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An investigation into the properties of fricative production in normal and disordered speech is
described. Methods for analysing and characterising fricative productions from acoustical signals
can help provide better knowledge of the fricative production mechanisms. Being able to measure
changes in the acoustical signal that relate to changes in production is extremely useful for the
analysis of speech production in general, and for assessing long-term effects on speech of aids

such as cochlear implants.

Parametric analysis based on mathematical models of the noise source and filter function of the
tract (e.g. spectral tilt, and pole and zero frequencies) has been able to explain the behaviour
of some elements of fricative production. However, not all aspects of fricative production can be
accounted for by such models. Distinguishing characteristics and ranges of variation of all the
fricatives have not been satisfactorily captured. The turbulent noise sources that are generated
near constrictions within the tract behave in complex ways that cannot be solved by current

models. In order to proceed, extra information gathered from fricative productions is needed.

Spectral analysis is one of the most important tools available when analysing acoustical speech
data, since it provides information pertaining to the source and resonant characteristics — and
hence aspects of the shape — of the tract. For vowel analysis, spectral methods have been
straightforward to use, and usually provide a clear picture of many aspects of the behaviour of
the production mechanisms. However, fricative spectra have a large variance if the signal is not
treated properly. This variance can swamp features of interest. The feasibility of using time
and ensemble averaging techniques to reduce the variance is examined, but fricative productions
can be considered neither stationary nor ergodic, and so these averaging techniques are limited.
Frequency smoothed estimates are explored, but found to be of limited use, since they are biased

in regions where the spectrum is not flat.

Multitaper analysis is an alternative method of generating spectral estimates with reduced vari-
ance, without relying upon assumptions of stationarity or ergodicity, and which provides accurate
information pertaining to spectral features. It is optimal over short segments of stochastic data,

and so variations in the spectrum over time, as well as over tokens can be estimated.
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In order to gain a first estimate of typical variations across productions, to which abnormal
productions can be compared, it was necessary to analyse some ‘normal’ speech. Recordings
were made of six normal hearing subjects of each gender, and of Southern English accent, reading
a corpus of real words containing /V;FV3/ segments, where /F/ was one of the eight English
fricatives. Six vowel contexts were incorporated, resulting in a set of 3,456 fricative tokens.
Of these, the 1,728 voiceless fricative tokens were used in an extensive analysis. In addition,
recordings were made of two male and two female postlingually deafened subjects fitted with

cochlear implants reading a standard corpus of real words.

Spectral moments have become a popular method for characterising the overall shape of fricative
spectra that have a large variance. The parameters with which the moments are calculated are
explored, and it is shown that when frequency range, magnitude scale and ‘zero reference’ are
chosen carefully, stable moments that can separate the sibilants can be generated. A high
correlation between the odd moments, and the even moments is found, and so the first two
moments are best to consider. However, no other improvements can be made, and spectral
moments are shown to be insensitive to some changes that are clearly significant when other

tools such as spectrograms are used.

Multitaper spectra are used to develop several new parameters that allow for improved classifi-
cation by place, and characterisation of spectral variance. These analyses provide extensive new
information pertaining to fricative production, which is straightforward to interpret. Results of
across speaker, within-speaker, within vowel-context, and within-token spectral variations are
presented for all the voiceless fricatives. Correlations of overall spectral intensity to spectral
shape, and spectral correlations are also shown.
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Chapter 1

Introduction

In this work, the variations in normal fricative productions are characterised, with a view to

being able to better describe productions made by speakers with impaired hearing.

It is known that hearing perception plays a role in monitoring speech production, although in
precisely what capacity is still largely debated. This is easily demonstrated by hearing impaired
speakers, whose speech is often disordered. A hearing impaired speaker may have some level of
hearing restored with the use of some artificial device (for example, a cochlear implant), and
often this will affect the speech, as well as the speech perception, of the subject.

Evaluation of the speech of such speakers is important in terms of both understanding what role
hearing plays in production, and also how devices such as cochlear implants may be improved.
While the speech perception of such a subject at any stage of hearing ability can be evaluated
quite easily, measurement of the quality of the speech production of the subject presents some
significant obstacles.

The characteristics of the acoustical speech signal determine what is perceived by a listener.
A firm understanding of these characteristics must be obtained in order to better understand

normal perception, as well as improve aided perception.

The acoustical speech signal is generated by the vocal tract, and so, at any point during produc-
tion, the articulatory state of the vocal tract determines the characteristics of the signal being
produced. The perception of speech, then, is governed by the acoustical signals that are in turn
controlled by the state of the vocal tract.

Different speech sounds are classified by the manner in which they are created by the vocal
tract. Speech sounds created in a certain manner will have characteristic acoustical features;
further, these different sounds are also perceived as distinct. Adjustments within a particular
manner of production are known as place changes, and will result in changes in the properties

of the acoustical signal.

In other words, voicing, airflow, the manner of production, and place of production determine

the acoustical waveform produced, and this waveform will determine the perception of a listener.

As a first hypothesis, it should therefore be possible to determine both the manner and place of
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production, as well as the expected perception of a sound, from the acoustical waveform alone.
Indeed, for certain classes of speech sounds, this is true to a certain extent. The appearance of
several strong formants in the acoustical waveform allows the approximate positions of the vocal

articulators to be determined, and the expected perception of the signal can be hypothesised.

The view above is rather a simplified one however. In fact, for a given phoneme, the articulatory
setup can vary to a great degree. Often, the context of the phoneme, the rate at which the talker
is speaking, the emphasis of the particular word, the ambient noise and many other factors
each contribute to exactly how the phoneme is formed. Each of these articulatory changes will
contribute to some change in the resulting acoustical signal, although the perception of the

acoustical signal will usually remain constant.

Additionally, certain distinct manners of production, while easily distinguished by listeners,
produce waveforms with apparently very similar characteristics. An example of these are the
fricatives. They are produced when the vocal tract forms a narrow constriction through which
air is forced. This generates turbulence noise. The English fricatives are the voiceless /f,0,s,//,
and their voiced counterparts /v,8,z,35/. (While /h/ is often described as a glottal fricative, its
place varies significantly with phonetic context, making it acoustically variable; perhaps for this
reason, it is often excluded from studies of English fricatives.)

A solid understanding of fricative acoustical production has yet to be found. While traditional
source-filter models have provided some insights into production, they still leave many questions

unanswered.

Moreover, perhaps as a result of their stochastic nature, distinguishing characteristics in the
acoustical signal among the fricatives have remained largely allusive. Usually, they are either
subject to variations which make them confusable with other fricatives, or are entirely indistin-
guishable.

New methods for analysing fricative signals need to be explored. A review of much of the work
done in these areas follows.

1.1 Evaluating normal and disordered fricative production

The speech of subjects with some degree of hearing loss is often examined to help clarify the role
of hearing in speech production (Lane, Wozniak, and Perkell 1994). Having a means to measure
the improvement or reduction in performance of a subject also allows decisions to be made about
the subject’s response to various treatment (e.g. Lane and Webster (1991)).

The development of cochlear implants (CIs) has allowed those who are profoundly deaf to have a
certain level of hearing-function restored. Initially, limitations in the physical production of these
devices determined how much, and the manner in which information could be supplied to the
auditory nerve. While improvements in this area continue, it no longer seems to be the limiting
factor in restoring hearing-function. It now becomes the task to ascertain a more fundamental
understanding of the intricacies of the normal hearing system, if further improvements are to be

made.
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The perception test scores of cochlear implant patients can return to very high levels following
cochlear implantation, but this is not the case for all subjects. Additionally, the speech of these
subjects can return to near-normal quality. In some cases however, the speech of a cochlear

implant user will continue to be degraded in some aspect.

For a given aspect of disordered speech, it becomes desirable that the main cause for this degrada-
tion in performance be found. If the implant is not providing the auditory nerve with a particular
important cue, the speech is likely to be affected in the long term. Accurately measuring the
way in which the speech production is affected therefore becomes an important task.

Consider the fricative production of a cochlear implant user. The cochlear implant can perhaps be
considered as optimised for supplying the auditory nerve with information on formant positions
(Wilson 1993). Various ‘processing strategies’ have been attempted, and while most of these
attempt to deliver at least some of the information present in fricatives, it seems possible that
this area is the source of some perception difficulties (Matthies, Svirsky, Lane, and Perkell 1994).

In order to evaluate the fricative production, the resulting acoustical signal can be compared to
a ‘normal’ speaker’s production. In this case, the aspects of the acoustical signal that reflect the
production behind it are required, so that a comparison to normal productions can be made!.

Measuring normal production variation is therefore an important first step to describing disor-
dered speech. The normal range of productions made by a single speaker, as well as the variations
typical across a number of speakers, must be known.

But what aspects of the acoustical signal should be measured? Many attempts have been made
to determine which aspects of the acoustical signal represent states of the various production
mechanisms used to form it. For vowel sounds, the formant positions of the acoustical spectrum
suggest the shapes and sizes of various cavities in the vocal tract. For the fricatives however, the
problem appears to be much harder.

The acoustical properties of fricatives are rather different from sounds such as vowels. The acous-
tical differences result from the fundamental differences in which they are produced. The main
source of excitation of the tract during vowel production is a pseudo-periodic signal generated
by the glottis. During voiced fricative production, additional sources are set up at forward posi-
tions in the tract, and these additional sources are stochastic in nature. In the case of voiceless

fricatives, the glottal source is dropped altogether.

If air is forced through a sufficiently constricted passage within the tract, the airflow becomes
turbulent, and this generates noise sources in forward positions. These differences in tract
excitation sources lead to a number of significant differences in the resulting acoustical waveforms.
Due to the nature of the turbulent sources, excitation continues at much higher frequencies than
for vowel production. Further, the resonant chambers posterior to the noise source are not
excited as much as those anterior, often resulting in much lower energy at lower frequencies
(O’Shaughnessy 1987): most energy exists above 2.5 kHz for the palatal fricatives, above 3.2 kHz
for the alveolar fricatives, and with very little energy at any region in the spectrum for the labial

and dental fricatives.

1A method that accomplishes this task well may also be capable of good phonemic discrimination. The task
of phonemic discrimination on its own though, while having uses in various automatic speech recognition (ASR)
systems, does not have to satisfy the criterion of being able to discriminate the means of production, which is an
important task in speech and hearing research.
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1.2 History

1.2.1 Acoustic description and classification

Attempting to locate the important cues in real fricatives is therefore essential to both the study
of understanding perception, and also production. It is also the task of work involving other
automated systems such as automatic speech recognition (ASR), and voice verification systems.

An important subtle difference should always be borne in mind when discussing cues. Percep-
tual cues are the most likely to yield good ASR performance, and better understanding of the
human perceptual system. However, the perceptual cues will not necessarily relate to the means
of production. On the other hand, production cues will contain information that correlates
strongly to the manner and place of production, while not necessarily being significant in terms
of their perceptual effects. To highlight this distinction, the different viewpoints of fundamental
production-perception theories can be considered, and these are discussed briefly in §1.2.4.

Hughes and Halle (1956) stated that since the voiceless and voiced fricatives /s,[,f,2,3,v/ are
easily classifiable by normal hearing subjects in any phonetic context — real or nonsensical —
it can be presumed that the perceptual cues for these fricatives lie wholly within the acoustical
signal. The spectra of the central 50-ms portions of these fricative were then examined for such
cues?. Fricative segments were gated from the centre of productions of normal words spoken by
three speakers. When the spectra were examined, the distinctiveness of different fricatives could
only be described in fairly crude terms: the total amount of energy in certain arbitrary frequency
bands, and the magnitude of a frequency peak in a band; no attempts were made to explain the
patterns in terms of the production mechanism. A procedure for the automatic classification of
central fricative segments was implemented, based upon the observations of spectra for the three
subjects. The testing of the automatic classifier was performed on fricative segments acquired in
the same manner as before, with the same three speakers, plus two new speakers. High success
rates of such testing procedures are to be expected, but are not a particularly useful measure of
the goodness of the classifier. In the next stage of experimentation, listening subjects were asked
to classify the same fricative segments as were supplied to the automatic classifier; of interest
was the finding that where productions were incorrectly identified by the human listeners, these
productions were usually also misidentified by the automatic system.

In another early work, Strevens (1960) attempted to explain differences in the voiceless fricative
spectra of /$.,f,0,5,,¢,x,x,h/ in terms of place of their production within the vocal tract. It was
acknowledged that for speakers to produce a given fricative, many different articulatory postures
exist, and therefore care should be taken when describing precise manners of production. The
production reasons behind the common intensity differences across fricatives are considered, and
an assumption is made that the spectral shape will not be altered greatly for a given fricative
when produced with different levels of air-flow. In contention with previous findings (Harris 1954;
Hughes and Halle 1956), it was reported that listeners experienced no difficulty in classifying the
voiceless fricatives spoken in isolation. However, it seems that in this perceptual test, listeners
may have had access to the start and end transitions. Productions by thirteen subjects of non-

sense words with sustained fricatives were used in order to avoid unwanted ‘spurious components’

?An examination of /8/ was not performed since Harris (1954) had already demonstrated that the perceptual
cues for differentiating the non-sibilants were mostly confined to changes in the formants in the vowel-transitions.
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(transitional effects) that would be present in real-word speech. Analysis of amplitude spectra
was found to be of little use, since peaks in one spectral slice will often conflict with another
spectral slice of the same utterance. However, spectrograms of each production were found to be
more useful, and an “average line spectrum” — indicating the main high-energy regions — was
found to be the best descriptive measure. Various analyses up to 12kHz (the limit of recording
capabilities at the time) were performed in order to locate the upper frequency limits of fricative
production, and evidence was found that information may exist above this point. Similarities in

the spectra of fricatives with the same place of articulation were found.

Template matching of the spectra at vowel-stop transitions was developed by Blumstein and
Stevens (1979) as a classification metric to support speech production and perception theoreti-
cal hypotheses. Spectra up to 5kHz were classified into three broad description templates: The
‘diffuse-rising’ template (where spectral energy peaks are greater magnitude in the high-frequency
region), was found to positively identify alveolar burst spectra with about 76% accuracy. The
‘diffuse-falling’ template (describing spectra where peaks have greater magnitude in the low-
frequency region) was able to positively identify bilabial closure and burst spectra with around
77% accuracy. The ‘compact’ template (where a single spectral peak dominates in the centre of
the spectrum) was found to positively identify around 75% of velar burst spectra. When com-
bined with the correct-rejection scores, the classifier was able to achieve positive classification
scores of these three classes of around 85%. The results were used to investigate the effects
of vowel-context (coarticulation) on spectra, and to provide evidence for acoustic invariance.
Although it was found that the templates were better suited to classification in some vowel
contexts than in others, it was argued that the overall success rates suggest an acoustic invari-
ance. However, these conclusions are made without consideration of other theoretical frameworks
(see§1.2.4).

In the continuing search for a context-invariant measure of stop place, locus equations were a
production-motivated approach developed by Sussman, McCaffrey, and Matthews (1991). The
technique uses straight line regression fits to data points formed by plotting the vowel’s second
formant onset frequency against the vowel’s second formant target frequency. Locus equations
then, do not attempt to describe the noise signal in any way, merely the formant transitions
occurring in the adjoining vowel, and so are of limited use in non-vowel contexts. The statistical
calculations of goodness were again made using the learning data, and only revealed trends across
the stops. In later work (Sussman and Shore 1996), locus equations were tested to see whether
they could serve as indicators of place of articulation for obstruents, including /s/ and /z/.
Again, trends were observed, but firm evidence of discriminatory ability was not found. More
recently, Lofqvist (1999) used a magnetometer system to measure the articulatory movements
to investigate the correlation between locus equations and coarticulation between consonant and
vowel in CV sequences. This investigation found no evidence to suggest that locus equation

slope serves as an index of the degree of coarticulation between consonant and vowel.

The need for ASR machines to be able to discriminate across the fricative using as few pa-
rameters as possible was outlined by Jassem (1979). With this aim in mind, a completely
different approach was used: methods for classifying a large database of 1035 fricative spec-
tra (/f,s,],6,x,v,2,3,2/) taken from Polish nonsense words spoken by three male subjects were
implemented using a highly heuristic approach, without incorporating any knowledge of produc-
tion whatsoever. High-order polynomial curves fitted to spectra, together with broad energy-
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band measures, and a ‘centre of gravity’ measurement (previously described by Weinstein et al.
(1975)), were used for the purposes of description. Again, the performance of the classifier was
tested on the learning data set, giving a result of very limited use.

The methodology of using spectral ‘centre of gravity’ as a spectral characterisation measurement
was later expanded to include higher-order moments. Forrest, Weismer, Milenkovic, and Dougall
(1988) developed spectral moments to characterise voiceless obstruents. The first four moments:
spectral mean (centre of gravity, centroid), variance, skewness and kurtosis, of normalised spec-
tral density plots on linear frequency as well as Bark-scale frequency axes up to 10 kHz were
considered. However, amplitude data were discarded3. The classification abilities of spectral
moments were evaluated properly for the voiceless obstruents, using data on which the system
had not been trained. Spectral moments were found to be capable of good classification of the
voiceless obstruents. However, discrimination of the fricatives /f,0,s,// was not so successful.
When testing the discriminatory capabilities of spectral moments, even when using the training
set, discrimination was found to be poor. The Bark-scale moments were found to give slightly
better results. It is suggested that since fricative intensity is not incorporated into the mea-
surements, it may well provide crucial extra discriminatory data. However, when the sibilants
were considered in isolation, the classification performance of spectral moments was good, and
when tested on unseen data, showed 95% success rates for this task. It was found that the
skewness measure was most responsible for these discriminations. In an attempt to improve the
discriminatory capability across /f/ and /6/, a spectral slice from within the transition region of
the fricative was incorporated. While improving the results slightly, they remained very poor.

The limitations of LPC analysis — a strong tool in vowel peak tracking and synthesis — were
summarised by Wrench (1995), who developed a multiple centre of gravity analysis (MCA)
approach to classify fricatives, and compared his results to LPC peak-picking analysis and single
‘centre of gravity’ measures. However, this approach did not yield particularly useful results.

The problems of the large-variance spectral estimates commonly being used in fricative analy-
ses was investigated by Shadle, Moulinier, Dobelke, and Scully (1992). A corpus incorporating
the fricatives /f,v,0,8,5,2,],3/ was generated and spoken by two speakers. Sustained-fricative
contexts were used to generate time-averaged spectra, and /VFV/ contexts were used to gen-
erate ensemble-averaged spectra. Some of the issues involved when generating time-averaged
and ensemble-averaged spectra were discussed: an assumption of stationarity is required in the
case of time-averaging, and of ergodicity in the case of ensemble-averaging. Additionally, aver-
aging techniques require the labelling of ‘events’ in the time waveform, which can sometimes be
problematic. Evidence that the fricatives are nonstationary is presented, and the role of vowel
context on this nonstationarity is discussed. The benefits of using reduced-variance spectral es-
timates are also highlighted, in terms of the increased clarity of formants, and (hence) describing
differences between the non-sibilants.

In later work, the robustness of spectral moments was investigated by Shadle and Mair (1996),
who noted that moments are sensitive to the frequency range considered, as well as the ‘effort’
level of the speaker and in some cases, vowel context. A maximum frequency range of 17kHz
was considered in the analysis. It was found that the variations that typically existed across

tokens within a fricative were generally greater than across fricatives. The conclusions of this

31t was also not clear at which amplitude the ‘zero’ reference lay. This is discussed in §2.3 and §5.1.3.
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study were that spectral moments do not reliably distinguish the fricatives. The interpretation
of this study was in contrast to that of the results found in the study of Jongman and Sereno
(1995): locus equations and spectral moments were investigated in terms of their classification
ability of /6, 8/ and /f,v/, at vowel onset and offset of the fricative. Using only three subjects,
and without testing on unseen data, perhaps unsurprisingly, clear mean distinctions across the
non-sibilants (in terms of spectral skewness and kurtosis, and locus equation slope and intercept)

were found.

In later work, Jongman, Wayland, and Wong (2000) reviewed several of the major descriptive
methods, including fricative duration, overall and ‘relative’ amplitude (the change in amplitude
from preceding vowel), spectral moments and locus equations. Spectral estimates are made at
the beginning, middle and end of the fricative, as well as at vowel onset. In an attempt to im-
prove the performance of these methodologies, some adjustments are made. The window-length
used to calculate the spectrum is increased from 20 to 40 ms; it was argued that the resulting
“better resolution in the frequency domain at the expense of resolution in the temporal do-
main” is preferred due to the “relatively stationary articulatory configuration” during fricative
production*. Analysis was performed up to 11kHz, on ten male, and ten female subjects, each
speaking the mostly-nonsense words /FVp/ where F=/f,v,8,8,s,2,[,3/ and V=/i,e,&,a,0,u/. The
mean values of spectral peak location, spectral moments, locus equations, overall amplitude,
relative amplitude and noise duration were presented, and Bonferroni tests were made to test
the confidence that these means were generated from different distributions. Bark scale moments
were reported to be negligibly different from linear scale moments, and so were not presented.
Claims were made about the distinguishing ability of many of the measurements, but the statis-
tical methods used to draw these conclusions may be questioned. Certainly, trends emerged, but
no data were presented of variability within the groups. In order to find their total classification
ability, discriminant analysis was performed using all measures. The accuracy for non-sibilant
identification was reported to be 66%, while for sibilants it was 88%. Further analysis was per-
formed to find which of the measures were contributing most significantly to the classification,
and it was found that spectral peak location, normalised amplitude, relative amplitude, and
spectral mean at fricative onset and midpoint contributed most significantly to this classification
rate. While this study provided useful trend data across the fricatives, the concluding remarks
that several of these measures serve to distinguish all places of articulation is inaccurate. The
often contradictory conclusions within the literature about the distinguishing capabilities of the
various measures is also noted by Ali et al. (2001)%.

Jesus and Shadle (2002) developed some of the spectral measurements that had been outlined in
some earlier studies. Portuguese fricatives /f,v,s,z,[,3/ in sustained and nonsense /VFV/ word
contexts were spoken by two male and two female subjects. Spectra were calculated using 10-
ms windows, and both ensemble, and time-averaging methods were used to reduce the variance
of the spectral estimate. High-frequency and low-frequency ‘spectral tilt’ were measures of the
mean spectral slope on either side of, and intersecting, the frequency of maximum amplitude.
Additionally the ‘dynamic amplitude’ (the minimum amplitude below 2 kHz subtracted from the

4The claim of stationarity within fricatives had not been properly tested however, and was contrary to the
findings of Shadle et al. (1992). Additionally, it is not clear why the ‘improved’ spectral resolution should improve
the performance of the spectral moments.

5Unfortunately, the Ali et al. (2001) study goes on to exemplify the seemingly common (yet inaccurate)
practice of testing the discriminatory capabilities of one’s classifier using the learning data set, and publishing
the results as classifying ability (or more impressively, success of determining production place). This topic is
discussed further in §1.2.5.
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maximum amplitude above 500 Hz) was also measured. Some interesting trends were observed in
relation to ‘effort level’ at which the fricatives were spoken, and although the sibilants could be
separated using these measures, the small subject set should be borne in mind. The non-sibilants

remained inseparable.

A certain amount is now known about the distinguishing features in the spectral shapes of the
fricatives. The sibilants generally have a broad energy peak, in the 2.5-3-kHz region for /[,3/,
and in the 4-5-kHz region for /s,z/. The non-sibilants generally have a much flatter spectrum
than the sibilants, but no characteristics could be seen to distinguish between /6,5/ and /f,v/.
While it is suspected that valuable information lies in the transition regions, this has not yet
been successfully captured by a reliable measure.

1.2.2 The study of fricative perception

Many of these studies use artificial, synthesised speech for investigating fricative perception.
Using synthesised speech of course allows the signal under test to be manipulated, and hence
completely controlled. By making adjustments to the signal, and observing the perceptual
responses produced by subjects, some understanding of perceptual cues can developed.

However, where an artificial fricative is being used, adjusting some parameter of this fricative
will inevitably also adjust other cues, which both may be unknown, and important to perception
and production. It is also occasionally taken that a specific synthetic parameter represents some
‘articulatory measure’, and the perceptual effects of adjusting this parameter are often misrep-
resented. Care must therefore be taken when using synthetic fricatives, since it is impossible to
eliminate the possibility that alternative causes lie behind observed effects.

The use of real speech means that no ‘artificial’ cues will be present. However, as before, when
manually manipulating real speech in some way, the same problems are generated: by introducing
a notch-filter, or temporal break in the signal, many other cues are additionally being generated,
and it should always be considered that these additional unidentifiable changes are the chief

cause for any results.

Studies of fricative perception have found a number of clues as to the nature of important cues
for discrimination. It has been found that some major perceptual cues, especially for the non-
sibilants lie in the transition regions of the fricative, rather than the steady-state portion (Harris
1954). This result has implications for fricative description and classification methods.

Perceptual classification of the fricatives /s,z,f,v,0,8/ in 17 preschool children was investigated
by Abbs and Minifie (1969). Since it had been recognised by previous studies that cues for
some of the fricatives lie in the vowel transition regions, stimuli were in the form of unedited
/FV/ or /VF/ nonsense words, i.e. a complete, naturally produced signal, by a single male adult.
The stimuli were presented in pairs, so that a confusability table could be constructed. High-
est discrimination error rates existed between /f-6/, and between /v-3/, where neither voicing
differences nor obvious spectral differences exist. To gain a further understanding of when dis-
crimination errors were occurring, the stimuli were analysed for fricative and vowel durations,
peak fricative amplitudes and centre frequency, and energy bandwidths of the fricative. Sibilant
spectra were found to have high density, high frequency and short spectra; these observations
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were used to explain the high discrimination rates between these and the non-sibilants. Dif-
ferentiation of the voiced-voiceless seemed to be facilitated by the reduced duration of voiced

fricatives.

The perceptual effect of differing degrees of variability in /s,[/ productions across twenty speakers
in a /CV/ context was investigated by Newman, Clouse, and Burnham (2001). Recordings were
filtered to 9.5 kHz, and spectral analysis was performed on a moving 15-ms window, incremented
in 5-ms steps, and commencing at frication onset. Mean and variance values for each of the four
spectral moments were calculated for each of these windows following the procedure outlined
by Forrest et al. (1988). When listening to the unedited tokens, it was found that the task
of discriminating the sibilants of speakers with more variable productions (in terms of spectral
moments) took longer. Conversely, discrimination of speakers with more distinct productions,
was quicker. In both cases accuracy remained consistently high. It was concluded that, when
present, spectral moment-like cues are used to distinguish the fricatives, but when these are

insufficient, other cues, perhaps in the vowel transition region are used.

In some cases, real speech is edited in a limited manner. In a study by Yeni-Komshian (1981),
the sibilants /s,z,[,3/ in /FVFVFV/ contexts (where F=/a,i,u/), spoken by one male and one
female, were edited so that fricative, and vowel-transition regions were isolated. Various portions
of the vowel and/or fricative were played to eight subjects, in an attempt to learn the effects of
coarticulation on the perception of both. Strong evidence was found that fricative-vowel! coartic-
ulation affects the perception of the sibilants®. The conclusions of this investigation were tested
by Jongman (1989) who considered a larger set of fricatives (/f,s,,],v,2,3/) in a similar manner.
Fourteen subjects listened to extracted portions of the productions of a single speaker. Plots
of ‘relative information transmitted’ were presented to show how the increase in (duration of)
information to the listening subjects related to percentage chance of successful classification. It
was also noted that identification of place of articulation was much more affected by fricative
duration than were manner and voicing. Another similar investigation of the location of percep-
tual cues for discriminating /f/ and /6/ which remain largely unclassifiable was later performed
by Hata, Moran, and Pearson (1994). This was done using perceptual experiments of isolated
segments of the fricatives F=/{,0/ (excluding any vowel waveforms) in /FVF/ contexts produced
by a female speaker, and downsampled” to just 10kHz. It was found that when presenting the
frication portion alone, /f/ was identified correctly more often than /6/. When the entire fol-
lowing vowel was included, identification of /f/ significantly improved, while identification scores
for /8/ were unchanged. It was found that more than 30ms of the following vowel needed to
be included in order for the perception to improve. Perception scores remained somewhat low
even when the entire vowel was presented, and it was suggested that the frequency range being
used may have been insufficient for discrimination. It must be considered that the effects of ma-
nipulating speech in the artificial manner in these studies may have had a large uninterpretable

effect on their results and hence findings.

Although speech perception scores remain high even when rather drastic lowpass filtering is im-
plemented, it is entirely possible that higher-frequency cues exist and contribute to a greater
degree when lower-frequency information is missing. The suggestion of fricative perceptual cues

lying in higher-frequency ranges may also contribute to the poor performance of perceptual

6 Also included is a detailed discussion about the possible causes of classification failure regarding those portions
of each production that were removed, which are consistent with the theories of Kent and Minifie (1977).
7Presumably after bandpass filtering to 5kHz.
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studies of fricatives under lowpass conditions. The role of these higher-frequency cues was inves-
tigated by Lippmann (1996). Nonsense /o-CVC/ syllables (where C € /p,t.k,b,d,g,f,0,s,],v,3,2,3/
and V € /i,a,u,Le,u/) were spoken by an adult female. Six notch filters were used to manipulate
the recorded tokens. Each notch filter had a passband from DC to 800 Hz. Upper passbands were
from f, = 3.15, 4, 5, 6.3, 8 and 10kHz up to 20kHz. When subjects were asked to identify the
consonants under different notch-filter conditions, it was found that performance fell smoothly
from 91.6% for f, = 3.15kHz to 73.9% for f, = 8kHz. It then dropped more sharply when
more high-frequency information was discarded. When analysing the fricative perception alone,
a number of interesting observations were made. Perception of /s/ was near 100% for values of
fu < 8KkHz, after this, scores fell sharply. Scores for /z/ were also near 100% up to f, = 6.3 kHz,
after which they fell sharply. However, for the fricatives /[,3,0/, scores were only high for values
of fu < 4kHz, after which they fell steadily. These findings agreed with those previously discov-
ered by Lacerda (1982), that eliminating the apparently most distinctive spectral features had
little effect on the perception of the fricative. This has important implications for the way we
think about speech perception, and hence, the assumptions about the nature of ‘cues’ in speech,
although the artificial editing of the speech sound must be considered as having an effect itself.

Fricative synthesisers have important roles in both commercial and research applications. The
only manner in which the ‘successfulness’ of such a synthesiser can be measured, is by testing
human perception of the resulting sounds that can be produced. In their development of such a
synthesiser, Heinz and Stevens (1961) used a model of the vocal tract, consisting of a single noise
source, and a pole-zero filter arrangement. When isolated stimuli consisting of single bands of
noise with varying centre frequency was presented to subjects, differing responses were elicited.
Centre-frequencies around 2-2.5kHz produced /[/ responses, around 5kHz produced /s/, and
around 8 kHz produced both /f/ and /8/ responses. Synthetic fricative-vowel syilables were
then generated, and agreement with the findings of Harris (1954) was established concerning
the importance of vowel transitions in the perception of non-sibilants. These findings were in
agreement with previous studies (Harris 1954; Hughes and Halle 1956).

Many perceptual experiments make use of synthetic fricatives in order to try and establish
perceptual cues (e.g. Gurlekian 1981; Stevens et al. 1992; Hedrick and Ohde 1993; Cheesman and
Greenwood 1995; Formby and Childers 1996). Other studies use both synthesised and natural
speech stimuli, occasionally concatenating the two (e.g. Nittrouer and Studdert-Kennedy 1987,
Zeng and Turner 1990; Whalen 1991; Johnson 1991; Nittrouer 2002). As previously discussed,
great care must be taken over the interpretation of perceptual results using artificial stimuli.
In some cases, the use of highly-controlled synthetic fricatives can be justified, but their use
is often exploited beyond interpretable limits. The findings of many of these studies could
easily be interpreted differently to the conclusions published. One of the most commonly-used
synthetic-speech analysis tools is the continuum: a single parameter of the stimulus waveform
can be varied through a range of values. When this parameter is adjusted, the perception of
the sound invariably also changes; but from this care should be taken over drawing conclusions
that the specific artificial ‘cue’ that was adjusted was solely responsible. That is, the adjustment
of one artificial parameter will invariably alter many other possible cues. In general though,
these studies provide useful supporting evidence of the existence of perceptual cues in the vowel-
transition regions, and also of the effects on perception of the interdependency between cues

(such as relative amplitude and spectral shape (Hedrick and Ohde 1993)).
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Evidence of the problems faced when using edited natural, or synthetic speech can be seen by
designing a perceptual experiment in which both sources are used as stimuli. The disparate
results of such a study were briefly mentioned by Stevens et al. (1992), although this was
considered insignificant.

