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Abstract

An approach is described to apply spatial filtering with microphone arrays

to localize acoustic sources in an Intensive Care Unit (ICU). This is done

to obtain more detailed information about disturbing noise sources in the

ICU with the ultimate goal of facilitating the reduction of the overall back-

ground noise level, which could potentially improve the patients’ experience

and reduce the time needed for recovery. This paper gives a practical de-

scription of the system, including the audio hardware setup as well as the

design choices for the microphone arrays. Additionally, the necessary signal

processing steps required to produce meaningful data are explained, focusing

on a novel clustering approach that enables an automatic evaluation of the

spatial filtering results. This approach allows the data to be presented to the

nursing staff in a way that enables them to act on the results produced by

the system.
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1. Introduction1

High noise levels in Intensive Care Units (ICUs) have been reported as a2

possible contributing factor to patients’ poor physiological recovery [1]. It is3

thought that these high noise levels can increase the risk of disturbed sleep4

patterns, hallucinations and periods of delirium [2, 3]. While the World5

Health Organization (WHO) recommends that sound levels in patient ar-6

eas should remain below 40 dB(A) [4], this limit is often exceeded in ICU7

environments [5, 6].8

A number of strategies have been attempted to reduce sound levels in9

ICUs. Building design and materials [7, 8], reducing patients’ perception10

of noise with earplugs or headphones [9, 10] and staff education [11], have11

all shown variable effectiveness, as has the manipulation of alarm thresholds12

and volumes [12]. A recent review of noise-reducing measures comes to the13

conclusion that when patients experience lower noise levels through the use14

of earplugs, the risk of delirium can be reduced [13].15

To better identify the contributing noise sources and explore ways of re-16

ducing them, a more detailed understanding of the distribution of acoustic17

sources over time and space is necessary. Currently, studies use individual18

sound level meters at discrete positions in the ICU to record the level vari-19

ation over time [14]. While this offers insight into the periods over which20

the overall noise activity is higher, it cannot provide information about the21

distribution of specific sources in time or space. An additional problem is22
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that in order to obtain representative data, sound level meters have to be23

installed close to the patients’ beds. This often leads to spurious unrealisti-24

cally high peak levels when staff come into contact with the audio equipment25

or the supporting structure.26

A solution to the problem of using local sound level meters lies in the27

application of spatial filtering methods such as beamforming to discriminate28

acoustic sources in space from a remote location [15]. The use of array signal29

processing methods allows the ICU environment to be scanned for sources30

with an (almost) arbitrary resolution in a non-intrusive way.31

Microphone arrays in combination with spatial filtering methods have32

found widespread usage in recent years. Typical scenarios where beamform-33

ing is used include industrial and environmental noise source identification34

as well as automotive and aeroacoustic applications [16, 17, 18, 19, 20]. In35

most of these cases, a manual evaluation of the results in terms of source36

maps per third-octave band is usually necessary, hence requiring an expert37

to make sense of the data. Automatic source localization is a problem of-38

ten encountered in speech signal processing [21, 22], but the approaches are39

not always generally applicable because of underlying assumptions about the40

array geometry or the number and type of source signals.41

In this paper, a microphone array system designed for the task of auto-42

matic source localization is presented and described in detail, with a specific43

focus on the array signal processing. A modified formulation of the standard44

Delay-and-Sum beamforming algorithm is presented to increase the compu-45

tational performance. A deconvolution algorithm usually employed for aeroa-46

coustic measurements is applied here in the context of the ICU environment,47
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leading to increased spatial selectivity. For an automatic evaluation of the48

beamforming result, a novel clustering approach is described in detail, en-49

abling a display of the results that is easy to understand for non-acousticians.50

