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A Stochastic Method for Prediction of the

Power Demand at High Rate EV Chargers

George Hilton, Mahdi Kiaee, Thomas Bryden, Borislav Dimitrov,

Andrew Cruden and Alan Mortimer

Abstract

High rate (<100kW) electric vehicle chargers (HREVCs) are crucial for achieving the benefits of

reduced CO2 and particulate emissions promised by electric vehicles by enabling journey distances

greater than the range of the vehicle. A method for predicting the expected demand pattern at these

HREVCs is presented in this paper. This is critical to planning a network of chargers. This novel method

uses freely available traffic flow data and travel patterns extracted from the open street map combined

with a novel EV battery capacity prediction method, to find future HREVC usage patterns in the UK

and their dependence on location and EV characteristics. This planning method can be replicated to

find HREVC power demand for any location on the strategic road network in the UK and can be used

in analysis of the role of high rate EV charging in the wider energy system.

Index Terms

Vehicles, Battery chargers, Power system modeling, Load modeling

I. INTRODUCTION

The use of fossil fuel vehicles contributes to climate change through the release of CO2, nitrous

oxides and unburnt hydrocarbons, and causes harmful levels of pollution to be present in cities

around the world [1]. The removal of fossil fuels from the transport industry is therefore of clear

importance. One method to achieve this which is currently gaining traction is the introduction of

electric vehicles (EVs). EVs have the advantage of zero local gaseous emissions and improved
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drive train efficiency leading to lower levels of pollution in areas of high traffic density and

lower system carbon emissions [2] [3].

A growing EV fleet in operation in the UK will necessitate investment in charging infras-

tructure. The development of a network of fast chargers will enable increased use of EVs and

promote wider adoption through reducing range anxiety among both potential and current EV

owners [4]. High rate charging of EVs allows for journey lengths greater than the range of the EV

and enable EV charging for those without a domestic or workplace charging facility. Therefore,

high rate electric vehicle chargers (HREVCs) will become a crucial part of the transport system

in coming years.

Care must be taken to ensure the roll out of these HREVCs is completed in an efficient and

successful way such that to minimise journey times and queueing [5]. An HREVC must be

designed with knowledge of the expected EV charge demand both at the current time and in

the future such that HREVCs are still adequate for the demand throughout their expected life

[6] [7]. For this a model which predicts EV demand based on location and includes factors to

allow for growing EV penetrations and reducing battery costs is needed. The model in this paper

provides a basis for HREVC designers to select a location, an EV penetration level and a battery

price factor and generate the power demand that that HREVC will be subject to.

The open street map is a map of the world which is free to use and operates under an open

license [8]. It has a feature which allows users to upload GPS tracks of movements which has,

over time, created a large repository of information relating to people’s movements with 848,062

uploaded tracks. This repository has received little academic interest, however, the information

it holds could provide critical insight for many fields of work. It is the aim of the authors to use

this repository in order to find travel patterns along main roads in the UK to enable a prediction

of HREVC demand. Specifically, detailed traffic count data is widely available for many roads

in the UK. This is not adequate for predicting HREVC use as the distance of each journey

being counted is not known. However, the open street map can be used to find journey distance

patterns which can then be added to the existing traffic count data. This enriches the existing

data resource and allows for more accurate HREVC use predictions.

The use of this analysis is combined with a predictive model of EV battery capacity in a

scenario where the EV market has achieved balance, i.e. the number of different EVs being

offered for sale and the rate at which they are bought and used reflects that of conventional

vehicles in operation currently. This is an important step as the EV market is currently skewed
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with a disproportionately large number of luxury vehicles due to the popularity of the vehicles

produced by [9], therefore, the current distribution of EVs cannot be used to predict future

HREVC use. When EV adoption is widespread, this skew will not be accepted by consumers,

therefore a method is needed to predict future EV battery capacities. The EV battery capacity

distribution is important in finding the expected energy demand at a HREVC as larger capacity

EVs will require higher power and longer charging duration, whereas lower capacity EVs will

require more frequent charging for the same journey.

Therefore, in this paper, a method is presented which uses freely available data and is able to

predict the HREVC demand at any location on the strategic road network (SRN) in the UK for

the assumed scenario of a balanced EV fleet in the UK.

A. Background

The expected time distribution of low rate EV charging has been extensively examined in the

literature as well as smart techniques which can be used to reduce grid stress [10] [11] [12].

A common method of analysis is using a probability distribution of EV use, such that charging

can be predicted for when an EV is not in use [13]. This is an effective technique for low rate

charging since, due to the duration, low rate (7kW) “level 2” charging is likely to occur when

an EV is parked and the owner is conducting another activity.

The use case of HREVCs differs from that of level 2 chargers since they are designed to be used

when the range of the EV is not high enough for the distance of the journey being undertaken.

