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Abstract
Due to the limited generation capacity of power sta-
tions, many developing countries frequently resort
to disconnecting large parts of the power grid from
supply, a process termed load shedding. During
load shedding, many homes are left without elec-
tricity, causing them inconvenience and discomfort.
In this paper, we present a number of optimiza-
tion heuristics that focus on pairwise and group-
wise fairness, such that households (i.e. agents) are
fairly allocated electricity. We evaluate the heuris-
tics against standard fairness metrics in terms of
comfort delivered to homes, as well as the num-
ber of times they are disconnected from electricity
supply. Thus, we establish new benchmarks for fair
load shedding schemes.

1 Introduction
Load shedding entails systematically and deliberately cutting
off the supply to parts of the system network, so that the strain
on the system is reduced and the failure of the entire system is
prevented. It is very common in developing countries, espe-
cially because generation capacity is insufficient for meeting
demand, and grid infrastructure is poorly maintained or ob-
solete. In Nigeria for instance, the total installed capacity of
generating plants is under 8000MW , which is grossly inad-
equate for serving a population of over 170 million people
[Oyedepo, 2012]. This suggests that there is a perpetual need
for implementing load shedding to maintain grid stability in
some developing countries. On the other hand, energy de-
mand is increasing globally [Mahadevan and Asafu-Adjaye,
2007]. As such, load shedding will be a prevalent problem
that will be relevant for the near future. It is noteworthy that
the availability of electricity presents a platform for fighting
poverty, improving the welfare of individuals and progressing
in development. Therefore, while on the long road towards
increasing generation capacity, it is absolutely necessary to
develop solutions for managing load shedding events better.

Currently, solutions for load shedding involve selecting
parts of the system whose consumption closely matches the
deficit (i.e. the difference between electricity available for
supply, and demand), then disconnecting these parts from
electricity supply. For instance, artificial neural networks
were used for determining the minimum amount of load to be

shed in order to maintain grid stability [Mitchell et al., 2000;
Hsu et al., 2005]. Following this, parts of the system that
make up this load were disconnected at the supply level. By
determining the minimum amount of load shedding required
for maintaining grid stability, they resulted in load shedding
being more optimal. However, these current approaches do
not give due consideration to how fair selection processes are.
As such, as far as load shedding results in the stability of the
network, no priority is given to ensuring that all parts of the
power system benefit from electricity allocation as equally as
possible. A consequence of this is that many homes within
some parts of the system may be left without supply for days
or weeks. Moreover, for electricity providers, load shedding
may result in revenue loss, as more load than is required may
be shed when disconnecting parts of the system from supply.

In light of the above, we present a novel approach to load
shedding. Our approach models homes as agents, each with
its own preferences for consuming energy. We build this
approach on the back of intensive and extensive research
into fair-division allocation of heterogeneous resources, often
termed as “cakes”, for which agents have different and con-
flicting interests [Varian, 1974; Robertson and Webb, 1998;
Moulin, 2003; Brânzei et al., 2013]. In the research area,
the objective is to allocate these heterogeneous resources to
agents in a fair manner, while maximizing social welfare. As
such, our model attempts to manage load shedding so that
electricity is fairly allocated across agents, hence maximizing
the access to electricity. In addition, our model attempts to
increase revenue for suppliers through allocating electricity
to agents individually. Our work advances the state of the art
as follows:

1. We perform a comparative analysis on four different
heuristics which consider varying, and sometimes con-
flicting fairness criteria. These fairness criteria include the
number of times each agent is disconnected, the discom-
fort inflicted on individual agents by being disconnected,
the number of agents disconnected and the comfort costs
incurred by the power system.

2. By combining multiple sources of data, we create a dataset
relevant to Nigeria from disaggregated electricity con-
sumption data collected from Pecan Street’s Dataport1.

3. Using the data described above, we evaluate our load shed-

1Dataport is the largest provider of disaggregated customer en-
ergy data [Parson et al., 2015]



ding algorithms and show how they perform in optimizing
utilitarian and egalitarian social welfare, as well as in min-
imizing envy (defined in Section 4).
Taken altogether, our heuristic algorithms establish a novel

approach to load shedding algorithm design, and establish
fairness benchmarks for such algorithms.

