

1 **PRODUCTION OF VOLATILE FATTY ACIDS FROM**
2 **SLAUGHTERHOUSE BLOOD BY MIXED-CULTURE**
3 **FERMENTATION**

4

5 Jersson Plácido^{1,2*}, Yue Zhang¹

6 *1 Water and Environmental Engineering Group, Faculty of Engineering and the Environment,*
7 *University of Southampton, Southampton, United Kingdom*

8 *2 Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, Wales, UK*

9

10 **ABSTRACT**

11 The volatile fatty acids (VFA) production potential from animal blood and the factors affecting
12 this process were investigated in this study. In order to simulate an industrial process different
13 operation modes, batch, fed batch and semi-continuous, were also evaluated. Due to high
14 ammonia concentration in fermentation broth, VFA concentration up to 100 g L⁻¹ was achieved
15 without addition of buffer and methanogen inhibitor. In general, acetic, n-butyric and iso-valeric
16 acids were the most predominant species, although different operational conditions affected the
17 VFA concentration, profile, production rate and yield. The microbial community analysis was
18 conducted on the reactors with the best performance, revealing that 70-90% of the microbial
19 population was from the *Clostridiales* order with a strong presence from the *Sporanaerobacter*

*Corresponding author.

Tel.: +44 (0)7809158696;

E-mail address: j.e.placidoescobar@swansea.ac.uk

20 genus. These results demonstrated the feasibility of a VFA-platform bio-refinery using high-
21 protein wastes as substrate via mixed-culture fermentation under non-sterilised conditions.

22

23 **KEYWORDS**

24 Mixed-culture fermentation; volatile fatty acids; slaughterhouse blood; enzymatic hydrolysis,
25 bio-refinery.

26

27 **1. INTRODUCTION**

28 The European Union produces more than 40 million tonnes of meat every year [1], with pig meat
29 being the most important source (51%) followed by poultry (30 %), bovine (17%), and sheep and
30 goat meat (2%) [1]. Meat production is associated with the generation of different types of solid
31 (intestines, fat, bowels, etc.) and liquid (blood, manure, washing water, etc.) wastes [2].

32 Livestock blood from slaughterhouses is a protein rich waste. As most protein rich waste stream,
33 its organic fraction is principally composed of proteins (94.4%), lipids (0.3%), and carbohydrates
34 (5.3%) [3]. In order to transform blood into biogas via anaerobic digestion without suffering
35 from ammonia toxicity, different strategies have been tested including inoculum acclimation,
36 dilution and/or co-digestion [3-5]. VFA, however, could still be accumulated significantly even
37 with those measures in place. For instance, Zhang and Banks [4] reported that the VFA reached
38 up to 15 g L⁻¹ when digesters were fed with organic fraction of municipal solids waste and sheep
39 blood at a ratio of 80:20 on a volatile solids basis. The production of considerable quantities of
40 VFA induced by blood addition to digesters has only been regarded as detrimental to the process

41 previously: it is often difficult to reduce these VFA accumulations and re-start methanogenesis.

42 This observation, however, can be applied for production of VFA as renewable bulk chemicals.

43

44 Other investigations have proved that it is possible to produce organic acids using anaerobic
45 processes by inhibiting the methane production and acids consumption [6-9]. However, all these
46 substrates were carbohydrate based residues such as paper wastes, lignocellulosic material,
47 municipal solid wastes, etc. Protein rich residues such as slaughterhouse blood have not been
48 evaluated as substrates in the production of VFA yet, although this waste stream has several
49 advantages for VFA production: the ammonia produced from acidogenesis can inhibit
50 methanogenesis, provide buffering capacity to fermentation process and supply nutrients to
51 microbial biomass. Therefore, in principle there is no external methanogen inhibitor, buffer and
52 nutrients required when using protein rich materials as substrate, thus the operating cost is
53 minimised at this aspect.

54

55 The aim of this study was to prove that significant VFA production can be achieved under non-
56 sterilised mixed-culture conditions using slaughterhouse blood as substrate. The experimental
57 methodology was initially looked at the batch kinetics of acid production from blood under
58 conditions in which methanogenic activity is inhibited, to determine rates of production and the
59 ratio of different acid products. This provided a first indication of process feasibility. As
60 syntropy and other complex interactions in the systems biology exert a strong influence on
61 product formation and speciation, much of the research effort was thus spent on determining
62 yields and productivities in semi-continuous trials to assess the effects of process manipulations

63 in the systems biology, with the aim of maximising the accumulation of recoverable intermediate
64 acid products.

65

66 **2. MATERIALS AND METHODS**

67

68 **2.1. Materials**

69 **2.1.1 Substrate**

70 The blood solution used in this study was prepared by mixing one part of dried blood
71 (Tongmaster Seasonings, Lanarkshire, UK) with six parts of deionised water. This solution had a
72 total solids (TS) content of 14.3% and volatile solids (VS) content of 13.5% on a fresh matter
73 basis, lower than the real slaughterhouse blood which usually has a TS of 18~20% [3, 4, 10].
74 This lowered concentration was applied in this study to improve the rheology of reactor mixing
75 in orbital incubator.

76

77 **2.1.2. Inoculum**

78 There were two types of inoculum used in this study: one un-acclimated and one acclimated
79 inoculum. The un-acclimated inoculum was collected from an anaerobic digester treating
80 biosolids (Millbrook Wastewater Treatment Works, Southampton, UK). It was kept at room
81 temperature and sieved through a 1 mm mesh before inoculation to remove large particles. The
82 acclimated inoculum was taken from the semi-continuous fermenter SC1 (section 2.2.3), after it
83 had been running for 3 hydraulic retention times (HRT) (21 days).

84 **2.1.3. Enzymatic pretreatment**

85 In order to exam if enzymatic pretreatment could improve VFA production, a 25 g L⁻¹ trypsin
86 solution from porcine pancreas (Sigma-Aldrich) was selected to hydrolyse blood proteins. The
87 hydrolysis process was carried out at an initial enzyme load of 1% (v/v) [11] to the blood
88 solution for 48 h at 20 °C. Constant mixing at 150 rpm was applied during the hydrolysis.

89

90 **2.2. Fermentation experiments**

91 All experiments listed below were conducted in borosilicate glass reactors. Each of them had a
92 working volume of 1 L, and was sealed with a rubber bung through which a stainless-steel metal
93 tube was inserted and connected to the gas collection bags. To maintain anaerobic conditions, the
94 headspace of the reactors was purged with nitrogen gas when starting the experiments, and when
95 reactors were opened for sampling or for adding iodoform solution. The reactors were kept in an
96 orbital incubator at 37 °C and 150 rpm during the course of the experiment.

97

98 **2.2.1. Batch experiments**

99 As shown in Table 1, three operational variables were tested for 41 days using four reactors (B1-
100 B4): inoculum acclimation (IA), methanogen inhibitor (MI), and enzymatic hydrolysis (EH). The
101 initial volumetric inoculum and blood loading (BL) of this experiment was 10% and 90%,
102 respectively by filling 100 mL of inoculum and 900 mL of blood solution into each of the
103 reactors. This resulted in a blood loading of 122 g VS L⁻¹ at the beginning of the experiment.

104

105 **2.2.2. Fed-batch experiment**

106 This experiment tested the effect of enzymatic hydrolysis on VFA production in fed-batch mode
107 using two reactors: FB1: No-EH and FB2: EH (Table 1). Un-acclimated inoculum was used for
108 this experiment, and no methanogen inhibitor was added during the course of the test. The initial
109 reactor working volume was 450 mL including 45 mL of inoculum and 405 mL of blood solution
110 (FB1) and hydrolysed blood solution (FB2), indicating an initial blood load of 122 g VS L⁻¹. The
111 experiment was run in batch mode for the first 7 days, and then the fed-batch operation was
112 initiated. In fed-batch mode, 50 mL of blood or freshly hydrolysed blood were added to the
113 reactors every 2.3 days without removing fermentation broth. The fed-batch mode was
114 maintained until day 30 when the reactors reached their maximum volume of 1 L, and then the
115 fermentation was continued in batch mode again until day 45.

