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Abstract: In this paper we review our recent results on group IV mid-infrared photonic 
devices. In particular, passive structures suitable for long wavelength operation, such as 
suspended Si, Ge-on-Si and suspended Ge, are analyzed. In addition, Ge-on-insulator 
waveguides have been characterized at 3.8 μm. Several active devices have been also 
realized: optical modulators in silicon and germanium, and silicon and graphene detectors 
operating at shorter mid-IR wavelengths. 
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1. Introduction

Group IV materials, such as Si, Ge, SiN, GeSn and graphene all have attractive properties for 
applications in the mid-IR. Si and Ge in particular are transparent up to 8 and 15 micrometers, 
respectively, and offer realization of compact and potentially low cost integrated circuits for a 
range of applications [1]. GeSn alloys and graphene complement the two by enabling 
integrated mid-IR sources and detectors. A number of mid-IR devices have been reported in 
the last few years, based on several material platforms: silicon-on-insulator (SOI) [e.g 2–4.], 
silicon-on-sapphire (SOS) [e.g 5–7.], silicon-on-nitride (SON) [e.g 8], germanium-on-silicon 
(GOS) [e.g 9–11]), SiGe-on-Si [12,13] and Ge-on-silicon nitride [14]. Integration with III-V 
sources and detectors has also been successfully realized [e.g 15,16], as has demonstration of 
simple sensing experiments [e.g 17,18]. 

In this paper we report our recent results on Si and Ge based mid-IR devices. In the first 
section, we briefly review our recently published results on SOI, suspended Si and GOS 
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The waveguide propagation loss was 0.8 dB/cm and the 90° bend loss was only 0.01 dB/bend 
[28]. 

This demonstration was very promising and by adapting it for longer wavelengths we 
have recently fabricated suspended Si waveguides and bends operating at 7.7 μm using a 
thicker SOI platform (1.4 μm compared to 500 nm SOI from [28]). This time, the propagation 
loss was higher, 3.1 dB/cm [29], however we estimated that 2.1 dB/cm came from the 
intrinsic material absorption of Si at 7.7 μm, meaning that the loss related to scattering was ~1 
dB/cm. This loss is very similar to the loss of chalcogenide [30] and GOS waveguides at the 
same wavelength. After this first demonstration of a low loss Si waveguide operating at such 
a long wavelength, our future work will involve development of other passive devices for ~8 
μm and implementation of the platform for sensing as it can enable higher interaction 
between the evanescent optical mode and an analyte. 

2.2 Ge-on-Si 

The second platform suitable for longer wavelengths is GOS. Germanium can be grown on Si 
substrates by CVD techniques and although Si has higher material loss beyond 8 μm, based 
on bulk material loss data from literature, GOS waveguides should have low loss up to 11-12 
μm. There have been several demonstrations of waveguides [9–11], MUXs [10] and thermo-
optic modulators [31] at shorter wavelengths. SiGe waveguides operating at 7.4 μm were 
reported in [12], followed by a recent report on relatively thick SiGe on Si waveguides with 
loss of ~3 dB/cm at 8.5 μm, whilst thinner SiGe waveguides showed losses of >8 dB/cm 
beyond 7 μm for TE and >16 dB/cm beyond 8 μm for TM polarization [13]. 

Our work on this platform includes 0.6 dB/cm GOS waveguides [11], low loss MMIs 
[11], Vernier rings [32], and grating couplers [33] at 3.8 μm, all optical modulation [34], and 
TPA measurements [35] at 2-3.9 μm. S. Radosaljevic et al. have very recently demonstrated 
Vernier racetrack resonator tunable filters on a Ge-on-SOI waveguide platform operating in 
the 5 μm wavelength range [36]. We have recently investigated passive GOS devices at 7.5-9 
μm [37,38] and found that the 3 μm GOS platform showed 2.5 dB/cm at 7.5 μm but became 
very lossy beyond 8 μm (>15 dB/cm) [38]. There are several potential reasons that can 
contribute to higher losses such as Si substrate absorption, defects/dislocations at Ge-Si 
interface, time dependent haze (TDH) formation, free carrier absorption or stress effects. 
However, our estimates did not predict that any of these should contribute significantly to the 
loss. Therefore, further investigation is required to find the reasons for high GOS losses 
beyond 8 μm. 

2.3 Suspended Ge waveguides 

Together with further investigation of the GOS platform and its suitability for long 
wavelength operation, we have recently initiated work on suspended Ge. This platform should 
enable operation up to 15 μm and can benefit from well-developed techniques already 
demonstrated in the suspended Si platform (section 2.1). 

