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ONLINE MACHINE LEARNING FOR COMBINATORIAL DATA

by Shaona Ghosh

With an ever increasing demand on large scale data, difficulties exist in terms of pro-

cessing and utilising the information available. In particular, making decisions based

upon sequentially acquired data where only limited information is initially known, is

an important problem. Often the input data in such problems have a complex com-

binatorial structure, for example consider an internet advertising system that manages

advertisement placement over a network of websites. The ways of placing m different

advertisements on n websites with replacement, is an exponential number of mn possi-

ble combinations that scales badly with large n. As a combinatorial problem, the data

can be manipulated within a frequently occurring computational object called graph,

allowing the structure to be exploited for intelligent automatic processing. Traditionally,

machine learning techniques require a separate initial training phase before predictions

can occur on unseen data. However, the sequential nature of some problems necessitate

real-time prediction, thereby making many existing techniques unsuitable. Online learn-

ing is a field of machine learning that has an ensemble of algorithms that learn from

sequential streaming data, where the learner cannot control or influence the data collec-

tion procedure. Although these existing online methods have theoretical guarantees on

performance, in the context of combinatorial complexity of graphical structures they are

not yet fully matured. In this thesis, a series of algorithms that attempt to overcome the

shortcomings of existing online algorithms are presented. The discrete graphical model,

called the Ising model, is explored to develop online approximation algorithms for label

prediction. A deterministic approximation algorithm with sequential guarantee is de-

veloped, by capturing the persistent structures of maximum flows and minimum cuts in

the network and an efficient enumeration of all label consistent minimum cuts. Novel

mistake bounds are provided that improve and match previous performance bounds in

the literature. Additionally, a variational approximation technique using mean field ap-

proximation is built for online prediction of multi-class labelling on the Ising model.

An online sequential action selection algorithm for the limited feedback setting (bandit

feedback) and side information is developed with a linear programming relaxation of

the classic maximal flow problem. Finally, the multiple objective optimization problem

with conflicting objectives and full feedback is studied and an online algorithm is built

that outperforms the traditional approaches under similar assumptions.

mailto:shaona.ghosh@ecs.soton.ac.uk


Contents

Declaration of Authorship viii

Acknowledgements ix

1 Introduction 1

1.1 Online Learning Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis Goals and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Previous Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Online Learning Perspective 9

2.1 Machine Learning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Semi Supervised Learning over Graphs . . . . . . . . . . . . . . . . . . . . 10

2.3 Online Learning and Batch Learning . . . . . . . . . . . . . . . . . . . . . 11

2.4 Online Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Online Labelling over Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Ising Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Exact, Approximation and Optimization Techniques . . . . . . . . . . . . 20

2.7.1 Exact Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7.2 Mean Field Variational Approximation . . . . . . . . . . . . . . . . 21

2.7.3 Linear Programming Optimization . . . . . . . . . . . . . . . . . . 21

2.8 Mistake Bounds in Online Learning Framework . . . . . . . . . . . . . . . 22

2.8.1 Ising Model and Weighted Experts . . . . . . . . . . . . . . . . . . 23

2.8.2 Halving implementing Nearest Neighbour on a Path Graph . . . . 24

3 Online Prediction at the Limit of Zero Temperature 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Ising Model in the Limit Zero Temperature . . . . . . . . . . . . . . . . . 31

3.6.1 The Picard-Queyranne graph . . . . . . . . . . . . . . . . . . . . . 32

3.7 Mistake Bounds Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7.1 Per-cluster mistake bounds for regular graph label prediction al-
gorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7.2 PQ-games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7.3 Global analysis of prediction at zero temperature . . . . . . . . . . 40

ii



CONTENTS iii

3.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8.1 Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8.4 Graph Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9 Preliminary Experimental Results . . . . . . . . . . . . . . . . . . . . . . 47

3.10 Extensive Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 48

3.10.1 Simulated Grid Images . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.10.2 Graphs from Simulated Data . . . . . . . . . . . . . . . . . . . . . 49

3.10.3 Simulated Data Robustness Experiments . . . . . . . . . . . . . . 52

3.10.4 Dataset Robustness Experiments . . . . . . . . . . . . . . . . . . . 57

3.10.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 66

4 Online MeanField Approximation for Graph Labelling 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Mean Field Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.1 Approximating the Posterior . . . . . . . . . . . . . . . . . . . . . 74

4.5.2 Minimizing the KL divergence . . . . . . . . . . . . . . . . . . . . 74

4.5.3 Minimizing the Entropy . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.4 Online Meanfield Game . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.2 Toy Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6.3 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 82

5 Ising Bandits with Side Information 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 Semi-supervised Graph Classifier Complexity . . . . . . . . . . . . 86

5.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Ising Model at Low Temperature . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Multi-Armed Bandit Problem (MAB) . . . . . . . . . . . . . . . . . . . . 91

5.6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.7 Maximum Flow Computation . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7.1 Playing Ising Bandits . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.8.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.8.2 Synthetic Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.8.3 Graph Generation from Datasets . . . . . . . . . . . . . . . . . . . 98

5.8.4 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.9 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



CONTENTS iv

6 Online Experts for Multiple Objectives 103

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.6 Online Experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.6.1 Independent Weight Update (IWU) . . . . . . . . . . . . . . . . . 109

6.6.2 Relative Weight Update (RWU) . . . . . . . . . . . . . . . . . . . 111

6.6.3 Pareto Descent Weight update (PDWU) . . . . . . . . . . . . . . . 112

6.6.4 Sampling Importance Vector . . . . . . . . . . . . . . . . . . . . . 113

6.7 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.8 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Conclusions 117

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

References 121



List of Figures

1.1 Example Network Constructed from Dataset . . . . . . . . . . . . . . . . 2

2.1 Minimum Energy Labellings on Networks . . . . . . . . . . . . . . . . . . 20

2.2 Ising 2D lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 1-NN Prediction on Path Graph . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Disjoint Path Cover. Image courtesy Mark Herbser. . . . . . . . . . . . . 25

3.1 Computing the Picard-Queyranne graph . . . . . . . . . . . . . . . . . . . 33

3.2 Building a Picard-Queyranne graph . . . . . . . . . . . . . . . . . . . . . 34

3.3 Illustration of PQ graph collapse 0-temp Ising Model . . . . . . . . . . . . 35

3.4 Longest-path and 0-Ising online prediction . . . . . . . . . . . . . . . . 38

3.5 Dense clusters in 0-temp Ising Model . . . . . . . . . . . . . . . . . . . . 41

3.6 Simulated Grid Image: Stripes . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Simulated Grid Image : Checker . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 Simulated Grid Image : Squares for N = 3600 . . . . . . . . . . . . . . . 49

3.9 Simulated Grid Image : Circles . . . . . . . . . . . . . . . . . . . . . . . 50

3.10 Synthetic Data Experiment : Graph visualization of torus Stripes using
Gephi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.11 Synthetic Data Experiment : Graph visualization of grid image Stripes

using GraphViz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.12 Synthetic Data Experiment : PQ Graph generated from Stripes . . . . . 53

3.13 Synthetic Data Experiment : PQ Graph generated from Stripes Size 152 53

3.14 Synthetic Data Experiment : Original graph of Checker . . . . . . . . . . 54

3.15 Synthetic Data Experiment: Original graph of Checker . . . . . . . . . . 55

3.16 Synthetic Data Experiment: PQ graph of Checker . . . . . . . . . . . . . 56

3.17 Synthetic Data Experiment: Graph of Squares . . . . . . . . . . . . . . . 57

3.18 Synthetic Data Experiment: PQ graph of Squares . . . . . . . . . . . . . 58

3.19 Synthetic Data Experiment: PQ graph of Circles . . . . . . . . . . . . . 58

3.20 Synthetic Data Experiment: Varying Problem Size Circles . . . . . . . . 59

3.21 Synthetic Data Experiment: Comparison with MinDestruct on Squares . 59

3.22 Synthetic Data Experiment: Balanced Vs. unbalanced Labels on Circles 60

3.23 Synthetic Data Experiment: Plots for non torus and non-torus Checker . 60

3.24 Dataset Experiment: Plot for Isolet-1 with varying K and MST . . . . 61

3.25 Dataset Experiment: Plot for 20 newsgroups Varying class distribution . 61

3.26 Dataset Experiment: Plot for varying partitions of data on WebSpam . . . 62

3.27 Dataset Experiment: Plot for Isolet Varying partitions of data . . . . . 62

3.28 Dataset Experiment: Plot for Isolet1 with K = 4 . . . . . . . . . . . . . 63

v



LIST OF FIGURES vi

3.29 Dataset Experiment: Plot for WebSpam Varying large number of available
labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.30 Dataset Experiment: USPS 1 Vs. 2 Edge Elimination . . . . . . . . . . . . 64

3.31 Dataset Experiment : Plot for Webspam Balanced Edge Elimination . . . 65

4.1 Toy Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Online meanField Approximation Algorithm. . . . . . . . . . . . . . . . . 79

4.3 Toy Graph Result: Marginal Probability . . . . . . . . . . . . . . . . . . . 80

4.4 Toy Graph Results: Marginal Probability versus θ . . . . . . . . . . . . . 84

5.1 Octopus Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Octopus Graph Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Computing the Max-flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Ising Bandits Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Squares image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6 Synthetic Dataset Experiment on Squares . . . . . . . . . . . . . . . . . . 99

5.7 USPS 2 Vs.3 with K = 3, N = 1000, L = 8. . . . . . . . . . . . . . . . . 100

5.8 Experiments on ISOLET with K = 3, N = 1560, L = 128. . . . . . . . . . . 100

5.9 USPS 4 Vs.7 Varying Connectivity Experiments . . . . . . . . . . . . . . 101

5.10 USPS 1 Vs.2 Robustness Experiments . . . . . . . . . . . . . . . . . . . . 102

6.1 Pareto frontiers for runtime minimization under power budget . . . . . . 104

6.2 Pareto Descent Problem Formulation . . . . . . . . . . . . . . . . . . . . . 108

6.3 Results of IWU with Pareto problem formulation . . . . . . . . . . . . . . 110

6.4 Further results of IWU with Pareto problem formulation . . . . . . . . . . 111

6.5 Instantaneous regret of learner for IWU, RWU and PDWU . . . . . . . . 113

6.6 Results of PDWU with Pareto problem formulation . . . . . . . . . . . . . 115

6.7 Further results of PDWU with Pareto problem formulation . . . . . . . . 116



List of Tables

3.1 Datasets used in this 0-temp Ising Model. . . . . . . . . . . . . . . . . . . 44

3.2 Experiments of 0-temp Ising Model . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Performance over N,L,K for USPS for 0-temp Ising model . . . . . . . . . . 66

3.4 1 Vs. 2 Random Spanning Trees on 0-temp Ising model . . . . . . . . . . 67

4.1 Ising Bandits on Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Ising Bandits on 20 newsGroups . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Ising Bandits on webSpam . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Ising Bandits on ISOLET . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Datasets used in Ising Bandits. . . . . . . . . . . . . . . . . . . . . . . . . 97

vii



Declaration of Authorship

I, Shaona Ghosh , declare that the thesis entitled Online Machine Learning for Com-

binatorial Data and the work presented in the thesis are both my own, and have been

generated by me as the result of my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as: (Ghosh and Prügel-Bennett, 2015a),
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Chapter 1

Introduction

Combinatorics is a branch of discrete mathematics that has many interesting appli-

cations in everyday life. With strong connections to computer science, statistics and

algebra, combinatorial problems constitute arranging discrete structures such that they

satisfy a certain pattern while being able to provide solutions such as validating if the ar-

rangement is feasible, counting of the number of possible patterns or finding the optimal

arrangement among others (Lawler, 1985; Cameron, 2007). Some examples of com-

binatorial problems include the assignment and allocation problems like the knapsack

problem, load balancing, travelling salesman problem, transportation and network flow

problems among others. Algorithms addressing such combinatorial problems broadly

fall into two categories that of, optimization and approximation. One example of com-

binatorial optimization is finding the best trade-off solution among multiple conflicting

objectives.

The fundamental elements of combinatorics are the graphs, which are the structured,

flexible and powerful tools that model pairwise relationships among objects in the real-

world. The focus of this thesis is to study such combinatorial structures with a purpose

of developing machine learning algorithms for them. The central goal of a machine

learning algorithm is to produce a model of an observable system or behaviour, which

can be used to make future predictions and better decisions. Machine learning is used

in almost all applications today where there is an abundance of data that needs to be

processed, analysed, and made valuable future predictions from, that can impact the

society. An example of such applications of machine learning in the medical sector, is in

predicting stroke in patients with atrial fibrillation (Letham et al., 2015) or using deep

learning for protein structure prediction (Wang et al., 2016). Whilst combinatorial prob-

lems have a different ultimate objective as mentioned in the previous paragraph, there

is a significant overlap between the two fields of study where predictive algorithms can

be built for combinatorial data by capturing the rich structural information. Networked

data are ubiquitous in this era of the social, economical and technological revolution

resting on the backbone of the internet; where the data available has a rich structure of

1



Chapter 1 Introduction 2

Figure 1.1: An example network constructed from combinatorial concentric
circles structured dataset called Circles in Chapter 3.

inter-relationships among its instances, resulting in either an extrinsic graphical struc-

ture or dependencies that can be modelled as a graph. Figure 1.1 shows an example

network constructed from a dataset. With the spread of mobile phones, sensors, em-

bedded devices and industrial robots, the ability to collect and generate interdependent

data is on an all time high. This enormity of data is supplemented with social software

systems like LinkedIn, Twitter and many others, that connect people around the globe

as a network, allowing them to share the data they collect, generate or distribute data
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in real-time. Further, with the ‘Internet of things’, appliances, vehicles and wearable

technologies can communicate with each other. The resulting trend is better and bigger

ways of “collecting, creating, managing and storing of data” also known as Big Data (Ex-

ecutive Office of the President, 2014). With such a phenomenal rise in data, there is

the imperative requirement for computational techniques to analyse, predict and make

better decisions from the data. The modern machine learning paradigm provide power-

ful algorithms that not only analyze the vast amount of data but make accurate future

predictions (Ghahramani, 2015; LeCun et al., 2015). However, most of the machine

learning methods do not take into account the robustness of the algorithms, which is an

important criterion for today’s dynamic data. Further, when the input data size is that

of Big Data, in the order of millions of data records; having a separate training phase as

most conventional machine learning methods practise, is not desirable; predictions need

to be made on the fly in real-time.

For example, consider the social network of friends grouped by evolving blog communities

with constantly shifting trends or financial markets with constantly varying buy/sell

pricing. Both of these are examples of very non stationary systems where algorithms

need to dynamically learn to predict trending topics, or which commodity to buy or

sell, given the current context and the past. Some might need to simultaneously predict

which stock to sell and at what price. Naturally, the questions that arise are: how do the

algorithms predict on the fly without having a separate training phase and a prediction

phase? Additionally, more complex questions are: how does the learning algorithm

capture the sequential nature of events? Can the algorithms guarantee that they will be

efficient regardless of any sequence of data they see, in any order? Are these methods

adaptive enough to predict based on real-time changes?

In this thesis, theoretically and empirically motivated machine learning algorithms are

developed, that address problems like these. Specifically, extensions to a particular ma-

chine learning framework called ‘online learning’ are made, that provide robustness and

worst case theoretical guarantees besides being fairly efficient in practice, for sequential

decision making, for data on the fly. The online learning techniques are adaptive se-

quential algorithms that learn and make predictions in real-time. In particular, online

learning techniques for data that has an extrinsic graphical structure or that can be

represented as a graph with rich combinatorial structure are designed. Further, algo-

rithms for problems where the feedback from the dynamic environment varies from full

feedback to partial feedback settings are developed, with a motivation of building robust

algorithms. Specific focus is given to semi supervised learning where the algorithm needs

to simultaneously learn from a few training and majority of test examples at the time of

prediction. Broadly, the goal of this thesis is to create online machine learning methods

for structured data that are robust in their performance under various dynamic settings.
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1.1 Online Learning Framework

Online learning is a sequential prediction framework where the learner observes elements

belonging to a sequence y1, y2,..., yT , while playing a game with the environment within

which it functions, for a length of time T . The learning proceeds in a series of trials

and at every round t = 1, 2, ..., the learner predicts the t-th symbol yt of the sequence

based on the previous t−1 observations (Cesa-Bianchi and Lugosi, 2006), before the true

prediction is revealed by the environment. In contrast to the standard batch learning,

here the learner generates the training set as it plays the game (Seldin et al., 2011). The

other contrast to batch learning is that no assumptions are made about the generative

process for the outcomes yt (could be deterministic, stochastic, or adversarial). The

classical machine learning statistical theory of sequential prediction uses the loss function

(risk) to measure the discrepancy between predicted value and the true outcome in order

to evaluate the learner. To avoid assumptions on how the outcomes are generated, the

online learning framework does not use a single fixed baseline for comparison, instead

it uses a class of reference forecasters or experts. The experts provide their predictions

to the learner before the next outcome is revealed. The learner predicts by using the

expert’s prediction so that the cumulative loss of the learner is close to the best expert

in the class. The difference between the learner’s cumulative loss and that of an expert

is called regret; a measure of how much the learner regrets in not following the advice

of a particular expert in hindsight. The abstract expert could be thought of as a black

box of unknown computational power, a hypothesis, another machine learning algorithm

or a human expert (Herbster and Warmuth, 1998). The learner maintains a weight on

every expert; weight implies confidence of the learner in that expert’s prediction, the

weight is decreased in every round as a function of the loss of the expert (Herbster and

Warmuth, 1998).

Online learning can function in two different settings in terms of the information or feed-

back available to the learner from the environment; full feedback and partial feedback.

The learning with experts discussed above is the full information case, where the learner

observes the full loss function lt for trial t as feedback and can use this loss function

in choosing its action by employing first order or second order optimization. In the

partial information case also known as the bandit setting, feedback at time t, consists

of scalar value lt(at), where at is the action selected by the learner before suffering the

loss enabling only zeroth order optimization to be used (Rakhlin et al., 2009).

When the learning proceeds in an adversarial environment, the adversary can delib-

erately try to fool the learner by making the cumulative loss of the on-line learning

algorithm arbitrarily large by asking the learner to predict on the same data point every

round or by providing a completely wrong value as the true prediction (Shalev-Shwartz,

2012). To restrict the power of the adversary, it is assumed that all outcomes are gen-

erated from some target mapping h∗ : X → Y . Also h∗ belongs to a fixed hypotheses
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set H that is known to the learner; both h∗ and the sequence of data points to predict

on are chosen by the adversary. Under some relaxations, the learner needs to make

minimal number of mistakes with its predictions. On further relaxation of the problem,

the learner is required to be competitive with the best predictor from the set H and

acquire as low regret as possible (Shalev-Shwartz, 2012). As mentioned earlier, regret

measures how sorry the learner is in not following the advice of some hypothesis h∗ ∈ H
which can be formally defined as:

RT (h∗) =
T∑
t=1

l(pt, yt)−
T∑
t=1

l(h∗(xt), yt), (1.1)

where l is the loss function measuring difference between predicted value and true value,

pt is the prediction of the learner, yt is the true value, h∗(xt) is the prediction of the

best expert in hindsight, and T is the number of examples seen by the learner so far.

For non-trivial algorithms it is possible to obtain regret that is sub-linear in the number

of rounds played.

Meaningful information can be obtained from the regret by applying assumptions on the

feedback received from the adversary. More often in the framework of online learning,

to make some progress and for simpler analysis, relaxations are made to the adversary’s

power as discussed previously. It is assumed that the adversary is oblivious to the

learner’s strategy. While this approach of having a restricted adversary is more widely

adopted, realistic settings do not conform to this assumptions on the adversary’s power.

In a realistic setting the action of the learner changes the environment adversely for

achieving simultaneous objectives and affects the loss suffered by the learner. To model

such situations, the adversary can be thought of adopting a stronger role. Several papers

have addressed a non-oblivious adversary as evident from literature such as learning with

adaptive rates (Auer et al., 2002b), randomization (Hutter and Poland, 2004, 2005),

regularization (Cesa-Bianchi and Lugosi, 2006; Rakhlin et al., 2009).