116

117 **2.2.3. Semi-continuous experiment**

118 This experiment assessed the effect of initial inoculum loading and enzymatic hydrolysis on
119 VFA production in semi-continuous process with a hydraulic retention time (HRT) of 7 days. As
120 fed-batch experiment, un-acclimated inoculum was used for this experiment, and no methanogen
121 inhibitor was added during the course of the test. The test was run for 9 HRT (63 days) using
122 four reactors, SC1-SC4. As shown in Table 1, two initial blood loading levels were tested: 90%
123 and 33% (v/v), and each were used to ferment both untreated blood and freshly hydrolysed blood
124 solutions. In this experiment, different start-up procedures were adopted for different initial
125 blood loading. The reactors (SC2 and SC4) with initial blood loading of 33% were operated in
126 semi-continuous mode from the beginning: 670 mL inoculum and 330 mL of blood solution (135

127 g blood VS L⁻¹) were filled in the reactors on day 0. Then, after every 2.3 days, 330 mL of
128 fermentation broth was replaced with 330 mL of blood solution, corresponding to an average
129 organic loading rate of 19 g VS L⁻¹ day⁻¹. The reactors (SC1 and SC3) with initial blood loading
130 of 90% were started in batch mode during the first HRT (7 days) to avoid the wash-out effect:
131 100 mL inoculum and 900 mL of blood solution were filled in the reactors on day 0, and then
132 after 7 days the reactors were started semi-continuous operation as described above.

133

134 **2.3. Analytical methods**

135 **2.3.1. VFA concentration**

136 Samples were centrifuged at 14,000 g (micro-centrifuge, various manufacturers) for 20 minutes
137 and then the supernatant was used for analysis. Where dilution was necessary, deionised water
138 was used. Formic acid was then added to give a concentration of 10% of the total volume for
139 analysis. The acidified solution was transferred into vials and loaded onto the GC auto-sampler.
140 VFA quantification was performed by a Shimadzu GC-2010 gas chromatograph (Shimadzu,
141 Milton Keynes, UK), using a flame ionisation detector and a capillary column type SGE BP-21.
142 The GC oven temperature was programmed to increase from 60 to 210°C in 15 minutes with a
143 final hold time of 5 minutes.

144

145 **2.3.2. Gas volume and composition**

146 The fermentation gas was collected by gas-impermeable sampling bags during the fermentation
147 process. Its volume was measured using a weight-type water displacement gasometer and

148 expressed as the volume at standard temperature (0 °C) and temperature (1 atm) [12]. Its
149 composition was quantified using a Varian Star 3800 CX gas chromatograph (Varian Ltd,
150 Oxford, UK) with a thermal conductivity detector. The GC was fitted with a Hayesep C column
151 and employed argon as the carrier gas.

152

153 ***2.3.3. Soluble protein concentration***

154 Samples were centrifuged at 14,000 g (micro-centrifuge, various manufacturers) for 20 minutes.
155 The supernatant was then added to the Bradford reactive (Bio-Rad Protein Assay) and mixed
156 thoroughly. After 5 minutes the mixture was read at 595 nm using a UV-Visible
157 spectrophotometer (Cecil 3000 series, Cecil Instruments). The concentration was calculated by
158 comparing against a Bovine serum albumin standard (Bio-Rad).

159

160 ***2.3.4. Total Ammonia Nitrogen (TAN) concentration***

161 A sample aliquot was distilled using a Büchi K-350 Distillation Unit (Büchi, UK) and aqueous
162 boric acid with mixed indicator as the receiving solution. The distillate was then titrated
163 manually with 0.25 N H₂SO₄ using a digital titration system (Schott Titroline, Gerhardt UK Ltd).
164 TAN concentration is expressed in units of g N L⁻¹, which represents the total concentration of
165 free ammonia and ammonium ion in the sample.

166

167

168

169 **2.3.5. TS and VS content**

170 Approximately 10 g of homogenous sample was transferred into a weighed crucible. Samples
171 were weighed to an accuracy of 1 mg (Sartorius LC6215 balance, Sartorius AG, Gottingen
172 Germany) and placed in an oven (LTE Scientific Ltd., Oldham UK / Heraeus Function Line
173 series, UK) for drying overnight at 105 ± 1 °C. Samples were then weighed and transferred to a
174 muffle furnace (Carbolite Furnace 201, Carbolite, UK) and heated to 550 ± 10 °C for two hours.
175 After this ashing step, samples were weighted to an accuracy of 1 mg.

176

177 **2.3.6. DNA extraction and Sequencing**

178 Microbial community analysis were carried out for reactors SC3 and FB2, with the sample from
179 SC3 taken at the end of the seventh HRT and FB2 sample taken at the end of the process. The
180 samples were stored at -20°C before DNA extraction. DNA was extracted from 200 mg of each
181 sample using a freeze-thaw method. Microbial community analyses were performed based on the
182 V4 region of the 16S rRNA gene [13-15]. Amplification was carried out using the primers as
183 shown in Table 2. Illumina barcode oligonucleotides were used to barcode individual amplicons
184 to allow their identification after sequencing. Next generation sequencing (NGS) of all
185 amplicons was completed using the illumina MiSeq system with MiSeq Reagent Kit v3. The
186 downstream analysis for taxonomic assignment was completed in three main steps: 1. Reduction
187 of the dataset size with the selection of operational taxonomic units (OTUs). 2. The most
188 abundant sequence in each OTU cluster was selected as the representative sequence for that
189 cluster for downstream analysis; and 3. Taxonomy was assigned to each representative sequence
190 by comparing it against the Green Genes 16S database.

191 **3. RESULTS**

192 As the preliminary work, blood loading, methanogens inhibition using iodoform and enzymatic
193 hydrolysis using trypsin were evaluated in batch configuration (see supplementary material). A
194 blood loading of 1% or 5% (v/v) could not inhibit the methanogenic activity and the VFA
195 accumulated at the beginning of the test was consumed by day 7 and 20, respectively. At higher
196 loadings, a continuous accumulation of VFA was observed until it reached a plateau. At loading
197 of 15-50%, VFA increased until day seven, whereas the VFA accumulation extended to day 13
198 for loading 75 and 90%. The initial VFA accumulation rate in a reactor without iodoform
199 addition was usually lower than that of its counterpart with iodoform at the same loading,
200 probably due to the simultaneous VFA consumption by methanogens when the ammonia and/or
201 VFA concentration was still low. This is the reason that caused the lower final concentrations
202 when iodoform was not present. The presence of enzymatic hydrolysis did not alter the final
203 concentration of VFA. The initial VFA production rate, however, was improved considerably.
204 The VFA profiles were also different in reactors fed with hydrolysed blood, although the total
205 VFA concentrations were at the same level. In the reactor with EH pretreatment, acetic and n-
206 butyric acids were dominant, whereas n-butyric acid out-competed acetic acid in No-EH reactor.
207 A blood loading of 90% was therefore chosen for the following experiments.

208

209 **3.1. Batch fermentation experiment**

210 The reactors B1 (Figure 1a) and B2 (Figure 1b) presented a similar VFA production pattern as
211 the preliminary experiments described in the supplementary material. Using acclimated
212 inoculum, B3 (Figure 1c) and B4 (Figure 1d) achieved a VFA concentration close to 100 g L⁻¹,
213 indicating the importance of inoculum selection. No difference was detected on the effect of

214 methanogen inhibitor when using acclimated inoculum, because the methanogens had been
215 inhibited and washed out before the fermentation broth was taken to inoculate B3 and B4. B4
216 had the fastest initial VFA production rate, and reached 60% of its final VFA concentrations in
217 three days, following by B3 (5 d), B2 (10 d), and B1 (13 d). The high VFA production rate in B3
218 and B4 was attributed by the use of acclimated inoculum (B3 and B4), as well as the enzymatic
219 pre-hydrolysis for B4. In all reactors, n-butyric and acetic acids were the most produced acids
220 followed by iso-valeric, iso-butyric, propionic, and valeric acids. B3 had the highest
221 concentration of n-butyric (35 g L^{-1}) and iso-valeric acids (23 g L^{-1}) and B4 achieved the highest
222 concentration of acetic (30 g L^{-1}) and iso-butyric acids (13 g L^{-1}). The reactors using acclimated
223 inoculum, however, had much less propionic acid concentration ($< 2 \text{ g L}^{-1}$) than that of B1 and
224 B2 ($> 6 \text{ g L}^{-1}$).

225

226 In all reactors, the VFA production was linked with protein consumption and TAN production
227 (Figure 2). As VFA production rate was different in different reactors, protein consumption rate
228 was also different and reflected the VFA production kinetics. TAN production occurred at the
229 same time as the reduction in protein concentration and the increase in VFA concentration,
230 which provided a sufficient buffering capacity for all reactors and maintained their pH between
231 6.7 and 8.2 throughout the process. The TAN content reached a level of $5\text{--}7 \text{ g N L}^{-1}$ towards the
232 end of experiment.

233

234

235

236 **3.2. Fed-batch experiment**

237 The effect of enzymatic hydrolysis was also tested in fed-batch experiment, FB1: No-EH and
238 FB2: EH (Figure 3). Although the EH pretreatment only affected the initial VFA production rate
239 in batch mode; in fed-batch mode, it also influenced the final VFA concentration. The EH
240 reactor (FB2) achieved a higher concentration (100 g L^{-1}) than the No-EH reactor (FB1) (80 g L^{-1}).
241 The constant addition of hydrolysed blood generated similar VFA concentrations as the batch
242 reactors using acclimated inoculum (100 g L^{-1}) and greater than the batch reactors using un-
243 acclimated inoculum (70 g L^{-1}).

