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Abstract

In the context of an insurance portfolio which provides dividend income for the insurance

company’s shareholders, an important problem in risk theory is how the premium income will

be paid to the shareholders as dividends according to a barrier strategy until the next claim

occurs whenever the surplus attains the level of “barrier”. In this paper, we are concerned

with the estimation of optimal dividend barrier, defined as the level of the barrier that maxi-

mizes the expected discounted dividends until ruin, under the widely used compound Poisson

model as the aggregate claims process. We propose a semi-parametric statistical procedure for

estimation of the optimal dividend barrier, which is critically needed in applications. We first

construct a consistent estimator of the objective function that is complexly related to the ex-

pected discounted dividends and then the estimated optimal dividend barrier as the minimizer

of the estimated objective function. In theory we show that the constructed estimator of the

optimal dividend barrier is statistically consistent. Numerical experiments by both simulated

and real data analyses demonstrate that the proposed estimators work reasonably well with

an appropriate size of samples.

1 Introduction

In classical models of risk theory, an insurance company’s surplus is assumed to be able to increase
without bounds. This is however often not the case in practice, because the company need to pay
back its excess surplus as dividends to the shareholders. In order to make it more realistic, the
risk model involving dividend payments has become an important problem in risk theory; see, e.g.,
[De Finetti, 1957], [Bühlmann, 1970], [Gerber, 1979], [Dickson, 2005], [Gerber et al., 2006] and so
on. In such risk models with dividends, whenever the surplus attains the level of “barrier b”, the
premium income will be paid to the shareholders as dividends until next claim occurs. But, if
the surplus is below b, no dividends are paid. [De Finetti, 1957] pioneeringly proposed such a risk
model with dividends, considering that the optimal strategy to maximize the expectation of the
aggregated discounted dividends is a barrier strategy with an optimal level of the barrier developed
under a binomial model. [Bühlmann, 1970] and [Gerber, 1979] made further contribution to the
idea of the constant barrier under the classical risk models. In particular they derived the optimal
dividend barrier b0 explicitly in the case of an exponential claim amount distribution. Since
then, many publications have dealt with this problem based on different distributions, models and
criteria. For example, [Lin et al., 2003] and [Gerber et al., 2006] derived the explicit expression of
b0 when the claim amount follows mixed exponential distributions. [Landriault, 2008] investigated
this problem when there exists the dependency between interclaim arrivals and claim sizes. As a
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counterpart of the classical continuous time risk model, the Brownian motion risk model has also
been considered, for example, by [Gerber and Shiu, 2004]. Moreover, [Dickson and Waters, 2004]
and [Gerber et al., 2006] dealt with finding an optimal dividend strategy in case the shareholders
should be liable to cover the deficit at ruin. Although this problem of optimal dividends has been
actively studied in the literature, it has been rarely investigated in statistical estimation of the
unknown optimal “barrier” that is critically needed in applications.

In this paper, we propose a semiparametric statistical procedure for estimation of the optimal
dividend barrier b0. Differently from the methods by [Gerber et al., 2008] to approximate b0 by its
first few moments based on the moment estimation, we will propose an estimator of the optimal
dividend barrier b0 as the minimizer of a semiparametric estimator of an objective function, Ψ(b),
which is derived by using “Beekman’s convolution series” of the expected discounted dividends
V (u, b). We note that the maximizer of V (u, b) with respect to b corresponds to the minimizer
of Ψ(b) (see Section 2 for details). For the semiparametric estimation of Ψ(b), we will suggest
an approach to estimation as done for ruin probability in the literature. In the case of ruin
probability, it is known that the probability can be described as the infinite sum of the r-fold
convolution (G(r)) of a distribution function G, which is the so-called Pollaczek-Khinchin-formula.
[Croux and Veraverbeke, 1990] suggested its estimator as the finite sum of the U-statistics (Unr),
which is expressed as the sum of all combinatorial selections of the size r from the full set of
observations (size n). In this paper, similarly to [Croux and Veraverbeke, 1990], we will propose
an estimator of Ψ(b) which can also be expressed as the infinite sum of the (derivative of) r-fold

convolution (Gr) of a function g. We will introduce in Section 3 the estimator Ψ̂m,s(b) as the finite

sum of
˙̂
Gr

s, where
˙̂
Gr

s is the derivative of Ĝr
s and Ĝr

s is a Monte Carlo based estimator of Gr based

on the empirical distribution ĝ. Note that Ĝr
s converges to the U-statistic of Gr when the sample

size of the Monte Carlo estimation (s) tends to infinity.
The paper is organized as follows: Section 2 will define the optimal dividend barrier which

is the maximizer of the expectation of the aggregated discounted dividends. We show that the
optimal dividend barrier can be described as the minimizer of a function Ψ(b) by use of “Beekman’s
convolution series”. In Section 3, we suggest a consistently estimated objective function consisting
of Monte Carlo based estimators and derive the consistent estimator of the optimal dividend
barrier from it. Section 4 investigates the performance of our proposed estimator by a simulation
study and a real data analysis. In the simulation study, the influence of the sample seize n for the
optimal dividend barrier estimator is also investigated. For the analysis of a real data set of Danish
Fire Insurance Claims in Denmark, the superiority for the estimated optimal dividend barrier is
illustrated in terms of approximated expected discounted dividends.

2 Optimal Dividend Barrier

In this paper, we are concerned with the optimal dividend barrier in the case of dividends payment
with an insurance portfolio. We first introduce the special case of non-dividends that will be needed
below. In the absence of dividends, the surplus of an insurance company at time t can be expressed
as

U(t) = u+ ct− S(t), S(t) =

N(t)∑

i=1

Xi

for t ≥ 0. Here u > 0 is the initial surplus; the premiums are received continuously at a constant
rate c > 0; {S(t)} is the aggregate claims up to time t; N(t) ∈ N is the claim frequency up to time
t; Xi is the ith claim amount.