1.2 Thesis Goals and Contributions

The focus of this thesis is to develop online learning algorithms for prediction over graphs

and differential feedback settings. At the beginning, the notion of the performance mea-

sure inside the online learning framework is introduced. This is followed by introducing

the full feedback and limited feedback scenarios. Both the settings address real-life based

problems that demand such feedback requirements. Then, inside the semi-supervised

structure of learning, the concept of online graph labelling is introduced. Specifically,

emphasis is placed on a very important graphical model, that provides an efficient struc-

tural insight into the graph labelling problem. In particular, the thesis statement can

be stated as
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1. Review and build the notion of “cut” as a regularizer that induces a specific distri-

bution on the vertices of a graph and develop sequential algorithms capable of learning

from labelled and unlabelled data, while predicting the label of an unlabelled vertex.

2. Develop adaptive learning procedures for other constrained scenarios like full and

partial feedback, to enable efficient sequential action selection and multiple objective

optimization.

More specially, the central goals of the thesis as listed above are divided into sub goals

that span individual chapters in order to:

1. Build semi-supervised online classification algorithms for graph labelling problems,

constrained by large sparse graphs, with a few available labels and majority un-

known labels, through (a) deterministic approximation algorithm (b) probabilistic

variational approximation algorithm.

2. Extend the online algorithms to work under the partial feedback settings, that

perform a sequential action selection problem within a graph labelling problem

inspired by real life examples.

3. Develop online algorithm for the full feedback setting, based on predicting a Pareto

optimal front on multiple objectives.

An underlying unified objective that is meant to be achieved through all the above

goals is to build sequential, adaptive learning algorithms, that are robust to (a)

large sparse datasets having rich structure (b) multiple feedback settings motivated

from real-life examples and to provide an intuitive, theoretical grounding along

with an empirical assessment of standard benchmarks, for the algorithms that are

designed in this thesis.

Essentially, this objective is made possible by the efficient use of the structural

information in the data, which forms the core of the main tool for learning and

prediction. In one line, this thesis studies the robustness of online algorithms

on structured data under a variety of learning conditions inspired from real-life

applications.

1.3 Previous Publications

The contributions of this thesis led to the following publications:

• Ghosh, S. and Prügel-Bennett, A. (2015a). Ising bandits with side information. In

Machine Learning and Knowledge Discovery in Databases, volume 9284 of Lecture

Notes in Computer Science, pages 448–463. Springer International Publishing
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• Ghosh, S. and Prügel-Bennett, A. (2015b). Online mean field approximation for

automated experimentation. In Proceedings of The 4th Workshop on Machine

Learning for Interactive Systems, volume 43, pages 31–35. Journal of Machine

Learning Research

• Ghosh, S., Lovell, C. J., and Gunn, S. R. (2013). Towards pareto descent direc-

tions in sampling experts for multiple tasks in an on-line learning paradigm. In

Proceedings of the AAAI Spring Symposium Series of Lifelong Machine Learning

2013, volume 13 of SS-13-05. AAAI Press

• Herbster, M., Pasteris, S., and Ghosh, S. (2015). Online prediction at the limit

of zero temperature. In Advances in Neural Information Processing Systems 28,

pages 2917–2925. Curran Associates, Inc

1.4 Organization of the Thesis

Chapter 2, provides a background of the field of research in this thesis and lays the

foundation for the work discussed in the succeeding chapters. It begins with an overview

of the field of machine learning leading on to online learning. Specifically, the methods

on how to treat the data with intrinsic and extrinsic graphical structure are highlighted.

This leads on to a description of the graph labelling background under a semi-supervised

setting. The chapter is concluded with a review of classical methods for improving

performance on such problems by adopting the online learning methodology.

Chapter 3 is joint work with Mark Herbster and Stephen Pasteris, first published

in (Herbster et al., 2015). This chapter investigates the online label prediction at the

limit of zero temperature on an Ising model (Ising, 1925) through a deterministic ap-

proximation technique. My first main contribution in this published work is in building

simulation experiments to validate our intuition and formulate our idea. The second

main contribution is in developing and implementing our approximation algorithm from

scratch and other competitor algorithms in parallel. The third main contribution is

in conducting of the extensive empirical evaluation of our methods on multitude of

datasets, followed by validation and analysis against the state-of-the-art. Mark Herb-

ster is responsible for the main idea, and the main author for the published version of

the paper. Both Mark Herbser and Stephen Pasteris are responsible for the theoretical

analysis of our method.

Chapter 4 studies the variational mean field approximation technique for online semi

supervised graph labelling, published in (Ghosh and Prügel-Bennett, 2015b). A de-

coupled factored distribution is used to approximate the posterior distribution at low

temperatures on an Ising (Ising, 1925) model.
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In Chapter 5, the partial feedback environment of online bandits is studied, within the

contextual game of latent semi-supervised graph labelling. This work was first published

in (Ghosh and Prügel-Bennett, 2015a). The online bandits serve as a combinatorial

action set for the learning algorithm to play the sequential decision making game.

Chapter 6 investigates a slightly different but extremely important combinatorial prob-

lem of that of multiple objective optimization in the light of online learning with experts

or full feedback. The work addresses the important requirement of adaptive sequential

methods in the context of our case study. This work is published in (Ghosh et al., 2013).



Chapter 2

Online Learning Perspective

Understanding the connections between different categories of learning, under various

assumptions is imperative for the efficient use of machine learning to solve real problems.

The machine learning field of study is primarily a data driven field. Not every machine

learning solution is suited for every realm of application. Being able to manipulate the

data efficiently, interpret, analyze and make valuable predictions from it, depend on a

multitude of factors: nature of the problem that the algorithm is trying to solve, the

data itself (structured, noisy, sequential, generative), feedback from the environment,

constraints, computational power among others.

In this chapter, we draw the connections between the interconnecting elements of ma-

chine learning within which our work functions. In addition to reviewing the standard

approaches, we elucidate how they are related to each other and why they are important

in the context of the problems we are interested in. This chapter lays the foundation for

our work in the chapters that follow.

2.1 Machine Learning Techniques

Standard machine learning approaches fall within the purview of two schools of learning:

inductive and transductive. Consider a function h that maps input (instance) x to

output (label) y by y = h(x) where y ∈ {−1, 1}. Given an input sequence, {(xi, yi) :

i = 1, · · · , n}; the objective of inductive learning is to deduce the function h and then

predict the label yn+1 of unseen test instance xn+1 (Delalleau et al., 2005; Chapelle

et al., 2006a,b; Joachims, 1999; Bousquet, 2002), where n is the number of instances.

An example of this type of learning is in pattern recognition, when the algorithm trains

on training image patterns and predicts on unseen test patterns. The other name for

this method of learning is supervised learning. Examples of supervised learning are

neural networks, decision trees, support vector machines and linear regression among

9
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others. The limitations of this method is in the requirement of a separate training

phase and the availability of training labels, that is expensive to obtain. If with the

similar sequence, there are no training labels, and the goal of the learning algorithm is

to simply learn the mapping function h without predicting the labels as {(xi, yi) : i ∈
1, · · · , n} ∪ {x′1, · · · ,x

′
m} → h, then the type of learning is induction with unlabelled

data or unsupervised learning. x
′
1 is the unlabelled data. Examples of unsupervised

learning are clustering (k-means), dimensionality reduction (PCA).

Semi Supervised learning is the middle-ground between supervised and unsupervised

where the goal is to learn from the labelled and unlabelled data, then predict, (xi, yi) :

i ∈ 1, · · · , n}∪{x′1, · · · ,x
′
m} → (y

′
1, · · · , y

′
m), where (y

′
1, · · · , y

′
m) (Chapelle et al., 2006a;

Grandvalet and Bengio, 2004; Chapelle et al., 2006b; Joachims, 1999; Bousquet, 2002)

are the predictions. This type of learning is also known as transductive learning. This is

particularly useful in real-life applications where a few labels can be obtained but there

are many unlabelled instances and a separate training phase is expensive. The methods

in this setting, can efficiently use unlabelled data for better prediction. The underlying

assumptions of this framework are (a) there is information in the data distribution (b)

the data is separable (Chapelle et al., 2006b; Joachims, 1999; Ghahramani, 2012).

In a sense, supervised learning is the general setting of semi-supervised learning as it

learns a generalized mapping that maps previously unseen data. In this thesis, we

begin with the semi-supervised structure in the first three chapters and transition to the

generalized full supervised learning in the last chapter.

2.2 Semi Supervised Learning over Graphs

The graph based semi supervised learning constructs a graph from the dataset by con-

necting similar data-points. The observed and unobserved labels are random variables

on the vertices of the graph. Each vertex corresponds to a data instance. In other words

the graph is a Markov Random Field (MRF). The graphical structure may be intrinsic

in the data, as in the case of protein interaction network or a social network of friends,

alternatively the graphical structure can be built via the distance d(i, j) between dat-

apoints i and j. A sparse unweighted graph can be generated from linking k-nearest

neighbours. A complete weighted graph is constructed from having a weighted edge wij

as wij = 1
d(i,j) . The intuition of semi-supervised labelling on the graph is that informa-

tion from the labelled vertices propagates to the unlabelled vertices. The graph is the

encoding of this intuition that linked vertices must be similarly labelled. Some graph

based techniques estimate a function f on the graph such that it satisfies the available

labels and is smooth over the entire graph. Typically, most semi supervised methods use

some form of regularization, where the specific form depends on the graph construction
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and the problem itself (Belkin et al., 2004; Zhu, 2005; Chapelle et al., 2006b; Herbster

and Lever, 2009; Herbster et al., 2005).

For example, in (Blum and Chawla, 2001), a st-cut problem is defined with an objective

to deduce the minimum set of edges which when removed from the graph stops the flow

from source (postive labelled vertices) to sink (negative labelled vertices). Interestingly,

the minimum set function is the mode of the Markov random field with boolean labels.

The loss function is a quadratic loss with a weight of infinity: ∞∑i∈L(yi − yi|L)2; with

L as the number of available labels, such that the labelled vertices are considered as

ground truth and fixed in their values. The regularizer is given by (Zhu, 2005)

1

2

∑
i,j

wij |yi − yj | =
1

2

∑
i,j

wij(yi − yj)2.

We will refer to similar minimum set of edges or minimum cut based regularization in

the context of the problems we study throughout the thesis. Eventually, in (Blum and

Chawla, 2001), the authors minimize (Zhu, 2005)

∞
∑
i∈L

(yi − yi|L)2 +
1

2

∑
i,j

wij(yi − yj)2

where the labels yi ∈ {0, 1}, ∀i. The drawback of this approach is the classification

does not provide any confidence bounds (the maximum a posteori of the posterior is

computed rather than the marginal probabilities) (Zhu, 2005).

In order to find the labelling of a vertex, the proper method is to compute the marginal

probability of the vertex. However, this is a hard inference problem. When the labels are

from two classes as in the minimum cut method, the MRF is called a discrete MRF or

Boltzmann Machines. As we will discuss later, our interest is also in the areas of discrete

MRFs in this thesis. We discuss the difficulty in inference within this problem in the

later part of this chapter. In (Zhu et al., 2003), the authors were restricted in terms of

the sampling method. In (Getz et al., 2006), the authors employ Multi canonical Monte

Carlo method instead if Metropolis-Wang method used by (Zhu et al., 2003).

2.3 Online Learning and Batch Learning

Traditional machine learning methods conduct learning in two phases, training and

testing (as in the case of supervised methods discussed above). The online learning

framework of algorithms learn from data on the fly (there is no separation between

training and test data) and predicts on the data seen. The algorithms do not see the

data beforehand; and receive one datapoint at a time sequentially. The objective of

such algorithms is to be close to the hypothetical best predictor over the entire time

horizon (Cesa-Bianchi and Lugosi, 2006; Bubeck and Cesa-Bianchi, 2012). Contrary to
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traditional machine learning, in online learning, no guarantees can be made about the

loss, as the performance is with respect to the optimal algorithm in hindsight. As seen

in the preceding chapter, the performance is measured in terms of the notion of ‘regret’

or how far the algorithm is in its performance from the best given as

RT (h∗) =
T∑
t=1

l(pt, yt)−
T∑
t=1

l(h∗(xt), yt), (2.1)

where, pt is the prediction of the online algorithm at trial t, R is the regret of the algo-

rithm with respect to the theoretical optimal algorithm h∗. Making effective progress in

learning and storing the improvement is more memory efficient that storing all previous

samples seen. The objective of the online algorithms is to ensure that the regret reduces

to zero sublinearly.

On the other hand, batch learning problems in classic machine learning, look at the

training samples and return a hypothesis; the environment is assumed to be station-

ary and the examples are independent and identically (i.i.d) drawn from a probability

distribution. The goal of such algorithms is to minimize the expected error of the func-

tion h estimated as Ey∼ql(h, y), where q is the distribution, the instances are drawn

from. When the environment is dynamic, there are large quantities of data that have

no correlations, meaning that the statistical assumptions on the data generation process

do not make any sense. There is no stationary distribution and adaptive methods are

required for decision making up against the adversarial nature or environment (Rakhlin,

2008; Cesa-Bianchi and Lugosi, 2006; Bubeck and Cesa-Bianchi, 2012). In reality, in

online learning, there are no assumptions on the data; the nature can be adversarial,

deterministic or stochastic.

2.4 Online Learning Algorithms

Typically, there are three broad set of learning paradigms inside online learning based

on the feedback available. These three sets are: full; partial; and limited feedback.

The full information case is known as online learning with experts. Partial information

is alternatively known as semi-bandit while limited feedback is the bandit feedback. In

general, the bandit structure is the worst case scenario and generalizes the other feedback

settings.

In contrast to minimizing expected loss, online algorithms focus of reducing the cu-

mulative loss gap with respect to the best predictor as we see in 2.1. Without any

assumption on the data generation process, there is no baseline to compare with; in the

experts learning, a set of reference predictors are considered as experts, the learner uses

the expert’s advice before prediction. The performance of the learner is measured in

comparison to the best expert. The notion of regret here is interpreted as how much
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the forecaster regrets in not following the particular expert’s advice (Cesa-Bianchi and

Lugosi, 2006; Freund and Schapire, 1997, 1999, 1996). It is important to note that once

the feedback is received, since every expert ξi ’s prediction is known, they can be eval-

uated on their prediction quality with respect to the optimal expert. The expert can

be a black box predictor, a hypothesis (regressor, classifer) or a human expert. The

strategies of the algorithms in this type of learning, is in bounding the regret by paying

close attention to the size and structure of the experts (Cesa-Bianchi and Lugosi, 2006).

Some famous experts algorithm are the ‘Prediction with Expert Advice’, ‘Halving Algo-

rithm’ (Littlestone, 1988) and ‘Exponential Weights or Weighted Majority’ (Littlestone

and Warmuth, 1994; Agarwal, 2011). In all the algorithms, X is the set of instances, ŷt

is the learning algorithm’s prediction, yt is the true prediction revealed by the environ-

ment, l is a convex loss function. There are N experts and the time horizon is denoted

by T . The basic online prediction with experts algorithm is listed in Algorithm 1. The

Algorithm 1 Prediction with Expert Advice Online Algorithm.

for t = 1, . . . , T do

Receive: Instance xt ∈ X
Receive: Expert Predictions ξ1(xt), · · · , ξN (xt) ∈ {0, 1}
Predict : ŷt ∈ {0, 1}
Receive: True label yt ∈ {0, 1}
Incur : Loss l(yt, ŷt)

end

Halving algorithm is as follows. It assumes that there is one expert that is always going

to give the correct label over all instances. The idea of the simple yet elegant algorithm is

that at every update only the consistent experts are retained for continuing with predic-

tion in the next rounds. In this, a probability distribution or weights w are maintained

over the entire set of experts. The algorithm is listed in Algorithm 2. The weighted

majority algorithm is derived from the Halving algorithm for applications to problems

where there is no single expert that is always right. In weighted majority algorithm as

shown in Algorithm 3, an equal weight of 1 is assigned to each expert. In the update

step, the weight of the predictors are reduced using a multiplicative update step based

on a parameter η, when they make a mistake.

All the algorithms discussed above, describe the 0/1 loss scenario. For other convex loss

functions, the update step, becomes wit+1 = wite
−ηl(ξit,yt). The regret bound in the case

of 0− 1 loss is also known as the mistake bound. A mistake bound is defined as,

M(A,H) = maxh∈H,T,x1:T

T∑
t=1

r
ht(xt) 6= yt

z
(2.2)

where A is the learning algorithm, H is the hypothesis class (class of experts), ht is the

prediction of the learner, such that ht(xt) = ŷt.
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Algorithm 2 Online Halving Algorithm.

Initialization Weights on experts wi0 = 1 ∀i ∈ [N ]

for t = 1, . . . , T do

Receive: Instance xt ∈ X
Receive: Expert predictions ξ1(xt), · · · , ξN (xt) ∈ {0, 1}
Predict : ŷt = sign(

∑N
j=1w

j
t ξ
j(xt)) (majority vote)

Receive: True label yt ∈ {0, 1}
Incur : Loss l(yt, ŷt)

Update: ∀i ∈ 1, · · · , N
if ξi(xt) 6= yt then

wit+1 ← 0

else

wit+1 ← wit
end

Definition 2.1. The algorithm A for a hypothesis class H has a mistake bound B iff

M(A,H) ≤ B.

The mistake bound in the case of the Halving algorithm is given by M(Halving,H) ≤
log |H|. We prove this mistake bound later in this chapter under mistake bound analysis.

In the case of the weighted majority algorithm, the regret bound for a non 0/1 loss and

a choice of η =
√

8 lnN
T is given by

RT ≤
√
T

2
lnN.

In Chapter 6 we revisit the weighted majority algorithm in order to enable prediction on

multiple conflicting objectives. In this case, the hypotheses set is a collection of experts

making multiple predictions. It is important to note that the mistake bound model

is a more general model of learning theory than the regret in the online learning with

experts. The mistake bound model aims to bound the mistakes of the learner against

an adversary or nature who can control how the learner performs. This kind of model

is more applicable for label prediction problems, which we use in Chapters 3, 4, and 5.

The bandit feedback algorithms are mainly used for sequential action selection problems,

for example placing an advert from a set of advertisements onto a website. In the limited

feedback structure of bandits, the feedback is only available for the action played for that

particular round. This is the generalized version of the online prediction with experts

and a much harder problem. In the bandit framework, a probability distribution is

maintained on the actions, also called ‘arms’, at every trial. The learning algorithm

chooses an action to perform, or an arm to pull, from the probability distribution,

receives the feedback on that arm and updates the distribution. The bandit framework
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is also called the Multi Arm Bandit( MAB ) (Berry and Fristedt, 1985; Auer et al.,

2002a, 1995; Allenberg et al., 2006; Gittins et al., 2011). These algorithms are known for

their natural ability to address the exploitation-exploration trade-off (Auer et al., 1995,

2002a; Auer, 2003); balance between playing the same arm that receives good reward

or play some other arm with unknown (potentially more) reward. Broadly speaking,

Algorithm 3 Weighted Majority Algorithm.

Initialization Weights on experts wi0 = 1 ∀i ∈ [N ]

for t = 1, . . . , T do

Receive: Instance xt ∈ X
Receive: Expert predictions ξ1(xt), · · · , ξN (xt) ∈ {0, 1}
Predict : ŷt = sign(

∑N
j=1w

j
t ξ
j(xt)) (majority vote)

Receive: True label yt ∈ {0, 1}
Incur : Loss l(yt, ŷt)

Update: ∀i ∈ 1, · · · , N
if ξi(xt) 6= yt

wit+1 ← wite
−η

r
yt 6=ξi(xt)

z

end

the field of research separates into stochastic bandits and adversarial bandits. Under

the purview of stochastic bandits, the assumption is each arm belongs to an unknown

probability distribution and the rewards are drawn from their respective distribution.

Without any stochastic assumption on the way the reward corresponding to each action

is generated, the problem becomes adversarial where rewards are generated based on

the actions (Bubeck and Cesa-Bianchi, 2012). In Chapter 5, we study the adversarial

structure of the bandits. The regret in this set-up is given by

RT =
T∑
t=1

lIt − min
i=1,··· ,K

T∑
t=1

li,t (2.3)

where It is the arm played by the algorithm at trial t, l is the loss suffered and K denotes

the arms. The famous algorithm in the adversarial bandit structure is the Exp3 (Auer

et al., 1995; Bubeck and Cesa-Bianchi, 2012) which we list in Algorithm 4.