The rest of the paper is organized as follows. In Section 2,
we show how we create a relevant dataset by combining mul-
tiple sources of data. Section 3 presents four heuristic house-
hold load shedding algorithms, while Section 4 analyzes the
performance of the algorithms against some standard fairness
metrics. Section 5 concludes.

2 Simulating Developing Country Energy
Consumption Data

In order to implement and evaluate our fair load shedding
schemes, we first focus on developing a realistic simulation
of energy consumption that can be attributed to homes in de-
veloping countries. In particular, we focus on domestic con-
sumption in Nigeria2, where the residential sector accounts
for 51.3% of consumption [Nwachukwu et al., 2014]. Be-
cause consumption data of households is not currently avail-
able for households in Nigeria as well as in most, if not all
African countries, we collect readily available household con-
sumption data of households in the USA, and adapt it to the
Nigerian context. We do this based on some identified sim-
ilarities between how electricity is consumed in households
within both countries.

In 2010, the average consumption of an electrified house-
hold in Nigeria was 570kWh. In contrast, 11, 698kWh of
electricity was consumed by a USA home in the same year3.
A reason for the wide contrast is the difference between the
average temperature of the two countries. The temperature
in the USA is such that, on average, a home in the country
expends energy on heating. For instance, in 2010, 41.5% of
the average electricity consumed within a home in the USA
was expended on heating, while 17.7% was expended on wa-
ter heating. In turn, only about 16% of the average electricity
consumed within homes in Nigeria is expended on cooling
[Yohanna et al., 2013]. Another reason for the difference in
the average electricity consumed between households in both
countries is that, on average, homes in Nigeria are poorer than
those in the USA. This factor directly impacts on the appli-
ances used within a home.

Thereupon, based on disaggregated data available on Dat-
aport, we consider the appliances commonly used in a typi-
cal home in the USA and in Nigeria. From Dataport, Figure
1 typifies a representation of the number of occurrences of
each appliance category across over 700 households in the
USA [Parson et al., 2015]. Conversely, studies show that the
appliances typically available in an electrified home in Nige-
ria include lighting, televisions, electric fans, DVD players,
washing machines, electric irons, air conditioners, refriger-
ators, sewing machine and water pumps [Oji et al., 2012;
Salmon and Tanguy, 2016; Emodi et al., 2017; Monyei et al.,
2018]4. Hence, we extract the data for the appliances that are

2Nigeria’s energy situation is representative of challenges
in Africa.

3https://goo.gl/DTJVY5
4See also https://goo.gl/1CheJc

Figure 1: Number of appliance occurrences in households (Data-
port).

common to both countries from Dataport. These include the
data for air conditioners, washing machines, light bulbs and
refrigerators. Likewise, to factor in weather considerations,
we collect the usage data of these appliances over 13 weeks
of the summer (from the first week in June to the last week
in August) for households in only Austin, Texas, one of the
warmest states in the USA5. This results in the data for 372
households. We aggregate these to make up overall house-
hold electricity consumption for each of these households.
In the next section, we present four heuristic household load
shedding algorithms.

3 Managing Loads at the Household Level
Our approach to load shedding proposes that shedding be
planned ahead. With estimates of electricity available for
supply from energy suppliers (i.e. operators) and day-ahead
predictions of household consumption, information that is
useful for planning load shedding a day ahead is available.
Additionally, our approach proposes that load be shed at the
household level, rather than at substation level, where parts of
the grid are disconnected from supply. This ensures that rev-
enue is maximized for the operator, and electricity that may
be wasted is instead supplied to agents. As an example, sup-
pose the deficit is 100kWh and a part being shed constitutes
a load of 150kWh. Then, a 50kWh load that would other-
wise have produced revenue for the supplier and distributed
among agents is lost. In contrast, if load is shed at the house-
hold level, a far more closer match to the deficit can be con-
sistently achieved.

