
A Report on PRiME Code Generation Activities

Mohammadsadegh Dalvandi, Asieh Salehi Fathabadi and Michael Butler

{md5g11, asf08r, mjb}@ecs.soton.ac.uk
University of Southampton

In this abstract, we briefly present our experience in generating code from Event-B
models of run-time management software for multi-core embedded platforms as part of
the PRiME project1. We discuss the current limitation in Event-B Code Generation
(CG) and outline our plan for a new CG tool.

1 RTM Code Generation

Development of RTM software can require laborious manual adjustment across different
hardware platforms due to their different architectural characteristics. For instance, the
same Q-Learning RTM [4] algorithm needs to be adjusted for different ARM-based plat-
forms like Cortex A7 and A15, because each of the platforms support different sets of
frequencies. To tackle this, we used Event-B to develop platform-independent models of
the RTM software and extended the Tasking Event-B CG plug-in [3] to facilitate gen-
eration of platform-dependent code from the abstract Event-B model. The extension to
the Tasking Event-B plug-in involves the introduction of expanding guards. Expanding
guards direct the CG to generate an arbitrary number of branches in the generated code
based on a single event and an expanding parameter. Using this approach, the CG can
instantiate the platform independent model for an specific target platform and generate
the code with very minimal modification to the Event-B model. We used this approach
for generating platform-specific code for Cortex A7 and A15 platforms from a single
Event-B model of the Q-Learning RTM algorithm.

2 Limitations

Our experiments with the Tasking Event-B CG plug-in revealed a number of limitations of
the tool. We had to make a number of modifications to the tool to be able to generate the
desired code. Here we outline some of the limitations and issues that we have identified:

• Program Structure: One of the most important limitations of the current CG
plug-in is its restricted facilities for defining the program structure. The tasking
body (i.e. algorithmic structure of the model) does not allow introduction of nested
constructs like nested branches.

1PRiME: Power-efficient, Reliable, Many-core Embedded systems , www.prime-project.org

1



• Dependencies: The CG tool is highly dependent on other Rodin plug-ins, e.g.
Theory Plug-in for translation rules. While it is a good practice to use other
available plug-ins for common functionalities, it makes it difficult to maintain the
tool.

• Modularisation: While the CG tool supports modularisation based on a fixed
number of concurrent tasks, it does not support modularisation based on procedural
abstraction.

• Concrete Program Structure: The current tool allows the introduction of the
program structure at the concrete level only. This relies, more than anything else,
on the intuition of the developer and their understanding of the algorithm.

3 A New Code Generation Tool

Our experience with the Tasking Event-B CG tool shows that there is a need for designing
and implementing improvements to address the aforementioned limitations. The tool
should be self-sufficient in terms of its basic operations as much as possible to avoid
extension and maintenance complications in later stages. We have started developing a
CG tool with having the following features in mind:

• Algorithmic Refinement: The new CG tool will provide facilities for introduction
of program structure from the abstract level and stepwise refinement of the structure
towards a concrete level based on our previous work [1].

• Verifiable Code: In addition to executable code, the tool will generate code
contracts (assertions) for code-level verification [2].

• Modular Programming: The tool will enable the user to define independent
procedures (methods/functions) and generate modular code based on procedural
abstraction.

References

[1] Mohammadsadegh Dalvandi, Michael Butler, and Abdolbaghi Rezazadeh. Derivation
of algorithmic control structures in Event-B refinement. Science of Computer Pro-
gramming, 148(Supplement C):49 – 65, 2017. Special issue on Automated Verification
of Critical Systems (AVoCS 2015).

[2] Mohammadsadegh Dalvandi, Michael J. Butler, and Abdolbaghi Rezazadeh. Trans-
forming Event-B models to Dafny contracts. ECEASST, 72, 2015.

[3] Andrew Edmunds and Michael Butler. Tasking Event-B: An extension to Event-B
for generating concurrent code. Event Dates: 2nd April 2011, February 2011.

[4] Asieh Salehi Fathabadi, Michael J. Butler, Sheng Yang, Luis Alfonso Maeda-Nunez,
James Bantock, Bashir M. Al-Hashimi, and Geoff V. Merrett. A model-based frame-
work for software portability and verification in embedded power management sys-
tems. Journal of Systems Architecture, 82:12 – 23, 2018.

2