It is important to note that in this thesis, the work is presented within the online

Learning framework as a progression from the more general online learning settings

(that of mistake bound model in Chapters 3, 4) to regret bound model (in Chapters 5,

6). Also, within the regret bound model we move from the more general bandit feedback

(Chapter 5) to the expert feedback (Chapter 6).
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Algorithm 4 Exp3 Online Bandit Algorithm

Parameters Non-increasing real number sequence ηt, t ∈ N
Initialization Initial probability distribution p1 over the arms {1, · · · ,K}
for t = 1, . . . , T do

Play: Arm It from pt

Compute: Estimated loss for each arm i ∈ {1, · · · ,K} as l̃i,t =
li,t
pi,t

q
It = i

y

Cumulative loss L̃i,t = L̃i,t−1 + l̃i,t

Update : pt+1 = (p1,t+1, · · · , pK,t+1), where pi,t+1 = e−ηtL̃i,t∑K
k=1 e

−ηt L̃k,t

end

2.5 Online Labelling over Graphs

When the online learning game is played on a graph, the learning proceeds is as follows:

Nature presents a graph G; Nature queries a vertex i1 ∈ V (G) = INn; the learner

predicts the label of the vertex ŷ1 ∈ {0, 1}; nature presents a label y1; nature queries

a vertex i2; the learner predicts ŷ2; and so forth. The learner’s goal is to minimize

the total number of mistakes M = |{t : ŷt 6= yt}|. If nature is adversarial, the learner

will always make a “mistake”, but if nature is regular, there is hope for the learning to

succeed. Minimizing mistakes naturally fall within the purview of mistake bound model.

This type of online learning model is one of the main themes running through this thesis

mainly in Chapters 3, 4, and 5.

In online learning, the adversary plays the role on the nature or environment within

which the learner functions. The primary goal of online learning is to develop algorithms

such that total number of mis-classifications are bounded relative to the randomized

complexity of the adversary (Herbster et al., 2009). Typically, the number of mistakes

made by the optimal algorithms in this framework is bounded by O(lnn), where n is

the number of vertices.

Let G = (V,E) denote the n-vertex graph such that V = {v1, ..., vn} is the vertex set and

E is the (possibly weighted) edge set denoted by E = {(i, j) |i ∼ j}, where i, j are the

unordered vertex indices for the edge. Associated with every edge is a function denoted

by w : E → R+. Here, we consider the unweighted graph equivalent to having unit

weight on every edge. The adjacency matrix for the graph is denoted by AG and given

by:

AG (i, j) =

w (i, j) , if (i, j) ∈ E
0, otherwise.

(2.4)

Typically, AG is the (weighted) symmetric adjacency matrix. In our work, G is un-

weighted where AG ∈ {0, 1}n×n. The degree matrix of the graph is given by:

DG (i, i) =
∑
j

AG (i, j) . (2.5)
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From the degree matrix and the adjacency matrix, the un-normalized graph Laplacian

can be derived and is defined by:

LG = DG −AG . (2.6)

In our work, we assume that the graph is undirected with one edge in every direction

(i, j) and (j, i). For u ∈ Rn, the Laplacian satisfies the following property (Von Luxburg,

2007):

u′Lu =
1

2

n∑
i,j=1

wi,j (ui − uj)2 . (2.7)

The graph labelling vector u in the relaxed problem, is a vector of a n-vertex graph given

by the function u : V → R defined on the vertices of the graph, where ui corresponds to

the label of vi. If for a graph G = (V,E = {(i1, j1), . . . , (im, jm)}), the weighted oriented

incidence matrix or the edge map is given by a linear map, φG = Rn → Rm then:

φGu =

(
A

1
p

ii,j1
(ui1 − uj1) , . . . , A

1
p

im,jm
(uim − ujm)

)T
. (2.8)

With p = 2, the n × n matrix given by φG
TφG is the graph Laplacian. Essentially, a

p-seminorm (Herbster and Lever, 2009) is defined on the space of graph labellings given

by:

||u||G,p = ||u||φG,p =

 ∑
(i,j)∈EG

Aij |ui − uj |p
 1

p

. (2.9)

The Laplacian based methods Belkin et al. (2004); Zhu et al. (2003) suffer from a limi-

tation in the case of graphs with large diameter, the number of mistakes made by them

is proportional to the square root of the number of vertices (Herbster et al., 2009) In

(Herbster, 2008; Herbster and Pontil, 2006), the authors also exploit the cluster struc-

ture using the kernel perceptron when the perceptron is the inverse of the Laplacian

of the graph but the mistake bounds similarly vary proportional to the graph diam-

eter; especially in the worst case when the diameter is disproportionately larger than

the number of vertices. In the best case, the mistake bounds vary proportional to the

resistance diameter of the predicted vertices (Herbster et al., 2009). The semi-norm is

defined a measure of smoothness of the labelling vector u. It generalizes the smoothness

functional uTLu that measures the complexity of the graph labelling (Herbster and

Lever, 2009). Typically, an edge in this graph indicates the expectation that its end

point vertices or data points are more likely to have the same label. One method to take

advantage of this representation is to use the semi-norm induced by the Laplacian on

the graph. When the labelling are unrelaxed to be in the set such that u ∈ {0, 1}n, the

edge becomes a “cut” if ui 6= uj , then the weighted cutsize of the labelling u is defined
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as (Herbster and Lever, 2009):

ΦG (u) =
1

2p
||u||pG,p =

1

2p

∑
(i,j)∈E

Aij |ui − uj |p (2.10)

where the smoothness of a boolean labelling of the graph is measured via the “cut”.

The cut-size is the measure of the complexity which is independent of p and with the

un-weighted graph, the cut-size is the total number of cut edges.

When p→ 1, the situation is similar to inducing a discrete distribution over the vertices.

We discuss the connection to the Ising model distribution in the next section.

In this thesis, we study the online graph labelling problem when p → 1 is Chapter 3

and Chapter 4. Chapter 5 addresses the graph labelling at p→ 1 as a contextual game

within which the bandit game is played.

2.6 Ising Model

Here, we briefly review the background on Ising model (Ising, 1925) in the context of

graph labelling. We assume that the underlying average behaviour of the system under

observation is known. Suppose there are a multitude of graphs and that for the whole

set, there is some average number of cuts c∗ observed. A “cut” as we have seen before,

is the number of edges with disagreeing labels. Let the cut of any graph in the set of

graphs be defined by,

φG (u) =
∑

(i,j)∈E

r
ui 6= uj

z
(2.11)

where, u is the labelling of the graph, E is the number of edges. If the “cut” observed is

given by c∗, on average the expected number of cuts should be equal to the cut observed:

E [φG (u)] = c∗. (2.12)

Now, if the probability of a particular labelling of the graph is given by P (u), then the

goal is to compute the probability of the labelling with the assumption that the average

number of cuts c∗ is observed. Alternatively, we have∑
u

P (u)φG (u) = c∗. (2.13)

Typically, for inferring the probability distribution over all possible labellings P (u), one

would look at the entropy (Shannon, 2001; Shannon and Weaver, 2015; Shannon, 1949)

of the distribution given by

H (u) = −
∑
u

P (u) log (P (u)) . (2.14)
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Maximum entropy of the distribution is the measure of the maximum uncertainty in the

distribution. Naturally, the maximum uncertainty in the distribution is when all possible

labellings are equally likely. In other words, maximum entropy counts the number of

all possible ways of having cuts. Taking the Lagrangian of 2.14 and incorporating the

constraints in 2.13 and
∑
u P (u) = 1, one is interested in maximizing the Lagrangian,

as shown:

L = −
∑
u

P (u) log (P (u)) + β

(∑
u

P (u)φG (u)− c∗
)

+ λ

(∑
u

p (u)− 1

)
. (2.15)

Maximizing with respect to the probability of each labelling,

∂L

∂P (u)
= − logP (u)− 1 + βφG (S) + λ = 0.

Rearranging and taking exponential, we have,

P (u) = eβφ(S)+λ−1. (2.16)

For the parameters, we derive λ, from the second constraint,∑
u

P (u) =
∑
u

eβφG(u)+λ−1 = 1

⇒ eλ−1
∑
u

eβφG(u) = 1

⇒ eλ−1 =
1∑

u eβφG(u)

⇒ P (u) =
eβφG(u)∑
u eβφG(u)

. (2.17)

Let the partition function is defined as,

Z =
∑
u

eβφG(u). (2.18)

Therefore,

P (u) =
eβφG(u)

Z
. (2.19)

The probability distribution as derived in 2.19, is the model of maximum entropy dis-

tribution also known as the Ising model (Ising, 1925) or the Boltzmann distribution.

Exact inference on the Ising model is an intractable problem (Murphy, 2012). β is the

Lagrange multiplier that behaves as a crucial parameter to control the uncertainty in

the model making a single labelling on a single graph preferable over others based on

the cost variable φ(u); which in this case is the cut. Alternatively, β = 1
τ , where τ plays

the role of that of temperature in a physical system. At the exact zero temperature

τ = 0, the probability distribution favours low cost solutions with minimum number of



Chapter 2 Online Learning Perspective 20

cuts with overwhelming probability. At lowest temperatures or the highest uncertainty

setting, it becomes very difficult to make a jump from low to high cost solutions, quite

possibly leading to locally optimum low cost solutions. Very low temperatures push

down on the landscape towards equally probable minimum cut solutions, while high

temperatures could allow more movement in different directions (including the wrong

directions) and equilibrate over equally likely high cost solutions. Interestingly, at lower

temperatures but not the lowest, it is unlikely to converge to either very low solutions or

very high cost solutions, allowing just enough flexibility to move around to avoid getting

stuck in local optima. Typically, increasing the temperature very slowly (annealing), is

likely to let it converge to low cost global solutions.

Chapter 4 in this thesis studies the Ising model in the context of online graph labelling

within a semi supervised learning structure.

2.7 Exact, Approximation and Optimization Techniques

In Section 2.5 above, we discuss the online graph labelling problem. When p→ 1, it is

equivalent to finding the number of cuts or edges with disagreeing labels
∑

ij∈E |ui − uj |.
Further, in Section 2.6, the cost or energy function for the labelling is given by φG (u) =∑

(i,j)∈E

r
ui 6= uj

z
. The Figure 2.1 below describes two example energy configurations.

The computation of this cost in the partition function Z is a hard problem. The sum-

mation over all possible configurations for the cost function is intractable for large sized

data or graphs. The posterior distribution P of the labelling is computed to determine

the best fit. Computing the posterior involves the normalization over all possible la-

bellings over all possible states of the vertices. A network of 10 vertices where each

vertex is allowed to take a binary label, has 1024 possible labellings. This results in the

computation being intractable. The natural direction is using approximation techniques

where the posterior distribution is approximated with the help of a simpler distribution.
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+1 +1

+1

-1

+1

+1
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-1-1

-1
-1
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+1

+1
-1
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Figure 2.1: Minimum energy configuration is preferable. Left network has a
minimum cut φG (u) = 3. Right network has minimum cut φG (u) = 12. Image
courtesy Mark Herbster.
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2.7.1 Exact Technique

A well established technique to calculate the minimum cut or maximum flow in the

network is the Ford Fulkerson method (Ford and Fulkerson, 1956). At p → 1, the

objective is to find the minimum number of edges with disagreeing labels or the minimum

cut. From linear programming duality, minimum cut is equal to maximum flow by

Menger’s theorem (Dantzig and Fulkerson, 2003). In Chapter 3, we therefore resort to

an exact linear time computation of the maximum flow in the network. However, as we

will see later, at the limit of zero temperature, there is a multiplicity of minimum cuts

possible and inferring the labelling with the majority is NP hard. We therefore resort

to a clever approximation that reduces the multiplicity and allows us to make progress

towards prediction designing a quadratic time algorithm.

2.7.2 Mean Field Variational Approximation

A very well known mechanism of variational technique approximates the effect of the

neighbourhood to infer the labelling of a vertex (Wainwright and Jordan, 2008). This

is the direction we undertake in Chapter 4, moving on to a probabilistic setting for

inference on the Ising model at low temperatures.

For an intuitive explanation of the mean field approximation from the perspective of a dy-

namic system, consider the neighbourhood system in Figure 2.2, where each spin (colour)

is connected to every other spin with the spins allowed to fluctuate. The probability

of an overall spin configuration or labelling S of the neighbourhood system changing

to another configuration S′ depends on the change in costs associated with individual

spins getting flipped in the neighbourhood.

w
(
S → S′

)
=

eβ(φ(S)−φ(S
′))∑

S eβ(φ(S)−φ(S
′))

(2.20)

The state of a particular spin depends on the state of its neighbourhood that is allowed

to fluctuate. The state of the spin is influenced by the mean of the fluctuations of

its neighbourhood. On the lattice as shown in Figure 2.2, each spin feels a field from

each of its neighbours, which can be replaced by the mean field of its neighbours. Its

spin can be approximated from the mean of the neighbourhood. With a large enough

neighbourhood, the approximation tends to be closer to the true spin configuration.

2.7.3 Linear Programming Optimization

In Chapter 5, we use a relaxation technique to the linear programming (LP)optimization

problem for computing the maximum flow in the network (Trevisan, 2011). A polynomial

time LP relaxation computes the minimum cut labelling that is consistent with the labels



Chapter 2 Online Learning Perspective 22

Figure 2.2: Ising 2d Lattice Spin Configuration.

seen over the sequence. A polynomial time relaxation introduces auxillary variables for

the vertices and the edges. In principle, such relaxations to the original optimization

problem are much easier to analyze. It is important to note that whereas in Chapter 3,

on the Ising model, we study the behaviour at the limit of zero temperature, in Chapters

4 and 5, we study the low temperature setting of the Ising model.

2.8 Mistake Bounds in Online Learning Framework

In the previous sections, we highlighted the background behind the methods that we

choose for addressing the problems that we are interested in. Naturally, the next di-

rection after characterizing the set of all label consistent minimum cuts in the graph

labelling problem, is to apply a heuristic for making the prediction. This section pro-

vides insight into the standard approaches taken in this direction, which motivates the

premise of the algorithm presented in Chapter 3. For the analysis here, we assume 0/1

loss.

Theorem 2.2. For any finite hypothesis class H of size N , where one hypothesis is

always right, the mistake bound of the Halving algorithm is given by

M ≤ log2(N).

Proof. Say we have N experts, each expert capable of making a prediction of a 1 or a

0 label. The assumption is that there is a single expert that makes no mistake. We

maintain a set ξt of experts at round t of the online learning. Let ξ0t , ξ
1
t be the subsets

of ξt that predict a 1 or a 0. At round t, the learner has to predict a label as a 1 or a 0.

If
∣∣ξ0t ∣∣ > ∣∣ξ1t ∣∣, the learner predicts 0 else predicts 1. The environment reveals the true

label y
′
. After receiving the true label, the learner updates each subset ξt+1 = ξty

′
. This

implies that, if the learner made a mistake, |ξt+1| ≤ 1
2 |ξt| . We know by our assumption,
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the number of experts remaining ξt+1 ≥ 1. Therefore, if total number of mistakes in

round t is M , then, |ξM+1| ≤ 1
2 |ξM | =⇒ 1 ≤ |ξM | ≤ 1

2M
|ξ0| =⇒ 2M ≤ |ξ0| = N =⇒

M ≤ log2 (N) .

Next, we establish the connection between the Weighted-Halving experts and the Halving

algorithm.

Theorem 2.3. For all trials t and weighed experts i, the number of mistakes the

Weighted-Halving makes is at most M ≤ log2(
W0
mi

), where wi is the weight of expert

i, W0 is the total weight of all experts.

Proof. Let there be N experts ξ1, ξ2, . . . , ξn capable of making a prediction of a 0 or a

1. Each expert ξi has a weight wi and makes mistake mi. Let E0
t , E

1
t be the subset of

experts of Et that predict a 0 or a 1 at time t. Let the sum of weights of all the experts

that predicted a 0 be given by w0
t =

∑
i:ξi∈E0

t
wi and w1

t =
∑

i:ξi∈E1
t
wi. Total weight

of all experts at time t is Wt = w0
t + w1

t . The learner predicts 0 ⇐⇒ w0
t > w1

t . The

environment reveals the true label y. The learner updates the set of experts at time

t+1 as Et+1 = Ety. If the learner made a mistake, then the total sum of weights will be

halved at every t such that Wt+1 ≤ 1
2Wt. Assuming there is an expert i that is always

right, after M mistakes, WM ≥ wi. Since ξi is always in the set, sum of all experts is at

least the weight of the right expert. So, WM+1 ≤ 1
2WM =⇒ WM ≤ 1

2M
W0 =⇒ wi ≤

WM ≤ 1
2M
W0 =⇒ M = log2(

W0
wi

).

At the beginning of the trials, since every expert has a weight 1, W0 = N . Note, the

Weighted Halving experts and the Halving experts are related as in an update after

making a mistake, expert i
′

suffers a weight update wi′ = awi, where wi is the best

expert and in the case of halving experts it suffers w
′
i = 0. Halving experts have a = 0,

where a is the constant term.

2.8.1 Ising Model and Weighted Experts

Here, we show the Ising Model is connected to the weighted experts. This is the first

of our connections drawn towards motivating a logarithmic mistake bound in online

learning approaches in graphs. The Ising model can be viewed a a weighted graph

where every edge in the graph contributes a factor. The joint probability distribution

factorizes over the edges. In the simplest case, the Ising model with equal weight in every

edge gives a probability distribution over the labellings of the vertices of the graph, where

each vertex can have either of the two possible labels. In the above section, the initial

weights sum W0 is a normalization term and can be ignored as it only adds a constant

factor.
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Theorem 2.4. For an expert i with weight wi, if the probability of it being correct is

p(i), then the cut-size of an Ising model is given by φ(x), then p(i) = 2−φ(x) which is the

Bayesian prediction on an Ising model

Proof. Let us now consider we have a probability distribution of weights of the experts

such that wi = p(i), where p(i) is the probability that expert i is correct. So, w0
t is the

probability of getting a 0 and w1
t is the probability of getting a 1. The learner predicts

by the size of the maximum probability. (Note: This is essentially Bayesian inference.

It can be shown that Bayes optimal classifier gives the weighted experts). Ignoring the

normalization term, the total number of mistakes by i Mi = log( 1
p(i)). In the case of the

Ising model, the complexity is given by the cutsize which is the total number of edges

where the labels of the vertices disagree. Now, if we correspond weights to cutsize, then

it is possible to obtain logarithmic mistake bounds upto a constant factor times cutsize.

Therefore, if the cutsize of the Ising model is given by φ(x), we have log( 1
p(i)) ∝ cφ(x),

where c is the constant factor which =⇒ p(i) = 2−φ(x). This is nothing but Bayesian

prediction on the Ising Model.

2.8.2 Halving implementing Nearest Neighbour on a Path Graph

It is shown with a probability distribution over the space of labellings u ∈ {−1, 1}n on

any path graph, the Halving algorithm with these probabilities implements the nearest

neighbour algorithm and achieves logarithmic mistake bounds and in fact is a Bayesian

Optimal classifier. Please refer to (Herbster et al., 2009) Section 5, for the proofs.

-1+1 -1?

v2 v3 v4 v5 v6v1

pβ(y3 = y|u2 = 1, u5 = −1, u6 = −1) = pβ(y3 = y|u2 = 1, u5 = −1)

Figure 2.3: 1-NN Prediction on Path Graph.

In Figure 2.3, the nearest neighbour strategy on a path graph is shown. Vertices v2,

v5 and v6 are the available labels, and nature queries vertex v3. The 1-NN algorithm

predicts the label of v3 as the label +1 of its nearest neighbour v2. The rationale behind

the strategy is in case the prediction is a mistake, that is the label of v3 should be

−1, from the minimum energy principle, the minimum cut is 1, hence the label of v4 is

automatically deduced making the total number of mistakes to be 1. However, if the

algorithm predicted by the next nearest neighbour’s label of −1 of that of vertex v5, in

case of a mistake, no information is deduced for vertex v4 as v4 can be still be a −1 in the

next round and maintain the minimum cut. Hence, total number of possible mistakes is

2 which is more than the 1-NN prediction.
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Further, in the paper by Gärtner and Garriga (2007), the authors describe how the

Halving algorithm on any fixed path on a generic graph achieves a logarithmic mistake

bound on every such fixed path. The total mistakes is the sum of mistakes on each

path. If p1, . . . , pk is the set of vertex disjoint directed paths that cover the graph

completely, then the mistake bounds are optimal and given by M ≤∑k
i=1 log

∣∣pi∣∣ where,∣∣pi∣∣ is the length (total number of vertices or edges) of the individual path and there

are k such paths. Every neighbouring vertex’s prediction on that path is considered

an expert prediction. Hence, the analogy with the Halving experts. Figure 2.4, shows

the disjoint path cover of one such graph. The path on which the unlabelled vertex in

question is present, if selected for prediction, can make at most its length (number of

vertices on that path) number of mistakes. The two labelled vertices are indicated in the

Figure 2.4. Note, that in the case of the zero temperature limit on the Ising model, there

⊥ ⊥

Figure 2.4: Disjoint Path Cover. Image courtesy Mark Herbser.

are multiple label consistent minimum cut labellings. As we saw, ideally the mistake

bound M ≤ log |H|, where H is the set of all experts. However, the total number

of minimum cuts is non-unique and given a path cover for the multiple minimum cut

labelling is upper bounded as |H| ≤ argminp∈P (G)

∏k
i=1

∣∣pi∣∣, having the desired mistake

bound is non-trivial.