We impose the following assumption with respect to the Xi, N(t), c and u.
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Assumption 1. (A1) {Xi, i ∈ N} is a sequence of i.i.d. positively valued random variables with
the probability density function f(x) and the finite mean µ and variance σ2.

(A2) {N(t)} is a Poisson process with the intensity parameter λ > 0 (i.e., {S(t) =
∑N(t)

i=1 Xi} is a
Compound Poisson process).

(A3) The premium rate c is known and satisfied with 0 <
λµ

c
< 1.

(A4) {N(t)} and {Xi} are independent.

Further we define ρ as follows.

Definition 1. (D1) Define

ℓ(ξ) = δ + λ− cξ − λL(ξ), (1)

where δ > 0 is a force of interest, and L(ξ) =

∫ ∞

0

e−ξxf(x)dx is the Laplace transform of

f . Equation ℓ(ξ) = 0 is the so-called “Lundberg’s fundamental equation” or “generalized
Lundberg’s equation”. It is well known that the equation ℓ(ξ) = 0 has a unique positive root
ρδ > 0 and a unique negative root −Rδ < 0 (e.g., see [Gerber and Shiu, 1998]).

In the classical ruin theory, it is concerned with the ruin probability. Denote by ψ0(u) a
probability of ultimate ruin in the absence of dividend as a function of the initial surplus u,

ψ0(u) = P {T <∞|U(0) = u}

where T = inf{t|U(t) < 0} is the time of ruin in the absence of dividends. [Gerber and Shiu, 1998]
has introduced its extension for δ > 0

ψδ(u) = E
{
e−δT+ρδU(T )

I{T<∞}|U(0) = u
}
.

Remark 1. When δ ↓ 0, the positive solution of Lundberg’s fundamental equation (1) satisfies ρδ ↓

0, which implies that ψδ(u)
∣∣∣
δ=0

= E
{
e−0·T+0·U(T )

I{T<∞}|U(0) = u
}
= P {T <∞|U(0) = u} =

ψ0(u). Therefore, ψδ is the extension of ψ0.

In this paper, we suppose that the insurance company will refund part of the surplus exceeding
a barrier b ≥ u, as the dividends to the shareholder. Let Db(t) denote the aggregate dividends up
to time t. Then, we can write

dDb(t) =

{
0 if Ub(t) < b
cdt if Ub(t) = b

,

where Ub(t) is the surplus with the dividend barrier b, that is,

Ub(t) = u+ c

∫ t

0

I{Ub(s)<b}ds− S(t), S(t) =

N(t)∑

i=1

Xi. (2)

[De Finetti, 1957], [Gerber, 1979] ,[Gerber and Shiu, 1998], [Gerber et al., 2006] and so on treated
the problem as maximizing the expected discounted dividends, namely,

V (u, b) = E

[∫ Tb

0

e−δtdDb(t)|U(0) = u

]
, (3)

where Tb = inf{t|Ub(t) < 0} is the ruin time in the existence of dividend with barrier b. Then, an
optimal dividend barrier b0 can be defined as follows.
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Definition 2. (D2) Let b0 denote the optimal dividend barrier as the maximizer of V (u, b), i.e.,

b0 = arg max
b>0

V (u, b).

[Gerber and Shiu, 1998] showed that V (u, b) (defined by (3)) can be written as a function of ρδ
and ψδ (in what follows, for simplicity, we denote ρ ≡ ρδ and ψ ≡ ψδ) as follows.

Lemma 1. Suppose Assumptions (A1)-(A4) hold. Then, it follows that

V (u, b) =
h(u)

h′(b)
=

eρu − ψ(u)

ρeρb − ψ′(b)
.

From Lemma 1, it follows that the optimal dividend barrier b0 does not depend on the initial
surplus u. We impose the following assumption.

Assumption 2. (A5) There exists uniquely the optimal dividend barrier b0.

Remark 2. Theorem 9 of [Yin et al., 2015]1 shows that there exists a unique minimizer b0 such
that h′(b0) = minb>0 h

′(b) if f is a completely monotone function2 on (0,∞).

[Gerber and Shiu, 1997] derived another expression for h(u) by use of “Beekman’s convolution
series” as follows.

Lemma 2. Suppose Assumptions (A1)-(A5) hold. Then, we have

h(u) = {1− ψ(0)}

[
eρu +

∫ u

0

eρz
∞∑

r=1

g∗r(u− z)dz

]
,

where g(x) =
λ

c

∫ ∞

0

e−ρyf(x+ y)dy and g∗r(x) (r = 1, 2, . . .) is the r-fold convolution of g defined

by

g∗r(x) =





g(x) r = 1

∫ x

0

g(y)g∗r−1(x− y)dy r ≥ 2
.

Summarizing the above, the optimal dividend barrier can be expressed as follows.

Lemma 3. Suppose Assumptions (A1)-(A5) hold. Then, b0 ∈ R
+ is a minimizer of Ψ(b), i.e.,

b0 = arg min
b>0

Ψ(b), Ψ(b) =

∞∑

r=0

Ġr(b),

where Ġr(b) =
d

db
Gr(b) and

Gr(b) =





eρb r = 0

∫ b

0

eρzg∗r(b− z)dz r ≥ 1

.

1The paper [Yin et al., 2015] considers the existence of a unique solution under a Lévy process which includes
the compound poisson process.

