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Abstract

The buoyancy-driven rise of a small single fluid inclusion in a viscous liquid that

is enclosed in a container of the cylindrical shape is numerically modelled. It is

additionally assumed that the inclusion is slowly absorbed by the surrounding

liquid. The phase-field approach is used as a physics-based model for the de-

scription of the thermo- and hydrodynamic evolution of a miscible heterogeneous

binary mixture. The interplay of the effects of absorption and inclusion’s motion

are investigated. We found that the dissolution of a nearly spherical inclusion

does not occur evenly over its surface. The interfacial diffusion is stronger at

the inclusion’s top cap. The matter absorbed by the liquid does not quickly

penetrate into the bulk of the ambient phase, it accumulates behind the inclu-

sion forming a concentration wake. We found that during the rise the inclusion’s

speed grows. The speed and the acceleration of the inclusion strongly depend on

the absorption rate, so the inclusion rises faster at the higher absorption rates.

This effect is explained by the action of the Marangoni stress that is developed

due to non-uniform mixture composition along the inclusion’s surface. We also

found that the rise of the inclusion in a closed container is accompanied by the

recirculation flow that is developed near the inclusion and that rises upwards

with the inclusion. In the limit of negligible absorption (higher Peclet num-

bers) the convergence to a constant terminal speed of an immiscible inclusion

is observed.
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1. Introduction

On the basis of the phase-field approach we model the evolution of a gaseous

or liquid inclusion that rises in another liquid. It is additionally assumed that

the inclusion is slowly absorbed by the ambient liquid, and the effects of the

absorption on the inclusion’s speed, the inclusion’s shape, and the effects of the5

inclusion’s motion on the rates of absorption are investigated.

The evolution of a single inclusion is studied to comprehend the mixing

dynamics of liquid/liquid and gaseous/liquid substances. The complete and

fast mixing is a frequent pre-requirement for chemical interactions, and thus is

highly desired in the majority of chemical engineering processes. In particular,10

it is known that slow and limited miscibility of gaseous species in liquids limits

the reaction rates and the amounts of the reactants that partake in the process,

forcing an extensive supply of the reactants, and thus leading to the problems

of separation of products from non-reacted feedstock substances. To increase

the area of contact of the phases, the reactants can be fed into a liquid-filled15

reactor in the form of small inclusions (the so called bubble column reactor).

A particular example would be the process of benzene alkylation that is

used for production of ethylbenzene (a key intermediate for styrene production)

with the yearly global demand exceeding 25 million tonnes [1, 2]. Almost all

ethylbenzene is synthesized from benzene and ethylene. In one of the variations20

of the process the alkylation is performed in the presence of mineral (Lewis)

acids that are used as catalysts [1, 3, 4]. These acids are highly toxic and

corrosive and are frequently neutralised at the end of the reaction producing

salts that need to be disposed. For the alkylation, benzene and catalyst are

supplied in the liquid form, while ethylene is fed in the gaseous form as bubbles25

that rise in the reactor. Slow absorption of ethylene bubbles by the liquid phase

limits the reaction rates, and intensification of the absorption can significantly
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reduce the usage of the reactants, including the catalyst, thus reducing the cost

of the products and the environmental impact of the technology.

Another chemical engineering problem of the considerable interest and im-30

portance is the CO2 absorption by aqueous amine solutions that is considered as

one of the most promising techniques for the CO2 capture [5, 6]. Optimisation

and scale-up of this process is again significantly hampered by the low and slow

miscibility of CO2.

Modelling of the dynamics of a single inclusion is the focus of the current35

study. The characteristics of a rising inclusion (its speed and shape) are affected

by the different parameters that define the properties of both phases, such as

density, viscosity, surface tension, etc. The hydrodynamic aspects of such mo-

tion have been thoroughly studied in numerous theoretical and experimental

works, see e.g. [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and reviews [20, 21].40

One of the current focuses of the similar studies is the development of new nu-

merical models capable of accurate tracking of the liquid/bubble interfaces, as

owing to a wide range of the available experimental data the rise of a single

inclusion is considered as an excellent test for verification of the new numerical

tools (see e.g. [22, 23, 24, 25, 26]). The phase-field approach was also proved45

to be an efficient method for the accurate modelling of complex shape transfor-

mations of a rising inclusion in a viscous liquid with large density and viscosity

contrasts, see e.g. works [27, 28].

The rise of an inclusion that is absorbed by the ambient liquid was also

examined in a number of experimental and numerical works. For instance, in [29,50

18] the equation for the species balance is solved to determine the concentration

fields in the ambient phase and thus to calculate the diffusion fluxes from a

quasi-steady bubble (i.e. when all fields around the bubble can be regarded as

steady) under assumption that the change of the bubble’s shape (and size) due

to interfacial diffusion is negligible. The change of the bubble’s size is taken into55

account in papers [30, 31], although under the assumption that the dissolved

material is homogeneously spread in the surrounding liquid. This approach was

further extended in paper [32] by taking into account the changes in the size

3



of the bubble upon dissolution, although the bubble was assumed to remain

spherical. In a recent work [33], the VOF method was modified by the addition60

of the source term, that takes into account the dissolution of the bubble, into

the equation for the volume fraction function.

In the papers referred above the dissolution rate is defined as the difference

between the concentration of the dissolved substances in the bubble’s phase

and the saturation level in the surrounding liquid. It should be also emphasised65

that the primary focus of these works is on the dissolution rates from a rising

bubble, assuming that the dissolution is rather weak so its influence on the rising

dynamics is neglected. Although we should mention that an addition of soluble

surfactants changes the fluid velocity fields near rising bubbles, thus altering

the speeds of bubbles’ rise, see e.g. [34, 35, 20, 36].70

In the current work we develop a new model that accurately describes the

motion and the dissolution of the inclusion in a viscous liquid, fully resolving

the flow fields within the inclusion and in the ambient phase, and tracing the

transformations of the inclusion’s shape due to mechanical action and due to

dissolution/absorption [37]. We also take into account the smearing of the inter-75

facial boundary upon the dissolution, and the dynamic changes in the surface

tension. The rate of interfacial diffusion is determined though the extended

Fick’s law, i.e. through the difference in the chemical potential, taking into

account the effect of barodiffusion.