Notably, our approach is based on previous research [Keel-
son et al., 2014; Azasoo and Boateng, 2015], where smart
retrofitted household electric meters were designed for use
in developing countries. The retrofits employ GSM (Global
System for Mobile communication) modules as a medium of
connection between individual meter and operator. This not
only provides individual meters the ability for transmitting
usage data securely, but also the ability for being remotely
disconnected and re-connected. The retrofits are also inex-
pensive (less than $10 per unit if mass produced) and can be
installed on existing meters. Based on these studies, we as-
sume household-level load control. To this end, in the remain-

5The average temperature in Austin over summer is
roughly the same as that in Nigeria (See http://www.holiday-
weather.com/austin/averages/ and http://www.holiday-
weather.com/lagos/averages/).



Algorithm 1: Grouping, then selecting a group of agents
for disconnection (i.e. Grouper Algorithm).

Input : H , lti , G, L
Output: St

1 for EACH HOUR t ∈ {1, 2, . . . , 24} do
2 if dt > 0 then
3 C = H ; // Set of agents available

4 L
′
= L ; // Consumption of all agents in C

5 St = P = {} ; // Create empty sets

6 L∗ = 0 ; // Initiate variable

7 while L
′
> dt do

8 random.sample hi ∈ C ; // Random selection

9 St.add(hi) ; // Add agent to St

10 C.remove(hi) ; // Remove agent from C

11 L∗ = L∗ + lti ; // Update consumption sum

12 L
′
= L

′
− lti ; // Update consumption sum

13 if L∗ > dt then
14 P.add(St) ; // Add set to set of sets

15 St = {} ; // Remove all agents in St

16 compute(NS∀St ∈ P ) ; // Sum of selected times

17 houses_shed(St) minNS ; // Shed set with minimum

der of this section, we present and assess the performance of
four heuristic approaches to shedding load at the household
level.

3.1 Heuristic Household Load Shedding
Algorithms

In designing the heuristics, the parameters used are herein de-
fined. Let an agent be represented as hi and H be the set of n
agents. Then, the hourly consumption for each agent at hour,
t ∈ {1, . . . , 24}, is represented as lti . Given this, the aggre-
gated hourly demand of the population of agents is defined
as L = {

∑n
i=1 l

t=1
i , . . . ,

∑n
i=1 l

t=24
i }. Similarly, the hourly

supply capacity available for the population of agents is rep-
resented as G = {Gt=1, . . . , Gt=24}. The hourly shortage
(or deficit) is then calculated as the difference between the
load L and the supplyG asD = {Lt=1−Gt=1, . . . , Lt=24−
Gt=24} = {dt=1, . . . , dt=24}. Let St represent the set of
m agents to be disconnected at hour t, and Lt∗ represent the
hourly consumption of agents in St, such thatLt∗ =

∑m
i=1 l

t
i .

Let nti be 1 or 0 for each hour an agent is disconnected or con-
nected respectively. Let Ni represent the aggregated number
of times each agent is disconnected. LetNS be the sum of the
aggregated number of times all agents in set St are discon-
nected. We now proceed to describe the heuristic algorithms.

Grouper Algorithm
The first heuristic algorithm creates different sets of agents,
such that each set’s total consumption is enough to offset the
deficit. Then, the algorithm selects the set with the minimum
total aggregated number of sheds NS , and disconnects all
agents contained in the selected set from supply. The heuris-
tic algorithm is described in Algorithm 1.

In Algorithm 1, for each hour there is a deficit, load shed-
ding action is initiated (Line 1-2). To shed load, a set of agents
whose sum of consumption is enough to offset the deficit will
be disconnected from supply. To prepare for this, some empty

sets and variables are created (Line 3-6). Agents are added
one after the other into a set St, until the sum of consumption
of agents yet to be selected is not enough to offset the deficit
(Line 7-15). These agents are selected randomly from the
population (Line 8), added into St (Line 9) and removed from
the population C (Line 10). Every time an agent is selected,
the sum of consumption of agents in St and C is updated
(Line 11-12). Once the sum of consumption of agents in St is
enough to offset the deficit (Line 13), St is added to another
set P (Line 14). After this, all the agents in St are removed
and the selection process begins again (Line 15). When all
sets have been created, the total number of times the agents
in these sets have been disconnected (NS) is aggregated (Line
16). The set with the minimum aggregated disconnection is
taken off electricity supply (Line 17).

We adopt this algorithm as the baseline. The next algo-
rithms attempt to personalize the consideration given to the
number of times households are disconnected.