Some studies attempt to model the important acoustical properties of fricatives, and observe
the effects on perception of changes in ‘acoustical cues’. However, since these changes do not
generally relate to changes in tract configuration, the effects on perception are of limited value.

A more feasible approach would appear to be that of modelling production and observing the
effects on perception of ‘changes in production’. The synthesisers used in such studies generally
rely upon source-filter models of the tract that work well for vowel synthesis. However, these
models do not generally take into consideration the complex effects of multiple forward sources
for given configurations, and therefore produce acoustical signals that may not be representative
of the configuration in question. Measures of changes in perception to some artificial change in

‘configuration’ must also be questioned.

As an alternative approach to tackle the problems of using either synthetic, or artificially edited
speech, while maintaining good control over certain ‘parameters’, Fletcher and Newman (1991)
implemented a visual articulatory feedback mechanism. A palatometer was fitted to two adult
males, allowing observation of the positions of contact with the tongue. These same two male
subjects were used in a further perceptual study, in which correlations between contact-positions
with the palatometer, and perceived sibilant were calculated. The effects of such invasive mea-
surements of production place are unfortunate, but unavoidable, and nevertheless provide rea-
sonable approximations to normal speech. However, the choice of subjects for the perceptual part
of the study meant that the findings of perception of specific place changes are of questionable
statistical validity. If the perceptual part of the experiment could be repeated under stricter
conditions, highly valuable information pertaining to theories of perception of place could be

ascertained.

In a very different approach, the importance of certain acoustical characteristics on fricative
perception was examined by testing the speech perception scores of CI subjects with a strategy
that emphasised certain features. The ‘transient emphasis spectral mazima’® (TESM) strategy
developed by Vandali (2001), boosted electrode-potential at times and frequencies of brief tem-
poral features. This emphasis on brief temporal — particularly low-level — acoustical features

resulted in an improved performance in fricative perception.

1.2.3 Analysis of speech production

This section presents studies that have concentrated on observing and describing the actual
production characteristics, rather than the acoustical characteristics of fricatives. Often, metrics
discussed in the previous section are used. As mentioned earlier, one of the main purposes of
developing tools to measure the ‘characteristics’ of fricatives is so that variations in production

under different conditions can be measured.

The idea that positional information in the vocal tract could be extracted from the acoustical

signal was demonstrated by Strevens (1960), who considered that since articulatory configuration
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was the chief cause of acoustical changes, the measurement of these acoustical signals should —
when combined with other physical measurements — contain information about the state of the
vocal tract. Crude measurements of speech intensity and of pulmonic air-pressure revealed that
the amount of pulmonic air-pressure required to elicit a certain sound intensity varied according
to place of constriction. Analysis of spectra revealed that the place of articulation produced
distinctive features in the spectrum. Front fricatives (labial and dental /$,f,6/) tended to have
the broadest (i.e. least ‘peaked’) spectra, and generally the lowest intensity. The mid fricatives
(alveolar and palatal /s.[,¢/) had a more ‘peaked’ spectrum, with a peak occurring around 3-
4kHz, and generally eliciting the greatest intensity. And the back fricatives (velar, uvular and
pharyngal /x,x,h/), had intermediate intensity, and a more ‘formant-like’ spectral structure.

Soli (1981) studied the spectra of the sibilants /s,z,[,3/ in /F/ and /FV/ contexts (where
V=/a,i,u/) in a single male talker. Mean LPC spectra were used to gain a reduced-variance
spectral estimate. From the [s,z] productions, peaks in the F2 region of the following vowel were
reliably seen before vowel onset, and it was suggested that this may occur when the constriction
is insufficient to cancel these resonances. For [[], spectral peaks relating to both F2 and F3 of the
following vowel were observed, where F3 generally defined the main peak of the fricative spec-
trum. It was suggested that the peaks observed in the fricative LPC spectra resulted from back
cavity resonances, although the effects of back cavity resonances had previously been thought to

be different in fricatives and vowels, due to the antiresonance set up by the forward noise source.

The relationship between the duration of a fricative, and its voicing was explored in the fricatives
/£,8,8,v,8,z/ of just three male subjects by Baum and Blumstein (1987). Contrary to their
expectations, it was found that, while mean durational differences did exist, the variations among
them produced significant overlaps, so that very little information concerning the nature of
voicing in fricatives could be gained from this measure alone. These findings were confirmed by
Crystal and House (1988), who additionally found that fricative duration was also noticeably
affected by its position within a word, as well as whether it appeared in connected speech or

citation form.

Useful information pertaining to production theories has also been gathered by comparing dif-
ferences between child and adult speech. Spectral mean (up to 9.6 kHz), and amplitude in the
sibilant production of eight children and four adults in /FiFi/ and /FuFu/ contexts was com-
pared by McGowan and Nittrouer (1988). Peaks in fricative spectra thought to pertain to F2
in the vowel spectra were selected ‘by eye’, and were found to be higher in females than males,
and higher in children than in adults. This is explained by the reduced size of the back cavity,
and hence increased resonance. Additionally, it was found that these fricative spectral peaks
were more more distinctly affected by vowel context in children than in adults. In later work
(Nittrouer, Studdert-Kennedy, and McGowan 1989) evidence was found that mean sibilant cen-
troid measurements became more distinct with age, although higher-order moments provided no
additional evidence of this (Nittrouer 1995).

Frontally misarticulated [s] productions are often considered to resemble normally articulated [6]
productions, both perceptually, and in terms of articulatory configuration. Baum and McNutt
(1990) tested 10 children with disordered [s] production against 10 children with normal [s] pro-
ductions. Interestingly it was found that [8] productions in the disordered subjects had mean
durations closer to that of normal [s] productions, whereas the durations of [s] productions were
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similar across both groups. However, the amplitude was found to be a more distinctive measure
difference between /6/ and /s/ tokens in both groups of subjects, yet no significant changes
were found in the amplitude data of the misarticulating subjects. In terms of spectral mean,
in both groups some subjects maintained spectral differences in their [s] and [8] productions,
whereas others did not, and while these distinctions may not be readily heard by a listener, they
nevertheless indicate that an internal differentiation between the two fricatives occurs. These
findings were a strong demonstration of the power of acoustical measurement tools over percep-
tual acoustic measurements, and hence, for example, the unsuitability of labelling misarticulated
[s] as [6].

In the study of Fletcher and Newman (1991) mentioned earlier, a palatometer allowed accurate
measurements to be taken of the place of constriction in /s,[/ productions by two male speakers
This positional information was compared across the subjects, and it was found that the sibilants
were produced in quite different positions on the alveolar ridge across speakers, although groove

width was more consistent.

A closer analysis of the vowel transitions and voicing differences in the fricatives /f,v,s,z/ in
different contexts, from acoustic analysis (up to 4.8 kHz) was performed by Stevens, Blumstein,
Glicksman, Burton, and Kurowski (1992). Measurements of duration were in accordance with
previous studies: voiced fricatives on average being around 30 ms shorter than unvoiced (although
this was a smaller difference than found in previous studies), and the preceding vowel being longer
when followed by a voiced fricative. The duration of a fricative is longer when in utterance-final
context (around 41 ms) and shorter when in inter-utterance context (around 24 ms). Progressive
30-ms Hanning windows were used with a 20-ms overlap, and running approximately from mid-
vowel to mid-fricative positions. As expected, the F1 peak reduces in amplitude over /VF/
transitions, and increases over /FV/. This F1 peak — thought to represent glottal vibration
— sometimes continued after frication had commenced in unvoiced fricatives, but also often
discontinued in the central regions of voiced fricatives. This led to conclusions that features
other than the duration of glottal vibration must be present in signaling the voicing feature in

fricatives.

Spectral moments were used to measure the degree of production variability in the sibilants,
within and across subjects, by Newman, Clouse, and Burnham (2001), as mentioned earlier
(§1.2.2). Of the four moments calculated, the centroid (M1) and skewness (M2) measures were
found to differentiate the fricatives to the greatest degree. The study clearly demonstrated that
within a speaker, the variations of M1 and M3 for a given sibilant would usually not overlap the
variation of values for the other sibilant, although this was not always true. In isolation then,
these measures were seen to be insufficient at completely distinguishing productions of different
sibilants, suggesting the existence of alternative cues. However, they also highlighted the signifi-
cant degree of variations in production within a speaker, and within a given fricative. Although
the sibilants were usually clearly separated by these measures within a single talker, when com-
paring across speaker, it was found that in some cases, the values for one subject’s production of
[J] would completely overlap with another subject’s [s] values. When combined with the previous
suggestion, it seems most probable that other cues must exist that are not being considered.
However, in the perceptual portion of this study, listeners took longer in classifying the sibilants
of speakers with less distinct (i.e. containing large overlap) spectral moments. This could suggest
that, while serving as the primary cue, alternative cues are used if this cue is insufficient. In a
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further analysis, it was found that a high statistical correlation existed between the centroid and
skewness values of a given subject, although this was considered as a reinforcing role®. Further
investigation of the within-speaker variations in sibilant productions was undertaken by Munson
(2001). The centroid was considered over time in the sibilants in limited contexts. Evidence was
presented that sibilant production variability depends upon context.

When the hearing system is altered by deafness, and following artificial stimulation, analysis of
speech production may lead to clues about the hearing system’s role in production. Lane and
Webster (1991) demonstrated the role of self-hearing in speech production by looking at the de-
terioration of postlingually deafened adults. A form of spectral mean (Jassem 1979) was used for
the purposes of measuring differences in [s] and [3]. Measurements of the centroid showed a re-
duced production distinction between the sibilants compared to normal hearing subjects. When
limited hearing capability is restored by artificial means such as cochlear implants, measures
of speech production often move towards ‘normal’ values (Lane, Wozniak, and Perkell 1994).
Matthies, Svirsky, Lane, and Perkell (1994) used spectral moments to demonstrate the improve-
ments over time (i.e. movement towards ‘normal’ values) in the productions of sibilants in three
out of five CI subjects. In a later study (Matthies, Svirsky, Perkell, and Lane 1996), evidence
was also presented that the improvements in spectral moment values (centroid and skewness)
were probably connected to improvements in articulatory configuration, using a electromagnetic
midsagittal articulometer (EMMA).

Clearly, there is much that remains to be discovered about the effects of cochlear implants on
speech production. It is important that analysis in this area is undertaken with the utmost care,

and with careful consideration of underlying assumptions.

1.2.4 Speech production-perception theory

Within the studies reviewed, apparently significant features have been observed at different
points along the chain of human communication. Articulatory features, such as manner and
place correspond to characteristic features in the resulting acoustical signal. Certain features in
the acoustical signal, such as spectral shape, have been found to be important in determining
what will tend to be perceived by a listener. And specific changes in hearing ability correspond
to different changes in both perception, and production.

However, it must always be considered that the different features that are observed in experi-
mental analysis may, or may not be important to the underlying processes of speech production
and perception. Further, even if it can be established that a particular feature is important to
these fundamental processes, it is important to consider precisely what role the feature plays.
An exciting area of speech research is that of theorising about and establishing the underlying
processes of speech production and perception. A number of theories about speech perception
and production exist, and it is appropriate to mention a few of the important ones here, since

they will inevitably contribute to our interpretation of experimental results.

Although it was originally theorised that speech could be broken down into small phonemic

segments that conveyed clear and complete sequences representing tokens, this was quickly found

8The calculation of spectral moments may incorporate methodological instabilities that contribute to the
degree of variation and inter-correlation. These are investigated in §2.3 and in Chapter 5.
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to be a problematic approach to speech perception. The main confounding factor was found to
result from phonemic segments overlapping with each other, sometimes to such an extent that a
short phoneme could disappear altogether. These overlaps were found to result from articulatory
configurations of phonemes overlapping to various degrees. Theories that tried to account for this
coarticulation effect, while maintaining the original ideas of ordered sequencing were reviewed
by Kent and Minifie (1977). Coarticulation itself was found to be subject to unaccountable

variations, and new theories of speech production and perception evolved.

A good comparison of these is presented by Hawkins (1999b). These theories are often quite
diverse, and unfortunately often lead to conclusions that cannot be easily tested by experimen-
tation, if at all. They are all, of course, based on experimental results, and modelled on certain
findings. However, often different experimental findings are considered more significant, and are
explained more convincingly by an alternative theory. Common to all theories, however, is that
they must explain all experimental results, and though this is usually attempted, explanations
are sometimes of questionable plausibility.

For example, the motor theory, which has long been one of the more popular suggested theories
of perception, relies heavily on some awkward underlying assumptions (Hawkins 1999a). One of
the more intriguing problems regarding speech perception is that, in order to transmit a single
specific abstract ‘token’, speakers can and do produce an immense variety of different acoustical
signals to represent this ‘token’, and yet these signals will all invariably be perceived by a listener
as the single correct ‘token’. How can this vast range of acoustical signals all be interpreted as
the single intended token? Motor theory suggests that, although the acoustical signal produced
to represent a specific token is highly variable, the underlying production mechanism required
to do so is not. It is suggested that from the acoustical signal, a special ‘speech module’ within
the brain allows the underlying articulatory movements that were used to generate the signal, to
be abstractly ‘viewed’. From this invariant articulation abstraction, the intended token can be
recognised. However, little is offered in the way of explanation of how the articulatory movements
are decoded from the acoustical signal, other than that it is innate to the speech module, and
present from birth.

An explanation for the way in which the articulatory configuration can be recovered from the
acoustical signal is proposed by Stevens (1989) in his ‘quantal’ theory. It is proposed that the
acoustical speech signal can be broken down into invariant properties and variant properties. The
invariant properties are those relevant to the articulatory configuration, while the variant proper-
ties do not contribute, and are ‘discarded’. These invariant cues within the speech are enhanced
by optimised production and perceptual systems. Specifically, a given important acoustic feature
will change nonlinearly with respect to the movement of the articulator, so that the acoustical
signal will only change significantly when the articulator also does. A similar arrangement is
proposed to exist in the perceptual system. Quantal theory offers an attractive explanation for
many findings of production and perception. However, in many cases it does not.

The occurrence of a highly-variable acoustical signal representing a single token was considered
from a very different perspective by Lindblom (1983). Rather than viewing the acoustical signal
as having invariant ‘cues’ and variant ‘noise’; it was considered that in fact the variations that
are produced for a single intended ‘token’ result from additional influences that play a critical

role in transmitting the meaning in an optimal manner. A trade-off is set up between producing
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transmitting clear, easily identifiable acoustical information, and conveying this information in a
manner appropriate to the situation. Coarticulation, while reducing the clarity of the intended
token, allows the speed of information transmission to increase, ultimately increasing the overall
transmitted information. It is suggested that acoustical data are optimised to supplement (and
hence clarify from ambiguity) an expected input. Hyper- and Hypo-articulation (H & H) theory
offers a theoretical production framework that expects the differing degrees of variability that is
observed in speech. Investigating these variabilities (rather than the ‘invariabilities’) may result

in an increased understanding of human speech production and perception.

1.2.5 Summary

Perceptual cues that can discriminate the fricatives must exist somewhere within the acoustic
signal. However, determining precisely which features of the acoustical signal represent these
cues has been a highly problematic area. This is due in part to the large variabilities across
productions, combined with the effects of interactions with context of the fricatives. Theories
of underlying speech production and perception processes have helped to predict and eliminate
some of these problems (e.g. coarticulation), but classical theories do not account for all that is

seen.

Some studies consider the production mechanisms behind the signals in order to evaluate them,
and attempt to explain spectral shapes in these ways. Other studies take a more ‘observational’
approach, and use statistical results to locate likely discriminatory cues. The difference between

production and perception cues should be borne in mind for each of these studies.

In some cases, measurements of production are used to establish articulatory information, but
how reliable are these measurements at predicting articulatory configurations? Other studies
attempt to use various measures of the acoustical signal to speculate about likely explanations
for perception capability, but is this really reliable when so little is still understood about the

fricatives?

In the study of fricative production, subjects may either be asked to read real word lists, or
‘nonsense’ words, in some cases producing sustained fricatives, that rarely occur in speech. The
use of sustained fricatives is likely to lead to better understanding of the noise portion of the
fricative, but is unlikely to produce results related to variations that typically occur in speech.
The behaviour of voicing in fricatives is often examined in real or nonsense word corpora, but

again, the variations of natural speech are unlikely to occur.

Many of the more basic measures that can be used in speech production usually produce unreli-
able information. Simple duration and amplitude measurements do not tend to yield informative

results, although they often suggest trends.

Traditional spectral methods that have been invaluable in vowel-speech analysis, such as LPC,
also become unreliable when considering fricatives. Other spectral methods, such as template
matching, have been developed to try and find distinguishing features in the spectrum, but these
have been very limited in terms of information they return about production, and classification

ability is also limited.
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The large variations in fricative spectral estimates have often been seen as both unimportant and
problematic, and so broad spectral energy measures have often been favoured. Of these broad
descriptors, the most successful have been moments, which capture the overall spectral shape,
with little importance attached to narrow frequency peaks. However, a number of problematic
issues surround the use of spectral moments. Their broad descriptive capability means that they
are unable to capture apparently important finer frequency spectral details, correlations have
been found in M1 and M3, and although able to discriminate many sibilant spectra, they often
fail at this task, and invariably fail at distinguishing the non-sibilants. Whether these problems
result from fundamental limitations in the technique, or from errors in the methodologies is
in important issue. For example, some early studies assumed that sound pressure level (SPL)
variations would not drastically alter the spectral shape, but more recently this has been shown
to be incorrect. There is strong evidence to suggest the interaction between relative amplitude
and spectral shape plays an important role in perception. So adjustments to moments may be

needed.

It has been found that perceptual cues for discriminating non-sibilants lie mostly in the vowel
transition regions. This has been confirmed by automatic speech classification investigations, and
also perceptual studies. Occasionally, the transition regions are incorporated into classification
methodologies. Of these, locus equations have not been found reliable, and although spectral
moments have been used in the voicing region of fricatives, it is not clear whether this usage is

justifiable for portions of the signal that contain significant spectral peaks.

However, spectral moments have been used to describe the speech of subjects with some form
of speech disorder, or speech affected by hearing ability. In this regard, spectral moments have
generally been able to indicate improvements over time in most subjects.

Preliminary studies suggest that valuable information lies in the peak positions and magnitudes
of fricative power spectra, but the inaccuracies of spectral estimation have meant that these have
been difficult to uncover.

Finally, in the testing stage of many descriptive measures, it has become common practice to
test the classification ability on the same set of data as was used to determine differences across
tokens. This of course can provide insight into possible significant measures, but is far from
establishes what the significant features of all tokens will be. In order to do this, the measures
being tested must be tried upon unseen data.

A few additional points remain concerning common practices in fricative analysis. The range
of frequencies to be considered in analysis has often been under 11 kHz, and sometimes as low
as ~4.5kHz. There is strong evidence to suggest that fricatives contain significant information
above these frequencies. Additionally, practices in obtaining spectral estimates must be reex-
amined: it now seems common to use estimates with variances that, as will be shown in due
course, are extremely significant. While averaging techniques exists, and have been employed
in a few studies, alternative methods for obtaining more accurate spectral estimates should be
investigated.
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1.3 Approach

Parameters have been found that partially distinguish some of the English fricatives, but these
are commonly subject to large variations across productions. These variations are often so large
that the boundaries for different fricatives often overlap, and yet these fricatives remain correctly
perceived. This suggests that some of the most important distinguishing cues have yet to be

found.

In §2.1 we investigate some of the theory behind fricative production, and the problems facing
parametric analysis. Many of the popular fricative characterisation methods involve grouping
the energy in the spectrum into broad bands, or describing the overall distribution of spectral
energy in very broad terms (such as moments) before further classification stages occur. This

approach is well-suited to dealing with the problematic large variances seen in fricative spectra.

The large variances in fricative spectra usually result from first estimates of the stochastic signal
that are not consistent. Techniques that exist for reducing the spectral estimate variance are
commonly not implemented. Several methods of reducing the variance of spectral estimates
in typical fricative signals are investigated, and the practicality of each is discussed in §2.2.
Generally, the classical techniques tend to rely on assumptions that do not always hold well.
Modern techniques are also investigated, and found to be well-suited to the analysis of fricative

signals.

It may be expected that improvements in spectral estimation should lead to an improvement in
performance of the more popular fricative classification techniques, such as moments. In §2.3,

the fundamental properties of spectral moments are carefully examined.

In order to continue investigating fricative production, it is necessary to acquire suitable test
data. The details of the procedures followed are given in Chapter 3. A real-word corpus (given
in Appendix A) was devised, and read by six normal-hearing speakers of each gender.

Improved spectral estimates allow more careful observations of typical productions to be mea-
sured, and this is investigated in Chapter 4; using these spectral estimation methods, improved
spectrograms of fricatives can be generated, and these are presented in Appendix B for the voice-
less fricatives in two vowel contexts, for all speakers. The effects of incorporating better spectral
estimates into the spectral moment methodology are explored in Chapter 5. Other important
aspects of spectral moment calculation do not seem to have been considered in the literature,

and these are also explored.

With the variance of the estimate reduced, attempts are made to measure the variation in
fricative production in different contexts in Chapter 6. Differences and similarities between
fricative spectra are quickly located. Differences across speakers, across vowel contexts, and
within fricative tokens are explored, and many of the results of these analyses are given in
Appendices C and F. Patterns in production were observed using spectral correlation, which
was previously impossible using large-variance spectral estimates; results for male fricatives only

are given in Appendices D and E.

The foremost task is not to classify, but to determine which features of the acoustical signal
reflect aspects of production. Moments have been useful in the analysis of cochlear implant

user’s fricative productions where incorrect place is observed. Other problems with production



Chapter 1 Introduction 19

may also exist. Finding methods that enable more subtle spectral details to be described may
be useful in such analyses. With measurements of productions from normal-hearing speakers in

hand, the analysis of four cochlear implant users is undertaken in Chapter 7.

This work presents significant improvements and new analysis methods that can be made use of
in future studies of normal and disordered fricative production, and Chapter 8 concludes with a

discussion of a number of possible future applications.



Chapter 2

Theory

2.1 Fricatives as stochastic processes

In order to analyse fricatives, consideration must be taken over how they are produced, and
hence, what characteristics they may be expected to exhibit. Fricatives are produced in a wholly
different manner to vowels, and so it is appropriate that a different set of analysis tools may be
used. By considering what is known and what is not known about fricative production, tools

can be developed that are best suited to analysis of these signals.

2.1.1 Turbulent jets as acoustic source

The source of noise is generated near a constriction in the vocal tract. When the air flow is chan-
nelled through a constriction, the air particles accelerate, creating a jet of air which has very
different characteristics to laminar airflow. Such jets of air have distinguishing characteristics,
among which are highly randomised subsidiary vortices and turbulent eddies. These eddies can
occur at different places along the constriction and at the exit of the constriction, depending
on the airflow, configuration of the constriction and surface conditions. These turbulent eddies
generate a random sound pressure source (Meyer-Eppler 1953; Fant 1970; Flanagan 1972). Ad-
ditionally, the jet of air released from a constriction may be targeted towards an obstacle (such
as the teeth) or a surface (such as at the glottis), in which case additional, and often more intense
sources of turbulence noise are often produced (Stevens 1998). Rapid transient changes in flow
(as for the affricates) can also act as sources of noise (Scully, Castelli, Brearley, and Shirt 1992).
We take a moment to review some of the theoretical and analytical fundamentals of turbulence

noise sources.

The airflow during fricative production can be treated as an incompressible fluid. This approx-
imation holds well as long as the velocity of the air particles does not approach the speed of
sound (Schlichting 1960). During laminar flow, particles follow the direction of the tube, or
constriction they are within. If the tube is long and straight, the flow will have greatest velocity
in the centre of the tube, while at the edges it will approach zero. Fluid particles in the flow are
acted upon by the pressure gradient within the tube. Their inertial force is partially determined

20
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by the density of the fluid p and the free-stream velocity V. Particles also interact with each
other due to frictional forces, and these are partially determined by the coefficient of viscosity p.
Both of these forces are influenced by the particle velocity. The ratio of inertial force to friction
force hence describes the nature of the flow, and is termed the Reynolds number, defined

_ng_E
==

R (2.1)
where d is the characteristic dimension (or effective width (Meyer-Eppler 1953)) of the tube,

and the ratio v = p/p is known as the kinematic viscosity.

The characteristic dimension of some tube of arbitrary cross-sectional shape is proportional to
the ratio of the cross-sectional area to perimeter. Consider the airflow through some tube: if
the volume flow within the tube remains constant, an increase in the surface area within the
tube (and therefore an increase in the characteristic dimension), will increase the ‘inclination’
of the airflow to become turbulent. The Reynolds number then, is essentially an index that
corresponds to a particular configuration of flow. For an excellent illustrative account of such
flows, see Van Dyke (1982).

Because particle velocity varies as a function of distance from the edge of the tube, these frictional
forces result in shear forces upon the fluid particles. As the Reynolds number of a system
increases, the nature of the flow changes from a laminar flow to a a more chaotic turbulent
flow. The onset of significant turbulence occurs once a critical threshold R > R. is overcome,
where the critical Reynolds number R. is determined by factors such as the configuration of
the constriction and surface properties, and is generally found by experimental measurement.
The onset of turbulent flow coincides with the generation of acoustical noise. The mean cross-
sectional velocity V of flow within the tube then becomes related to the pressure drop across the
constriction pg as

Dd = ——, (2.2)

(Flanagan 1972) (sometimes called the overpressure). The pressure drop across the constriction
is therefore proportional to the squared particle velocity.

From theoretical and practical analysis, a number of different relationships of far-field sound
pressure to overpressure have been suggested. From physical models of fricative production,
Meyer-Eppler (1953) demonstrated that an approximation of the sound pressure p; at a fixed
distance from the source of turbulence was given by 5, o« R> — RZ, where R, ~ 1800 for plastic
tube models. From this, the relationship of sound pressure to overpressure was approximately
Ps = k1d?pg — ko where k; and ks are constants. However, analysis of these results by Stevens
(1971) led to the conclusion that the sound pressure was less sensitive to constriction area, and
more to overpressure, resulting in the relationship s o p}®d, and this relationship has been
used since (e.g. Scully and Allwood 1985).

The shape of a constriction therefore plays some role in determining the resulting sound intensity,
and the rate of increase in intensity with pressure. The situation is further complicated by the
introduction of some obstacle, or surface incident to the turbulent flow, as often occurs during

fricative production, and so more complex methods are required to analyse these.
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Monopoles, dipoles and quadrupoles are theoretical representations used to describe sources of
noise that are generated by different mechanisms (Landahl 1975), and each of these different
source types exhibits different known characteristics (Goldstein 1976). For instance, under cer-
tain assumptions, the sound power generated by a quadrupole source is usually proportional to
V8, and for a dipole is usually proportional to V6. A turbulent free jet is considered to generate
quadrupole sources. When such a jet is directed towards an object or surface, additional dipole
sources are constructed. Since each type of source exhibits different characteristics, they are a
useful tool when considering fricative production, and are often used to help explain observed
behaviour of various models (e.g. Stevens 1971; Shadle 1990; Stevens 1998).

For example, since for low flow velocities (specifically, for V' < ¢ where c is the speed of sound),
the conversion of kinetic energy of the turbulent flow into sound power is more efficient for dipoles
than for quadrupoles, it may be expected that a jet directed towards an obstacle or surface will
exhibit greater acoustical intensity. Evidence of such behaviour has been supported by models
of the constricted vocal tract by Shadle (1990); the far-field sound intensity was increased by up
to 30dB when an obstacle emulating the teeth was introduced into the flow of the air-jet.

A very limited amount is known of the spectral properties of turbulent noise sources. Goldstein
(1976) demonstrated that in general, for a free jet, the quadrupole noise source spectrum will be
in the form of a very broad peak, the maximum of which is located at a frequency proportional to
V/d. The most complete analysis of source characteristics in more vocal-tract-like configurations
has been undertaken by Shadle (1985), who showed that this overall shape was altered by the
introduction of an obstacle (and hence, dipole sources). Whereas for a quadrupole the source
spectrum rolls off either side of the maximum, for the dipole-quadrupole combination source, the
spectrum generally did not roll off significantly at low frequencies. Additionally, the quadrupole-
type source retains its overall shape with changing intensity. Quadrupole-dipole sources are
relatively insensitive to changes in flow at low frequencies, but the increase in spectral amplitude

grows with increasing frequency.

2.1.2 Interaction of source and tract

Unlike vowel production, where the main excitation source occurs at the glottis, which can be
considered as one end of the cavity system, turbulent noise set up during fricative production
interacts with cavities both posterior and anterior to the sources. These cavities further shape

the spectrum in complex ways.

For a fixed configuration, the vocal tract will exhibit specific resonance characteristics. The
positions and magnitudes of resonant frequencies (or ‘formants’) are characteristic of the system
configuration. The characteristic spectrum is defined as the response to an excitation occurring
at the glottal end of the tract. However, as the source moves to a position significantly forward

in the tract, a number of significant changes occur.

Perhaps most significant is that where only resonances existed in the glottis-excited vowel sys-
tem, when the source is brought forward, anti-resonances may be excited. These anti-resonances
are frequencies of infinite impedance looking towards the glottis from the source. These anti-
resonances have distinctive effects on the shapes of spectra resulting from forward sources. Specif-

ically, the location of the noise source within the tract has a significant effect on the frequencies
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of zeros in the system (Fant 1970; Stevens 1971; Flanagan 1972).

A common early approach to modelling the vocal tract with a forward source was the multi-tube
approximation {e.g. Fant 1970; Flanagan 1972), based on a series of interconnected tubes. The
tubes are intended to emulate the chambers within the tract, and these exhibit resonances and
anti-resonances. Electrical circuit representations of multi-tube approximations of the tract are
in abundance in the literature, and are good at describing the roles of cavities as resonators, the
changes in transfer-function when the tract changes shape, the effects of varying sources, and
so on. The models are generally considered accurate up to approximately 4 kHz, beyond which
the assumption of plain waves becomes less accurate. However, in general their use in predicting
fricative behaviour is limited (Scully 1990), perhaps as a result of their over-simplification of the
processes occurring within the tract. From such models nonetheless, Fant (1970) demonstrated
that forward excitation would both excite the natural resonances in the tract, but also produce a
number of anti-resonances, or zeros, although it could not be predicted where these would occur
for a given tract configuration. These zeros would appear as troughs in the spectrum when
not located near any poles, and a pole and zero in close proximity would tend to cancel each
other out. Generally, many of the back-cavity poles are attenuated by zeros, giving spectra their
characteristic ‘broad’ shape. It was also demonstrated that the forward excitation produces a
characteristic zero at low frequencies. The characteristics of several fricatives were summarised
by concluding that [f] has no, or a very high resonance frequency (due in part to the lack of a
resonant cavity in front of the constriction). The [s] configuration displayed the properties of a
high-pass filter with high cutoff frequency. The large resonant cavity in front of the [[] constriction
gave it a single resonant frequency lower than [s] or [f]. It seemed likely that multiple sources
could exist, and Fant (1970) concluded his work by pointing out the importance of increased

measurements of productions.

The experiments performed by Shadle (1990) revealed a significant amount of new information
about forward production, with physical models incorporating flow obstructions, and with ap-
propriate explanations for various findings. In addition to the zero found close to 0 Hz during
forward excitation, an additional complex-conjugate pair of zeros are generated at a distance in-
versely proportional to the distance between the constriction, and the sound source. It was also
noted that since this distance is usually very short, a small change (say, ~1mm) will move the
first free zero by a significant amount (possibly several hundred hertz). In addition, the distance
between source and constriction was found to be inversely proportional to the amplitude of the

radiated sound.