2. Governing equations. Phase-field approach80

In the current work the phase-field approach is employed as a physics-based

model capable of accurate description of the thermo- and hydrodynamic evolu-

tion of the binary mixture. The interface separating two liquids is represented

as a transitional boundary of a finite thickness. The concentration field C, that

is defined as the mass fraction of one component in the mixture, is used to trace85

the evolution of the interfacial boundary. The specific free energy function is
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defined as a function of concentration and concentration gradient [38],

f(C,∇C) = f0(C) +
ε

2
(∇C)2. (1)

Here the second term takes into account the surface tension effects. The role

of this term is defined by the capillary constant ε, which is assumed to be

sufficiently small so to make these effects negligible everywhere save for the90

places of large concentration gradients, i.e. where interfaces are located.

The classical part of the free energy function, f0, should define the possible

states of the mixture. For instance, this part can be determined by the Landau

formula,

f0(C) = a(C − Ccr)2 + b(C − Ccr)4. (2)

This expression would be particularly suitable to represent the equilibrium95

states of binary mixtures with the so-called upper critical temperature (when

the mixture is homogeneous in equilibrium above the critical temperature and

may be heterogeneous below the critical temperature), especially, the states of

the mixture in the vicinity of the consolute point (defined by the concentra-

tion Ccr). The phase diagram of such a mixture is defined by the equation,100

µ0 = df0/dC = 0, or, (C − Ccr)2 = −a/(2b). When a/(2b) is negative, the

latter equation has two solutions,

C = Ccr ±
(
−a
2b

)1/2

, (3)

that are associated with two components of the mixture. If a/(2b) is positive

then the equation has only one homogeneous solution. Hence, the parameter

a/(2b) can be interpreted as the difference of the temperature from the critical105

point (T − Tcr).

We further assume that the behaviour of a mixture with the consolute point

is examined. We however want to extend our consideration assuming that the

binary mixture may occupy any physically possible thermodynamic state, that

are not obligatory located near the critical point. The parameters a and b in our110

work are treated as the two phenomenological coefficients with the values to be
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Figure 1: (a) The classical part of the free energy function (plotted for a = −1/2 and b = 1),

and (b) the phase diagram in the case of negligible surface tension effects. The solid lines

depict the curves for the function (4) and the dashed lines depict the curves for the Landau

function (2).

taken so to provide better matching with the experimental data. We however

assume that b remains positive while a is either positive or negative depending

on whether the binary system is single- or two-phase in equilibrium. In other

words we extend the usual expectations allowed for the values of a and b near115

the consolute point to all possible thermodynamic states of the binary mixture.

For convenience, we shift the reference point for the concentration field as

follows, C → (C − Ccr). For simplicity we also assume that the phase diagram

is symmetrical with the critical concentration Ccr = 1/2. The values of the new

concentration then vary within the range [−1/2; 1/2].120

In the presence of strong gravity-induced gradients in the field of concentra-

tion, or in the presence of strong flows, expression (2) becomes less convenient,

as in these cases the numerically calculated values of the concentration can be

outside of the range of concentrations that correspond to the pure components
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(±1/2).1 In [39, 40] the other free energy function is used,125

f0 =

(
a− 3

2
b

)
C2 + (4)

+
3

4
b

[(
1

2
+ C

)
ln

(
1

2
+ C

)
+

(
1

2
− C

)
ln

(
1

2
− C

)]
.

The logarithmic terms of this function, that are written similarly to the regular

solution model frequently used in the theory of polymers [41], limit the values

of concentration to the range [−1/2; 1/2]. In the case the symmetrical phase

diagram, with the consolute point at C = 0 (or for the old reference point, at

C = 1/2), expression (4) coincides with the Landau formula in the vicinity of130

the consolute point (with the accuracy of a constant term that is insignificant,

as it disappears when the expression for the chemical potential is derived).

Expression (4) is used for the current work to define the classical part of the

free energy function. Figure 1 provides an illustration of the differences in the

shape of the free energy function and in the shape of the phase diagram that135

are derived on the bases of the functions (2) and (4).

The full free energy function (1) can be used to re-derive the Navier-Stokes

equations for the mixture, that was done by Lowengrub and Truskinovsky [42].

The resultant full Cahn-Hilliard-Navier-Stokes equations are however impracti-

cal for numerical treatment due to quasi-compressibility, that is, the dependence140

of the mixture density on concentration. The Boussinesq approximation of the

full equations [43] is used in the current work to define the evolution of the

rising and absorbing inclusion in the liquid.

The governing equations reflect the laws of conservation of momentum,

species, and mass,145

∂~u

∂t
+ (~u · ∇)~u = −∇Π +

1

Re
∇2~u− C∇µ, (5)

∂C

∂t
+ (~u · ∇)C =

1

Pe
∇2µ, (6)

1The similar over-shootings are allowed by the shape of the free energy function (2), and

such over-shootings are actually regularly observed in the numerical results obtained on the

basis of the phase-field approach.
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∇ · ~u = 0, (7)

µ = −Gr(~r · ~γ) + µ0 − Cn2∇2C, (8)

µ0 =
df0
dC

=
3

4
ln

(
1/2 + C

1/2− C

)
− (3− 2A)C. (9)

These equations are applied to the whole multiphase system, including the in-

terface. Here, ~u is the velocity vector (defined as the mass averaged velocity

for a fluid particle composed of two different components), Π is the modified

pressure field that is to be determined from the incomressibility constraint, and

µ is the chemical potential (µ0 is the classical part of the chemical potential).150

The Navier-Stokes equation contains an additional (Korteweg) force that deter-

mines the interface morphology and the hydrodynamic flows induced near the

interface mimicking the Marangoni effect. The intensity of the diffusion process

is defined by the extended Fick’s law, i.e. through the gradient of the chem-

ical potential µ, which allows us to include, in addition to the usual diffusion155

driven by the concentration variations, the barodiffusion terms. The unit vector

~γ = −~g/g is opposite to the vector of the gravity acceleration.