The outline of the paper is as follows: in Section 2 the setup of the audio51

hardware of the array system is described. The design of the microphone52

array is presented in Section 3. The beamforming strategies including the53

data clustering approach are described in detail in Section 4 together with54

simulated example data. In Section 5 selected results of measurements made55

with the system installed in the adult ICU of the John Radcliffe Hospital in56

Oxford are shown. The paper finishes with concluding remarks in Section 6.57

The descriptions in this paper will be useful for replicating the presented58

array system, and the clustering approach helps to automatically evaluate the59

result of beamforming calculations and make it presentable to non-technical60

personnel. Practical considerations for the array system as well as the re-61

strictions imposed by the environment are addressed specifically.62

2. Hardware Setup63

To provide insight into the practical setup, a general plan of the ICU en-64

vironment and the location of the hardware is shown by a schematic diagram65

in Figure 1. This includes the location of the beds, microphones and cables.66

67

As a cost-effective means to capture audio signals, electret microphones68

were used. To obtain the best result under the circumstances prescribed by69

the application, two steps had to be taken. Firstly, the microphone capsules70

were connected with an electric circuit, which lowers the phantom voltage71
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Figure 1: Schematic of the floor plan of the ICU at John Radcliffe Hospital including the
location of the beds (grey squares), the microphones (arrays: large red circles; individual:
small red circles), the multi-core cables (black lines) as well as the hardware rack.
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of 48 V down to the supply voltage of approximately 4 V, enables longer72

cables between the microphones and the pre-amplifiers and provides a bal-73

anced signal for improved interference rejection. Secondly, all microphones74

were calibrated over the entire frequency range to match the level and phase75

response for an optimum beamforming result. It has been shown that the76

phase response has to be matched for all array microphones to obtain beam-77

forming results of high quality [23]. The broadband calibration was carried78

out in the small anechoic chamber at the ISVR by measuring the frequency79

response of a Genelec 8010A [24] with each microphone and comparing this80

to the response measured with a Brüel & Kjær 1/2" free-field measurement81

microphone with a flat frequency response. The average sensitivity response82

in dB re V/Pa is plotted in terms of the modulus and phase as a function83

of frequency in Figure 2. The shaded area represents the standard devia-84

tion across all microphones. The calibrated responses were combined with85

the measured pre-amplifier gains and inverted to obtain equalization filters86

that are applied to the audio input data in the frequency-domain to convert87

digital signal levels into sound pressure levels before any further processing88

takes place.89

To avoid spending time developing bespoke hardware, off-the-shelf audio90

equipment was chosen to provide the microphone pre-amplifiers and digital91

conversion. To process the microphone signals and provide phantom power,92

a total of nine Focusrite OctoPre MKII [25] were used, each converting the93

input voltage of eight microphones into a digital ADAT stream. The eight94

ADAT streams for the 64 array microphones were then combined into one95

MADI stream with the RME ADI-648 [26]. For an additional eight micro-96
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Figure 2: Microphone sensitivity in dB re V/Pa: average result, with standard deviation
across all microphones represented by shaded region.
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phones distributed in the ICU, a second MADI stream was provided by the97

Ferrofish A16-MKII [27]. Both MADI inputs were fed to the RME MADI98

FX sound card [28] to provide digital audio for further processing.99

The connection between the hardware rack and the microphones was100

achieved with five 16-channel multi-core cables of 30 m length each. Four101

of theses cables were used to connect to the four sub-arrays (see Section 3)102

and the fifth combined the signals from the eight individual microphones103

distributed in the ICU (see the schematic in Figure 1).104

3. Array Design105

As the microphone system was not supposed to interfere in any way with106

the daily operation of the medical personnel or the patients, the ceiling was107

chosen as the location of the microphones. This means that a planar array108

configuration had to be used. Due to the large spatial extent of the ICU109

(approximately 12 m×8 m), four clusters of 16 microphones were distributed110

throughout the ICU to cover all of the patients’ beds (see Figure 1). For111

an additional, separate level monitoring, eight individual microphones were112

also installed in the ceiling above the beds and the nurses’ station. The113

individual microphones were used for stationary level monitoring above the114

beds, including beds in two separate rooms that cannot be covered by the115

array system.116

For convenient installation, each of the four array clusters of 16 micro-117

phones was fitted into a single ceiling tile, with approximate dimensions of118

0.6 m × 0.6 m. This — together with the number of microphones — was the119

restriction for the design of the array configuration. The array performance120

8



was measured with typical parameters based on the beampattern of the ar-121

ray [29, Section 2.4.1]: the Half-Power Beamwidth (HPBW) in degrees as122

a measure of spatial discrimination; the Maximum Sidelobe Level (MSL) in123

dB as a measure of the dynamic range of the beamforming result; and the124

Directivity Index (DI) in dB as a measure of the spatial focusing (see the plot125