Nevertheless, the considerable variability in the observed spectral characteristics of fricatives is

still not accounted for by current models (Stevens 1998).

2.1.3 A partially-known stochastic process

A sustained voiceless fricative sound — for example [[[]] — is characterised by random turbulent
airflow that generates acoustical noise. The resulting far-field signal can be considered as a
stationary stochastic process. This implies that, for a fized tract configuration and lung pressure,
time series (and hence the frequency spectrum) produced by the system will be different over
any two time intervals, despite having identical underlying statistical properties. Such stochastic
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systems can only be effectively described qualitatively in terms of estimated statistics, rather
than quantitatively.

This stochastic process can be modelled as a noise source acting on a pole-zero filter, and so the
spectral ‘peaks’ and ‘troughs’ can be described by a number of poles and zeros. It seems likely
that the positions of these poles and zeros are significant to the production of fricative sounds,
albeit via a highly nonlinear relationship. The frequency location of poles, and hence peaks in
the spectrum are generally determined by resonant frequencies in the tract. The positions of
zeros, and hence troughs in the spectrum are determined in large part by the precise position of
the forward noise source, although the interaction of source position and zero location is hard to
deduce from the speech signal alone. Variations of air pressure will lead to changes in turbulent
characteristics, and so intricate relationships between fricative intensity and the spectrum are

likely to exist.

To clarify some facts that are known about turbulent-type production, it may be appropriate
to briefly consider a first-order approximation of a multiple-forward-source tract system. It
is known that a fixed tract will exhibit fixed poles intrinsic to its shape. Next, consider a
quadrupole or dipole source positioned somewhere in the tract. This source will excite the poles
in the tract function, and if it is in a forward position in the tract, will also generate a particular
configuration of zeros. The overall output spectrum of the system so far will be approximately
represented by the product of source spectrum, tract poles, and zeros caused by the forward
position of the source. However, if the particle velocity is changed (as a result of an increase in
overpressure) then it can be expected that the source spectrum will change, and so the source
spectrum is velocity-dependent. It has also been observed that such a change in flow will also
result in a positional change of the source, resulting in a change in the zeros generated by this
source. It should also be considered that within the system, a number of both quadrupole and
dipole sources will be present. A further complication therefore arises, since the flow velocity in
one part of the tract will in general be dependent upon configurations posterior in the tract.

Multiple zeros at a range of frequencies are introduced for a given configuration with forward ex-
citations. The problem of estimating the source distributions from the resulting acoustical signal
becomes much more complex, and the solution is no longer unique. Further, the interactions of
multiple sources is overwhelmingly complicated. It rapidly becomes clear why capturing specific

articulatory information from the output spectrum is such a difficult task.

Despite expectations that such systems are highly complex, it is entirely possible that they
may also exhibit statistical covariances. Good analysis tools should try and make use of this
data. However, perhaps as a result of inadequate treatment of fricative signals, the reverse
is often implemented, and the contributions of features of known importance are suppressed.
In particular, care should be taken over the degree of frequency-smoothing that is performed
(discussed in §2.2.2.3), which can degrade spectral peaks and troughs. The use of spectral

moments as a broad descriptive metric is discussed in §2.3 and Chapter 5.

The voiceless fricatives appearing in connected speech, while exhibiting some of the stochastic
characteristics of sustained voiceless fricatives, introduce multiple nonstationary elements (Scully
and Allwood 1985; Scully 1990). For example, the tract cross-sectional area varies over time in
fricatives in /VFV/ context (Scully, Grabe-Georges, and Castelli 1992). Also, it is likely that the

forward noise source location moves during production, and this will be reflected by changes in
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amplitude, moving zeros and hence troughs (Shadle and Scully 1995); furthermore, these changes
are affected in different ways by specific vowel context: they cite an example of a subject whose
[s] productions were found to be most significantly affected in /usu/ context. The signal must
therefore be considered a nonstationary stochastic process.

It has been suggested many times in the literature that the central region of a spoken fricative
can be considered reasonably stationary. However, this seems to be a loose assumption and
any nonstationary regions in real speech that are treated as stationary will produce increasingly
inaccurate results as larger time-series data segments are relied upon. Unfortunately, this ‘brief
stationarity’ introduces problems in stochastic frequency analysis, and is discussed in §2.2.2.2:
the effects resulting from erroneously assuming the signal to be stationary will be demonstrated
later in §4.2.

Compounding the complexity of the process is the evidence that, on repeating a spoken fricative,
a single speaker will often vary the precise manner in which the fricative is generated (Scully
and Allwood 1985). This means that our nonstationary stochastic process is also not ergodic.
This has implications for ensemble-averaging techniques, and will be discussed in §2.2.2.1. Addi-
tionally, since the productions across speaker vary significantly (Scully 1990), but generally with
invariable perceptual results, it is clear that methods of measuring acoustical differences across

productions are needed.

These facts mean that in order to analyse fricative signals, great care must be taken. Indeed, a
rather fragile set of additional constraints and assumptions must be made if any measurements
are to be taken at all, and these are discussed in §2.2.

The fricative production system is based on one or more noise-sources, whose location may vary
across productions, and which excite a system of chambers that produce anti-resonances as well
as resonances (that may also vary significantly across productions), and whose precise locations
will help describe the system. It has been found that knowledge of these precise source properties
is highly significant if either the source, or the overall system is to be modelled. Additionally,
even very ‘simple’ articulation adjustments result in complex acoustic pattern changes (Scully
et al. 1992). Nevertheless, we can expect that correlations connecting these variables exist, and
if measurable, would be invaluable in our understanding of fricative production (Scully, Castelli,
Brearley, and Shirt 1992):

The multiplicity of acoustic effects resulting from the articulatory actions are not
independent of each other however: the acoustic sources are linked by the unified aero-
dynamic system of the whole respiratory tract; the actions which control the sources
also determine changes in formant frequencies and bandwidths. Co-varying acoustic
pattern changes should be expected, governed by the aerodynamic and acoustic pro-
cesses of speech production working on the particular articulatory scheme chosen by
the speaker. It seerns likely that any or all of these acoustic patterns, including their
pattern of co-occurrences, may be useful to listeners and may be important when

characterising and modelling sequences containing fricative consonants.

Measuring the covariances between configurations across productions may lead to increased
insight as to the nature of fricative production, and this is explored in Chapter 6.
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One of the most important tasks therefore becomes that of making precise measurements of
productions of the system, and rather than ignoring knowledge about the production procedures,
making as much use as possible of them, and carefully observing the typical changes that occur

between productions.

2.2 Nonparametric spectral estimation

This section serves as a reminder of some key principles concerning the spectral estimation
of stochastic processes, as well as introducing a few modern methods that have recently been
developed. A thorough treatment of Fourier and statistical theory is not given here, since these
topics are well-covered elsewhere in the literature (e.g.see Bendat and Piersol 1986; Percival
and Walden 1993). Familiarity with fundamental signal processing principles such as Nyquist
criterion, linear filters, and so on, is assumed. No rigorous proofs are undertaken, but the
procedures of the above authors are followed.

It must be noted that many well founded principles of spectral estimation of stochastic processes
are often overlooked in the area of speech analysis, and hence §2.2.1 starts us off with a refresher
of the most important aspects, including Fourier interpretation of stochastic processes, statistical
errors in estimates, the periodogram, and data tapers. Section 2.2.2 reviews some established
procedures in suitable treatment of fricative signals, ensemble averaging, time averaging, and
frequency smoothing, which are surprisingly often absent from many fricative analysis research

publications.

Section 2.2.3 introduces multitaper spectral analysis, a valuable new tool available to speech
science, although not often used. Again, rigourous analysis of this methodology is present in
the literature. In particular, the reader is referred to Percival and Walden (1993), and Thomson
(2000). Many of the key principles in these works are presented in this section, since they are of
significant importance in the spectral analysis of fricatives.

2.2.1 Principles

Before we begin describing some of the more advanced signal processing techniques required for
proper treatment of fricative signals, it is necessary to consider the basic facts and quantities
associated with spectral estimation of stochastic processes. Unless stated, a sampling frequency
(fs = 1/At) of 1Hz can be assumed.

2.2.1.1 Fourier methodology

Fourier theory outlines fundamental principles for describing time series data in terms of the
amplitudes and frequencies of the cosine and sine waves that it is composed of. Generally, any

given time series can be described in the following form:

N/2

Ty = p+ Z [Axcos(27 fxt)) + Brsin(27 fit)] (2.3)
k=1
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where p is the mean value of the discrete time series z;, and Ay and By, are the amplitudes of

the cosine and sine components at frequencies fi of the time series z;.

In the case of a stochastic process, the coefficients of the frequency components are interpreted
as random variables, whose variances 67 = E {A2} = E{B}} are of interest, and hence are the
variables we are trying to estimate for the process. If we assume p = 0, then the discrete power
spectral density function is defined

S(fi) = o3 (2.4)

for 1 < k < N/2. The power spectrum describes the contributions of energy around the frequen-
cies fr. The spectral density function for a process allows spectral properties of the process to
be more easily interpreted than from time-series data. We can expect that tract resonances, and

turbulence noise source shapes may show up as distinctive spectral features.

2.2.1.2 Errors and statistical measures in random variable estimation

Since we can rarely hope to observe the complete ensemble of sample sequences of any given
stochastic process, we can only hope to form an approximate estimate of the characteristics of
the process. Such an estimate will inevitably be the subject of errors, and we now take a moment

to compare the different types of error which we can expect to encounter.

The bias b{-} of an estimate { of some variable  is the systematic error, defined
b{&} :E{g} —¢ (2.5)
A good estimate will have reducing bias with increasing sample size.

The random error that exists when trying to measure a parameter, known as the variance var{-}

of the estimate, is defined
var {(} = B{(¢ - B{C}?} (2:6)
and an ideal estimator will have decreasing estimate variance with increasing sample size.

An estimator whose bias and variance disappear as the number of samples under analysis ap-

proaches infinity, such that

lim E {g} =¢ 2.7)

N—o00

is of course most desirable, and said to be consistent.

Finally, it is desirable that two estimators of uncorrelated parameters (; and (2 of the process,
are themselves uncorrelated, so that

cov{fl,fg} ~0 (2.8)
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where cov{:,-} is the covariance between two variables, defined as

cov{G1,¢} = E{(G — E{G}) (& - E{C}}. (2.9)

2.2.1.3 The periodogram

The discrete Fourier transform of the discrete signal z; n, which is equal to zero when ¢ is outside
[1, V], is given by

[oo]
GR(f) = Y zne it (2.10)
t=—00
N
= ) e (2.11)
t=1

where the parenthesised superscript is used to indicate the type of estimate under consideration
(in this case, a ‘p’ for ‘periodogram’). From (2.3), (2.4) and (2.11), it can be shown that the

power spectral density function defined in terms of the Fourier transform, can be written as

a®nl?
S(f)= Jim B ’—N]\Eﬂ , (2.12)

where S(f)df is the expected contribution, over all possible realisations of the process, to the

power from components with frequencies in the interval around f.

An appropriate approximation for a finite sample sequence would appear to be

N 2

Z g2 ItAL

t=1

At

5@ () = ~ (2.13)

where At is the sampling period. This estimate is known as the periodogram of the power
spectrum. Let us take a moment to consider the properties of this spectral estimate.

If z; is set to unity everywhere, the expected response for a DC signal can be observed. The
periodogram estimate is equal to Fejér’s kernel F(f), which is shown on the right of Figure 2.1.
This well known response demonstrates that, for a single underlying frequency component, the
response will be distributed between a number of ‘lobes’. The main lobe, centred on the fre-
quency under examination, contains the most energy, but much of the energy for this response
is dispersed over the rest of the frequency range, in what are known as the ‘sidelobes’. In fact,
whatever sequence z; is set to, the expected power spectrum will be equal to the convolution of

the sequence’s actual power spectrum, with Fejér’s kernel:

. f(N)
s{svn}= [ FU-p)s@w (214)

The redistribution of energy away from the frequencies at which that energy originates is known
as ‘leakage’, and is undesirable, since it introduces bias, and significant spectral correlation,

especially near prominent spectral peaks. That is, for any process that is not spectrally ‘flat’,
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Rectanguear window with N=32 Response of Rectanguar Window with N = 12
T —

FIGURE 2.1: Rectangular time window (N = 32) (left) and frequency response, known as
Fejér’s kernel (right).

and at frequencies where the underlying power spectral density is low, the estimate will indicate

much higher energy than actually exists.

The ‘flatness’ of a power spectrum can be described in terms of its dynamic range, simply the

quantity

max {S(f)}
10log;, <m‘1n {S(f)}) (2.15)

Percival and Walden (1993) show that the properties of Fejér’s kernel are such that, as N ap-
proaches infinity, the bias of the estimate vanishes. However, in practical terms, even with large
time series, the bias can be significant. For example, for a spectrum with known dynamic range
of around 60dB, when N = 1024 the nonlocal bias (i.e. far from the main spectral peaks) was
shown to be of the order of 18dB.

In order to calculate the expected variance of the estimator, we first assume that the random
variables A and By of the magnitudes of the cosine and sine components of the process have

Gaussian distributions. Then, since the periodogram spectrum can be written as

5P (1) = A2(fu) + B2(fi), (2.16)

and the sum of v squared Gaussian variables has a chi-squared distribution with v degrees of

freedom,
X2=Y2+Yi+.. . +Y2 (2.17)

then it is straightforward to show that, at any given frequency, the periodogram estimate is a

chi-squared distribution with two degrees of freedom:

_ 0RAL ,

58 (fe) = =3 (2.18)

for 0 < fx < fn. Now, since E {x2} = v and var {x2} = 2v, then it is trivial to show that

E{S8(f0} = oAt = Sa(fe) (2.19)
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that is, the mean value for the estimator is equal to the value being estimated, but on observation

of the variance, the rather more disastrous result
$®) = o4 (AH2 = §2 9
var { Sg” (fr) p = o (At) ¢ (fx) (2.20)

for 0 < f, < fn is found. This result show that, irrespective of sample size IV, the variance of
the periodogram estimate is equal to the value that we are trying to estimate.

In most cases this error should be viewed as too large for this estimator to be of any use.
However, spectral estimates with variance errors of this size are highly common in the fricative

speech literature.

In summary, for any stochastic process whose underlying power spectrum is not flat, the peri-
odogram estimate is the subject of large bias error near spectral peaks. Moreover, in regions of
high energy, it has large variance.

2.2.1.4 Data tapers

In order to reduce the leakage from the main lobe into the sidelobes, and hence the bias, the peri-
odogram is invariably calculated under a data taper or window. Data tapers work by smoothing
the extremities of the time series data to be analysed, which results in a reduction of the side-
lobes of the response. A data taper that accomplishes this will of course lead to power spectral
estimate with much lower bias, which is desirable.

For a given length of time series data, a discrete data taper h; takes the form of a number of
weights that are used to pre-emphasise the time series data, prior to calculating the Fourier

transform, and hence estimating the power spectrum.

2

N
E : htxte—iZWftAt
t=1

S (5) = At (2.21)

where > hy = 1. This estimate is known as the modified periodogram, and commonly in speech
analysis, Hanning or Hamming windows are used. A Hanning window of length N = 32 is shown
on the left of Figure 2.2. It is necessary to briefly remind ourselves of the properties of these
tapers.

The expected estimate calculated under a Hanning data taper is
. ()
B{8“(n}= [ w( - 1s(ar (2.22)
—f(N)

where H(f) is the power spectral response of the Hanning window, shown on the right of Fig-
ure 2.2. Note the reduction in magnitude of the sidelobes, but also the increase in width of the
main lobe. This results in a decrease in the bias, and hence the estimate is invariably more
appropriate. For further discussion on data tapers, their spectral responses, and estimate bias,
see Priestley (1999) pp.556-574.

This estimate is commonly used in fricative analysis research. However, while it satisfactorily

reduces bias, it does not tackle the large estimate variance problem discussed in §2.2.1.3.
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FIGURE 2.2: Hanning time window (IV = 32) (left) and frequency response (right).

In fact, by introducing the data taper, much of the data towards the edges of the data window
is almost ‘discarded’, as a result of the small weightings at these points. This has the effect of
increasing the estimate variance further, by a factor of approximately two (Bendat and Piersol
1986).

That is, much of the fricative analysis literature makes use of estimates whose variance error
is nearly twice as large as the underlying distribution itself. This may be one of the root
causes of the difficulties and general lack of success to date, of characterisation methods that
attempt to track spectral features (and hence, tract resonances) during fricative production. The
general popularity of spectral moments in the face of such spectral estimators becomes clearer,

as discussed in §2.3.

To properly deal with the large estimate variance, some form of averaging must take place.

2.2.2 Averaging methods

In the last section it was shown how data tapers can be used to reduce the bias error of the
spectral estimator. For our estimator to be of any practical use however, it is necessary for the
large variance of the estimate to be dealt with. In order to reduce it, some assumption about
the underlying process must be made, and hold true, so that some form of averaging process can
be used to generate a more accurate estimate.

2.2.2.1 Ensemble-averaging

As previously discussed, the analysis of random data requires some form of averaging if consistent
estimates of parameters describing that data are to be obtained.

If the process can be considered ergodic (i.e. if the statistical properties of the process are inde-
pendent of sample sequence), the variance of the estimate of the power spectrum can be reduced
using an ensemble of sample sequences. As long as the assumption can be made that the statis-
tical properties of the process are independent of sample sequence, consistent estimates of these

characteristics can be calculated by averaging over a number of sample sequences.
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A consistent estimate of the power spectrum of a stationary random process can be calculated

over Ny sample sequences by
§O(f) = Z 5{me) (f) (2.23)

where S{™ (f) is the spectral estimate of sample sequence ». Unfortunately, the feasibility of
using this method in practice means we are often limited to a small number of sample sequences
over which to form an average estimate. Nevertheless, it is straightforward to show that the

variance of the estimate is reduced to
va,r{ 5@ (f) } S(f (2.24)

while the expected form of the estimator remains as (2.22). From this result it is clear that, for
any Ny independent sample sequences of the stochastic process, the variance of the new estimate

is reduced by a factor of Ny.

However, the success of ensemble averaging relies upon the assumption that the underlying
process is ergodic. If it is desired that the power spectra of individual sample sequences from
some non-ergodic stochastic process be analysed, this method is of limited use.

These facts give rise to problems in attempting to form consistent power spectral density es-
timates using ensemble averaging techniques. A method of consistent spectral estimation is

therefore desired that does not require an ensemble.

2.2.2.2 Time-averaging

A discrete stochastic process {z; } is said to be weakly stationary if E{z:} = p, and cov{z;, Zs4-} =
s, for 7 = 0,£1,+£2,..., where u, s, are finite constants independent of ¢t. Another measure of
stationarity is whether the statistical moments of the process are independent of time. If a
process is stationary, the variance of the estimate of the spectrum can be reduced by averaging

the power spectra from several independent windows of time series data.

The method formalised by Welch (1967) splits the sample sequence of length NV into Np smaller
subsequences, each of length Ns. Each of the subsequences consist of samples [, [+1,[+2,...,{+
Ng — 1. The power spectrum of each subsequence (which of course has reduced spectral resolu-
tion) is then estimated by

2

(mP)(f) At thxt+l Le —i2m ftAt (2.25)
t=1

The estimated power spectra of several subsequences can be combined in order to reduce the
variance of the estimate. However, it is not necessary to average over all subsequences, since
very little information is gained by moving between neighbouring subsequences. Rather, the
data window advances through the sample process by some constant N,, where 0 < N, < Ng
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usually. That is, Welch’s segmented averaging method of spectral estimation is

1 Np-1
& _ d
SM(f)= — § j S (2.26)

In the case where the subsequences used in (2.26) are completely non-overlapping, the variance
of the spectrum will again be of the form (2.24), where Nz =~ Ng/2. However, it is more common
in the engineering literature for the windows to overlap by around 50% (corresponding to a value
of N, ~ Np/2). This allows some of the data that would have been attenuated by the data
taper to be recovered. In this case of 50% taper overlap, it has been shown that the effective
number of degrees of freedom is approximately

36N

VR N (2.27)

which is equivalent to the factor by which the variance of the estimate will be reduced.

This result indicates much better accuracy for power spectral estimation using time averaging.
The expected form of the response remains as (2.22), suggesting no deterioration of the spectral
bias, although the resolution is reduced by a factor of Ng. However, we must bear in mind
that this method relies heavily on the signal being stationary. Treating a random signal with
nonstationary properties as stationary will clearly distort the spectral density estimate, since the
frequency representation of a nonstationary signal is ill-defined.

2.2.2.3 Frequency smoothing

If the process under examination is neither stationary, nor ergodic, then averaging the spectral
density estimate over a small interval of frequencies is an alternative method of reducing the
variance of the estimate, so long as the underlying spectrum is smooth. When averaging over
the frequency interval, the spectral density estimates at each of the nearby frequencies can be
weighted, using a spectral window, W(f). The frequency smoothed estimate is hence given by:

) F(N) )
U9 (f) = /_ oo U 93000 (2.28)

Naturally, the choice of spectral window can be optimised if detailed knowledge of the underlying
process is known. Typically in speech analysis, the Daniell spectral window may be used (simply
an even weighting over the M neighbouring frequencies):

+1

(2.29)
0 elsewhere

1 k=M k+M
L kM g M
(fx) = { 2 -2

and we will only consider the properties of this spectral window here. A multitude of different

spectral windows are in existence; for a more detailed discussion of some of these, see Percival
and Walden (1993), and Priestley (1999).

Figure 2.3 shows four example responses, after a Daniell window (of increasing values of M) has

been used to smooth the responses calculated using a Hanning window, shown in Figure 2.2. The
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FI1GURE 2.3: Frequency response of frequency-smoothed spectra for M = 2 (top-left), M =4
(top-right), M = 6 (bottom-left) and M = 8 (bottom-right), using Hanning window (N = 32).

first thing to be noticed is the flat, wider response of the main lobe. This highlights the frequency
range over which the averaging takes place, and also over which the assumptions of flatness must
hold. The frequency smoothed estimate will decrease the variance of estimate, so long as the
underlying spectrum is smooth. This process will therefore have the effect of greatly increasing
the spectral correlation between nearby frequency values, and also significantly increase the local
bias, an expression for which is (as given by Percival and Walden (1993)):

S "(f )

bw(f) = B (2.30)

where

f(N) 1/2
Buw = 12/ W (f)df (2.31)
—fivy

showing that the local bias is influenced by both non-smooth features near the frequency region
of interest, as well as the size of the spectral window. Nevertheless, the overall reduction in the

variance of the resulting spectral estimate is again of the form (2.24), where Ny = M/2.

Great attention should also be paid to the considerable increase in the bias of this estimate with
increasing M, since the sidelobes of this response have grown significantly with the frequency
smoothing operator. In fact, this new bias, resulting from the spectral smoothing operator, is
most effectively reduced by choosing a more appropriate data taper under which to weight the

time series data, before any frequency smoothing operations are performed. One such set of data
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tapers are discussed now in §2.2.3.

2.2.3 Introduction to multitaper analysis

Data tapers have generally been designed with some specific property in mind, in order to suit
some specific task. For example, to view the formants in vowel speech spectra, the Hanning
and Hamming windows commonly have the most suitable properties. When used for the power
spectral estimation of stochastic processes however, their use should be reevaluated.

The development of the multitaper methodology for good spectral estimation of stochastic pro-
cesses has been significantly contributed to by Slepian (1978) and Thomson (2000). We now
take a moment to describe the rationale behind the multitaper methodology, following the work
by Percival and Walden (1993).

Consider some sample sequence. In order to estimate the spectral density of this sequence,
without significant spectral leakage, the data must be weighted in a suitable manner. However,
by weighting with a smooth window that reduces sidelobe leakage, some of the time-series data
are invariably lost, leading to an increase in the variance of the estimate. If these data could be

recovered in some way, the variance of the estimate could be reduced.

Consider then, a set of orthogonal data tapers, which could each be used to estimate the spectrum
of a different (orthogonal) portion of the sample sequence data. If each of the data tapers has a
good spectral response (i.e. one with small sidelobe leakage), then the spectral estimates using
each of the tapers will have small bias, although the variance of each estimate will be large.

However, due to the linearity of the Fourier transform, the responses of our orthogonal set of
time windows will themselves be orthogonal. In this case, the orthogonal spectral estimates can

be averaged to produce a new estimate with reduced variance.

The concentration of a time signal, or data taper, can be defined:

T/2 v12
s R dt
o — T/2
(T) = —_f o d (2.32)

which is the fraction of the taper’s total energy, in the time interval T' centred around 0. A
similar expression exists for the frequency concentration of a taper’s spectral response:

I H P df

o N H (I df (253

W) =

The orthogonal set of tapers should attempt to maximise (2.32), while restricting (2.33) to
some predefined ‘acceptable’ bandwidth 2W. It has been shown that the solutions to this
maximisation problem take the form of an orthogonal set of eigenfunctions ¥, (-;¢) (where ¢ =
7#WT), corresponding to the data tapers themselves, known as prolate spheroidal sequences, or
Slepian sequences in recognition of his significant contributions. Each of these eigenfunctions

has a corresponding eigenvalue A, proportional to the energy of each taper.

Four Slepian sequences computed for M = 4 and N = 32 are shown on the left of Figure 2.4, with
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their corresponding responses on the right. As can be seen, the first Slepian sequence is rather
similar to the familiar Hanning window: the data at the ends of the sequence are attenuated,
and the sequence is smoothly introduced in order to minimise sidelobe leakage. As can be seen
from its corresponding frequency spectrum on the right, the sidelobes indeed drop rapidly from
the main peak. The main peak is 2W f; wide, as defined by (2.33).

The second Slepian sequence is rather different to most tapers that are usually found in the
speech literature. Peculiarly, the window goes negative for some duration. This would not
be used to calculate deterministic frequency spectra, since it would introduce significant phase
distortion. However, the phase of a stochastic process is of no importance. Again, the response
consists of a large primary lobe, with rapidly attenuated sidelobes. Of interest is that the width
of the main lobe is the same as all the other responses (as determined by (2.33)), although the
peak of the main lobe is shifted slightly. This corresponds to the expected orthogonal responses,
which, when combined, will work to reduce the estimate.

Each Slepian taper can be used to form an estimate:

2

N
’l,bt mte—i27rftAt
E K

t=1

Smi(f) = At (2.34)

Each of these estimates will have good sidelobe characteristics (because (2.32) has been min-
imised), but a large variance (more so since the tapering operation reduces the amount of data
present with which each estimate is formed).

However, since these spectral estimates are orthogonal to each other, their average response

M-1 &(mt)
5m0( 1) = Zaca WS ()
(f) SRREW

will have a variance reduced by a factor of M, as more of the time series data is incorporated

(2.35)

into the estimate. Additionally, since the bandwidth has been restricted by (2.33), we can expect
that the combined response of S(™)(f) will have optimal bias properties.

For a given application, the acceptable resolution bandwidth factor W (where 0 < W < 1/4)
will determine the family of Slepian sequences to be used in an analysis. The time-frequency
resolution tradeoff is still controlled by the length N of windows that we choose to use, and the
quantity NW is known as the bandwidth product. As W is increased, the width of the main
lobe increases, but so does the number of Slepian windows M =~ 2NW that can be used in
the analysis, whilst still limiting the resolution. Typical values for the bandwidth product are
4 < NW < 6 (Thomson 2000).

Examples of combined responses for this estimate are shown in Figure 2.5, for increasing M. The
most significant difference between these responses, and those of frequency smoothed Hanning
estimates in Figure 2.3, is that, due to the orthogonality of the Slepian sequences, the bias near to
the main peak does not accumulate, whereas for the Hanning windows, it does. The importance
of this is that the multitaper estimate can be expected to have significantly reduced bias near
steep spectral peaks (and troughs), especially for small N, making it an excellent choice for
spectral estimation over short intervals of slowly non-stationary stochastic processes.
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FIGURE 2.4: First (top) to fourth (bottom) Slepian tapers (N = 32) (left), and frequency

responses (right).
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FIGURE 2.5: Frequency responses of multitaper spectra (N=32) for M = 2 and M = 3 (top),
M =4 and M =5 (bottom).

2.2.4 Summary

It has been shown that, in order to reduce the bias of a spectral estimator, the data must be
suitably tapered. However, in doing so, the variance of the estimate increases to almost twice

the magnitude of the underlying spectrum itself.

In order to reduce this variance, some form of averaging must take place. In some fields, ensemble
averaging is a feasible method of obtaining independent sample sequences from which to estimate
the process spectrum. However, in the field of speech production, the practical problems related
to this method are significant. It is well known that the production by a single speaker of
identical words in identical contexts and situations will be produced with varying manner on
each attempt. The mechanisms governing these changes in manner is not understood, and so

must be treated as having a random element.

Time averaging is also a suitable method for reducing the variance of the estimate, provided the
underlying process is stationary. However, in speech production, it is known that the articulators
within the tract are constantly on the move in order to form the next phoneme. It seems unlikely
that fricative production can be considered stationary enough for time-averaging techniques to

work without distorting the true picture.

If fricative production is assumed to be neither ergodic, nor stationary, then only short sample
sequences of time-series data may be used to estimate the spectrum. For short sample sequences,
frequency smoothing operations will reduce the variance of the estimate, but also introduce
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FiGURE 2.6: Comparison of frequency smoothed (M = 7) (left), and multitaper (M = 4)
(right) responses for N = 256.
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FIGURE 2.7: Comparison of frequency smoothed (M = 7) (left), and multitaper (M = 4)
(right) responses for N = 256, magnified view.

significant bias to the spectral estimate.

Multitaper analysis provides an optimal way of reducing the bias of spectral estimates calculated
over short intervals of sample sequence data. It is therefore highly likely that it is one of the
most accurate methods available for the spectral examination of fricative production. However,
the method has rarely been used for fricative analysis (see Blacklock and Shadle (2003)).

Figure 2.6 serves as a comparison of the response of Daniell frequency smoothing using Hanning
data tapers (left), and of multitaper estimation. These two responses correspond to estimates
that should have similar variance. Figure 2.7 highlights the region in which the multitaper’s
superior bias reduction can be viewed.

Demonstrations using speech signals of the differences between the different methods of reducing

spectral variance and bias errors are given in Chapter 4.

2.3 Properties of spectral moments

Moments are used as a way of describing a given energy distribution with a small number of

parameters. Specifically, the distribution is modelled as some deviation from a normal curve.
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The first moment describes the mean energy location, or centroid of the distribution. The second
moment describes the spread of the energy; that is, a distribution with most energy occurring near
its centroid will have a smaller second moment than a distribution that has energy more evenly

distributed across the range. The first two moments completely describe a normal distribution.

For non-normal distributions, higher order moments contain more information pertaining to
the shape. The third moment, the skewness, is a meas{lre of unevenness in energy distribution
around the mean: a positive result indicates most energy is to the right of the mean, a negative
result indicating most energy lies to the left of the mean. The fourth moment, known as kurtosis
or peakedness is a measure of energy concentration in the immediate vicinity of the centroid.
Higher order moments can be calculated for distributions, but these become increasingly abstract
in terms of what they represent visually. The higher the order of moments used to describe the
distribution, the greater the distribution can deviate from a normal curve. An infinite number

of moments are required to describe any arbitrary shape.

Spectral moments then, apply these principles to spectra that can loosely be described as
approximately-normal in shape. In order to do this, an arbitrary set of frequency and am-
plitude scales must be selected over which the analysis is to be performed. Since the moments
of a distribution will be highly sensitive to whichever set of scales are used, it is important to

take care in consideration.

2.3.1 Principles

Consider a discrete variate X that takes the values X;,Xs...Xn. Each of these values oc-
curs with respective likelihoods p (X1),p(X2)...p(Xn), where > p(X,) = 1. Then the rew
moments of X are defined (Kenney and Keeping 1964)

N
m. =Y Xhp(Xa), (2.36)
n=1

where r is the moment order. The value mj is known as the mean of the distribution.