This seeds the intention of our interests in the mistake bound model. In particular, in

Chapter 3, we show a successful technique of characterizing the set of all label consistent

minimum cuts. Once characterised, the next step is typically designing a prediction

heuristic for choosing a path(s) and predicting using nearest neighbour such that the

mistake bound is logarithmic in the size of the number of the path(s).

Notation Throughout the thesis, with slight abuse of notation, we refer to a learning

algorithm as the learner. Predictor and forecaster are also used interchangeably to mean

the learner. In Chapter 3, we interchangeably use longest-path and longest to denote

the same algorithm. Further, for the competitor algorithm p = 2, it is referred by the

following: p2, labelProp and harmonic energy minimization.



Chapter 3

Online Prediction at the Limit of

Zero Temperature

3.1 Introduction

This chapter focusses on the problem of sequential classification of the unlabelled vertices

of a graph with few available labels; also known as semi-supervised learning. Semi-

supervised graph labelling solutions, induce regularization by exploiting the underlying

structure of the graph. Often, these methods associate a complexity to the labelling and

aim to optimize the “cut”, which is the number of edges with disagreeing labels. This is

equivalent to minimizing the seminorm on the “cut” as a measure of the smoothness of

the solution. When the labelling is unrelaxed such that the labels can only take boolean

values, it induces an Ising distribution over the vertices of the graph, where the labels of

the vertices can be inferred based on the maximum marginal probability of the vertices.

However, exact inference on the Ising model is an intractable problem.

Here, we define and discuss a technique for the sequential deterministic approximate

inference to predict the labels of the queried unlabelled vertices on a graph. Our tech-

nique has proven to be useful in a variety of standard empirical studies. In addition, we

also provide online mistake bounds that improve and match the previous bounds in the

literature for this setting.

3.2 Background

Let G = (V,E) denote the n-vertex graph such that V = {v1, ..., vn} is the vertex set and

E is the (possibly weighted) edge set denoted by E = {(i, j) |i ∼ j}, where i, j are the

unordered vertex indices for the edge. Associated with every edge is a function denoted

26
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by w : E → R+. Here, we consider unweighted graph equivalent to having unit weight

on every edge. The adjacency matrix for the graph is denoted by AG and given by:

AG (i, j) =

w (i, j) , if (i, j) ∈ E
0, otherwise.

(3.1)

Typically, AG is the (weighted) symmetric adjacency matrix. In our work, G is un-

weighted where AG ∈ {0, 1}n×n. The degree matrix of the graph is given by:

DG (i, i) =
∑
j

AG (i, j) . (3.2)

From the degree matrix and the adjacency matrix, the un-normalized graph Laplacian

can be derived and is defined by:

LG = DG −AG . (3.3)

In our work, we assume that the graph is undirected with one edge in every direction

(i, j) and (j, i). For u ∈ Rn, the Laplacian satisfies the following property (Von Luxburg,

2007; Herbster et al., 2009):

u′Lu =
1

2

n∑
i,j=1

wi,j (ui − uj)2 . (3.4)

The factor of 2 in the above equation is to take into account the double counting of the

edges in the graph. The graph labelling vector u in the relaxed problem, is a vector

of the n-vertex graph given by the function u : V → R defined on the vertices of the

graph, where ui corresponds to the label of vi. If G = (V,E = {(i1, j1), . . . , (im, jm)})
is an edge map also known as weighted oriented incidence matrix φG = Rn → Rm is a

map given by:

φGu =

(
A

1
p

ii,j1
(ui1 − uj1) , . . . , A

1
p

im,jm
(uim − ujm)

)T
. (3.5)

With p = 2, the n × n matrix given by φG
TφG is the graph Laplacian. Essentially, a

p-seminorm (Herbster and Lever, 2009) is defined on the space of graph labellings given

by:

||u||G,p = ||u||φG,p =

 ∑
(i,j)∈EG

Aij |ui − uj |p
 1

p

. (3.6)

The seminorm is defined as a measure of smoothness of the labelling vector u. It

generalizes the the smoothness functional uTLu that measures the complexity of the

graph labelling (Herbster and Lever, 2009). Typically, an edge in this graph indicates
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the expectation that its end point vertices or data points are more likely to have the

same label. One method to take advantage of this representation is to use the seminorm

induced by the Laplacian on the graph. When the labelling is unrelaxed it belongs to

the set u ∈ {0, 1}n. In this case, the edge becomes a “cut” if ui 6= uj and the weighted

cutsize of the labelling u is defined as (Herbster and Lever, 2009):

ΦG (u) =
1

2p
||u||pG,p =

1

2p

∑
(i,j)∈E

Aij |ui − uj |p . (3.7)

The smoothness of the boolean labelling of the graph is then measured via the “cut”.

The cut-size is the measure of the complexity which is independent of p and with the

un-weighted graph, the cut-size is the total number of cut edges.

3.3 Motivation

Our main motivation for this current work stems from our interest in the p-seminorm

of the graph labelling when p → 1, which to the best of our knowledge, has not been

studied before in a similar setting. Optimal bounds are known only for approximations

on a tree that does not capture the graph connectivity structure. Specifically, we are

motivated to study if with p → 1, on boolean labelling, we can find interesting graph

structure that gives better prediction and mistake bounds.

From the linear programming knowledge, at p → 1 in the limit, the situation is akin

to obtaining the solution to the maximum flow in the network with unit capacities on

the edges. As seen in Chapter 2, the model that naturally respects the complexity of

the labelling ( number of edges with disagreeing labels ) is the Ising model. The Ising

probability distribution over labellings of G is defined by:

pGT (u) ∝ exp

(
−1

τ
ΦG (u)

)
(3.8)

where τ is the temperature, ΦG (u) is the complexity of labelling or the “cut-size”.

3.4 Related Work

Semi-supervised learning is now a standard methodology in machine learning. A com-

mon approach in semi-supervised learning is to build a graph (Blum and Chawla, 2001)

from a given set of labelled and unlabelled data with each datum represented as a vertex.

The hope is that the constructed graph will capture either the cluster (Chapelle et al.,

2003) or manifold (Belkin and Niyogi, 2004) structure of the data. Typically, an edge

in this graph indicates the expectation that the joined data points are more likely to
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have the same label. One method to exploit this representation is to use the seminorm

induced by the Laplacian of the graph (Zhu et al., 2003; Belkin and Niyogi, 2004; Zhou

et al., 2003; Szummer and Jaakkola, 2001). A shared idea of the Laplacian seminorm

based approaches is that the smoothness of a boolean labelling of the graph is measured

via the “cut”, which is just the number of edges that connect disagreeing labels. In

practice the seminorm is then used as a regularizer in which the optimization problem

is relaxed from boolean to real values. Our approach also uses the “cut”, but unrelaxed,

to define an Ising distribution over the vertices of the graph.

Predicting with the vertex marginals of an Ising distribution in the limit of zero temper-

ature was shown to be optimal in the mistake bound model (Cesa-Bianchi et al., 2009,

Section 4.1) when the graph is a tree. The exact computation of marginal probabilities

in the Ising model is intractable on non-trees (Goldberg and Jerrum, 2007). However, in

the limit of zero temperature, a rich combinatorial structure called the Picard-Queyranne

graph (Picard and Queyranne, 1980) emerges. We exploit this structure to give an algo-

rithm which 1) is optimal on trees, 2) has a quadratic computational complexity, and 3)

has a mistake bound on generic graphs that is stronger than previous bounds in many

natural cases.

In the remainder of this section, we introduce the Ising model and lightly review pre-

vious work in the online mistake bound model for predicting the labelling of a graph.

In Section 3.6 we review our key technical tool the Picard-Queyranne graph (Picard

and Queyranne, 1980) and explain the required notation. In the body of Section 3.7 we

provide a mistake bound analysis of our algorithm as well as the intractable 0-Ising

algorithm and then conclude with a detailed comparison to the state of the art. In Sec-

tion 3.8, we provide an extensive set of experimental results of the empirical evaluation

of our method.

Predicting the labelling of a graph in the mistake bound model. We prove

performance guarantees for our method in the mistake bound model introduced by

Littlestone (Littlestone, 1988). On the graph this model corresponds to the following

game. Nature presents a graph G; Nature queries a vertex i1 ∈ V (G) = INn; the learner

predicts the label of the vertex ŷ1 ∈ {0, 1}; nature presents a label y1; nature queries

a vertex i2; the learner predicts ŷ2; and so forth. The learner’s goal is to minimize

the total number of mistakes M = |{t : ŷt 6= yt}|. If nature is adversarial, the learner

will always make a “mistake”, but if nature is regular or simple, there is hope that a

learner may incur only a few mistakes. Thus, a central goal of online learning is to

design algorithms whose total mistakes can be bounded relative to the complexity of

nature’s labelling. The graph labelling problem has been studied extensively in the

online literature. Here we provide a rough discussion of the two main approaches for

graph label prediction, and in Section 3.7.3 we provide a more detailed comparison. The

first approach is based on the graph Laplacian (Herbster et al., 2005; Herbster, 2008;

Herbster and Lever, 2009); it provides bounds that utilize the additional connectivity
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of non-tree graphs, which are particularly strong when the graph contains uniformly-

labelled clusters of small (resistance) diameter. The drawbacks of this approach are that

the bounds are weaker on graphs with large diameter and that the computation times

are slower. The second approach is to estimate the original graph with an appropriately

selected tree or “path” graph (Herbster et al., 2009; Cesa-Bianchi et al., 2010, 2009;

Vitale et al., 2011); this leads to faster computation times, and bounds that are better

on graphs with large diameters. The algorithm treeOpt (Cesa-Bianchi et al., 2009) is

optimal on trees. These algorithms may be extended to non-tree graphs by first selecting

a spanning tree uniformly at random (Cesa-Bianchi et al., 2010) and then applying the

algorithm to the sampled tree. This randomized approach exploits the cluster structure

in the graph, thereby reducing the expected mistake bound.

The bounds we prove for the NP-hard 0-Ising prediction and our heuristic are most sim-

ilar to the “small p” bounds proven for the p-seminorm interpolation algorithm (Herbster

and Lever, 2009). Although these bounds are not strictly comparable, a key strength of

our approach is that the new bounds often improve when the graph contains uniformly-

labelled clusters of varying diameters. Furthermore, when the graph is a tree we match

the optimal bounds of (Cesa-Bianchi et al., 2009). Finally, the cumulative time required

to compute the complete labelling of a graph is quadratic in the size of the graph for our

algorithm, while (Herbster and Lever, 2009) requires the minimization of a non-strongly

convex function (on every trial) which is not differentiable when p→ 1.

3.5 Preliminaries

In the rest of the chapter, G is an (undirected) graph of a pair of sets (V,E), where E is

a set of unordered pairs of distinct elements from V . We use R to denote the subgraph

R ⊆ G iff V (R) ⊆ V (G) and E(R) = {(i, j) : i, j ∈ V (R), (i, j) ∈ E(G)}. Given any

subgraph R ⊆ G, we define its boundary (or inner border) ∂0(R), its neighbourhood (or

exterior border) ∂e(R) respectively as ∂0(R) := {j : i 6∈ V (R), j ∈ V (R), (i, j) ∈ E(G)},
and ∂e(R) := {i : i 6∈ V (R), j ∈ V (R), (i, j) ∈ E(G)}, and its exterior edge border

∂Ee (R) := {(i, j) : i 6∈ V (R), j ∈ V (R), (i, j) ∈ E(G)}. |P| := |E(P)| is the length

of a subgraph P and we denote the diameter of a graph by D(G). A pair of vertices

v, w ∈ V (G) are κ-connected if there exist κ edge-disjoint paths connecting them. The

connectivity of a graph, κ(G), is the maximal value of κ such that every pair of points

in G is κ-connected. The atomic number Nκ(G) of a graph at connectivity level κ is

the minimum cardinality c of a partition of G into subgraphs {R1, . . . ,Rc} such that

κ(Ri) ≥ κ for all 1 ≤ i ≤ c.

Our results also require the use of directed-, multi-, and quotient- graphs. Every undi-

rected graph also defines a directed graph where each undirected edge (i, j) is represented

by directed edges (i, j) and (j, i). An orientation of an undirected graph is an assign-

ment of a direction to each edge, turning the initial graph into a directed graph. In a
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multi-graph the edge set is now a multi-set and thus there may be multiple edges be-

tween two vertices. A quotient-graph G is defined from a graph G and a partition of its

vertex set {Vi}Ni=1 so that V (G) := {Vi}Ni=1 (we often call these vertices super-vertices

to emphasize that they are sets) and the multiset E(G) := {(I, J) : I, J ∈ V (G), I 6=
J, i ∈ I, j ∈ J, (i, j) ∈ E(G)}. We commonly construct a quotient-graph G by “merging”

a collection of super-vertices, for example, in Figure 3.2 from 3.2a to 3.2b where 6 and

9 are merged to “6/9” and also the five merges that transforms 3.2c to 3.2d.

The set of all label-consistent minimum-cuts in a graph with respect to an example se-

quence S is U∗G(S) := argminu∈{0,1}n φG(u|S). The minimum is typically non-unique.

For example in Figure 3.2a, the vertex sets {v1, . . . , v4}, {v5, . . . , v12} correspond to

one label-consistent minimum-cut and {v1, . . . , v5, v7, v8}, {v6, v9 . . . , v12} to another (the

cutsize is 3). The (uncapacitated) maximum flow is the number of edge-disjoint paths

between a source and target vertex. Thus in Figure 3.2b between vertex “1” and ver-

tex “6/9” there are at most 3 simultaneously edge-disjoint paths; these are also not

unique, as one path must pass through either vertices 〈v11, v12〉 or vertices 〈v11, v10, v12〉.
Figure 3.2c illustrates one such flow F (just the directed edges). For convenience it

is natural to view the maximum flow or the label-consistent minimum-cut as being

with respect to only two vertices as in Figure 3.2a transformed to Figure 3.2b so that

H ← merge(G, {v6, v9}). The “flow” and the “cut” are related by Menger’s theorem

which states that the minimum-cut with respect to a source and target vertex is equal

to the max flow between them. Given a connected graph H and source and target

vertices s, t the Ford-Fulkerson algorithm (Ford and Fulkerson, 1956) can find k edge-

disjoint paths from s to t in time O(k|E(H)|) where k is the value of the max flow.

3.6 Ising Model in the Limit Zero Temperature

In our setting, the parameters of the Ising model are an n-vertex graph G = (V (G), E(G))

and a temperature parameter τ > 0, where V (G) = {1, . . . , n} denotes the vertex set

and E(G) denotes the edge set. Each vertex of this graph may be labelled with one of

two states {0, 1} and thus a labelling of a graph may be denoted by a vector u ∈ {0, 1}n
where ui denotes the label of vertex i. The cutsize of a labelling u is defined as

φG(u) :=
∑

(i,j)∈E(G)

|ui − uj |. (3.9)

The Ising probability distribution over labellings of G is then defined as pGτ (u) ∝
exp

(
− 1
τ φG(u)

)
where τ > 0 is the temperature parameter. In our online setting at

the beginning of trial t + 1 we will have already received an example sequence, St,
of t vertex-label pairs (i1, y1), . . . , (it, yt) where pair (i, y) ∈ V (G) × {0, 1}. We use

pGτ (uv = y|St) := pGτ (uv = y|ui1 = y1, . . . , uit = yt) to denote the marginal probability
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that vertex v has label y given the previously labelled vertices of St. For convenience we

also define the marginalized cutsize φG(u|St) to be equal to φG(u) if ui1 = y1, . . . , uit = yt

and equal to undefined otherwise. Our prediction ŷt+1 of vertex it+1 is then the label

with maximal marginal probability in the limit of zero temperature, thus

ŷ0I
t+1(it+1|St) := argmax

y∈{0,1}
lim
τ→0

pGτ (uit+1 = y|ui1 = y1, . . . , uit = yt) . [0-Ising]

(3.10)

Note the prediction is undefined if the labels are equally probable. In low temperatures

the mass of the marginal is dominated by the labellings consistent with St and the

proposed label of vertex it+1 of minimal cut; as we approach zero, ŷt+1 is the label

consistent with the maximum number of labellings of minimal cut. Thus if

k := min
u∈{0,1}n

φG(u|S) (3.11)

then we have that:

ŷ0I(v|S) =

0 |u ∈ {0, 1}n : φG(u|(S, (v, 0))) = k| > |u ∈ {0, 1}n : φG(u|(S, (v, 1))) = k|
1 |u ∈ {0, 1}n : φG(u|(S, (v, 0))) = k| < |u ∈ {0, 1}n : φG(u|(S, (v, 1))) = k|

The problem of counting minimum label-consistent cuts was shown to be #P-complete

in (Provan and Ball, 1983) and further computing ŷ0I(v|S) is also NP-hard. In Sec-

tion 3.6.1 we introduce the Picard-Queyranne graph (Picard and Queyranne, 1980)

which captures the combinatorial structure of the set of minimum-cuts. We then use

this simplifying structure as a basis to design a heuristic approximation to ŷ0I(v|S) with

a mistake bound guarantee.

3.6.1 The Picard-Queyranne graph

Given a set of labels there may be multiple label-consistent minimum-cuts as well as

multiple maximum flows in a graph. The Picard-Queyranne (PQ) graph (Picard and

Queyranne, 1980) reduces this multiplicity as far as is possible with respect to the

indeterminacy of the maximum flow. The vertices of the PQ-graph are defined as a

super-vertex set on a partition of the original graph’s vertex set. Two vertices are

contained in the same super-vertex iff they have the same label in every label-consistent

minimum-cut. An edge between two vertices defines an analogous edge between two

super-vertices iff that edge is conserved in every maximum flow. Furthermore the edges

between super-vertices strictly orient the labels in any label-consistent minimum-cut as

may be seen in the formal definition that follows.

First we introduce the following useful notations: let kG,S := min{φG(u|S) : u ∈ {0, 1}n}
denote the minimum-cutsize of G with respect to S; let i

S∼j denote an equivalence relation

between vertices in V (G) where i
S∼j iff ∀u ∈ U∗G(S) : ui = uj ; and then we define,
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Definition 3.1 (Picard and Queyranne (1980)). The Picard-Queyranne graph G(G,S)

is derived from graph G and non-trivial example sequence S. The graph is an orientation

of the quotient graph derived from the partition {⊥, I2, . . . , IN−1,>} of V (G) induced

by
S∼. The edge set of G is constructed of kG,S edge-disjoint paths starting at source

vertex ⊥ and terminating at target vertex >. A labelling u ∈ {0, 1}n is in U∗G(S) iff

1. i ∈ ⊥ implies ui = 0 and i ∈ > implies ui = 1

2. i, j ∈ H implies ui = uj

3. i ∈ I, j ∈ J , (I, J) ∈ E(G), and ui = 1 implies uj = 1

where ⊥ and > are the source and target vertices and H, I, J ∈ V (G).