The equations are written in non-dimensional form and include the following

parameters. The Grashof number,

Gr = φ
gL∗
µ∗

, (10)

the Reynolds number,160

Re =
ρ∗µ

1/2
∗ L∗
η∗

, (11)

the Peclet number,

Pe =
ρ∗L∗

αµ
1/2
∗

, (12)

and the Cahn number,

Cn =

(
ε

µ∗L2
∗

)1/2

. (13)

In these formulae, L∗ is the typical size, ρ∗ is used as the density scale, µ∗ is

the unit of the chemical potential, η∗ is the viscosity scale, α is the mobility

constant, and φ = (ρ2 − ρ1)/ρ1 is the density contrast, with ρ2 and ρ1 being165
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the densities of the pure components of the binary mixture. The typical scale

of the velocity field is µ
1/2
∗ .

The parameter A = a/b comes from the equation for the free energy function

(4), and this parameter determines the thermodynamic states of the mixture.

It is necessary to note that the above definitions of the non-dimensional170

parameters are different from the standard definitions that would be given on the

basis of their standard phenomenological parameters, such as the surface tension

and diffusion coefficients. We keep using the conventional names and notations,

as these non-dimensional parameters appear in front of the corresponding terms

of the hydrodynamic equations. The Cahn number, Cn, is also referred to as the175

capillary number as its value determines the importance of the capillary effects.

It can be also shown that this parameter is proportional to the thickness of an

equilibrium interface between two phases.

It is also necessary to note that the governing equations (5) were derived

for two liquids with different viscosities [43]. In the derivation, this difference180

was assumed small, and thus only one single Reynolds number was introduced.

Although, for the case when the viscosity difference is large, the governing equa-

tions need to be reconsidered, which may bring several new terms. This has not

been done in the present work.

It can be shown that the surface tension coefficient associated with the phase185

boundary can be defined as

σ∞ = Cn2

∫ ∞
−∞

(
dC

dx

)2

dx, (14)

where x is the coordinate across the interface. For a flat equilibrium interface

and with no gravity effect, the interface thickness can be evaluated as δeq =

Cn/
√
−A and the surface tension coefficient as σ∞ = 1

3Cn
√
−A (see e.g. [44]).

In addition, it is necessary to note that on a macroscopic scale the interface190

between two liquids is infinitely sharp, and hence the limiting behaviour of

the multiphase system for δ → 0 is of the primary interest for the phase-field

approach.
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3. Problem statement and numerical approach

We model the rise of an isolated single inclusion. The computational domain195

is represented by a vertical cylinder with circular cross section. The cylinder’s

radius is used as the length scale. The radial and axial coordinates are denoted

by r and z, respectively. The cylinder is closed at the bottom and top ends.

The inclusion rises along the centreline. The axial symmetry is assumed, and

owing to the symmetry only a half of the cylinder (and a half of the inclusion)200

is shown in figures 3. We also assume that the size of the inclusion is much

less than 1 (the radius of the computational domain), so the influence of the

boundary conditions imposed on the cylinder’s walls remains small.2 For the

same reason, the initial position of the bubble is chosen at z = 0.5 (far from

the lower end), and the height of the cylinder, H = 6, is also chosen so large205

to observe a sufficiently long rise of the inclusion. The runs with the higher

computational domains (with H = 10 and H = 12) were also accomplished,

and no significant differences in the numerical results were observed.

At the start of a numerical run the inclusion is immovable and its shape and

position is set by the following concentration profile,210

C0(r, z) = 0.495 tanh

(√
r2 + (z − 0.5)2 − r0

δ0

)
. (15)

Here ±0.495 are the initial concentrations in the two liquids in contact, and

δ0 is the initial interface thickness. We assume that the phases are brought

into contact when the inclusion enters the computational domain, and thus the

initial state of the binary mixture is different from the state of thermodynamic

equilibrium and, consequently, the initial interface thickness δ0 differs from its215

equilibrium value δeq. This is one of the main differences of the current work

from other similar studies (see e.g. [27, 28]), where the phase-field method

2We examine the motion of the inclusions with the radii that are lower than 0.3. The

influence of the walls on the rise of similar inclusions is not negligible, although it remains

sufficiently low. The detailed study of the influence of the pipe walls on the motion of a single

immiscible bubble is reported in work [8].
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is used for modelling the evolution of a binary system that experiences some

hydrodynamic changes, assuming although that the system either resides in a

state of thermodynamic equilibrium (i.e. δ0 = δeq) or very near the equilibrium220

(δ0 ≈ δeq) and thus the interfacial diffusion is negligible. We use the phase-field

approach as a physics-based model for miscible heterogeneous systems that is

capable of tracing the transformations of the inclusion’s shape and interfacial

diffusion through the interface. The focus of works [27, 28] was to model the

hydrodynamic evolution of a bubble with exclusion of the diffusion effects.225

The governing equations (5) are supplemented with the following boundary

conditions. At the lower end,

z = 0 : ur = uz = 0,
∂C

∂z
= 0,

∂µ

∂z
= 0. (16)

At the upper end,

z = H : ur = uz = 0,
∂C

∂z
= 0,

∂µ

∂z
= 0. (17)

At the centreline,

r = 0 : ur = 0,
∂uz
∂r

= 0,
∂C

∂r
= 0,

∂µ

∂r
= 0. (18)

At the cylinder’s wall,230

r = 1 : ur = uz = 0,
∂C

∂r
= 0,

∂µ

∂r
= 0. (19)

Thus, all walls are assumed to be impermeable. The no-slip boundary conditions

are used for the velocity field. For the chemical potential, we impose the absence

of the diffusive flux through the walls. The conditions for the concentration

should reflect the wetting conditions. We however consider the simplest case

when the molecules of the mixture components interact with the wall equally,235

so the contact angle is 900. In fact, we are interested in the evolution of the

inclusion far from the walls, so the wetting properties are not important for the

current study. The boundary conditions at the centreline are written to reflect

the axial symmetry.
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For the numerical solution, the equations are re-written into the streamfunction-240

vorticity formulation. The resultant equations are solved using the finite-difference

method on a uniform mesh. The explicit first order in time and second-order in

space discretisation scheme is used.