Consumption-Sorter Algorithm
The second heuristic employs a scheme whereby when an
agent hi is disconnected, it is not disconnected again until
all other agents have been disconnected the same number of
times as itself. Thus, it seeks to achieve some sort of fairness
in terms of disconnections of individual agents. The heuristic
algorithm is describes in Algorithm 2.

Algorithm 2: Using consumption to select agents for dis-
connection while minimizing the difference in the number
of times all agents are selected (i.e. Consumption-Sorter
Algorithm).

Input : H , lti , G, L
Output: St

1 C = H ; // Set of agents available for shedding

2 for EACH HOUR t ∈ {1, 2, . . . , 24} do
3 if dt > 0 then
4 St = {} ; // Create empty set

5 L∗ = 0 ; // Initiate variable

6 C.descend_sort(lt) ; // Sort using consumption

7 while L∗ < dt do
8 select_ith hi ∈ C ; // Select in order

9 St.add(hi) ; // Add agent to St

10 C.remove(hi) ; // Remove agent from C

11 L∗ = L∗ + lti ; // Update total consumption

12 if C = {} then
13 C = H − St ; // Repopulate set

14 houses_shed(St) ; // Shed selected agents

In Algorithm 2, all agents in the population are made avail-
able for selection before the first shedding event (Line 1).
Then, whenever there is a deficit, load shedding action is ini-
tiated (Line 2-3). At the beginning of every shedding event,
an empty set St to be populated with agents that will be dis-
connected is created (Line 4). A variable that represents the
sum of the consumption of agents in St is also initiated (Line
5). The selection process aims to pick agents in a decreasing
order of their consumption. As such, agents are sorted in this
order (Line 6). Agents are added one after the other into St,
until the sum of consumption of agents in St is enough to off-



set the deficit (Line 7-13). These agents are selected in order
from the set C (Line 8), added into St (Line 9) and removed
from C (Line 10). Every time an agent is selected, the sum of
consumption of agents in St is updated (Line 11). Set C is re-
populated with agents in the entire populationH that have not
already been selected, if it becomes empty in the middle of a
selection process (Line 12-13). After the selection process,
the agents in St are disconnected from electricity supply.

The Consumption-Sorter Algorithm attempts to maintain
the similarity between the number of times households were
disconnected. However, the algorithm selected agents in or-
der of their consumption. The next algorithm is designed to
be agnostic to the consumption of the agents.

Random-Selector Algorithm
The Random-Selector heuristic differs from the
Consumption-Sorter heuristic in that it does not arrange
agents based on their consumption, and so does not select
agents for disconnection in any particular order. Instead, in
an attempt to avoid a bias based on consumption, it randomly
selects agents for disconnection during shedding events. The
heuristic algorithm is describes in Algorithm 3.

Algorithm 3: Selecting agents to shed while keeping the
similarity between number of times all agents are selected
(i.e. Random-Selector Algorithm).

Input : H , lti , G, L
Output: St

1 C = H ; // Set of agents available for shedding

2 for EACH HOUR t ∈ {1, 2, . . . , 24} do
3 if dt > 0 then
4 St = {} ; // Create empty set

5 L∗ = 0 ; // Initiate variable

6 while L∗ < dt do
7 random.sample hi ∈ C ; // Random selection

8 St.add(hi) ; // Add agent to set

9 C.remove(hi) ; // Remove agent from set

10 L∗ = L∗ + lti ; // Update total consumption

11 if C = {} then
12 C = H − St ; // Repopulate set

13 houses.shed(St) ; // Shed selected agents

As aforementioned, agents are selected randomly from C
(Line 7). Otherwise, the description of the algorithm is simi-
lar to that of Algorithm 2.

Inasmuch as the Grouper, Consumption-Sorter and
Random-Selector algorithms have, to some extent, been fair
when selecting agents, they have not directly considered the
comfort costs of agents when making these selections. The
next heuristic aims to factor this into consideration.

Cost-Sorter Algorithm
The fourth heuristic uses comfort costs I (defined in Section
4.1) in selecting agents for shedding. The heuristic aims to
select agents with the least comfort costs, while maintaining
a parity between the number of times agents are disconnected.
It is described in Algorithm 4.