in Figure 3 explaining the parameters for the beampattern of a linear array).126

For the data presented here, the performance parameters were evaluated on127

a hemi-spherical grid with a radius of 1 m and 1 deg angular resolution. The128

results were chosen as the worst-case across all directions, to obtain a lower129

limit of the performance.

Figure 3: Beampattern for a linear array, and array performance parameters.

130

Of the many possible planar array geometries — such as the regular131

grid, cross grid, logarithmic spiral array, circular array and random array132

— the circular array and logarithmic spiral array were regarded as relevant133
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in this project. These two array geometries yield a spatial selectivity that134

does not vary too much with the azimuthal steering angle and are relatively135

easy to build. Several combinations of array radii and distribution of sensors136

were tested for each of these two array types and rated according to the137

aforementioned performance parameters.138

For a further analysis, three designs were selected: two versions of the139

logarithmic spiral array (Figure 4a and 4b) and a circular array (Figure 4c).140

In the plots, the arrays are shown together with the boundary of a ceiling141

tile to indicate the design restrictions in terms of array size, where a safety142

margin of 4 cm was left on all sides to prevent problems during the installation143

of the tiles. The two logarithmic arrays differ by the radii of the concentric144

circles: the array in Figure 4a has more microphones concentrated in the145

center, whereas the one in Figure 4b has two circles with larger radii and the146

rest of the microphones in the center.147

Among the three selected designs, the array in Figure 4b offers the best148

spatial resolution, due to the higher number of sensors with a larger ra-149

dius. However, at the same time this also leads to the worst Maximum150

Sidelobe Level (MSL) among the three tested arrays. The logarithmic spiral151

in Figure 4a and the circular array in Figure 4c perform similarly, although152

the logarithmic spiral has the best MSL at high frequencies, whereas the153

circular array has a narrower beamwidth.154

For the three designs chosen according to their broadband performance,155

the improvement achieved by using frequency-dependent shading weights for156

the individual circles of microphones in each array was analyzed. The op-157

erating range of the array (400–10000Hz) was chosen for this analysis. By158
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(a) Spiral Array 1

(b) Spiral Array 2

(c) Circular Array

Figure 4: Three array geometries selected for optimization of shading weights, shown
together with the ceiling tile boundaries (rectangle).
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choosing cut-on and cut-off frequencies for each of the circles of microphones,159

the effective outer diameter and number of sensors could be controlled and160

hence an optimal trade-off between the beamwidth and height of the sidelobes161

of the beampattern could be achieved. It was found that the exponential dis-162

tribution of the array radii of the first logarithmic spiral array (Figure 4a)163

is beneficial for frequency-dependent control of the beampattern. Also, since164

the logarithmic spiral array has one more circle of microphones compared165

to the circular array, this offers an additional degree of freedom for deriving166

the frequency-weights. Thus the logarithmic spiral array was chosen as the167

final layout. The design parameters for the ring radii as well as the shad-168

ing weights are listed in Table 1. The resulting performance parameters are169

shown as a function of frequency in Figure 5.

Table 1: Microphone ring radii and corner frequencies for the shading weights.

Radius Cut-on Frequency Cut-off Frequency
(in m) (in kHz) (in kHz)
0.0 2 kHz —
0.04 2 kHz —
0.11 — —
0.26 — 4 kHz

170

It can be seen that the shading weights provide an almost constant MSL171

(solid line in Figure 5) and DI (dashed line) and a smooth increase in resolu-172

tion towards higher frequencies, as can be seen from the decreasing HPBW173

values (dash-dotted line). This ensures an optimum performance in the op-174

erating frequency range under the given constraints.175

For the construction of the array, the microphone positions were marked176

on the ceiling tile by a laser-cutting machine to achieve the highest precision.177
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Figure 5: Array performance parameters of the array depicted in Figure 4a, using
frequency-dependent shading weights.