2An infinitely differentiable function f : (0,∞) 7→ [0,∞) is called completely monotone if (−1)nf(n)(x) ≥ 0 for
all n = 0, 1, 2, . . . and all x > 0.
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3 Estimation of Optimal Dividend Barrier

3.1 Estimation

Suppose that (X1,∆1T ), . . . , (Xn,∆nT ) are observed data, where Xi is the i-th claim amount and
∆iT is the interclaim time between the (i−1)-th and i-th claims. Note that let Ti(i ∈ N) be the time
when the i-th claim occurrs. Then, Ti = inft>0 {N(t) = i}. By using Ti and Ti−1, the interclaim
time is written by ∆iT = Ti − Ti−1 with T0 = 0. If the process {N(t)} follows a homogeneous
Poisson process with the intensity λ, the interclaim time ∆iT follows independently an Exponential
distribution with E(∆iT ) = 1/λ. Since the interclaim time ∆iT satisfies E(∆iT ) = 1/λ and the
claim amountXi has common distribution function F (x) :=

∫ x

0
f(y)dy for x > 0, natural estimators

of λ and F can be defined by

λ̂ =

(
1

n

n∑

i=1

∆iT

)−1

and F̂ (x) =
1

n

n∑

i=1

I{Xi≤x} (4)

for x > 0. By using λ̂ and F̂ instead of λ and F , a natural estimator of ρ can be defined as a
positive solution to the (empirical) Lundberg’s fundamental equation:

ℓ̂(ξ) = δ + λ̂− cξ − λ̂L̂(ξ) = 0, L̂(ξ) =

∫ ∞

0

e−ξxdF̂ (x) =
1

n

n∑

i=1

e−ξXi .

In the same way, a natural estimator of g is defined as follows:

ĝ(x) =
λ̂

c

∫ ∞

0

e−ρ̂ydF̂ (x+ y) =
λ̂

cn

n∑

i=1

I{Xi>x}e
−ρ̂(Xi−x)

for x > 0. Note that let Y1, . . . , Yr be independent with common density function g̃(x) = g(x)/K,
where K =

∫∞

0 g(y)dy. Then, g∗r, for r ≥ 2 and x > 0, can be written as

g∗r(x) =

∫ x

0

g(y)g∗r−1(x− y)dy =

∫
· · ·

∫
∑r−1

j=1 yj≤x

g


x−

r−1∑

j=1

yj




r−1∏

i=1

g(yi)dy1 · · · dyr−1

= Kr−1E


I{∑r−1

j=1 Yj≤x}g


x−

r−1∑

j=1

Yj




 .

Therefore, we introduce its Monte Carlo based estimator

ĝ∗rs (x) =





ĝ(x) r = 1

K̂r−1

s

s∑

ℓ=1

I
{
∑r−1

j=1 Y
(ℓ)
j ≤x}

ĝ


x−

r−1∑

j=1

Y
(ℓ)
j


 r ≥ 2

,

where s ≡ s(n) is a sample size of Monte Carlo estimation (in what follows, we call “Monte Carlo

sample size”) satisfying n/s→ 0 as n→ ∞, and {Y
(ℓ)
i ; i = 1, . . . , r − 1, ℓ = 1, . . . , s} is a sequence

of i.i.d. random variables of common density function ˆ̃g(y) = ĝ(y)/K̂ with

K̂ =

∫ ∞

0

ĝ(y)dy = 1−
δ

cρ̂
.
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By using {ĝ∗r} and m ≡ m(n) satisfying logn/m → 0 as n → ∞, we can define an estimator
of b0 by

b̂m,s = arg min
b>0

Ψ̂m,s(b), Ψ̂m,s(b) =

m∑

r=0

˙̂
Gr

s(b) (5)

where
˙̂
Gr

s(b) =
d

db
Ĝr

s(b) and

Ĝr
s(b) =





eρ̂b r = 0

∫ b

0

eρ̂z ĝ∗rs (b− z)dz r ≥ 1

.

Remark 3. Note that the indifferentiable points for Ĝr
s (i.e.,

∑r−1
j=1 Y

(ℓ)
i for r ≥ 2, ℓ = 1, . . . , s)

are countable, which implies that the Lebesgue measure of the set
{
b ∈ R

+ ≡ (0,∞) | Ĝr
s(b) is indifferentiable under the given {(Xi,∆iT ); i = 1, . . . , n}

}

converges to 0 with probability 1. Therefore, there exists b̂m,s almost surely.

Theoretically, we can show that the proposed estimators are consistent as the sample size n
tends to infinity in next section.

3.2 Consistency

We first introduce some notation. Let Θ = {(λ, F ) : λ > 0, F ∈ F} be a infinite dimential param-
eter space where

F =

{
F
∣∣∣F : R+ 7→ [0, 1], there exists f =

dF

dx
, F (0) = 1, and f is satisfied with Assumptions (A1)− (A5)

}
.

Denote the distribution function of the claim amount process {Xi} by F0 and the intensity param-

eter of the interclaim time process {∆iT } by λ0 (i.e., {∆iT }
i.i.d.
∼ Exp(1/λ0)). We then suppose

that the true parameter θ0 := (λ0, F0) is included in the parameter spance (i.e., θ0 ∈ Θ). For a
fixed θ = (λ, F ) ∈ Θ and given δ, c > 0, let ρ ≡ ρ(θ) be a uniqe positive root of ℓ(ξ) ≡ ℓ(ξ; θ)
defined in (1). We write g(x; θ) = λ

c

∫∞

0
e−ρ(θ)ydF (x+ y) and g∗r(·; θ) is the r-fold convolution of

g(·; θ). Denoting

Ψ(b; θ) =

∞∑

r=0

Ġr(b; θ)

where Ġr(b; θ) = ∂
∂b
Gr(b; θ) and

Gr(b; θ) =





eρ(θ)b r = 0

∫ b

0

eρ(θ)zg∗r(b− z; θ)dz r ≥ 1

,

we can define b0 as a minimizer of Ψ(b) ≡ Ψ(b; θ0), i.e.,

b0 = arg min
b>0

Ψ(b; θ0).
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Based on (X1,∆1T ), . . . , (Xn,∆nT ), we can construct an estimator θ̂ ≡ (λ̂, F̂ ) by (4). Then, we can

identify b̂m,s ≡ bm,s(θ̂) and Ψ̂m,s(b) ≡ Ψm,s(b; θ̂) in (5) where bm,s(·) = arg min
b>0

Ψ(b; ·). Similary to

[Lu et al., 2007], in order to prove the consistency of b̂m,s, we need to check the following conditions
under Assumptions (A1)-(A5).