Central moments are taken about the mean X = m/

N
my =Y (Xn—X)"p(Xn). (2.37)
n=1
The value ms is commonly known as the variance of the distribution. Furthermore, standardised
moments may be calculated by normalising with respect to the function standard deviation

ox = /M2

ar = i (M)rp(Xn). (2.38)

o
n=1 X

The value v = a3z is commonly known as the skewness, while a4 is called the kurtosis of the
distribution. Since the value of a4 for a normal distribution is equal to 3, the excess of kurtosis

Yo = a4 — 3 is more commonly used.
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Commonly, only the first four moments are considered, since these represent changes in the shape
of the distribution that are clearly visible. Although a finite (and small) set of moments will
always describe an infinite number of distributions, we can optimise the chances of ‘recovering’
the original distribution. In order to do this, it must be ensured that the distribution to be
parameterised is well-suited to a 4-moment distribution, prior to calculation of moments. That
is, for the spectral moment parameterisation method to work effectively, the model must hold
well. Let us now remind ourselves of the meaning of the third and fourth order moments.

Briefly, the skewness (third order moment) of a distribution describes the asymmetry around the
mean, particularly of the tail ends of a distribution. A positive value for the standard skewness of
a distribution indicates that the tail is larger at values above the mean, and conversely, negative

values represent greater probabilities of events below the mean.

Kurtosis (the fourth order moment) is a measure of the “peakedness” of a smooth distribution.
A flat distribution will have a standard kurtosis value close to zero, while one which has greater

probability of values near its mean will have a large standard kurtosis.

Of course we are free to consider higher order moments for the purposes of characterisation.
Statistical methods can be used as a basis for determining the significance of the various moment

measures.

2.3.2 Definitions

One of the earliest uses of the first spectral moment, usually referred to as the ‘centre of gravity’,
was by Strevens (1960) to describe the distribution of energy in fricative power spectra. Although
no specific values were calculated, Strevens reported clear visual differences in energy distribution
for the different fricatives, and used the analogy of a spectral ‘centre of gravity’ to describe these

patterns.

More specific measures of the ‘centre of gravity’ of fricatives were performed by Weinstein et al.
(1975). Spectra were considered over a 0-5-kHz frequency range. If S(f) represents the spectral
amplitude, the centre of gravity for a given frame is given by f. = k.Af, where k. is the largest
integer for which

bk S(EAS)

o S(kAf) T T

where Af = 5000/128. The quantity 8. is specified in the text as having a value of %, but
presumably this should be unity. The values of f, for five consecutive frames in the centre of

the fricative are averaged together to form a single estimate of the ‘centre of gravity’ for that

fricative. No further information is supplied about scales.

Jassem (1979) studied the spectra of fricatives over a total frequency range from 0-8 kHz. When
compiling various quantitative features for use in multivariate analysis, the frequency range was
divided equally into two and three ‘fragments’, and only the ‘centre of gravity’ of each of these
fragments was calculated. Few other details about the calculation are given.

Forrest, Weismer, Milenkovic, and Dougall (1988) continued to develop the idea of calculating
the centre of gravity by including higher order moments. The data were bandpass filtered to
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T0Hz-10kHz, and sampled at 20kHz. The fricative portions of the speech signal were selected
by hand. 20-ms data-windows (corresponding to 400 sample-points) were used in the analysis.
A 400-point Hamming window was applied on each data-window, before zero-padding to create
a new 512-point data-window. A 512-point FFT of this data window was calculated (X (k)), and
the normalised power spectrum designated

X (k)[*
p(k) = g (2.39)

27215:60 |X(”)|2

for k in [1,256]. The first four moments were then defined:
256

L, = Z fro(k)

k=1
256

Lo = > (fi — L1)"p(k) for n = {2,3,4},
k=1

where fr = kAf and Af = 10000/256. Further, the coefficients of skewness and kurtosis are
defined I3 = L3//L3 and Iy = (Ls/L%) — 3 respectively. Additionally, a second method of
moment acquisition is defined using a Bark frequency scale, as defined by Syrdal and Gopal
(1986), whereby the power spectrum on linear frequency scale is mapped to the Bark scale, and
weighted accordingly before moments are calculated. In all calculations then, it appears a linear
power scale was used (i.e. corresponding to values of | X |?, not 201og;, | Xx|).

In a further investigation into the capabilities of spectral moments, Jongman, Wayland, and
Wong (2000) considered spectra up to 11 kHz of speech sampled at 22kHz (after lowpass filtering
to 11kHz). Data-windows of 40-ms duration (representing 880 data-points) from the centre of
fricatives were first weighted with 40-ms Hamming windows, followed by fast Fourier transform
(FFT) calculation. It is not stated whether the data were padded or clipped, but since it is
declared that a higher frequency resolution than the Forrest et al. study was obtained, it is
reasonable to assume that the data were zero-padded to 1024 points before a 1024-point FFT
was calculated. The procedure given by Forrest, Weismer, Milenkovic, and Dougall (1988) was
then followed: linear and Bark-scale frequency ranges were analysed, but only linear power scales
were apparently used.

2.3.3 Spectrum frequency range selection

Historically, speech spectra have been considered up to typically 8-10kHz, sometimes because
it has been suggested that information at higher frequencies is superfluous to the task of speech
discrimination, but in other cases simply as a result of limitations in recording equipment (c.g.
Strevens 1960). However, since the ultimate aim is to describe the production mechanisms by
the acoustical signals, it seems appropriate to consider a range that includes as much of the

produced spectrum as possible.

Another factor that should be considered when determining an appropriate frequency range
over which spectral moments can be calculated, is that it should result in a distribution that
adequately fits the model: namely that it should be approximately-normal, and the number of
moments being used should adequately describe the degree of deviation from a normal curve,
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and hence capture well its overall shape. If the number of moments being used is insufficient for
describing the distribution, then the metric becomes inaccurate. If these errors are large, then
significantly different distributions may produce similar sets of moments, which of course greatly

limits their use.

Since normal distributions extend to infinity, but only have an asymptotically small amount of
energy in these tails, the frequency range we select over which to analyse our spectrum should
capture a spectral shape that approaches “zero” near the edges. In addition, only a single main
“peak” should be contained within the frequency range, since multiple peaks will not be well
described by the first four moments alone.

2.3.4 Spectrum magnitude scale selection

The first four moments describe a shape that is rather distinctively bell-shaped, if a little lop-
sided. It may therefore be necessary to adjust the magnitude scale of our power spectrum in
order to obtain this characteristic, so that the moments act in a more complete manner: the
distribution of maximum likelihood described by any set of the first four moments will always
be approximately Gaussian.

Because speech sounds consist of a very wide range of energy intensities, power spectra often
span several orders of magnitude at different frequencies in a single sound. The result is that
power spectra on linear magnitude scale have a very “spiky” appearance, often rendering them
difficult to read. A common practice is to plot power spectra on a logarithmic scale, often in
decibels (dB). This has the effect of reducing the amplitude range to within readable limits, and
greatly reducing the number of large energy spikes. For simplicity, we shall denote the estimated
decibel power spectrum

A(fx) = 10108, (S(£1)) - (2.40)

The use of a decibel magnitude scale gives spectra an appearance much closer to that of a normal
distribution, and hence, this step should be taken if spectral moments are to be calculated. By
using a decibel magnitude scale, another subtle consideration is revealed: where should the
base-line, or “zero-reference” be positioned? That is, the moments should be calculated from
the normalised spectral distribution Q(f) where

A(fk) — Ty
Q(fe) = - (2.41)
C S (A - )

where 7, < S (fx) for all fr < fn is some arbitrary constant reference, and 2V is the window-size.
Peculiarly, this does not usually seem to be mentioned in the literature.

There are two main considerations: firstly, the zero-reference must be sufficiently low that all
spectra under consideration lie above it. It is unclear how to interpret regions where the spectrum
drops below the zero reference. On the other hand, it is still desirable that the “tails” of
the distribution approach the zero-reference near its edges. The first four moments will not
characterise well distributions that have a high energy density at either end of the spectrum.

We shall see in Chapter 5 that simultaneously satisfying all the conditions in §2.3.3 and §2.3.4
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is usually impossible, and that large concessions must be made in order to obtain a workable
system. Additionally, basic measures to subtract known ambient-noise from speech recordings

could be undertaken, but is rarely seen to be done in the literature.

2.3.5 A note on pre-emphasis

Occasionally in the literature, pre-emphasis of the signal is undertaken, with little explanation
as to how or why.

Traditionally, pre-emphasis of the low-energy signal typically found at higher frequencies, was
used to make better use of the amplitude resolution of the recording media. It is also used as a
method of ‘flattening’ the spectrum prior to spectral estimation, in order to reduce the bias that
can arise when estimating non-flat spectra.

In regard to the calculation of spectral moments, there may be a case for using pre-emphasis
to optimise the spectral shape. As already mentioned, the closer to a nearly normal curve
the spectral distribution under examination is, the more accurately the first four moments will
describe the shape. Indeed, in much of the spectral moment literature, pre-emphasis is used

prior to spectral moment calculation, but details are rarely given.

The most considerable problem facing a standard pre-emphasis step in spectral moment calcu-
lation is the potential diversity of fricative spectra. If a fixed pre-emphasis method is used, then
we cannot hope to improve all spectra. If the methodology incorporates some nonlinear function

of the spectral shape, then we cannot expect the spectral moments to be reliable.

2.3.6 Reconstruction using the Gram-Charlier expansion

In order to determine how well spectral moments have captured the shape of a distribution, it is
first necessary to reconstruct a distribution from the moments and any other knowledge available
from the ‘results’. A comparison of the reconstruction to the original distribution will reveal how
well (i.e. how uniquely) the spectral moments describe that distribution. It will indicate which
features are well described, and where problems may arise.

Any distribution can be uniquely described by an infinite set of moments. Conversely, a finite set
of moments can describe an infinite set of distributions. The Gram-Charlier expansion constructs
the distribution of maximum likelihood for a given set of the first four moments (Kenney and
Keeping 1964):

Assume the z-axis variable has been standardised, and denote it by ¢ = (z—v1) /0.
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By repeatedly differentiating the function e=%°/2 we obtain:

_‘%(e—&/z) = _ge 12
fw(e_¢2/2) = (¢ -De??

a3 2 2
priC ) = —(*—3¢)e? /2
d%(e‘d’”?) = —()"Ha(@)e

where H, (@) is a polynomial in ¢, of degree n, called the nth Hermite polynomial.
By repeated integration by parts, it is easy to show that

n! form=n

(2.42)
0 form#n

(277)1/2 /oo Hm(¢)'Hn(¢)e_¢2/2d¢ = {

Hence if ¥(¢) stands for (2r)1/2e=#"/2 and if we assume that a given frequency
function can be expanded in a series

9(8) = co(¢) + 1t (9) + - + cap ™ (§) + -+ (2.43)

we can formally obtain the constants in the series by means of (2.42). Multiplying
(2.43) by H,(¢) and integrating term by term, we have

[ s@t@at =3 e [~ 6@H$)ds = (1), (2.44)

since all terms in the sum except for that which r = n give zero on integration.
Substituting Ho = 1,H; = ¢, Hs = ¢2 —1,H; = ¢3 —3¢,Hy = ¢4 - 6¢2 + 3, we

obtain
w = [ g@dp=1
a = - [ se@)as=o0
@ = [ (& -Dg@ds=0
ez = —m/3!
cs = (0g—6+3)/41=n7,/24
therefore
9(8) = 0(@) — T (@) + LY (P) - - (2.45)

This is the Gram-Charlier A Series. It has been shown that the series is not conver-
gent except under rather restrictive conditions. However, the important point is that
a few terms provide a good approximation to g(¢).

That is, the first few moments can be used to reconstruct a reasonable approximation to the

distribution from which the moments were calculated. How well this reconstructed distribution
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matches the intended distribution will tell us how well the spectral moments can be expected to

perform.

2.3.7 Spectral moments of large-variance spectral estimates

In §2.2, it was shown that spectra estimated from a single Fourier-transformed window of data
will have a large error variance at any given frequency. If the estimated distribution has a large
variance, then the higher-order moments can be expected to be less reliable, since they place
increasing emphasis on variations in the tails of the distribution, where a large error variance is

known to exist.

However, if the distribution under examination is not approximately Gaussian, moments calcu-
lated will become insensitive to changes in the distribution that we may wish to capture. The
moments of a non-Gaussian distribution will be less sensitive to change anywhere in the distribu-
tion than if the same amount of change occurred in a distribution that was close to a Gaussian.
For instance, an increase of 2dB in a specific region in a flat distribution will correspond to
a much smaller change in the calculated moments than if the same increase occurred in the
same region in a distribution that was close to Gaussian. These expected properties of spectral
moments are demonstrated in Chapter 5.

2.4 Summary

Fricative analysis can be approached in a number of different ways. One approach is to con-
struct mathematical models of the vocal tract. This relies upon detailed knowledge of noise
sources and interactions. Turbulent noise sources however are highly complicated, and a limited
amount is known about their behaviours, spectra, and interactions with other sources. With
the introduction of obstacles into the path of turbulent jets, the complexity increases further.
Mathematically modelling such a system becomes unmanageable.

Nonparametric analysis methods are a somewhat more appealing approach that have not been
fully explored. The turbulence noise generated during fricative production should be treated as
stochastic process, and yet often in the fricative analysis literature this is not performed suitably.
Appropriate nonparametric spectral estimation methods are examined. A certain amount is
known about fricative production, and analysis tools need to make use of all the information

present, so it is important that the nonparametric data are as accurate as possible.

Well founded principles of good spectral estimation procedures for stochastic processes are often

overlooked in the fricative analysis literature.

In order to obtain an unbiased estimate of time-series data, a suitable data taper must be used.
In doing so, the amount of information being used to calculate the estimate is reduced, and
this increases the variance of the error of the estimate. In the case of a modified periodogram
estimate, the variance error of the estimate at any given frequency is greater than underlying
quantity being estimated at that frequency. If fine spectral details are to be examined closely,
this estimate is highly unsatisfactory.
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In order to reduce the variance error, a consistent estimate is required: more data need to
be incorporated into the calculation, without attempting to increase the amount of information
within the estimate. While using a longer data-window increases the amount of data incorporated
into the estimate, it also increases the resolution of the estimate, and since (without further
treatment) this results in no overall reduction in the error variance, the modified periodogram

is said to be ‘inconsistent’.

Where the underlying system is known to be stationary, time-averaging can be used to generate
a consistent estimate. Alternatively, ensemble-averaging methods can be used to reduce the
variance of the estimate where the underlying system is known to be ergodic. Unfortunately,
neither stationarity nor ergodicity can be verified unless the other is known to be true. In speech
analysis, neither assumption would appear to be particularly likely however. If it is instead
assumed that neither is true, alternative methods of obtaining a consistent estimate must be
considered. In this case, frequency smoothing may be used; however, it can be shown that
frequency smoothed estimates that reduce the variance by a significant amount, also introduce

a significant amount of local bias.

Multitaper analysis provides an alternative method of improving the estimate. The amount of
data incorporated into the estimate is maximised, while the local bias is minimised. Multitaper
analysis excels over the other methods where spectral estimation over short time intervals of
non-stationary non-ergodic processes is required. It therefore seems likely to be very well suited

to fricative analysis.

Spectral moments have previously been implemented in a number of different ways. Frequency
range selection and magnitude scale selection are two of the most obvious choices that are likely to
be significant in determining the effectiveness of the spectral moments. While various parameters
have been used in previous studies, no attempts appear to have been made to investigate the

effects these parameters have on the performance of spectral moments.

The Gram-Charlier expansion allows the distribution of maximum likelihood to be constructed
given the first four moments. The first four moments are an incomplete basis, and hence any
given set of the first four moments will describe all of an infinite number of different distributions.
The Gram-Charlier expansion can be used to clarify which features of a distribution have the
greatest levels of influence over the spectral moments that are calculated.
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Method

The speech of cochlear implant users is the subject of much examination. In particular, studying
the effects on fricative production of partially-known changes to the auditory system by cochlear
implant device provides us with information about the production and perception systems. How-
ever, tools for describing and analysing fricative productions are of limited availability. Such tools
would ideally be able to measure changes and differences of both normal and disordered fricative

productions.

In order to continue, some sample speech data from subjects with normal hearing, and from
subjects with abnormal hearing is required. We begin by considering what criteria the subjects
should satisfy.

Since analysis of the disordered speech of cochlear implant users is a significant incentive for this
work, we begin by presenting information about cochlear implant subjects whose speech and
hearing backgrounds are well documented. In order to evaluate whether new fricative production
measurements are suitable for use with disordered speech, only a limited number of tokens are
required. This coincides with the amount of speech data readily available from cochlear implant
subjects: intensive speech recording sessions of speakers with some hearing or speech impairment

is often more stressful than for subjects of normal speech and hearing.

The criteria by which subjects of normal hearing are chosen may be based upon the backgrounds
of the cochlear implant subjects, amongst other considerations. The speech of the normal hearing
subjects is to be analysed in order to discover typical variabilities across fricative tokens; a

suitable corpus is discussed.

Finally, the methods for recording, storing and editing speech data are presented. Equipment
descriptions, procedures used during recording sessions, and post-recording data processing such

as data segmentation and calibration, are included.

3.1 Subject Requirements

Being able to measure changes in the speech of subjects whose production is affected by a known

cause of hearing-loss would be most useful. For example, cochlear implant subjects offer an excel-

48
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lent opportunity for understanding the relationships between hearing and speech. To commence
analysis of these relationships, it is necessary to acquire one or more subjects exhibiting inter-
esting speech disorders. A small number of subjects of varying speech development backgrounds
may be selected in order to explore different kinds of production variations.

To describe the degree of ‘abnormality’ of disordered speech, or to measure changes that may
occur after some known change in hearing status (cochlear implant activation, for example), it
is first necessary to establish a measure of ‘expected values’ from an analysis of normal speech.
Therefore, ‘normal’ speakers are required so that a reasonable sample of ‘normal’ fricative pro-
ductions can be obtained. A sufficient number of these subjects should be present in order to

gain a coarse measure of typical ranges and variabilities.

3.1.1 Cochlear implant subjects

In order to improve the performance of a cochlear implant, users undergo routine checkups. The
subject’s hearing and speech perception is evaluated, and parameters of the device are often
adjusted. An appointment for hearing evaluation is also usually undertaken prior to implant
insertion. These routine evaluations of hearing and speech perception are also a convenient time

to attempt to measure any changes in the speech production of subjects.

Subjects taking part in routine cochlear implant adjustment procedures at the University of
Southampton Cochlear Implant Centre are readily available test subjects with well-documented
hearing disorders. Of these, two males (MCI-13 and MCI-14) and two females (FCI-15 and
FCI-16) with cochlear implants are used for generating test-data for later measurement. These
subjects were chosen for their different speech and hearing backgrounds, since this should provide
us with data that can be used to test various production description methods.

3.1.1.1 Subject selection

All subjects are English speakers who were classified as having profound deafness prior to im-
plantation. Unless otherwise specified, subjects’ deafness was post-lingual. All subjects were
implanted with Cochlear CIN-24 internal electrode arrays. Specifics about age of implantation
and processing strategies for the individual subjects follow.

Subject MCI-13 was implanted at 66 years of age, using an ESPRIT-24 processor device im-
plementing the SPEAK processing strategy. Speech data for this subject were taken from a

recording one year post implantation.

Subject MCI-14 received a cochlear implant in his left ear at age 66, implementing the SPEAK
strategy on an ESPRIT-24 processor. This subject does not originate from the South of England,
and can be considered to have a slight Northern-regional accent. The data from recordings made

one year post implantation are used for this subject.

Subject FCI-15 lives in the South of England. At age 35 she was fitted with a Nucleus CI24M
in her left ear; (total insertion of the electrode array was achieved). During her initial tuning
week, she tried the CIS and ACE strategies of her ESPRIT-24 speech processor, and received
speech and language therapy for approximately 10 months, after which she changed to using the
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SPEAK speech processing strategy. Data used here are from recordings made at one and two

year post-implantation.

Subject FCI-16 was diagnosed with hearing loss due to neonatal jaundice at 3 years of age, and
hence deafness may be considered pre-lingual. Progressive hearing loss continued until profound
deafness became established at 17 years of age. At this time the subject was fitted with an
ESPRIT-24 processor (SPEAK strategy). This subject has predominantly lived in the South of
England. Data are taken from recordings made one year post implantation.

3.1.1.2 Corpus

Only real words are considered. This effectively eliminates an extra degree of variability in the
interpretation of ‘nonsense’ words by speakers, which are not of interest, and may mask other
variabilities. In particular, from past experience it has been found that subjects with affected
hearing often have much greater difficulty than normal-hearing subjects when faced with the task
of reading a rhyming list of mixed real and nonsense words. It seems that while normal-hearing
subjects are immediately able to see the pattern of similarity in the expected sound for the list of
words, this does not always occur in the speakers with affected hearing. In order for the results
of normal speakers to be comparable with the results of speakers with affected-hearing, a real
word corpus seemed to be the best choice.

The corpus used to evaluate the speech of cochlear implant subjects for this, and other studies,
consisted of the following sections:

e 15 sentences of “It’s a h/V/d again.”, where /V/ € {/i, 1, ¢, &, q, 0, u, u, A, &, 0, €, aj,
aw, ju/}.

e 6 sentences of “It’s a /C/od again.”, where /C/ € {/p, t, k, b, d, g/}.

¢ 15 short sentences.

e The Rainbow passage (Fairbanks 1960).

o 14 lists of common words, each containing approximately 16 words (Parker 1999).

e The Dog and Duck passage (Parker 1999).

o In some cases, a further passage titled “Sue’s Seaside Trip”, which focusses on the subject’s
production of all sibilants, using many words from Parker’s lists.

This corpus was designed to capture a range of different speech characteristics in disordered
speakers. Productions of only a few words from the Parker (1999) word lists were used for the

analysis in Chapter 7.

3.1.2 Normal hearing subjects

We wish to estimate typical fricative production variability within and across vowel contexts for
a number of tokens and speakers. It was decided to limit variability initially by using subjects

of same gender, age range and accent background.
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3.1.2.1 Subject selection

Seven male subjects (M-00 through to M-06), and six female subjects (F-07 through to F-12)
between the ages of 20 and 30 were chosen who all lived in the south of England since birth and
have native British English-speaking parents. One of the male subjects (M-00) whispered most
of the corpus, and so all data for this subject were discarded. Only one subject (M-03) had any
special phonetic knowledge.

The limitations on regional accent were imposed for several reasons. Firstly, since the effects
of vowel context on fricative production is under examination, some control on the vowel con-
text is needed, and this would not be possible if regional accents were included. Additionally,
the cochlear implant subjects have similar regional accent backgrounds, and so this limitation

provides us with good comparative material.

3.1.2.2 Corpus

A sample of speech including fricatives is required in order to allow us to observe the behaviour
of existing characterisation metrics, demonstrate the properties of spectral estimation techniques

when used with fricative signals, and develop new methods of characterisation.

The corpus is designed so that the English voiceless fricatives and voiced fricatives can be stud-
ied in real words containing /V1F Va/ contexts where /F/ € {/{,8,s,[,v,8,2,3/}, /V1/,/V2/ €
{/i,u,5/}. Symmetrical contexts (where V1=V,) could only be found for all fricatives when
V1=Va=/i/. The set of vowel contexts used thus consists of /iFi/, /iFs/, /uFi/, /uFs/, /oFi/
and /oFu/. Only real words were included in the corpus, for the purposes described in §3.1.1.2.
This set of vowel contexts is being referred to when ‘all vowel contexts’ is specified later in the
text. Tables of words in which the desired /VFV/ combinations appear, are given in Appendix A.

The context has been fixed as /V1F Vy/, largely to keep the problem of segmentation consistent.
While it is recognised that fricatives often occur in clusters and other contexts, it is not necessary
to tackle all the issues of segmentation and coarticulation in order to begin work on better

fricative analysis methods.

In order to simulate typical (but not extreme) variations in production, the order of words was
varied. Each page was designed so that a given word will appear both at the start, at the end,
and at every point within a line of words to be read (see Appendix A). The first page of words
was used as a test-page, to familiarise the subjects with the words to come, and also to allow

the recording gain to be adjusted (see §3.2).

3.2 Data acquisition

The following methods of speech recording and analysis were consistently applied for all seventeen

subjects.
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3.2.1 Recording equipment and setup

Recordings were made in a sound-proofed quiet-room. The subject was seated in a chair with
headrest, with a music-stand placed in front of them displaying the corpus. A Briiel & Kjzr
(B&K) 4133 microphone, fitted to a B&K 2639 preamplifier, was held by a floor-stand at a
distance of 1m from (and directed towards) the subject’s mouth. The output of the preamplifier
was fed into a B&K 2636 amplifier, which was set to give a bandpass of 22 Hz to 22kHz. The
output of the amplifier was connected to one channel of a Sony DAT TCD-D7 corder with a
sampling rate of 48 kHz, with 16-bit amplitude resolution. The recording setup is shown in
Figure 3.1. The music stand was positioned underneath the microphone, so as to minimise

m |
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FIGURE 3.1: Recording Setup.

interference with recording. A laryngograph was also used during recording sessions of cochlear
implant subjects. This signal was fed into a separate channel of the DAT, but the laryngograph

data are not used in this work.

For each subject, the B&K 2636 amplifier’s input and output gains (4; and A, respectively)
were both initially set to 20dB. While the subject read the first test-page of corpus, the gain of
the TCD-D7 was adjusted so that levels did not quite reach maximum limits, where the signal
level would become clipped. If the speaker was particularly loud, and the minimum gain on the
DAT was not low enough to prevent signal clipping, the B&K 2636 gain settings were reduced
by 10dB. The subject would then read the entire corpus, page by page. Subjects were instructed
to sit still, and attempt to keep their head in the same position throughout the session.

After the corpus had been read, 30s of ambient noise were recorded. Next, A; and A, were
reduced in (calibrated) levels of 10dB so that the 60s of calibrated 94dB SPL test-tone signal
(produced by B&K 4230 calibrator) was presented to the TCD-D7 at a suitable level. The
test-tone was recorded so that all signals could be calibrated to absolute SPL at a later stage.
Settings of all equipment were noted for each subject to aid calibration procedures.

3.2.2 Data storage and initial segmentation

All data were transmitted to PC hard-disk from the DAT, and stored as WAV-format files. Each
token spoken during the session for each subject was manually edited using Syntrillium’s ‘Cool
Edit 2000’ to a small file containing the fricative and about half of the preceding vowel and of
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FIGURE 3.2: Example of selection of /ifi/ fricative segment from the word ‘beefy’ using Cool
Edit 2000. The dark, ‘inverse’ central block is the selected segment.

the following vowel. This was done to ensure the entire fricative would certainly be captured,
and so that transients occurring at the fricative boundaries could later be studied. It would
also allow some automatic segmentation algorithm to systematically locate a ‘central’ region of
each fricative (by some arbitrary definition), which would allow large volume processing to be

performed automatically.

The ‘spectral view’ was used to determine the approximate location of the centre of the vowels
surrounding the fricative, and save these short /VFV/ segments of data, as indicated in Fig-
ure 3.2. If the vowels were of differing lengths, less of the longer vowel would be included, so
that the fricative remained in the centre of the segment. This procedure was performed for each
of the 1,728 voiceless fricative tokens by all male and female normal-hearing speakers, and also
for some sample tokens from the speakers with cochlear implants.

3.2.3 Data alignment

An automated system was required to capture, and save, a ‘central’ region of each voiceless
fricative of the 1,728 /VFV/ segments of the normal-hearing subjects. These ‘central’ regions of
the fricative can be referred to as fricative ‘tokens’, and are much more straightforward to work

with when large numbers of tokens are being processed.

We define the boundaries of each fricative token as a point where the frication noise becomes
sufficient, compared to the frication occurring in the vowel segments on either side. A suitable
measure of frication noise is straightforward to acquire using the method described by Scully,
Castelli, Brearley, and Shirt (1992), whereby the signal below 3.9 kHz is filtered out, and the

magnitude of the remaining signal is the measure of frication noise.

The frication noise over time ®(n) for each /iFi/ production segment was calculated over N 512-
point (10.6-ms) data windows, advancing by 256 points (5.3 ms) through each /VFV/ segment.
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FIGURE 3.3: Example /asa/ segment from the word ‘parcel’ produced by subject MCI-13. Top
plot shows spectrogram of segment. Bottom plot shows total ‘frication noise’. Vertical lines
are explained in the text.

A typical plot of ®(n) through an /ass/ segment from the word ‘parcel’ produced by subject
MCI-13 is shown in Figure 3.3. The low levels of frication noise at the edges indicate the vowel

regions, and the rise in frication noise is straightforward to see.

The value of maximum frication @,y in the central 30% of each file,

q>(max) (n(max)) = {(I)(n)} (31)

= max
N/3<n<2N/3

was located, where n(max) is the value of n at which this maximum frication occurs. The minimum
values of frication either side of this, were calculated

® (1min) = n<1}rl1(in ){<I>(n)}, (3.2)
®(rmin) = min ){‘I’(n)}- (3.3)

The function ®(n) was stepped through systematically for 1 < » < N. The data for z(n) were
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discarded until
&(n) > 0.5 («1><max) + <1><‘mi“>) . (3.4)

At the value of n where this threshold was exceeded, the ‘start’ of the fricative token was defined.
We continue to step through the data until

&(n) < 0.5 (<1><ma"> + <15<"“i“>) (3.5)

at this value of n the ‘end’ of the fricative token is defined. The vertical bars in Figure 3.3
indicate where the data segmentation has taken place relative to the frication levels over time of
this production. As can be seen, the segmentation procedure works well in this case. In fact, this
data segmentation procedure worked successfully for the large majority of fricative production
of the normal hearing speakers.

Occasionally however, the segmentation routine wrongly locates the start and end points. In
particular, data for the subjects with disordered speech often produce tokens that are not well
suited to this segmentation approach. As an example, consider subject FCI-15, who often forms
complete closure during [s] productions. The frication levels, and automatic segmentation start

and end points for such a production are shown in Figure 3.4.

Results of the automatic segmentation routine were scrutinised, and on the occasions where it
had unsuccessfully located the central fricative region satisfactorily, the start and end points
were defined by hand, attempting to retain the overall segmentation criteria.

The resulting fricative tokens are therefore of a variable length, as expected. In addition, this
segmentation procedure tends to include some of the transition regions, which appear to be
important in the identification of at least some fricatives. In some later chapters, more central
regions of the fricative tokens are required for analysis. In these cases, the central portions of
these fricative tokens are very straightforward to locate automatically and use.

3.2.4 Calibration and filtering procedures

The process for converting the recorded data for each subject into standard units of dB SPL was
largely automated using MatLab 6. Files containing the recording of the 94dB SPL test-tone (we
denote with variable ‘tt’), the ambient noise recording (‘n’), and the speech recording (‘x’) were
loaded. The total B&K 2636 gain set during speech and ambient noise recording (Az[s] + Aol[s]),
and during the calibration test-tone recording (A:[c] + Ao|c]) were noted for every recording
session. The difference (Ai[s] + Ao[s] — (Ai[c] + Ao[c])), was then stored (‘tt_deficit’). The
following operation then took place each time speech data from a specific recording session were

analysed:

%Load relevant files
[n,nfs,nbits]=wavread(’amb_noise.wav’);
[tt,ttfs,ttbits]=wavread(’testtone.wav’,win_len);

tt_deficit=load(’tt_deficit.mat’);
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FIGURE 3.4: Example /asa/ segment from the word ‘parcel’ produced by subject FCI-15. Top
plot shows spectrogram of segment. Bottom plot shows total ‘frication noise’. Complete
closure during the [s] production leads to the segment location method being unable to cope.