244

245 The acid profile was different in these two reactors. Acetic acid was the predominant VFA specie
246 (32 % on a mass basis) in FB1, followed by n-butyric (25 %) and iso-valeric (20 %) acid. Acetic
247 and n-butyric acid had equal 30% share in FB2 when pre-hydrolysis applied, but the percentage
248 of iso-valeric acid was still in the third place (21%). Both reactors had a same iso-butyric acid
249 percentage of 12%. Propionic acid was the fifth dominant species, and accounted for 10% and
250 6% in FB1 and FB2, respectively. The VFA profile resulted from pre-hydrolysed blood was the
251 same in both batch and fed-batch fermentation processes, however the operation mode seemed to
252 affect the percentage of acetic and n-butyric acid when the substrate was not pre-treated.

253

254 A same correlation between protein consumption and TAN and VFA production was observed in
255 fed-batch reactors (Figure 3c), as shown in batch reactors. FB2 consumed proteins faster than
256 FB1 at initial days, and this trend was maintained for the rest of the experiment duration. The

257 30% higher TAN concentration in FB2 compared with that of FB1 also reflected upon their
258 different VFA production level. Fed-batch fermentation also maintained a stable pH (6.9-7.4).

259

260 Similar to VFA and TAN production, the fermentation gas production also reflected blood
261 consumption (Figure 3d). As in batch reactors, the principal gas produced from both fed-batch
262 reactors was CO₂, followed by CH₄ and H₂. FB2 formed a greater amount of gas than FB1, along
263 with its higher VFA production. There was clear CH₄ production from FB1 after feeding
264 stopped, probably because the TAN level in that reactor was not sufficient high to inhibit
265 methanogens. H₂ content was no more than 0.2 % after the start-up stage in both reactors.

266

267 **3.3. Semi-continuous experiment**

268 There were 4 reactors used for semi-continuous experiment: SC1: BL90% and No-EH, SC2:
269 BL33% and No-EH, SC3: BL90% and EH, and SC4: BL33% and EH. As shown in Figure 4,
270 SC1 reactor had the highest concentration of VFA (Figure 4a) during the initial days of the
271 fermentation (80 g L⁻¹), and its VFA production was stable during the first 4 HRTs. In SC1,
272 acetic (25 g L⁻¹) and n-butyric acids (25 g L⁻¹) had the highest concentrations, followed by iso-
273 valeric (17 g L⁻¹), iso-butyric (10 g L⁻¹), propionic (2 g L⁻¹), valeric (0.22 g L⁻¹) and hexanoic
274 acids (0.05 g L⁻¹). Valeric and hexanoic acids were only detected during the batch phase and the
275 following two HRTs. After the fourth HRT, the SC1 reactor showed a steady reduction in the
276 production of n-butyric acid, although the production of the other acids was stable until the
277 seventh HRT. During the last two HRTs, the production of these acids was also reduced in
278 similar pattern as that of n-butyric acid. The SC2 reactor exhibited the second highest production

279 of VFA (70 g L^{-1}) after the SC1 reactor. SC2 formed all the VFAs during the first HRT (Figure
280 4b), however, when the reactor was more stable it only produced acetic (30%), propionic (5%),
281 n-butyric (30%), iso-butyric (15%), and iso-valeric acids (20%). The total VFA production and
282 its profile in SC2 were roughly stable during the entire course of the experiment. The SC3
283 reactor was the steadiest reactor (Figure 4c), but its VFA production (40 g L^{-1}) was lower than
284 other reactors. The VFA profile in SC3 was similar to SC1 and SC2, with acetic (30%),
285 propionic (5%), n-butyric (30%), iso-butyric (15%), and iso-valeric (20%) acids. No significant
286 drop in VFA production was found in this reactor. SC4 reactor had a different and more dynamic
287 behaviour compared with other reactors. This reactor exhibited a very high VFA peak of 85 g L^{-1}
288 towards the end of the second HRT, and the VFA concentration declined to a stable level of
289 around 50 g L^{-1} from the fourth HRT until the end of the fermentation. The acid composition was
290 similar to the other reactors, acetic (30%), propionic (5%), n-butyric (30%), iso-butyric (15%),
291 and iso-valeric (20%) acids; although at the initial HRTs a larger proportion of acetic acid was
292 obtained.

293

294 SC1 exhibited a steady protein consumption (Figure 5a) when the reactor was having a stable
295 production of VFA (the first 7 HRTs), after that, the protein concentration increased from
296 approximately 2 g L^{-1} to 40 g L^{-1} towards the end of experiment. As a result, SC1 had a TAN
297 concentration between 4 and 6 g L^{-1} during the first 7 HRTs but it decreased to 2.5 g L^{-1} after
298 that (Figure 5a). The protein consumption in SC2 was stable during the majority of the
299 fermentation process, although an increase in protein concentration was observed at the final
300 HRT. This trend was also confirmed by the ammonia concentration and pH of this reactor. TAN
301 had a concentration between 3.5 and 5 g L^{-1} , and the pH fluctuated between 6.6 and 7 in SC2

302 before the final HRT. In SC3 (Figure 5c), the soluble protein (60 g L^{-1}), was higher than that of
303 the other reactors and its TAN concentration was lower ($2.8\text{-}3.5\text{ g L}^{-1}$), reflecting the less
304 efficient VFA production. Low protein concentration (1 g L^{-1}) and high TAN concentration (5 g
305 L^{-1}) were obtained in SC4 during the first two HRTs. After that, protein concentration increased
306 and stabilised at a concentration around 55 g L^{-1} , and the TAN concentration decreased to values
307 between 3 and 3.5 g L^{-1} in the meanwhile. The steady-state performance of SC4 was similar as
308 that of reactor SC3, indicating that a negative effect was created by the combination of a semi-
309 continuous operation and the enzymatic pretreatment. Along with its function of enzymatic
310 hydrolysis for protein-rich substrate, trypsin also has potential to cleaving microbial cell surface
311 proteins and affecting its functioning over time (Huang et al. 2010). It appeared that this
312 antagonistic effect became evident after two weeks of operation, as shown in Figure 4. This did
313 not affect batch fermentation because all VFA had already been produced over the initial two
314 weeks of operation; however, this caused severe damage to long-term continuous system.

315

316 The SC1 gas phase (Figure 5b) mainly composed of CO_2 followed by H_2 . CH_4 was not detected
317 in this reactor after the semi-continuous mode started. The reactor SC2 (Figure 5b) produced
318 smaller but constant amounts of CO_2 and H_2 . Similar to reactor SC1, CO_2 was the gas with the
319 greatest concentration and CH_4 was not found after the initial phase. SC3 achieved lower
320 amounts of CO_2 , CH_4 , and H_2 (Figure 5d) compared with other reactors. This reactor generated
321 all three gases during the entire course of experiment, and the principal gas was CO_2 , followed
322 by CH_4 , and H_2 . The initial gas production in reactor SC4 was the greatest among all reactors,
323 but the gas production was reduced drastically later on. SC4 also produced all three gases
324 throughout the fermentation process. It is worth noting that the CH_4 produced in SC3 and SC4

325 was negligible compared with the loss of VFA production potential, and therefore it is not the
326 cause of the reduced VFA production in these two reactors.

327

328 Table 3 shows the daily VFA production yield calculated using equations in the supplementary
329 material. SC1 and SC2 had the higher average daily VFA production rate and yield, but they
330 were less stable. This evidenced the wide difference between their maximum and minimum
331 production rates and their standard deviation, with propionic acid having the largest variation.
332 SC1 and SC2 had daily average yields above 45%, whereas, SC3 and SC4 were below 40 %. The
333 low yield of SC3 (30%) correlates with the results exhibited in Figure 4 and 5. In general, the
334 VFA yield of semi-continuous reactors (30-50%) was lower than that of batch (55-60%) and fed-
335 batch (60-70%) reactors, due to the shorter retention time of semi-continuous experiment.