Lemma 4. Under Assumptions (A1)-(A5), we have the followings:

(i) Ψ(b0; θ0) = infb>0 Ψ(b; θ0).

(ii) Ψm,s(b̂m,s; θ̂) = infb>0Ψm,s(b; θ̂) + op(1).

(iii) For all δ > 0, there exists ǫ(δ) > 0 such that

inf |b−b0|>δΨ(b; θ0) ≥ Ψ(b0; θ0) + ǫ(δ).

(iv) Uniformly for all b > 0, Ψ(b; θ) ≡ Ψ(b;λ, F ) is continuous with respect to λ and the metric
‖ · ‖∞ in Θ at θ0 = (λ0, F0) where

‖F − F0‖∞ = sup
x∈R+

|F (x) − F0(x)|.

(v) |λ̂− λ0|+ ‖F̂ − F0‖∞ = op(1).

(vi) For all {δn} with δn = o(1),

supb>0sup|λ−λ0|+‖F−F0‖∞≤δn
|Ψm,s(b; θ)−Ψ(b; θ)| = op(1).

Proof of Lemma 4 Since Ψ(b; θ0) ∝ h′(b) and h′ is strictry convex on the neighbourhood of

b0 under Assumption 2 (see Remark 2), (i) and (iii) are satisfied. As b̂m,s is the minimizer of

Ψm,s(b; θ̂), (ii) hold obviously. As for (iv), it is easy to see that Ψ(b; θ) ≡ Ψ(b;λ, F ) is differentiable
with respect to λ, which implies that Ψ is continuous with respect to λ. Put a sufficiently small
ǫ > 0. Let Fǫ ∈ F denotes a distribution function satisfying ‖Fǫ − F0‖∞ = ǫ. Based on the
Fǫ, we obtain ρǫ as a positive root of ℓǫ(ξ) ≡ δ + λ(1 − Lǫ(ξ)) − cξ = 0 defined in (1), where
Lǫ(ξ) =

∫∞

0 e−ξxdFǫ(x). Then, there exists m1 (0 < m1 < ∞) such that |ρǫ − ρ0| ≤ m1ǫ
where ρ0 ≡ ρ(θ0) (see Appendix A.1.). Let g∗rǫ and Gr

ǫ denote g∗r and Gr defined in Lemmas 2
and 3 under θǫ = (λ, Fǫ). The above result implies that there exist {m2r} and {m3r} such that
|g∗rǫ −g∗r0 | ≤ m2rǫ with

∑
rm2r <∞ (see Appendix A.2.) and |Gr

ǫ−G
r
0| ≤ m3rǫ with

∑
rm3r <∞

(see Appendix A.3.) . Therefore, there exists 0 < M <∞ such that

|Ψ(b;λ, Fǫ)−Ψ(b;λ, F0)| ≤
∞∑

r=0

∣∣∣Ġr(b;λ, Fǫ)− Ġr(b;λ, F0)
∣∣∣

=

∞∑

r=0

|ρǫG
r(b;λ, Fǫ)− ρ0G

r(b;λ, F0)|+

∞∑

r=1

|g∗r(b;λ, Fǫ)− g∗r(b;λ, F0)|

≤Mǫ

which implies that Ψ is continuous with respect to the metric ‖ · ‖∞. As for (v), from the law

of large number (LLN), it can be seen |λ̂ − λ0| = op(1) and the Glivenko-Cantelli theorem gives
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‖F̂ − F0‖∞
a.s.
→ 0 (see, e.g. Theorem 19.1 of [van der Vaart, 1998]). As for (vi), letting δn = o(1)

and |λ− λ0|+ ‖F − F0‖∞ ≤ δn, we notice that

|Ψm,s(b; θ)−Ψ(b; θ)| = Ψm,s(b; θ)−Ψm,s(b; θ0)

+ Ψm,s(b; θ0)−Ψ(b; θ0)

+ Ψ(b; θ0)−Ψ(b; θ)

= I + II + III (say)

where by condition (iv) III = o(1), uniformly for b > 0 and with θ = (λ, F ) satisfying |λ−λ0|+‖F−
F0‖∞ ≤ δn. That I = op(1), uniformly for b > 0 and θ = (λ, F ) with |λ−λ0|+‖F−F0‖∞ ≤ δn, can
be proved in the same way as for III, because in fact E[I] = E[Ψ∞,s(b; θ)−Ψ∞,s(b; θ0)] + o(1) =
III + o(1). In addition, II = op(1) can be also proved easily.

Under the above conditions, we have the following result.

Theorem 1. Under Assumptions (A1)-(A5), it follows

b̂m,s − b0 = op(1).

Proof of Theorem 1 The proof is similar to that of Lemma 4.1 in [Lu et al., 2007]. By condition
(iii) of Lemma 4, for all δ > 0,

P(|b̂m,s − b0| > δ) ≤ P
{
Ψ(b̂m,s; θ0)−Ψ(b0; θ0) ≥ ǫ(δ)

}
, (6)

hence it suffices to show that

Ψ(b̂m,s; θ0)−Ψ(b0; θ0) = op(1).

