The University of Southampton
University of Southampton Institutional Repository

Risk-based assessment of scour around subsea infrastructure

Risk-based assessment of scour around subsea infrastructure
Risk-based assessment of scour around subsea infrastructure

Scour poses a significant risk to infrastructure placed on mobile seabeds. Seabed mobility is common on the North West Shelf of Australia, in parts of the North Sea, and also occurs in the deepwater Gulf of Mexico, due to loop currents. Scour can undermine structures and, for shallow-skirted mudmat foundations, there can be significant consequences including excessive settlements, tilt and loss of bearing and sliding capacity. However, scour mitigation via engineered protection is costly, and to be avoided if possible. This paper describes a new quantitative risk-based approach for assessing the susceptibility of subsea infrastructure to scour processes. This probabilistic scour assessment accommodates measurable uncertainties in metocean and seabed conditions, using new characterization techniques. The approach allows operators and owners to better assess the optimum strategy to address scour risk, selecting from mitigation during installation or in-service monitoring, prediction and remediation. The paper describes (i) best practice approaches for assessing scour susceptibility and propagation rates with and without engineered protection, (ii) new methods for determining the applicable seabed and metocean inputs, (iii) a probabilistic framework for encompassing uncertainties, and (iv) how this approach can be applied in project applications. Our probabilistic method of assessing and presenting scour risk produces a distribution of estimates of scour depth and time rate. By capturing and quantifying the full range of uncertainties, this method facilitates decision-making by showing the range of potential outcomes and allowing the associated costs and consequences to be evaluated. This approach is superior to deterministic 'worst case' calculations, which are often used to assess scour susceptibility. In summary, this paper provides operators and owners with an improved methodology to unlock Capex and Opex savings through more accurate and informed scour assessments.

2773-2792
Curran Associates, Inc.
Tom, Joe
41ee52e3-5eed-43a4-909b-819339875081
Draper, Scott
efe46b7d-3989-403b-8b19-0b17dd54194f
White, David
a986033d-d26d-4419-a3f3-20dc54efce93
O'Neill, Michael
5eef39ea-f085-424f-a7d1-0eda966706ac
Tom, Joe
41ee52e3-5eed-43a4-909b-819339875081
Draper, Scott
efe46b7d-3989-403b-8b19-0b17dd54194f
White, David
a986033d-d26d-4419-a3f3-20dc54efce93
O'Neill, Michael
5eef39ea-f085-424f-a7d1-0eda966706ac

Tom, Joe, Draper, Scott, White, David and O'Neill, Michael (2016) Risk-based assessment of scour around subsea infrastructure. In Offshore Technology Conference 2016 (OTC 2016). vol. 3, Curran Associates, Inc. pp. 2773-2792 .

Record type: Conference or Workshop Item (Paper)

Abstract

Scour poses a significant risk to infrastructure placed on mobile seabeds. Seabed mobility is common on the North West Shelf of Australia, in parts of the North Sea, and also occurs in the deepwater Gulf of Mexico, due to loop currents. Scour can undermine structures and, for shallow-skirted mudmat foundations, there can be significant consequences including excessive settlements, tilt and loss of bearing and sliding capacity. However, scour mitigation via engineered protection is costly, and to be avoided if possible. This paper describes a new quantitative risk-based approach for assessing the susceptibility of subsea infrastructure to scour processes. This probabilistic scour assessment accommodates measurable uncertainties in metocean and seabed conditions, using new characterization techniques. The approach allows operators and owners to better assess the optimum strategy to address scour risk, selecting from mitigation during installation or in-service monitoring, prediction and remediation. The paper describes (i) best practice approaches for assessing scour susceptibility and propagation rates with and without engineered protection, (ii) new methods for determining the applicable seabed and metocean inputs, (iii) a probabilistic framework for encompassing uncertainties, and (iv) how this approach can be applied in project applications. Our probabilistic method of assessing and presenting scour risk produces a distribution of estimates of scour depth and time rate. By capturing and quantifying the full range of uncertainties, this method facilitates decision-making by showing the range of potential outcomes and allowing the associated costs and consequences to be evaluated. This approach is superior to deterministic 'worst case' calculations, which are often used to assess scour susceptibility. In summary, this paper provides operators and owners with an improved methodology to unlock Capex and Opex savings through more accurate and informed scour assessments.

This record has no associated files available for download.

More information

Published date: 2016
Venue - Dates: Offshore Technology Conference 2016 (OTC 2016), , Houston, United States, 2016-05-02 - 2016-05-05

Identifiers

Local EPrints ID: 420509
URI: http://eprints.soton.ac.uk/id/eprint/420509
PURE UUID: 6a4a1b59-63d0-4c65-9b69-a274f70e1671
ORCID for David White: ORCID iD orcid.org/0000-0002-2968-582X

Catalogue record

Date deposited: 09 May 2018 16:30
Last modified: 06 Mar 2024 02:56

Export record

Contributors

Author: Joe Tom
Author: Scott Draper
Author: David White ORCID iD
Author: Michael O'Neill

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×