To characterise the evolution of the inclusion we calculate a number of the

integral parameters. Namely, we determine the vertical position of the inclusion,245

zd, and the speed of the inclusion’s rise, U = dzd/dt. The rise of the inclusion

induces the hydrodynamic motion in the ambient phase, and the intensity of the

motion is determined by the total kinetic energy, Ek =
∫
V
u2dV (here V is the

total volume of the computational domain). We also calculate the inclusion’s

volume, Vd (defined as the volume of the region for which C < 0), the volume of250

the transitional layer between the phases, Vδ (the volume of the zone for which

|C| < 0.05), the surface area of the inclusion, S (for the axisymmetric problem

the task of finding this quantity is reduced to the calculation of the length of

the line in the x-z plane defined by the condition C = 0), the thickness of the

transitional zone, δ = Vδ/S, and the surface tension coefficient,255

σ =
Cn2

S

∫
V

((
∂C

∂r

)2

+

(
∂C

∂z

)2
)

dV . (20)

We characterise the changes of the inclusion’s shape by determining its two

dimensions, ar and az, which are the maximum sizes of the inclusion in the

radial and vertical directions. We also calculate the average concentrations in

each phase.

Figure 2 shows the time evolutions of the integral quantities for one of the260

runs that is chosen here for the illustration of the numerical convergence of the

results. In figure 2 one clearly see that the differences between the lines are

gradually reduced when the number of the grid nodes is increased. The most of

the results of this work are obtained with the use of the numerical grids with

either 350× 2100 or 400× 2400 nodes. The improved resolution (450× 2700) is265

used for some calculations that are performed for higher Peclet numbers, when

the use of the finer numerical grid gives visible improvements. The need of the

improved resolution at higher Peclet numbers is to be explained by the smaller
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Figure 2: (a) The vertical position of the inclusion, (b) the speed of the inclusion’s rise, and

(c) the total kinetic energy of the fluid flow induced in the computational domain vs time.

(d) The volume of the inclusion, (e) the thickness of the interfacial boundary, and (f) the

surface tension coefficient vs. the vertical position of the inclusion. The results are obtained

for H = 6, A = −0.5, r0 = 0.2, Pe = 5 · 106, Gr = 0.01, Re = 100, Cn = 0.005, and with

the numerical grids with 250 × 1500 nodes (dash-dotted lines), 350 × 2100 (dashed lines),

400 × 2400 (solid lines), and 450 × 2700 (dotted lines).
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diffusive length scales3, and by the weaker diffusive damping of the numerical

instabilities (in [44, 45, 46], it is shown that the diffusion effect damps the growth270

of physical and numerical instabilities similar to the effect of viscosity).

In figure 2 one sees that the chosen resolution is sufficient for tracing the rise

of the inclusion, although, it is not sufficient to get rid of all fluctuations in some

of the curves. For instance, the initial thickness of the interface is equal to 4 grid

steps (which is considered as the minimum number of the grid points across the275

interface that is needed for the accurate interface tracking with the use of the

phase-field approach, see e.g. [27, 40]), and since the minimum increment to the

interface thickness is equal to one grid point, i.e. comparable with the size of the

interface, these increments are well visible in figure 2e.4 As can be seen in figure

2d, for the chosen set of parameters the overall changes of the inclusion’s volume280

are relatively small, and hence some fluctuations on these curves are also visible.

The changes of the vertical coordinate of the inclusion are not that small, so

the lines in figure 2a are smooth. Nevertheless, the inclusion rises slowly. We

calculate the inclusion’s speed by taking the discrete positions of the inclusion

separated by the time step of 4 (in non-dimensional time units). Owing to285

the relatively small values of the resultant inclusion’s speed the instantaneous

fluctuations on these curves (figure 2b) are also visible. These fluctuations are

of the purely numerical nature, and they do not affect the general dependencies

for the quantities shown in figure 2 and in the other figures of this paper.
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Figure 3: The snapshots showing the stages of the rising bubbles with the initial radius of

r0 = 0.2 at two Peclet numbers, Pe = 5 · 106 (a-g) and Pe = 1.6 · 108 (h-n). The isolines

represent the fields of concentration (a-d, h-k) and chemical potential (e-g, l-n), and the vectors

depict the velocity fields (with the lengths scaled in accordance with the velocity magnitude).

The results are obtained for H = 6, A = −0.5, Gr = 0.01, Re = 100, Cn = 0.005. The actual

time moments are depicted in the figure. (d) and (k) are the enlarged versions of (c) and (j).
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4. Results290

Figure 3 shows the fields of concentration, chemical potential, and velocity

at different time moments. These snapshots are obtained from the numerical

runs fulfilled for two different Peclet numbers. The inclusion has a spherical

shape and zero velocity at the initial moment. By the action of the gravity

force the inclusion starts rising, although its speed seems to be rather low, as295

its shape remains nearly spherical. In figure 3 the results are shown for two

different Peclet numbers (with the stronger and weaker diffusion effects), and

one can clearly see that the speed of the inclusion, and the structure of the

fields of the concentration and chemical potential are strongly affected by the

interfacial diffusion.300

We should also mention that the typical convective and diffusive time scales

can be estimated as τc ∼ Re and τd ∼ Pe/A, respectively. For the calculations

of this work, the convective time scale is always much shorter than the diffusive

scale (with τc ∼ 100 and τd > 106). Figures 3 show that the duration of the

rise is typically equal to the several convective time scales, and the duration of305

the rise is always much shorter than the diffusive time scale, nevertheless, the

effect of diffusion cannot be neglected.