Note that

Ψ(b̂m,s; θ0)−Ψ(b0; θ0) = Ψ(b̂m,s; θ0)−Ψ(b̂m,s; θ̂)

+ Ψ(b̂m,s; θ̂)−Ψm,s(b̂m,s; θ̂)

+ Ψm,s(b̂m,s; θ̂)−Ψ(b0; θ0)

= L1 + L2 + L3 (say).

From conditions (iv) and (v) of Lemma 4, we have L1 = op(1). Conditions (v) and (vi) of Lemma
4 imply

|L2| ≤ supb>0|Ψ(b; θ̂)−Ψm,s(b; θ̂)| = op(1),

because for any b > 0 and ǫ > 0 there exists {δ′n} with δ′n/δn = o(1),

P
{
|Ψ(b; θ̂)−Ψm,s(b; θ̂)| > ǫ

}
≤ P

{
supθ=(λ,F )∈{|λ−λ0|+‖F−F0‖∞≤δn}|Ψ(b; θ̂)− Ψm,s(b; θ̂)| > ǫ

}

+ P
{
|λ̂− λ0|+ ‖F̂ − F0‖∞ > δn

}
≤
δ′n
δn

= o(1).

Finally, we have to show L3 = op(1). As Ψm,s(b̂m,s; θ̂) = infb>0Ψm,s(b; θ̂), note that

Ψm,s(b; θ̂) =
{
Ψm,s(b; θ̂)−Ψ(b; θ̂)

}
+
{
Ψ(b; θ̂)−Ψ(b; θ0)

}
+Ψ(b; θ0)

≤ supb>0|Ψm,s(b; θ̂)−Ψ(b; θ̂)|+ supb>0|Ψ(b; θ̂)−Ψ(b; θ0)|+Ψ(b; θ0)

= R1 + R2 +Ψ(b; θ0) (say).
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Then we have

Ψm,s(b̂m,s; θ̂) ≤ R1 +R2 + infb>0Ψ(b; θ0) = R1 +R2 +Ψ(b0; θ0).

It follows, from conditions (v) and (vi) of Lemma 4 that R1 = op(1), and from conditions (iv) and
(v) of Lemma 4 that R2 = op(1), and thus we deduce for any ǫ > 0

P
{
Ψm,s(b̂m,s; θ̂) ≤ ǫ+Ψ(b0; θ0)

}
= o(1),

and by exchanging Ψm,s(b̂m,s; θ̂) and Ψ(b0; θ0)

P
{
Ψ(b0; θ0) ≤ ǫ+Ψm,s(b̂m,s; θ̂)

}
= o(1),

which implies L3 = op(1). Therefore, it can be seen that Ψ(b̂m,s; θ0) − Ψ(b0; θ0) = op(1) and the
proof is complete by (6).

4 Numerical Study

In this section, we first discuss the finite-sample accuracy of our proposed estimator by some
simulation studies. Then, we will analyze the optimal dividend barrier estimation using a real
data set.

4.1 Simulation Study

Suppose that {Xi} and {∆iT } are sequences of i.i.d. positively valued random variables with
the probability density functions f(x) = e−x and p(x) = e−x (i.e., Exponential distribution with
mean 1), respectively. We set the premium rate as c = 1.3 and the interest rate as δ = 0.01. In
our estimation method, an estimator (ĝ) of g is constructed based on the sample {(Xi,∆iT ), i =
1, . . . , n}, which implies that the distribution function FY (y) :=

∫ y

0
g̃(z)dz is replaced by the

empirical distribution function F̂Y (y) :=
∫ y

0
ˆ̃g(z)dz for any y > 0. Furthermore, the empirical

distribution function F̂Y (y) is replaced by the Monte Carlo based distribution function F̂
(j,s)
Y (y) :=

1
s

∑s
ℓ=1 I{Y

(ℓ)
j ≤y}

for any y > 0. Therefore, we first investigate the differences between FY (y), F̂Y

and F̂
(j,s)
Y for sample size n = 10, 1000 and Monte Carlo sample size s = 100, 10000 in Figure 1.

Figure 1 is about here.

It is easy to see that the graph of empirical distribution function F̂Y approaches the graph of true
distribution function FY as the sample size n increases. On the other hand, the graph of the Monte

Carlo based distribution function F̂
(j,s)
Y approaches the graph of F̂Y as the Monte Carlo sample

size s increases. Summarizing the above, if both the sample size n and the Monte Carlo sample

size s are sufficiently large, it can be seen that the graph of F̂
(j,s)
Y approaches the graph of FY .

Next, we investigate the difference between the graphs of true objective function Ψ and its
estimator Ψ̂m,s for some m in Figure 2. The figure plots the graph of Ψ under f(x) = e−x, λ =

1, c = 1.3, δ = 0.01, and the graph of Ψ̂m,s for m = 1, 3, 5, and 10, under the sample size n = 1000

and the Monte Carlo sample size s = 2000. Furthermore, the smallest b’s of Ψ and Ψ̂m,s for
m = 1, 3, 5, and 10are plotted with dotted lines.

Figure 2 is about here.
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Figure 1: Graphs for the true distribution function FY (y) (black), the empirical distribution func-

tion F̂Y (red) and the Monte Carlo based distribution function F̂
(j,s)
Y (green, blue) for sample size

n = 10 (left) and n = 1000 (right)
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Figure 2: Graphs for the true objective function Ψ (black) and its estimator Ψ̂m,s for m = 1 (red),
m = 3 (green), m = 5 (blue), and m = 10(light blue), under the sample size n = 1000 and the
Monte Carlo sample size s = 2000. Dotted lines show their minimizer, respectively.
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In the case ofm = 1, there is a large gap between the true objective function Ψ and Ψ̂m,s, but asm

increases, the estimated objective function Ψ̂m,s approximates to Ψ uniformly. Also along with this,

the minimum value (i.e., b̂m,s = argminb>0 Ψ̂m,s(b)) also converges to true b0 = argminb>0 Ψ(b)
as m increases. From this numerical study, under the situation that the sample size is sufficiently
large, it can be seen that ignoring the influence of m above a certain size does not affect the
behavior of the objective function. Theoretically, it is known that m should satisfy a condition
that logn/m converges to 0. Note that the estimated objective function Ψ̂m,s is not continuous
and the jump exists in some places, and the number of the jumps depends on the Monte Carlo
sample size s ≡ s(n), so that it increases as the sample size n increases, but conversely the jump

size decreases as the sample size n increases. As a result, Ψ̂m,s tends to be a continuous function.

