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Abstract 

This paper reviews the basis of the beam former (BF) and polar correlation (PC) 
phased array methods and shows that these provide different information about axially 
distributed, non-compact noise sources, which nevertheless satisfy a simple integral 
relationship. The conventional BF method provides an image of the source PSD, 
whereas the PC method yields a ‘source strength’ which is an image of the axial 
wavenumber transform of the source CSD. However, the BF method can be 
generalised to provide an image of the source CSD. At first sight the generalised BF 
method is therefore more useful for diagnostic purposes but the results presented here 
suggest that the combined effects of resolution and source convection place serious 
limitations on the source CSD image information. For the same reasons, although the 
source PSD axial shape can be obtained with the conventional BF method, it cannot 
yield its absolute level for this type of source.  The PC method yields a source 
strength axial distribution at each ‘reference’ microphone, which when integrated 
over the source length, yields the far-field PSD at that reference microphone. 
Therefore the PC source strength is arguably the more relevant quantity to measure 
when determining what proportion of the sound at a particular microphone position 
comes from each region of the jet axis, as a function of radiation angle.  
 
Nomenclature 
 
BF  Beamform or beamformer 

qqC   Source CSD 

ppC   Far-field CSD or CSM  
CSD  Cross-spectral density 
CSM  Cross-spectral matrix 

0c   Speed of sound (uniform medium) 
d   Jet diameter 
f   Frequency 
k   0cω , = 02 JStV cπ for numerical results 

cM   Source phase convection Mach number = 00.6 JV c  

cL   Source model coherence length 
m   Source PSD model shape parameter 
PC  Polar correlation 
PSD  Power or Auto spectral density 

or   Array polar radius 
S   PC source strength or intensity per unit length 
St   Strouhal number = / Jfd V  
Sa   Strouhal number = /c ckL M  

JV   Jet velocity 
y   Source axial coordinate 

cy   Source model centroid 

( ),p ω α  Far-field acoustic pressure, normalised by 4 exp( )o or jkrπ  
α   Far-field polar angle relative to 90° 
β   sink α  
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γ   Complex coherence 
η   Source axial separation coordinate 
ω   Radian frequency 
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1. Introduction 
 
During the 70’s, Phil Morris was conducting research into the role of large-scale 
structures in the generation of supersonic jet noise at the Lockheed-Georgia Research 
Labs. The lead author of this paper was working alongside Phil on subsonic jet noise, 
using a different approach, although at that time there were those who thought that 
large-scale structures might also play a role in subsonic jet noise. Since that time 
many others have explored these ideas and we recognise and congratulate Phil on 
being one of the pioneers in this particular field of aeroacoustics research. 
Subsequently, some of those researchers have  tried to use the coherence properties of 
the jet near and/or far-field radiation, as measured with phased arrays, to assess the 
contribution of large-scale structure noise.  
 
To explore that idea this paper has taken a very simple one-dimensional source model 
with an arbitrary axial coherence length scale but very specific functional models for 
the source coherence, the source convection and the source strength or intensity and, 
with the aid of simulation, evaluated the effects of the length scale on the  far-field 
coherence and corresponding beamformed source image. In order to extract a source 
length scale from the far-field coherence data, it is necessary to generalise the 
beamformer (BF) process definition. Normally the BF image is a function of the 
source coordinate but here we need to focus the BF on two axially separated source 
points. When that separation is zero, the conventional BF image is recovered. For 
non-zero separations the generalised BF provides an estimate of the source coherence 
variation with axial separation, that is the length scale. We refer to this as the BF 
image of the source cross-spectral density (CSD). 
 
Specifically, this paper addresses the questions: (1) what is the relationship between 
the far-field cross-spectral density matrix (CSM) of jet noise and the source cross 
spectral density (CSD), characterised by its axial coherence length, convection 
velocity and intensity variation and (2) what can be resolved from the images 
generated from the CSM. 
 
The questions are addressed by first describing our understanding of the widely-used 
beamformer (BF)1,2 ,3,4,5,6,7,8 and polar correlation (PC) methods9,10,11,12,13,14,15 using a 
consistent approach; second, by introducing a jet noise type line source CSD model 
for which an analytic far-field CSM expression can be obtained; third, by evaluating 
these for a realistic combination of jet noise parameters corresponding to a low and 
medium Strouhal number. 
 