The Department for Transport Travel Survey reveals trip distance for private vehicles in the UK

[14]. 80% of all trips are less than 10 miles in distance. However, these trips only represent

26% percent of the distance covered. Contrasting this to the use of the SRN, which accounts for

all the high demand roads in the UK, such as motorways and large A-roads, it is clear that the

distances covered using these roads are substantially higher per trip. Unfortunately, details given

in [14] regarding long distance journeys are inadequate for this study as journey distances and

the type of road used are needed. Since HREVC use will predominantly be during a long trip,

it follows that HREVCs should be located on large roads such as those in the SRN. Therefore,

in this paper, the assessment of traffic patterns and journey distances is calculated for journeys

which use the SRN.

The literature addressing the problem of predicting EV demand at HREVCs is quite limited.

Many studies assume demand will be proportional to traffic flow measurements [15], [16] or
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“mobility” measurements for urban areas [17]. These prediction methods give a characteristic

two peak EV demand profile, with EVs more likely to visit an HREVC in the morning and the

evening, aligning with the high use times for the road network. This approach has the clear flaw

of not taking into account the distance of the journey which the EV is undertaking, an important

predicting factor for HREVC use.

Another method for predicting HREVC use is to liken the HREVC demand to ICE demand for

fuel [18]. This gives a demand shape similar to the studies assuming charge demand proportional

to traffic flow, with a slight increase through the middle of the day. Whilst this is more realistic

than assuming proportionality with traffic flow, the use of an HREVC will be different to that

of a fuel station. The main difference is that there is no option to refill an ICE vehicle whilst it

is parked overnight, whereas this is commonplace amongst EVs and therefore will change the

required high rate charge demand. Due to this, and the extended range of ICE vehicles, their

users must use refuelling stations on a more ad-hoc basis, as and when the car is in use and the

fuel tank becomes empty.

In additions to these methods vehicle usage data has been previously used to predict HREVC

demand. A number of vehicle GPS data studies suitable for this have been found through the

National Renewable Energy Laboratory’s (NREL) Secure Transportation Data Project [19]. In

particular a study with real-world driving times, speeds, and distances collected from the Puget

Sound Regional CouncilâĂŹs 2008 Traffic Choices Study was used in [20], [21] and [22].

This study comprised of installing GPS devices on 400 vehicles between April and June 2005,

resulting in measured 149,000 trips. [21] and [22] were concerned mainly with calculating the

necessary battery size for EVs to enable the mobility levels seen in the dataset. [20] uses this

data to predict HREVC demand. This study assigns EVs to the usage patterns of vehicles in the

study and initiates an HREVC session whenever the range of that EV is depleted through driving,

with no consideration for the location or availability of an HREVC. As this study is based in

real world data it can be assumed to be the most accurate in the literature. However, each EV

is assigned either 16kWh or 40kWh of battery capacity which does not reflect the EVs either

currently on the road or those expected in the future and is a major simplification. Additionally,

in the real world HREVC locations are set and as such, a charge session occurring only when

the range is fully depleted is not reflective of real-world driving conditions. The demand pattern

generated by [20] is different to the other two, as it shows a demand peak in the evening, with

a relatively small demand in the morning. Thus, a move away from a two peak demand pattern
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is seen when journey distance and overnight EV charging are taken into account.

Within this paper the authors build on the work by [20] by adopting a similar approach,

however addressing the shortcomings highlighted above. The data used is not relevant to this

study, though, as it is based on driving in the USA which differs from the in the UK due to

differing lifestyle and geography patterns.

Alternative UK travel data is sought for the work in this paper from freely available GPS

tracks on the [23]. This is then used to add details, such as journey distance, to existing traffic

flow data.

Two novel contributions of the work presented in this paper are:

1) A method is proposed for predicting EV battery capacity distributions in a future scenario

when the EV market reflects the use and purchase patterns currently seen with conventional

vehicles.

2) A method for predicting HREVC power demand patterns in a locationally dependent way

at any location on the SRN in the UK is explained.

B. Assumptions used in this work

Any modelling approach must be based on assumptions about this system which is attempting

to be modelled. In this paper, there are two on which the work is based.

Firstly, it is predicted that EVs will be used in the same manner as conventional vehicles

today. This accounts for two specific assumptions, firstly that the proportion of EVs within each

segment (i.e. mini cars, small cars etc) is the same as that for conventional vehicles. Secondly,

the journeys made by EVs will be the same as those made with conventional vehicles. Ceteris

paribus, this assumption is thought to be valid as the motivations for buying and using a vehicle

are technology agnostic i.e. a vehicle user needs to go from one location to another at a certain

time, this need is not dependent on the type of vehicle which is used to provide this transportation

need. This assumption was examined by [24] where EV trials revealed the similar use patterns

to conventional vehicles with the exception of long distance journeys. The range of EVs has

increased substantially since this work was published, which suggests that similar use patterns

will now extend to journeys of longer distance. This assumption has been used in many works

(e.g. [25] [26] [21] [27]) and discussed in greater detail by [28].

Secondly, psychological factors which may affect EV use are not considered in this paper.