Finally, we calculate the histogram of the optimal dividend barrier estimator b̂m,s in Figure
3. In this figure, in the case that the sample size n = 10, 100, 1000, s = 1000 and m = 10, the
estimated value is repeatedly calculated 100 times, and a histogram is calculated.

Figure 3 is about here.
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Figure 3: Histograms of b̂m,s for the sample size n = 10 (left), n = 100 (middle), n = 1000 (right),
s = 1000 and m = 10 with 100 times iteration. Red lines show the magnitude of true optimal
dividend barrier.

Obviously, as the sample size increases, the optimal dividend barrier estimator b̂m,s converges to
the true optimal dividend barrier b0. In this study, in order to see the influence of the sample size
n, s and m are fixed, but both are set so as to be larger depending on the sample size n, and it
can be expected to appear similar phenomenon even if s and m depend on n. Clearly, under this
setting, our proposed estimation method works well.

4.2 Real Data Analysis

We next investigate the empirical performance of our proposed estimator by using a real data
set. The data is a set of Danish Fire Insurance Claims in Denmark from Thursday 3rd January
1980 until Monday 31st December 1990 (This data set is contained in R-Package ‘evir’). In this
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data set, numeric vectors of “claim amount” and “claim reported date” involve 2167 observations.
Since the maximum number of the claim within 1 day equals 6, we divide 1 day into 6 intervals
as ((j − 1)/6, j/6] for j = 1, 2, 3, 4, 5, 6 and we assume that the claim reported hours is uniformly
distributed in the each intervals without overlapping. We then write each claim reported date and
hours as Ti and the interclaim time as ∆iT = Ti−Ti−1. For instance, suppose that there exist two
claims in a date and let the claim reported times (i.e., date and hours) be Ti1 , Ti1+1 (Ti1 < Ti1+1),
respectively. Then, the interclaim time (∆i1T = Ti1+1−Ti1) is within {1/6, 2/6, 3/6, 4/6, 5/6} and

P (∆i1T = j/6) =

(
6− j
1

)
/

(
6
2

)
for j = 1, 2, 3, 4, 5. We plot the histograms for the sequence

of claim amount {Xi} and {∆iT } in Figure 4.

Figure 4 is about here.
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Figure 4: Histogram of claim amount (Xi) and interclaim time (∆iT )

As for the claim amount (Xi), one may see that the volume of most accidents is less than 5.
However, although it is rare, there seem some outliers such as 10 and 20. In view of this, it could
be danger to simply assume a parametric model such as exponential distribution. But on the other
hand, the frequency of interclaim time (∆iT ) decreases smoothly in the range of almost less than
10. Therefore, it seems not a problem if applying the exponential distribution.

Next, we divide this data set into the “Training Data” for the first 1000 observations and the
“Test Data” for the remaining 1167 observations. By using the “Training Data”, we construct the
optimal dividend barrier estimator b̂m,s, under the premium rate as c = 2× X̄× λ̂ = 2.354472, the
interest rate as δ = 0.01 and the initial surplus as u = 10. In order to construct the estimator, we
set s = 2000 and m = 10. As a result, we obtain b̂m,s = 33.429 with Ψ̂m,s(b) displayed in Figure 5.

Figure 5 is about here.

Please note that even if we do not know the probability density function f and its Laplace

transform g, we can generate {Y
(ℓ)
i } from the empirical version ĝ. Since the ĝ can be constructed

based on the sample claim amount {X1, . . . , Xn} and sample interclaim time {∆1T, . . . ,∆nT },

the optimal dividend barrier estimator b̂m,s can be constructed without any other information
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about functions f and g except for the information from the observation. In addition, since the
computation time of b̂m,s based on the “Training Data” is 77.88 second by R, anyone could be
implement it. The above results show that our estimation can be used in practical point of view.
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Ψ^ m,s    and    b
^

m,s    for  (n,s,m)=(1000,2000,10)

b

Ψ^ m
,s

33.429

Figure 5: Graph of Ψ̂m,s(b) and its minimizer b̂m,s = 33.429

The graph shows the convexity of Ψ̂m,s(b) and the uniqueness of the minimizer. Note that the

objective function Ψ̂m,s(b) is not continuous but tends to be a continuous function as the s ≡ s(n)
is increasing.

Based on the “Test Data”, we can evaluate the accuracy of the optimal dividend barrier esti-
mator in view of the magnitude of the expected discounted dividends

V (u, b) = E [ADb] , ADb =

∫ Tb

0

e−δtdDb(t).