336

337 **3.4. Microbial community analysis**

338 The microbial community analysis was performed for the reactors FB2 (EH) and SC3 (BL 90%
339 and EH), where the reactor FB2 achieved the highest VFA yield, and the reactor SC3 was the
340 most stable reactor in the semi-continuous operation. In both samples, 99.6% of the sequences
341 were assigned to five phyla, Firmicutes, Proteobacteria, Synergistetes, Actinobacteria, and
342 Bacteroidetes (Figure 6). The additional 0.4% of the sequences, however, was not allocated to
343 any specific phylum. Among the five phyla identified, Firmicutes was the most dominant one
344 with more than 99.5% abundance of their individual microbial community; this value indicates
345 the strong participation of this phylum in the conversion of proteins to VFA in mixed-culture
346 anaerobic fermentation. At the order level (Figure 6), both samples had more than 20 orders

347 present: 8 and 9 of them were from the Firmicutes phylum in FB2 and SC3, respectively. Six
348 orders were identified in this phylum: Bacillales, Lactobacillales, Clostridiales, MBA08,
349 Natranaerobiales, Thermoanaerobacterales and two (FB2) and three (SC3) unclassified orders.
350 Where the unclassified orders were identified in upper taxa, two of them were from the clostridia
351 and OPB450 class and another one with only Firmicutes phylum assignation. The major
352 difference between both reactors occurred in the Clostridiales order. In both reactors, the order of
353 Clostridiales obtained the greatest percentage (SC3: 98.6%, FB2: 71.8%), but the community
354 structure of this order was different in these two reactors: FB2 has seven genus with more than
355 1% of sequences assigned, whereas, SC3 had only a subsection of them (*Sporanaerobacter* sp.,
356 *Tepidimicrobium* sp., and *Clostridium* sp.). Among them, *Sporanaerobacter* sp was the genus
357 that included the majority of the sequences in FB2 (49%) and SC3 (92%), and its high
358 participation indicated that members from this genus were closely associated with the conversion
359 of proteins to VFA. The second major difference between two reactors lied with the order of
360 Thermoanaerobacterales. The abundance of this order in SC3 was just 0.53%, compared with
361 24.6% in FB2. Although Thermoanaerobacterales is the second largest order in FB2, 99.9% of its
362 sequences were assigned to two unidentified families.

363

364 **4. DISCUSSION**

365 The VFA production using mixed-culture anaerobic fermentation of slaughterhouse blood was
366 demonstrated feasible. The results obtained in this study using slaughterhouse blood as singular
367 substrate achieved the highest VFA concentration up to 100 g L⁻¹. This VFA concentration is
368 several times greater than the reported values (10~20 g L⁻¹) by previous studies using other types
369 of waste streams. For instance, the VFA concentrations reached up to 20 g L⁻¹ when using

370 lignocellulosic material such as paper wastes [6], and maize silage [16] as substrates. Waste
371 biomass such as food waste (Resulting VFA concentration: 20 g L⁻¹) [17], mixture of waste
372 activated sludge and henna plant biomass (11 g L⁻¹) [18], glycerol (16 g L⁻¹) [8], and cheese
373 whey (20 g L⁻¹) [16] have also been used for VFA production, with concentrations considerably
374 lower than what obtained in this study with slaughterhouse blood. The high VFA concentration
375 achieved in this work can be attributed to the sufficient buffering capacity in the fermenters
376 which is provided by the high concentration of TAN in the system [4]. Therefore, compared with
377 lignocellulosic substrates, one main advantage of using high nitrogen substrates such as
378 slaughterhouse blood is the simultaneous TAN and VFA production during acidogenesis. The
379 resulting high TAN concentration in the fermentation broth provides two important functions,
380 i.e. buffering capacity and methanogens inhibition, which are usually achieved by external input
381 when lignocellulosic materials are in use [6-9]. These additional requirements increase the
382 operating cost and the order of process complexity in terms of ancillary units and system control.

383

384 Compared with anaerobic digestion for biogas production, the selection of the substrate loading
385 (e.g. substrate to inoculum ratio for batch mode or organic loading rate for (semi-)continuous
386 mode) has less constraints with regard to fermentative VFA production. The substrate to
387 inoculum ratio is usually less than 1 on a VS basis for batch digestion [19] and less than 8 g VS
388 L⁻¹ day⁻¹ for continuous digestion operation [20]. This is because the conversion rates of
389 acidogenesis, acetogenesis and methanogenesis have to be well-controlled in that process to
390 prevent the accumulation of intermediate products such as VFA and the inhibition of
391 methanogens. This is, however, not the case for VFA production via fermentation. As can be
392 concluded from the preliminary experiment (supplementary material) and semi-continuous trial,

393 the higher blood loading (corresponding to higher substrate to inoculum ratio or higher organic
394 loading rate) provided higher VFA production rate and final VFA concentration, also inhibited to
395 a greater extent the methane production. The highest volumetric substrate to inoculum loading
396 used in this study was 9, corresponding to a ratio of 50 on a VS basis and a final VFA
397 concentration up to 100 g L⁻¹. The lower final VFA concentration (< 20 g L⁻¹) from other studies
398 using wastes such as food waste [17], maize silage, cheese whey, and microalgae biomass [16]
399 may be caused by the low substrate to inoculum ratio used (50% inoculum on a volume
400 basis)[16].

401

402 Enzymatic hydrolysis appeared to have a positive effect on batch and fed-batch operation and the
403 hydrolysed substrate was degraded to VFA at faster rate and to a greater extent, and especially
404 facilitated acetic acid production. Its negative effect, however, was detected in the semi-
405 continuous reactors (SC3 and SC4): the VFA concentration drop correlated with the trypsin
406 concentration. In batch operation, trypsin was only added in the initial load and its activity
407 decreased through the fermentation as results of trypsin denaturation, microbial trypsin
408 inhibitors, or microbial proteases [21, 22]. In contrast, in the semi-continuous reactors the
409 continuing addition of hydrolysed blood with trypsin into reactors generated a negative effect by
410 degrading proteins of microorganisms [23, 24]. In the fed-batch reactors, the addition rate of
411 hydrolysed blood with trypsin was much lower than that of the semi-continuous reactors;
412 therefore, its activity reduction rate was probably higher than the amount of trypsin addition
413 avoiding the negative effects observed in the semi-continuous reactors. Therefore for (semi)-
414 continuous operation, the other pre-treatment methods should be used to facilitate the rate and

415 extent of VFA production, such as heat-alkaline pre-treatment [25] and ultraviolet pre-treatment
416 [26].

417

418 The microbial community analysis proved the importance of the Firmicutes phylum and its
419 Clostridiales order in the transformation of proteins into VFA at high concentrations, consistent
420 with the results of Bacteria community composition analysis of digester using pig blood as
421 substrate [5]. The differences between the fed-batch and semi-continuous reactor community
422 may be explained by the duplication rate of relevant microorganisms. In fed-batch operation, the
423 duplication rate is not a selection mechanism because the medium is not removed from the
424 reactor; therefore, microbes with low duplication rate but adaptability to the reactor conditions
425 can flourish. In contrast, the semi-continuous reactor requires microorganisms with a doubling
426 time much shorter than the HRT, otherwise they are just washed out of the reactor over time.

427

428 In terms of operation mode comparison, the batch fermenters with acclimated inoculum and the
429 fed-batch fermenters achieved the highest concentration of VFA (100 g L^{-1}) at an initial blood
430 loading of $122 \text{ g blood VS L}^{-1}$, indicating a conversion rate of $0.82 \text{ g VFA g}^{-1} \text{ VS}$. This high
431 level of VFA concentration was expected mainly because the duration of the experiments (45
432 days) allowed the conversion process to proceed to a greater extent than the semi-continuous
433 mode. The reduced concentration of VFA produced in semi-continuous fermenters versus fed-
434 batch was caused by the much shorter hydraulic retention time (7 days). The best-performed
435 semi-continuous reactor (SC2) achieved a total VFA production of $444 \text{ g of VFA L}^{-1}$ over the
436 initial 45 days of its operation, which corresponding to a conversion of $0.51 \text{ g VFA g}^{-1} \text{ blood VS}$.

437 The production capacity of the semi-continuous operation was therefore considerably longer than
438 that of the batch and fed-batch reactors. It is important to point out, that in batch processes 80%
439 of the total VFA production is achieved by day 10. If the batch fermentation is performed only
440 during the initial 10 days a larger VFA production can be achieved. Batch processes can be
441 improved by reducing the fermentation time, although this VFA increment is achieved at the
442 expense of lower blood conversion rate. Similarly, to improve semi-continuous production, it is
443 necessary to evaluate if longer HRT can result in a more efficient process in the semi-continuous
444 reactors.

445

446 The result obtained in this study demonstrates a fermentation process capable to produce a VFA
447 concentration much higher than the feasibility threshold for an industrial process. The MixAlco
448 process is a technology that transforms any biodegradable material in to alcohol based
449 principally on VFA production. The MixAlco process needs a minimum VFA concentration of
450 22 g L^{-1} to achieve the low cost for VFA fermentation and purification processes [9, 27]. The
451 VFA production achieved in this research by the transformation of slaughterhouse blood is 2~5
452 times higher than that threshold level. The high VFA production achieved has also stimulated
453 new research on alternative feasible industrial downstream processing, and the preliminary study
454 on the initial steps of VFA recovery was performed using esterification and a membrane solvent
455 based extraction [28]. Both techniques achieved similar recovery comparable to other
456 purification processes [29-31], and each of them had specific features to be preferably integrated
457 with different operation mode(s) demonstrated in this research. Batch and fed-batch processes
458 were more suitable for esterification recovery because untransformed blood proteins was
459 remained in fermentation froth was much less compared with semi-continuous fermentation.