The waveguides were fabricated using 6” Ge-on-SOI wafers with a 400 nm Ge layer 
grown by RPCVD on 220 nm SOI. Rib waveguides were designed for single mode 
propagation at λ = 3.8 μm. The dimensions were: height (H) = 400 nm, width (W) = 1.1 μm 
and etch depth (D) = 250 nm. The SOI substrate consisted of a 220 nm thick layer of Si on a 3 
μm thick layer of SiO2. The waveguides were patterned using e-beam lithography. They were 
then defined by dry etching using ICP (Fig. 2(b)). A second e-beam lithography step followed 
in order to define the holes, which were etched down to the BOX (Fig. 2(c)). The sample then 
underwent two wet etch steps. First, the sample was immersed in 1:7 HF for 10 minutes, 
which removed the BOX (Fig. 2(d)). Then it was immersed in a 25% aqueous solution of 
Tetramethylammonium Hydroxide (TMAH) at room temperature for 2 hours, which resulted 
in a partial removal of the Si layer (Fig. 2(e)). Out of 220 nm of the initial thickness, 
approximately 70 nm were left. An SEM of the fabricated waveguides is shown in Fig. 3. 
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Fig. 2. Fabrication process flow for suspended Ge waveguides (green, yellow and red represent 
Ge, Si and BOX layers, respectively). 

The waveguides were measured using the effective cut-back method. Waveguides of 
different lengths were fabricated for the propagation loss measurement. The measured value 
was 2.9 dB/cm at λ = 3.8 μm. The lab setup used for the characterisation is described in more 
detail in [2]. Our future work will involve improvement of the fabrication process such that 
Ge is grown on thinner SOI wafers resulting in a shorter TMAH etch, and development of 
other passive devices in this platform and its implementation for sensing at longer 
wavelengths. 

 

Fig. 3. SEM image of the fabricated suspended Ge waveguide. 

2.4 Ge-on-insulator waveguides 

The Ge-on-insulator (GOI) platform has been suggested for MIR photonics due to a large 
difference between the refractive indices of Ge and SiO2 (∼4.0 and ∼1.4 respectively) 
resulting in strong confinement of light in the Ge waveguide, which is necessary to achieve 
compact photonic devices. Either crystalline Ge or a-Ge on SiO2 can be used [37]. 

The GOI samples reported here have been fabricated as described in [39]: a SiO2 capping 
layer was deposited on a bulk Ge wafer for protection; H+ ions were implanted under the Ge 
surface and the SiO2 layer removed; a 10 nm Al2O3 layer was deposited on the Ge surface; the 
Ge wafer was bonded to a Si wafer with 2 μm SiO2 layer on the Si surface; the wafer was 
annealed to cause splitting along the implanted H+ ions; the wafer underwent a chemical 
mechanical polishing (CMP) process to reduce the Ge surface roughness (see Fig. 4). The 
resulting Ge layer was 515 nm thick. 
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5(a)), but at that wavelength we were prevented from measuring higher speed modulation by 
the external InGaAs detector bandwidth. 

Fig. 5. (a) Experimental eye diagram showing transmission of SOI PN junction carrier 
depletion modulator at 1.95 µm, driven with a 20 Gb/s PRBS signal. (b) Schematic diagram of 
SOI PIN junction carrier injection modulator, designed for 3.8 µm wavelength. (c) Measured 
modulation depths of a 2 mm long SOI and a 1 mm long GOS carrier injection modulator with 
varying DC forward bias, both at 3.8 µm. (d) Schematic diagram of GOS PIN junction carrier 
injection modulator, designed for 3.8 µm wavelength. 

At longer wavelengths there may be applications for modulation related to free-space 
communications, signal processing, and switching. Semi-empirical equations for the free-
carrier effect for Si were presented in [46] and for Ge in [47], predicting that the strength of 
the effect would increase approximately proportionally to the square of wavelength in both 
materials. They also predict that the effect is generally stronger in Ge than in Si. 

We have designed and fabricated modulators in SOI and GOS material platforms for 3.8 
μm , in which PIN diodes are integrated with a waveguide, and carrier injection into the 

waveguide increases the absorption of the waveguide core. The cross-sections of the PIN 
diodes of the SOI and GOS devices (and their dimensions) are shown in Figs. 5(b) and 5(d), 
respectively. Because of the larger dimensions of the GOS waveguide it has lower lateral 
mode confinement, and therefore the highly doped Ohmic contact regions are placed further 
away to minimize the excess loss from free carrier absorption. The SOI PIN diode was 2 mm 
long, while the GOS diode was 1 mm long. In both devices grating couplers were used to 
couple light in and out of the waveguide. The transmission of each device was measured 
while applying varying forward bias across the PIN diode using a DC power supply. The 
modulation depths of both devices under varying DC forward bias are shown in Fig. 5(c), 
where it can be seen that both achieve a modulation depth > 30 dB. It can be seen from Fig. 
5(c) that a significantly lower voltage was required to produce the same modulation depth in 
the SOI device, which can be attributed to a combination of the shorter diode length in the 
GOS modulator, the much larger waveguide dimensions and Ohmic contact separation, and 
potentially the shorter carrier lifetime from Ge crystal growth defects near the Ge/Si interface. 
The SOI PIN modulator had an insertion loss of 2.9 dB at 3779 nm, but we were unable to 
reliably measure the insertion loss of the GOS modulator, because the normalization 
waveguides on the chip were damaged during fabrication. 
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3.2 Group IV mid-IR detectors 