Since the optimal dividend barrier b0 maximizes V , the estimator b̂m,s should be close to the

maximizer of V (i.e., V (u, b̂m,s) ≈ maxb V (u, b) = V (u, b0)). Before the calculation of V (u, b),
we first need to consider how to calculate ADb under the fixed u, b and the given {(Xi,∆iT ); i =
1, . . . , n}. For that purpose, construction of a sample path of {Ub(t)} defined by (2) is needed and
Ub(t) can be rewritten as follows:

Ub(t) =





min
{
U+
b,0 + ct, b

}
if 0 ≤ t < T1

min
{
U+
b,1 + c (t− T1) , b

}
if T1 ≤ t < T2

...
...

min
{
U+
b,i−1 + c (t− Ti−1) , b

}
if Ti−1 ≤ t < Ti

...
...

min
{
U+
b,N(Tb)−1 + c

(
t− TN(Tb)−1

)
, b
}

if TN(Tb)−1 ≤ t < TN(Tb) ≡ Tb
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where U+
b,i (and U−

b,i) is the surplus immediately after (and before) the ith claim has occurred,
defined by

U+
b,i =

{
u if i = 0
U−
b,i −Xi if i = 1, 2, . . . , N(Tb)

, U−
b,i = lim

t↑Ti

Ub(t),

and Ti is the aggregated time (Ti =
∑i

k=1 ∆kT ) with T0 = 0 and N(Tb) is the number of claims
up to the ruin time Tb = inf{t|Ub(t) < 0}. The sample path of {Ub(t)} is shown in Figure 6 based

on b = 33.429(≡ b̂m,s) and the “Test Data”.

Figure 6 is about here.
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Figure 6: Sample path of {Ub(t)} based on b = 33.429(≡ b̂m,s)

At time t = 0, we have Ub(0) = u = 10 and the ruin time (i.e., Tb = inf{t|Ub(t) < 0}) is
Tb = 336.2. Based on the sample path of {Ub(t)}, we can obtain a sequence of dividend payable
terms {(τi, Ti); i = 1, 2, . . . , N(Tb)}, where

τi = min

{
Ti−1 +

b− U+
b,i−1

c
, Ti

}
,

which implies that the discounted aggregated dividends

ADb =

N(Tb)∑

i=1

∫ Ti

Ti−1

e−δtdDb(t) =

N(Tb)∑

i=1

∫ Ti

τi

e−δt(cdt) =
c

δ

N(Tb)∑

i=1

(eτi − eTi).

In the case of the “Test Data”, we obtain the discounted aggregated dividends ADb = 116.1224.
Unfortunately, at this stage, we can not evaluate the goodness of our estimator, because the

optimal dividend barrier b is a maximizer of the expected value of ADb, not ADb itself. In order
to calculate (an approximate value of) the expected ADb, it is necessary to generate a number of
sample paths. In what follows, we consider generating some sample paths from the “Test Data”
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using a resampling method. Denote the “Test Data” by {(Xi,∆iT ); i = 1, . . . , 1167}. Then, we
generate 1000 sample pahts {χℓ; ℓ = 1, . . . , 1000} by

χℓ =
{
(X

i
(ℓ)
j

,∆
i
(ℓ)
j

T ); i
(ℓ)
j ∈ {1, . . . , 1167}, j = 1, . . . , 1167 without overlapping

}
.

Calculating {Ub(t)} for each sample path χℓ generated above, we obtain the values of the ruin
time Tb and the discounted aggregated dividends ADb in the same way as above. In Figure 7, the
histograms of Tb and ADb derived from 1000 sample paths are plotted.

Figure 7 is about here.
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Figure 7: Histogram of Tb and ADb for 1000 sample paths under b = 33.429(≡ b̂m,s)

From the histogram of the ruin time Tb, we can see that in some cases, the ruin occurrs at
around time zero. On the other sample paths, the frequency of the ruin time slowly decreases,
and there also exit some cases that the ruin time exceed 500 days. As a distribution, it follows a
heavy tailed distribution. As for the histogram of ADb, in most cases, the ruin occurs before the
dividend payout (that is, ADb = 0). When ADb 6= 0, it seems to be distributed uniformly over a
wide range although it is very infrequent.

Finally, 1000 values of Tb and ADb are derived for various b (such as b = 33.429(≡ b̂m,s) and
b = 10, 15, . . . , 85, 90) in the same way as above, see Table 1 for the comparison of their means.

Obviously, the mean of Tb increases as b increases. On the other hand, when looking at the
mean of ADb, it can be seen that the function (denote ADb) is a concave function with respect to
b and the maximizer is close to the optimal dividend barrier estimator b = 33.429, which implies
that

AD
b̂m,s

≈ V (u, b̂m,s) ≈ maxV (u, b) = V (u, b0).

This phenomenon illustrates our proposed estimator works well.
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Table 1: Comparison of Tb and ADb

b mean of Tb mean of ADb b mean of Tb mean of ADb

33.429 120.6574 58.12917 50.00 318.6832 56.38832
10.00 32.2352 40.89303 55.00 355.2182 54.47957
15.00 46.6110 45.38146 60.00 386.3034 52.65691
20.00 69.9586 51.45603 65.00 417.4244 50.55746
25.00 91.1134 53.36816 70.00 439.3756 48.46212
30.00 124.7152 56.04076 75.00 455.5426 46.33621
35.00 171.2750 58.02137 80.00 465.0066 44.26150
40.00 205.2788 57.74939 85.00 469.6726 42.21538
45.00 250.1554 57.29334 90.00 470.9046 40.24690
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Appendix

A.1 Existense {m1}

Suppose that we fix a sufficiently small ξ0 > 0. For any ξ > ξ0, it follows that

|Lǫ(ξ)− L0(ξ)| =

∣∣∣∣
∫ ∞

0

e−ξxdFǫ(x) −

∫ ∞

0

e−ξxdF0(x)

∣∣∣∣ ≤ 2ǫ

∫ ∞

0

e−ξxdx ≤

(
2

ξ0

)
ǫ, (7)

and for any ξ1, ξ2 > ξ0, it follows that from Tayler expansion

|L0(ξ1)− L0(ξ2)| =

∣∣∣∣
∫ ∞

0

e−ξ1xdF0(x) −

∫ ∞

0

e−ξ2xdF0(x)

∣∣∣∣ =
∣∣∣∣(ξ1 − ξ2)

∫ ∞

0

xe−ξ∗xdF0(x)