460 The advantage of this approach is the possibility of producing VFA methyl esters and
461 ammonium sulphate simultaneously, with the first an important product for the scents and
462 fragrance industry, and the second a well-known fertiliser. The principal drawback of
463 esterification recovery is that it requires a high VFA concentration, (above 80%). In contrast, the
464 solvent based membrane system is a better fit for the continuous fermentation process because it
465 selectively recovers butyric and iso-valeric acids (>80%) in favour of acetic acid (5 %), reduces
466 the product-induced inhibition effect on longer-chain VFA, and allows the utilisation of acetic
467 acid in recycled stream. Additionally, this is a method is a less expensive option compared with
468 water removal processes such as distillation. The issue of this method is the use of organic
469 solvents (octanol); although adding a stripper membrane step into the recovery process can
470 recover and reuse these solvents. In the future research, the economic feasibility of the process
471 needs to be confirmed by using process-modelling software.

472

473 **5. CONCLUSIONS**

474 Anaerobic mixed-culture fermentation is a suitable technology to transform slaughterhouse blood
475 into high concentrations of VFA (45-100 g L⁻¹). In this process, the VFA produced were mainly
476 acetic, n-butyric, iso-valeric, iso-butyric and propionic acids. Blood loading and inoculum
477 acclimation were the main factors that influenced the VFA concentration. Enzymatic hydrolysis
478 improved the initial production rate; however, it did not affect the final VFA concentration and
479 was inhibitory in the semi-continuous reactors. Iodoform increased the VFA production in the
480 low blood loading and modified the VFA profile in the high blood loadings. The batch and semi-
481 continuous reactor generated good results in terms of total VFA production and yield, and the
482 selection of operation mode should be based on the analysis of the economic and logistic

483 parameters and the downstream recovery unit of the system. These results pave a way for the
484 development of future cost-effective processes to produce VFA from slaughterhouse blood and
485 to increase the economic and environmental feasibility of a VFA bio-refinery from high protein
486 wastes.

487 **6. CONFLICTS OF INTEREST**

488 There are no conflicts to declare

489

490 **7. ACKNOWLEDGEMENTS**

491 The authors thank the UK Biotechnology and Biological Sciences Research Council (BBSRC)
492 and the Anaerobic Digestion network (ADNet) for funding this project (POC2014016). Dr.
493 Jersson Plácido would like to thank the financial support provided by the European Regional
494 Development Fund / Welsh Government funded BEACON research program (Swansea
495 University). Data supporting this study are openly available from the University of Southampton
496 repository at <http://doi.org/10.5258/SOTON/xxxxxx>.

497

498 **8. REFERENCES**

499 1. Marquer P, Rabade T, Forti R (2014) Meat production statistics. Eurostat.
500 http://ec.europa.eu/eurostat/statistics-explained/index.php/Meat_production_statistics#Further_Eurostat_information 2015.

502 2. Marcos A, Al-Kassir A, Mohamad AA, Cuadros F, López-Rodríguez F (2010) Combustible
503 gas production (methane) and biodegradation of solid and liquid mixtures of meat industry
504 wastes. Appl Energy 87:1729-1735. doi: <http://dx.doi.org/10.1016/j.apenergy.2009.09.037>.

505 3. Heijfelt A, Angelidaki I (2009) Anaerobic digestion of slaughterhouse by-products. Biomass
506 Bioenergy 33:1046-1054. doi: <http://dx.doi.org/10.1016/j.biombioe.2009.03.004>.

507 4. Zhang Y, Banks CJ (2012) Co-digestion of the mechanically recovered organic fraction of
508 municipal solid waste with slaughterhouse wastes. *Biochem Eng J* 68:129-137. doi:
509 <http://dx.doi.org/10.1016/j.bej.2012.07.017>.

510 5. Kovács E, Wirth R, Maróti G, Bagi Z, Rákely G, Kovács KL (2013) Biogas production from
511 protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated
512 changes in microbial community composition 8:e77265

513 6. Forrest AK, Hollister EB, Gentry TJ, Wilkinson HH, Holtzapple MT (2012) Comparison of
514 mixed-acid fermentations inoculated with six different mixed cultures. *Bioresour Technol*
515 118:343-349. doi: <http://dx.doi.org/10.1016/j.biortech.2012.05.043>.

516 7. Fu Z, Holtzapple MT (2010) Consolidated bioprocessing of sugarcane bagasse and chicken
517 manure to ammonium carboxylates by a mixed culture of marine microorganisms. *Bioresour*
518 *Technol* 101:2825-2836. doi: 10.1016/j.biortech.2009.11.104.

519 8. Forrest AK, Sierra R, Holtzapple MT (2010) Effect of biodiesel glycerol type and fermentor
520 configuration on mixed-acid fermentations. *Bioresour Technol* 101:9185-9189. doi:
521 <http://dx.doi.org/10.1016/j.biortech.2010.07.041>.

522 9. Domke SB, Aiello-Mazzarri C, Holtzapple MT (2004) Mixed acid fermentation of paper fines
523 and industrial biosludge. *Bioresour Technol* 91:41-51. doi: [http://dx.doi.org/10.1016/S0960-8524\(03\)00156-1](http://dx.doi.org/10.1016/S0960-8524(03)00156-1).

525 10. Bah CS, Bekhit AEA, Carne A, McConnell MA (2013) Slaughterhouse blood: an emerging
526 source of bioactive compounds 12:314-331

527 11. Sigma-Aldrich (2013) Product Information: Trypsin solution from porcine pancreas.
528 [https://www.sigmaaldrich.com/content/dam/sigma-](https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/1/t4549pis.pdf)
529 [aldrich/docs/Sigma/Product_Information_Sheet/1/t4549pis.pdf](https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/1/t4549pis.pdf). Accessed March/28 2018.

530 12. Walker M, Zhang Y, Heaven S, Banks C (2009) Potential errors in the quantitative
531 evaluation of biogas production in anaerobic digestion processes. *Bioresour Technol* 100:6339-
532 6346

533 13. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer
534 N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences
535 per sample. *Proc Natl Acad Sci U S A* 108 Suppl 1:4516-4522. doi: 10.1073/pnas.1000080107
536 [doi].

537 14. Apprill A, McNally S, Parsons R, Webe L (2015) Minor revision to V4 region SSU rRNA
538 806R gene primer greatly increases detection of SAR11 bacterioplankton

539 15. Parada AE, Needham DM, Fuhrman JA (2015) Every base matters: assessing small subunit
540 rRNA primers for marine microbiomes with mock communities, time series and global field
541 samples. *Environ Microbiol*

542 16. Jankowska E, Chwialkowska J, Stodolny M, Oleskowicz-Popiel P (2017) Volatile fatty acids
543 production during mixed culture fermentation—The impact of substrate complexity and pH.
544 *Chem Eng J* 326:901-910

545 17. Stein UH, Wimmer B, Ortner M, Fuchs W, Bochmann G (2017) Maximizing the production
546 of butyric acid from food waste as a precursor for ABE-fermentation. *Sci Total Environ*
547 598:993-1000

548 18. Huang J, Zhou R, Chen J, Han W, Chen Y, Wen Y, Tang J (2016) Volatile fatty acids
549 produced by co-fermentation of waste activated sludge and henna plant biomass. *Bioresour*
550 *Technol* 211:80-86

551 19. Raposo F, Fernández- Cegrí V, De la Rubia M, Borja R, Béline F, Cavinato C, Demirer G,
552 Fernández B, Fernández- Polanco M, Frigón J (2011) Biochemical methane potential (BMP) of
553 solid organic substrates: evaluation of anaerobic biodegradability using data from an
554 international interlaboratory study 86:1088-1098

555 20. Liu C, Wang W, Anwar N, Ma Z, Liu G, Zhang R (2017) Effect of organic loading rate on
556 anaerobic digestion of food waste under mesophilic and thermophilic conditions. *Energy Fuels*
557 31:2976-2984

558 21. Murthy S, Kostman J, Dinoso VP (1980) Effect of pH, substrate, and temperature on trypic
559 activity of duodenal samples. *Dig Dis Sci* 25:289-294

560 22. Grenier D (1991) Production of trypsin and chymotrypsin inhibitors by oral bacterial isolates.
561 *J Periodont Res* 26:381-387

562 23. Goldberg AL (1972) Correlation between rates of degradation of bacterial proteins in vivo
563 and their sensitivity to proteases. *Proc Natl Acad Sci U S A* 69:2640-2644

564 24. Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease.
565 *Physiol Rev* 90:859-904. doi: 10.1152/physrev.00045.2009 [doi].