In contrast to the heuristics implemented using Algorithms
2 and 3, the comfort costs of agents for the hour of load shed-
ding are collected (Line 4). In addition, agents are sorted in

Algorithm 4: Using agent comfort costs to select agents
to shed, while keeping the similarity between number of
times all agents are selected (i.e. Cost-Sorter Algorithm).

Input : H , lti , G, L, Ii
Output: St

1 C = H ; // Set of agents available for shedding

2 for EACH HOUR t ∈ {1, 2, . . . , 24} do
3 if dt > 0 then
4 READ Ii(t) ; // Collect Comfort values for t

5 St = {} ; // Create empty set

6 L∗ = 0 ; // Initiate variable

7 C.ascend_sort(δti) ; // Sort by comfort values

8 while L∗ < dt do
9 select_ith hi ∈ C ; // Select in order

10 St.add(hi) ; // Add agent to set

11 C.remove(hi) ; // Remove agent from set

12 L∗ = L∗ + lti ; // Update total consumption

13 if C = {} then
14 C = H − St ; // Repopulate set

15 houses_shed(St) ; // Shed selected agents

an increasing order of comfort costs (Line 7). Then, they
are selected for disconnection in this order (Line 9). Other-
wise, the description of the algorithm is also similar to that
of Algorithm 2.

Summarily, the Grouper Algorithm randomly selects
households into different groups until the aggregated con-
sumption of the households in each group is just enough to
offset the deficit, then disconnects the group with the least to-
tal number of disconnections from supply. The Consumption-
Sorter, Random-Selector and Cost-Sorter algorithms keep the
number of times agents are disconnected as close as possible
by using a queuing system to exempt a selected agent from
disconnection, until all other agents have been disconnected
after it. While the Consumption-Sorter Algorithm creates an
order of selection using consumption, the Cost-Sorter Algo-
rithm does the same using cost. The Random-Selector ran-
domly selects in no particular order. We evaluate these heuris-
tics in the section that follows.

4 Performance Evaluation of Heuristic
Algorithms

In this section, we assess the heuristics in Section 3.1 against
some fairness criteria that include the number of times each
agent is disconnected, the number of agents disconnected, the
individual discomfort inflicted on disconnected agents and
the aggregated comfort cost incurred by the system. We do
this using the utilitarian, egalitarian and envy-freeness objec-
tives of economic model designs (defined within this section
in Section 4.2). The heuristics are evaluated using the data
obtained in Section 2. We begin by defining and formulating
comfort costs for each agent.

4.1 Formulation of Comfort Costs
We define the comfort costs of agents using the amount of
electricity they consume within each hour of a week, with
respect to other hours of a week. We begin by learning



each agent’s normal consumption during each hour of the
week. We do this based on the premise that the correla-
tions between electricity consumed on unique days of the
week are stronger than those over different days of a week
over the same season, as opined by [Truong et al., 2013;
Do et al., 2016]. For this reason, we assume that an agent’s
consumption over a week in the same season fully represents
the agent’s consumption pattern in that season. We learn each
agent’s normal consumption pattern from historical data of
every four prior weeks, so that any changes in consumption
patterns is accounted for. Thus for an agent, hi, the normal
weekly consumption pattern, Zi, is a vector computed using
the following equation.

Zi =
(∑4

j=1 l
j,t=1
i

4
, . . . ,

∑4
j=1 l

j,t=168
i

4

)
(1)

Here, j is the number of weeks. Thereafter, we normalize
the vector Zi, so that the normal consumption pattern of all
agents falls within the range (ε, 1). This forms a vector of
comfort costs Ii for each agent. The vector provide two ben-
efits. Firstly, they create a platform on which all agents’ con-
sumption patterns can be uniquely quantified, without consid-
ering how much electricity the agent consumes with respect
to others. The second benefit is an extension of the first, in
that comparison between agents becomes possible because all
agent’s comfort costs are on the same scale. Given this, we
define the comfort cost, Ii, for an agent, hi, as:

Ii =
Zi

max
t
{Zi}

= (δt=1
i , . . . , δt=168

i ) (2)

Additionally, we assume that δti is a cost incurred by the
system in supplying a agent at time, t, or the discomfort
caused an agent when disconnected at time, t (i.e. ntiδ

t
i ).