Figure 3.3 shows an illustration of the PQ graph construction process. As G(G,S) is a

DAG it naturally defines a partial order (V (G),≤G) on the vertex set where I ≤G J if

there exists a path starting at I and ending at J . The least and greatest elements of

the partial order are ⊥ and >. The notation ↑R and ↓R denote the up set and down

set of R. Given the set U∗ of all label-consistent minimum-cuts then if u ∈ U∗ there

exists an antichain A ⊆ V (G) \ {>} such that ui = 0 when i ∈ I ∈ ↓A otherwise ui = 1;

furthermore for every antichain there exists a label-consistent minimum-cut. The simple

structure of G(G,S) was utilized by Picard and Queyranne (1980) to enable the efficient

algorithmic enumeration of minimum-cuts. However, the cardinality of this set of all

label-consistent minimum-cuts is potentially exponential in the size of the PQ-graph

and the exact computation of the cardinality was later shown #P-complete in (Provan

and Ball, 1983). In Figure 3.1 we give the algorithm from (Picard and Queyranne,

PicardQueyranneGraph(graph: G; example sequence: S = (vk, yk)tk=1)

1. (H, s, t)← SourceTargetMerge(G,S)

2. F ← MaxFlow(H, s, t)
3. I ← (V (I), E(I)) where V (I) := V (H) and E(I) := {(i, j) : (i, j) ∈ E(H), (j, i) 6∈ F}
4. G0 ← QuotientGraph(StronglyConnectedComponents(I),H)

5. E(G)← E(G0); V (G)← V (G0) except ⊥(G)← ⊥(G0) ∪ {vk : k ∈ INt, yk = 0}
and>(G)← >(G0) ∪ {vk : k ∈ INt, yk = 1}

Return: directed graph: G

Figure 3.1: Computing the Picard-Queyranne graph

1980; Ball and Provan, 1983) to compute a PQ-graph. We illustrate the computation

in Figure 3.2. The algorithm operates first on (G,S) (step 1) by “ merging” all vertices

which share the same label in S to create H. In step 2 a max flow graph F ⊆ H is

computed by the Ford-fulkerson algorithm. It is well-known in the case of unweighted

graphs that a max flow graph F may be output as a DAG of k edge-disjoint paths

where k is the value of the flow. In step 3 all edges in the flow become directed edges

creating I. The graph G0 is then created in step 4 from I where the strongly connected

components become the super-vertices of G0 and the super-edges correspond to a subset
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(a) Original graph G and the sequence
S = 〈(v1, 0), (v6, 1), (v9, 1)〉

1 3

2

4 11

7

8

5

10 12

6/9

(b) Graph H (step 1 in Figure 3.1)
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(c) Graph I (step 3 in Figure 3.1)
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(d) PQ Graph G (step 4 in
Figure 3.1)

Figure 3.2: Building a Picard-Queyranne graph

of flow edges from F . Finally, in step 5, we create the PQ-graph G by “fixing” the source

and target vertices so that they also have as elements the original labelled vertices from

S which were merged in step 1. The correctness of the algorithm follows from arguments

in (Picard and Queyranne, 1980); an independent proof is provided in the supplementary

materials of Herbster et al. (2015).

Theorem 3.2 (Picard and Queyranne (1980)). The algorithm in Figure 3.1 computes

the unique Picard-Queyranne graph G(G,S) derived from graph G and non-trivial exam-

ple sequence S.

3.7 Mistake Bounds Analysis

In this section we analyze the mistakes incurred by the intractable 0-Ising strategy

(see Equation (3.10)) and the strategy longest-path (see Figure 3.4). Our analysis

splits into two parts. Firstly, we show in (Section 3.7.1, Theorem 3.4), for a sufficiently

regular graph label prediction algorithm, it is possible to analyze independently the

mistake bound of each uniformly-labelled cluster (connected subgraph). Secondly, the

per-cluster analysis then separates into three cases, the result of which is summarized

in Theorem 3.10 in Section 3.7.3. For a given cluster C, when its internal connectivity is

larger than the number of edges in the boundary (κ(C) > |∂Ee (C)|), we will incur no more

than one mistake in that cluster. On the other hand for smaller connectivity clusters

(κ(C) ≤ |∂Ee (C)|), we incur up to quadratically in mistakes via the edge boundary size.

When C is a tree we incur O(|∂Ee (C)| logD(C)) mistakes.
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Figure 3.3: Illustration for PQ graph collapse upon prediction at queried vertex
v. (a) Initial PQ graph and queried vertex v (b) Prediction at v with label 0.
(c) Prediction at v with label 1. Image courtesy Mark Herbster.

The analysis of smaller connectivity clusters separates into two parts. First, a sequence

of trials in which the label-consistent minimum-cut does not increase, we call a PQ-

game (Section 3.7.2), as in essence it is played on a PQ-graph. We give a mistake

bound for a PQ-game for the intractable 0-Ising prediction and a comparable bound

for the strategy longest-path in Theorem 3.8 in Section 3.7.2. Second, when the label-

consistent minimum-cut increases, the current PQ-game ends and a new one begins,

leading to a sequence of PQ-games. The mistakes incurred over a sequence of PQ-games

is addressed in the aforementioned Theorem 3.10 and finally Section 3.7.3 concludes with

a discussion of the combined bounds of Theorems 3.4 and 3.10 with respect to other

graph label prediction algorithms.

3.7.1 Per-cluster mistake bounds for regular graph label prediction

algorithms

An algorithm is called regular if it is permutation-invariant, label-monotone, and Markov.

An algorithm is permutation-invariant if the prediction at any time t does not depend

on the order of the examples up to time t; label-monotone if for every example sequence

if we insert an example “between” examples t and t+ 1 with label y then the prediction

at time t + 1 is unchanged or changed to y; and Markov with respect to a graph G
if for any disjoint vertex sets P and Q and separating set R then the predictions in

P are independent of the labels in Q given the labels of R. A subgraph is uniformly-

labelled with respect to an example sequence iff the label of each vertex is the same

and these labels are consistent with the example sequence. The following definition

characterizes the worst-case example sequences for regular algorithms with respect to

uniformly-labelled clusters.
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Definition 3.3. Given an online algorithm A and a uniformly-labelled subgraph C⊆G,

then BA(C;G) denotes the maximal mistakes made only in C for the presentation of any

permutation of examples in ∂e(C), each with label y, followed by any permutation of

examples in C, each with label 1−y.

The following theorem enables us to analyze the mistakes incurred in each uniformly-

labelled subgraph C independently of each other and independently of the remaining

graph structure excepting the subgraph’s exterior border ∂e(C).

Theorem 3.4 (Proof in the supplementary materials of Herbster et al. (2015)). Given

an online permutation-invariant label-monotone Markov algorithm A and a graph G
which is covered by uniformly labelled subgraphs C1, . . . , Cc the mistakes incurred by the

algorithm may be bounded by M ≤∑c
i=1 BA(Ci;G) .

The above theorem paired with Theorem 3.10 in Section 3.7.3 completes the mistake

bound analysis of our algorithms.

3.7.2 PQ-games

Given a PQ-graph G = G(G,S), the derived online PQ-game is played between a player

and an adversary. The aim of the player is to minimize their mistaken predictions; for

the adversary it is to maximize the player’s mistaken predictions. Thus to play the

adversary proposes a vertex z ∈ Z ∈ V (G), the player then predicts a label ŷ ∈ {0, 1},
then the adversary returns a label y ∈ {0, 1} and either a mistake is incurred or not.

The only restriction on the adversary is to not return a label which increases the label-

consistent minimum-cut. As long as the adversary does not give an example (z ∈ ⊥, 1)

or (z ∈ >, 0), the label-consistent minimum-cut does not increase no matter the value of

y; which also implies the player has a trivial strategy to predict the label of z ∈ ⊥ ∪ >.

After the example is given, we have an updated PQ-graph with new source and target

super-vertices as seen in the proposition below.

Proposition 3.5. If G(G,S) is a PQ-graph and (z, y = 0) (z, y = 1) is an example with

z ∈ Z ∈ V (G) and z 6∈ > (z 6∈ ⊥) then let Z = ↓{Z} (Z = ↑{Z}) then G(G, 〈S, (z, y)〉) =

merge(G(G,S),Z).

Thus given the PQ-graph G the PQ-game is independent of G and S, since a “play”

z ∈ V (G) induces a “play” Z ∈ V (G) (with z ∈ Z).

Mistake bounds for PQ-games. Given a single PQ-game, in the following we will

discuss the three strategies fixed-paths, 0-Ising, and longest-path that the player

may adopt for which we prove online mistake bounds. The first strategy fixed-paths

is merely motivational: it can be used to play a single PQ-game, but not a sequence.

The second strategy 0-Ising is computationally infeasible. Finally, the longest-path
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strategy is “dynamically” similar to fixed-paths but is also permutation-invariant.

Common to all our analyses is a k-path cover P of PQ-graph G which is a partitioning

of the edge-set of G into k edge-disjoint directed paths P := {p1, . . . , pk} from ⊥ to

>. Note that the cover is not necessarily unique; for example, in Figure 3.2d, we

have the two unique path covers P1 := {(⊥, A,>), (⊥, A,B,>), (⊥, B,C,>)} and P2 :=

{(⊥, A,>), (⊥, A,B,C,>), (⊥, B,>)}. We denote the set of all path covers as P and

thus we have for Figure 3.2d that P := {P1, P2}. This cover motivates a simple mistake

bound and strategy. Suppose we had a single path of length |p| where the first and last

vertex are the “source” and “target” vertices. So the minimum label-consistent cut-size

is “1” and a natural strategy is simply to predict with the “nearest-neighbor” revealed

label and trivially our mistake bound is log |p|. Generalizing to multiple paths we have

the following strategy.

Strategy fixed-paths(P̃ ): Given a PQ-graph choose a path cover {p̃1, . . . , p̃k} =

P̃ ∈ P(G). If the path cover is also vertex-disjoint except for the source and target

vertex we may directly use the “nearest-neighbor” strategy detailed above, achieving

the mistake upper bound M ≤ ∑k
i=1 log |p̃i|. Unsurprisingly, in the vertex-disjoint

case it is a mistake-bound optimal (Littlestone, 1988) algorithm. If, however, P̃ is not

vertex-disjoint and we need to predict a vertex V we may select a path in P̃ containing

V and predict with the nearest neighbour and also obtain the bound above. In this

case, however, the bound may not be “optimal”. Essentially the same technique was

used in (Gärtner and Garriga, 2007) in a related setting for learning “directed cuts”. A

limitation of the fixed-paths strategy is that it does not seem possible to extend into a

strategy that can play a sequence of PQ-games and still meet the regularity properties,

particularly permutation-invariance as required by Theorem 3.4.

Strategy 0-Ising: The prediction of the Ising model in the limit of zero temper-

ature (cf. Equation (3.10)), is equivalent to those of the well-known Halving algo-

rithm (Barzdin and Frievald, 1972; Littlestone and Warmuth, 1994) where the hypothesis

class U∗ is the set of label-consistent minimum-cuts. The mistake upper bound of the

Halving algorithm is just M ≤ log |U∗| where this bound follows from the observation

that whenever a mistake is made at least “half” of concepts in U∗ are no longer con-

sistent. We observe that we may upper bound |U∗| ≤ argminP∈P(G)

∏k
i=1 |pi| since the

product of path lengths from any path cover P is an upper bound on the cardinality

of U∗ and hence we have the bound in (3.12). And in fact this bound may be a sig-

nificant improvement over the fixed-paths strategy’s bound as seen in the following

proposition.

Proposition 3.6 (Proof in the supplementary materials of Herbster et al. (2015)). For

every c ≥ 2 there exists a PQ-graph Gc, with a path cover P ′ ∈ P(Gc) and a PQ-game

example sequence such that the mistakes Mfixed-paths(P ′) = Ω(c2), while for all PQ-game

example sequences on Gc the mistakes M0-Ising = O(c).
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Unfortunately the 0-Ising strategy has the drawback that counting label-consistent

minimum-cuts is #P-complete and computing the prediction (see Equation (3.10)) is

NP-hard (see proof in the supplementary materials of Herbster et al. (2015)).

Strategy longest-path: In our search for an efficient and regular prediction strategy

it seems natural to attempt to “dynamize” the fixed-paths approach and predict with

a nearest neighbor along a dynamic path. Two such permutation-invariant methods

are the longest-path and shortest-path strategies. The strategy shortest-path

predicts the label of a super-vertex Z in a PQ-game G as 0 iff the shortest directed

path (⊥, . . . , Z) is shorter than the shortest directed path (Z, . . . ,>). The strategy

longest-path predicts the label of a super-vertex Z in a PQ-game G as 0 iff the longest

directed path (⊥, . . . , Z) is shorter than the longest directed path (Z, . . . ,>). The

Input: Graph: G, Example sequence: S = 〈(i1, 0), (i2, 1), (i3, y3), . . . , (i`, y`)〉 ∈ (INn × {0, 1})`
Initialization: G3 = PicardQueyranneGraph(G,S2)

for t = 3, . . . , ` do

Receive: it ∈ {1, . . . , n}
It = V ∈ V (Gt) with it ∈ V
Predict (longest-path):

ŷt =

{
0 |longest-path(Gt,⊥t, It)| ≤ |longest-path(Gt, It,>t)|
1 otherwise

Predict (0-Ising): ŷt = ŷI0(it|St−1) % as per equation (3.10)

Receive: yt

if (it 6∈ ⊥t or yt 6= 1) and (it 6∈ >t or yt 6= 0) then % cut unchanged

Gt+1 =

{
merge(Gt, ↓{It}) yt = 0

merge(Gt, ↑{It}) yt = 1

else % cut increases

Gt+1 = PicardQueyranneGraph(G,St)
end

Figure 3.4: Longest-path and 0-Ising online prediction

strategy shortest-path seems to be intuitively favored over longest-path as it is just

the “nearest-neighbor” prediction with respect to the geodesic distance. However, the

following proposition shows that it is strictly worse than any fixed-paths strategy in

the worst case.

Proposition 3.7 (Proof in the supplementary materials of Herbster et al. (2015)). For

every c ≥ 4 there exists a PQ-graph Gc and a PQ-game example sequence such that the

mistakes Mshortest-path = Ω(c2 log(c)), while for every path cover P ∈P(Gc) and for all

PQ-game example sequences on Gc the mistakes Mfixed-paths(P ) = O(c2).

In contrast, for the strategy longest-paths in the proof of Theorem 3.8 on the next

page, we show that there always exists some retrospective path cover Plp ∈P(G) such

that Mlongest-paths ≤
∑k

i=1 log |pilp|. Computing the “longest-path” has time complexity

linear in the number of edges in a DAG.
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Summarizing the mistake bounds for the three PQ-game strategies for a single PQ-game

we have the following theorem.

Theorem 3.8 (Proof in the supplementary materials of Herbster et al. (2015)). The

mistakes, M , of an online PQ-game for player strategies fixed-paths(P̃ ), 0-Ising,

and longest-path on PQ-graph G and k-path cover P̃ ∈ P(G) is bounded by

M ≤


∑k

i=1 log |p̃i| fixed-paths(P̃ )

argminP∈P(G)

∑k
i=1 log |pi| 0-Ising

argmaxP∈P(G)

∑k
i=1 log |pi| longest-path

. (3.12)

The detailed proof of 3.8 is in the supplementary materials of Herbster et al. (2015),

here we provide a proof sketch for the sake of completion.

Proof Sketch: Without loss of generality over the classes, the theorem can be proven

by means of reverse induction, where Mt denotes the backward cumulative mistakes.

The total number of mistakes at any trial is the sum over the individual mistakes made

on the set of k edge disjoint path cover for the PQ graph at that trial. If Gt is the

PQ graph at trial t, the set of k edge disjoint paths is {p1t , p2t , . . . , ptt}. For the base

case at t = T , the number of mistakes made MT = 0, so the inductive hypothesis

holds as MT = 0 =
∑k

i=1M
i
T where M i

T = 0 ≤ log |piT |. The goal is to show the

inductive hypothesis holds for some t > 1, say t − 1. If a mistake has not been made

between trial t to trial t − 1 and the PQ graph stays the same from trial t to trial

t − 1, the inductive hypothesis holds as the path cover stays the same. However, if

the PQ graph has changed since the last trial t and a mistake is made at trial t − 1

on queried vertex Zb, we show the following. By PQ graph construction before and

after, we have the state of the PQ graph at trial t − 1 as shown in (a) with dotted

lines, and the state of the graph at trial t after the PQ graph collapse shown in bold

lines in (b). Let the path p̂it−1 be defined in the PQ graph at trial t − 1, such that

the path p̂it−1 = pit + {(Za, Zb)} + r>t−1, belongs to the set of k edge disjoint paths in

trial t− 1. r⊥t−1 is the segment of the path from the downstream source vertex ⊥ to Zb,

while r>t−1 is the upstream path from Zb to target vertex >. Now if the longest-path

had made a mistake predicting the label of Zb as 0, without loss of generality, mistakes

made in t − 1: Mt−1 = Mt + 1, then by inductive hypothesis, Mt−1 = 1 +
∑k

i=1M
i
t ,

which implies Mt−1 =
∑k

i=1M
i
t−1, where there are k edge disjoint paths in the PQ

graph at trial t − 1. Also, since longest path made a mistake,
∣∣r⊥t−1| ≤ |r>t−1∣∣, which

implies,
∣∣p̂it−1 \ r>t−1∣∣ ≤ ∣∣r>t−1∣∣. Also, length of the path

∣∣p̂it−1∣∣ =
∣∣p̂it−1 \ r>t−1∣∣ +

∣∣r>t−1∣∣
which implies that the length of the path

∣∣p̂it−1∣∣ ≥ 2
∣∣p̂it−1 \ r>t−1∣∣. From the inductive

hypothesis, this implies 2
∣∣p̂it−1 \ r>t−1∣∣ = 2

∣∣pit∣∣ ≥ 2 × 2M
i
t = 21+M

i
t = 2M

i
t−1 . Since this

holds for all the paths in uncollapsed PQ graph at trial t− 1, this holds for all cases. If

the longest path did not make a mistake in trial t−1, when the PQ graph changed from

trial t, on Zb, the number of mistakes stay the same and its trivial to show the equality.
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3.7.3 Global analysis of prediction at zero temperature

In Figure 3.4 we summarize the prediction protocol for 0-Ising and longest-path. We

claim the regularity properties of our strategies in the following theorem.

Theorem 3.9 (Proof in the supplementary materials of Herbster et al. (2015)). The

strategies 0-Ising and longest-path are permutation-invariant, label-monotone, and

Markov.

The technical hurdle here is to prove that label-monotonicity holds over a sequence of

PQ-games. For this we need an analog of Proposition 3.5 to describe how the PQ-

graph changes when the label-consistent minimum-cut increases. The application of the

following theorem along with Theorem 3.4 implies we may bound the mistakes of each

uniformly-labelled cluster in potentially three ways.

Theorem 3.10 (Proof in the supplementary materials of Herbster et al. (2015)). Given

either the 0-Ising or longest-path strategy A the mistakes on uniformly-labelled sub-

graph C ⊆ G are bounded by

BA(C;G) ∈


O(1) κ(C) > |∂Ee (C)|
O
(
|∂Ee (C)|(1 + |∂Ee (C)| − κ(C)) logN(C)

)
κ(C) ≤ |∂Ee (C)|

O(|∂Ee (C)| logD(C)) C is a tree

(3.13)

with the atomic number N(C) := N|∂Ee (C)|+1(C) ≤ |V (C)|.

First, if the internal connectivity of the cluster is high we will only make a single mistake

in that cluster. Second, if the cluster is a tree then we pay the external connectivity of the

cluster |∂Ee (C)| times the log of the cluster diameter. Finally, in the remaining case we pay

quadratically in the external connectivity and logarithmically in the “atomic number” of

the cluster. The atomic number captures the fact that even a poorly connected cluster

may have sub-regions of high internal connectivity. Here, we provide an intuitive proof

sketch for the Theorem 3.10, where the detailed proof is provided in the supplementary

materials of the chapter (Herbster et al., 2015).

Proof Sketch The goal is to prove the mistake bounds that capture the connectivity

structure of the underlying graph. Since, we assume uniformly labelled clusters as shown

in Figure 3.5 with dotted lines, the first step is taken towards bounding the number of

mistakes made within the clusters Ci as M ≤∑c
i=1 BA(Ci;G) , where there are c clusters,

A is the longest-path algorithm. Further, once the mistakes are bounded within the

clusters, the introduced parameter atomic number N(C), is used to tune the inter-cluster

connectivity within the graph relative to the intra-cluster connectivity through κ, which

is defined as the number of edge disjoint paths connecting a vertex pair. For example

in the Figure 3.5, the atomic number at κ = 2 connectivity level is N2(G) = 2; the
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atomic number partitions the graph into two sub graphs each with internal connectivity

more than equal to 2 as shown by the purple dotted lines. With κ = 3, N3(G) = 6; the

atomic number partitions the graph into 6 sub graphs. each with internal connectivity

more than equal to 3 as shown with the orange dotted lines. Hence, when the bounds

in Theorem 3.10 can be divided into cases, when the intra cluster connectivity is more

than the inter cluster connectivity, when the intra cluster connectivity is less than the

inter cluster connectivity and when the cluster is a tree.