566 25. Wang X, Li Y, Liu J, Ren N, Qu J (2016) Augmentation of protein-derived acetic acid
567 production by heat-alkaline-induced changes in protein structure and conformation. *Water Res*
568 88:595-603

569 26. Xiao N, Chen Y, Ren H (2013) Altering protein conformation to improve fermentative
570 hydrogen production from protein wastewater. *Water Res* 47:5700-5707. doi:
571 <http://dx.doi.org/10.1016/j.watres.2013.06.047>.

572 27. Holtzapple MT, Davison RR, Ross MK, Aldrett-Lee S, Nagwani M, Lee C, Lee C, Adelson
573 S, Kaar W, Gaskin D (1999) Biomass conversion to mixed alcohol fuels using the MixAlco
574 process. *Appl Biochem Biotechnol* 79:609-631

575 28. Plácido J, Zhang Y (2017) Evaluation of Esterification and Membrane Based Solvent
576 Extraction as Methods for the Recovery of Short Chain Volatile Fatty Acids from
577 Slaughterhouse Blood Anaerobic Mixed Fermentation:1-11

578 29. Lopez AM, Hestekin JA (2013) Separation of organic acids from water using ionic liquid
579 assisted electrodialysis 116:162-169. doi: <http://dx.doi.org/10.1016/j.seppur.2013.05.028>.

580 30. Ormerod D, Sledsens B, Vercammen G, Van Gool D, Linsen T, Buekenhoudt A, Bongers B
581 (2013) Demonstration of purification of a pharmaceutical intermediate via organic solvent
582 nanofiltration in the presence of acid 115:158-162. doi:
583 <http://dx.doi.org/10.1016/j.seppur.2013.05.007>.

584 31. Lubsungneon J, Srisuno S, Rodtong S, Boontawan A (2014) Nanofiltration coupled with
585 vapor permeation-assisted esterification as an effective purification step for fermentation-derived
586 succinic acid. J Membr Sci 459:132-142. doi: <http://dx.doi.org/10.1016/j.memsci.2014.02.006>.

587

588

Table 1. Factors evaluated in Batch, Fed-batch and Semi-continuous experiments

<i>1-liter reactor experiment in batch mode¹</i>			
Reactor	Factors evaluated		
	Inoculum	Enzymatic hydrolysis	Methanogen inhibitor
B1	No	No	No
B2	No	No	Yes
B3	Yes	No	No
B4	Yes	Yes	No

<i>Fed-batch experiment^{1,2}</i>			
Reactor	Factors evaluated		
	Enzymatic hydrolysis		
FB1	No		
FB2	Yes		

<i>Semi-continuous experiment^{2,3}</i>			
Reactor	Factors evaluated		
	Inoculum Loading	Enzymatic Hydrolysis	
SC1:	10%	No	
SC2	67%	No	
SC3	10%	Yes	
SC4	67%	Yes	

1- The initial blood load was 122 g VS L⁻¹ for batch and fed-batch experiments.

2-The fed-batch and semi-continuous experiments did not have methanogen inhibitor.

3- The initial blood load was 122 g VS L⁻¹ for reactor SC1 and SC3 when it was run in batch mode for the first 7 days, and then their organic loading rate was 19 g VS L⁻¹ day⁻¹ in semi-continuous mode. Reactors SC2 and SC4 were run in semi-continuous mode from day 1 and their organic loading rate was 19 g VS L⁻¹ day⁻¹ as well.

Table 2. Primers' sequence used in the pyrosequencing analysis

Nex_16S_515 F ¹	5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG <u>GTGYCAGCMGCCGCGTAA</u> -3'
Nex_16S_806 R ¹	5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG <u>GGACTACNVGGGTWTCTAAT</u> -3'

¹-Primer sequences are underlined, with Illumina Nextera Transposase adapters attached

Table 3. Daily VFA production rates and yields of the semi-continuous experiment.

Volatile Fatty Acids	Production rate (g L ⁻¹ ·d ⁻¹)											
	SC1			SC2			SC3			SC4		
	Average	Max.	Min.	Average	Max.	Min.	Average	Max.	Min.	Average	Max.	Min.
Acetic acid	2.8±1.4	5.0	0.1	3.0±0.8	4.7	1.1	1.6±0.5	2.8	0.9	2.6±1.3	5.8	1.2
Propionic acid	0.2±0.4	1.2	-0.3	0.4±0.5	1.6	0.01	0.2±0.2	0.8	0.02	0.4±0.4	1.4	0.1
Iso-butyric acid	1.3±0.5	1.7	0.1	1.2±0.4	2.0	0.034	0.7±0.2	1.2	0.4	1.0±0.5	1.9	0.5
n-Butyric acid	2.4±1.2	5.2	0.3	2.4±1.1	4.6	-0.7	1.8±0.6	3.5	0.5	2.1±0.9	4.7	0.6
Iso-valeric acid	2.1±0.9	3.4	-0.2	1.9±0.8	3.6	-0.4	1.2±0.3	1.9	0.5	1.5±0.7	3.3	0.5
Total VFA	8.8±3.5	12.9	0.8	9.0±2.8	12.7	0.5	5574±1659	8.7	3.0	7.6±3.5	16.5	4.0
Yield (g ⁻¹ VFA g ⁻¹ VS)												
Volatile Fatty Acids	SC1			SC2			SC3			SC4		
	Average	Max.	Min.	Average	Max.	Min.	Average	Max.	Min.	Average	Max.	Min.
Acetic acid	0.149±0.073	0.337	0.009	0.164±0.050	0.279	0.049	0.086±0.018	0.125	0.056	0.138±0.063	0.260	0.061
Propionic acid	0.010±0.016	0.052	0.000	0.021±0.023	0.072	0.001	0.012±0.012	0.048	0.001	0.024±0.021	0.077	0.004
Iso-butyric acid	0.067±0.024	0.103	0.005	0.067±0.026	0.133	0.002	0.039±0.009	0.060	0.021	0.051±0.024	0.122	0.021
n-Butyric acid	0.126±0.058	0.234	0.014	0.127±0.062	0.222	0.000	0.094±0.031	0.157	0.022	0.111±0.056	0.314	0.025
Iso-valeric acid	0.111±0.047	0.195	0.000	0.107±0.052	0.242	0.000	0.063±0.015	0.087	0.023	0.080±0.040	0.188	0.023
Total VFA	0.464±0.178	0.690	0.037	0.488±0.175	0.844	0.024	0.294±0.075	0.473	0.136	0.404±0.185	0.887	0.181

Figure 1. VFA profiles over the course of the 1-L batch experiment: a) reactor B1; b) reactor B2; c) reactor B3; d) reactor B4. The embedded images correspond to the VFA composition for each reactor.

Figure 2. Soluble protein and TAN concentration in 1-L batch experiment: a) B1 and B2; B) B3 and B4.