This paper describes developments of on-going work presented previously16 and was 
also motivated by Dougherty17 who showed beamformer results for a single stream jet 
and remarked on differences in the source image intensity from different parts of the 
jet with respect to small and large scale noise sources. 
 
2. The source imaging methods 
 
A one-dimensional monopole line source model is utilised for the purposes of this 
investigation.  Extension of this work to 3D and to dipole and quadrupole source 
distributions is not straightforward but the basic results being established here should 
provide insight and guidance in that generalisation.    
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The radiated sound pressure at radian frequency ω due to a monopole line source 
distribution, measured on a polar arc of radius ro as shown in Fig. 1, in a uniform 
medium is given by: 
 
  

(1) 

 
where q is the monopole source strength per unit length, k=ω/co  and co is the speed 
of sound.  This assumes the far-field approximation for the distance between a point 
y1 and a far-field microphone at angle αi , namely r1i=ro-y1sin αi.  Here p(ω, αi) is the 
pressure multiplied by 4 exp( )o or jkrπ and similarly for the CSD and PSD below. In 
principle the analysis is not limited to a polar array and can also be applied to a line 
array if p(ω,αi) is defined as the pressure multiplied by 4 exp( )i ir jkrπ where ir  is the 
distance from the centre of the coordinate system to each microphone. 
 
It follows from Eq. 1 that the CSD of the sound pressure at microphone αi with that at 
αj is: 
 

  
(2) 

 
where qqC  is the source CSD.  The angle variables (αi, αj) are considered as either 
continuous or discrete variables; in the latter case Cpp is often referred to as the cross-
spectral density matrix (CSM).   
 
Formally the inverse of this double Fourier transform is: 

 

1 2

2

1 2
1( , , ) ( , , )

2
i jjky jky

qq pp i j i jC y y C e d dβ βω ω β β β β
π

+∞ +∞
− +

−∞ −∞

 =  
  ∫ ∫    (3) 

 
where sin ii kβ α= in equation (2). This integral yields the source CSD, if the doubly 
infinite FT of the far-field CSD in Eq. 3 can be evaluated. This of course is not the 
case because 1 sin 1iα− ≤ ≤ + and so the integrals can only be evaluated from 
measurements over a finite range. We therefore can only obtain an estimate of the 
source distribution for the partial evaluation of this integral as 
 

max max
1 2

max max

2

1 2
1( , , ) ( , , )

2
i jjky jky

qq pp i j i jC y y C e d d
β β

β β

β β

ω ω β β β β
π

+ +
− +

− −

 =  
  ∫ ∫  

 
(4) 

 
where the integrations are limited to maxβ± as explained further below. This is the 
integral equivalent of the conventional beamformer (BF) method when y1=y2, that is, 

11 1
sin( , ) ( , ) jky ip q y e dyi αω α ω

+∞ += ∫
−∞

1 2sin sin
1 2 1 2( , , ) ( , , ) i jjky jky

pp i j qqC C y y e dy dyα αω α α ω
+∞+∞ + −

−∞ −∞
= ∫ ∫
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the conventional BF method yields the source PSD. In general the BF method through 
Eq. 4 can also yield the source CSD, y1≠y2, but with the same integration limits. 
 
Eq. 4 is the first relationship that will be evaluated below, to determine how well the 
source CSD ( qqC ), can be resolved from the CSM (Cpp), for a given model of qqC . 
 
Anticipating the functional dependence of qqC  on a separation variable, the following 
coordinates are introduced, in the normal way:  
  

 
 

 

 
(5) 

 
 
where η is the separation coordinate and y is the mean coordinate. Eq. 4 then 
becomes: 
 

 
 

 

 
 
(6) 

 
Clearly, in practice the β variable cannot extend to infinity, in fact the maximum 
aperture of the assumed polar array is -90° ≤  α ≤ 90° and max kβ = , which defines 
the maximum resolution limit for qqC . 
 