Figure 3.5: Dense cluster structure in sparse graphs tuned by atomic number
of the graph N(G). Image courtesy Mark Herbster.

Computational complexity. If G is a graph and S an example sequence with a

label-consistent minimum-cut of φ then we may implement the longest-path strategy

so that it has a cumulative computational complexity of O(max(φ, n) |E(G)|). This

follows because if on a trial the “cut” does not increase we may implement prediction

and update in O(|E(G)|) time. On the other hand if the “cut” increases by φ′ we pay

O(φ′|E(G)|) time. So we implement an online “Ford-Fulkerson” algorithm (Ford and

Fulkerson, 1956) which starts from the previous “residual” graph to which it then adds

the additional φ′ flow paths with φ′ steps of size O(|E(G)|).

Discussion. There are essentially five dominating mistake bounds for the online graph

labelling problem: (I) the bound of treeOpt (Cesa-Bianchi et al., 2009) on trees, (II) the

bound in expectation of treeOpt on a random spanning tree sampled from a graph (Cesa-

Bianchi et al., 2009), (III) the bound of p-seminorm interpolation (Herbster and

Lever, 2009) tuned for “sparsity” (p < 2), (IV) the bound of p-seminorm interpolation

as tuned to be equivalent to online label propagation (Zhu et al., 2003) (p = 2), (V) this

chapter’s longest-path strategy.

The algorithm treeOpt was shown to be optimal on trees. In the proof in the chapter,

we show that longest-path also obtains the same optimal bound on trees. Algorithm

(II) applies to generic graphs and is obtained from (I) by sampling a random spanning
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tree (RST). It is not directly comparable to the other algorithms as its bound holds only

in expectation with respect to the RST.

We use (Herbster and Lever, 2009, Corollary 10) to compare (V) to (III) and (IV).

We introduce the following simplifying notation to compare bounds. Let C1, . . . , Cc
denote uniformly-labelled clusters (connected subgraphs) which cover the graph and set

κr := κ(Cr) and φr := |∂Ee (Cr)|. We define Dr(i) to be the wide diameter at connectivity

level i of cluster Cr. The wide diameter Dr(i) is the minimum value such that for all

pairs of vertices v, w ∈ Cr there exists i edge-disjoints of paths from v to w of length

at least Dr(i) in Cr (and if i > κr then Dr(i) := +∞). Thus Dr(1) is the diameter of

cluster Cr and Dr(1) ≤ Dr(2) ≤ · · · . Let φ denote the minimum label-consistent cutsize

and observe that if the cardinality of the cover |{C1, . . . , Cc}| is minimized then we have

that 2φ =
∑c

r=1 φr.

Thus using (Herbster and Lever, 2009, Corollary 10) we have the following upper bounds

of (III): (φ/κ∗)2 logD∗ + c and (IV): (φ/κ∗)D∗ + c where κ∗ := minr κr and D∗ :=

maxrDr(κ
∗). In comparison we have (V): [

∑c
r=1 max(0, φr − κr + 1)φr logNr] + c with

atomic numbers Nr := Nφr+1(Cr). To contrast the bounds, consider a double lollipop

labelled-graph: first create a lollipop which is a path of n/4 vertices attached to a clique

of n/4 vertices. Label these vertices 1. Second, clone the lollipop except with labels 0.

Finally join the two cliques with n/8 edges arbitrarily. For (III) and (IV) the bounds

are O(n) independent of the choice of clusters. Whereas an upper bound for (V) is

the exponentially smaller O(log n) which is obtained by choosing a four cluster cover

consisting of the two paths and the two cliques. This emphasizes the generic problem

of (III) and (IV): parameters κ∗ and D∗ are defined by the worst clusters; whereas (V)

is truly a per-cluster bound. We consider the previous “constructed” example to be

representative of a generic case where the graph contains clusters of many resistance

diameters as well as sparse interconnecting “background” vertices.

On the other hand, there are cases in which (III,IV) improve on (V). For a graph with

only small diameter clusters and if the cutsize exceeds the cluster connectivity then (IV)

improves on (III,V) given the linear versus quadratic dependence on the cutsize. The log-

diameter may be arbitrarily smaller than log-atomic-number ((III) improves on (V)) and

also vice-versa. Other subtleties not accounted for in the above comparison include the

fact a) the wide diameter is a crude upper bound for resistance diameter (cf. (Herbster

and Lever, 2009, Theorem 1)) and b) the clusters of (III,IV) are not required to be

uniformly-labelled. Regarding “a)” replacing “wide” with “resistance” does not change

the fact the bound now holds with respect to the worst resistance diameter and the

example above is still problematic. Regarding “b)” it is a nice property but we do not

know how to exploit this to give an example that significantly improves (III) or (IV)

over a slightly more detailed analysis of (V). Finally (III,IV) depend on a correct choice

of tunable parameter p.
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Thus in summary (V) matches the optimal bound of (I) on trees, and can often improve

on (III,IV) when a graph is naturally covered by label-consistent clusters of different

diameters. However (III,IV) may improve on (V) in a number of cases including when

the log-diameter is significantly smaller than log-atomic-number of the clusters.

3.8 Experiments

In this section, we provide an experimental validation of our theoretical results on the

longest-path, by conducting experiments on multiple standard machine learning and

simulated datasets.

3.8.1 Simulation Data

Our synthetic dataset uses a 2D grid like topology. The motivation behind using the

grid images for our simulation experiments stems from the naturally occurring graph

structure in such 2D grids. Our selection of images vary in smoothness, complexity and

patterns of class membership. We use a square image that is constructed using a set of

pixels, each with an intensity of 0 or 1. The 0 and 1 intensities are balanced across the

pixels i.e. there are equal number of pixels with 0 and 1 intensities. When the graphs

are constructed from the images, each pixel in the image corresponds to a vertex in the

graph and the intensities correspond to the label or class of the vertex. There are 3600

or 1600 vertices in the graphs generated depending on the original size of the problem.

The neighbourhood system in the graph comprises edges connecting pairs of adjacent

pixels. The connectivity is typically guided by the pixel locations. In this chapter, we are

only interested in undirected and unweighted graphs. The graphs thus generated have a

weight of 1 on every edge and there is an edge in either direction. Further, we investigate

two types of neighbourhood system, namely torus and non-torus. In the torus graph,

each pixel has four neighbours; achieved by wrapping the image from top to bottom and

from left to right, thereby creating the twists and rings on the torus. In the non-torus

graph, the corner pixels have two neighbours, pixels on edges other than the corner pixels

have three neighbours and the remaining pixels have four neighbours. Our simulation

experiments run over ten trials. We feed the same graph in every trial. We randomly

sample the labelled vertices from the graph such that there are equal number of labels

from each class. We vary the training labels available through 6%, 12%, 18%, 24%, 30% of

the graph size. For every set of partially labelled vertices, the algorithms are analysed on

their predictive performance over the unlabelled vertices and their performance averaged

over ten trials. Here, we report the generalization error or accuracy of the algorithms

over the graph size i.e. we also take into account the labelled vertices when reporting

the accuracy.
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Table 3.1: Datasets used in this 0-temp Ising Model.

Data set #Instances #Features #Classes
USPS 7291 256 10
Isolet 7797 617 26
Webspam 9072 100 2
20Newsgroup 16242 100 4

3.8.2 Datasets

We perform several experiments on real-world graphs to evaluate the performance of our

algorithm against the state-of-the-art. The datasets come from different domains, these

are: handwritten digit recognition; text categorization; web spam filtering; and noisy,

perceptual spoken letter recognition.

The USPS handwritten digits from the UCI (Lichman, 2013) machine learning repository,

is an optical character recognition dataset comprising 16× 16 grayscale images of digits

0 through 9 obtained from scanning handrwritten digits. The pre-processed dataset

has each image with 256 real valued features without missing values scaled to [−1, 1].

We randomly sample the examples for the graph from the 7291 original training points.

Each vertex in the graph thus sampled is a digit. We perform several binary classification

tasks of one digit versus the other digit.

We use a noisy perceptual dataset for spoken letter recognition called Isolet from the

UCI datasets, consisting of 7797 instances with 617 real valued features. A total of

150 subjects spoke each letter of the English alphabets twice resulting in 52 training

examples from each speaker. The 150 speakers are split into sets of 30 speakers each,

named as Isolet 1 through to Isolet 5. We are only interested in binary classification

tasks where we classify the first 13 spoken letters against the last 13 spoken letters.

The Webspam dataset is available as part of 2007 the Webspam Challenge website (Web-

spam, 2007) at the University of Paris VI. Pre-processed graphs are provided in the

form of a smaller host-graph of 9072 vertices and a larger web graph of 400, 000 vertices.

Here, we use the host graph for our experiments, with all its 9072 vertices and 464, 959

edges, where the vertices represent computer hosts. The hosts are connected if there

is a link between the web page on one host and the web page on the other host. Each

vertex in the graph has a label associated, which indicates whether the host is spam or

normal.

The original text categorization dataset called the 20 Newsgroup dataset, has 200, 000

messages across 20 news categories. We use a subset of the 20 Newsgroup dataset

that was put together by Sam Roweis (Roweis, 2006) that consisted of text documents

from four news groups namely (comp.*, rec.*, sci.* and talk.* usenet hierarchies). Each

document is represented by 100 binary features that indicates whether the 100 non-stop
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words are present or absent in the document. There are 16242 examples in this subset,

and we use all of them in our graphs. The classification task that we use is of the nature

of one newsgroup versus the rest.

3.8.3 Algorithms

The discriminative benchmarks that we compare our algorithm against are as follows.

labelProp (Zhu et al., 2003; Belkin and Niyogi, 2004) is a label propagation batch trans-

ductive learning algorithm that solves a linear system of equations involving the graph

Laplacian. This is equivalent to the harmonic energy minimization where labelProp

essentially solves a quadratic program uTLu that uses the spectral kernel of the graph

structure or the graph Laplacian L and the training labels to infer the final labelling

u of the graph. For our experiments, we have implemented the algorithm ourselves in

Matlab.

treeopt Shazoo (Cesa-Bianchi et al., 2009) is an optimal label prediction algorithm

on any weighted tree. Here, we use the unweighted version of Shazoo as our second

benchmark. We have adapted the Shazoo code written in Java that has been provided

to us by the original authors. Our input to the algorithm is the graph that we generate

from the data and training labels. Shazoo internally builds its random spanning trees

on the graph inputted.

3.8.4 Graph Construction

Throughout, we construct the graph from the dataset as a separate step. The graph

generation process is uniform across all the datasets, varying slightly on the training label

size. All graphs are undirected and unweighted (there is an edge in either direction) with

a weight of 1 assigned to the edge. The graph construction process ensures that there are

nearly balanced instances from each of the classes. For each dataset after the balanced

sampling of the instances representative of each class, a “cost” matrix is computed for

storing the distance among all examples (patterns) in the sampled graph. The Euclidean

distance metric gets used for computing the distance matrix except in the case of ISOLET

where the “cosine distance” is used. This is followed by the creation of an unweighted

minimum spanning tree (MST) and a “3-NN” graph (via the cost matrix) where the the

edge sets of the MST and 3-NN get “unioned” together to form the final graph for each

of the datasets. The rationale behind selecting the last step in the graph generation

methodology is based on the common empirical observation that 3-NN graphs are often

among the most competitive of the unweighted k-NN graphs. The added MST edges

ensure that the final graph is connected. Further, MST graphs have been noted to have

very good empirical performance as compared to k-NN graphs, see for example (Vitale

et al., 2011).
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The result of the graph construction process is the creation of relatively sparse graphs

that reduce the computational burden for all methods. Additionally, the uniform process

of graph creation, reduces the variance by avoiding model selection. Although it is

beyond the scope of our limited study, it may be the case that constructed graphs with

higher connectivity could potentially lead to higher accuracies.

The parameters that we use in the experiments to vary through are K for the connectiv-

ity, L for the number of available labels and N for the size of the graph. In ISOLET, we

build a 3 nearest neighbour graph from the Euclidean distance matrix constructed using

the pairwise distances between the instances (spoken letters) in the dataset as vertices

in the graph. In order to ensure that the graph is connected for such low connectivity,

we sample a MST for each graph and always maintain the MST edges in the graph. The

MST uses the Euclidean distances as weights. The graph thus built, remains the same

for all ten trials of the experiment. The training labels are sampled randomly such that

the two classes are balanced.

For the Webspam experiment, we use the fully pre-processed graph available on the

WebSpam Challenge 2007 website (Webspam, 2007). We use the link matrix with a non

zero entry for an edge in the hostgraph of 9072 vertices. As of now, we drop the weights

to build our adjacency matrix. The graph thus sampled remains the same across all ten

trials of the Webspam experiment. However, we randomly sample l training labels ( label

of 1 indicated spam and 0 for normal) at every trial, such that both spam and non-spam

labels are balanced and the algorithm is asked to predict on the unlabelled vertices.

We perform the text categorization experiment on the subset of the 20 Newsgroup as

described before. The binary problems that we select are the one vs rest i.e. Comp.*

vs. Rec.*, Sci.* and Talk.* classification tasks between newsgroups. Each document is

characterized by 100 logical or binary features, indicating if the 100 non-stop words are

present or absent. We calculate the cosine distance between pairs of documents and the

documents. In our current experiments, we use the MST edges and K = 3. The MST

uses the cosine distance metric as weights. The same graph is used across all the trials.

In the USPS experiments, we sample a different graph for each trial. While sampling the

vertices of the graph, we ensure to select vertices equally from each class. Primarily, our

experiments classifies one digit versus the other. We vary the training labels through

almost 1%, 2%, 3%, 6% and 12% with equal number of labels from each class. We use the

pairwise Euclidean distance as the weights for the MST construction. All the sampled

graphs maintain the MST edges. We vary k values through an exhaustive range of

K = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Here, we report the results of K = 3, N = 1000.

We perform our experiments on a single Intel i7 64 bit processor with 4 cores Windows

laptop, having 8GB RAM. The extensive set of experiments are carried out on the

IRIDIS High Performance Computing Facility, and associated support services at the

University of Southampton.
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3.9 Preliminary Experimental Results

In this section we present some preliminary experiments that compare the longest-path

strategy to treeOpt and label propagation LabProp. The datasets include the four stan-

dardized benchmark datasets USPS 2 vs 3, 3 vs 8, 20 newsgroups and ISOLET as well

as a constructed dataset Stripes. We used our own implementation of longest-path

and labelProp. For the purposes of computational efficiency we ran our experiments

in the “batch mode” rather than “online.”

We used the benchmark datasets as follows. With the USPS datasets we sampled 500

digits from each class. For ISOLET we combined “ISOLET1” to “ISOLET5” giving 3900

in class “0” (letters ‘A-M’) and 3897 class “1” (letters ‘N-Z’) examples. While for 20

Newsgroups we combined “comp.*” and “rec.*” creating class “0” with 8124 examples

and combining “sci.*” and “talk.*” creating class “1” with 8118 examples.

In Figure 3.2 we report our results. We give the mean accuracy (computed over all labels

in the graph) and its standard deviation from ten runs. For each “column,” and each run

of 10, we sampled uniformly `/2 labels from each class. For the USPS datasets we also

randomly sampled and built a new graph on each run. Finally on each run as treeOpt

expects a tree we further sampled a uniform random spanning tree as per (Cesa-Bianchi

et al., 2009) from the built graph on each of the 10 runs.

Our obervations are as follows. LabelProp performs systematically well across all

datasets. treeOpt tends to have the weakest performance. Note, however, that treeOpt

is very computationally efficient and it is natural to run with an ensemble of trees to

improve performance; this is discussed and experimentally confirmed in (Vitale et al.,

2011). Longest-path is competitive and improves on labelProp often. But it has

a “failure mode” as seen in the first column for the relatively smaller label sets. We

observed that when this occurred we are finding small PQ-graphs corresponding to un-

balanced trivial label-consistent minimum-cuts.

We also show results on a constructed dataset to illustrate the potential of the algorithm.

Stripes is a 60×60 grid graph shown in Figure 3.6 with toroidal boundary connectivity.

Thus each vertex has four neighbors. The problem corresponds to a simple geometric

concept of “stripes.” We induce the two classes by alternately “coloring” each of the 6

vertical stripes of 10 × 60 vertices. For this dataset the performance of longest-path

strongly dominates. We provide a visualization of a typical PQ-graph from a Stripes

in Figure 3.13.
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Table 3.2: Experiments of 0-temp Ising Model

` = 8 ` = 16 ` = 32 ` = 64 ` = 128
2

v
s.

3 labelProp .980± .010 .982± .008 .984± .005 .988± .003 .991± .002
treeOpt .814± .055 .885± .032 .891± .032 .956± .013 .959± .013

longest-path .504± .001 .940± .143 .987± .003 .988± .003 .990± .002

` = 8 ` = 16 ` = 32 ` = 64 ` = 128

3
v
s.

8 labelProp .956± .009 .953± .007 .961± .007 .967± .004 .971± .004
treeOpt .797± .105 .749± .095 .878± .013 .935± .026 .960± .023

longest-path .505± .001 .600± .184 .969± .006 .971± .004 .972± .003

` = 32 ` = 128 ` = 512 ` = 1600 ` = 2048

Is
o
le

t labelProp .661± .039 .764± .024 .820± .012 .887± .006 .899± .004
treeOpt .658± .042 .731± .012 .824± .008 .888± .007 .906± .002

longest-path .524± .033 .726± .016 .799± .016 .906± .007 .921± .006

` = 800 ` = 1000 ` = 2000 ` = 4000 ` = 6000

N
ew

s labelProp .825± .005 .826± .007 .844± .004 .871± .002 .894± .003
treeOpt .753± .006 .758± .014 .804± .001 .847± .002 .878± .003

longest-path .549± .004 .798± .013 .839± .005 .867± .003 .890± .002

` = 250 ` = 450 ` = 650 ` = 850 ` = 1050

S
tr

ip
es labelProp .915± .013 .948± .005 .962± .004 .972± .004 .978± .005

treeOpt .817± .012 .879± .017 .909± .006 .928± .003 .936± .006
longest-path .921± .090 .998± .002 .997± .002 .994± .004 .993± .002

3.10 Extensive Experimental Results

3.10.1 Simulated Grid Images

The experiments with simulated data involve using regular grid graphs that are lattice

like approximations to torus. On a grid image, the pixel intensities vary between 0

and 1. The adjacent pixels are neighbours of each other in the corresponding graph

constructed from the image. Further, we ensure a 4-connected torus while generating

the graph, by wrapping around the boundary edges of the image from top to bottom

and from left to right, hence forming the rings and twists in the torus as seen in the

Figures 3.10 and 3.14. While constructing the simulated image data, our goal has been

to progress from easier to difficult problem complexity and non-smooth to smooth data.

In each of the non-torus graphs that we construct using the grid images, the following

neighbourhood distribution is maintained. The corner cells have two neighbours, the

cells on the boundary edges have three neighbours while any other intermediate cell has

four neighbours.

The grid image of Stripes is a regular 60×60 4-connected lattice approximation to the

torus. A stripe is a collection of consecutive columns of similar pixel intensity values

within the grid. Stripes with pixel intensity value of 1 are interspersed with stripes with

pixel intensity value of 0 forming three stripes of intensity 0 and three of intensity 1.

The corresponding 4-connected torus constructed from the Stripes grid image is seen

in Figures 3.10 and 3.11.
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Figure 3.6: Simulated Grid Image Stripes with N = 3600.

The grid image of Checker used here is a 40 × 40 regular mesh with a checker-board

pattern. The graph constructed from this grid has toroidal property. In total there are

16 squares with alternating pixel intensities of 1 and 0. The corresponding 4-connected

torus is shown in Figures 3.14 and 3.15.

Figure 3.7: Simulated Grid Image Checker for N = 3600

The grid image of Squares is that of concentric squares. A 60×60 lattice grid of squares

whose centers coincide and the corresponding sides are parallel to each other. The

innermost square of pixel intensity value 1 is inscribed inside alternating circumscribing

squares of pixel intensity values 0 and 1.

Figure 3.8: Simulated Grid Image Squares for N = 3600

The grid image of Circles is the most smooth mesh with concentric circles. It is a

60× 60 grid. In our experiments, we vary the number of circles through 3, 6 and 7. We

construct both torus and non-torus graphs from the image.

3.10.2 Graphs from Simulated Data

In the Figure 3.10, we observe the visualization of the graph as generated from the

grid image Stripes, using Gephi (Bastian et al., 2009). The graph generation process
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Figure 3.9: Simulated Grid Image Circles for N = 3600

is the same as before and uses the parameter setting as K = 4, L = 250, N = 3600.