This assumption is made in order to maintain simplicity in the simulation. There are two likely
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implications of this. Firstly, it is assumed that there is no link between the type of vehicle being

used and the journey it takes. The matching between generated EVs and journey distance is

entirely random in this method. Therefore psychological factors such as “I use my EV for a lot

of long distance journeys, so I will buy an EV with a high range” are not considered. Secondly,

it is assumed that the driver will use the last feasible HREVC prior to the EV SOC reaching

zero. Therefore, any fear associated with having a low SOC leading to earlier charging is not

considered, neither is a charging method designed to save money and time by arriving at the

destination at or close to zero SOC. Linked to this, the EVs are each charged to 100% usable

SOC when visiting the HREVC, thereby eliminating any preference the driver may have.

II. METHOD

A. Overview

The five main steps within the method presented in this paper are as follows:

1) Extraction of relevant journeys from Open Street Map GPS Track Dump. Detailed

in Section II-B1. Assumed to be those journeys which intersect with the SRN.

2) Prediction of journey distances for each hour of the day. This will be achieved through

fitting probability distributions to extracted journeys. The aim of this process is to create a

probability distribution for each hour of the day which can be used to predict the distance

of a given journey which has its mid point (in time) within that hour. This information can

be used to find the time of arrival at the HREVC and estimate the EV’s State of Charge

(SOC) at arrival. This is detailed in Section II-C.

3) Production of locationally dependent probability distributions of journey distance.

This is achieved through scaling the probability distributions to the traffic flow observed

at the chosen site. This is detailed in Section II-D.

4) Prediction of battery capacities of the EVs which will use the HREVC. This is needed

to find the energy demand for a given EV if the initial and final SOCs are known (through

use of probability distributions created in steps 2 and 3 above). This is achieved through

probability distributions fitted to characteristics in the current conventional vehicle fleet

in order to predict a future case where EV ownership is widespread. This is discussed in

Section II-E.

5) Execution of Stochastic Simulation. In this step, random numbers are generated from the

probability distributions. In this way, an EV is given a battery capacity, a journey distance

Page 7 of 34 IEEE-TTE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

and a departure time. This information is then used to calculate the HREVC demand. This

is detailed in Section II-F.

B. The Open Street Map

The Open Street Map [8] is an online, open source map which is under an open licence,

hence, anybody can make changes to it. Crucially for this work, it also has the capability for

anyone to upload GPS journey traces onto it. This has led to a dataset consisting of 848,062

journeys which are available to download. These tracks cover all aspects of daily movement of

the uploader, as such a method of filtering the relevant journeys is needed.

1) Data Mining Approach: As the dataset is large, a data mining approach was utilised to find

relevant GPS traces. The aim of this approach was to identify all the traces which overlapped

with the SRN. As very little walking or cycling is conducted on the SRN it is assumed that each

GPS trace which intersects with it is a vehicle journey.

The strategic road network is managed by Highways England. A shapefile describing the

land managed by Highways England is available as an open source download from the UK

Government repository [29]. This is shown in Figure 1.

Each journey within the dataset consists of a number of GPS points, with a timestamp. As the

timestamps follow in chronological order, these points can be joined to form a trace. A number

of example journeys are shown in Figure 2.

Individually assessing each point on each GPS trace to determine whether it lays within the

bounds of the SRN shapefile would have been far too computationally intensive. As such, a box

was constructed for each GPS trace, the edges of which lay at the furthest bounds of the journey,

this box is then assessed for intersection with the SRN shapefile. This reduced the computational

time substantially. An schematic example of this method is shown in Figure 3.

After running this data mining procedure on the dataset, the number of relevant journeys on

the SRN was found to be 2287.

C. Constructing probability distributions from mined data

The aim of using the Open Street Maps GPS tracks was to create probability distributions of

journey distance. In order to achieve this, the filtered GPS tracks were split into distinct arrays

dependent on the mid point in time for that journey. This gave 24 datasets each corresponding

to the previous hour. Journeys with distance of less than 1 mile were removed as they were
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Fig. 1. Highways England Shapefile shown at macro and micro scales. The area in green represents land managed by Highways

England.

assumed to be anomalous for journeys on the SRN. The 24 datasets can then be used to generate

probability distributions for each hour of the day. The mid point in time for each journey was

used to generate the probability distributions since, in the general case, this is the point at which

the EV is most likely to be using the SRN and therefore able to use the HREVC.

The Weibull distribution was selected for fitting to these datasets. It is commonly used in

failure and reliability analysis. In this use case, the predicted variable x refers to the lifetime

of a component allowing a prediction of the “time-to-failure”. However, in this work it refers

to the point at which the EV journey finished or the “distance-to-end”. Therefore, this use

of the Weibull distribution can be seen to be appropriate for journey length prediction. This

is supported because the Weibull Distribution can have a long tail, which reflects real world

journey distance distributions well as high journey distances are relatively common and would

not be evident if a gamma or log-normal distribution were chosen. It was decided that the log-

Page 9 of 34 IEEE-TTE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Fig. 2. Example GPS traces from the Open Street Map shown at 3 scales.

normal distribution was not suitable as it does not represent the varying shape of the distribution

of journey distances exhibited in different hours of the day (in particular journeys beginning

early in the morning do not follow a log-normal distribution shape). For this feature either the

Weibull or Gamma distributions must be used. The gamma distribution assumes an equal chance

of a journey termination in each timestep, however the Weibull distribution allows for either

increasing or decreasing chances of journey termination as the journey progresses. This feature

of the weibull distribution was found to enable a better fit to the journey distances found and

also to provide distinction between journeys beginning at different times of the day.