The form of Eq. 6 suggests a corresponding change in angle coordinates: 
  

 
 

 

 
(7) 

 
and Eq. 6 becomes: 
 

 
 

 

 
 
(8) 

 
As noted above this is the integral equivalent of the basic beamformer (BF) method 
when η=0. Now the finite aperture would give max kβ + = and max 2kβ − = . 
 
Turning to the Polar Correlation (PC) method, we first note that Eq. 2 in these new 
spatial and angular coordinates becomes: 
 

1 2 1 2( ); ( ) / 2y y y y yη = − = +

max max

max max

2
( ) ( )/21( , , ) ( , , )

2
i j i jjky jk

qq pp i j

i j

C y C e

d d

β β β β η β β

β β
ω η ω β β

π
β β

+ +
− − − +

− −

 = ∫ ∫ 
 



( ) ( )/ 2;ij i j ij i jβ β β β β β+ −= + = −

max max

max max

21( , , ) ( , , )
2

ij ijjk jky
qq ij pp ij ij ijC y e d C e d

β βηβ β

β β
ω η β ω β β β

π

+ −
+ −

+ −

+ +− −+ + − −

− −
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(9) 

 
The far-field PSD follows directly from Eq. 9 and is given by: 
 

  
 
 

(10a) 

 
where we define the ‘source strength’ per unit length for the observer at angle αi 
(defined by sin ii kβ α= ) as: 
 

 
 

 

 
(10b) 

 
S is a generalised form of the source strength per unit length that forms the basis of 
the polar correlation (PC) method. Eq. 10a states that the far-field PSD is equal to the 
axial wavenumber transform of the source CSD with respect its axial separation, 
evaluated with wavenumber βi and integrated over the source length.  In terms of this 
source strength the far-field PSD is simply the source strength integrated over the 
source length (the RHS of Eq. 10a).  Thus with adequate information on the source 
CSD, qqC , the far-field PSD can be quantitatively evaluated in terms of the source 
strength distribution with Eq. 10a, e.g. how much sound comes from one part of the 
distribution versus another at a particular angle αi. Thus the PC method provides a 
simple direct expression for the far-field PSD, ppS , as an integral of the source 

distribution, ( , , )iS yω β .  
 
The second relationship to be evaluated below is the one corresponding to Eq. 9 for 
the far-field CSD, written in terms of the source strength, which is: 
 

 
 

 

 
 
(11a) 

 
where the source strength is: 
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( , , )
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β
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(11b) 

 
and is effectively the same as the quantity defined in Eq. 10b. 
 
The inverse of Eq. 11a, which is 
 

 
 

 

 
(12) 

 
shows that the single FT of the far-field CSD w.r.t separation in the sine of the 
microphone angles gives the same quantity, S, that is required for the axial 
distribution of the far-field PSD, given by Eq. 10b.  It is the second relationship that 
will be evaluated below, to determine how well this source strength can be resolved 
from the CSM (Cpp). 
 
We can now establish a link between the BF and PC methodology.  The conventional 
BF method uses a (discretised) form of Eq. 8 with, necessarily, a finite aperture to 
compute the BF source image of the source PSD defined by: 
 

 
 

 

 
 
(13a) 

 
where the maximum practical aperture gives as above max 2kβ − =  with max kβ + = . 
 
The PC method computes the source strength using the finite aperture form of Eq. 12 
and is a function of the mean spatial coordinate and the mean of the sine angles: 
 

 
 

 

 
(13b) 

  
Comparing the above two equations, it can be seen that the BF source image given by 
Eq. 13a is simply the integral of the PC source strength, ( , , )ijS yω β + , given by Eq. 

13b, over the finite aperture, w.r.t ijβ + . 
 
3. The CSD source model 
 
The two-point source CSD, qqC , is by definition the square root of the product of the 

source PSD at each point, times its coherence,γ 
 

( ) ( )1/2 1/2

1 2 1 1 2 2 1 2( , , ) ( , , ) ( , , ) ( , )qq qq qqC y y C y y C y y y yω ω ω γ ω= −  (14) 

( , , ) ( , , ) ijjk
ij qqS y C y e dηβω β ω η η

++∞+

−∞
= ∫

1( , , ) ( , , )
2

ijjky
ij pp ij ij ijS y C e dβω β ω β β β

π

−+∞ −+ + − −

−∞
= ∫

max max
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2

ijjky
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β β
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π
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−
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−
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The model for the square root of the source PSD is given by18: 
 

 (15a) 

 
where yc is the centroid and the shape parameter m=3 is selected to permit the far-
field CSD to be obtained analytically.  Examples of this source PSD model are shown 
in Fig. 2a for values of yc that are used below.  
 