In figure 3 one sees that the rise of the inclusion is accompanied by a vortex

flow that is developed near the inclusion at its side in the ambient liquid. The

vortex remains attached to the inclusion and rises with the same speed. Since310

the inclusions shown in figure 4 rise very slowly, the vortex flow should not be

associated with the wake flow that appears behind the quickly rising bubbles

3At the start of the inclusion’s rise, when the time changes are determined by the hydro-

dynamic motion, the diffusive length scale can be estimated as l2 ∼ Re/Pe.
4The initial interface thickness is different for the calculations conducted with the different

resolutions, as can be seen in figure 2. This can easily explained by the fact that the initial

interface thickness was set as 4 grid steps and thus it depends on the grid size. This difference

also explains the different values of the surface tension (that is reciprocal to the interface

thickness). These differences although have no effects on the values of the other integral

parameters.
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[20, 18]. In the current work the rise of the inclusion in a closed container is

considered, and thus the upward motion of an incompressible fluid along the

centerline needs to be accompanied by a descending recirculation flow along the315

container’s walls. One however sees that this recirculation is achieved by the

vortex flow that does not occupy the entire cylinder. The visible hydrodynamic

motion is bound to the zone near the inclusion, and although the vortex’ size

exceeds the size of the inclusion, these two quantities remain of the same order.

The vortex is attached to the inclusion over its entire rise. We performed the320

numerical simulations for the longer cylinders, with the heights up to H =

12, and all observations coincide with those reported here up to the moment

the inclusion’s vertical coordinate is below 5.5, i.e. while the influence of the

upper boundary is negligible, which allows us to conclude that the flow pattern

observed in figure 3 is pertinent to the rise of the inclusion in a closed cylinder,325

and, e.g., it does not depend on the cylinder’s height.

It is interesting that at higher Peclet numbers the inclusion rises slower,

and the rise of the inclusion induces much weaker hydrodynamic motion in the

ambient phase. The strong dependence of the ascending speed on the Peclet

number should be related to the time changes of the species distribution. A330

possible mechanism that may induce the flow in the surrounding liquid is the

solutal convection that may be generated by the concentration inhomgeneities.

Although, even for the case with stronger diffusion effect, the typical diffusive

time remains much longer than the typical convective time. In figure 4 one

sees that the inhomgeneities in the concentration field only develop within the335

inclusion and behind the inclusion. At the inclusion’s side the concentration field

remains homogeneous, and hence the convective mechanism may not explain the

observed flows, and may not explain the observed dependencies on the Peclet

number.

The complex time variations of the ascending velocity of the bubbles was340

earlier observed for the bubbles rising in the liquid with added surfactants that

either are absorbed or desorbed by the bubbles [34, 35, 20, 36]. In e.g. [35],

it is reported the speed of a bubble rising in the surfactant-rich solution in-
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creases at the initial moment, reaches some maximum value and then slowly

decreases to the terminal velocity that is different from the terminal velocity of345

a bubble rising in pure water. The observed dependencies are explained by the

slow absorption of the surfactant by the bubble surface, and, consequently, by

the Marangoni forces induced at the surface due to uneven distribution of the

surfactants along the bubble’s surface. These Marangoni forces introduce the

additional drag force that slows down the rise of the bubble.350

The strong dependence of the inclusion on the Peclet number that is observed

in figure 4 should be explained by the same mechanism. The Korteweg term

in the Navier-Stokes equation (5) generates the additional force, that, in our

case, assists the rise of the inclusion, increasing its ascending speed. The faster

inclusion’s rise results in the faster recirculation flow.355

In figure 3 one can also notice that the dissolution of the matter primarily

occurs at the inclusion’s top cap (where the gradient of the chemical potential

has the greater values). The dissolved matter is then transported by the vortex

to the inclusion’s rear side, where the tales in the fields of concentration and

chemical potential are formed. The formation of the similar concentration tail360

(or wake) that accumulates the dissolved matter was also reported in the numer-

ical studies [32, 33]. The advection of the surfactant along the bubble surface

and then accumulation of the surfactant in the rear section of the bubble was

also reported in works [34, 20, 36].

The time evolutions of the integral parameters that characterise the rise of365

the inclusion are depicted in figure 4. Figure 4a depicts the vertical position

of the inclusion at different time moments and figure 4b depicts the inclusion’s

speed versus time. One sees that the inclusion starts to accelerate at t = 0,

and the inclusion’s speed never becomes constant increasing over the entire rise.

Nevertheless, the speed itself and the rate of its changes are lower at the higher370

values of the Peclet number.

The rise of the inclusion induces the hydrodynamic motion in the compu-

tational domain. The intensity of the generated hydrodynamic motion keeps

growing over the entire rise of the inclusion, although, the kinetic energy itself
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Figure 4: (a) The vertical position of the inclusion, (b) the speed of the inclusion, (c) the

total kinetic energy of the binary mixture and the kinetic energy of the inclusion (thick lines)

vs. time. (d) The volume of the inclusion, (e) the thickness of the interface, (f) the surface

tension vs. the inclusion’s vertical position. The data is plotted for r0 = 0.2, H = 6, A = −0.5,

Gr = 0.01, Re = 100, Cn = 0.005, and Pe = 2 · 107 (solid lines), Pe = 4 · 107 (dashed lines),

Pe = 8 · 107 (dash-dotted lines), and Pe = 1.6 · 108 (dash-dot-dotted lines).
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Figure 5: The dependences of the average concentrations in the inclusion (a) and in the

ambient liquid (b) phases on the vertical coordinate of the inclusion. The data are plotted for

the same parameters as in figure 4.

and its time changes become smaller at higher Peclet numbers (figure 4c). In375

figure 4c, the kinetic energy that is solely associated with the inclusion, that is

determined as VdU
2/2, is also shown by using the thicker lines. One can see that

this part in the total kinetic energy of the system is at least by an order lower

than the total kinetic energy, indicating that the volume of the liquid that is

involved into the hydrodynamic motion is in fact larger than just the inclusion’s380

volume.