The holes had to be cut by hand as the tile could not actually be cut by178

the laser. Nevertheless, it could be ensured for each 16-channel array that179

the positions were accurate within a tolerance of approximately 1mm. To180

mount the microphones, a 3D-printer was used to build inserts that enable a181

precise microphone placement and an easy exchange in case of malfunction.182

The CAD model and the actual print with a microphone inserted are shown183

in Figure 6a and Figure 6b, respectively.184

4. Beamforming185

With the calibrated audio data available from the array microphones,186

beamforming was used to determine the location of the most prominent187

acoustic sources. Different approaches to combining the microphone signals188

of the four array clusters were tested, such as independent beamforming using189
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(a) CAD model (b) 3D-printed version

Figure 6: Microphone insert used to place microphones into the ceiling tile.

each cluster and the subsequent combination of the four outputs. However,190

the best results were achieved when all 64 microphones were used simul-191

taneously as a single large array. For the processing steps and the results192

presented in the rest of this paper, this configuration was chosen.193

To include early reflections in the beamforming processing, a relatively194

large block size of 8192 samples at a sampling rate of 48 kHz (corresponding195

to a block length of 171 ms) was chosen. Including early reflections could lead196

to improved spatial filtering results when a beamforming algorithm that takes197

advantage of source-coherence is used, as the sound from early reflections is198

coherent with the original source signal. This will be discussed further in199

Section 4.2.200

A running estimate of the cross-spectral matrix Cn(k) in the frequency201

domain is calculated based on the pressure data from all microphones pn(k)202

at time instant n, with a half-block overlap. Here, k is the wavenumber203

in rad/m. Using exponential smoothing, the estimate of the cross-spectral204
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matrix at time instant n is205

Cn(k) = (1 − α) Cn−1(k) + αpn(k)pH
n (k) , (1)

where ()H is the complex conjugate transpose and α is the smoothing factor;206

its value was chosen here as 0.157, which corresponds to a filter decay time207

of 0.5 s given the previously mentioned block size.208

As most scan points are in the near-field of the array microphones, the209

steering vector for spherical wavefronts without distance compensation is210

used. An initial comparison showed that this method achieved an improved211

spatial filtering result compared to that obtained with a plane-wave steering212

vector, but this could be further explored for the installed system in a future213

study. For all beamforming calculations, the steering vector is thus calculated214

as (formulation I in [30]):215

wi(k) = 1
M

e−jkdi , (2)

where M is the number of microphones and di is the vector of Euclidean216

distances between all microphones and the scan point with index i.217

For this study, a total of 375 scan points on a rectangular grid at a height218

of 1.2 m above the ground were chosen to cover the main area of the ICU219

with a 0.5 m spacing. With a ceiling height of 2.6 m, the distance between220

the plane of the array microphones and the scanning grid was 1.4 m. The221

grid spacing of 0.5 m was chosen as a compromise between calculation times222

and spatial resolution. An optimal value for the spacing of the scanning grid223

could be determined in a more detailed follow-up study.224
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Source localization is achieved by performing calculations on the scan-225

ning grid in three consecutive steps, which are described in the following226

subsections.227

4.1. Delay-and-Sum Beamforming228

In the first step, the beamforming output power Bn,i(k) with conventional229

Delay-and-Sum beamforming is calculated in the operating frequency range230

for the audio block with index n and for each scanning point with index i:231

Bn,i(k) = wH
i (k)Cn(k)wi(k) . (3)

As the continuous, real-time operation of the system is important, some232

considerations on the computational complexity were made to determine the233

best algorithm. It was found that the computation of the cross-spectral234

matrix (Eq. (1)) takes up most of the processing time, and hence a simpler235

version of Eq. (3) was also implemented:236

Bn,i(k) = (1 − α)Bn−1,i(k) + α
∣∣∣wH

i (k)pn(k)
∣∣∣2 . (4)