The three parameter Weibull distribution is shown in Equation 1:

f(x) =
γ

α

(
x− µ
α

)(γ−1)

exp

(
x− µ
α

)γ
(1)

Where:
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Fig. 3. Schematic journey with grey box showing the area which would be assessed for intersection with the SRN shapefile.

• γ is the shape parameter.

• α is the scale parameter.

• µ is the location parameter.

µ indicates the beginning value of the distribution and is commonly equal to zero i.e. a journey

distance of zero at the start of the journey. In this case the Weibull distribution becomes:

f(x) =
γ

α

(x
α

)(γ−1)

exp
(x
α

)γ
(2)

This fitting procedure was carried out for each array of journey distances (accounting for each

hour of the day) as shown in Figures 4 and 5. However, despite the size of the original dataset,

in the hours 0200-0400, 0500-0600 and 2300-0000 there were not enough journeys to generate

a probability distribution (<5).

A γ value of 0 < γ < 1 indicates an increasing probability for a journey to end as the

distance increases. A γ value of 1 < γ indicates a decreasing probability for a journey to end as

the distance increases. It it not surprising then, that, for the majority of the hourly distributions

γ is less than 1 as drivers are more likely to reach their destination as distance increases.

However, for journeys beginning between 2200 and 2300 this is not the case. This parameter

of the distributions alone does not reveal the propensity for long distance journeys in each hour

though, the scale parameter is needed for this.

The scale parameter α is the mean journey distance. This is not constant through the day.
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Fig. 4. Weibull Shape parameter for each hour distribution.

In the morning for the hour 0400-0500, a distinctly higher mean journey distance is observed

(Figure 5). This could be caused by a preference for long distance, non-routine, journeys to be

started in the morning.

This effect is further seen in Figure 6 which shows the probability that a journey will finish

by given distances, as calculated from the Weibull Distributions for each hour. For journeys

with mid-points between 0400 and 0800 a preference for long distance (>100 mile) can be

seen. The hours with the highest probability of short journeys are between 1600 and 1800 with

the probability of long journeys beginning in this window becoming small to non-existent. This

representation is independent of the frequency with which journeys begin, which is clearly higher

during busy periods (see Figure 7). To make a prediction of the number of journeys of a given

distance being undertaken at a given time, this analysis must be combined with measured traffic
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Fig. 5. Mean journey distance against time of day for Weibull Distributions.

flow data.

D. Including Traffic Flow Data

The Highways England data repository [30] is a rich source for traffic flow data in the UK. 15

minute resolution vehicle count data can be found for all the roads on the SRN. Additionally, it

is possible to select the section of road (between two junctions) at which the traffic flow count

is desired. The database is also kept up to date with monthly updates for each road section.

This data resource is used in this work to provide relevant traffic flow data. Indeed, this method

of high rate EV demand prediction was designed to be used as a tool with this dataset such that

EV demand can be calculated in any location on the SRN.

For this data to be useful in predicting high rate EV demand, the Weibull distance distributions

can be utilised with the number of journey distances predicted, using the probability distribution,
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Fig. 6. Cumulative probability of journey distance for each hourly probability distribution.

for each hour, dependent on the measured traffic flow for that hour. This gives a detailed

distribution of the number of journeys of certain lengths being undertaken in a given hour.

A representation of this analysis is shown in Figure 7. Importantly, the data shown in Figure 7

can be recreated for any point on the SRN by using the traffic flow data for that point.

In order to use this analysis to predict the demand for the HREVC the capacity of the EV

battery must first be assessed. This will allow a calculation of the EV range and therefore,

whether a HREVC must be used en-route in order to complete the journey. The work covering

this analysis is discussed in the following section (Section II-E).

E. EV battery capacity prediction

An estimation of the distribution of future EV battery capacity (Ecap) has been formulated from

the market share of current vehicle segments. Thiel et al. [31] proposed vehicle segmentation
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Fig. 7. Predicted journey distances for the M25 J15-16.

characteristics as shown in Table I, this follows the segmentation method employed by the

European Commission and adopted in the UK. A UK source of this data was sought, however,

the inclusion of the mean and standard deviation of engine capacity and mean annual mileage

with the market share for each segment led to the selection of this reference for the data source.

The market share for each segment of vehicle in the UK is similar to that presented by [32].

As discussed in Section I-B, since the conventional vehicle market is mature, it can be assumed

that proportions of each segment of vehicle are likely to remain the same after electrification,

specifically, the mean annual mileage and the market share of each segment will remain constant.

Therefore, with these assumptions, in order to predict the distribution of Ecap in a future fleet of

EVs a prediction must be made for the mean and standard deviation Ecap within each segment.