One of the most important devices in group IV MIR integrated circuits is a photodetector. 
Several approaches have been demonstrated so far. Following a similar approach already 
demonstrated in the NIR, InP detectors were bonded on SOI waveguides using BCB 
achieving responsivity of 1.6 A/W at 2.35 μm and dark current of 5 nA at −0.5 V [48]. In the 
3-4 μm wavelength range InAsSb PIN photodiodes have been realized, again in SOI, with a 
responsivity of 0.3 A/W at room temperature [16]. GeSn photodetectors are group IV 
alternatives that offer considerable potential to extend the sensitivity of germanium 
technologies into the MIR. Such photodetectors have achieved responsivities of 0.1 A/W for 
surface illumination [49]. 

Silicon is traditionally limited in terms of spectral coverage (<1 μm) by its bandgap 
energy. However, it has been shown that Si detection can be extended towards the NIR by 
using three main sub-bandgap absorption mechanisms: the internal photoemission (IPE) 
effect, two-photon absorption (TPA) and defect-mediated absorption. The most useful 
monolithic approach is via introduction of lattice defects and associated deep level charge 
states in the silicon bandgap, which provide sub-bandgap photon absorption, and these defects 
can be introduced by ion implantation [e.g 50,51]. These photodiodes (PDs) are usually 
created in a standard SOI rib waveguide by implanting doped p + and n + regions on either 
side of a waveguide to form a lateral PIN diode, and then introducing defects in the 
waveguide core by implantation. These two regions should be placed such that they enable 
fast operation whilst introducing negligible excess loss due to free-carrier absorption. This 
defect-mediated absorption does not require heterogeneous integration, making it a robust and 
low-cost technology. It also allows for operation at room temperature. In collaboration with 
McMaster University, we have achieved significantly large bandwidth (>15 GHz) and good 
responsivity of 0.3 A/W at 2 μm for a photodetector based on the 220nm SOI platform and 
implanted with boron [52]. However, the responsivity was obtained in avalanche mode and 
was rather modest compared to what we have measured at 1550 nm (3 A/W), and dropped by 
an order of magnitude at 2.5 μm, showing that the PD structure needs significant further 
optimization. 

By combining graphene’s superior electronic and optical properties and Si and Ge 
platforms, photodetection can be achieved in the MIR wavelength region. A graphene on 
silicon waveguide based detector operating at a wavelength of 2.75 μm has previously 
achieved 0.13 A/W responsivity [53]. Here we present the first graphene photodetector 
operating at a wavelength of 3.8 µm, based on the coplanar integration method with SOI 
waveguides. The graphene layer was grown by CVD and transferred to the SOI waveguide. 

A schematic of the device cross-section is shown in Fig. 6. The contacts to the graphene 
were arranged in an asymmetric metal-graphene-metal (MGM) configuration. The core of the 
waveguide was 1.3 µm wide and 500 nm high with a 50 nm thick slab region. A 90 nm thick 
PECVD SiO2 layer was deposited for passivation and decreasing charging effects during 
graphene deposition. The CVD grown graphene was then transferred on the top of the chip, 
and patterned by reactive ion etching (RIE). Finally, 100 nm thick Au contacts were 
fabricated on top of the graphene on either side of the Si waveguide with a separation of 1.5 
µm and 5 µm, respectively (Fig. 6). The interaction length between the SOI waveguide and 
the graphene layer was 500 µm. 

The device was characterized with bias voltages from −1 to 1 V. Generated photocurrent 
was measured by a picoammeter (Keithley 6487). The photocurrent is plotted as a function of 
the increased optical power that was coupled into the graphene photodetector in Fig. 7. The 
gradient of the linear fitting gives the photoresponsivity of the device as 2.2 mA/W at 3.8 µm 
under a −1 V bias voltage. The optical power incident on the photodetector was calculated by 
taking into account the absorption from the input fiber, the coupling loss of the input grating 
coupler, and the loss from access waveguides. 
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have also fabricated injection type Si and Ge modulators at 3.8 μm and measured >30 dB 
extinction ratios. Defect mediated detection in Si is a promising route for the realization of 
monolithic MIR detectors. Graphene is another promising candidate for detection and in our 
first attempt we have fabricated a graphene-SOI waveguide integrated detector and measured 
2.2 mA/W responsivity at 3.8 μm. Further improvements are to be investigated to increase the 
responsivity and to demonstrate graphene detectors at longer wavelengths. 
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