%Calibration procedure...
tt=tt* (10~ (tt_deficit/20)); % Convert tt_deficit value from dB
tt_energy=fft(tt,win_len);

%Calculate energy in test tone
tt_psd=2*(abs(tt_energy(l:win_len/2))."2)/(win_len*ttfs);
tt_power=sum(tt_psd);
cal_boost=((10~(94/10))/tt_power)~(1/2); %Boost factor

n=n*cal_boost;
x=x*cal_boost;

test=tt*cal_boost;

The spectrum of the newly ‘calibrated’ test tone could be observed from ‘test’, so that the

expected response to a 94dB signal could be checked. The response calculated using a 512-point
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Modified peficdogram response of 94dB SPL test-tone, N=512
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FIGURE 3.5: Modified periodogram response of 94dB SPL test-tone, N=512.

modified periodogram is shown in Figure 3.5. Note that the peak does not quite reach 94dB
SPL, due to leakage. Multitaper analysis would of course not usually be a suitable method for
measuring the spectrum of such a tone, but in this case it serves as a guide for analysis performed

later.

Filtering was also automatically performed using MatLab 6. In order to attenuate unwanted
low-frequency room noise (that can be seen on spectral plots in Chapter 4) and energy above
20kHz (resulting from the 48-kHz sampling frequency of the DAT), frequency bins outside the
range of interest were discarded. Unless otherwise indicated, all data were filtered to remove
information below 216 Hz and above 20,063 Hz.
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Analysis: spectral estimation of

fricatives

The properties of each of the spectral estimation methods described in §2.2 are now explored
from a practical perspective. Recorded acoustical speech data of subjects M-01-M-06 are used
for this purpose, so that only normal characteristics of each spectral estimation method will be

present.

We examine the assumptions upon which the various averaging techniques discussed in Chapter 2
are based. The problems encountered when these assumptions break down are demonstrated, and
commonly seen features in spectral estimates and spectrograms are shown to often be artifacts

of the estimation technique.

Finally, recommendations for the spectral analysis of fricatives are discussed, based on the ob-

servations presented.

4.1 The first estimate

Figure 4.1 is the power spectral estimate calculated from a 512-point rectangular window placed
in approximately the centre of the fricative /s/ in the word “fleecy” spoken by subject M-04.

As shown in §2.2.1.3, this estimate of the spectrum is biased and has a large variance. The bias
is due to the large side-lobe leakage that occurs when using a rectangular window, so that the
relatively high energy densities in the lower frequency regions of the signal leak into neighbouring
regions. This gives the impression of greater energy than actually exists in regions where the

energy content is actually low.

4.1.1 Reducing side-lobe leakage: the modified periodogram

This bias is reduced significantly by multiplying the original data by a window that has a response
with attenuated side-lobes. A commonly used family of windows are Blackman-Tukey windows

58
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Periodogram spectral estimate /s/ from "fleecy”, subject 4
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FIGURE 4.1: Periodogram spectral estimate using using 10.6-ms (512-point) Daniell window
from centre of [s| from production of “fleecy” by subject M-04. Dotted line indicates ambient
noise.

Ak) = 1 —2r+ 2rcos(wk /M) for |k| < M, and 0 otherwise, where setting r = 0.25 results in
the Hanning window, and r = 0.23 the Hamming window. Figure 4.2 shows the power spectral
density estimate of the same data windowed with the Hanning window, superimposed onto the
previous estimate. Notice that the energy trough in the 100-Hz-1.5-kHz frequency region has
dropped significantly in energy (presumably towards the underlying values). Originally these
would have been biased by the leakage from the large-valued peak at 2kHz.

This new estimate, having improved bias properties, is commonly used in speech analysis {(e.g.
O’Shaughnessy 1987). Yet as mentioned in §2.2.1.3, if the signal under analysis is a fricative, then
the process must be considered stochastic, and so the variance of this estimate is still large. This
variance can be demonstrated by superimposing a 95% confidence interval on a periodogram
spectral estimate. Figure 4.3 shows a modified spectrogram of a 512-point section from the
centre of [f] in a production by subject M2 of the word “beefy”, with 95% confidence bounds.
Considering the possible values from one frequency to the next, there are often large overlaps in
the frequency response, so it is quite reasonable to assume that, where daG /df is positive at some
f = fn, dG/df may in fact be negative at this frequency. This combines with the effect near
peaks of very large variance in the estimate, to make locating maxima and minima from this
estimate subject to large error. This in turn means that searching of peaks and troughs is error
prone. Since a common aim in speech research is to locate peaks that may result from one or
more poles in the vocal tract, and in the case of fricatives, the location of troughs resulting from
zeros caused by antiresonances, an estimate with large variance is of questionable usefulness in

these areas.
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Modified periodogram spectral estimate /s/ from "fleecy”, subject 4
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FIGURE 4.2: Modified periodogram spectral estimate using 10.6-ms (512-point) Hanning win-
dow, superimposed on unmodified periodogram (dashed). Taken from centre of [s] from pro-
duction of “fleecy” by subject M-04. Dotted line indicates ambient noise.

Another important aspect of speech is the way in which the signal properties change over time,
due to the constantly changing nature of the production system. Indeed, a common theory is that
much of the information in speech is contained within the change in signal rather than the signal
itself. It is therefore useful to be able to track changes over time of the underlying production
mechanism from changes in the resulting acoustical signal properties over time. Commonly
the peaks in speech spectra can be tracked, and the orientation of the production mechanism
determines the position of these. It should also be possible to track the changes in orientation
of the production mechanism during fricative production from the signal spectra so that, for
example, it can be determined at which points in the production of the fricative the mechanisms
are stationary, and at which points they are subject to more rapid change. In order to do this,
the spectrum is computed from one time interval to the next. However, due to the large variance
associated with this first estimate, changes in the spectrum that are comparable in size to the
(considerable) variance of the estimate are impossible to recognise: the variance of the estimate
overwhelms changes in the underlying system spectrum.

4.1.2 Estimate variance: white dots in the spectrogram

Again referring to Figure 4.3, note that some estimates of the spectrum that have a large negative
deviation appear as particularly deep spikes up to about 20dB in size. There seem to be no similar
positive spikes however. From the equations governing the estimate variance, both large positive
and large negative errors may be expected.
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Modified spectrogram spectral estimate £/ from "beefy", subject 2
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FIGURE 4.3: Modified periodogram spectral estimate with 95% confidence bounds. 10.6-ms

Hanning-windowed section taken from centre of [f] from production of “beefy” by subject
M-02.

In fact, the presence of these severe negative spikes is a result of the common practice of using
a logarithmic scale when displaying power spectra. They give the spectral estimate a certain

‘asymmetrical spiky’ appearance. These spikes show up as undesirable artifacts in generated
spectrograms.

Spectrograms are formed by calculating spectral estimates at incremental periods over an acous-
tical signal. In speech the spectrogram has become a powerful tool that allows a good visual
representation of formants and speech dynamics. During fricative segments, the spectral esti-
mates that are used to form the spectrogram are subject to increased variance, and as a result,
the aforementioned large negative spikes appear. A common practice to increase the clarity of
spectrograms is to define some baseline power value that will be set as white, use the maximum
power value to define black, and use linear grey scale between these values. The baseline is usu-
ally set high enough that it intersects with the large negative spikes (as it usually is), so that the

resulting spectrogram is peppered with white dots, as demonstrated in the typical spectrogram
shown in Figure 4.4.

In order to resolve these issues, some method of reducing the variance of estimates is required.
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Periodogram spectrogram: fleecy3, subject5
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FIGURE 4.4: Spectrogram of [isi] production from ‘fleecy’ by subject M5. N = 512, overlap=
480. Notice the appearance of white dots in the fricative portion.

4.2 Time-averaging and fricative stationarity

As mentioned in §2.2.2.2, a common method used to reduce the estimate variance of a stationary
process is to average the spectra calculated at several different times during a stationary portion

of the stochastic signal. In speech analysis, this process presents several limitations.

Firstly, it requires that some portion of the fricative of interest is stationary. If it was known a
priori that this assumption holds, then a much improved estimate could be assured. However,
in trying to ascertain which parts of the fricative are stationary, and which are not, a spectral
estimate with small variance of each segment is required. A time-averaged estimate formed over
a non-stationary region of the process will give spurious results, from which little can be deduced
with assurance.

What may be expected in a time-averaged spectral estimate formed over non-stationary data?
Consider the position of a distinctive spectral peak. If this peak maintains amplitude but changes
frequency smoothly over the course of the time-averaging period, this would be represented as
a single broad energy band at somewhat lower magnitude. Indeed, it may not be recognisable
as a peak at all. Alternatively, if the peak ‘jumps’ from one frequency to another, this will
be represented as a double-peak. Of course, any actual broad energy band in the underlying
system will appear in the estimate as a broad energy band, while any actual double-peak will also
produce a double-peak in the spectrum. These qualities of the time-averaged spectral estimate
make it particularly difficult to interpret over sections of data that are suspected to contain
non-stationary components, or equally over data that are of unknown stationarity.



Chapter 4 Analysis: spectral estimation of fricatives

63
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FIGURE 4.5: Time-averaged spectral estimates using 6 non-overlapping 512-point (10.6-ms)
windows positioned approximately mid-fricative. (a) [J] from centre of “quichey”. (b) [s] from
centre of “fleecy”. (c) [0] from centre of “teethy”. (d) [f] from centre of “beefy” produced by
M-01.

The spectral estimates shown in Figure 4.5 serve to highlight some of the potential uncertainties
that are faced when interpreting the results of time-averaging. The large number of peaks that
appear must now be interpreted as positions of the peaks over the averaging interval. As an
example, consider the time-averaged spectral estimate shown in Figure 4.5.a, which has been
generated by averaging 6 adjacent Hanning windowed segments of data in the middle of the
fricative /[/ in the word ‘quichey’, produced by subject M-01. The first clue that this estimate
is unusual is the appearance of a double-peak at approximately 2.2 kHz. We may postulate that
this double peak is in fact the time-averaged representation of a single peak that has moved over
the time-averaging interval. Conversely, the strong peak around 2kHz in the spectral estimate of
/s/ from ‘fleecy’ in Figure 4.5.b, strongly suggests the position of a resonant frequency, although
any amplitude changes that occurred have been averaged. Similar occurrences can be seen in the
last two spectra of Figure 4.5. In §4.5.1 it is demonstrated that the ‘ghost’ peak just below the
main peak at 2kHz in Figure 4.5.d is actually due to a spectral peak that increases in frequency
and amplitude during the course of the time-average.

The central region of the fricative is usually selected for calculating a time-averaged estimate,
since it has been supposed that this is the region of greatest stationarity. However, the degree of
stationarity in this region must be evaluated thoroughly. For the task of determining which parts
of the fricative are stationary, some other method of minimising the estimate variance must be

used.
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In regions of the signal that are known to be non-stationary, such as vowel-fricative boundaries,

this method of spectral estimation is particularly inappropriate.

Overall, then, time-averaging is limited where the stationarity of a signal has not yet been
established, or where one wishes to explore the non-stationary aspects of a signal.

4.3 Ensemble averaging and ergodicity

One commonly employed method for reducing the estimate variance which attempts to overcome
some of the problems of time-averaging is the ensemble average. In order for ensemble averaging
to function as shown in §2.2.2.1, several realisations of the ergodic random process under ex-
amination are required. Since each of these is assumed to be generated by the same underlying
process, a better estimate of this process may be obtained.

In terms of speech, for ensemble averaging to work successfully requires that a speaker is able
to consistently produce the same signal using precisely the same motions of production on each
realisation. Again the paradoxical situation arises where it is impossible to measure whether the
production mechanism for fricative production is ergodic without a small-variance estimate of
each realisation. Indeed, of considerable interest is a means of measuring the variations between
productions, but this is not possible using ensemble-averaging, since it relies upon the assumption

that all productions are identically produced.

Another difficulty that arises in forming ensemble-averaged estimates is that of identifying equiv-
alent events in two separate fricative productions. Unfortunately, the start and end points of a
fricative are ill-defined. Any definition for these points must be anchored to some known specific

event in the production mechanism for the process.

Figure 4.6 shows time-plots of six productions of /ifi/ from the word ‘quichey’ by subject M-06,
on identical time and amplitude scales. It can be seen by eye that these fricative productions
are of varying duration. This is not a rigourous analysis. However, the fact remains: no matter
what definition of duration is defined, each of the above productions will be of different length.
This at once suggests that the production mechanism — at least for this speaker producing this

fricative — is non-ergodic.

A typical procedure for generating an ensemble average is demonstrated by Shadle, Moulinier,
Dobelke, and Scully (1992). ‘Start’ and ‘end’ event labels are defined using the vowel-fricative
transition, and fricative-vowel transition. Other methods incorporate use of an electromyogram
(EMG) across the larynx to more accurately determine voicing onset and offset positions. Since
the time intervals between these event labels are subject to some variation, a system of ‘temporal
warping’ is needed to make the durations uniform, so that ‘events’ across productions can be
located. Of course, such ‘temporal warping’ must be rather an arbitrary stage, and so must he

treated as liable to produce misinformation.

An ensemble-averaged spectral estimate formed from central fricative portions of [f] from six
productions of ‘quichey’ by subject M-01 is shown in Figure 4.7, along with the ensemblec-
averaged spectra for three other unvoiced fricatives by this subject.
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FIGURE 4.6: /'ifi/ from six “quichey” productions, subject M-06.
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FIGURE 4.7: Ensemble-average spectral estimates using 6 windows from centre of separate

fricative productions. (a) [[] from centre of “quichey”. (b)
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A comparison of these ensemble-averaged spectra, with those formed by time-averaging in fig-
ure4.5 certainly shows similarities in terms of overall energy distribution. However, a closer
examination reveals that some of the most striking features of these spectra are not present in
both estimates.

For example, while the time-averaged spectrum for /6/ in Figure 4.5.c shows two distinctive
peaks at approximately 2 kHz and 3 kHz, for the ensemble-averaged case in figure4.7.c, the peak
at 3kHz has been obliterated. In the time-averaged estimate for /f/ in Figure 4.5.d, a double
peak is the prominent feature around 2kHz, but for the ensemble-averaged case in Figure 4.7.d,
the double peak has also disappeared. The main peak magnitudes for /s/ and /[/ in these two
sets of plots also display contradictory information. For example, the 33dB peak at around 2 kHz
in Figure 4.5.b has fallen to around 28dB in the ensemble average in Figure 4.7.b, and a new
‘peak’ at around 26dB has appeared in the 11.5-kHz region, where the time-averaged estimate
showed a 19dB falling slope.

This is sufficient demonstration that observations based on estimates relying on assumptions
that have not been proven, and may not hold well, may be misleading if interpreted without due

consideration.

Finally, the practical value of ensemble averaging in situations where a particular production
needs to be analysed is greatly limited. Only under considerably controlled circumstances can
anything approaching a reliable ensemble be gathered. When studying the pathological speech of
speakers who may have especially large variation in production, the method is almost impossible

to use.

4.4 Properties of frequency-smoothed estimates

The simple method of frequency smoothing described in §2.2.2.3 has the attractive properties
that it does not rely upon assumptions of ergodicity or stationarity, but rather of the underlying
spectral shape itself. For a perfectly white spectrum, its ability to reduce the estimate variance
is flawless. For non-white spectra, it presents a simple tradeoff between variance and local bias.

Specifically, if the spectral window to be convolved with the spectrum is too small, the variance
will not be reduced sufficiently, and will remain unmanageably large. If the spectral window is
too wide, local bias dominates: regions of the underlying spectrum with large first differential
will be flattened, and peaks in the spectrum will lose their height, and gain width. Features lose
their definition.

So how is the spectral window’s shape and size determined? To answer this, knowledge of the
underlying spectral shape is required, and again the paradox arises. This time, knowledge of the
physical system may guide the choice.

Many of the considerations and aspects concerning the implementation of frequency-smoothing
are given in the next section on multitaper analysis. For now, consider that the best bandwidth
resolution (but highest variance of the estimate) that can be obtained using a sampling rate of
48kHz, and 512-point data windows is Af = 93.75 Hz. The overlaid spectral estimates in fig-
ures 4.8 and 4.9 have been generated using rectangular spectral windows of M = {2, 4,8, 16, 32}
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FIGURE 4.8: Frequency-smoothed spectral estimates using Daniell frequency windows from
centre of (0] in production of ‘teethy’ by subject M-03, for M = {2,4,8} (top) and M =
{8,16,32} (bottom). Note that as a result of the frequency smoothing process, the very low
frequencies cannot be shown. This effect also occurs at the high frequency end of analysis (up

to 24 kHz), but the graph has been cut off at 20 kHz.

(bandwidths of 188, 375, 750, 1500 and 3000 Hz respectively). For small M, the variance domi-
nates; for large M, the spectrum loses its shape. How the optimal value for M will be decided

is discussed in more detail shortly.

4.5 Benefits of multitaper analysis

As shown in §2.2.3, multitaper analysis is the optimal method of obtaining a reduced-variance
estimate where a single short realisation of a stochastic process is required. It makes use of
a larger amount of the original data, without introducing bias, while reducing the estimate
variance by optimal use of an advanced form of frequency smoothing. The final representation is
of tremendous value where accurate measurement of the spectrum within well-defined frequency-

limits is required.
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FIGURE 4.9: Frequency-smoothed spectral estimates using Daniell frequency windows from
centre of [s] in production of ‘fleecy’ by subject M-03, for M = {2,4,8} (top) and M =
{8,16, 32} (bottom).

4.5.1 Reduced variance spectral estimates

Recall the estimate calculated using a modified periodogram in §4.1, shown in Figure 4.3. Using
the same data, but analysing with the multitaper technique (10.6-ms, 512-point data windows,
NW = 4) gives us the spectral estimate in Figure 4.10. Note that the 95% confidence interval
is greatly reduced from that of Figure 4.3. Also notice the apparently sharp spectral peaks and
troughs that have not been blunted by too-severe frequency smoothing.

A result of this reduced-variance spectral estimate is that actual changes in the underlying system
(that were previously swamped by the variance of the estimate) can now be measured. As an
example, it can be used to illustrate the change in peak position over time that we postulated
was the cause of the double-peak in Figure 4.5.d (see §4.2).

Figure 4.11 shows multitaper spectral estimates of the six adjacent 10.6-ms windows that were
used to form the ensemble averaged estimate in Figure 4.5. While appearing rather cluttered,
the plot clearly shows the gradual change over time in the frequency and amplitude of the peak
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FIGURE 4.10: Multitaper spectral estimate (solid) with 95% confidence bounds (dashed).
Taken from 10.6 ms in centre of [f] from production of “beefy” by subject M-02 (cf. Figure 4.3).

around 2 kHz. Such variations need to be studied, but have previously been ignored as a result
of time-averaging. This example suggests how much variation might typically be expected over
a 64-ms interval of a fricative. It also highlights how much of this variation has been previously
swamped by the high variance in poor spectral estimates, and not captured by broad measures
such as spectral moments.

4.5.2 Comparison to frequency smoothing

In §2.2.3 it was shown that the power frequency response for the combined multitaper transform
is a wide, flat-topped main-lobe with small trailing side-lobes. It was demonstrated that a similar
response is obtained by convolving the power frequency response of say, a Hanning window with
a rectangular frequency window: essentially the process undertaken during frequency smoothing.

A comparison can now be made between multitaper estimation and frequency smoothing. Since
the multitaper estimate makes use of a larger proportion of data within each window, and since
the prolate spheroidal sequences are optimal at maximising energy while minimising bandwidth,
the multitaper estimate should always be considered the best estimate where frequency tradeoff
methods are being compared.

Spectra from central /[/ and /s/ spectra are shown in figures 4.12 and 4.13, for smoothed
periodogram spectra for M = {2,4,8}, and in the larger figures 4.14 and 4.15 for M = 6,
superimposed on multitaper spectra with NW bandwidth product of 4. An approximation to
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FIGURE 4.11: Superimposed multitaper spectral estimates over 6 adjacent 10.6-ms time win-
dows, from /f/ in ‘beefy’, subject M-01. These same data windows were used to form the
time-averaged estimate in Figure 4.5.d. Note the change over time of the main peak at around
2kHz.

the main lobe of the response of combined multitaper analysis with NW = 4 bandwidth product
is to set M = 4 in the convolution of the modified periodogram spectrum with a Daniell window.
The resolution of the spectrum without smoothing is f;/512 = 94 Hz. With M = 4 smoothing,
this resolution is reduced to M f;/512 = 375 Hz. While the responses look similar in terms of
their main-lobe widths, the multitaper analysis reduces the variance by a factor of nearly 7, while
frequency smoothing with M = 4 will only reduce the variance by a factor of 4 in regions of the
underlying spectrum that are flat. This explains why many regions of the frequency-smoothed
estimates in figures 4.12.b and 4.13.b still appear more ‘spiky’ than the multitaper estimates,
despite having similar resolutions.

Setting M = 6 (as demonstrated in figures 4.14 and 4.15) in the frequency-smoothed spectrum
apparently provides a closer estimate to that of the multitaper spectrogram (and, we assert, to
the true spectrum). However, a few points are worth mentioning. Firstly, the increase in M
means an increase in the main lobe width, and this results in a further reduction in the spectral
resolution to M f;/512 = 563 Hz. This means that two frequency points that lie closer together
than this are heavily correlated, and cannot be used reliably.

Secondly, the local bias is increased. The M = 6 smoothed spectrum generates a better approx-
imation to the multitaper spectrum in the main peak of Figure 4.14 by reducing large variances
in this region. However, a problem arises in using a fixed value of M, which may give a good
spectral estimate for one segment of data, but may not be the best choice for another. This can
be demonstrated by considering the suppression of the small energy peak around 3kHz in figures
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FIGURE 4.12: Multitaper spectral estimates with frequency-smoothed estimates superimposed

for M = {2, 4,8} for (a), (b) and (c) respectively. 10.6-ms section taken from centre of [f] from
production of “quichey” by subject M-02.
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FIGURE 4.13: Multitaper spectral estimates with frequency-smoothed estimates superimposed
for M = {2, 4,8} for (a), (b) and (c) respectively. 10.6-ms section taken from centre of [s] from
production of “fleecy” by subject M-02.
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FIGURE 4.14: Multitaper spectral estimates with frequency-smoothed estimates superimposed
for M = 6. 10.6-ms section taken from centre of [[] from production of “quichey” by subject
M-02.

4.13.b and 4.15.

Further increasing the size of the rectangular frequency window to M = 10 results in an estimate
that is starting to seriously bias spectral features.

4.5.3 The multitaper spectrogram

Multitaper spectral estimates have been shown to be very reliable by minimising estimate vari-
ance, while maintaining low local bias (compared to other frequency-smoothing methods), and
without relying upon assumptions of ergodicity or stationarity.

Unlike ensemble-averaged, or time-averaged spectral estimates, multitaper estimates can be used
in the construction of spectrograms. Such a spectrogram has been constructed for the same data-
set as that used to generate Figure 4.4, and is shown in Figure 4.16.

At once the differences between these two interpretations of the same data can be assessed. The
large variance of the original estimate gives the fricative portion a coarse appearance, while the
multitaper estimate is far more ‘predictable’. Indeed, the new representation is the one desired,
since it reflects the fact that the underlying production mechanism is not varying rapidly, but is
smooth.

Consider now the representation by this multitaper spectrogram of the vowel structure on either
side of the central fricative. A result of the spectral smoothing is that the very fine formant
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FIGURE 4.15: Multitaper spectral estimates with frequency-smoothed estimates superimposed
for M = 6. 10.6-ms section taken from centre of [s] from production of “fleecy” by subject
M-02.

structure of the vowels on either side of the fricative has lost its definition. This is strong
demonstration that the multitaper technique, while well-suited to fricative analysis, is the in-
correct choice for analysing vowels. The computations within the multitaper procedure are
completely unnecessary for the study of deterministic and pseudo-deterministic signals such as
vowels: no extra information is acquired, and spectral resolution is lost.

Spectrograms constructed using multitaper spectral estimates, are presented for all voiceless
fricative productions from the normal-hearing speakers, in Appendix B. These spectrograms
include information up to 20 kHz, and demonstrate the large variations that exist across tokens.

4.6 Summary

The estimates commonly used in the literature are subject to large variances, which can obscure
spectral features, and present difficulties for peak-tracking.

The methods for attempting to reduce estimate variance have been shown to sometimes be
problematic, and cause limitations in the aspects of data that can be analysed: time-averaging
prevents changes over time from being measured, while ensemble-averaging prevents changes
over production from being measured.

Multitaper analysis allows a reduced-variance spectral estimate for a single window of fricative

data to be generated, by making use of more information than a single periodogram, and repre-
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FIGURE 4.16: Multitaper spectrogram of [isi] production from ‘fleecy’ by subject M-05. N =
512, overlap= 480 (cf. standard spectrogram in Figure 4.4).

senting this at an optimal resolution by maximising the energy while minimising the bandwidth.
While frequency smoothing often produces comparatively similar results, it does not do so in a
reliable manner. That is, the best results from frequency-smoothing come after M has been ad-
justed with reference to the multitaper spectral estimate. Even so, the multitaper spectrograms
excel where short windows of time-series data are to be examined, since a greater proportion of
data are incorporated into the estimate.

Since multitaper analysis does not rely upon assumptions of stationarity, it is now possible to
study with greater accuracy changes in the spectrum over time. Because no ensemble-averaging
takes place, differences between productions can be studied. These features are of great value,
and are investigated in detail in Chapter 6.



Chapter 5

Analysis: spectral moments

Spectral moments have become one of the most popular methods for characterising fricative
productions. They have been used to measure differences in productions of the same fricative
across and within subjects. They have been found to be beneficial in comparisons of normal and
disordered speech, and also for measuring changes in disordered production that may occur over
long periods of time after the hearing system has been significantly changed.

However, in some instances they have been found to produce inconclusive results. Their ability
to discriminate between the voiceless sibilants has generally been found to be good; however,
they have so far not been able to distinguish the non-sibilant voiceless fricatives.

The performance of spectral moments is examined. Several parameters that have up until now
been chosen rather arbitrarily, are considered. Adjustments that may result in small improve-
ments in the performance of spectral moments are presented in §5.1.

It has often been considered that significant cues may lie in the spectral changes that occur over
time. Tracking the changes in spectral moments of fricative productions over time has been
attempted in a few places in the literature. Typical variations over time of spectral moments are
examined in §5.2.

Finally, a discussion of the findings is presented.

5.1 Adjustments to spectral moments

A number of parameters inherent in the spectral moment methodology require careful consid-
eration. These parameters can generally be chosen arbitrarily, and still produce an apparently
satisfactory set of results. However, by more careful consideration of these parameters, it may

be possible to improve the performance of spectral moments somewhat.

Two main criteria are open to improvement. Spectral moments are employed to capture the shape
of a spectral distribution. Each moment describes a particular characteristic of a distribution,
and if the methodology has been properly optimised, each moment should be sensitive to a single
aspect of the spectral shape; moreover, correlation across the moments should be minimised. This

76
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Multitaper Periodogram
Centroid 7.8 x 10°Hz 7.5 x 10°Hz
Variance 24.9 x 10°Hz> 23.5 x 10Hz?
Skewness 73.2 x 10°Hz® 75.5 x 109Hz?
Kurtosis | —318.4 x 10'2Hz? | —193.2 x 10'2Hz*

TABLE 5.1: Moments generated from multitaper and periodogram spectra of example [f] token.

is achieved by ensuring that the distribution to be characterised by spectral moments is almost
Gaussian. If the distribution does not resemble a Gaussian distribution, then the moments will
become less sensitive to spectral shape, and more highly correlated to each other. The closer
the distributions are to Gaussians, the better the spectral moments will perform, and hence the
better their distinguishing capabilities.

All spectral moments are calculated from a single 10.6-ms mid-fricative data window, unless
otherwise stated. The term ‘fricative token’ is used to mean a single, mid-fricative 10.6-ms data

window.

5.1.1 Spectral moments of multitaper spectra

Spectral moments have until now used modified periodogram spectral estimates over some por-
tion of the fricative under examination. It is known that the spectral estimates resulting from
a simple modified periodogram are subject to large variance error. In some instances, time or
ensemble averaging techniques have been used in attempts to reduce these errors. However,
it remains unclear as to whether fricative production satisfies the conditions necessary for the

averaging techniques to produce reliable, informative results.

Multitaper analysis produces consistent spectral estimates, with reduced variance error. These
spectral estimates can therefore be used to calculate the spectral moments

Keeping all other factors constant, the spectral moments calculated from each type of spectral
estimate are compared. Frequency scales are up to 20kHz unless otherwise stated. As a first
example, consider the centre of an [[] token in an /ifi/ context. Periodogram, and multitaper
spectral estimates for such a token, from male subject M-02 are shown in Figure 5.1. The
moments calculated from the multitaper spectrum and from the periodogram spectrum are
shown in table 5.1.

We first note that the minimum values in the periodogram spectral estimate lie within only a
few decibels of —20dB SPL/Hz, meaning that, at least for this token, the zero reference should
not be set higher than about —20dB SPL/Hz. The multitaper spectrum however, shows that
the zero reference could be set substantially higher, around —5dB SPL/Hz, without any clipping
of the spectrum occurring. Setting the zero reference is discussed more fully in §5.1.3.

The Gram-Charlier distributions also indicate which features of the spectrum the spectral mo-
ments are most sensitive to: the broad peak position, and the fall-off of the tails have influenced
the moments strongly, but the finer spectral peaks shown most clearly by the multitaper spec-
trum at around 4kHz and 7 kHz have not had much ‘influence’.
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FIGURE 5.1: 512-point modified periodogram (top) and multitaper (bottom) spectral estimates
from centre of [f] in /ifi/, left, and right, normalised and with Gram-Charlier distribution
(smooth curve) from corresponding spectral moments calculated with —10dB SPL/Hz zero-
reference, and 216 Hz—20 kHz frequency range. Dotted lines on left show ambient room noise.

Comparing the moments (given in table 5.1) from the multitaper spectrum to those calculated
using the periodogram spectrum, it can be seen that the low-order moments are fairly similar,
and this is reflected in the similar Gram-Charlier reconstructed distributions. This is to be ex-
pected, since they are basically averaging operators over the whole spectrum, so that individual
estimation errors are ‘smoothed’ out. This makes the low-order spectral moments good descrip-
tors of spectral distributions with large variance across their frequency range, and so are quite
well-suited to the task of describing spectra calculated from crude estimates.

The skewness operator is simply a measure of which side of the spectrum has greater mean
energy, and so can also be expected to give similar results. However, for the fourth-moment,
(and for higher-order moments), small variations in the tails of the distribution will become
exaggerated. Since the errors in the tails of the periodogram spectrum are much greater than
for the multitaper spectrum, larger variations of values for these high-order moments would be
expected.

We wish to examine how significant the variations due to spectral error variance in calculated
spectral moments are, compared to typical variations across productions. Figure 5.2 compares
the 3rd and 4th spectral moments calculated from periodogram, and multitaper spectral esti-
mates. Each set of moments is calculated from a single 10.6-ms mid-fricative data segment. The
voiceless sibilants, in all vowel contexts, as produced by all male subjects, are presented. Blue
plus-signs indicate /s/, red circles /f/. Figure 5.2 suggests that the improved multitaper spectral
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FIGURE 5.2: 3rd and 4th moments calculated for male [s] (blue plus-signs) and [J] (red circles)
mid-fricative spectra. Calculated using periodogram (top), and multitaper (bottom) spectral
estimates, r,=—20dB SPL/Hz.

estimate does not alter the calculated spectral moments greatly. On the occasions when it does,
the effect is usually to bring outliers closer to the mean group value. Closer analysis reveals that
the most extreme outliers are caused by spectra which exist below the set zero reference at some
frequencies; the reduced variance of the multitaper estimates means this is less common, and so
the moments become slightly more stable.

Using multitaper spectral estimates to calculate spectral moments means that the zero reference
can potentially be set higher, thus increasing the sensitivity of the spectral moments, while
reducing moment variations due to error in the spectral estimate. In §5.1.3 the effects of varying
the zero reference prior to calculation of spectral moments are explored.

5.1.2 Appropriate frequency-range selection

Fricative studies have traditionally focussed on frequencies below about 10kHz. There have
been a number of motivational reasons for limiting the frequency analysis methods to around
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half the human perceptual range. Certainly it is well established that human perception of
fricatives remains high when the signal above, say, 8kHz is filtered out; hence, limiting the
search for primary discriminatory cues to this frequency scale seems justifiable. Nevertheless,
studies have shown that perception cues exist well above 8 kHz (Lippmann 1996), suggesting
that the production mechanism is generating cues at higher frequencies.