This will differ from the current distribution of EV capacities as the priorities of future EV

Page 15 of 34 IEEE-TTE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

TABLE I

MARKET SHARE OF ICE VEHICLE SEGMENTS IN THE EU IN 2011 [31].

Segment Segment Name Market Share Engine Capacity (l) Mean Annual

(%) Mileage

mean standard

deviation

A Mini Cars 8.7 1.12 13.4 8600

B Small Cars 26.0 1.34 14.5 10800

C Medium Cars 23.3 1.63 22.8 13300

D Large Cars 11.0 2.02 36.4 15900

E Executive Cars 3.3 2.48 59.5 17500

F Luxury Cars 0.3 3.76 97.8 13000

J Sport Utility Cars 10.3 2.08 56.2 14000

M Multi Purpose Cars 13.1 1.66 28.2 16800

S Sport Vehicles 1.3 2.45 110.3 8700

buyers will be different from the current early adopters [33].

In order to use this assumption to generate EV battery capacity distributions a relationship

must be sought between a current attribute of the vehicles and Ecap, so an equivalent attribute

to Ecap in conventional vehicles must be used. Although both the capacity of the fuel tank and

Ecap are directly proportional to vehicle range, the cost of the fuel tank is very low and adding

additional capacity is relatively easy. This is not the case for Ecap where additional capacity

is very costly. Additionally, for the most part, fuel tank capacity is not a primary driver for

purchasing decisions in the same way that battery capacity will be [34]. For this reason, the

engine capacity is taken as proportional to equivalent Ecap.

Whilst at first impression this may seem illogical, a larger battery pack will lead to a greater

peak power available from the battery in the same way as a larger engine capacity. Additionally,

the sales of each segment of vehicle are largely driven by consumer preferences, in this context,

the battery capacity is a primary driver for purchasing decisions in the same way as engine

capacity. Indeed, EV manufacturers use the Ecap value for branding (displayed on the body

of the EV) in the same way as conventional vehicle manufacturers use engine capacity. This

is likely to be due to customer perception that a higher capacity battery correlates to a more

capable and expensive vehicle. This assumption is backed up by [34] who conducted a study of
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TABLE II

CLASSIFICATION OF CURRENT EVS CAPABLE OF HIGH RATE CHARGING

EV Model Ecap Segment

BMW i3 18.8 - 33.3 B

Kia Soul EV 27 C

Citroen C-Zero

Mitshubishi i-Miev 16 A

Peugeot iON

Nissan Leaf 24-40 C

Tesla Model S 70-100 F

Tesla Model X 90 J

VW E-Up 18.7 A

VW E-Golf 24.2 C

the willingness to pay for enhanced features of EVs.

In order to find the relationship between engine capacity and Ecap, current EVs are compared to

conventional vehicle counterparts. First, these EVs are classified into the European Commission

segments, shown in Table II.

The ratio Ecap
EngineCapacity

is then found for each segment. There is some variation here due to

the immaturity of the EV market. The Tesla vehicles have proportionally larger batteries. The

mean of the Ecap
EngineCapacity

ratios for each vehicle segment is calculated to be 21.8. In this paper

values of Ecap
EngineCapacity

of 30, 40 and 50 are used as these correspond to a growth in the size

of batteries installed in EVs consistent with the future scenario assumed.

The probability distribution for Ecap can, therefore, be calculated as the sum of the probability

distributions for each segment as shown in Equation 3. The probability density function for each

vehicle segment is scaled to the proportion of total miles driven by that segment. This is achieved

by multiplying each segment by the market share and mean annual mileage for that segment.

A lognormal distribution is assumed for each vehicle segment since a normal distribution is

adopted in this work, but zero or negative values of Ecap do not make sense, and so attenuation

of the probability of small values of Ecap is useful.

PDFEcap =
S∑
A=i

Mi · Yi ·
1

σi
√
2π
e

−(Ecap−(µi×21.8))2

2σ2
i (3)

Where:
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• M is the market share

• Y is the normalised annual mileage

• i is the vehicle segment

• S is the no. of vehicle segments

• µ is the mean battery capacity

• σ is the standard deviation of battery capacities

The probability density function for each vehicle segment is shown in Figure 8. The two

vehicle segments which have the largest impact on the overall probability density function are

B and C, this is mainly due to the higher market share of these vehicles. Conversely, the S and

F segments have very little contribution to the overall probability density function since their

market share is low. It should be noted that this is not what is currently seen in the EV market,

as it is distorted by an over-sized luxury segment due to the popularity of the Tesla model S.

This is predicted to change as the market grows and adopts the more established purchasing

norms and will reflect more closely the analysis shown here.

The sum of the probability density functions for each segment is shown in Figure 8. The
Ecap

EngineCapacity
figure of 21.8 used in Figure 8 is derived from EVs currently available. However,

as the price of lithium-ion batteries is subject to further reductions [35], this is likely to change.

It is expected that this factor will increase in this case and Figure 9 shows the effect of this

change in the future. The peaks for each vehicle segment become distinct and Ecap covers a

wider range. By varying the value of this factor, future cases can be analysed.