4.2 Fairness Objectives Based on Comfort Costs
The computed comfort costs serve as tools for assessing our
heuristics against a set of objectives. Some predominant ob-
jectives in economic model design are the utilitarian, egali-
tarian and envy-freeness objectives [Mas-Colell et al., 1995;
Leite et al., 2009]. Specifically, [Leite et al., 2009] define
the utilitarian objective as the sum of individual utilities of
agents. In our domain, we use the comfort costs of agents
in calculating these utilities. In calculating these utilities, we
consider chore division. Chore division is a dual version of
the cake-cutting problem in which the divided resource is un-
desirable, so that each agent wants to get as little as possible
[Peterson and Su, 2009; Dehghani et al., 2018]. In this regard,
for all times an agent is disconnected during k number of load
sheds, an agent’s negative utility is uδ =

∑k
s=1 δ

s
i , where

δsi is the comfort cost of the agent during the hour of shed-
ding event St. To capture the performance of the heuristics
for the whole system, utilitarian social welfare is defined as
the addition of aggregated discomfort for n agents,

∑n
i=1 δ

∗
i ,

where δ∗i =
∑k
s=1 δ

s
i . Conversely, [Leite et al., 2009] de-

fine the egalitarian objective as the utility of the agent that
is currently worst off. In our domain, we adopt the egalitar-
ian criterion as the highest individual comfort cost incurred
by the system (or highest aggregated negative utility), as de-
fined by gδ = maxi{δ∗i }. In addition, envy-freeness is a
criterion of fair division that allocates resources to agents in

Heuristic Utilitarian Egalitarian Envy-freeness

Grouper 49047.96 356.30 309.28
Consumption-Sorter 48830.27 174.37 126.29

Random-Selector 53072.97 192.04 137.77
Cost-Sorter 52803.38 208.69 149.07

Table 1: Comparing fairness objectives, based on comfort costs.

such a way that no agent envies the allocation of another.
However, agents do not have information of the allocation
to others within our domain. For this reason, we adapt envy-
freeness in terms of measuring the maximum difference be-
tween the comfort allocated to all pair of agents (or maximum
difference between aggregated negative utilities), as defined
by yδ = {maxi,j{

∣∣δ∗i − δ∗j ∣∣}}. A fair load shedding scheme
should result in the lowest possible eδ , so that if the all agents
were aware of all allocations, the aggregate envy will be min-
imal.

Table 1 compares the utilitarian, egalitarian and envy-
freeness objectives, based on comfort costs. The Grouper
algorithm produces the maximum envyness, but performs ad-
mirably under the utilitarian approach to social welfare. The
Random-Selector algorithms performs second best under the
envy-freeness and egalitarian objectives, but generates the
highest utilitarian value. The Cost-Sorter algorithm does not
fulfill any of the objectives better than all others.

4.3 Fairness Objectives Based on Number of
Times Agents are Disconnected

In this section, we compare the heuristic algorithms based on
the number of times each agent is disconnected. The util-
itarian, egalitarian and envy-freeness objectives are adopted
herein based on chore division also. In Section 3.1, we de-
fined nti as 1, if an agent is disconnected at hour t, and
Ni as the aggregated number of times each agent is discon-
nected. As such, the utilitarian approach is described as uN =∑n
i=1Ni in this case. Conversely, the egalitarian approach is

described as gN = maxi{Ni}. Finally, for envy-freeness, we
employ the definition yN = maxi,j{|Ni −Nj |}. As with the
comfort costs, any fair shedding scheme should aim to mini-
mize these values.

As seen in Table 2, the Grouper Algorithm fails to outper-
form others under the egalitarian objective of social welfare
and in envy-freeness. The disparity between the number of
times agents are disconnected is suggested by its high envy-
freeness (in Table 1). However, it fulfills the utilitarian ob-
jective better than the Random-Selector and Cost-Sorter algo-
rithms. On the other hand, the Cost-Sorter algorithm achieves
its design purpose, as it causes the least discomfort for each
household disconnected (as seen in Table 3). Because of
the omission technique used within the algorithms, the dif-
ference between the number of times all agents are discon-

Heuristic Utilitarian Egalitarian Envy-freeness

Grouper 78159 317 180
Consumption-Sorter 74857 202 1

Random-Selector 86307 233 1
Cost-Sorter 95538 257 1

Table 2: Comparing fairness objectives, based on number of discon-
nections.