As in the case of any torus graph that we study here, all the vertices are 4-connected.

What is interesting to observe from the visualization is the particular twists in the torus.

These turns correspond to the stripes or collection of consecutive columns within the

grid image, that have similar pixel intensities. The twists are due to the stripes in the

image being wrapped around the boundaries from left to right and top to bottom.

In the Figure 3.11, we see the alternative visualization of the graph generated from

the simulated grid image Stripes, using GraphViz (Gansner and North, 2000). This

particular instance of the graph is from the following parameter setting K = 4, N =

3600, L = 250. Once again, this is a 4-connected torus graph with every vertex having

four neighbours. This original graph visualization provides insight into the process of

collapse into the corresponding PQ graph in 3.12.

Figure 3.12 is the resultant PQ graph corresponding to the original graph for Stripes.

The PQ graph is the result of running the Algorithm 3.1 on the original graph. From the

PQ graph, we observe the vertex at the top as the source and the vertex at the bottom

as the target. Every other vertex is a super-vertex. The label on the super-vertices

denote the number of vertices that have collapsed onto the super-vertex. The directed

edges induce a partial ordering on the graph. The edges are multi-edges and the label

on the edges denote the number of edges incident on the pair of super-vertices at its

endpoints or the total value of the flow. Figure 3.12 allows for the visualization of the

hyper-graph nature of the PQ graph. It is interesting to see that the value of the flow

incoming to a super-vertex is equal to the value of the flow exiting the super-vertex. The

total number of super-vertices in this particular instance of PQ graph is 130, collapsed

from the original 3600 vertices.

Figure 3.14 is the torus visualization of the original graph generated from Checker. As

the boundaries are wrapped around from top to bottom and left to right, the twists are

generated as shown. Every vertex is 4-connected.

Figure 3.15 is the alternative visualization of the same original graph from Checker.

The parameter settings for this graph are K = 4, N = 1600, L = 250. The visualization

uses GraphViz to show the lattice grid approximation to the torus.
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Figure 3.10: Graph of torus Stripes with K = 4, N = 3600, L = 250. Graph
visualization on Gephi using Force Atlas 2 algorithm with no overlap, linlog
mode and tolerance 0.7.

Figure 3.16 below shows the collapsed PQ graph as observed from running the PQ

algorithm on the original graph generated from Checker in Figures 3.14 and 3.15. The

two central vertices are the source and the target, while the rest are super-vertices.

There are a total of 168 super-vertices in the PQ graph.

Figure 3.17 is the original graph constructed from the simulated grid image Squares for

the parameter settings of K = 4, N = 3600, L = 250. The graph is a torus with all four

boundary edges wrapped around in order to generate a 4-connected graph.

In Figure 3.18, we observe the PQ graph generated from the original graph of Squares

as shown in Figure 3.17. The total number of super-vertices in the collapsed PQ graph

is 205.
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Figure 3.11: Graph of grid image Stripes with K = 4, N = 3600, L = 250.
Graph visualization as on GraphViz using .dot specification.

Figure 3.19 is the PQ graph as collapsed from the synthetic data of Circles. Unlike in

other simulated graphs, the graph of Circles from which this PQ graph is derived, is

not a torus. The corner vertices thus have two neighbours, the boundary edges vertices

have three neighbours and the intermediate vertices have four neighbours. The PQ

graph shown here has 126 super-vertices.

3.10.3 Simulated Data Robustness Experiments

The set of experiments in this section is a series of robustness, consistency and scalability

tests of longest-path, pitted against the standard algorithms. The experiments allow us

to have a clear understanding as to where the strengths and weaknesses of our method

lie. In all the experiments that follow in this section, we report the mean prediction

accuracy of the algorithms calculated over ten trials.
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Figure 3.12: PQ Graph generated from the grid image graph of Stripes with
K = 4, N = 3600, L = 250 with size 130. Graph visualization as on GraphViz
using the .dot graph specification.

Figure 3.13: PQ Graph generated from the grid image graph of Stripes with
K = 4, N = 3600, L = 250 with size 152. Graph visualization as on GraphViz
using the .dot graph specification.

In Figure 3.20, we show the result of the experiment of varying the difficulty of the

synthetic problem Circles. In the experiment, we evaluate the performance of our

algorithm longest-path with the standard algorithms. We increase the problem size of

the toroidal graph structure from 3-circles to 7-circles. 7-circles has 7 concentric rings of

0 intensity pixels interspersed with 1 intensity pixels. The graph construction and label

sampling procedure remains the same. However, in this experiment we do not allow for

balanced labels, thus having 66% from one class and 34% from the other class. The total

number of available labels is L = 1024. Our observation is, on the 3-circles, although
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Figure 3.14: Torus graph from Checker with K = 4, N = 1600, L = 250. Graph
visualization as on Gephi using Force Atlas 2 algorithm with no overlap, linlog
mode and tolerance 0.7.

longest-path outperforms p2; on the much harder problem of 7-circles, p2 does much

better than longest-path. On increasing the level of difficulty in the problem, the

smoothness of the model increases, p2 is designed for taking advantage of the increased

connectivity and the dense structure of the graph compared to longest-path.

The experiments shown in Figure 3.22 do a performance comparison of the candidate

algorithms with varying balance in the class distribution of available labels. Although

the graph is the same in both cases: 3-circles. The labels are sampled equally from either

class in Figure 3.22 (a), whereas in Figure 3.22 (b), the class distribution is 3:1. The total

number of available labels is L = 1024. In the balanced class distribution setting, p2 is

the clear winner among the three algorithms. We observe that all methods uniformly



Chapter 3 Online Prediction at the Limit of Zero Temperature 55

Figure 3.15: Graph of grid image Checker with K = 4, N = 1600, L = 250.
Graph visualization as on GraphViz using the .dot graph specification.

perform better in the biased class distribution experiment with longest-path surpassing

the others. In the unbalanced case, due to the bias, majority voting will always allow

the algorithms to perform better.

Figure 3.21 shows the result of one of the vanilla experiments with the synthetic problem

Squares analogous to Circles. Squares is an easier problem than Circles, where the

concentric squares of 0 intensity are less smooth than in the Circles. We have a 60×60

grid with 2 concentric squares of 0 intensity interspersed with squares of 1 intensity.

The graph construction process is similar with a toroidal structure. In this particular

experiment, the available labels are varied in the range L = 250, 450, 650, 850, 1050 with

balanced class distribution. We observe longest-path is able to outperform p2 at about

18% of the labels available. Even in a non-smooth concentric layout like Squares, the

region of similarly coloured pixels is inscribed throughout by regions of the opposite
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Figure 3.16: PQ graph of Checker with K = 4, N = 1600, L = 250 with 168
super-vertices. Graph visualization as on Gephi using Force Atlas 2 algorithm
with no overlap, linlog mode and tolerance 0.7.

colour pixels; leading to dense edges within and across clusters in the corresponding

graph. longest-path is more applicable when densely clustered regions have sparse

connections across the clusters. The algorithm mindestedge is one of our sanity test

algorithms that we shall discuss more in the Future Works section in Chapter 7.

In Figure 3.23, we compare the torus and non-torus simulated graph problem for the

Checkers problem. A much harder problem than Squares, Checkers has interspersed

regions of 0 intensity and 1 intensity, as in a checker-board. The difference in the graph

construction process is that in the toroid graph, every pixel (vertex) is connected to

4 neighbours. In the non-toroidal graph, the number of neighbours vary between 2, 3

and 4, with the corner pixels having 2 neighbours, edge pixels having 3 neighbours

and the remaining having 4 neighbours. The performance measurement shows that p2

surpasses longest-path in both the settings. The labels are varied through the range

L = 250, 450, 650, 850, 1050.
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Figure 3.17: Graph of grid image data Squares with K = 4, N = 3600, L = 250.
Graph visualization as on GraphViz using the .dot graph specification.

3.10.4 Dataset Robustness Experiments

In Figure 3.24, we show the results of the experiment on the first partition of the

dataset Isolet that is Isolet 1, with varying the connectivity. Isolet 1 has 1560

instances with 617 features. The classification task is the same as classifying letters ‘A’-

‘M’ versus ‘N’-‘Z’. The instances that are randomly sampled to be included in the graph

ensure a balanced class distribution of 780:780. Specifically, we vary the parameter for

connectivity between K = 3 and K = 4. To ensure the graph constructed is connected,

we have always maintained the Minimum Spanning Tree (MST) edges in the graph.

However, in this experiment we test without the MST edges for K = 4. Our results

in both (a) and (b) show that although p2 leads in the initial settings, longest-path

outperforms p2 when more than 33% of the labels are available, as in the standard case

on this dataset. As Isolet is a noisy dataset, the longest-path algorithm performs
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Figure 3.18: PQ graph of grid graph Squares with K = 4, N = 3600, L = 250
with 205 super-vertices. Graph visualization as on GraphViz using the .dot
graph specification.

Figure 3.19: PQ graph for non-torus graph from Circles with K = 2, 3, 4,
N = 3600, L = 128 with 126 super-vertices. Graph visualization as on GraphViz
using the .dot graph specification.

better as it is more robust to noise. Being robust to noise allows the algorithm to

function well even with the presence or absence of MST edges.

Figure 3.25 shows the observations on two sets of experiments on the 20 newsgroups

dataset. Figure 3.25 (a), classifies Group ‘1’ against Groups ‘2’, ‘3’ and ‘4’ with unbal-

anced label sets. Figure 3.25 (b) classifies Groups ‘1’ and ‘2’ against Groups ‘3’ and

‘4’. The graph construction process is the same as before with this dataset. The cost

matrix is computed based on the cosine distance and the MST edges are maintained for

ensuring that the graph is connected. The total number of instances included in the

graph is 16242. The distribution of the instances into groups is as follows: Group ‘1’:
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Figure 3.20: Circles of varying sizes 3 and 7 with K = 4, N = 3600, L = 1024.
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Figure 3.21: Toroidal Squares with L = 250, N = 3600.

4605, Group ‘2’: 3519, Group ‘3’: 2657 and Group ‘4’: 5461. Total number of examples

in Groups ‘2’, ‘3’ and ‘4’ combined are 11637. In (a), the labels are sampled equally from

the two classes distributed as 4605:11637 where longest-path is the clear winner while

in (b) longest-path eventually catches up with p2. 20 newsgroups is an extremely

sparse dataset. Although, in the case of unbalanced labels, majority vote situation can

aid longest-path, it is interesting to observe that in the perfectly balanced scenario,

longest-path is still robust.

Figure 3.26 is the experiment with WebSpam for different techniques of sampling the labels

and evaluating the algorithms. In both settings, the available label sets are balanced (

up to 400 labels in (a)). In (a), we sample the labels from the training set that has 907

instances with a class distribution of 206:701. The evaluation is on the test set of 8165

instances. In (b), we randomly sample from the training set with 907 instances and

validation set with 1800 instances with a total of 2797 instances; the class distribution
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Figure 3.22: Balanced Versus unbalanced with labels L = 1024 in Circles (a)
Balanced labels (b) Unbalanced labels.
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Figure 3.23: (a) Toroidal Checker plot with N = 1600 (b) Non Torus Checker

plot with N = 1600.

is 594:2113. The evaluation is carried out on the training and validation set over a

total of 2707 instances. Webspam is a highly sparse dataset, hence p2 struggles on this

dataset. Treeopt copes well with the aggregating predictions via majority vote by using

a committee of spanning trees. longest-path is robust on Webspam irrespective of the

type of dataset partition used for sampling the labels.

Figure 3.27 describes the results of the experiment on the dataset Isolet. The method

of graph generation is the same in both cases. The classification task is the same as

before with a class distribution of 3900:3897. In (a), the labels are sampled from all the

partitions of the dataset Isolet-1 through to Isolet-5 with balanced class distribution
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Figure 3.24: Plot for dataset Isolet on (a) Isolet 1 with K = 3 MST (b) Isolet
1 with K = 4 no MST.
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Figure 3.25: Plot for dataset 20 newsgroups (a) Group ‘1’ vs ‘2’, ‘3’ and ‘4’
groups (b) Groups ‘1’ and ‘2’ Vs. Groups ‘3’ and ‘4’.

of 3900:3897. There are a total of 7797 instances randomly sampled for the graph.

The performance is measured on all of the data in Isolet-1 through to Isolet-5. In

(b), the labels are sampled from the training set only. The training set in Isolet

constitutes the data in Isolet 1 through Isolet 4 with a total of 6238 labels with

a class distribution of 3118:3120. The performance is measured on the test set only,

which is Isolet 5 having 1559 unlabelled instances. The observation shows that when

the available labels are sampled from the entire dataset, the performance of all the

algorithms become uniformly better as seen in (a). When the available labels are only

sampled from the training set, label propagation is not very successful for the part



Chapter 3 Online Prediction at the Limit of Zero Temperature 62

100 200 300 400 500 600 700 800 900 1000
0.6

0.65

0.7

0.75

0.8

0.85

Labels

A
cc

ur
ac

y

WebSpam Test Set

 

 

p2
treeopt
longestpath

(a)

100 200 300 400 500 600 700 800 900 1000 1100
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Labels

A
cc

ur
ac

y

WebSpam Train and Validation Set

 

 

p2
treeopt
longestpath

(b)

Figure 3.26: Plot for dataset Webspam under varying partitions of the data (a)
Labels from training set, evaluation on test set (b) Labels from training and
validation sets, evaluation on training and validation sets.

of the dataset under evaluation. longest-path though initially under-performs, it is

comparable and eventually outperforms both treeopt and p2. It is robust to changes

in the membership of the labels sampled.
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Figure 3.27: Plot for dataset Isolet (a) Evaluation on training and test data
Isolet1 through Isolet5 (b) Performance measured on test data Isolet5.

Figure 3.28 describes the experiment with the dataset Isolet on its first partition

Isolet 1 having a connectivity K = 4. The labels are varied through the range of

L=32, 64, 128, 256, 512, 1024. The labels are balanced in terms of class distribution.
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The available labels are randomly sampled from the 1560 labelled instances in Isolet

1 and the performance is measured over all of the unlabelled instances. treeopt is

competitive with longest-path and p2 here, although longest-path leads with labels

more than L = 512. Isolet is a noisy dataset and longest-path is robust on this

dataset.
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Figure 3.28: Plot for dataset Isolet1 over N = 1560 instances, K = 4.

The experiment in Figure 3.29 is a comparison between treeopt and longest-path

over a large number of available labels from the WebSpam dataset. The labels are varied

in the range L=200, 400, 600, 800, 1000. The evaluation is carried out over the entire

dataset. Being the most sparse dataset, treeopt beats longest-path throughout as it

carefully exploits the majority vote from the committee of spanning trees while making

the prediction.
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Figure 3.29: Plot for WebSpam over large number of available labels.

In the Figure 3.30, we use the USPS dataset for testing the robustness of the algorithms

with varying sparsity. The number of available labels for this experiment is fixed to



Chapter 3 Online Prediction at the Limit of Zero Temperature 64

20 40 60 80 100
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Noise

A
cc

ur
ac

y

1 Vs. 2 Edge Elimination

 

 

p2
longest

Figure 3.30: USPS 1 Vs. 2 Edge Elimination.

32. We introduce a parameter ‘noise’ that varies over the range 20, 40, 60, 80, 100 and a

parameter ‘bias’ expressed as a percentage of noise. The noise is introduced at the graph

construction phase. For every edge in the graph constructed from the dataset, a coin

is flipped and if the value drawn is greater than the bias, the edge is included, else the

edge is eliminated. With a noise level of 100%, all the edges are eliminated except the

minimum spanning tree edges that are maintained for having a connected graph. Here,

the noise parameter serves to control the sparsity in the graph. p2 is known to suffer

with sparse graphs with fewer edges whereas longest-path is quite robust to sparsity

and up-to a sufficient level of sparsity in the graph, performs very well; the performance

falls only when the minimum number of MST edges at 100 noise level. As edges are

being eliminated, connections between the vertices are lost and hence p2 finds it difficult

to propagate the labels.

In Figure 3.31, the similar experiment with WebSpam is carried out where the algorithms

are tested for robustness with varying sparsity through the means of balanced edge

elimination. This is achieved through the addition of the same number of random edges

to the graph upon deletion of edges based on the level of bias. For every edge in the

graph constructed from the dataset, a coin is flipped and if the value drawn is greater

than the bias, the edge is included, else the edge eliminated and a new random edge is

added to the graph. Here, the labels are varied in the range L = 200, 400, 600, 800 and

1000. We observe that longest-path is extremely robust to noise in comparison to p2.

The new random edges do not contribute to the longest-path prediction adversely as

in the case of p2.

The Table 3.3, summarizes all the USPS results under one table. Our implementation

of majvote is used here as a sanity test to validate longest-path prediction. majvote
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Figure 3.31: Plots for Balanced Edge Elimination Webspam (a) L=200 (b)
L=400 (c) L=600 (d) L=800 (e) L=1000
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Table 3.3: Performance over N,L,K for USPS for 0-temp Ising model

K = 3
N = 1000

L = 8 L = 16 L = 32 L = 64 L = 128
2
v
s
3

p2 0.98(0.01) 0.982(0.008) 0.984(0.005) 0.988(0.003) 0.991(0.002)
treeopt 0.814(0.055) 0.885(0.032) 0.891(0.032) 0.956(0.0133) 0.959(0.01326)
longpath 0.504(0.001) 0.94(0.143) 0.987(0.003) 0.988(0.003) 0.99(0.002)
majvote 0.504(0.001) 0.939(0.144) 0.987(0.002) 0.988(0.004) 0.99(0.002)

3
v
s
8

p2 0.956(0.009) 0.953(0.007) 0.961(0.007) 0.967(0.004) 0.971(0.004)
treeopt 0.797(0.105) 0.749(0.095) 0.878(0.013) 0.935(0.026) 0.96(0.023)
longpath 0.505(0.001) 0.6(0.184) 0.969(0.006) 0.971(0.004) 0.972(0.003)
majvote 0.505(0.001) 0.599(0.182) 0.97(0.006) 0.971(0.004) 0.972(0.003)

4
v
s
7

p2 0.985(0.006) 0.986(0.003) 0.987(0.003) 0.986(0.003) 0.989(0.003)
treeopt 0.84(0.115) 0.884(0.064) 0.956(0.027) 0.968(0.013) 0.956(0.024)
longpath 0.648(0.22) 0.986(0.002) 0.987(0.004) 0.986(0.003) 0.988(0.004)
majvote 0.648(0.22) 0.986(0.002) 0.987(0.003) 0.985(0.004) 0.988(0.004)

6
v
s
9

p2 0.998(0.001) 0.999(0.001) 0.998(0.001) 0.998(0.001) 0.999(0.001)
treeopt 0.945(0.045) 0.955(0.032) 0.992(0.023) 0.994(0.034) 0.994(0.041)
longpath 0.999(0.001) 0.999(0.002) 0.998(0.002) 0.998(0.002) 0.999(0.001)
majvote 0.999(0.001) 0.9986(0.001) 0.9983(0.001) 0.9983(0.001) 0.9989(0.0009)

is the approximated Ising prediction that takes a majority vote from the neighbours

of the vertex in question for prediction. In principle, majovote prediction should be

identical to longest-path. As before, all the algorithms behave uniformly better with

more number of labels.

Table 3.4, summarizes the results of performing random spanning tree (RST) graph

generation. The graph comprises the RST edges sampled during the graph generation.

The number of RSTs sampled varies through 1, 2, 4, 8. Although, K = 9 is not the ideal

connectivity for the graph, here we use a value of 9 to test the robustness of the algo-

rithm. The intuition behind using the randomized RST edges to approximate the graph

connectivity is to allow treeopt to function at its best. As discussed before treeopt can

find the cluster structure in RST approximated graphs in expectation. We also evaluate

the robustness of longest-path in this setting. It appears that losing the graph con-

nectivity (cluster) structure due to the approximation does affect longest-path at low

labels although it catches up to treeopt when the labels increase. The randomization

affects all the algorithms; although longest-path gets most affected. treeopt is com-

petitive with p2 throughout. p2 is the clear winner and uniformly performs better with

the increase in randomization. This shows the sensitivity of longest-path to random-

ization in the cluster structure. Uniformly labelled clusters, is vital for longest-path

to perform at its best.