F. Running the Stochastic Simulation

The relevant parameters for calculating the charge profile for the EV are the EV battery

capacity, the initial SOC and the final SOC. As such, the use of the probability density functions

must result in relevant predictions of these parameters. Additionally, the time at which a charge

instance begins is also a key output. These parameters are calculated as follows:

By generating random numbers from the distributions discussed in Sections II-B and II-E the

following parameters are found for each EV:

• D - Journey distance (miles)

• TStart - Journey start time

• Ecap - EV battery capacity in kWh.
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Fig. 8. Probability density functions for Ecap for each segment of car.

The range of the EV is then calculated:

R = Ecap ×Wavg (4)

Where Wavg is the number of miles which can be driven for each kWh or stored energy

(miles/kWh) and R is the range in miles. If the Range is less than the journey distance then a

HREVC must be used. For EVs where the range exceeds the journey distance, the HREVC is

not needed and therefore no further calculation is required. For the journeys where a HREVC

use is required two pertinent questions now arise: Firstly, at what distance in the journey will

the HREVC use be required? And secondly, at what time will this arise?

To find the distance firstly, a mesh of potential HREVC locations is created, each 28 miles

apart (see Table III) with the first being a random number in the range 0 < X < 28. The selected
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Fig. 9. The effect of varying Ecap

EngineCapacity
on the probability density function for Ecap for the sum of all segments.

HREVC is then the last feasible station prior to the EVs SOC reaching zero:

if D > R

n = floor

(
R−X
28

) (5)

Where:

• n is the HREVC number

• X is a random number in the range 0 < X < 28

HREV Cdist = X + 28n (6)

Where HREV Cdist is the distance to the selected HREVC from the journey start point in

miles. Thus, we have the distance after beginning the journey at which the HREVC use will
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arise, so now we need to consider the journey timing. The distance to the HREVC is divided

by the mean speed (VEV , see Table III) and that time is then added to the journey start time

(Tstart).

Tcharge = Tstart +

(
HREV Cdist

VEV

)
(7)

The state of charge at the HREVC (SOCini) can then be found by dividing the energy used

to get to the selected HREVC by the energy capacity of the EV.

SOCini =

(
HREV Cdist/Wavg

Ecap

)
(8)

This process is repeated for up to 3 HREVC uses per journey (it is assumed that more stops

than this would lead to journey distances longer than is feasible in the UK (≈ 500 miles)).

1) Assumptions: These calculations use a number of numerical assumptions. They are detailed

in Table III.

TABLE III

ASSUMPTIONS USING IN THE CALCULATION OF THE HREVC USE PARAMETERS.

Variable Value Justification

EV SOC at the start 1 = 100% Overnight charging is the

of the journey main form of EV charging. This

leads to an EV beginning each

journey with full charge.

Mean Speed (VEV ) 48 mph Quoted mean speed in

Free Flow Vehicle Speed Statistics:

Great Britain 2015

[36].

Distance between HREVCs 28 miles This is set as a target for spacing

of services in Department for

Transport Circular 01/2008

[37].

EV Energy Use (Pavg) 3 miles/kWh Conservative estimate from [38].

2) EV charge calculations: The energy demand per charge instance is dependent on the EV

battery capacity, the initial SOC and the final SOC. Therefore the energy transferred to an EV

Page 21 of 34 IEEE-TTE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 22

utilising the HREVC can be given by Equation 9.

Etrans = Ecap × (SOCfin − SOCini) (9)

Where:

• Etrans is the energy transferred to the EV (kWh) from the HREVC

• Ecap is the battery capacity of the EV (kWh)

• SOCini and SOCfin are the initial and final SOCs of the EV battery when arriving and

leaving the HREVC respectively (0-1).

As such, the three variables; Ecap, SOCini and SOCfin are key to predicting the power demand

of the HREVC since they control the overall energy transferred to the EV and the power profile

during the charging process.

The temporal change in power demand over the duration of an EV charge has been derived

from Tesla Supercharger power data. This is shown in equation 10.

The charge demand for each EV can be split into two stages, the first is given by maximum

charge power (Pmax) and increased the SOC to a value of 0.22. The second stage increases

the SOC from 0.22 to 1 with diminishing power following a relationship derived from Tesla

Supercharger curves [39]. Equation 10 shows how the power to the EV changes as a function

of SOC.

P (t) =

 Pmax 0 < SOC(t) < 0.22

Pmaxe
(−k·0.22)) 0.22 ≤ SOC(t) < 1

(10)

With SOC changing as a function of energy transferred and battery capacity, as shown in

Equation 11:

SOC(t) =

∫ t
0
P (t)dt

Ecap
(11)

Solving Equations 10 and 11 yields Equation 12, where SOC(t) is expressed solely as a

function of Pmax and Ecap:

SOC(t) =
ln
(
−k
(
C − Pmax·t

Ecap

))
k

(12)

Where:

• k is the exponential decay constant of power with respect to SOC.
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• C is the integration constant found using initial conditions.