In the fricative perception analysis of cochlear implant users, who generally can only make use
of information up to a maximum of around 5kHz, comparisons to perceptual capabilities of
normal-hearing subjects presented with similar frequency-limited signals is clearly warranted.
However, when studying the production of fricatives by such subjects, there is no reason not to
suspect changes in the higher frequency regions of the signals, where potential cues may lie, and
which may indicate subtle changes in production.

Analysis of fricative production should not begin by discarding information at frequencies that
are not often required for good perception classification. Indeed, some interesting production
characteristics can be quickly observed by considering just a few multitaper spectra of typical

fricative productions.

An example mid-vowel spectrum of [i] from a production of the word “beefy” is presented in
Figure 5.3 (top). Note that energy at all frequencies, including those above 11kHz, is at least
10dB above ambient room noise, and has a mean of approximately 5dB SPL/Hz in the 10-20-
kHz frequency range, indicating that indeed, the production mechanism is producing energy in
the higher frequency ranges.

The middle plot in Figure 5.3 shows the mid-fricative [f] spectrum of the same production. It
is not difficult to notice that the large proportion of energy in this fricative occurs above 6 kHz,
at a mean level of approximately 18dB SPL/Hz in the 6-20-kHz frequency range. Significantly,
these energy levels are also greater than for the vowel spectrum, suggesting that this is possibly
an important aspect of the fricative production.

Finally, the bottom plot in Figure 5.3 shows a spectral slice on the [fi] fricative-vowel boundary,
where the energy has dropped in the high-frequency range to lower levels than any other point
during vowel or fricative production, almost dropping to ambient room noise levels above 11 kHz.
This short temporal occurrence may also reflect another cue characteristic of the fricative, that
could only be captured if the frequency range used is great enough.

Using data from all male subjects, the effects of varying frequency range on spectral moment
sensitivity is demonstrated in Figure 5.4. The first and second spectral moments for all voiceless
fricatives in all vowel contexts as produced by all male subjects are presented.

It is inevitable that we will occasionally need to quantify the ‘separation’ of such multivariate
fricative clusters. This will clarify any degree of improvement in fricative cluster separability
when using different descriptive parameters. Tests of certainty that distributions have different
means (such as p-tests) are insufficient for the purposes of describing the degree by which two
clusters of tokens are separated. A more suitable method for quantifying the separation of two

clusters is Fisher’s linear discriminant, given

_ (1 —p2)-d
J= dT-(Vi+VW,)-d (5.1)
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FIGURE 5.3: Mid-vowel [i] spectrum (top), mid-fricative [f] spectrum (middle), and [fi]
fricative-vowel boundary spectrum (bottom), 10.6-ms data windows from a single production
of “beefy”, subject M-01. Dotted line is ambient room noise.
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FIGURE 5.4: Spectral moments of all voiceless fricatives in all contexts across all male subjects;
calculated from single, mid-fricative 512-point multitaper estimates using 216 Hz—20 kHz range
(top), and 216 Hz-10kHz range (bottom), r,=—20dB SPL/Hz. Legend: [s] (blue plus-signs);
[/1 (red circles); [f] (green crosses); [0] (black dots).

where p1 and po are the means of each fricative cluster, V5 and V3 are the covariance matrices
of each fricative cluster, and d is the direction vector between the two clusters. The value
J represents the distance between the two clusters, in terms of the variances of each cluster.
Generally a value of J 2 4 indicates that the clusters are well separated, while values of J < 2
indicates that the clusters are well within two standard deviations of each other, and hence are
likely to be overlapping.

Returning to Figure 5.4, notice that when the 20-kHz frequency range is used, the first and
second spectral moments appear to be weakly correlated (C' = 0.58, where C' is the coefficient of
correlation). The effect of reducing the frequency range from 20 kHz to 10 kHz is more distinct
however, and of importance is the reduction in correlation of first and second spectral moments
(to C = —0.22). The separation of the sibilant clusters has also increased from J = 3.19 to
J = 3.94. This slight reduction in the apparent correlation between the first two moments, has
resulted from a rather arbitrary change in frequency range selection. Knowledge of expected
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FIGURE 5.5: Plots of 1st (left) and 2nd (right) spectral moments against total spectrum am-
plitude. All voiceless fricatives, all contexts, all male subjects. Calculated from multitaper
spectra over 0-20kHz (top) and 0-10kHz (bottom). r.=-20dB SPL/Hz. Legend: [s] (blue
plus-signs); [f] (red circles); [f] (green crosses); [6] (black dots).

production spectra has not been used in determining an optimal frequency scale. In fact, the
reduced correlation of the lower plot partially results from a reduced sensitivity of the spectral
moments. The reduction in frequency scale has not been accompanied by a suitable change in
zero reference, and so the ‘tails’ of the spectral distributions are generally higher than for the
0-20-kHz frequency range. Spectral moments will be insensitive to changes in distributions with
high tails, and so changes in frequency range selection must be accompanied by careful selection
of the zero reference.

Another correlation can be seen by plotting the first and second spectral moments against total
spectrum magnitude before normalisation. Figure 5.5 demonstrates these correlations for 0—-20-
kHz, and a 0-10-kHz frequency ranges. Notice the moderate correlation of the first moment
to total spectral amplitude (C' = 0.56 for the 0-20-kHz range, and C = 0.61 for the 0-10-kHz
range). Of course, this is to be expected, due to the fixed nature of power normalisation. As the
overall intensity of the fricative increases, the spectral shape moves up the y-axis, further from the
zero reference. After normalisation, the higher distributions will thus inevitably appear ‘flatter’.
Since /s/ spectra generally have significantly more energy at lower frequencies, the normalisation
process will effectively redistribute the energy of louder productions to the right, and hence the
first moments of /s/ are particularly correlated. The second moments are loosely negatively
correlated when the 0-10-kHz frequency range is used (C' = —0.64), although very little overall
correlation is found in the second moments when using the 0-20-kHz range (C = —0.05).
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It may be that correlations exist between the spectral shape of a fricative, and its total spectral
amplitude. However, it is almost impossible to determine whether such a correlation exists
using spectral moments, due to the ezpected correlations imbedded in their calculation, when

considering distributions with high tails.

5.1.3 Selection of zero-reference

One of the first steps needed to calculate the moments of a spectral distribution, is to determine
a suitable zero reference to use when normalising the spectrum so that it can be treated as a
distribution with total area equal to unity (as discussed in §2.3). It is worthy of note again that

the literature seems to make no mention of setting the zero reference.

A number of practical considerations force us to choose a somewhat arbitrary zero reference
value. For instance, it may be chosen as some fixed number of decibels below the spectral
peak, or even at the ambient noise floor. While these arbitrary decisions may eliminate certain
problematic variables, they also tend to create several new ones. It is important to consider the
effect upon the spectral moment methodology itself, when choosing the zero reference.

To ensure that the spectral moments are sensitive to the shape of the power spectrum, the
distribution must approximately resemble that of a Gaussian curve. That is, the tails of the
distribution should be close to zero, and it should comprise of a single, broad peak. If this is
not the case, the resulting spectral moments will be insensitive to the changes in spectral shape
that we are attempting to capture, which in turn will lead to difficulties in the interpretation of
results.

Ideally then, spectra would be considered from a zero reference close to the low and high-
frequency tails of spectrum. However, another of the most important requirements is that no
point in the distribution lies below the zero-reference, since this would present problems when
the normalisation step is performed. The distribution must be positive everywhere, or the
resulting calculated moments will become nonsensical. Given the typical range of variations in
fricative production, it is straightforward to demonstrate that satisfying both of these conditions
simultaneously, using a fixed zero reference for a large set of tokens, is almost impossible.

In fact, fixing the zero reference around —10dB SPL/Hz was found to be approximately the
highest value of zero reference that would ensure no multitaper voiceless fricative spectra ventured
below r,, using a frequency range of 0-10kHz, across all our male and female subjects, and
across all voiceless fricative tokens (for modified periodogram spectra, r, had to be set to —20dB
SPL/Hz in order to achieve a similar amount of stability). If set higher than this, the zero
reference starts to seriously clip the spectral data with increasing regularity, causing the spectral

moments to become increasingly unstable, resulting in more and more outliers.

Unfortunately, many fricative tokens have spectra wcll above this reference. On normalisation of
these spectra, the tails of the distribution do not approach zero, and hence, the spectral moments
become less sensitive to changes in these regions. An undesirable side-effect is that the odd-order
moments become highly correlated to each other, as do the even-order moments.

To take an example, consider the multitaper spectrum shown in the bottom-left of Figure 5.1.
Consider the frequency range 800 Hz to 12kHz. This shape can be described well by a Gaussian
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curve, so long as the zero-reference is sufficiently close to the ‘tails’, as demonstrated in Figure 5.6.
The moments calculated from the curve (see table 5.2) normalised using r, = 10dB SPL/Hz
are fairly well suited using this zero-reference: the tails of the resulting distribution are close to
‘zero’. The curve normalised using r, = —10dB SPL/Hz of course appears much ‘flatter’, and the
moments and Gram-Charlier distribution reflect this. The moments will have reduced sensitivity,

since variations in the distribution will seem less significant than the equivalent variation using

r,=10dB SPL/Hz.
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FIGURE 5.6: Normalised spectrum from centre of [[] from “quichey” with Gram-Charlier curves
calculated from corresponding moments, r, = 10dB SPL (left), r, = —10dB SPL (right).

r, = 10dB SPL | r, = —10dB SPL
Centroid 5.5 x 10°Hz 5.9 x 10°Hz
Variance 6.1 x 10Hz2 8.3 x 105Hz2
Skewness 6.4 x 109Hz3 5.1 x 10°Hz3
Kurtosis | —21.1 x 10'2Hz* | —67.6 x 102Hz*

TABLE 5.2: Spectral moments generated from multitaper spectra of example [f] tokens, with
different zero-references (see Figure 5.6).

However, pushing the zero reference above —10dB SPL starts to produce a few spurious results:
spectra which exist below the zero reference result in extreme outlying sets of moments. Setting
r, to 0dB SPL/Hz, a greater proportion of the spectra do not cope well with the normalisation
procedure. With increasing r,, the number of spurious results grow faster than the slight benefits
from the better fit occasionally produced, and so little is gained by pushing the zero reference
too high.

Figure 5.7 demonstrates the high degree of structural correlation across the odd and even order
moments, using a 0-20-kHz frequency range, and r, = —20dB for all voiceless fricatives produced
in all vowel contexts by all female subjects. The coefficient of correlation for the first and third
moments are C = —0.97, and for the second and fourth moments C' = 0.96. This correlation is a
result of the methodological approximations that have to be conceded when generating spectral

moments.

It may seem that, since a fixed zero reference produces moments that are often either insensitive,
or unstable, an appropriate step would be to set it as some function of the spectral peak am-
plitude, or perhaps the mean spectral amplitude. However, it is clear that variables such as the
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FIGURE 5.7: 1st against 3rd (left), and 2nd against 4th (right) spectral moments for all female
subjects, all contexts, all voiceless fricatives. From multitaper spectral estimates over frequency
range 0-20-kHz, r,=-20dB SPL/Hz. Note the high degree of correlation. Legend: [s] (blue
plus-signs); [[] (red circles); [f] (green crosses); [6] (black dots).

spectral peak, and the mean spectral amplitude are highly nonlinear functions of the amplitude
at the tail frequencies of the distribution; such a function could not be made to produce stable

results.

Clearly, the amplitude of the spectrum (or zeroth moment) should be recorded, in order to
evaluate whether correlations between total spectral amplitude and spectral moments can be
used to improve the separation of the spectral moments. Figure 5.8 attempts to plot Oth, 1st
and 2nd moments in a three-dimensional plot, to see if the incorporation of total amplitude aids
separation. If the plot in Figure 5.8 is rotated, it can be seen that even in this three-dimensional
space, the non-sibilants completely overlap. Including the total spectral amplitude data does
not improve the separation of the spectral moments.

The main problem is that the spectral shape of fricatives is highly variable, and often does not
assume the form of anything resembling a Gaussian curve. A fine example of this can be seen
in the mid-/f/ spectrum in Figure 5.3. This very flat spectral shape is common amongst the
non-sibilants, and this is clearly one of the root causes of the inability of spectral moments to
differentiate them.

5.1.4 Summary

The reduced variance error of multitaper spectral estimation allows the zero reference to be
raised, without risking spectral clipping. The closer to the tails of the distribution the zero
reference can be raised, the more sensitive the spectral moments will be to changes in the spectral
shape. Nevertheless, it has been found that a zero reference of —10dB is most satisfactory for
minimising the number of spurious spectral moment values.

A high degree of correlation exists amongst even moments, and amongst odd moments (demon-
strated in Figure 5.7). These correlations cannot be reduced by raising the zero reference above
around -10dB SPL/Hz (due to the growing number of spurious sets of moments resulting from
the sheer variability across productions), it becomes apparent that the first two moments are
likely to yield as much information as any other combination of moments.
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FIGURE 5.8: 3D plot of amplitude, 1st, and 2nd moments, all voiceless fricatives, all male
subjects, all vowel contexts. Frequency range: 0-20-kHz, r,=-20dB SPL/Hz. Legend: [s]
(blue plus-signs); [J] (red circles); [f] (green crosses); [8] (black dots).

While variations in frequency range potentially allow the spectral moments to become sensitive
to different aspects of production power spectra, it remains unclear how the frequency range is
best selected. Frequency ranges up to around 10 kHz appear slightly more stable, since the tails
of the resulting distributions appear to be slightly less variable with respect to an appropriate

zero reference.

Figure 5.9 shows the 1st and 2nd spectral moments for all voiceless fricatives (in all vowel
contexts), using a frequency range of 0-10kHz, and a zero reference of —10dB SPL/Hz, as
produced by all male and female subjects. This combination of frequency scale and zero reference
was found to give the best spectral moments: the correlation coefficients are low (C = —0.11
and C = —0.13 for males and females respectively), and the separation between the sibilants is
good (J = 3.55 and J = 8.43 for males and females respectively). Note that the non-sibilants
remain completely overlapped (J = 0.70 and J = 0.08 for males and females respectively), due
to their non Gaussian-like spectral shape. The apparent increased separation amongst female
sibilants compared to the male sibilants, is a good example of how careful consideration must
be taken before drawing conclusions from spectral moments. It may be tempting to draw some
conclusion about ‘better articulation’ by the female subjects compared to their male counterparts.
However, in light of what we now know of the properties of spectral moments, it seems highly
likely that the greater separability results from some increase in the suitability of female spectra

for characterisation by spectral moments.
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FIGURE 5.9: Best spectral moments for all fricatives in all contexts, all male subjects (top)
and all female subjects (bottom). 0-10-kHz frequency range multitaper spectra, r.=-10dB
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5.2 Variations of spectral moments over time

In order to gain an understanding of the typical range of expected variations within a fricative
production, the spectral moments can be plotted over time.

Plots of spectral moments over time have been generated for all subjects and for all voiceless
fricatives in all vowel contexts. What follows is generally true of the typical characteristics
observed. To aid our discussion, we make use of a small set of ‘typical’ spectral moments over
time.

The moments over time of /iFi/ segments (where /F/ is one of the voiceless fricatives) from
productions of subject M-01, are shown in figures 5.10 to 5.13, using a frequency range of 0
to 12kHz, and r,=0dB SPL/Hz. This combination of frequency range and zero reference have
been chosen to maximise the sensitivity of the spectral moments, while limiting the number of
‘spurious’ spectral moment values.
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The vowel-fricative and fricative-vowel ‘boundaries’ are reasonably straightforward to recognise
from these plots: within the ‘central’ vowel and ‘central’ fricative regions, the plots tend to change
slowly over time; however, at boundaries, the moments often ‘jump’, or ‘dip’ in a pronounced
manner. A good example of this can be seen in the central bottom plot of Figure 5.10, where
the [J-i] boundary produces a characteristic jump in all the spectral moment values. Often the
boundaries are not so pronounced, but invariably some distinct wiggle can be observed. At the
boundaries of the fricative, it is common for the overall amplitude of the speech (and the entire
spectrum) to drop. Often this will result in a spectral distribution that drops below the zero
reference at some frequencies, causing the spectral moments to become highly unstable, and
resulting in the jumps seen at the fricative boundaries of the spectral moment plots over time.

The shapes of the even order moment curves over time seem to be insensitive to fricative place.
This may at least partially be a result of the insensitivity of the spectral moments due to the
distributions not approaching zero at the tails.

The odd-order moments seem to be more sensitive, both to the place of production, and to
changes that occur over time. Productions of /s/ and /[/ tend to have smooth first spectral
moment plots over time, steadily rising after onset, and falling just before offset. The third
spectral moments for /s/ and /[/ follow a very similar trajectory, but mirrored horizontally, so

that it has an appearance similar to the first moment, but ‘upside down’.

The non-sibilant spectral moment shapes over time are not greatly different from the sibilants.
However, the odd moments are generally subject to a higher amount of variability, notably so
over the central portion of the fricative. Considering the definition of a stationary process is
one whose statistical characteristics are independent of time (see §2.2.2.2), it is reasonable to
say that the non-sibilants often appear non-stationary, even over their central regions. This
has important implications for the use of time-averaging when trying to generate a consistent

spectral estimate of mid-non-sibilant spectrum.

Spectral changes over time clearly occur, most especially during non-sibilant production. It has
previously been expected that the characteristics of such changes over time may be related to
the place of production for non-sibilants. However, while the spectral moments certainly seem
to suggest such changes, characteristic differences in these spectral moment changes over time
are not apparent.

5.3 Discussion

It has been shown that the use of multitaper spectra in the calculation of spectral moments does
not produce greatly differing results from those calculated using modified periodogram spectra,
with the exception of stabilising the higher-order moments due to reduced estimate variance in
the tails, where the spectrum is especially prone to dropping below the zero reference.

Since the overall variance of the estimate is greatly reduced, the zero-reference can be raised to a
higher level without risking much of the spectrum becoming ‘negative’: if the zero-reference can
be raised sufficiently, the spectrum becomes better-suited to being modelled by a normal curve,

and hence, more sensitive to changes in spectral shape.



Chapter 5 Analysis: spectral moments

Moments over time:quichey Moments over time:quichey Moments over time:quichey
8 8 8
0 0} z
556 Se 56
® o o -
é TN T eNg é § ————————— ~
g/ 4 \\/ \‘ ’ S 4 g 4
= Iyl 3 5 2
S : : e | = e, it -
g 0 go § (] -
H (<]
b= = b
- -2 -2
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
Time (ms) Time (ms) Time (ms)
Moments over time:quichey Moments over time:quichey Moments over time:quichey
8 8 8
0 2 2
56 S6 § 6
(%]
3 3 -/ Aeg
= = ‘c
gt gt st
[} [ 5]
3 = 2
52 ] B2 § 2
g e = e
% 0 go go
[«] [*]
= = =

2 -2
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
Time (ms) Time (ms) Time (ms)

FIGURE 5.10: 1st (solid thick line), 2nd (solid thin line), 3rd (dotted line), and 4th (dashed
line) moments from multitaper spectra over time of 6 tokens of [ifi] from “quichey” by subject
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FIGURE 5.13: 1st (solid thick line), 2nd (solid thin line), 3rd (dotted line), and 4th (dashed
line) moments from multitaper spectra over time of 6 tokens of [ifi] from “beefy” by subject
M-01.
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Figure 5.7 demonstrates the high degree of correlation amongst odd, and even moments. This
is at least partially a result of the inescapable high-tailed spectral distributions that are being
modelled as Gaussian curves. These correlation patterns cannot be greatly altered by using
different frequency ranges, or zero references, due to the range of production variations.

The best results for spectral moments are therefore elicited by the 1st and 2nd moments. Spectral
moments for fricative sibilant spectra have been shown to have good separation, if an appropriate

combination of frequency range and zero reference is used, as seen in Figure 5.9.

A few existing studies have attempted several different approaches to setting the zero reference,
although in some cases, the issue is not addressed at all. Functions of the maximum peak am-
plitude have been used to determine the zero reference. However, this approach will invariably
introduce nonlinear correlations between the moments. More significantly, such nonlinear ap-
proaches make the interpretation of results very difficult. Such approaches may have applications
in automatic speech recognition tasks, but they are of limited value if the results are to be used

in some analysis of speech production.

The variations in spectral moments over time during the production of fricatives has been ex-
amined. No distinguishing characteristics of the variations over time have been found. However,
strong evidence suggesting the non-stationarity of the voiceless fricatives has been presented.
Notably, the non-sibilant voiceless fricatives appear to be particularly variable over time. The
implications for these findings are twofold.

Firstly, since the moments of the process are known to vary over time, the validity of using
time-averaging methods for improving the spectral estimate is called into question. The quite
distinct non-stationary odd moments of the non-sibilants suggest that the use of time-averaging
techniques will not necessarily produce useful results.

Secondly, while no features of the variation over time of the spectral moments have been found to
distinguish the non-sibilants, the evidence of their non-stationarity strongly supports the notion
that such temporal distinguishing cues exist. In order to catch such temporal changes, it may
be necessary to more carefully capture and track distinct spectral features, rather than just the
broad distribution of energy.



Chapter 6

Measurement, and characteristics

of variation

Until now, a very limited amount of work has been undertaken to attempt to capture variations
that occur across spectra. When it has, it has tended to use very broad descriptive techniques,
that relay little information about detailed spectral features. This has largely been due to the lack
of a suitable spectral estimation tool that both produces spectral estimates with small variance
error, and also that does not need to compound data over which the analysis of variance is under

examination, such as time and ensemble averaging techniques.

In this chapter, we undertake such analyses, using spectral estimates calculated using the multita-
per methodology. We have seen that multitaper analysis excels when short windows of stochastic
time-series data are to be analysed, and an estimate with low variance error is required. Such

an analysis tool makes estimation of the variance of the process possible.

We begin by exploring the typical spectral variability that can occur in productions of voiceless
fricatives across speakers of the same gender. This analysis allows us to view the maximum
variability we are likely to encounter when we later consider the productions, for example, within

a single speaker’s fricative tokens.

Analysis of the spectral variation of the sibilants is found to produce some very useful results.
We then turn our attention to the non-sibilants, for which these new analysis of spectral variance

methods provide interesting new insight.

Appendices C, D, E and F contain plots relating to the results of this chapter.

6.1 Spectral variability in voiceless fricative production

Of interest is an estimate of the total variability within the productions of a single fricative, by
speakers of the same gender. That is, for a given fricative, how much spectral variation exists
within the speakers of a single gender, given that vowel context, and precise time position within

the production are unknown?

93
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6.1.1 Analysis of within-gender spectral variance

We begin by limiting our analysis to a 64-ms data window in the centre of all recorded fricative
tokens. The central portion of each fricative token has deliberately been considered since it
should be the region least influenced by vowel context. Clearly, as the window of analysis
extends towards the fricative boundaries, an increase in variability can be expected. For now,
the task is restricted to the fricative centre.

In order to ensure that variability present during the central fricative region is captured, the
64-ms window is divided into six adjacent 10.6-ms windows. These windows are treated inde-
pendently for the purposes of variability measurement.

The multitaper 10.6-ms mid-fricative /F/ spectrum on decibel scale is denoted

(Q(fk))[g,/F/,v,s,r,n] (61)

where g is the subject gender, s is the subject number and 1 < v < 6 corresponds to the six vowel
contexts /uFi/, /iFi/, /oFi/, /iFs/, /uFs/ and /oFu/; 1 < r < 6 is the repetition number, and
1 < n < 6 is the particular 10.6-ms window within the token. For the time being, the multitaper
spectral estimates are calculated using 512-point data windows.

The sample production mean spectrum of fricative /F/ across all male (or female) subjects, in
all vowel contexts, is then given by

{aun}, " (6.2)
_1—6 Z:: ; 21 Z ( () ) l9,/F/,v,5,mn] (6.3)

and the sample production spectral variance under the same criteria is given by

Hig,/F/]

il

osr/) = Var{ﬂ(fk)}[g e (6.4)
_— 2
- 1295 Zl ,,—Zl ;:; (( (1) ) (9,/F/,v,8,mn] B {Q(fk)}[g,/F/]) ‘ (6.5)

Higher order moments could be calculated, but for now the mean and variance shall suffice.

The results of sample production spectral mean and variance are shown in figures 6.1 (males)
and 6.2 (females). The solid lines represent the mean spectrum pyg, /r), while the dashed lines
show the spectral variance gfg, IR/ This is the first time that the variance of production has
been estimated: such an analysis of production variance using modified periodograms produces

variance plots that are of no use due to the incorporation of the estimate variance.

These plots offer some exciting new insights. While the mean plots act as a guide to the position
in the spectrum being examined, as well as showing general spectral ‘features’, the variance plots
are perhaps of much greater interest. The spectral variance plots indicate at which frequencies
the sound intensity is subject to high variability, and at which frequencies it is more consistent.

We begin by considering both male and female /s/ productions. In both plots, the mean spectrum
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FIGURE 6.1: Mean and variance of central /s/ (top-left), /[/ (top-right), /f/ (bottom-left) and
/8/ (bottom-right) spectra, taken from non-sibilants in all contexts, by all male subjects. (The
maximum variance for /f/ reaches around 75dB SPL/Hz, and so is just out of view in this
plot.)

suggests a low peak generally appears at ~2kHz, surrounded by troughs at ~1kHz and ~3 kHz.
The low peak appears to be the subject of a large amount of variability; however, the troughs
surrounding it have particularly small variance in comparison to the rest of the spectrum.

Over the ~3 to ~5-kHz range, the mean /s/ spectra rise quite rapidly, and then remain high
over the ~5 to ~10-kHz range for men, and the ~5 to ~13-kHz range for women. The initial
rapid slope around the ~3 to ~5-kHz interval appears to be the subject of a high degree of
variability. If the frequency positions of the lower and upper points of this slope are subject to a
small amount of shifting left and right along the frequency axis, then this would account for this
high degree of spectral variance in this region. The ~5 to ~13-kHz range is generally subject to a
high degree of variance, with the exceptions of one or two regions of smaller variance, specifically
~6kHz for men and ~8 kHz for women.

There is another dip in the variability of male /s/ productions around 11 kHz, although no similar
dip is found for female productions. Above ~11kHz, both male and female spectra are subject
to large variation, at least when considered across speakers and vowel contexts.

The mean /[/ spectra for both males and females show a pronounced trough at ~1kHz, followed
by a steep slope up to the main peak, which appears at around 3kHz for men and 4kHz for
females. Again, the position of the slope seems to be subject to a high degree of variability for
the females, but much less so for the male productions. In both cases however, the spectral peak
coincides with a region of low variance, and this is of great interest. Male /[/ production spectra
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FIGURE 6.2: Mean and variance of central /s/ (top-left), /J/ (top-right), /f/ (bottom-left) and
/8/ (bottom-right) spectra, taken from non-sibilants in all contexts, by all female subjects.

are generally the subject of large variance at frequencies above the main mean spectral peak,
although for females this variability is reduced at these higher frequencies.

While the mean sibilant spectra are rather distinct in terms of their main peak and troughs,
the non-sibilant mean spectra appear very similar to each other. Both have mean peaks around
2kHz, and slight troughs either side: just below 1kHz, and 3kHz (although for the mean
female spectra, the 3-kHz trough is hardly pronounced at all). Of interest is that the troughs
coincide with low production variance, except perhaps for female /6/ spectra. Otherwise, the
mean spectra are generally featureless, and tend to have very high production variance over
the majority of the frequency range. For males, the /f/ spectra contain the most production
variance above, say, 6 kHz; however, for female non-sibilants, /6/ contains the most spectral
variance above, say, 2kHz. It appears the most striking aspect of the non-sibilants is their lack
of spectral features, and large production variability. We shall return to the non-sibilants in
§6.1.3.

6.1.2 Characteristics of the voiceless sibilants

The frequencies at which mean spectral features of the sibilants occur often coincide with fre-
quencies of low production spectral variance. In particular, it can be seen that the spectral
maxima for /[/ productions, approximately coincide with the pronounced spectral trough of /s/
productions, and it is noted that in both cases, these mean spectral features are coupled with

low production variance.
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FIGURE 6.3: Sibilant tokens mean spectra (solid lines) with two standard deviations bounds
(dashed lines) either side. /s/ tokens (blue, thin) and /[/ tokens (red, thick) in all contexts,
from all male subjects (see text).

"In order to view to what extent these spectral features of low variability are distinguishing
features of the sibilant, it is straightforward to generate plots of the mean spectra, with bounds
of two standard deviations above and below the mean spectra. Such plots of male /s/ and /f/
spectral ‘variations’ are shown superimposed in Figure 6.3. The plot shows fijmale,/s/) (solid thin
blue line), fimale,/ f /) (solid thick red line), pimate,/s/] £ 2S[male,/s/) (dashed thin blue lines), and
Kimale,/ [ /] £ 2Smale,/ [ /] (dashed thick red lines).

The region around 2.5 kHz is most striking: it shows that the maximum magnitudes for /[/
productions reach similar values to the minimum magnitudes for /s/ productions. That is, the
spectral trough at 2.5kHz of /[/ productions rarely rises above 27dB SPL/Hz, while the spectral
peak at the same frequency in /s/ productions rarely drops below 22dB SPL/Hz.

The frequency f; of the main spectral peak in a token sibilant spectrum is located

felyesman = o { Be) (6.6)
where!

= 1 5

Q = - Q(fe : 6.7

( (fk))[g,/F/,’u,s,r] 6;( (fk))[yy/F/y”v"»rvn] ( )

LThe time averaged spectrum is used for clarity purposes only, so that a single point on the scatter plot
corresponds to a single token. The scatter points using every window are very similar, but of course, much
denser.
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Main peak location and energy at 2.5kHz for /s/ and /J/, all male subjects, all contexts.
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FIGURE 6.4: Scatter plot of energy in 2.5-kHz interval, against peak frequency for all male
sibilant tokens. Blue plus-signs are /s/, while red circles are /[/.

A scatter plot of the energy in the 2.5-kHz band (2484 Hz—2578 Hz) against spectral peak lo-
cations is shown in Figure 6.4 for all male sibilant tokens. This plot shows clearly the power
at 2.5kHz as a function of peak frequency for the sibilants. Both measures seem to be heavily
influenced by place, although there is some overlap.

In fact, the two sibilants are distinguished well using only the energy measure at 2.5 kHz. We
might expect that this energy measure will also be influenced by the total intensity of the
fricative. A scatter plot of energy at 2.5 kHz against total spectral energy is given in Figure 6.5.
This time, the correlation between the total fricative intensity, and the energy in the 2.5-kHz
band can be recognised (C = 0.54 and C = 0.66 for /s/ and /[/ respectively), and this aids the
distinction between the two sibilants (J = 4.53).

We now perform similar analysis on the female sibilant tokens. We begin with Figure 6.6, showing
L[female, /s/] (solid thin blue line), Hifemale,/ [ /] (solid thick red line), ifemale,/s/] T 2S[female,/s/]
(dashed thin blue lines), and pitemale,/ f /] & 2S[femate,/ f /] (dashed thick red lines). This time, the
region of maximal separation is shifted up in frequency slightly, to around 3kHz. It can clearly
be seen that in this region, the two standard deviation confidence bounds for the sibilant spectra
do not overlap at all, suggesting a distinguishing feature of the sibilants. The scatter plot of
spectral peak frequency against energy in the 2953-Hz-3047-Hz frequency interval in Figure 6.7,
demonstrates how distinguishing the energy measure is, even compared to a measure such as the
main peak frequency.

Figure 6.8 highlights the strength of the energy measure in a narrow band around 3kHz, as
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Total energy, and energy at 2.5kHz for /s/ and /l/, males.
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FIGURE 6.5: Scatter plot of energy in 2.5-kHz interval, against total spectral intensity for all
male sibilant tokens. Blue plus-signs are /s/, while red circles are /[/.

a distinguishing feature of the sibilants, by plotting it against the total spectral energy. The
sibilants are completely separated using these energy measures for female tokens (J = 18.23),
and the corellation of overall amplitude to energy density around 3 kHz can be seen (C = 0.31
and C = 0.61 for /s/ and /[/ respectively).