For the coherence model, the Fourier transform of a widely accepted two-point cross-
correlation function model used by Tam et al19 and Karabasov et al 20is employed 
here (see Appendix A for details): 
 

 
 

 

 
(15b) 

 
where Lc is the coherence length and Mc the convection velocity.  In the examples that 
follow an arbitrary jet diameter, d, jet velocity VJ and hence a Strouhal number, St = 
fd/VJ  are introduced to determine typical values of yc and Lc. Another Strouhal 
number, Sa = kLc /Mc, arises in the Eq. 17 below. 
 
From Eqs. (14-15), the final expression for the source CSD in terms of the mean and 
separation coordinates is 
 

 
 

 

 
(16) 

 
When Eq.16 is substituted into Eq. 11a, the double integration can be performed 
analytically (but only with m=3) and yields: 
 

 
 

 

 
(17a) 

 
where: 
 

  
(17b) 

 
The derivation of Eq. 17 is outlined in Appendix B. 
 
Thus the far-field CSD can be evaluated exactly with Eq. 17 as a function of 

iij ββ − ⇒  with 0ijβ + =  that is, with one microphone fixed at 90°, which is called the 

reference microphone. This is used below as the input to the two different transforms 
of the CSM that provide (simulated) estimates or images of the source characteristics 

( )1/2 /1( , , ) ; 0, 3cmy ym
qqC y y y e y mω −−= ≥ =

1 2 1 2| |/ ( ) /
1 2( ) c cy y L ik y y My y eγ − − − −− =

*

3 2 3 * 2( , , ) 8 8
( 2 ) ( 2 )

pp ij ij
A B A BC

A A B A A B
ω β β+ −   + +

= +      + +   

( )/ 1 / ;ijc cA m y jy mβ −= − ( )( )( )1 / 1 / 1 ijc c c cB L j kL M M kβ += + −

( )( )2 / | |/ /2( , , ) / 2 ; 0, 3c c cmy y L ik M
qqC y y e e y mη ηω η η − − −= − ≥ =
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which are then compared directly with the analytic source CSD defined by Eqs.14-16. 
Examples of the far-field PSD directivity of this model, with 

0, sin cosij ij k kβ β α θ− += = ≡ − , where θ is the intake angle, are shown in Fig. 2b for 

a source convection Mach number Mc  = 0.6 and various values of the source axial 
coherence length Lc, which are explained below.  The directivity clearly asymptotes to 
the inverse second power of the Doppler factor with increasing Lc. 
 
The far-field CSD modulus (normalised by the PSD at the reference angle) and the 
far-field coherence modulus are shown in Figs. 2c & 2d, with the CSD phase in Fig. 
2e.  Clearly neither the CSD or coherence modulus is a strong function of Lc and 
counter-intuitive trends are evident, for example the far-field coherence modulus 
reduces as the source coherence length is increased.   
 
Taking the compact limit for the source parameters in Eq. 17 ( 0aS → , 0cL → ) and 
substituting into Eq. 13b gives the following expression for the PC source strength, if 
we assume an infinite aperture ( maxβ − → ∞ ): 
 

 
 

 

 
(18a) 

 
That is the source strength is independent of ijβ + , i.e. unidirectional, and is 

proportional to the coherence length.  If that expression for the source strength is 
substituted into Eq. 13a for the BF source image we obtain for a finite aperture in the 
mean sine angle: 
 

 
 

 

 
(18b) 

 
Thus provided the source CSD is compact and an infinite aperture is assumed, the BF 
and PC methods give the same result for the axial source distribution, differing only 
by the aperture factor /mβ π+ . For non-compact jet noise distributions, we have to 
resort to numerical evaluation. 
 