For this simulation a future situation is considered where EV batteries have an increased

ability to accept fast charging. Therefore Pmax is set to 300kW. It is more difficult to predict a

value for k, as a smaller value of k would result in a quicker overall charge, however, this may

not be achievable within the constraints of a future EV battery. In this simulation, k is set to

2.0, the same as is currently observed within the Tesla Supercharger profiles.

A sample EV charge demand profile is shown in Figure 10.
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Fig. 10. Power demand for a single EV with Ecap = 100kWh, Pmax = 300kW, SOCini = 0.1, SOCfin = 0.8 and k = 2.0

III. CASE STUDY

In order to generate these example results, traffic flow data from 3 motorways in the UK

were used. These are highly utilised roads and are therefore locations likely to require HREVC
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TABLE IV

EFFECT OF EV BATTERY SIZE ON HREVC USE FOR 10% EVS AT THE M25 J15-16.

EV Battery Capacity Factor Mean No. HREVC Uses / day Mean Total Energy (MWh)

30 58.8 2.40

40 27.8 1.47

50 13.6 0.89

installations. The motorways selected are the M25, the main circular motorway around London,

the M3 and the M4. The location on these motorways is indicated by the numbers of the junctions

the measurement point lies between (i.e. J15-16).

A. Effect of EV Battery Size

The effect of different EV battery size scenarios is shown in Figure 11 where the probability

of HREVC use for each hour of the day is plotted for 3 EV capacity factors (30,40,50).

Due to the tendency for long journeys to be started in the morning (as seen in Figure 6), a

peak in demand is seen in the late morning. This is in contrast to the predictions made in the

literature; if the demand is assumed to be proportional to traffic flow, two peaks are seen, one in

the morning and one in the evening. However, as is shown in Figure 11, the journeys which are

long enough to result in a HREVC use tend to begin in the morning and lead to a high demand

for charging in the middle of the day. After this peak, demand diminishes through the rest of

the day. This reduction in demand after the initial peak is due to the increasing probability that

a given journey will finish as its distance increases, thus additional HREVC use is increasingly

unlikely.

Larger EV batteries (higher EV capacity factors) lead to a later HREVC demand due to the

increasing range leading to longer journey times before needing an HREVC charge. Additionally,

the overall number of charges (Table IV) is reduced through increasing EV battery capacity factor

as the probability of the range of the EV being sufficient to power the entire journey increases.

The predicted total energy transferred to EVs also diminishes with higher EV battery capacities

due to fewer charging instances.
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Fig. 11. Probability of HREVC use against time of day for 3 different EV battery capacity factors on the M25 J15-16.

B. Effect of HREVC Location

An EV demand pattern for an HREVC can now be generated stochastically for any location

on the SRN in the UK. Three locations have been selected for illustration purposes, these are

shown in Table V, additionally, the traffic flow patterns for these locations is shown in Figure 12.

To populate the data in Table V, the simulation was repeated ten times to achieve mean values

with an EV penetration value of 10%. Clearly, when there is a higher level of traffic flow over

a road, the HREVC is utilised more. Curiously though, the percentage of vehicles using the

HREVC is not constant. In the examples studied here, it varies between 0.5-0.7% of EVs.

The cause of this variation lies in the difference in shape of the traffic flow patterns. The

M3 and M4 motorways have higher percentage of HREVC use due to a higher proportion of

the journeys occurring in the morning. Likewise, the M25 has sustained high traffic flow levels

throughout the day, thus, a lower proportion of journeys occur in the morning leading to lower

overall percentage HREVC use on the M25 as shown in Figure 12.
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TABLE V

EFFECT OF LOCATION ON NUMBER OF USES PER DAY OF THE HREVC WITH AN EV CAPACITY FACTOR OF 30 AND AN EV

PENETRATION OF 10%.

Location Total Traffic Flow Mean HREVC Uses / day Percentage Use (EVs)

M25 J15-16 112 675 58.8 0.52

M4 J17-18 45 474 31.4 0.69

M3 J13-14 64 393 43.2 0.67
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Fig. 12. Traffic flow measurements for 3 motorway locations in the UK.
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Using traffic flow data for different locations on the SRN, an HREVC demand pattern can be

generated for each of them. An example of this is shown in Figure 13. For these simulations, the

number of EVs was assumed to be 10% of the overall traffic flow, the peak power for each EV

was 300kW and the EV battery factor was 30. Of these EVs, 0.5-0.75% required an HREVC

to complete the required journey. The main difference in the demand, arising from simulating

different HREVC locations, is the difference in magnitude. There is more traffic flow on the

M25, which results in higher HREVC demand.

Fig. 13. HREVC demand stochastically generated for three locations in the UK from traffic flow data available for that location,

assuming an EV penetration of 10%.