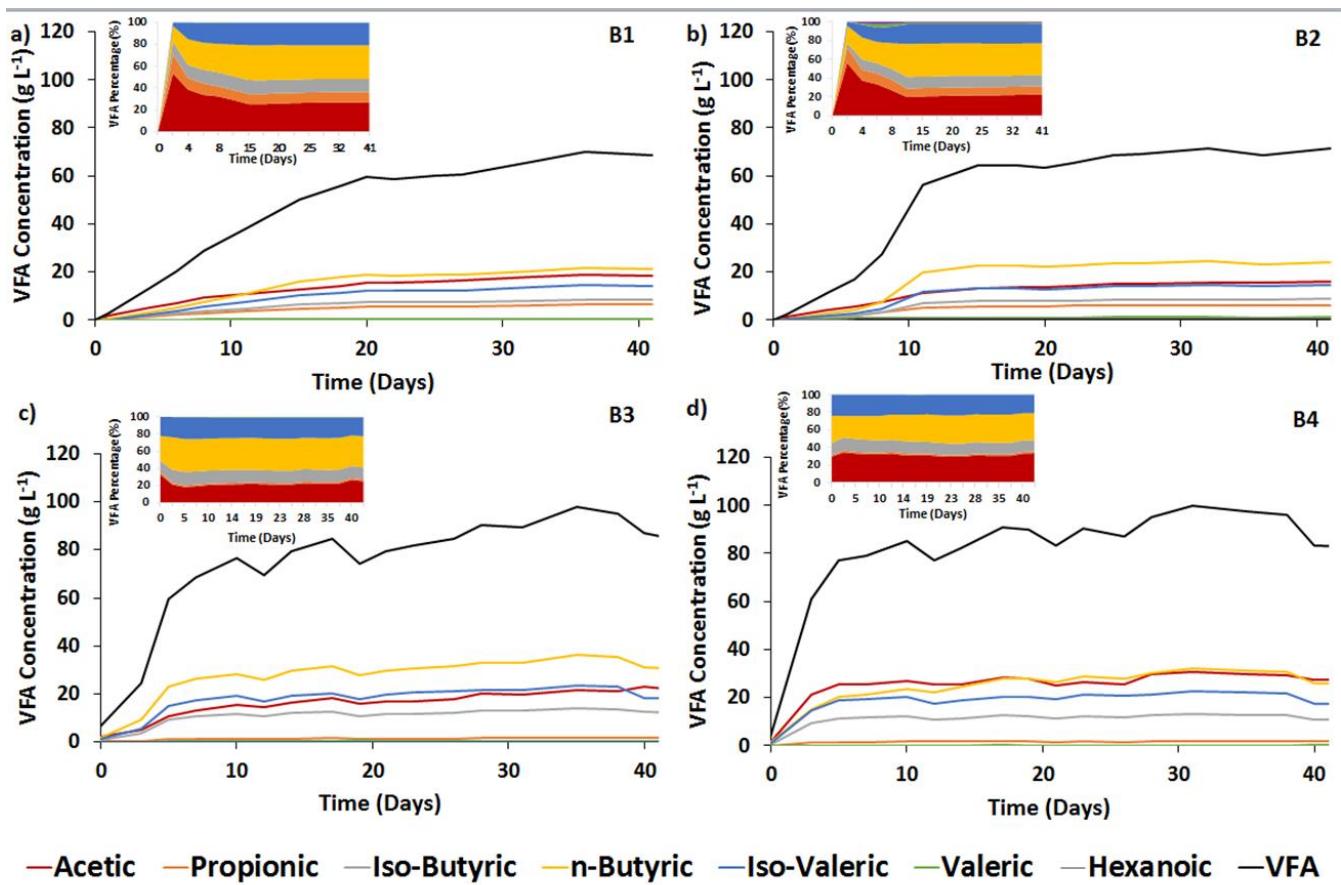
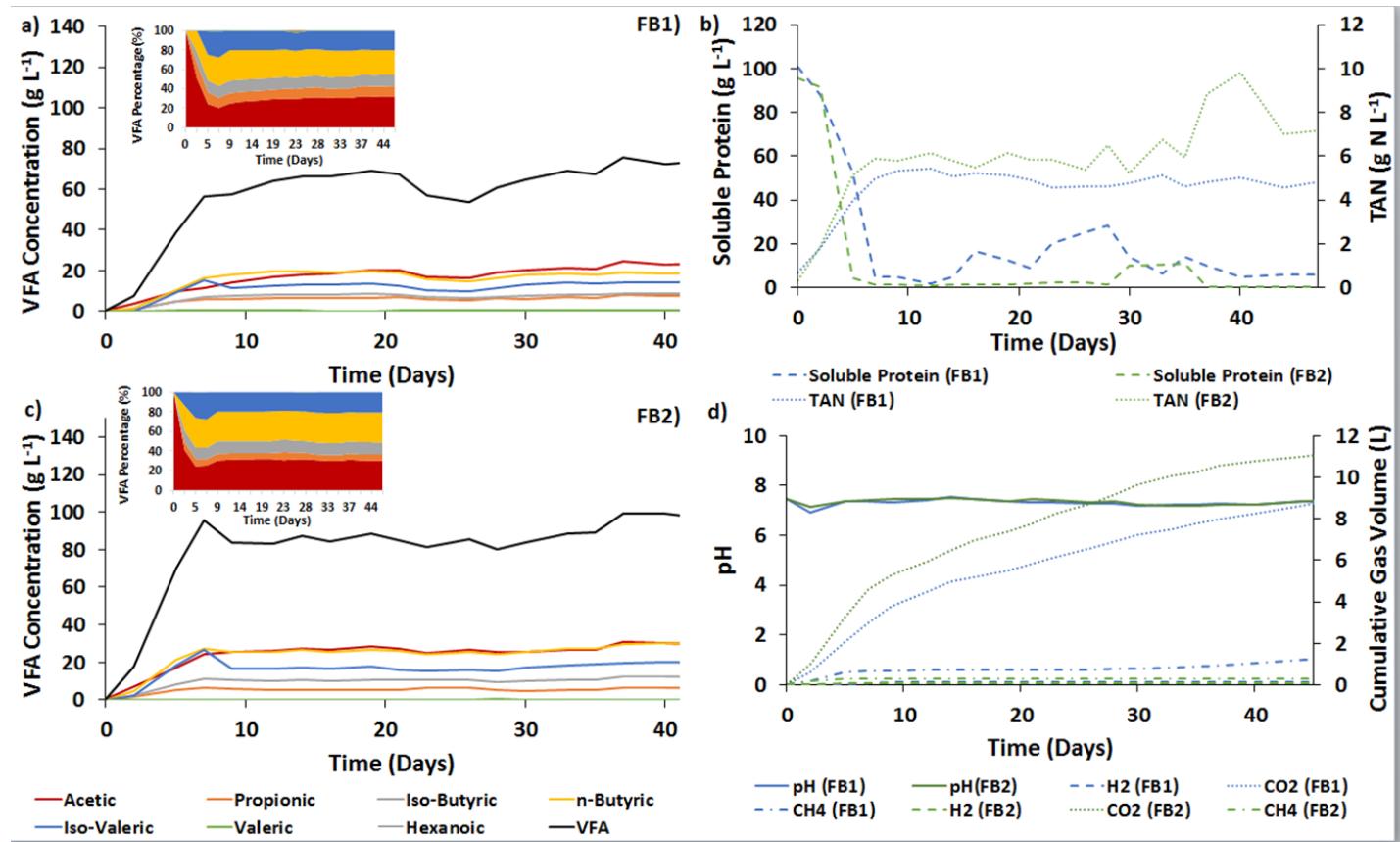
Figure 3. Fed-batch experiment: a) VFA profile of reactor FB1; the embedded image corresponds to the VFA composition. b) VFA profile of reactor FB2; the embedded image corresponds to the VFA composition. c) Protein consumption and TAN concentration. d) Cumulative gas production and pH.

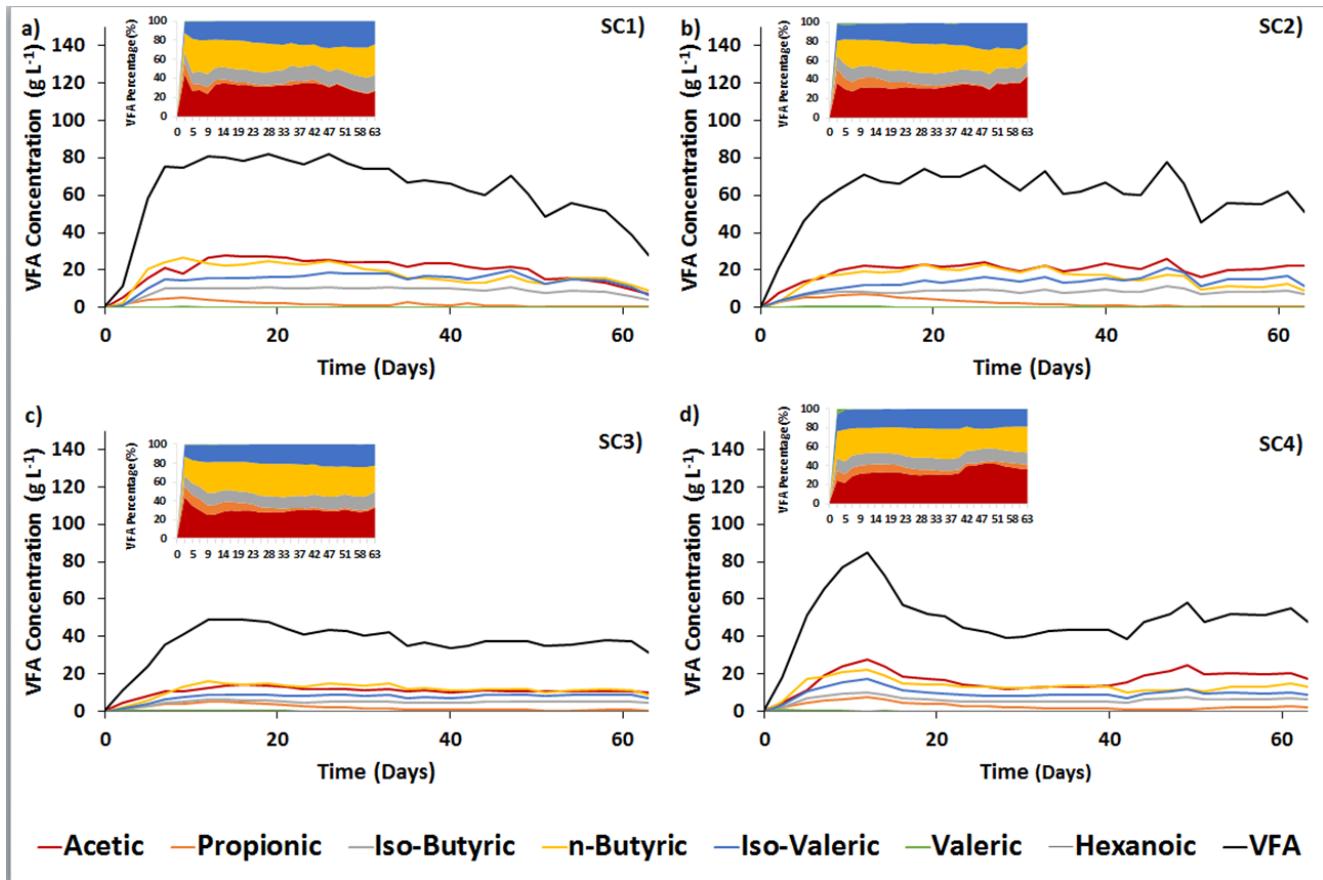
Figure 4. VFA profiles of the semi-continuous experiment: a) reactor SC1; b) reactor SC2; c) reactor SC3; d) reactor SC4.

