within vowel-context measurements, by speaker 266 

Peal< variance. s<b1()'10. laFui 
140 

120 

+ 

100 + 
+ 
+ 

6 
too + 

~ 

[ 
:;; 60 
i 

40 0 

20 

0 
0 1000 2000 3000 4000 5000 6000 7000 6000 

Pee.kvariance 

Pcakvarlance. sIJJ11-11 , /aFuJ 
140 

120 

100 

XX 

6 
too + 

[ 
:;; 60 + 
i 

40 

20 

0 
0 1000 2000 3000 4000 5000 6000 7000 6000 

Peak variance 

Peakvarianc:e. 5ub12-12, laFuJ 
140 

120 

100 

6 
too 
~ + [ 
:;; 60 + 

+ 
.. 

i 

40 
0 

20 x 

0 
0 1000 2000 3000 4000 5000 6000 7000 6000 

Peak variance 

FIGURE F.80: Peak variability of all fricatives in laFuI context, subjects F-IO to F-12. 
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