 
4. Extracting the source CSD from a double transform of the CSM (BF method) 
 
Examples are given of the numerical evaluation of the BF image of the source CSD, 

qqC , given by the double transform in Eq. 6, in the form: 
 

/1( , , ) 2 cmy ym
ij cS y L y eω β −+ −=

/1( , , 0) ( / )2 cmy ym
qq m cC y L y eω η β π −+ −= =
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(19) 

 
where the axial coordinate has been transformed as defined by Eq. 5 and the infinite 
limits have necessarily been replaced by finite limits corresponding to the array 
aperture.  In practice this limit cannot exceed k but values larger than this are 
considered below to demonstrate trends and verify the computation method.  
 
In this and the next section, the computations have been conducted with a polar array 
of aperture 180° (the maximum) and microphone spacing of 1°. This aperture and 
spacing are not too far removed from some of those being used in practice, although 
usually in the form of a linear array21. 
 
Imaging the Source PSD 
Setting the separation coordinate η=0 in Eq. 19, the BF image of the source PSD is 
first evaluated with a large (unrealistic) value of the aperture of βmax= 10k to indicate 
that the BF image tends towards the correct source PSD as the aperture tends to 
infinity.  The other parameter values are St = 0.1, VJ/ co=1, yc/d=13, Mc=0.6 VJ/ co 
and a range of axial coherence lengths centred  on a nominal value (except in Figs. 6-
9 where it is the first value) given by Lc/d= yc/8d, which has been obtained from the 
LES results of Karabasov20; details are given in Appendix A. The BF image strength 
increases with increasing coherence length, converging on the ‘True PSD’ result - 
given by Eq. 16 - shown as the black line in Fig. 3a.  Presumably if the aperture were 
to be increased further the BF images would converge to the true PSD independent of 
Lc.  However, if a realistic value of βmax= k is used for the integration limits in Eq. 19, 
the BF images differ quite significantly from the true PSD as shown in Fig. 3b, the 
PSD image maximum being less than 20% of the true value. Furthermore the large 
aperture trend shown in Fig. 3a is replaced by a non-uniform behaviour, the BF image 
maximum coincidentally being for 0.16cL λ = corresponding to the nominal value 

1 8c cL y = (see Eq. A.2).   However if each BF image is normalised by its peak 
value, the agreement in shape is very good, as shown in Fig. 3c. Figs. 4a & 4b show 
similar results for St=1, although now the strongest BF image corresponds to the 
smallest Lc value. Much stronger BF image results are obtained for a supersonic jet for 
which the convection velocity is also supersonic, VJ/ co=2, but the mismatch between 
the BF image and the true PSD is significantly reduced, as shown in Fig. 5 for St = 
0.1 the trend with Lc being similar to that for large aperture in Fig. 3a. This distinct 
difference between BF images for subsonic and supersonic convection Mach numbers 
(for a realistic aperture) is also a noticeable feature of the CSD BF images, discussed 
below, and it is suggested here that the BF image limitations for the PSD and CSD are 
due to the same problem of phase resolution.  
 
These results have been indirectly confirmed by analytically integrating Eq. 19 
w.r.t. y to obtain the integral of the source PSD over the source length as a function of 
aperture and the jet noise model parameters.  Apart from convection Mach number, 
clearly aperture is a significant parameter and considerably smaller aperture array 

max max

max max

2
( ) ( )/21( , , ) ( , , )

2
i j i jjy j

qq pp i j

i j

C y C e

d d

β β β β η β β

β β
ω η ω β β

π
β β

+ +
− − − +

− −

 = ∫ ∫ 
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apertures are often used in practice.  It may be possible to improve the resolution of 
the source PSD with techniques proposed Brooks22 and others, e.g. Sijtsma23. 
 
Imaging the Source CSD or coherence 
Using the same parameter values as in Fig. 3, Eq. 19 is evaluated again but now with 
a non-zero separation,η, to give a generalised normalised BF image of the source 
CSD, first with a large (unrealistic) value of the aperture of βmax= 10k to indicate that 
the correct source CSD can be recovered as the aperture tends to infinity, as shown in 
Fig. 6a for the normalised CSD modulus and the phase in Fig. 6b.  However with a 
realistic aperture Fig. 7a shows that the BF image of the CSD modulus is limited by 
resolution, even when the coherence length is significantly greater than a half a 
wavelength. The BF image of the phase in Fig. 7b suggests a contributory factor, in 
that the phase of the true CSD, which is controlled by the convection velocity, is not 
properly resolved by the BF image phase except for the largest coherence length. 
 