This version does not make use of the Cross-Spectral Matrix and hence no237

information about the cross-correlation between the microphones is avail-238

able. It does however give exactly the same result as in Eq. (3), because the239

cross-correlation is not actually exploited in that algorithm. In comparison240

to Eq. (3), the implementation of Eq. (4) saves approximately 75% of the241

computation time.242

To give an idea of the processing output under ideal conditions, Figure 7243
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shows an example for a simulation of the ICU environment, including actual244

recorded sounds and a simple room acoustics model. The model uses image245

sources [31] for the early reflections and adds statistical reverberation for246

the late reflections, using noise that is shaped to match the measured rever-247

beration time in the ICU. In all of the following examples, the broadband,248

A-weighted sound pressure level (SPL) in dB(A) re 20µPa is plotted. The249

broadband result for the simulated sound pressure magnitude Pn,i(k) and the250

beamforming power output Bn,i(k), respectively, is calculated for each scan251

point i as252

LP,n,i = 10 log10

(∑
k wA(k)P 2

n,i(k)
p2

0

)
, (5)

and253

LB,n,i = 10 log10

(∑
k wA(k)Bn,i(k)

p2
0

)
, (6)

where p0 = 20µPa is the reference sound pressure and wA(k) is the squared254

magnitude of the A-weighting filter at wavenumber k [32].255

In Figure 7a the broadband SPL is plotted at a chosen time instant with256

three active sources. Please note that the location of these sources has been257

chosen as a hypothetical example to illustrate the processing steps and the258

source positions are not consistent with those in the following experimental259

results. Figure 7b shows the broadband output level of the Delay-and-Sum260

beamformer. It becomes clear that this beamforming result cannot be used261

directly for an automatic, accurate source localization. The necessary post-262

processing steps are described in the following subsections.263
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(a) Sound Pressure Level in the room, active sources marked as
green circles.

(b) Delay-and-Sum beamforming output

Figure 7: Processing example for a realistic simulation of the ICU environment (broadband
levels are shown).
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Figure 8: Broadband output level of the CLEAN algorithm for the simulated data in
Figure 7.

4.2. Deconvolution (CLEAN / CLEAN-SC)264

The result of the Delay-and-Sum beamformer for all scan points Bn(k)265

can be regarded as the spatial convolution of the array response — including266

all sidelobes — with the source distribution qn(k). It is of course this source267

distribution that is of interest for localization and identification.268

The deconvolution problem can be solved in several ways. The DAMAS269

algorithm is a direct deconvolution approach, which can be calculated with270

the Gauss-Seidel algorithm [33], or by enforcing sparseness in the result, e. g.271

with the FOCUSS algorithm [34]. However, both approaches are very compu-272

tationally demanding, and so an iterative solution, such as the CLEAN [35]273

or CLEAN-SC algorithm [36] is usually favored. The iterative algorithms are274

faster than the direct approaches by two orders of magnitude, taking only275

approximately 25% more time than the Delay-and-Sum beamformer.276
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While the original CLEAN algorithm performs a straight-forward decon-277

volution based only on the array response, CLEAN-SC takes source cor-278

relation into account by working with the cross-spectral matrix. Hence, a279

trade-off between accuracy and computational demand can be made by the280

choice of the algorithm. An important advantage of CLEAN is that the ar-281

ray response can be pre-computed and thus processing time can be further282

reduced. For the application in the ICU, it has been found that contrary283

to expectations the inclusion of source coherence does not yield a significant284

improvement and hence the CLEAN algorithm with the fast Delay-and-Sum285

beamformer (Eq. (4)) is used. From this point on, only the CLEAN algo-286

rithm will be mentioned, but all processing is of course equally applicable to287

the CLEAN-SC version.288

Regardless of the choice of CLEAN or CLEAN-SC, the result of this289

step of processing is a sparse beamforming map with few (typically less than290

10) active sources for each frequency bin. When the spectral information is291

summed up to yield the broadband (A-weighted) level or other derived quan-292

tities, the map becomes slightly less sparse as the location of the sources in293

the scanning grid may not be absolutely stable across frequency. Neverthe-294

less, the number of relevant sources is usually far less than the number of295

scan positions.296

In Figure 8 an example of the output from the CLEAN algorithm is shown297

for the simulated data in Figure 7a. It can be seen that the main regions298

of source activity can be identified. However, some spurious locations also299

appear, probably from data in the low frequency range where the directivity300

of the arrays is not high, as demonstrated in Figure 5. In the next subsection,301
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a data clustering approach is described to overcome this problem.302