6.1.3 Variability in the non-sibilants

As was shown in figures 6.1 and 6.2, analysis of the mean and variance of non-sibilant spectra
reveal neither distinguishing spectral features, nor prominent regions of low variance. Superim-
posed plots of spectral mean with two standard deviation bounds can be produced as before.
Figure 6.9 shows pg /¢/) (solid thick green line), pg,/9/) (solid thin black line), pg,/f/1 £ 29, /£/]
(dashed thick green lines), and pyg, /9/) £ 2¢[,/0/) (dashed thin black lines), for g=males (top
plot) and g=females (bottom plot). This plot clearly demonstrates an important factor in con-
founding the attempts to classify the non-sibilants by spectral shape: the mean shapes are
very similar, and have such high variability that the two-standard deviation confidence interval
overlaps everywhere.

Both spectra have a common trough around 1kHz, and a main peak located around 2kHz,
although these features are subject to a large variance. Generally speaking, /6/ tokens appear
to have lower amplitude than /f/ tokens, but again, there is a large degree of variability, so these
points are in no way distinguishing features.
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FIGURE 6.6: Sibilant tokens mean spectra (solid lines) with two standard deviations bounds
(dashed lines) either side. /s/ tokens (blue, thin) and /[/ tokens (red, thick) in all contexts,
from all female subjects (see text).

A plot of spectral peak position and total spectral energy for mid-fricative male tokens, for all
voiceless fricatives is shown in Figure 6.10. While no differences in distributions for the non-
sibilants were expected in this plot, it does appear that trends emerge with peak position. It
would appear that /f/ tokens often have a spectral peak around 2kHz. On the occasions when
the peak is not located here, it appears most likely to occur around 4 kHz, or alternatively 7 kHz.
Very few other positions of spectral peak location are observed for mid-fricative /f/ tokens.

These trends are slightly contrasted with those of the mid-fricative /8/ tokens. Spectral peaks of
central /6/ tokens also commonly occur around 2 kHz, although exceptions are far more common.
The exceptions appear to be more evenly distributed over the 3-12-kHz range, although the
region around 6 kHz is also well populated.

The equivalent plot for all female tokens is shown in Figure 6.11. The trends for female non-
sibilant peak position are similar to those noted for the male tokens. The vast majority of mid-
fricative /f/ tokens tend to have a peak around 2 kHz (more often than for the male productions).
When not near 2kHz, the peak tends to occur around 4.5 kHz, 8 kHz or 12 kHz, although these
are quite rare. Mid-fricative /8/ tokens also often have peaks near 2 kHz, but much less commonly
than for /f/ tokens. The main peak position for the remainder of the /8/ tokens has a more
even likelihood distribution across the 3-18-kHz range, although there are significant clusters
that overlap with the /f/ tokens than for male tokens.

For completeness, the plots of total mean energy density and energy density around 2.5 kHz for
all male fricatives and around 3 kHz for all female fricatives are given in Figure 6.12. As we have
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Main peak location and energy at 3kHz for /s/ and /V/, all female subjects, all contexts.
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FIGURE 6.7: Scatter plot of energy in 3-kHz interval, against peak frequency for all female
sibilant tokens. Blue plus-signs are /s/, while red circles are /[/.

Total energy, and energy at 3kHz for /s/ and /l/, females.
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Mean spectrum and deviation for subj.1-6 A/ and /6/
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FIGURE 6.9: Non-sibilant tokens mean spectra (solid lines) with two standard deviations

bounds (dashed lines) either side.

/f/ tokens (green, thick) and /6/ tokens (black, thin)

in all contexts, from all male (top) and female (bottom) subjects.
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Main peak location and total energy, males.
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FIGURE 6.10: Spectral peak position and total spectral energy for mid-fricative male tokens,
all voiceless fricatives. Legend: [s] (blue plus-signs); [f] (red circles); [f] (green crosses); [6]
(black dots).

seen, such plots are particularly useful for separating the sibilants. Their use in separating the
non-sibilants is not so obvious, although the distributions are slightly different.

Clearly, in order to determine the major differences in non-sibilant production, a more thorough
analysis of the tokens must be performed. The large production variances observed for the non-
sibilants may be the result of large differences across different speakers. It may additionally
be the result of a large degree of production variation across fricative tokens in different vowel
contexts for each speaker. Finally, the production variation could occur within each token. The
total production variance seen in figures 6.1 and 6.2 may be due to any or a combination, of
these potential sources of variation.

6.1.4 Within-speaker spectral variability

We begin by observing the non-sibilant token production variation by speaker. The sample
production mean spectrum of fricative /F/ in all vowel contexts, for a given speaker s, is given
by

ByFle = {Q(fk)} (6.8)
6 6 6

1 <
- -2T6 Z Z Z (Q(fk))[/F/,u,s,r,n] ! (69)

v=1 r=1 n=1
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Main peak location and total energy, females.
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FIGURE 6.11: Spectral peak position and total spectral energy for mid-fricative female tokens,
all voiceless fricatives. Legend: [s] (blue plus-signs); [[] (red circles); [f] (green crosses); [6]
(black dots).

and the sample production spectral variance under the same criteria is

Orre = va.r{ﬂ(fk)}[/F/s] (6.10)
1 8.8 Ak ] Srachiis 5
I m 1; o ; ((Q(fk))[/F/,v,s,r,n] & {Q(fk)}[/p/,s]) F (611)

Figures C.9 to C.11 show the production spectral mean p/r,,, and variance c[i’/ F/,5) of /f/ tokens
in all vowel contexts, by male speaker. These can be compared with the /8/ token production
characteristics shown in figures C.12 to C.14.

Firstly, the mean spectra still appear to be very similar for /f/ and /6/. Secondly, it can be seen
that the production variance is still often high, although in some places it drops; most noticeably,
the variance tends to be lowest around the 4-kHz region for both non-sibilants. The variance
tends also to be high above around 12kHz, although there are a few exceptions. Generally
speaking, it appears that /f/ productions have a slightly lower overall spectral variability.

The male data can be compared to the female data in figures C.23 to C.28. Again, the non-
sibilant mean spectra are very similar for /f/ and /6/. The female production variances are
generally high everywhere. Again, broadly speaking it would appear that /f/ productions have
a slightly lower degree of spectral variance overall.

From these non-sibilant production mean and variance spectra, it can be seen that a significant
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FIGURE 6.12: Total mean energy, and energy density around 2.5 kHz for males (top) and
around 3kHz for females (bottom) for all fricatives. Legend: [s] (blue plus-signs); [J]] (red
circles); [f] (green crosses); [8] (black dots).

proportion of production variability in the non-sibilants can be accounted for by a high degree
of within-speaker variation. Some speakers certainly produce the non-sibilants more consistently
than others however, and it remains to be seen whether the variability is a result of vowel context,
across-token variations, or even due to within-token variations. The most general trend observed
is that /f/ production appears to have slightly lower within-speaker variability than /6/.

6.1.5 Within-vowel-context spectral variability

In order to estimate the mean spectrum for fricative /F/ in a given vowel context v by a single
speaker s, we use

mesea = {000] (6.12)

6 6

1 -
a 3— Z Z (Q(fk))[/F/,v,s,r,n] i (613)

r=1n=1
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FIGURE 6.13: Mean spectrum (solid) and production variance (dashed) from central /f/ tokens
in /ifi/ context (left), and /6/ tokens in /ifi/ context (right), subject M-01.
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FIGURE 6.14: Mean spectrum and production variance (dashed) from central /f/ tokens in
/afu/ context (left), and /6/ tokens in /oBu/ context (right), subject M-01.

the sample production spectral variance under the same criteria being

2
g[/F/‘v,s]

var {Q(fk)}

R 2
((Q(fk))[/F/,v,s,r,n] B {Q(fk)}[/F/,v»SJ) '

PSD (dB BPLMZ)

Mean specinum and deviation for subl.1 A from {teethy)

PSD (B SPLHz)

—

(6.14)

(6.15)

We are trying to ascertain whether the amount of variability seen for individual non-sibilant

productions across vowel contexts, is due to changes in the production due to vowel context,

or more inherent within the fricative production. On observation of y[/r/,»,s, and g[2/ F/v,6] for

JF/=/£,8/ and v=/iFi,sFu/, it became apparent that a large amount of variability still exists

within a particular vowel context.

As an example of this within-vowel-context variability, figures 6.13 and 6.14 show y/r/ 4 5 (solid
lines), and §[2/F/,v,s] (dashed lines), for /F/=/,0/, v=/iFi,eFu/, and s=M-01. Speaker M-01 has
been selected for his apparently low production variability within the non-sibilants (see figures

C.9 and C.12). However, it can clearly be seen that a high degree of spectral variation exists

for /6/ productions within the /ifi/ vowel context, suggesting that spectral variability for the

non-sibilants is sometimes high, even within a given vowel context.
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6.1.6 Within-token spectral variation

It is evident that distinguishing features of the non-sibilants are not present in the spectral
shape. The mean spectra for the non-sibilants are extremely similar. In order to discover
whether distinguishing features appear as variability over time, we can continue to calculate the

within-token spectral variation, thus:

= {0 )

H{/F/,0,5,7] { (fk)}[ o (6.16)
1 S

= — 0 )

Nw 7; ( (fk))[/F/,v,s,r,n] 3 (6 17)
the token’s production spectral variance under the same criteria being

2 _ a .

S{/F/ v,8,7] var{ (fk)}[/F/,v,s,r] (6.18)

Ne —_— 2
= Nwl— 1 ; ((Q(fk))[/F/,v,s,r,n] - {Q(fk)}[/F/,v,s,r]) . (6.19)

Notice that the number of windows within the token has been changed from 6 to N,. In order

to achieve a satisfactory estimate of the spectral variability over the course of a fricative token,
we need to try and maximise the number of sample data. In order to achieve this, the data
window length was reduced from 10.7 ms (512-points) to 2.7 ms (128-points), but additionally,
a larger portion of each token was considered (see §3.2.3). Since the data segments used in
these calculations are of variable length, it is appropriate at this point to observe the segment
lengths obtained from the calculations performed in §3.2.3. The mean lengths and the standard

deviations of length are given in table 6.1

[ (ms) || Mean length | Std. deviation ||
Male /s/ 108.8 17.8
Male /J/ 99.7 18.7
Male /£/ 112.1 26.1
Male /8/ 100.3 24.9
Female /s/ 116.7 20.6
Female /[/ 105.2 22.0
Female /f/ 130.4 25.5
Female /6/ 111.8 30.5

TABLE 6.1: Means and standard deviations of fricative segment lengths calculated using the
procedures described in §3.2.3. All units are milliseconds.

Example plots of within-token spectral variation are shown in Figure 6.15 and 6.16 for non-
sibilant tokens produced by subject M-01. These plots are obviously smoother because of the
reduced spectral resolution resulting from the reduced window sizes. These example plots are
characteristic of all the male non-sibilant tokens, although exceptions are not rare. It appears
that a reasonably distinguishing feature is that of the level of spectral variation within each

non-sibilant token, /f/ tokens tending to be higher overall.

Also, note the higher variability in the lower frequencies below around 1kHz. Since we are now
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FIGURE 6.15: Example spectral means and variations for two individual /6/ tokens in /i6i/
context, subject M-01.
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FIGURE 6.16: Example spectral means and variations for two individual /f/ tokens in /ifi/
context, subject M-01.

capturing a larger portion of the fricative token, we are including more data near the boundaries
of the fricative. We may therefore expect this increase in variability at these lower frequencies.

Section F.3 in the Appendix shows additional plots of spectral variance over time for example
fricative tokens by speaker and vowel context. These generally show that, while the sibilants
have low spectral variance, the non-sibilants more frequently have a higher degree of spectral
variance. The higher variability usually occurs within a wide frequency band of, say, 6 kHz in
width; however, the location of this high-variance frequency band does not appear to have any

consistent trends associated with it.

One approach to observing how distinguishing the level of within-token spectral variability is,
is to plot the total spectral variability for each token for every token. A scatter plot of total
spectral energy

> {Q(fk)}[ P (6.20)

k

against total spectral variability

; - {Q(fk)} [/F/,s,r] (6.21)
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Total spectral variability for non-sibilants, all tokens, all male subjects.
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FIGURE 6.17: Scatter plot showing mean spectral energy against total spectral variance for all
non-sibilant tokens, all male subjects. Green crosses are /f/ while black dots are /6/.

is shown for all male non-sibilant tokens, in Figure 6.17. This plot indicates a possibly distin-
guishing characteristic of non-sibilant place (p < 0.0001, J = 0.96). The same plot for female
non-sibilant tokens, shown in Figure 6.18 is not so convincing (despite p < 0.0001, J = 0.96).
These results are not improved by separation by vowel context, Nevertheless there is certainly
a strong suggestion that information pertaining to the production place is present within the
spectral variability over the duration of the fricative.

Section F.4 in the Appendix separates these results by speaker and context (for /iFi/ and /efu/
contexts). These results are of interest, since they suggest that vowel context does not consis-
tently alter the degree of within-token variation, at least for the two vowel contexts considered.

6.1.7 Alternative measures of variability over time

A number of other methods have been used to attempt to capture the characteristics of the
variation in spectrum over the course of non-sibilant tokens. Of these, one of the more successful
methods is that of tracking the spectral peak through the non-sibilant. Observation of multitaper
spectrograms suggests evidence that /6/ spectra are generally flatter, and more consistent over
their discourse, while /f/ productions tended to be less regular, with regions of higher energy
appearing and disappearing. The data window for this analysis was set to 512-points (10.6 ms).

In order to attempt to capture this apparent difference in productions, the mean spectral peak
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Total spectral variability for non-sibilants, all tokens, all female subjects.
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FIGURE 6.18: Scatter plot showing mean spectral energy against total spectral variance for all
non-sibilant tokens, all female subjects. Green crosses are /f/ while black dots are /6/.

frequency is calculated:

W = {FOUF/men) (6.22)
e

= 5 2 FUr/msnn (6.23)
W on=1

where the peak frequency of a given spectral window (f¢)(/F/,v,s,r] i defined

Vs vmsn = max, {Q(fk)[/p/,v,s,,-,n]} (6.24)

assuming f¢ is unique for all fx. The variance of the spectral peak frequency through time was
calculated

/ot = var{(fe)i/p/ e} (6.25)

e s —_—
e Z ((fE)[/F/,v,s,r,n] i {(fE)[/F/,v,s,T]})
n=1

2

(6.26)

Typical peak variability plots over time are shown in figures 6.19 and 6.20. These figures demon-
strate nicely differences that can be observed in the non-sibilant multitaper spectrograms: /6/
productions are commonly flat, and regular over time; this corresponds to a peak position that
tends to jump around, since there is little difference in height of spectral maxima between spec-
tra. However, /f/ productions often seem to have a dominant region of higher energy, and this
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FIGURE 6.19: Examples of typical peak positions over time in [f] from /ifa/ subject M-01 (left)
and M-03 (right).
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FIGURE 6.20: Examples of typical peak positions over time in [0] from /ifa/ subject M-01
(left) and M-03 (right).

corresponds to a peak that tends to linger in only one or two regions.

A plot of spectral peak variability against mean spectral peak for male tokens of non-sibilants
in all vowel contexts is shown in Figure 6.21. As expected, most of the /f/ tokens have very low
peak frequency variability, and are clustered in the bottom-left. The /6/ tokens are more evenly
distributed over the variance scale. The number of tokens with low peak variability is clarified
with the use of the histograms in Figure 6.22. The large majority of /f/ tokens have a very low
(close to zero) peak frequency variability, while the majority of /8/ tokens do not.

Of significant interest is that these results are almost the inverse as those discovered for the
spectral variance found for the male non-sibilant tokens in §6.1.3: there, /f/ tokens were found
to have the larger degree of variability, while using this different measure, they are found to have
the smaller variability. This however, adds to the evidence that information pertaining to the

place of production is inherent in the variability of the spectrum and its features over time.

Peak variability results for female non-sibilant tokens are shown in Figure 6.23. Once again, the
female tokens do not follow the trend noticed in the male tokens strictly, (although there still are
more /f/ tokens with near-zero spectral peak variance than for /6/), but this is overshadowed
by the large number of tokens with very large spectral peak variability for both non-sibilants, as
highlighted by the histogram plots in Figure 6.24.

These measures of variability can of course be applied to the sibilants, whose structure is generally
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Peak variance, // and /6/, males
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FIGURE 6.21: Measures of peak variability for all non-sibilants in all contexts by all male
subjects. Green crosses are /f/, black dots are /6/.
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FIGURE 6.22: Histogram of variability of peak frequency, versus frequency, for /f/ (left) and
/8/ (right) in all contexts by all male subjects.

more predictable. Nevertheless, the results may be of interest. The peak variabilities for sibilant
tokens is shown in Figure 6.25

The results for this analysis of spectral peak frequency variance, separated by speaker and by
vowel context (again, for /iFi/ and /eFu/ contexts) are presented in §F.5. Again, the vowel
context appears not to have a significant or consistent impact on the degree of variability.
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Peak variance, // and /6/, females
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FIGURE 6.23: Measures of peak variability for all non-sibilants in all contexts by all female
subjects. Green crosses are /f/, black dots are /6/.
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FIGURE 6.24: Histogram of variability of peak frequency, versus frequency, for /f/ (left) and
/8/ (right) in all contexts by all female subjects.

6.2 Spectral covariance

So far, our analysis has been restricted to estimating the variance as a function of frequency. It
is also possible to calculate the covariance of the spectra at any two frequencies since this may
reveal within-spectrum dependencies.

In order to continue the analysis of the voiceless fricatives in the vowel contexts considered so
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FIGURE 6.25: Measures of peak variability for all sibilants in all contexts by all male (top)

and female (bottom) subjects. Blue crosses are /s/, red circles are /f/.

far, spectral covariance matrices can be constructed:

Clo./F/) = COV{Q(wl),Q(wz)}[g‘/F/l

6 6 6 6

v=1 s=1 r=1 n=1

' <(Q(w2))l/w,v,s,r1 K {Q(w2) }[g,/F/])

and the spectral correlation coefficient matrix is then defined

oy = R{O@).0@N]

5 cov {Q(wl), Q(wz)}[g,/F/]

121? Yo ((Q(wl)) UF/oer] m{yﬁ/])

\/cov {Q(wl), Q(wl)}[g,/p/] cov {Q(wz), Q(wz)}

(6.27)

(6.28)

(6.29)

(6.30)
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The window size for calculating the spectral covariance was set to 512-points (10.6ms). The
correlation of the spectrum to the total spectral energy can be calculated using this procedure.
Appendix D shows the plots of correlation of total spectral intensity to spectral distribution
for all male subjects producing all voiceless fricatives in all vowel contexts, both for combined
speakers, and by speaker. Perhaps unsurprisingly, we find that the spectral distribution has a
fairly linear relationship with total spectral intensity: as the intensity of the fricative increases,
the power across the entire spectrum rises by a proportional amount, all the way up to 20 kHz.
Occasionally, frequencies below about 2kHz exhibit less of a dependence on the total intensity,
most notably for the sibilants. These plots are otherwise unhelpful, and so we move on.

Appendix E show plots of the spectral correlation coefficient matrices for all voiceless fricative
tokens produced by male subjects; again, starting with results for combined speakers, and then
by individual speaker. (The calculation of the plots for individual speakers is similar to (6.28)
and (6.30), except that the sum over subjects is removed). Firstly, consider how these matrices

should be interpreted:

e Large values are represented by ‘warmer’ colours, red indicating the values approaching
unity, while the ‘cooler’ colours represent the lower value, dark blue being the closest to

Zero.

e The correlation coefficients are the normalised covariance values. The matrix gives a mea-
sure of the probability that two variables are correlated. Thus, the main diagonal is always

equal to unity.

e Values near the main diagonal tend to have high values, since the energy distribution in

most areas of the fricative is in the form of narrow bands of energy.

e Very small squares on the diagonal that rapidly change to low-values indicate narrow bands
of energy that are independent of nearby values, but which generally moves as a single small
block.

e A large-valued square centred on the diagonal therefore most likely indicates that the
energy in the range of frequencies in this band generally moves as a single block.

While these spectral correlations are very interesting, they unfortunately exhibit little distin-
guishing information. General trends are difficult to spot, although when considered individ-
ually, they reveal a certain amount about the individual speaker’s productions of a particular

fricative.

Generally speaking, the sibilants appear to have much lower degree of spectral correlation: the
energy in one part of the spectrum will not generally be indicative of the amount of energy
in another part. Conversely, the fricatives appear to have a slightly higher degree of spectral
correlation, particularly in the form of a few broad bands of energy that seem to ‘adhere’ together.

Female data for these spectral correlations are not presented, since they generally provide very
similar information. Plots of within-token spectral correlations were also calculated, using smaller
(64-point) data windows, and hence at a coarser frequency resolution. However, these plots
did not yield obvious place information, and so have not been included in the appendices. A
more thorough analysis of such plots may reveal information of interest, although this was not

undertaken in this work.
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6.3 Discussion

We have shown that the use of multitaper estimates in the spectral analysis of fricatives is
beneficial. The reduced variance of the estimate allows the estimation of spectral variation
across productions, providing us with a very clear picture of distinguishing characteristics within
the sibilants.

Analysis of spectral variance has been accomplished through the implementation of multitaper
spectral estimation. Such an analysis could not be performed using basic modified periodogram
spectral estimates, since the variance of the estimate would have swamped the underlying spec-
tral variances. Furthermore, time and ensemble averaging techniques would also make such an
analysis almost impossible, due to the very nature of the underlying assumptions about the
process. This analysis of variance then, potentially provides us with new information pertaining

to fricative production.

Using these techniques, it is straightforward to locate regions of the spectrum that are highly
variable, and those that are more stable, across speakers, vowel contexts, or even individual
tokens. It was quickly discovered that the region around 2.5kHz for male tokens, and the 3-
kHz region for female tokens, is both one of low variance, and of a distinguishing feature of
the sibilants. Coupled with the total spectral energy with which this region of the spectrum is
loosely correlated, strong evidence has been found that these regions may be a distinguishing
feature of the two sibilants, and figures 6.5 and 6.8 describe these findings most effectively.

It is not asserted that our analysis serves to prove the effectiveness of these measures as general
classification metrics, since no suitable statistical tests have been performed with which such
a statement could be qualified. Indeed, the number of subjects, and the size of corpus —
while extensive for the purposes of this study — are probably not sufficient to claim accurate
knowledge of some larger data set. Nevertheless, the usefulness of the examined techniques
cannot be refuted. The results obtained are both intuitive, and also fit current general theories

on fricative production.

Spectral variance analysis clearly demonstrated the limitation of attempting to capture differ-
ences in the non-sibilants based on spectral shape. The expected variability of the spectral shape
over any arbitrary mid-fricative segment is often large, and spectral features that consistently
distinguish the non-sibilants are not apparent. Nevertheless, significant trends have been ob-
served: most /f/ tokens have spectral peak position near 2kHz. When not located at 2kHz, the
peak tends to occur near 4 kHz, or 7kHz for males, or 8 kHz for females. Generally, /6/ tokens
also often have their main spectral peak near to 2kHz, but more often than for /f/ tokens, it is
elsewhere, commonly around 6 kHz for males, but otherwise more evenly distributed.

Evidence has also been found to suggest that the variability of non-sibilant tokens over time
may show different characteristics for /8/ and /f/. For non-sibilant tokens produced by males,
it appeared that the total amount of spectral variability over the total length of a given token
was often lower for /8/ tokens. Tracking the spectral peak frequency through non-sibilant tokens
also provides evidence that differences between the non-sibilants exists in the form of spectral
variations over time. Categorising these results by vowel context reveals little additional infor-

mation.
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Plots of spectral covariance also provide a new representation to view characteristics of fricative
tokens. While distinguishing trends are hard to pinpoint, the spectral covariance plots seem
to provide information about interdependencies that exist within the spectrum during fricative

production.

Evidence now exists that information pertaining to place can be discovered by using good spectral
estimation techniques that minimise estimate variance, in order to measure variations in the
underlying process spectrum. Moreover, these measurements have a highly intuitive appeal in
comparison to, say, spectral moments. Comparing these results to the best spectral moment
results in Chapter 5 demonstrates the importance of using good spectral estimation techniques
prior to establishing characterisation metrics. It is hoped that these new techniques can be
applied to fricative tokens produced by disordered speakers.



Chapter 7

Preliminary measurements of

cochlear implant users

One of the main motivating factors for improving fricative production analysis is that of better
describing the fricative production of speakers with hearing that has been changed. In this way,
it is hoped that subtle changes to speech quality that are brought about by changes in hearing

can be measured more accurately.

In this chapter, examples of fricative productions of two male and two female cochlear implant
subjects are examined. In this way, the advantages and disadvantages of the various analysis

techniques can be compared.

We begin by analysing the male subject data, using classical analysis techniques such as spectro-
grams and spectral moments with the most reliable parameters as discussed in Chapters 4 and
5. We continue to compare these analysis methods with some of the new methods developed in
Chapter 6.

The female subjects provide some more diverse productions, and the same methods of analysis
are undertaken. Data for subject FCI-15 is taken from 1 year post, and 2 years post implantation,

since a comparison over this interval reveals a significant change in production of /s/.

7.1 Male productions

Multitaper spectrograms for productions of /ass/ from ‘parcel’ are given for both male cochlear
implant subjects in figures 7.1. From these plots, the productions appear similar to those for
normal hearing subjects, as can be seen in Appendix B: lower energy at low frequencies around
3kHz, but quite high energy, at least in the 4-16-kHz range. While these two productions are
quite dissimilar from each other, they are typical within the range of variation we have come
to expect among the sibilants, at least at all frequencies other than around 3kHz; and at this

frequency we note low energy for both.

Figure 7.2 shows two non-sibilant tokens for these two speakers. Again, the spectrograms appear

118
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Frequency (kHz)

FIGURE 7.1: Multitaper spectrograms of /ass/ productions from ‘parcel’, subject MCI-13 (left)
and MCI-14 (right).

teephoned, subjedt 113

FIGURE 7.2: Multitaper spectrograms of /afou/ productions from ‘telephone’, subject MCI-13
(left) and MCI-14 (right).

to be similar to the productions from ‘normal’ hearing subjects shown in Appendix B. Figure 7.3
shows the calculated first and second spectral moments using the methods described in Chapter
5. An interval 64 ms long located mid-fricative was used to calculate each mean spectrum from
which the spectral moments could be calculated. These spectral moments can be compared
to those in Figure 5.9. Principal component analysis (PCA) has been used to construct ellipses
that enclose 85.35% of the data points for ‘normal’ male productions. The /s/ production of
MCI-13 has rather a low centroid value compared to the productions of normal hearing male
subjects, suggesting this production is more /f/-like. The second moment for this production is
within satisfactory limits however. The /s/ production of MCI-14 is within the ranges suggested
by the normal hearing male subjects, although the second moment is quite high. The /f/ tokens
for both male cochlear implant subjects appear to have normal centroid values, but rather high
second moment values.

Plots of total spectral energy against peak location, calculated from 64-ms mid-fricative data
segments for these tokens are given in Figure 7.4. These plots can be compared to those of
the normal-hearing subjects in Figure 6.10. The plots suggest spectral peak position values
similar to those found for normal-hearing speakers. The /f/ token of subject MCI-13 is also at
2kHz, suggesting good similarity to ‘typical’ productions. The /f/ production for MCI-14 has a
high-frequency spectral peak, but is still within ‘normal’ limits.
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FIGURE 7.3: 1st and 2nd moments of /s/ (blue plus) and /f/ (green cross), subjects MCI-13
(top) and MCI-14 (bottom). PCA has been used to construct ellipses that enclose 85% of the
‘normal’ production points: /[/ blue, /s/ red, /f/ green, /8/ black (see Figure 5.9).

The energies in the 2.5-kHz band for each of the /s/ tokens are within satisfactory limits. The /s/
token of MCI-13 lies near the top-right-hand corner of Figure 6.5, suggesting a typical ‘louder’
production. The /s/ token of MCI-14 is quieter, and has correspondingly lower energy in the
2.5-kHz band, ending up nearer the bottom-left-hand corner of the distribution in Figure 6.5.

The mean spectra, and the spectral variance calculated over each fricative token, as described
by equations (6.17) and (6.19) in §6.1.6, were calculated for fricative tokens by male cochlear
implant subjects, and are shown in figures 7.5 and 7.6. These plots again suggest that the
spectral variability over the duration of the fricatives of these subjects, is similar to those seen
in the productions of normal-hearing subjects (which can be found in §F.3.1), except perhaps
the /s/ of MCI-14. This /s/ token shows level of spectral variability somewhat higher than the
/s/ tokens produced by the normal hearing male subjects. In fact, similar spectral variance
distributions can be found in some of the /[/ tokens of the normal hearing male subjects (e.g.
M-05 in Figure F.28). This may suggest that this /s/ token has some production characteristics
that are closer to /f/, and although such an observation is largely speculative, it remains that
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FIGURE 7.4: Total spectral energy and peak frequency of /s/ (blue plus) and /f/ (green cross)
tokens, subjects MCI-13 (top) and MCI-14 (bottom).

FIGURE 7.5: Fricative mean spectrum (solid line), and spectral variance (dashed) over /asa/
productions from ‘parcel’ (left), and /ofeu/ productions from ‘telephone’ (right), MCI-13.
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FIGURE 7.6: Fricative mean spectrum (solid line), and spectral variance (dashed) over /asa/
productions from ‘parcel’ (left), and /ofou/ productions from ‘telephone’ (right), MCI-14.
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FIGURE 7.7: Spectral mean and total spectral variance over time, subjects MCI-13 (top) and
MCI-14 (bottom). PCA has been used to construct ellipses that enclose 85% of the ‘normal’
production points: /[/ blue, /s/ red, /f/ green, /8/ black. Legend: /s/ blue plus, /f/ green

Cross.
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parcel, subject 515

FIGURE 7.8: /asa/ productions from ‘parcel’, subject FCI-15, one year post implant. Multi-
taper spectrogram (left) and traditional modified periodogram spectrogram (right).

the /s/ production most certainly appears to have a greater degree of variability than might
normally be expected. Scatter plots of mean spectrum, and total spectral variability are given
in Figure 7.7, and these can be compared to the non-sibilant total spectral variance plot in
Figure 6.17. For subject MCI-13, the /f/ token lies somewhere near the centre of most /f/
tokens for normal hearing male subjects, and is well outside the region more commonly occupied
by /8/. The /f/ token of MCI-14 also lies in the centre of typical /f/ tokens by the normal
hearing males, although it is within the region of significant overlap with /6/ tokens.

7.2 Female productions

We now consider a production of /ass/ by subject FCI-15, approximately one year after implant
insertion. A multitaper spectrogram and traditional spectrogram are shown in Figure 7.8. It
is straightforward to observe that the production by subject FCI-15 has failed to produce any
significant energy above around 500 Hz. The multitaper spectrogram correctly shows no energy
in the upper frequency region. However, careful observation of the traditional spectrogram
reveals small ‘patches’ of energy up to around 16 kHz; this is clearly misleading, since total
closure has occurred for this production. In fact, these patches of energy are due to the low
level background noise, which of course can also be considered a stochastic process. A modified
periodogram spectral estimate of this background noise will inevitably result in erroneous ‘spikes’
of energy that are simply a result of the large error variance. Since the multitaper periodogram
is better suited to representing this noise, it provides a slightly clearer picture of the production
in this case.

A production of /ase/ by subject FCI-15 one year later, at two years post-implantation, is
shown in Figure 7.9. It appears that the production of this token has improved over this year-
long interval. Frication noise is significant up to approximately 18 kHz. Closer analysis also
reveals that the main spectral peak is possibly at a rather low frequency for a typical /s/. Also,
there is a ‘pause’ mid fricative, at which point frication noise ceases momentarily.