If the convection velocity is omitted from the model, it is interesting to see in Fig. 8 
that the BF image modulus resolves the source CSD modulus in the expected way, so 
clearly it is this parameter which is preventing the BF image from resolving the CSD, 
when the coherence length exceeds a half a wavelength. (In this zero convection 
velocity case the phase of the source CSD is zero.) 
 
When the convection velocity is increased, as before, to a supersonic value, Fig. 9a 
shows that the BF image of the source CSD modulus responds to an increasing 
coherence length. However, it is still not accurately resolving this length scale, despite 
the apparent good resolution of the phase in Fig. 9b for the largest coherence length. 

 
5. Extracting the source strength from a single transform of the CSM (PC 
method) 
 
Examples are given of the numerical evaluation of the source strength given by the 
single transform in Eq. 13b, in the form of a finite aperture integration: 
 

 
 

 

 
(20) 

 
and results are compared with the exact analytic results. 
 
Using the same parameter value set as in the previous section and starting with an 
unrealistically large aperture corresponding to βmax= 10k and 0ijβ + = (i.e. 90o to the 
jet or line source axis) the numerical integration of Eq. 20 yields the results shown in 
Fig. 10a for St=0.1, all of which indistinguishable from the corresponding analytic 
result (which itself is varying with the coherence length, unlike the BF results).  The 
corresponding results for an aperture βmax= k in Fig. 10b are very similar with the 
exception of the largest coherence length, where the PC image is unable to resolve the 
axial ‘ripple’, presumably because it is varying rapidly over half a wavelength. The 
trends are similar at the higher Strouhal number, St=1, in Fig. 11. However, at the 
supersonic velocity condition for St=0.1 the largest coherence length is now greater 

max

max

1( , , ) ( , , )
2

ijjky
ij pp ij ij ijS y C e d

β β

β
ω β ω β β β

π

−
−

−

+ −+ + − −

−
= ∫
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than a wavelength and the PC image in Fig. 12 is able to resolve the rapid axial 
variation (ripple). This axial variation characteristic of the PC image might be a useful 
indicator of larger-than-expected coherence length scales in supersonic jets. 
 
 
6. Conclusions 
This paper has reviewed the basis of the beam former (BF) and polar correlation (PC) 
phased array methods and has shown that these provide different information about 
axially distributed jet noise type sources.  The conventional far-field BF source image 
is derived from the Fourier transform of the far-field CSD (or CSM), w.r.t to the axial 
coordinate, averaged over the array aperture and has been shown to be equal to the 
source PSD for an infinite aperture. The PC source strength for each reference 
microphone, has been identified as the Fourier transform of the source CSD with 
respect to axial separation. The PC image at each reference angle is the Fourier 
transform w.r.t. the axial coordinate of the far-field CSD (or CSM). It follows that BF 
image is the integral or average of the PC source image over all reference angles. 
 
To assess these phased array methods for the purposes of determining length scales in 
a jet noise type source, the conventional BF has been extended. The conventional BF 
image of a line source is a function of the one source coordinate but here we have 
extended the BF method to focus on two axially separated source points. When that 
separation is zero, the conventional BF image is recovered and hence the source PSD. 
For non-zero separation the extended or generalised BF method for an infinite 
aperture, yields the source CSD and its variation with axial separation.  
 
To help understand these two phased array methods in more detail, in particular the 
generalised BF method, we have assumed a one-dimensional source having a 
coherence that combines previously published models for the variation in source 
coherence with axial separation, including convection, and for the PSD axial variation 
in source strength or intensity. With the aid of this model and numerical simulation, it 
has been possible to evaluate the effects of the length scale on the  far-field coherence 
and the derived BF image of the source CSD.  
 