IV. DISCUSSION

This method uses existing travel data sources in the UK and adds to them through the

information gathered in the Open Street Map GPS track dump, so it is incompatible to compare

the results from this analysis to those statistics. However, when comparing the HREVC use

patterns found to those in the literature, some differences are seen. The HREVC demand patterns

found in this paper exhibit a greater tendency to have high demand levels in the early afternoon
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than other methods used in the literature. This effect is partly due to the nature of the data

extracted from the open street map and partly due to the novel methods presented. This method

does not rely solely on traffic flow measurements which gives a tendency to produce an HREVC

demand pattern with two peaks, each aligned with the times of high road use. A single peak

in HREVC demand is predicted here which aligns with other methods which do not assume

proportionality with traffic flow, such as the work by Simpson et al [20]. Contrasting the previous

methods which do not assume proportionality to traffic flow to this work, an earlier peak in

demand is predicted here. This is due to the travel patters observed in the Open Street Map

GPS trace dump. A tendency for long journeys to begin in the morning was observed. As this

data has not been previously used for similar work it is not surprising that there are differences

in the outcomes. The journey information extracted from the open street map relates solely to

main roads in the UK, it is therefore an important consideration for future planning decisions

that demand on these roads may be different to that generally seen in literature from around the

world.

This method allows for locationally dependant predictions of HREVC demand. This will

enable informed planning of HREVCs on the SRN. Whilst a general increase in HREVC demand

can be expected with roads with higher traffic flow, the characteristics of that traffic flow are

also important in predicting HREVC demand. A higher than average traffic flow in the morning

will result in a more distinct peak in HREVC demand, whilst HREVC demand which is more

consistent through the day is seen on roads which have lower than average demand in the

morning. Understanding this effect and its dependence on location is important in HREVC design

as a demand with a distinct peak will need greater power availability and a larger number of

charge points than one with a sustained demand pattern through the day (assuming the same

overall charger usage).

The assumption that EV SOCs are equal to 1 at the start of the day will not hold for all cases.

Specifically, the low power levels available in a domestic setting may not be capable of returning

an EV with large battery capacity to full SOC within the duration of overnight parking. Therefore

there may be additional uses of an HREVC, by owners of EVs with high battery capacities, to

compensate for this which are not predicted in this paper. Additionally, there may be usage of

the HREVC which are not related to long journeys in the way presented, such as charging in

preparation for a journey at a later time. There are inevitably many factors such as these which

may, or may not, affect the use of HREVCs which a predictive tool such as that proposed in
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this work is unlikely to sufficiently represent, however it is important to be aware of them and

of the potential effect on the charging pattern they may have.

The choice of the Weibull distribution may lead to an under-reporting of the overall number

of charges per journey due to over estimation of short journeys (< 1 mile) which do not lead to

an HREVC charge. However, the improved fit with longer distance journeys which is enabled by

use of the weibull distribution leads to greater accuracy of the prediction. For this reason, over

estimation of short journeys is likely equalled by under estimation of medium length journeys,

leaving long journeys accurately represented. This is enabled through varying the rate at which

the probability of journey finish varies with respect to the journey distance (by varying the

shape factor) and a preference for accurate fitting of the tail of the distribution. This effect was

important as accurate predictions of long distance journeys are clearly the priority of this work.

This work enables improved accuracy of HREVC power demand predictions, both at the

current time and for the future. It has also opened the possibility of analysis of the role HREVC

power demand can potentially play in the wider energy system. For example, an earlier peak

in HREVC demand, as is suggested here has the potential to offset grid imbalances caused

by increasing solar power generation. So, this work has wider implications than those of just

HREVC design.

V. CONCLUSIONS

A novel method for predicting EV demand at HREVCs has been presented. Critically, this

predicts HREVC demand in the UK, using data arising from the UK to find travel patterns

on main roads, in a locationally dependent way. HREVC demand can be predicted for varying

locations in the UK by using traffic flow measurements from that location. The method for

predicting future EV battery capacities is also presented.

The key advantages of the method presented in this paper are:

• The HREVC demand prediction method is locationally dependent, and as such the expected

HREVC demand can be generated for any location on the SRN. This is crucial for selecting

specific sites when planning an HREVC.

• The prediction is based on open source data which has not been used for similar studies

before. This data accurately describes movement patterns for many aspects of life and a

data mining approach has been used to identify relevant journeys. This reduces the need

for costly and time consuming studies using vehicle trackers.
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• The method is not based on the current fleet of EVs which is currently limited and not

representative of a market which reflect the desires of the consumer. Instead, a method

for predicting EV battery capacity which uses current conventional vehicles segments is

proposed. This allows for HREVC demand planning for a future scenario.

A case study is then included which assesses the HREVC demand at 3 locations on motorways

in the UK.

This work is useful for the planning of an HREVC network. The method presented in this

paper is novel and the Open Street Map dataset has not been previously used for a similar

application. This work, therefore, provides a framework for assessing EV demand in order to

design and implement an HREVC network for the future. Furthermore, this analysis enables the

role of HREVCs in the wider energy system to be assessed and optimised.

The quantity of data available from the Open Street Map is expected to grow and is not

confined to the UK. Therefore, this method has value which will grow and is relevant across

the world.

Further work should look into the two assumptions highlighted in Section I-B as it is unknown

at present the role of psychological factors and the degree of similarity between movements

conducted in EVs and conventional vehicles and what effect these may have on HREVC use.
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