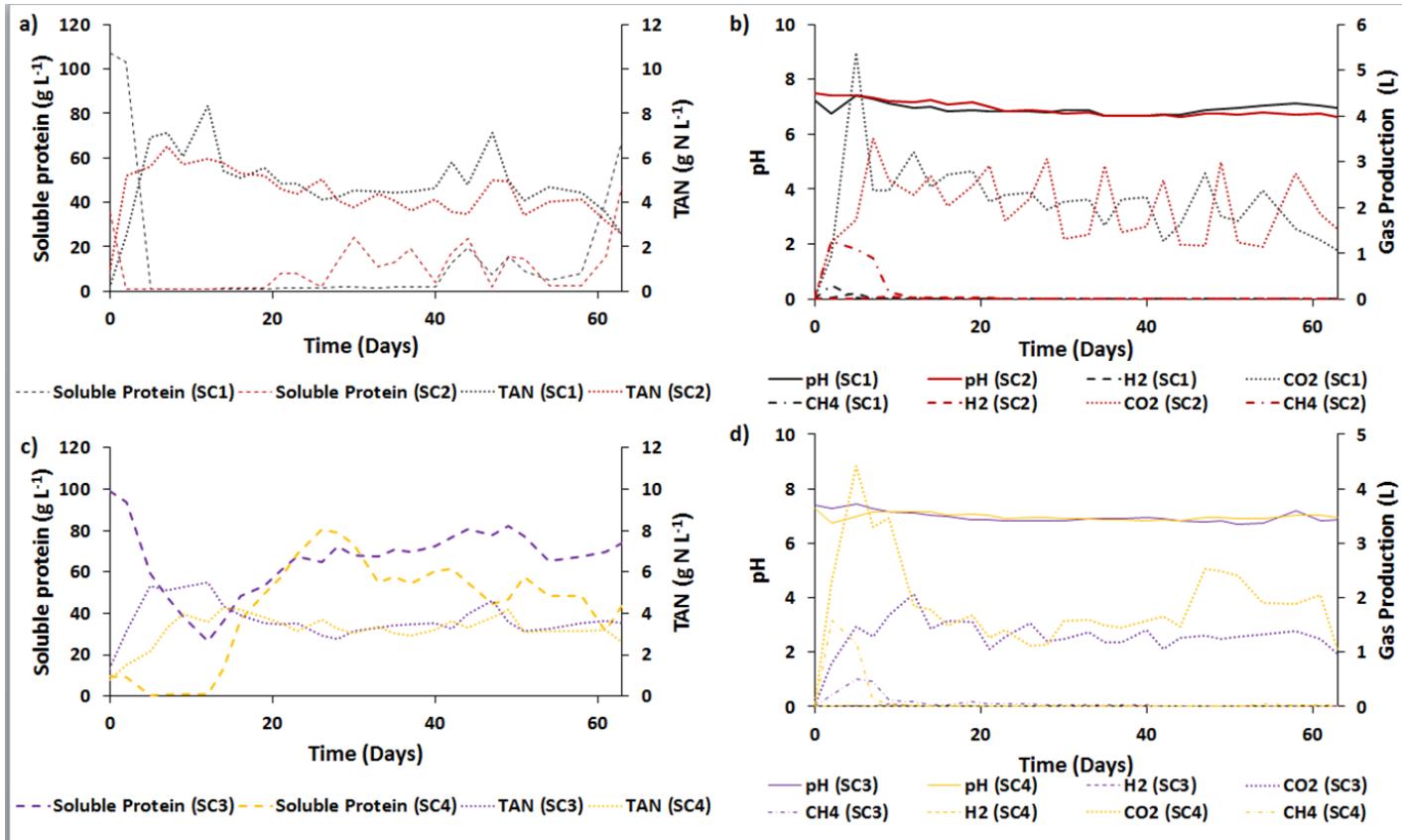
Figure 5. Soluble protein, TAN, gas production and pH of semi-continuous experiment: a) Soluble protein and TAN concentrations of reactors SC1 and SC2. b) Gas production and pH of reactors SC1 and SC2; gas production data represent the CO₂, H₂ and CH₄ produced during each of SC2 feeding cycle. c) Soluble protein and TAN concentrations of reactors SC3 and SC4. d) Gas production and pH of reactors SC3 and SC4; gas production data represent the CO₂, H₂ and CH₄ produced during each of SC4 feeding cycle.

Figure 6. Percentage of sequences assigned to order; the embedded plot is the sequences assigned to the genus level for the Clostridiales order: a) reactor SC3; b) reactor FB2.

Figure 1


Figure 2


Figure 3

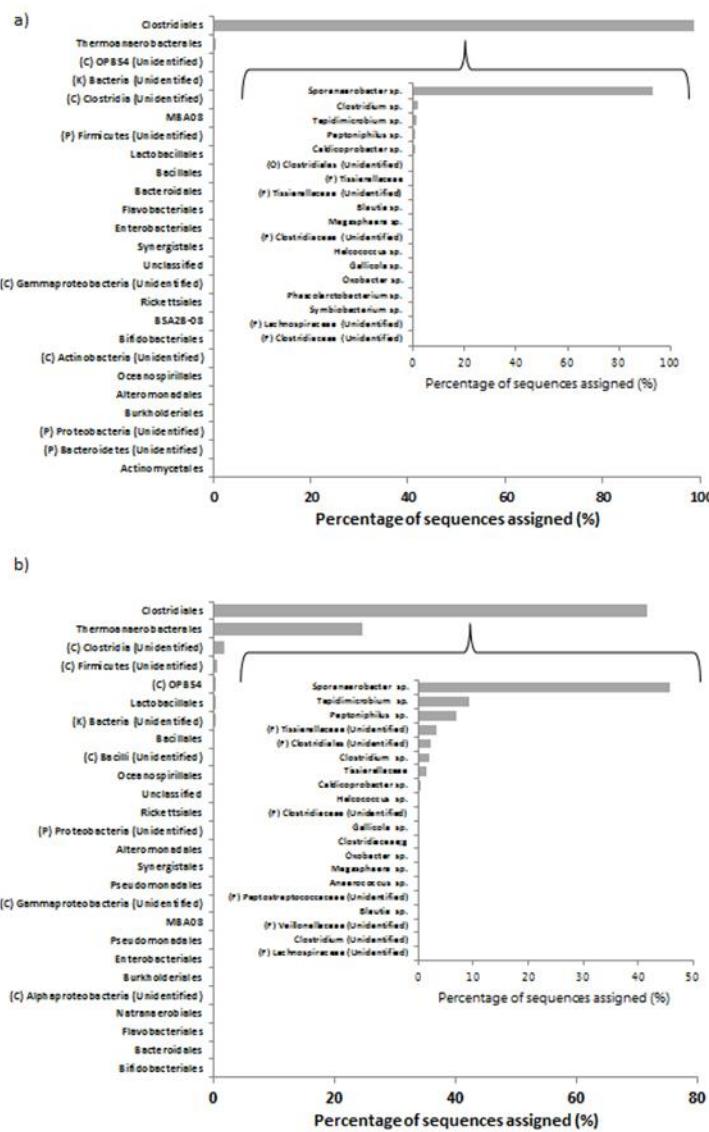

Figure 4

Figure 5

Figure 6