Fortunately, the simulations have been underpinned by an analytic expression that we 
have derived for the far-field CSD radiated by this source CSD model, with the 
constraint that the source has a particular value of the shape parameter for the source 
PSD axial variation. This has enabled comparison of all the numerically derived 
results with the ‘true’ source PSD and CSD. 
 
The simulations in this paper have been confined to a polar phased array with the 
maximum aperture of 180° and 1° microphone spacing. These are not unrealistic array 
parameters, although in practice the arrays are usually linear rather than polar and the 
aperture is necessarily somewhat smaller. 
 
From these simulations, it has been shown that the for subsonic jet convection Mach 
numbers, the axial coherence length scale cannot be satisfactorily resolved from the 
generalised BF image of the CSD, even with the maximum polar array aperture of 
180 degrees. The same is true, strictly speaking, for supersonic convection Mach 
numbers, although trends in the length scale can be detected. The reason appears to be 
that far-field BF (complex)  coherence data cannot accurately resolve the source phase 
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variation with separation caused by a subsonic convection velocity. When a 
supersonic convection velocity is assumed, the phase variation is resolved with 
reasonable accuracy. However, although the image modulus variation with axial 
separation exhibits the correct trend, it still does not provide the correct quantitative 
variation. Our main conclusion is that far-field coherence data can be used with the 
generalised BF to obtain qualitative estimates of the large-scale structure noise 
contribution but only for supersonic convection velocities. 
 
The above findings have implications for the conventional BF, which is widely used 
for diagnostic purposes on aeroacoustic sources, including jet noise. It has been 
shown that the combined effects of resolution and source convection place significant 
limitations on the absolute level of the BF image of the source PSD, although its axial 
shape is almost fully recovered.   
 
The PC method yields a source strength image at each reference microphone (only 
90° is considered here, i.e. normal to the jet axis) which when integrated over the 
source length, yields the far-field PSD at that reference microphone. Therefore the PC 
source strength is the most reliable and relevant quantity to measure when addressing 
the question: what proportion of the sound at a particular microphone position comes 
from this region of the jet axis? 
 
The PC source strength image is much less affected by resolution and convection 
effects, except for large length scales at subsonic convection Mach numbers, but even 
then it provides a good average of the axial variation in source strength. In general it 
closely follows ‘true’ source strength over a wide range of length scales and the 
source strength level does vary with coherence length in a systematic way. It might 
therefore be possible to extract length scale information from the PC image of the 
source strength. 
 
Ideally more work should be done to improve the realism of these simulations. For 
example previous measurements and also LES data show that length scale varies 
almost linearly with distance downstream of the jet nozzle, whereas here we have 
assumed a constant length scale corresponding to the axial position defined by the 
Strouhal number. That linear variation needs to be incorporated in our model, along 
with simulated errors and a range of realistic apertures. 
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Appendix A 
 

Axial coherence length scale estimation 
 

For the purposes of this study we have used the axial separation dependence of the 
‘fine-scale’ jet noise source two-point space-time correlation model proposed by Tam 
& Auriault19, for which the corresponding coherence takes the form: 
 

 
 

 

 
(A.1) 

 
where the coherence length scale, Lc, is expressed as suτ in Ref. 3; u  is the 
convection velocity, denoted here by co Mc, and sτ is the characteristic decay time. 
Approximate values for these parameters were chosen by fitting to previous two-point 
measurements, in Ref. 3, but subsequently sτ  and other parameters were adjusted to 
obtain the best fit to predicted far-field noise spectra. More recently Karabasov et al20 
have been able to provide better direct estimates of c sL uτ= by fitting the above type 
of model to two-point space-time correlations of the fluctuating unit Reynolds stress 
obtained from an LES solution and concluded that for a single stream un-heated jet sτ  
varies almost linearly with the axial distance downstream of the nozzle.  Their data 
can be represented, to a good approximation, as: 
 

 
 

 

 
(A.2) 

 
where y is the axial distance downstream of the nozzle and d is the nozzle diameter.   
 
In the numerical calculations presented in this paper, cL  has been assumed to be a 
constant for a given Strouhal number and its value obtained from Eq. A2 to obtain a 
‘nominal’ value for a given axial source position. The value of y has been obtained 
from previous source location measurements, e.g. for St=0.1, y = 13d and for St=1, 
y = 5d. In general numerical results in Sections 4 & 5 are presented for a range of cL  

spanning the nominal value. 