Figure 4d illustrates the decrease of the inclusion’s volume during the rise.

The volume decreases linearly in respect with the inclusion’s vertical coordinate.

The rate of the volume’s decrease obviously depends on the Peclet number, being

higher at lower Peclet numbers. Owing to diffusion the inclusion’s interface385

smears but this happens very slowly as seen in figure 4e. Following the slow

interface smearing the surface tension associated with the inclusion’s interface

slightly decreases. The rate of the interface smearing and, consequently, the rate

of the decay of the value of the surface tension coefficient are slightly weaker at

the higher Peclet numbers.390

Finally, in figure 5 we show the time dependences of the average concen-

trations within the inclusion and within the ambient liquid. One sees that the
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shrinkage of the inclusion (figure 4d) and the smearing of the interface (figure

4e) is driven by the exchange of the molecules between the phases. The dissolu-

tion of the inclusion results in some accumulation of the inclusion’s molecules in395

the ambient phase (figure 5b), although, the dissolution of a smaller inclusion in

a much larger computational domain has a relatively small impact on the value

of the average concentration. For the inclusion phase, the relative changes in

the average concentration are much more pronounced (figure 5a), and here one

could observe the adjustment of the average concentration to the value −0.388400

that is the equilibrium concentration for A = −1/2 (see also figure 1 that defines

the phase diagram).

Figures 6 and 7 depict the data that characterise the inclusion when it

reaches the position with the vertical coordinate z = 5. At this moment, the in-

clusion keeps accelerating, and thus the speeds shown in figures 6a,b and 7a,b do405

not correspond to the terminal speeds that are usually used to characterise the

rise of the inclusion. Nevertheless, as it was earlier mentioned the rate of changes

of the inclusion’s speed are lower for the higher Peclet numbers. For a smaller

inclusion (with the initial size, r0 = 0.1) we managed to fulfil the numerical

runs for the sufficiently high Peclet numbers (Pe = 3.2 · 108). The results show410

that the curves of the inclusion’s speed clearly converge to the values that can

determine the rise of immiscible inclusions, given by the Hadamard-Rybczynski

equation, i.e.

U∞ =
4

15K1
GrRer20. (21)

The latter formula determines the terminal speed of a small spherical immis-

cible inclusion, assuming that the components a binary mixture have a small415

difference in viscosity coefficients [47]. This expression is written in the non-

dimensional form using the scales and the non-dimensional parameters intro-

duced above. The coefficient K1 stands for the correction factor that takes into

account the additional drag enforced on the inclusion’s motion by the walls of

the cylinder (i.e. by the boundaries of the computational domain) [8]. This420

correction factor is a strong function of the inclusion’s size, and for the inclu-
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Figure 6: (a,b) The speed of the inclusion at z = 5, (c,d) the volume of the inclusion at z = 5,

and (e,f) the horizontal (ar, solid lines) and vertical (az , dashed lines) sizes of the inclusion

at z = 5 vs. Peclet number. The data are plotted for H = 6, A = −0.5, r0 = 0.1, Cn = 0.005,

and (a,c,e) for Gr = 0.01 and three Reynolds numbers Re = 100 (circles), Re = 200 (triangles),

and Re = 300 (square symbols), (b,d,f) for Re = 100, and three Grashof numbers Gr = 0.01

(circles), Gr = 0.02 (triangles), and Gr = 0.03 (square symbols). The horizontal vertical

line in (a) depicts the terminal velocity determined from formula (21) for Re = 100, and the

horizontal line in (c) depicts the initial volume of the inclusion.
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Figure 7: (a,b) The speed of the inclusion at z = 5, (c,d) the volume of the inclusion at

z = 5, and (e,f) the horizontal (ar, solid lines) and vertical (az , dashed lines) dimensions

of the inclusion at z = 5 vs. Peclet number. The data are plotted for H = 6, A = −0.5,

Re = 100, Gr = 0.01, and (a,c,e) for for r0 = 0.1 and three Cahn numbers Cn = 0.005

(circles), Cn = 0.01 (triangles), and Cn = 0.02 (square symbols); and (b,d,f) for Cn = 0.005

and three initial radii of the inclusion, r0 = 0.1 (circles), r0 = 0.2 (triangles), and r0 = 0.3

(squares).
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sions studied in this work, the values of the factor are 1.26 for r0 = 0.1, 1.68 for

r0 = 0.2, and 2.36 for r0 = 0.3.

We demonstrate the convergence of the results for one set of the governing

parameters, when the simulations for the sufficiently high Peclet number turned425

out to be feasible. For the other sets of the parameters, we have not reached the

values set by formula (21), although the obtained values of the inclusion’s speeds

remain sufficiently close for the expected values. It needs to be emphasized

that the inclusion’s speeds shown in figures 6 and 7 correspond to the stage

when the inclusion keeps accelerating and thus the motion of the inclusion is430

affected by the added-mass drag [47, 20], that is not taken into account by

formula (21). The inclusion rise is also affected by the recirculation flow and

by the Korteweg force. For smaller droplets and weaker interfacial diffusion

these additional drag mechanisms are weaker, and thus some correspondence

with equation (21) could be established. The strength of the Korteweg force435

is strongly dependent on the Peclet number and the added-mass drag and the

drag imposed by the recirculation effect strongly depend on the inclusion size,

resulting in the alteration of the standard dependences for the speed of the

inclusion’s rise on the governing parameters as they may be expected from

equation (21).440

For instance, figure 6 shows the data for the three different Reynolds numbers

and for three different Grashof numbers, and figures 7b,d,f show the data for the

three inclusions with different initial sizes. At lower Peclet numbers the speed

of the inclusion’s rise increases with the growth of the Reynolds and Grashof

numbers and with the growth of the initial size of the inclusion, although not at445

the rate predicted by equation (21). At higher Peclet numbers the dependences

on the Reynolds and Grashof numbers, and on the inclusion’s size become even

weaker.