∣∣∣∣

≤ |(ξ1 − ξ2)|

∫ ∞

0

xdF0(x) = |ξ1 − ξ2|µ, (8)

where ξ1 < ξ∗ < ξ2. On that other hand, for any ǫ > 0 we have from (1)

ℓǫ(ρǫ) = δ − cρǫ + λ {1− Lǫ(ρǫ)} = 0, ℓ0(ρ0) = δ − cρ0 + λ {1− L0(ρ0)} = 0. (9)

From (7), (8) and (9), we can write

|ρǫ − ρ0| =
λ

c
|Lǫ(ρǫ)− L0(ρ0)| ≤

λ

c

{(
2

ξ0

)
ǫ+ |ρǫ − ρ0|µ

}
,

for a sufficiently small ǫ > 0, which implies that

|ρǫ − ρ0| ≤

(
1−

λµ

c

)−1
λ

c

(
2

ξ0

)
ǫ := m1ǫ.

Note that under Assumption (A3), λµ
c
< 1 is satisfied and since Lǫ and L0 are continuous, there

exists ξ0 such that min(ρ0, ρǫ) > ξ0.
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A.2 Existense {m2r}

Similary to Appendix A.1., for any x > 0, there exist 0 < m21 <∞ such that

∣∣g∗1ǫ (x)− g∗10 (x)
∣∣ = |gǫ(x) − g0(x)| =

λ

c

∣∣∣∣
∫ ∞

0

e−ρǫydFǫ(x+ y)−

∫ ∞

0

e−ρ0ydF0(x+ y)

∣∣∣∣ ≤ m21ǫ,

and

∣∣g∗2ǫ (x) − g∗20 (x)
∣∣ =

∣∣∣∣
∫ x

0

gǫ(y)gǫ(x− y)dy −

∫ x

0

g0(y)g0(x − y)dy

∣∣∣∣

≤

∣∣∣∣
∫ x

0

gǫ(y) {gǫ(x− y)− g0(x− y)} dy

∣∣∣∣+
∣∣∣∣
∫ x

0

{gǫ(y)− g0(y)} g0(x− y)dy

∣∣∣∣

≤

{∫ ∞

0

gǫ(y)dy +

∫ ∞

0

g0(y)dy

}
m21ǫ := m22ǫ.

Here it can be seen that
∫ ∞

0

gǫ(y)dy =

∫ ∞

0

λ

c

∫ ∞

0

e−ρǫyfǫ(x+ y)dxdy

=
λ

c

∫ ∞

0

(∫ t

0

e−ρǫsds

)
fǫ(t)dt (t = x+ y, s = y)

=
λ

c

∫ ∞

0

(
1− e−ρǫt

ρǫ

)
fǫ(t)dt

=
λ

cρǫ
{1− L(ρǫ)}

=
λ

cρǫ

(
1−

δ + λ− cρǫ
λ

)
by (1)

= 1−
δ

cρǫ
< 1,

which implies that 0 < m22 <∞. In the same way, it follows that for any r ≥ 3

|g∗rǫ (x) − g∗r0 (x)| =

∣∣∣∣
∫ x

0

gǫ(y)g
∗r−1
ǫ (x− y)dy −

∫ x

0

g0(y)g
∗r−1
0 (x− y)dy

∣∣∣∣

≤

{
m2,r−1

∫ ∞

0

gǫ(y)dy +m21

∫ ∞

0

g∗r−1
0 (y)dy

}
ǫ := m2rǫ

with 0 < m2r < ∞. Lemma 2 implies that 0 <
∑∞

r=1 g
∗r
ǫ (b) < ∞, 0 <

∑∞
r=1 g

∗r
0 (b) < ∞

and there exists rǫ ∈ N such that
∑∞

r=rǫ
{g∗rǫ (b) + g∗r0 (b)} < ǫ. Threfore, denoting m2r :=

{g∗rǫ (b) + g∗r0 (b)} /
∑∞

r=rǫ
{g∗rǫ (b) + g∗r0 (b)} for r ≥ rǫ, instead of the above definition, we have

|g∗rǫ (x) − g∗r0 (x)| ≤ m2rǫ

and 0 <
∑∞

r=1m2r =
∑rǫ−1

r=1 m2r +
∑∞

r=rǫ
m2r =

∑rǫ−1
r=1 m2r + 1 <∞.
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A.3 Existense {m3r}

From Appendix A.1., for a fixed b > 0, there exist 0 < m30 < ∞ such that
∣∣G0

ǫ(b)−G0
0(b)

∣∣ =∣∣eρǫb − eρ0b
∣∣ ≤ m30ǫ. For r ≥ 1, there exists 0 < m3r <∞ such that

|Gr
ǫ(b)−Gr

0(b)| =

∣∣∣∣∣

∫ b

0

eρǫzg∗rǫ (b − z)dz −

∫ b

0

eρ0zg∗r0 (b− z)dz

∣∣∣∣∣

≤

∣∣∣∣∣

∫ b

0

(eρǫz − eρ0z) g∗rǫ (b− z)dz

∣∣∣∣∣+
∣∣∣∣∣

∫ b

0

eρ0z {g∗rǫ (b− z)dz − g∗r0 (b − z)} dz

∣∣∣∣∣ ≤ m3rǫ.

In the same way to Appendix A.2., there exists r̃ǫ ∈ N such that
∑∞

r=r̃ǫ
{Gr

ǫ(b) +Gr
0(b)} < ǫ.

Therefore, denoting m3r := {Gr
ǫ(b) +Gr

0(b)} /
∑∞

r=r̃ǫ
{Gr

ǫ(b) +Gr
0(b)} for r ≥ r̃ǫ, instead of the

above definition, we have

|Gr
ǫ(b)−Gr

0(b)| ≤ m3rǫ

with 0 <
∑∞

r=0m3r <∞.
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