Figure 7.10 shows the multitaper spectrograms for /f/ productions of the female cochlear implant
subjects. While the production of FCI-16 appears similar to those produced by normal hearing
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FIGURE 7.9: Multitaper spectrogram of /ass/ production from ‘parcel’, subject FCI-15 two
years post implant (left), and subject FCI-16 one year post implant (right).
5 ‘,wﬂ,mdllﬁ 2 lelephone |, jubject 816

FIGURE 7.10: Multitaper spectrograms of /sfsu/ productions from ‘telephone’, subject FCI-15
(left) and FCI-16 (right).

subjects (see §B.2), the token of FCI-15 again has a strange temporary attenuation of frication
noise mid-fricative. On listening to this production, the fricative is apparently whistled.

We now take a moment to consider the results obtained when various analysis methods for
fricatives are used on these types of ‘abnormal’, highly nonstationary productions on various
analysis methods.

Figure 7.11 shows the first and second spectral moments calculated for each of the female frica-
tive tokens. Consider first the /s/ of subject FCI-15, the centroid of the spectrum is around
5kHz, while the second moment is around 7.3 x 10% Hz2. Comparing these results to those of
normal hearing female subjects in Figure 5.9 it can be seen that this production lies within the
range normally associated with female /[/ tokens, and indeed, this corresponds to the subject
production notes for FCI-15. The /s/ token of FCI-16 lies well within the range corresponding
to productions by the female normal-hearing subjects. The /f/ tokens also lie within ‘normal’

limits.

Scatter plots of total spectral energy, and peak frequency for the female cochlear implant subjects
are shown in Figure 7.12. These plots can be compared to those in the plot for normal-hearing
females in Figure 6.11. The spectral peak of the /s/ production by FCI-15 occurs within the /[/
region defined by the normal-hearing female subjects, and this agrees with the /[/-like spectral

moment values for this token. To serve as a comparison, an example /[/ token selected manually
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FIGURE 7.11: 1st and 2nd moments of /s/ (blue plus) and /f/ (green cross), subjects FCI-15
(top) and FCI-16 (bottom). PCA has been used to construct ellipses that enclose 85% of the
‘normal’ production points: /[/ blue, /s/ red, /f/ green, /68/ black (see Figure 5.9).

from a production of the word ‘shoe’ by FCI-15 is also shown in the upper plot of Figure 6.11; this
/J/ token lies within the region heavily populated by [J] productions of normal hearing subjects,
and highlights the similarity in spectral peak position between these two sibilant productions of
subject FCI-15. Figure 7.13 demonstrates again the similarity between these two productions,
using the energy at 3kHz against total spectral energy measure that was able to completely
separate the normal hearing female sibilant productions (c.f. Figure 6.8).

From the lower plot in Figure 7.12, it can be seen that the 6-kHz peak frequency of the /s/
token of FCI-16 however, lies well within the values defined for typical normal-hearing female
[s] tokens. In both plots for the female cochlear implant subjects, the /f/ tokens have spectral
peaks near 8 kHz. This also corresponds to one of the peak positions often observed for normal
hearing female /f/ tokens when it does not occur at 2kHz.

Plots of mean spectrum, and spectral variance over the duration of the female cochlear implant
fricative tokens — as calculated in equations (6.17) and (6.19) — are given in figures 7.14 and
7.15. The /s/ token plot in Figure 7.14 excludes the obvious pause mid-/s/ production for
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FIGURE 7.12: Total spectral energy and peak frequency of /s/ (blue plus) and /f/ (green cross)
tokens, subjects FCI-15 (top) and FCI-16 (bottom). Top plot includes results for example /[/
token (red circle) from ‘shoe’ for FCI-15.

FCI-15 (including it simply raised the spectral variance, as expected). We see that indeed, the
mean spectrum resembles that of a typical /[/ spectrum for the normal hearing female subject
tokens. The spectral variance shown for the /f/ token of FCI-15 also shows a very high level in
the 6-10-kHz region, compared to those typically seen in productions by normal-hearing females
(see §F.3.2); although occasionally the spectral variance can be high among the normal hearing
female /f/ tokens, it is rarely as large as for this ‘whistled’ production.

The mean spectrum of the /s/ token of FCI-16 appears more similar to those of normal female
/s/ spectra, but on this occasion, a much higher degree of spectral variance has occurred than
typically found amongst /s/ tokens by the normal hearing female subjects.

Scatter plots of total spectral variance and mean spectrum are shown for the female cochlear
implant tokens in Figure 7.16. The value for non-sibilants can be compared to those calculated
for the normal hearing female tokens in Figure 6.18. While the values for the /f/ token of FCI-15
are within comparable values, the production of FCI-16 appears to be within the range of values
normally only occupied by /6/ tokens of the normal hearing female subjects.
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FIGURE 7.13: Energy at 3kHz against total spectral energy for productions of /s/ (blue plus)
and /[/ (red circle) from subject FCI-15. PCA has been used to construct ellipses that enclose
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FIGURE 7.14: Fricative mean spectrum (solid line), and spectral variance (dashed) over /asa/

productions from ‘parcel’, and /ofou/ productions from ‘telephone’, FCI-15.
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FIGURE 7.15: Fricative mean spectrum (solid line), and spectral variance (dashed) over /ass/
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productions from ‘parcel’, and /sfou/ productions from ‘telephone’, FCI-16.
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FIGURE 7.16: Total spectral variance over time, subjects FCI-15 (top) and FCI-16 (bottom).
Legend: /s/ (blue plus), /f/ (green cross). PCA has been used to construct ellipses that
enclose 85% of the ‘normal’ production points: /[/ blue, /s/ red, /f/ green, /8/ black

7.3 Summary

Two of the most established methods of fricative analysis are the spectrogram, and spectral
moments. A number of improvements have been made to each method, and these have been
shown to generally help produce slightly clearer results, which is especially important when
considering disordered speech. Erroneous patches of energy in spectrograms generated using
modified periodograms are eliminated with the aid of multitaper estimates. Our knowledge of
suitable frequency and amplitude scales for spectral moment calculation in order to maximise
the distance between sibilant clusters, and minimise correlation amongst the moments, mean
that calculations of disordered productions are given the best chance of accurate description.

A number of new methods have also been able to be developed using improvements in spectral
estimation from multitaper analysis. Measures of the spectral variations occurring over the
duration of fricative tokens are now possible, and provide interesting and intuitive information
about individual fricative productions. Moreover, these new analysis techniques seem to provide
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a greater diversity of information, and in several cases, have yielded evidence of ‘abnormalities’

in productions that appeared to have ‘normal’ spectral moment values.

At the very least, these new measures seem to provide invaluable supplementary information
about productions. Moreover, they may provide useful information on their own, and since they
deal more elegantly with nonstationary elements within fricatives than spectral moments, they
may be favoured where disordered productions are leading to temporal features. Additionally,
the measures are more easily interpretable: spectral peak location, energy density at certain
frequencies, and measures of the degree of change over the course of a production can be loosely
related to the underlying acoustical mechanisms, and with further work, these relationships
should begin to become clearer.



Chapter 8

Conclusion

8.1 Summary

Fricative analysis presents a significant challenge. Too little is known about the turbulent noise
sources that are generated within the tract during fricative production. The interactions of multi-
ple noise sources are largely unknown, and usually effectively impossible to calculate. Mathemat-
ical models of fricative production inevitably over-simplify the processes within the tract. While
much has been learnt from such models, their usefulness when applied to fricative production is

limited.

Nonparametric measurements of the output of the system are likely to provide useful information
pertaining to various characteristics of production. Since a certain amount is known of the
characteristics of the acoustical signal generated during fricative production, methods of analysis
should incorporate these characteristics where possible. For example, it is known that the peaks
in the spectrum correspond to resonances within the tract, and so studying the behaviour of these
is more likely to lead to better understanding of fricative production that other measurements
that are less grounded on the physics of production.

8.1.1 Classic spectral estimation techniques

The turbulence noise generated during fricative production should be treated as a stochastic
process. Yet often in the fricative analysis literature this is overlooked, despite well founded texts
on the issue (e.g. Bendat and Piersol 1986). While windowing of time-series data (to reduce the
spectral bias) is usually performed, it is not usual to attempt to reduce the variance error of the
estimate, which is generally large. For the purposes of studying spectral peak positions and so
on, a modified periodogram estimate is unsatisfactory. Nevertheless, this estimate is commonly

used in the fricative analysis literature.

In order to reduce the variance error of the estimate, several classic averaging methods exist.
Time averaging can be used when the process can be considered stationary, and ensemble-
averaging can be used where a process is ergodic. However, there is little to suggest that fricative
production can be considered either stationary or ergodic. An alternative method of reducing the
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variance when these assumptions do not hold is frequency smoothing. However, this relies upon
the underlying spectrum being smooth, and in order to generate an estimate that significantly
reduces the variance error, it also reintroduces significant local bias.

8.1.2 Data acquisition

In order to gain a first estimate of typical variations across productions, analysis of some ‘normal’
speech was necessary. A large corpus of real words containing each of the eight English fricatives
in /V1FV,/ contexts has been devised. Six vowel contexts are incorporated, and words were
repeated six times, each time in a slightly different word order. This corpus was read by six male,
and six female normal hearing subjects of Southern English accent background. This resulted
in a data set of 1,728 voiced, and 1,728 unvoiced fricative tokens. However, only the voiceless
fricative tokens are considered here.

To supplement these data, the speech of two male and two female post-lingually deafened cochlear
implant subjects was recorded. A real word corpus was used, so that a small set of fricative tokens
from these subjects could be used to compare possibly disordered speech results to those of the
normal hearing subjects.

8.1.3 Multitaper analysis

Multitaper analysis provides an alternative method of obtaining a spectral estimate with min-
imised error. The quantity of data incorporated into the estimate is maximised using the prolate
spheroidal functions, or Slepian sequences, as data tapers on a short interval of time-series data.
The local bias is minimised at the same time due to the specific properties of the Slepian se-

quences.

Most importantly, multitaper analysis does not rely upon assumptions of stationarity, or er-
godicity. It therefore outperforms the alternative averaging methods, where consistent spectral
estimation over short time intervals of non-stationary non-ergodic processes is required. These

properties make multitaper analysis an excellent candidate for fricative spectral analysis.

Multitaper analysis enables changes in the spectrum over time to be observed more easily. Com-
parisons across productions can also be made. Finally, multitaper spectrograms can be generated
that do not contain the ‘speckle’ usually found in spectrograms of fricatives, and in some cases,
multitaper spectra are more straightforward to read.

8.1.4 Best results for spectral moments

Spectral moments provide a broad measure of the overall energy distribution within a spectrum.
The Gram-Charlier expansion has been used to demonstrate the elements of spectra that are
most influential to the calculation of spectral moments. They are not significantly influenced by
the movements of narrow spectral peaks or troughs. Rather, they are more sensitive to significant

changes in energy distribution.
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A number of choices concerning the implementation of spectral moments have to be made, most
significantly frequency range selection, magnitude scale selection, and zero reference. These
choices can significantly affect the effectiveness and sensitivity of the spectral moments. His-
torically, various approaches have been implemented, but often with little reasoning given. It
has been shown that in fact, these choices can make significant differences to the outcomes of
spectral moment calculations. If the zero reference is set too low, the spectral moments become
insensitive to changes in the energy distribution of the spectrum. If it is set too high, there is
an increased risk of the spectrum dropping below it, generating spurious moment results.

The spectral moment methodology was adapted to use multitaper spectral estimates, rather
than modified periodogram estimates. It seems probable that higher-order spectral moments
are stabilised when multitaper spectral estimates are used, due to a decrease in variation in
the tails of the distributions. The Gram-Charlier expansion allowed us to view which features
of a spectral distribution most influence the spectral moments calculated for that distribution.
Various frequency ranges were tried, and 0-10kHz seems to produce among the best results.
Logarithmic (decibel) magnitude scales should be used since the spectra have more Gaussian-
like qualities. This highlights a further important parameter: the zero reference, above which
the spectral distribution can be normalised. This normalisation procedure is required in order
to calculate the spectral moments. The zero reference must not be set so high that some spectra
drop below it. However, the sensitivity of the spectral moments to changes in spectral shape is
reduced as the zero reference is lowered. A zero reference of —10dB SPL/Hz with a frequency
range of 0-10kHz is found to be a good balance that can deal with the significant degree of
variation that exists across tokens; but these settings still result in a high degree of correlation
between the even order moments, and between the odd order moments. It is found that the 1st
and 2nd spectral moments provide the greatest amount of information, and have been shown
to be capable of separating the voiceless sibilants well, although separation of the non-sibilants
could not be achieved.

Plotting the spectral moments through time during fricative productions revealed evidence that
the statistical properties of fricatives are often nonstationary. The non-sibilants were subject to
the highest levels of spectral moment nonstationarity, although no distinguishing characteristics
in these variations over time could be established. Nevertheless, this evidence of nonstationarity

has serious repercussions concerning the use of time-averaging methods.

8.1.5 Analysis of spectral variance

Attempting to track the spectral changes that occur across productions, or through time within
a fricative token, was previously difficult to perform accurately due to the large variance error
of typical spectral estimates available. If attempts were made to reduce this variance, some
assumption of stationarity or ergodicity would typically have to be made, and this still limits

the accuracy of such analysis.

The use of multitaper spectral estimates therefore provides us with a new means of gathering
information pertaining to fricative production. The variability across, and within tokens can be
explored due to the much reduced variance of the estimate.

Multitaper spectral estimates were calculated from mid-fricative data. Spectra from six separate
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10.6-ms windows within each mid-fricative token from every vowel context of every speaker
for all speakers of a given gender were generated. The results were used to calculate mean
spectral shapes, and spectral variances across all productions. The same analysis was performed
to estimate within-speaker spectral mean and variance, and within-vowel-context and speaker
spectral mean and variance. Finally, spectra were calculated from adjacent 2.7-ms data-windows
across the whole duration of each fricative token. The spectral mean and variance over the

duration of each fricative could then be estimated.

These analyses of production variabilities quickly reveal regions of the spectrum that are highly
variable, and those that are more stable, across speakers, vowel contexts, or individual tokens.
For example, it was discovered that the level of energy in the 2.5-kHz region in male sibilant
productions was subject to a notably low level of variance. Additionally, this region coincides
with the main spectral peak for /[/ tokens, but a prominent trough for /s/ productions. The
findings were similar for females, although the region of minimum variance is apparently slightly
higher, around 3kHz, again where the distinguishing spectral features of the sibilants occur.
These results suggest that these regions may be a distinguishing feature of each of the sibilants,
and this is most effectively demonstrated by figures 6.5 and 6.8.

However, it must be stressed that it is not our assertion that these measures relate to any
‘classification’ capability. Rather, this work attempts to investigate the existence of important

characteristics within the variations of fricatives, and this is shown to be true.

The spectral shapes of the non-sibilants were found to be very similar, and overlapped signif-
icantly at every frequency in the spectrum. However, significant trends were observed. The
frequency of the spectral peak in /f/ tokens usually occurs around 2kHz, and if not here, would
generally be found at either 4kHz, or 7kHz (for males) or 8 kHz (for females). However, for /8/
tokens, the peak frequency is prone to much larger degree of variation.

Evidence has been found that the spectral variability of the non-sibilants over time may have
different characteristics for /f/ and /8/. A very crude measure of the total spectral variability
over time reveals that male /6/ tokens generally have a much lower degree of within-token
spectral variation than /f/ tokens, although similar findings were not found for females.

An alternative method for attempting to capture that degree of variation over time was to track
the spectral peak frequency through non-sibilant tokens. The variability of the spectral peak
frequency also suggested that male /6/ productions were much less variable than /f/ productions,
though again, this could not be verified for the female productions.

Little additional information was provided by categorising spectral variance measures by vowel
context. This finding may have implications concerning the effect of vowel context on fricative
production.

Many potential techniques exist for capturing the subtle spectral variations that occur within
fricative productions. Spectral covariance plots have been generated, but found little distinguish-
ing information across the fricatives. Nevertheless, they provide intuitive appeal, and renewed

efforts in this area may produce better results.

An analysis of spectral variations in fricative productions has revealed interesting new informa-
tion, that is straightforward to interpret, and which agrees with the general theories of fricative
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production. While some of these results have provided useful distinguishing information, other

results are less obvious, but reveal a significant amount about productions nonetheless.

8.1.6 Analysis of disordered speech

The new analysis techniques have been applied to a number of speech productions of subjects

with cochlear implants.

In several cases these productions are clearly disordered, and this is often shown clearly in all of
the spectral analysis techniques. In other less obvious cases, particularly productions with some
slightly abnormal temporal ‘fluctuation’, the traditional methods (spectrograms and spectral
moments) often do not suggest that the production is in any way abnormal. However, the new
methods of spectral variance more commonly present evidence of abnormal productions.

These new techniques provide a diverse array of indispensable additional information, and it
appears, additional important features of production. They are in particular better suited to
dealing with productions containing unusual temporal features, since they are based upon as-

sumptions that the fricatives are nonstationary.

8.2 Future Work

It has been shown that the production of fricatives is subject to physical processes that produce
variations in different regions of the spectrum that depend upon the target fricative. It is
through the analysis of these variations that a better understanding of fricative production will
be obtained, and while the physical reasoning behind these is of ultimate interest, they are largely
beyond the scope of this thesis. However, the results we have obtained are a strong foundation
from which theorism and experimentation of the more intricate aspect of fricative production

can begin.

Of course, many additional areas remain to be explored, using the methods developed here.
While voiced fricatives were incorporated into the word corpus, they have not been analysed
here. However, multitaper analysis should provide better spectral estimates of voiced fricatives,
and in this regard, it is hoped that attempts to describe the voiced fricatives will advance on
previous efforts. Spectral moments have elsewhere been applied to the voiced fricatives, although
their use is highly limited, since a significant characteristic of the spectral shape of the voiced
fricatives is the spectral peaks due to voicing, and such features are known to not be well captured
by spectral moments.

It also seems necessary to place more emphasis on the boundary regions of the fricatives, since
it seems more likely than ever that information pertaining to the non-sibilants is to be found
here. The data collected for this thesis are suitable for the analysis of the boundary region.
However, this was not attempted, since observation of the multitaper spectrograms provided no
clear approach along which to proceed. It is possible that such analysis may be able to make

use of the spectral covariance methods investigated.
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These new methods are to be used in a more thorough analysis of cochlear implant subjects.
Changes over time of the productions of such subjects should be more readily interpretable from
these more intuitive analysis techniques, and problems concerning nonstationary elements are

much less likely to be encountered.

New opportunities have been opened up for analysis of fricative productions. The search for

acoustical fricative production characteristics continues, and promises to be most rewarding.
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Corpus

The following words were used to capture the fricatives in the desired vowel contexts.

|Context | st/ | s/ | s/ | 4|
/iFi/ ‘beefy’ ‘teethy’ ‘fleecy’ ‘quichey’
/'iFa/ ‘beefer’ ‘ether’ ‘Lisa’ ‘Letitia’
/'uFi/ ‘goofy’ ‘toothy’ ‘Lucy’ ‘sushi’
/'uFa/ ‘loofah’ ‘Luther’ ‘juicer’ ‘fuchsia’
JeF'i/ | ‘atrophy’ ‘Athena’ ‘casino’ | ‘machine’
/eF'u/ || ‘buffoon’ | ‘Methuselah’ | ‘bassoon’ | ‘parachute’

‘ Context ” /v/ ‘ /3/ ‘ /z/ ‘ /3/ ‘
/iFi/ ‘D.V.D’ ‘T will see thee’ ‘easy’ ‘Gigi’
/'iFa/ ‘leaver’ ‘breather’ ‘teaser’ ‘seizure’
/'uFi/ ‘groovy’ ‘smoothie’ ‘boozy’ ‘bijou’?
/'uFa/ ‘Hoover’ ‘smoother’ ‘cruiser’ | ‘Hoosier’
JoF'i/ ‘Davina’ ‘I sing to thee’ | ‘magazine’ | ‘regime’
/oF'u/ || ‘the voodoo-doll’ | ‘give Eva those’ | ‘bazooka’ ‘jejune’

Each page of words, or ‘script’ to be read by the speaker is now presented. Each ‘script’ is
separated by a horizontal line. The first ‘script’, on each of the following pages, was used as a
test page only.

IReversed vowel order.

136



Appendix A Corpus

137

“fleecy” “teethy” “quichey” “beefy”
“Lisa” “ether” “Letitia” “beefer”
“Lucy” “toothy” “sushi” “goofy”
“uicer” “Luther” “fuchsia” “loofah”
“casino” “Athena” “machine” “atrophy”
“bassoon’ “Methuselah”  “parachute” “buffoon”
“beefy” “teethy” “feecy” “quichey”
“beefer” “ether” “Lisa” “Letitia”
“goofy” “toothy” “Lucy” “sushi”
“loofah” “Luther” “Juicer” “fuchsia”
“atrophy” “Athena” “casino” “machine”
“buffoon” “Methuselah” “bassoon” “parachute”
“teethy” “fleecy” “quichey” “beefy”
“ether” “Lisa” “Letitia” “beefer”
“toothy” “Lucy” “sushi” “goofy”
“Luther” “Juicer” “fuchsia” “loofah”
“Athena” “casino” “machine” “atrophy”
“Methuselah” “bassoon” “parachute” “buffoon”
“fleecy” “quichey” “beefy” “teethy”
“Lisa” “Letitia” “beefer” “ether”
“Lucy” “sushi” “goofy” “toothy”
“juicer” “fuchsia” “loofah” “Luther”
“casino” “machine” “atrophy” “Athena”
“bassoon” “parachute” “buffoon” “Methuselah”
“quichey” “beefy” “teethy” “fleecy”
“Letitia” “beefer” “ether” “Lisa”
“sushi” “goofy” “toothy” “Lucy”
“fuchsia” “loofah” “Luther” “juicer”
“machine” “atrophy” “Athena” “casino”
“parachute” “buffoon” “Methuselah” “bassoon”
“beefy” “fleecy” “teethy” “quichey”
“beefer” “Lisa” “ether” “Letitia”
“goofy” “Lucy” “toothy” “sushi”
“loofah” “juicer” “Luther” “fuchsia”
“atrophy” “casino” “Athena” “machine”
“buffoon” “bassoon” “Methuselah”  “parachute”
“fleecy” “beefy” “quichey” “teethy”
“Lisa” “beefer” “Letitia” “ether”
“Lucy” “goofy” “sushi” “toothy”
“juicer” “loofah” “fuchsia” “Luther”
“casino” “atrophy” “machine” “Athena”
“bassoon” “buffoon” “parachute”  “Methuselah”
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“Gigi” “easy” “D.V.D.” “seething”
“seizure” “teaser” “leaver” “breather”
“Hoosier” “cruiser” “Hoover” “smoother”
“regime” “magazine” “Davina” “I sing to thee.”
“groovy” “boozy” “smoothie”

“the voodoo-doll”  “I will see thee” “give Eva those”
“D.V.D.” “seething” “easy” “Gigi”
“leaver” “breather” “teaser” “seizure”
“Hoover” “smoother” “cruiser” “Hoosier”
“Davina” “I sing to thee.” “magazine” “regime”
“groovy” “smoothie” “boozy”
“the voodoo-doll”  “give Eva those” “I will see thee”
“seething” “easy” “Gigi” “D.V.D.”
“breather” “teaser” “seizure” “leaver”
“smoother” “cruiser” “Hoosier” “Hoover”
“I sing to thee.” “magazine” “regime” “Davina”
“smoothie” “boozy” “groovy”
“give Eva those” “I will see thee”  “the voodoo-doll”

“easy” “Gigi” “D.V.D.” “seething”
“teaser” “seizure” “leaver” “breather”
“cruiser” “Hoosier” “Hoover” “smoother”

“magazine” “regime” “Davina” “I sing to thee.”
“boozy” “groovy” “smoothie”
“I will see thee”  “the voodoo-doll”  “give Eva those”

“Gigi” “D.V.D.” “seething” “easy”
“seizure” “leaver” “breather” “teaser”
“Hoosier” “Hoover” “smoother” “cruiser”
“regime” “Davina” “I sing to thee.” “magazine”
“groovy” “smoothie” “boozy”

“the voodoo-doll”  “give Eva those” “T will see thee”
“D.V.D.” “easy” “seething” “Gigi”
“leaver” “teaser” “breather” “seizure”
“Hoover” “cruiser” “smoother” “Hoosier”
“Davina” “magazine” “I sing to thee.” “regime”
“groovy” “boozy” “smoothie”

“the voodoo-doll”  “I will see thee” “give Eva those”

“Gigi” “seething” “easy” “D.V.D.”
“seizure” “breather” “teaser” “leaver”
“Hoosier” “smoother” “cruiser” “Hoover”
“regime” “I sing to thee.” “magazine” “Davina”

“smoothie” “boozy” “groovy”

“give Eva those”

“T will see thee”

“the voodoo-doll”
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Multitaper Spectrograms

B.1 Males

139



Appendix B Multitaper Spectrograms

140

quichey?, subject #1

quichey3, subject #1

Frequency (kHz)

Time (ms)
quichey4, subject #1

——

Frequency (kHz)

50 100 150 200 250 300
Time (ms)

quichey1, subject #2

50 100 150 200 250 300

Frequency (kHz)

50 100 150 200 250 300

Time (ms)

quichey5, subject #1
T ¥ R

Frequency (kHz)

50 100 150 200 250 300

Time (ms)

quichey?, subject #2

Frequency (kHz)

50 100 150 200 250 300
Time (ms)

quichey4, subject #2
0 s ‘

Frequency (kHz)

50 100 150 200 250 300
Time (ms)

FIGURE B.1: Multitaper spectrograms: ['ifi] productions from “quichey”, subjects M-01 and

M-02.
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FIGURE B.4: Multitaper spectrograms: [isi] productions from “fleecy”, subjects M-01 and

M-02.
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FIGURE B.5: Multitaper spectrograms: [isi] productions from “fleecy”, subjects M-03 and
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FIGURE B.7: Multitaper spectrograms: [i6i] productions from “teethy”, subjects M-01 and

M-02.
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FIGURE B.8: Multitaper spectrograms: [i6i] productions from “teethy”, subjects M-03 and
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FIGURE B.9: Multitaper spectrograms: [i6i] productions from “teethy”, subjects M-05 and
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Frequency (kHz)

Frequency (kHz)

50 100 150 200 250 300
Time (ms)

teethy5, subject #6

|

50 100 150 200 250 300
Time (ms)

teethy3, subject #6

Frequency (kHz)

UL

50 100 150 200 250 300
Time (ms)

teethys, subject #6

Frequency (kHz)

50 100 150 200 250 300
Time (ms)



Appendix B Multitaper Spectrograms

149

20 -

16 16
- z
< Z 12}
oy oy
5 5
F z 8
[ (7
fre g

4

50 100 150 200 250 300
Time (ms)

beefy2, subject #1

beefy3, subject #1

Frequency (kHz)

50 100 150 200 250 300
Time (ms)

beefy5, subject #1

50 100 150 200 250 300
Time (ms)

beefy4, subject #1

N
o

16}
N | N
T = g
K3 S
3 2
g g
g 8 3
o 4
L w

-

50 100 150 200 250 300
Time (ms)

beefy1, subject #2
: -

N
o

— —
N N
I =
= =,
3 3
s 5
=] 3 8
o o
I3 I
fiad 4
w ('

-
R

50 100 150 200 250 300
Time (ms)

Frequency (kHz)
Frequency (kHz)

50 100 150 200 250 300
Time (ms)

beefy6, subject #1

&

Frequency (kHz)

50 100 150 200 250 300
Time (ms)

50 100 150 200 250 300
Time (ms)

beefy2, subject #2 beefy3, subject #2

Py
(=2

Frequency (kHz)

1ul |

50 100 150 200 250 300
Time (ms)

beefyS, subject #2

50 100 150 200 250 300
Time (ms)

Frequency (kHz)

50 100 150 200 250 300
Time (ms)

50 100 150 200 250 300
Time (ms)

FIGURE B.10: Multitaper spectrograms: ['ifi] productions from “beefy”, subjects M-01 and
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FIGURE B.11: Multitaper spectrograms: [ifi] productions from “beefy”, subjects M-03 and

M-04.
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FIGURE B.13: Multitaper spectrograms: ['ufi] productions from “sushi, subjects M-01 and
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FIGURE B.14: Multitaper spectrograms: ['ufi] productions from “sushi, subjects M-03 and

M-04.
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FIGURE B.15: Multitaper spectrograms: [‘ufi] productions from “sushi, subjects M-05 and

M-06.
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FIGURE B.16: Multitaper spectrograms: ['usi] productions from “Lucy”, subjects M-01 and
M-02.



Appendix B Multitaper Spectrograms 156

lucy1, subject #3 lucy?2, subject #3 lucy3, subject #3
— 20 - e — =

O

Frequency (kHz)
Frequency (kHz)

|
Frequency (kHz)

'- i } :
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
Time (ms) Time (ms) Time (ms)
lucy4, subject #3 lucy5, subject #3
: 20 m—

Frequency (kHz)
Frequency (kHz)
Frequency (kHz)

50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300

Time (ms) Time (ms) Time (ms)
lucy1, subject #4 lucy2, subject #4 lucy3, subject #4
20 = T ‘ =

Frequency (kHz)

—
N
e
x
=
c
o
3
o
o
b=
L

Frequency (kHz)

50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
Time (ms) Time (ms) Time (ms)

lucy6, subject #4
0+

lucy4, subject #4

20 20 =
16 1611

2, =4 =3

iy & Py

[ = c c

[ o [

3 | =)

o [~ o

8 o o

i IC [

- ¥ sl

50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
Time (ms) Time (ms) Time (ms)

FIGURE B.17: Multitaper spectrograms: [‘usi] productions from “Lucy”, subjects M-03 and
M-04.
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FiGURE B.18: Multitaper spectrograms: [‘usi] productions from

M-06.
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FIGURE B.19: Multitaper spectrograms: ['ufi] productions from “toothy”, subjects M-01 and

M-02.
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FIGURE B.20: Multitaper spectrograms: ['ubi] productions from “toothy”, subjects M-03 and

M-04.
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FIGURE B.21: Multitaper spectrograms: ['ubi] productions from “toothy”, subjects M-05 and

M-06.
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FIGURE B.22: Multitaper spectrograms: ['ufi] productions from “goofy”, subjects M-01 and

M-02.
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FIGURE B.23: Multitaper spectrograms: ['ufi] productions from “goofy”, subjects M-03 and
M-04.
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FIGURE B.24: Multitaper spectrograms: ['ufi] productions from “goofy”, subjects M-05 and
M-06.
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B.2 Females
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FIGURE B.25: Multitaper spectrograms: ['ifi] productions from “quichey”, subjects F-07 and

F-08.
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FIGURE B.26: Multitaper spectrograms: ['ifi] productions from “quichey”, subjects F-09 and

F-10.
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FIGURE B.27: Multitaper spectrograms: ['ifi] productions from “quichey”, subjects F-11 and

F-12.
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FIGURE B.28: Multitaper spectrograms: ['isi] productions from “fleecy”, subjects F-07 and

F-08.
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FIGURE B.29: Multitaper spectrograms: ['isi] productions from “fleecy”, subjects F-09 and

F-10.
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FIGURE B.30: Multitaper spectrograms: ['isi] productions from

F-12.
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FIGURE B.31: Multitaper spectrograms: ['ii] productions from “teethy”, subjects F-07 and

F-08.
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FIGURE B.32: Multitaper spectrograms: ['i6i] productions from “teethy”, subjects F-09 and

F-10.
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FIGURE B.33: Multitaper spectrograms: [i6i] productions from “teethy”, subjects F-11 and

F-12.
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FIGURE B.34: Multitaper spectrograms: ['ifi] productions from
F-08.
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FIGURE B.35: Multitaper spectrograms: [ifi] productions from “beefy”, subjects F-09 and

F-10.
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FIGURE B.36: Multitaper spectrograms: ['ifi] productions from “beefy”, subjects F-11 and

F-12.
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FIGURE B.37: Multitaper spectrograms: [‘ufi] productions from “sushi, subjects F-07 and

F-08.
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