In figures 6a,b and 7a,b one sees that the inclusion’s speed strongly depends

on the Peclet number, so that the inclusion rises faster at the stronger rates of450

absorption by the ambient phase (for the lower Peclet numbers). This observa-

tion remains valid until the absorption rate is so strong that the inclusion starts
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to lose the considerable portion of its initial volume.

Figures 7a,c,e show the data obtained for the three different Cahn numbers.

For lower Peclet numbers the inclusions with the lower values of the surface455

tensions rise faster. There is however no dependence on the Cahn number at

the higher Peclet numbers, which could be explained by the lower speeds of

the rise at higher Peclet numbers when inclusions do not show any signs of

mechanical deformations.

Figures 6 and 7 also show the volume, Vd, and the radial and vertical sizes460

of the inclusion, ar and az, at the vertical position z = 5. It is obvious that the

faster rising inclusions (at higher Reynolds and Grashof numbers) tend to loose

less material when they reach the upper boundary of the computational domain,

so the volume of the inclusion under these parameters remains slightly larger.

One may also notice that the inclusion has a nearly spherical shape at higher and465

lower Peclet numbers, and the inclusion has the shape of an oblate spheroid at

the intermittent values of the Peclet numbers. The changes of inclusion’s shape

are much more noticeable for larger inclusions as seen in figure 7f. The smaller

variations in the horizontal size, ar, in contrast with the changes in the vertical

size of the inclusion, az, indicate that for our numerical simulations the effect of470

dissolution on the inclusion’s shape is stronger than the action of the mechanical

forces.

5. Discussion

The rise of an inclusion is traditionally characterised by the Reynolds num-

ber that is defined through the terminal velocity and the inclusion’s diameter.475

We observed that the inclusions that are being dissolved do not rise with the

constant speed, and the aspect ratio and the sizes of the inclusion change due

to dissolution. We may introduce the Reynolds number for an equivalent im-

miscible inclusion, with the velocity given by formula (21),

Re∞ =
8

15
GrRe2r30, (22)

25



or we can introduce the actual Reynolds number,480

ReU = ReUd, (23)

that varies over the inclusion’s rise and that is equal to Re∞ in the limit of an

immiscible inclusion. Here d is the equivalent inclusion’s diameter that can be

defined as d = (6Vd/π)
1/3

.

From the obtained data we see that both Re∞ and ReU are in the range

[0.1; 1], which additionally confirms that the rise of a creeping Stokesian inclu-485

sion is studied in this work.

The mechanical deformation of the inclusion’s shape during the rise is fre-

quently characterised by the Morton, Eotvos (or Bond), and Weber numbers,

which, in terms of the parameters introduced in this paper, are defined as

Mo =
Gr

Re4σ3
, Eo =

Grd2

σ
, We =

U2d

σ
. (24)

The surface tension and the speed of the inclusion are the functions of time in our490

work, and hence parameters (24) vary over the inclusion’s rise. The estimations

on the basis of the parameters of the current paper show that Mo ∼ 1, Eo ∼ 1,

and We ∼ 0.1, indicating that the inclusion could demonstrate some smaller

shape deformations (see e.g. [15, 19]), obviously due low levels of the surface

tension.495

The dissolution process is also frequently characterised by the Schmidt num-

ber, that is Sc = Pe/Re. This parameter varies in the range [104; 106].

Figures 8a,c depict the aspect ratio of the inclusion against the Peclet and

Weber numbers. The aspect ratio is small, approaches 1 at higher Peclet num-

bers, when the limit of an immiscible inclusion is expected. The deformation500

of the inclusion quickly grows at lower Peclet numbers, when the effect of dis-

solution is stronger and the speed of the inclusion’s rise is also considerably

higher.

The formula that determines the smaller deformations of inclusions for the

case of small Weber numbers is reported in the work [10],505

ar
az

= 1 + 0.337We. (25)
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Figure 8: (a) The aspect ratio for the inclusion at z = 5 vs. the Peclet number. (b) The

relative changes of the inclusion’s volumes between the initial point and the point zd = 5 vs.

Peclet number. (c,d) The aspect ratio vs. the Weber number and the relative changes of

the inclusion’s volumes (at z = 5). (e,f) The Weber and Reynolds numbers for the inclusion

calculated at z = 5 vs. the Peclet number. The data are plotted for H = 6, A = −0.5,

Cn = 0.005, Re = 100, Gr = 0.01, and three different initial radii of the inclusion, r0 = 0.1

(circles), r0 = 0.2 (triangles), and r0 = 0.3 (square symbols).
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We do not observe a similar dependence in the data depicted in figure 8c, which

indicates that the deformations of the inclusions reported in our work are pri-

marily determined by the dissolution, so the much smaller mechanical deforma-

tions remain completely shadowed.

Figure 8b shows that the relative changes of the inclusion volume. These510

changes are getting lower at higher Peclet numbers, which is obvious. What

is more interesting is that the smaller inclusions are getting absorbed by the

ambient liquid faster, in the sense that the relative changes of the volumes

of smaller inclusions are greater. Figure 8d depicts the dependences of the

inclusion’s aspect ratio against the relative change of the inclusion’s volume.515

This figure clearly confirms our earlier conclusion that the variations in the

inclusion’s shape should be related to uneven dissolution from the inclusion’s

surface, rather to mechanical deformations. The dependencies of the Weber

number and Reynolds number, ReU, on the Peclet number depicted by figures

8c,e are also fully explained by the strong dependence of the inclusion’s speed520

on the Peclet number.