4.3. Data Clustering303

The broadband result of the deconvolution — while relatively sparse —304

may not be directly useful to determine source locations automatically. This305

is a typical problem with beamforming results, which are usually interpreted306

by inspection of color maps per frequency, or frequency band. The goal of this307

project, however, is an automatic and autonomous localization of dominant308

sources, which could be used by a non-expert user, such as a member of the309

nursing staff.310

To achieve this goal, the deconvolution results are combined using the311

k-means clustering algorithm [37]. The initialization is carried out with the312

k-means++ algorithm [38]. In terms of input data for the clustering, two313

approaches were implemented and tested:314

Variant 1:. If only the broadband result of the CLEAN algorithm is available,315

the importance of each non-zero point in the map can only be determined316

from its level. The following steps are then taken:317

1. Find non-zero elements and their indices in the broadband CLEAN318

beamforming map319

2. Sort results according to level320

3. Select the Nmax highest level results321

4. Extract the Cartesian coordinates corresponding to the indices deter-322

mined in step 3323
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5. Perform k-means clustering while varying the maximum number of clus-324

ters as325

Nclusters = 1 . . .min(Nmax − 1, 5)

and select the result with the maximum average silhouette value as the326

optimum [39]327

6. Assign the sum of the powers of all points within each cluster as the328

effective cluster power329

The maximum number of clusters is chosen to be equal to five as it is unlikely330

that there will be more than five active sources at the same time. Because the331

optimal number of clusters is determined automatically, the value of Nmax is332

relatively unimportant, but here it is chosen to be 15.333

The disadvantage of Variant 1 is that the only way to reject outliers, such334

as spurious peaks, is by level. Hence, if outliers with large levels appear in335

the beamforming map they will shift the cluster centroids and thus distort336

the result. A better approach is described in the following paragraph.337

Variant 2:. If information about the non-zero indices can be obtained for338

each frequency of interest, an additional pre-selection of the data can be339

performed in the following way:340

1. Find all non-zero indices in the frequency range of interest341

2. Sort the data according to the relative number of occurrences of each342

index across all frequencies343

3. Select the indices that make up 80% of the data (based on the cumu-344

lative sum)345

4. Continue with step 3 in Variant 1 above346
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The threshold of 80% was selected here as it yielded good results in terms347

of a reliable estimate of the number of active sources, but it is a parameter348

that can be adapted to the individual application.349

By incorporating the number of occurrences across frequency, the data350

can be sorted according to importance and thus it is easier to reject outliers.351

The result of Variant 2 for the simulated data in Figure 8 is presented in352

Figure 9. Clearly, the relevant sources have been identified and outliers have353

been successfully suppressed. However, it should be said that in this example,354

the CLEAN result (Figure 8) does not show too many spurious peaks, so in355

this case Variant 1 gives the same result as Variant 2. This is different in356

most real situations, as will be shown in the next section.

Figure 9: Clustering result of Variant 2 for the simulated data in Figure 8, see Figure 7a
for the actual source locations.