1 2 1 2| |/ ( ) /
1 2( ) c cy y L ik y y My y eγ − − + −− =

1
8

cL y
d d

=
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Appendix B 

 
Derivation of analytic far-field CSD 

 
 
Eq. (11a) gives the far-field CSD as a double Fourier transform of source CSD , 
which is 
 

 
 

 

 
 
(B.1) 

 
To show how Eq. (17) has been obtained, the source PSD model given by Eq. (15a) 
has to be re-written as  
 

 (B.2) 

 
where H() is the Heaviside step function.  Substituting Eq. (B.2) and Eq. (15b) into 
Eq.(14) gives 
 

1 1
1 2 1 2 1 2/ / | |/ ( )/

1 2 1 1 2 2( , , ) ( ) ( )
m m

c c c cmy y my y y y L ik y y M
qqC y y H y y e H y y e eω

− −− − − − − −=  (B.3) 
 
or in mean/separation coordinates(with m=3) 
 

 
 

 

 
(B.4) 

 
Substitution of Eq. (B.4) into Eq. (B.1) gives 
 

 
 

 

 
 
(B.5) 

 
where the integration limits for η have been modified by the Heaviside functions.  
Integration with respect to η gives in effect the PC source strength 
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(B.6) 

 
where 
 

  
(B.7) 

 
Substituting Eq. (B.7) into Eq. (B.1) gives 
 

 
 

 

 
 
(B.7) 

 
 
The final integration then yields Eq. (17).
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Figure 1: Monopole 1D line source model, with microphones on polar arc 
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Figure 2a: Source PSD model (m=3) 
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Figure 2b: Far-field PSD directivity, St = 0.1, Mc=0.6. 
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Figure 2c: Far-field CSD modulus, St = 0.1, Mc=0.6. 
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Figure 2d:  Coherence modulus, St = 0.1, Mc=0.6. 
 



22 
 

 
 

 
 

Figure 2e  CSD phase, St = 0.1, Mc=0.6. 
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Figure 3a: BF Image of source PSD v. true source PSD, St=0.1, Mc=0.6, βmax = 10k 
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Figure 3b: BF Image of source PSD v. true source PSD, St=0.1, Mc=0.6, βmax = k 
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Figure 3c: Normalised BF image of source PSD v. true source PSD, St=0.1, Mc=0.6, βmax = k 
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Figure 4a: BF Image of source PSD v. true source PSD, St=1, Mc=0.6, βmax = k 
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Figure 4b: Normalised BF image of source PSD v. true source PSD, St=1, Mc=0.6, βmax = k 
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Figure 5: BF Image of PSD v. true PSD, St=0.1, Mc=1.2, βmax = k  
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Figure 6a: BF Image of source |CSD| v. true source |CSD|, St=0.1, Mc=0.6, βmax = 10k 
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Figure 6b: BF Image of source CSD phase v. true source CSD phase, St=0.1, Mc=0.6, βmax = 10k 
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Figure 7a: BF Image of source |CSD| v. true source |CSD|, St=0.1, Mc=0.6, βmax = k 
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Figure 7b: BF Image of source CSD phase v. true source CSD phase, St=0.1, Mc=0.6, βmax = k 
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Figure 8: BF Image of source |CSD| v. true source |CSD|, St=0.1, Mc=0.0, βmax = k 
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Figure 9a: BF Image of source |CSD| v. true source |CSD|, St=0.1, Mc=1.2, βmax = k 
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Figure 9b: BF Image of source CSD phase v. true source CSD phase, St=0.1, Mc=1.2, βmax = k 
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Figure 10a: PC image of source strength v. true source strength, St=0.1, Mc=0.6, βmax = 10k. 
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Figure 10b: PC image of source strength v. true source strength, St=0.1, Mc=0.6, βmax = k. 
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Figure 11: PC image of source strength v. true source strength, St=1, Mc=0.6, βmax = k. 
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Figure 12: PC Image of source strength v. true source strength, St=0.1, Mc=1.2, βmax = k 
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