In the end of the work we would like to provide some correlation of the

observations of this work to a real system. The phase-field method is based

on the use of some non-standard phenomenological parameters, such as the

capillary and mobility constants, as well as the scale for the chemical potential.525

The values of these parameters can be determined indirectly by comparison of

the numerical and experimental results (see e.g. [40]). The main parameter

is the typical value of the chemical potential, µ∗, since it enters all governing

parameters that define our mathematical model. The capillary and mobility

constants are then can be estimated from the values of the capillary and Peclet530

numbers.

Let us assume that a tiny inclusion with the typical size of 0.1mm (hence L∗,

which is the radius of the computational domain, is 1mm) rises in a liquid with a

typical density ρ∗ ∼ 103kg/m3 and typical viscosity coefficient η∗ ∼ 10−3Pa · s.

Our main results are obtained for Re = 100. Using the definition of the535

Reynolds number (11), we may derive the typical value of the chemical potential
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for a binary pair as µ∗ ∼ 0.1J/kg. This value can be used to estimate the typical

speed of the inclusion’s rise, µ
1/2
∗ U . The typical non-dimensional value of the

speed is U ∼ 0.1, and thus the dimensional value of the inclusion’s speed is

∼ 1cm/s. The correlation of this value with experimental measurements would540

allow an estimation of the parameter µ∗ for a real binary mixture. The speed

of the inclusion obtained here seems low, although it corresponds to the typical

speeds of the so tiny inclusions (see e.g. [19]).

For the main calculations, the Grashof number was set as Gr = 0.01. Using

its definition (10), one concludes that the binary mixture is characterised by the545

relatively small density contrast, φ ∼ 0.1.

We may also correlate the coefficient of the surface tension to the real pa-

rameters. The dimensional value of the surface tension coefficient is given by

σdim = ρ∗µ∗L∗σ. If we accept that the non-dimensional value of the surface

tension coefficient is σ ∼ 10−4, then the dimensional value can be estimated as550

σdim ∼ 10−5N/m, which corresponds to the typical value of the surface tension

at miscible interfaces [37].

For Pe ∼ 108, the mobility coefficient can be estimated as, α ∼ 10−6 kg · s ·

m−3. The bulk diffusion coefficient, far from the interfaces, can be calculated

as,555

D =
αµ∗
ρ∗

(
∂µ0

∂C

)
=
αµ∗
ρ∗

[ 3
4

1
4 − C2

− (3− 2A)

]
. (26)

Hence the diffusion coefficient can be estimated as D ∼ 10−10m2s−1.5 Finally,

the value of the capillary constant is ε ∼ 10−13 J ·m2/kg.

Thus, the numerical results of this paper model the slow creeping rise of a

tiny inclusion, with the density very close to the density of the ambient liquid,

and with the low surface tension coefficient.560

The above sequence could be helpful for understanding the desired values of

non-dimensional parameters. For instance, a two-fold increase in the value of

5For estimation of the diffusion coefficient, the values of the concentration e.g. depicted in

figure 5 may be used.
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the Reynolds number, with all other parameters kept at the same level, would

roughly mean that the inclusion of the same size would rise twice faster, while

the density contrast and the surface tension coefficient would be greater by four565

times. A two-fold increase in the Grashof number, with the other parameters

kept unchanged, would mean that the binary mixture has twice larger density

contrast. If the values of the non-dimensional parameters are kept the same,

but the inclusion’s initial size is twice larger, then the use of the above sequence

would show that the speed of such an inclusion would be twice smaller due to570

the twice lower density contrast.

6. Conclusions

On the basis of the phase-field approach we model the rise of a Stokesian

inclusion in a liquid, assuming that the inclusion is being slowly absorbed by

the liquid. Frequently, the phase-field model is used as a numerical tool capable575

of tracing the complex transformations of immiscible phase boundaries [27, 28].

In our work, the phase-field approach is used as a physics-based model for the

description of an evolution of a miscible heterogeneous binary mixture [43, 37].

The main difference from the other works is that we take the initial thickness

of an interface between the components of a mixture different from its equilib-580

rium value. This change makes the intensity of the diffusion in the considered

binary system much stronger, and as a result to reproduce the behaviour of

an immiscible interface the values of the Peclet number should be taken con-

siderably higher ([106; 108] in the current work as compared with [102; 104] in

[27]). This difference makes the numerical modelling much more challenging,585

thus allowing us to model only the Stokesian rise of a tiny inclusion with the

small density contrast. Nevertheless, the obtained results reveal a number of

the new interesting effects.

The mathematical model for the binary mixture is characterised by the two

time scales that define the rates of convective and diffusive changes. These scales590

are ultimately determined by the Reynolds and Peclet numbers, and the values
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of these parameters were chosen so to model the faster convective processes

and the slower diffusive changes. Such a limit corresponds a more practical

case of the slow absorption. In addition, in this limit we are able to draw some

similarities with the immiscible case when the behaviour of a Stokesian inclusion595

is well understood.

Despite seemingly low dissolution rates considered, the effect of the absorp-

tion on the observed motion is enormous. The inclusions that are absorbed by

the liquid rise faster than they would rise in a non-absorbing liquid. This effect is

explained by the action of the Korteweg force, totally similar to the Marangoni600

force that affects the rise of the bubbles with surfactants [34, 35, 20, 36]. The

absorption from the inclusion’s surface occurs unevenly: the interfacial mass

transfer is stronger at the top cap, where the gradient of the chemical potential

is stronger. Owing to slow diffusion, the dissolved matter is not immediately

absorbed by the ambient liquid, but accumulates at the inclusion’s rare side605

forming the concentration wake. The rise of the inclusion in the closed domain

is accompanied by the recirculation flow that is developed near the inclusion

and that rises together with the inclusion.

The described complex dynamics of the mixing process of two slowly mis-

cible fluids is essential for a better understanding of the chemical engineer-610

ing processes. The reported results substantially extend the previous studies

[29, 30, 31, 32], where the focus was on intensification of the weak dissolution

from the bubbles, assuming that the reverse effect of diffusion on the bubble

motion is negligible.
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