Heuristic Costs incurred per agent disconnected

Grouper 0.63
Consumption-Sorter 0.65

Random-Selector 0.62
Cost-Sorter 0.55

Table 3: Comparing comfort costs incurred per agent disconnected

nected using the Consumption-Sorter, Random-Selector and
Cost-Sorter algorithms is one.

The Consumption-Sorter algorithm minimizes all negative
utilities best, including those that consider comfort costs and
number of disconnections.

4.4 Other Performance Considerations
As stated in the introduction, an efficient load shedding
scheme can be described as one that sheds enough load to
offset the deficit, yet minimizes the difference between the
deficit and the load shed. All four heuristics work by select-
ing agents one after the other, until the sum of consumption
of the selected agents is enough to offset the deficit. There-
fore, to take a closer look at the difference between the loads
cut and the deficits, we present the results obtained by the
heuristic used as a baseline (i.e. Grouper algorithm) for the
first 50 shedding events. Figure 2 shows that the loads cut
match the deficits closely. This is because shedding load at
the household level gives the heuristics a finer control over
the amount of load to be shed, resulting in closer match to the
deficit. With regards to this, there is the suggestion that this
class of heuristics is efficient.

Another consideration is to have a similar proportion of the
population of agents shed, based on a factor of the number of
agents cut per kWh deficit. That is, if one agent is discon-
nected when there is a deficit of 1kWh, 100 agents should
be disconnected when the deficit is 100kWh. Of course, this
factor will not be constant because consumption typically dif-
fers over each hour in a day. However, it is desirable that this
proportion be similar, so that as much as is possible, an equal
proportion of the grid that depends on the deficit is discon-
nected at each shedding event. Therefore, we compare the
proportion of the population of agents shed by all heuristics
during the first 50 individual shedding events in Figure 3.

As seen in Figure 3, the Grouper algorithm produces the
best ratios of agents disconnected to kWh load shed. Con-

Figure 2: Deficit and load shed for the first 50 shedding events
(Grouper Algorithm).

Figure 3: Number of agents cut off per kWh load shed.

versely, the Consumption-Sorter and Cost-Sorter algorithms
produce the most varying effects on the proportion of agents
disconnected. This is because the algorithms select in dif-
ferent orders, but maintain the similarity between the num-
ber of times agents are selected. The Consumption-Sorter al-
gorithm selects in order of reducing consumption, while the
Cost-Sorter selects in order of increasing cost. However, be-
cause they both maintain the similarity between number of
times agents are shed, the number of agents they select to off-
set the deficit during shedding events differ more.

It is noteworthy that we do not aim to determine which
heuristic is best, but to present a number of heuristics that
can be employed within different environments and condi-
tions. For example, an environment that aims to discon-
nect a regular number of households during load shedding
events may employ the Grouper or Random-Selector heuris-
tic, while another that wants to disconnect as few houses as
possible during every load shedding event may implement the
Consumption-Sorter or Cost-Sorter. In addition, some com-
ponents of these heuristics may be combined to a desired ef-
fect, as drawn in our conclusions below.

5 Conclusions

This paper proposed a new approach to load shedding, and
presented four heuristic algorithms for shedding load at the
household level. Results obtained from the implementation
of the heuristics showed the extent to which they satisfied pre-
defined fairness objectives. Although none of the heuristics
fulfilled all objectives better than the other, each of them pro-
duced some desirable effects. As this is a gap in literature,
the proposed class of heuristics can serve as a benchmark for
designing load shedding algorithms in the future, and some
qualities of individual heuristics can be adapted into designs
that suit different environments, based on the desired objec-
tives. Likewise, the heuristics can serve as a benchmark in
designing solutions for allocating other scarce resources (e.g.
water allocation problems addressed by [Read et al., 2014;
zhen Song et al., 2016]). For future work, the fair load shed-
ding problem can be modelled as a goal programming prob-
lem where the social welfare objectives modelled in Section
4 are used as objective functions, with constraints dependent
on the system’s characteristics.
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