357
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5. Results in the ICU358

The array system described above was installed in the adult ward of the359

ICU at the John Radcliffe Hospital in Oxford at the end of October 2016. In360

this section, representative results are presented to give an idea of the actual361

system performance. Recordings were made during a typical shift with all362

beds in the ICU occupied. After applying the broadband calibration filters363

to the recorded data, the processing as described in Section 4 was applied.364

It should be noted that the source locations identified from the recordings365

in the ICU (Figure 10–14) are not expected to match the scenarios from the366

simulated examples (Figure 7–9), as the simulations used purely hypothetical367

source locations.368

The beamforming map of the Delay-and-Sum algorithm at one chosen369

time instant is shown in Figure 10. As already observed for the simulated370

data in Section 4.1, it becomes clear that this result cannot be directly used371

for source localization.372

In Figure 11 the deconvolution result of the CLEAN algorithm is pre-373

sented, yielding a much sparser map that shows the areas with dominant374

sources. In comparison to the simulated data in Section 4.2 (Figure 8), the375

measured data shows more spurious peaks, which may be due to additional376

sources, or may be caused by array imperfections. It is precisely this behav-377

ior that makes it necessary to further process the data before an automatic378

localization can be achieved.379

The deconvolution output is processed with Variant 1 of the clustering380

algorithm (Section 4.3) and the result is shown in Figure 12. In comparison,381

the result of Variant 2 of the clustering algorithm is shown in Figure 13382
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Figure 10: Processing result of Delay-and-Sum beamforming in the ICU environment
(broadband levels are shown).

Figure 11: Broadband output level of the CLEAN algorithm for measured data in
Figure 10.
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Figure 12: Clustering result of Variant 1 for the measured data in Figure 11.

and from this results it can be seen that by only taking into account the383

level information, more sources are detected than are actually present. This384

indicates the benefit of using the additional information across frequency, as385

is done in Variant 2.386

It seems that the relevant sources were correctly localized by Variant 2387

of the clustering approach. However, it should be stressed here that the388

measurements were performed in a working ICU environment, which could389

not be controlled, so the precise number and location of active sources was not390

known. Further studies under controlled conditions will have to be carried391

out to establish the robustness of the presented approach and the ideal set392

of parameters.393

The final display for the nursing staff, implemented in the Julia pro-394

gramming language [40], is presented in Figure 14. In addition to the source395
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Figure 13: Clustering result of Variant 2 for the measured data in Figure 11.

locations, the average sound pressure level recorded by the microphones is396

shown in a bar graph on the right side of the display. The positions of the de-397

tected sources are also exported continuously, so that a statistical evaluation398

over time is possible.399

6. Conclusions400

In this paper a microphone array system has been presented that is used401

to remotely localize and quantify acoustic noise sources in an Intensive Care402

Unit. The hardware and array design for the system under the given con-403

straints have been described. An alternative beamforming formulation result-404

ing in faster computation has been developed and a clustering approach has405

been introduced to enable an automatic localization of the most dominant406

acoustic sources.407
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Figure 14: The data in Figure 13 as it appears in the display for the nursing staff.

It has been shown that the raw result of beamforming calculations is not408

directly useful for unsupervised localization. While the deconvolution ap-409

proach to beamforming results in a much sparser source map, spurious peaks410

can still influence and degrade the localization performance. The automatic411

clustering algorithm has been implemented in the array system. With the412

help of clustering, the influence of spurious peaks in the source map can be413

effectively suppressed. The successful application of the presented approach414

has been demonstrated through real measured data from the running system.415

Further studies will be necessary to confirm the validity and robustness416

of the automatic localization approach, as the data gathered so far was not417

obtained under controlled laboratory conditions. The optimum number of418

clusters and its dependence on the environment and the number of array419
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sensors will have to be investigated.420

The system described here is currently used in the John Radcliffe Hospi-421

tal in Oxford to obtain a better impression of the acoustic source distribution422

in the ICU. This information will be used to devise measures to provide an423

overall reduction in background noise levels, hopefully leading to improved424

patient recovery. At the moment, the possibility of classifying individual425

sources by combining the spatial filtering presented here with machine learn-426

ing is being investigated. This additional information would enable the nurs-427

ing staff to, for example, distinguish between medical equipment and speech,428

making it easier to implement changes to reduce the noise level.429

Before the system described in this paper can be deployed in additional430

ICUs or similar healthcare environments, its effectiveness and influence on431

staff and patients will have to be determined. This will require a long-term432

study, which will then hopefully establish whether the array-based system433

can assist medical staff in reducing the ICU noise levels.434
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