3.10.5 Discussion and Conclusion

The performance measure used throughout the empirical evaluation is the generalized

prediction accuracy over the graph size. We summarize the observations of the empirical
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Table 3.4: 1 Vs. 2 Random Spanning Trees on 0-temp Ising model

K = 9
N = 1000

RST = 1 RST = 2 RST = 4 RST = 8

l=2

p2 0.834(0.115) 0.877(0.183) 0.8(0.191) 0.849(0.204)
treeopt 0.781(0.141) 0.715(0.043) 0.926(0.095) 0.77(0.107)
longpath 0.835(0.115) 0.501(0) 0.501(0) 0.501(0)

l=4

p2 0.788(0.101) 0.965(0.047) 0.954(0.064) 0.988(0.013)
treeopt 0.941(0.024) 0.839(0.161) 0.82(0.116) 0.896(0.117)
longpath 0.801(0.103) 0.502(0) 0.502(0) 0.502(0)

l=8

p2 0.869(0.064) 0.992(0.003) 0.993(0.004) 0.991(0.004)
treeopt 0.888(0.059) 0.902(0.044) 0.87(0.073) 0.921(0.045)
longpath 0.872(0.054) 0.602(0.195) 0.504(0) 0.504(0)

l=10

p2 0.893(0.077) 0.992(0.003) 0.994(0.002) 0.993(0.002)
treeopt 0.872(0.09) 0.853(0.06) 0.908(0.055) 0.904(0.045)
longpath 0.909(0.058) 0.945(0.146) 0.652(0.225) 0.603(0.197)

l=12

p2 0.92(0.045) 0.976(0.051) 0.994(0.001) 0.994(0.002)
treeopt 0.903(0.026) 0.9(0.056) 0.892(0.027) 0.87(0.083)
longpath 0.896(0.079) 0.895(0.194) 0.946(0.147) 0.947(0.147)

l=14

p2 0.932(0.029) 0.991(0.005) 0.994(0.002) 0.993(0.002)
treeopt 0.921(0.044) 0.9(0.061) 0.95(0.043) 0.946(0.032)
longpath 0.93(0.035) 0.994(0.003) 0.945(0.146) 0.948(0.147)

results on our extended set of experiments as follows:

Over large and sparse datasets such as USPS and Webspam, longest-path outperforms

labelProp consistently. The performance of labelProp and longest-path on the

Isolet dataset are competitive, where longest path beats labelProp when available

labels are around 30% of the graph size, when the graph is generated from Isolet

1. Treeopt beats labelProp on the Webspam dataset even at 2% of training labels.

longest-path is very competitive with Treeopt, although cannot outperform Treeopt

in this very sparse dataset. Lower connectivity in the graphs aids longest-path through-

out. RST experiments with RST = 1 on USPS show Treeopt competitive in compar-

ison to longest-path and labelProp. In concentric Squares, longest-path beats

labelProp at about 18% of the available labels and above. In concentric Circles,

labelProp beats longest-path all throughout. However, longest-path becomes com-

petitive with labelProp as more labels are available. labelProp seems to stagnate in

its performance towards the end, with slightly increased performance with the newly

available labels. Torus graphs seem to give a minor improvement over non torus graphs

on the simulated data. longest-path cannot beat labelProp in the Circles simulated

graph variants even in the online setting and on smaller size problems.

The longest-path strategy is optimal on trees and on generic graphs it improves on the

state of the art in many interesting cases. The strategy’s worst-case time to sequentially

label the entire graph is quadratic. In future work we would like extend our prediction

strategy from predicting with the longest path to prediction that takes into account the

connectivity. Two possible approaches are predicting with the minimum edge destruction

or minimum vertex destruction. This would take into account the connectivity at the
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time of prediction, such that if a mistake is made, maximum number of edges or vertices

will be collapsed to the resultant PQ graph or in other words, their labels will be

deduced. We attempt to conclude this chapter by providing insight into the question : in

what sense are the predictions of longest-path deterministic approximate predictions

of 0-Ising? Let the vectors y, ŷ0I, ŷLP ∈ {0, 1}n denote the true labelling of the graph,

the vectors of the sequential predictions of 0-Ising and longest-path and let B(S)

denote a mistake bound of 0-Ising and longest-path on an example sequence S (see

Theorems 3.4 and 3.10). Then we have

‖ŷ0I − ŷLP‖1 ≤ ‖y − ŷ0I‖1 + ‖y − ŷLP‖1 ≤ 2B(S)

thus the sequence of predictions ŷLP from the deterministic approximation longestPath

are guaranteed to never differ from the sequence of predictions ŷ0I of 0-Ising except in

at most 2B(S) trials. We would also like to analyse this further as part of future work.



Chapter 4

Online MeanField Approximation

for Graph Labelling

4.1 Introduction

In this chapter, we study the similar problem of sequential classification of unlabelled

vertices of a graph, from the perspective of variational approximation. Like in the

previous chapter, in the limit of zero temperature, predicting the label of a vertex with

the maximum marginal probability is NP-hard.

Here, we use meanfield variational approximation to approximate the posterior distribu-

tion over all possible labellings by means of a decoupled distribution, and then predict

with the maximum marginal value of the approximated distribution, the label of the

queried vertex at low temperatures.

4.2 Background

We assume that the underlying average behaviour of the system under observation is

known. Suppose there are a multitude of graphs, and for the whole set, there is some

average number of cuts observed. A “cut” as we have seen before, is the number of edges

with disagreeing labels. Let the cut of any graph in the set of graphs be defined by,

φG (u) =
∑

(i,j)∈E

r
ui 6= uj

z
(4.1)

where, u is the labelling of the graph, E is the number of edges and
rz

predicate denotes

an indicator function which is equal to 1 if the predicate is true and 0 otherwise. If the

“cut” observed is given by c∗, on average the expected number of cuts should be equal

69
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to the cut observed.

E [φG (u)] = c∗ (4.2)

Now, if the probability of a particular labelling of a graph is given by P (u), then the

goal is to compute the probability of the labelling with the assumption that the average

number of cuts c∗ is observed. P (u) is also the probability of having a particular number

of cuts. Alternatively, we have from 4.2.∑
u

P (u)φG (u) = c∗ (4.3)

Typically, for inferring the probability distribution over all possible labellings P (u), one

would look at the entropy of the distribution given by,

H (u) = −
∑
u

P (u) log (P (u)) . (4.4)

Maximum entropy of the distribution is the measure of the maximum uncertainty in the

distribution. Naturally, the maximum uncertainty in the distribution is when all possible

labellings are equally likely. In other words, maximum entropy counts the number of

all possible ways of having cuts. The average number of cuts end up being the prior.

Taking the Lagrangian of 4.4 and incorporating the constraints in 4.3 and
∑
u P (u) = 1,

one is interested in maximizing the Lagrangian, as shown.

L = −
∑
u

P (u) log (P (u)) + β

(∑
u

P (u)φG (u)− c∗
)

+ λ

(∑
u

P (u)− 1

)
. (4.5)

Maximizing with respect to the probability of each labelling,

∂L

∂P (u)
= − logP (u)− 1 + βφG (u) + λ = 0.

Rearranging and taking exponential, we have,

P (u) = eβφG(u)+λ−1. (4.6)

For the parameters, we can derive λ, from the second constraint,∑
u

P (u) =
∑
u

eβφG(u)+λ−1 = 1

⇒ eλ−1
∑
u

eβφG(u) = 1

⇒ eλ−1 =
1∑

u eβφG(u)

⇒ P (u) =
eβφG(u)∑
u eβφG(u)

. (4.7)
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In 4.7, the expression of sum over all possible labellings is also known as the partition

function given by:

Z =
∑
u

eβφG(u). (4.8)

Interestingly, β can be derived using 4.7 as:

∂

∂β
log
∑
u

eβφG(u) =

∑
u φG (u) eβφG(u)∑

u eβφG(u)
=
∑
u

P (u)φG (u) . (4.9)

Given that we know the partition function in Equation 4.8, this leads to the following

simplification using 4.2

β =
c∗

logZ

∫
∂β =

c∗

logZ
β + c. (4.10)

Therefore, the probability distribution as derived in 4.7, is the model of maximum en-

tropy distribution. β is the Lagrange multiplier that behaves as a crucial parameter

to control the uncertainty in the model, making a single labelling on a single graph

preferable over others based on the cost variable φ(u); which in this case is the cut.

Alternatively, β = 1
τ , where τ plays the role of that of temperature in a physical sys-

tem. At the exact zero temperature τ = 0, the probability distribution favours low

cost solutions with minimum number of cuts with overwhelming probability. At low-

est temperatures or the highest uncertainty setting, it becomes very difficult to make a

jump from low to high cost solutions, quite possibly leading to locally optimum low cost

solutions. Very low temperatures push down on the landscape towards equally proba-

ble minimum cut solutions while high temperatures allow more movement in different

directions (including the wrong directions) and equilibrate over equally likely high cost

solutions. Interestingly, at lower temperatures but not the lowest, it is unlikely to con-

verge to either very low cost solutions or very high cost solutions, allowing just enough

flexibility to move around to avoid getting stuck in the local optimum. Typically, de-

creasing the temperature very slowly (annealing), is likely to let it converge to low cost

global solutions.

In practice, in order to predict the labelling with maximum probability, computing

the sum over all possible states in 4.7 is not tractable. In other words, the expected

distribution is too big. If there are n data points, C classes, with m known labels such

that m� n, the computation would be exponential in the order of Cn−m. Clearly, this

is intractable for large graphs. It has been a fairly established method to approximate

the true distribution P (u), that avoids the summation over all possible labelling by

introducing some clever factorized distributions. This is exactly what we are trying to

achieve by revisiting this well known technique of approximating the true distribution by

inducing a meanfield, in the light of semi supervised learning and sequential classification.
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4.3 Motivation

Let us consider an example to motivate our approach for mean field approximation.

We refer to this example at multiple places in the chapter. An electoral constituency

decides to conduct a survey of voting interests of the people of the constituency. The

constituency has representatives from three political parties that is Labour, Conservative

and Liberals. There are about 30, 000 registered voters in the constituency. The survey

committee decides to assign a level of uncertainty to the voting interest of the person; a

probability to vote Conservative, Liberal or Labour. The probability distribution for the

voting interests is a joint probability distribution over all the individual voting interests

of the people in the constituency over all possible combinations. For the expected

probability of voting interests of the community to be close to the true interest, the

joint distribution needs to be computed which is of the exponential order of computing

330000 probabilities. Clearly, this is an infeasible option for the survey committee. One

can think of an approximation technique that could approximate the true probability

distribution.

A way to think about this is to assume that individual person in the constituency votes

independently of any other person’s voting affiliation except for the individual’s close

group of friends and relatives. Using the social network of the community, the committee

could assume a person’s vote is only influenced by close links on her network. Thereby,

the monumental task of trying to compute the summation over all possible combinations,

is reduced in complexity to computing the product of the distribution over a set of factors

(group of friends).

4.4 Related Work

Semi-supervised learning is a well established approach of learning from a few examples.

On a graph that is built from the given labelled and unlabelled data points, where

each datum is represented as a vertex, two vertices share the same label if they are

connected by an edge. The standard graph labelling semi-supervised algorithms in the

literature use the graph Laplacian in order to optimize the labelling consistent with the

labels seen so far (Zhu et al., 2003; Zhu and Ghahramani, 2002; Herbster et al., 2005;

Herbster, 2008). Graph Laplacian based methods suffer from the limitations in the light

of many unlabelled data (Luxburg et al., 2010). Our work uses a similar regularity

measure for smoothness of the labelling that instead induces an Ising model distribution

over the vertices of the graph. Our work is different from the approximation method

in label propagation (Zhu et al., 2003; Zhu and Ghahramani, 2002) as we do not drop

the higher order terms in the approximation. Also, our energy equation 4.13, is the

complement of theirs. Treeopt algorithm (Vitale et al., 2011; Cesa-Bianchi et al., 2009)

is optimal over a tree without graph connectivity utilization. In-spite of being a decade
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old, to the best of our knowledge the algorithms (Zhu et al., 2003; Zhu and Ghahramani,

2002; Vitale et al., 2011; Cesa-Bianchi et al., 2009) are still the state-of-the-art in online

graph/tree labelling semi-supervised setting. We differ from the techniques discussed in

Chapter 3, in the sense that our method is also applicable for multi-class classification.

4.5 Mean Field Approximation

We consider a unit weighted graph G = (V,E,w) where w(e) is the weight of edge e ∈ E
(we assume that w(e) = 0 if e 6∈ E). For convenience, we denote the weight of edge (i, j)

by w(i, j) = wij . We consider the scenario when we are given labels for a subset of the

vertices, L ⊂ V . We denote the label of vertex i by Si, which can take a value from

the class set C. Our task is to assign labels to the unobserved vertices U = V \ L. The

weights are taken to be a measure of similarity so that vertices that share an edge are

more likely to have the same label than other vertices. Because of this, our labelling not

only depends on the labelled vertices, but also on the structure of the graph (heavily

connected components of the graph are likely to have the same label). In this sense this

can be viewed as a semi-supervised learning problem (we have a few labelled examples,

but we are also learning from unlabelled data). We use a probabilistic model to encode

our uncertainty about the labels of the vertices in U , where we assume,

P (S) =
e−β E(S,So)

Z
, Z =

∑
S

e−β E(S,So) (4.11)

where S denotes the labels at the unobserved vertices, So the labels at the observed

vertices. β is a parameter (the inverse temperature) encoding the degree of uncertainty,

the sum is over the labels of the unobserved vertices,∑
S

· · · =

∏
i∈U

∑
Si∈C

 · · · (4.12)

and E(S,So) is a minimum cut energy function given by 4.13. It is important to

note that in label propagation (Zhu et al., 2003), the authors use the complement of

this function. Here, the available label information is believed to be true with absolute

certainty. This is equivalent to clamping the vertices, while the labels of the unlabelled

vertices are approximated. The main idea of the energy function is in inducing an energy

landscape over the vertices of the graph such that the minimum energy configuration is

the minimum cut over all edges.

E(S,So) =
1

2

∑
(i,j)∈E

wij

r
Si 6= Sj

z
. (4.13)

The factor of two can be avoided if the edges are only counted once. In other words, if

an edge (i, j) is present in our edge set E; (j, i) is not present in E.
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4.5.1 Approximating the Posterior

Note, the probability function in 4.11 favours labellings that minimise the number of

edges whose vertices have different labels. Unfortunately, for large vertex sets, compu-

tation of the probability is intractable. The expected value of labelling on unobserved

vertices, when marginalized over available labels, is still an exponentially big space. We

therefore resort to using a variational approximation of the marginal of the posterior

P (S) where we minimise the variation free energy given by,

Φ(θ) =
∑
S

Q (S|θ) log

(
Q (S|θ)

exp(−β E(S,So))

)
(4.14)

where Q (S|θ) is taken as a separable probability distribution that factors or decou-

ples into smaller distributions. For each vertex, an influence from its neighbourhood is

measured by means of an intermediate mean field. In small regular networks, lattice,

acyclic graphs and trees, the approximation is (most often) exact as one can sum over

all possible labellings,

Q (S|θ) =
∏
i∈U

∑
µ∈C

θµi

r
Si = µ

z
(4.15)

with θµi ≥ 0 and for all vertices
∑

µ∈C θ
µ
i = 1. The parameters θµi can be interpreted

as the marginal probability of the label for unlabelled vertex i to be in class µ. In our

example of the election constituency, θµi is the best guess of the probability of individual

i voting µ, where µ is either Conservative, Labour or Liberal, that only depends of the

choices of the neighbours or friends of i. The decoupled distribution in 4.14, has very

nice property of efficient computation, by means of utilizing the factorized distribution

Q (S|θ) in 4.15 over all the unlabelled vertices. 4.15 can also be written as:

Q (S|θ) =
∏
i∈U

∑
µ∈C

θµi

r
Si = µ

z
=
∏
i∈U

Qi(Si|θi). (4.16)

We can interpret 4.16, as the probability of label at vertex i. In our example, this would

mean probability of either voting Conservative, Labour or Liberal as before.

4.5.2 Minimizing the KL divergence

Multiplying numerator and the denominator of right hand side in 4.14 by Z,

Φ(θ) =
∑
S

Q (S|θ) log

(
Q (S|θ)

Z exp(−β E(S,So)/Z)

)
. (4.17)
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Since Z does not depend on S, here it ends up behaving as a constant. We can then

rewrite the above as,

Φ(θ) =
∑
S

Q (S|θ)

(
log

(
Q (S|θ)

P (S)

)
− log(Z)

)
= KL

(
Q (S|θ)

∥∥P (S)
)
− log(Z)

(4.18)

where P (S) and Z are defined in 4.11 and KL
(
Q (S|θ)

∥∥P (S)
)

is the Kullback-Leibler

(KL) divergence given by

KL
(
Q (S|θ)

∥∥P (S|So)
)

=
∑
S

Q (S|θ) log

(
Q (S|θ)

P (S|So)

)
. (4.19)

We use the inequality log(x) ≥ (x − 1) in Theorem 4.1 to prove the non-negativity of

the KL divergence (Kullback and Leibler, 1951)

Theorem 4.1. (Kullback and Leibler, 1951) The KL-divergence between two probability

distributions can be viewed as a measurement of their difference. It is non-negative and

reaches it minimum value of zero when the two distributions are identical at least, the

distributions can only differ on sets of measure zero.

Proof.

∑
S

Q (S|θ) log

(
P (S|So)
Q (S|θ)

)
≥
∑
S

Q (S|θ)

(
P (S|So)
Q (S|θ)

− 1

)
(4.20)

≥
∑
S

P (S|So)−
∑
S

Q (S|θ) = 0 (4.21)

Since log(Z) in Equation 4.11 does not depend on the variational parameters, θ, min-

imising Φ(θ) is equivalent to minimising the KL-divergence. The KL-divergence in

Equation 4.19 is minimized when Q (S|θ) = P (S|So), then log 1 = 0. Thus, in min-

imising the variational free energy we are choosing the parameters θ so that Q (S|θ) is

as close as possible (as measured by the KL-divergence) to P (S). Furthermore as the

KL-divergence is non-negative we obtain a bound that − log(Z) ≤ Φ(θ) (in classical

physics −β log(Z) is known as the free energy).

4.5.3 Minimizing the Entropy

We can also rewrite the variational free energy from 4.17,

Φ(θ) =
∑
S

Q (S|θ) log(Q (S|θ)) + β
∑
S

Q (S|θ)E(S,So) (4.22)
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=⇒ Φ(θ) = −H(Q) + β U(Q) (4.23)

where H(Q) is the entropy of Q (S|θ)

H(Q) = −
∑
S

Q (S|θ) log(Q (S|θ))

= −
∑
S

∏
i∈U

Qi(Si|θi) log
∏
i∈U

Qi(Si|θi)

= −
∑
S

∏
i∈U

Qi(Si|θi)
∑
i∈U

logQi(Si|θi)

= −
∑
S

∑
i∈U

Qi(Si|θi) logQi(Si|θi)

= −
∑
i∈U

∑
κ∈C

∑
µ∈C

θµi

r
κ = µ

z
log
∑
ν∈C

θνi

r
κ = ν

z

= −
∑
i∈U

∑
µ∈C

θµi log(θµi ) . (4.24)

The simplification in 4.24, is achieved by applying 4.16, 4.15 and the distributive law.

In 4.24, i sums over all the unlabelled vertices while µ sums over all the classes; in

our example, the summation is over the finite constituency of all people and the three

parties. It is interesting to note that without the approximation, an exponential number

of 330000 computations were required. In 4.24, the computation is reduced a to linear

3× 30000 computations. U(Q) is the “mean energy” or “expected energy” with respect

to the probability distribution Q (S|θ)

U(Q) =
∑
S

Q (S|θ) E(S,So)

=
∑
S

Q (S|θ)
1

2

∑
(i,j)∈E

wij

r
Si 6= Sj

z

=
1

2

∑
i∈U

∑
j∈U

wij
∑
µ,ν∈C

θµi θ
ν
j

r
µ 6= ν

z

+
∑
i∈U

∑
j∈L

wij
∑
µ∈C

θµi

r
µ 6= Sj

z

+
1

2

∑
i∈L

∑
j∈L

wij

r
Si 6= Sj

z
. (4.25)

The simplification in 4.25 is achieved by applying 4.13. In 4.25 and 4.24, the entropy is

minimized when few labels are known while the mean energy is minimized when there

are few disagreeing labels. In order to find the minimum of the non-linear variational

free energy in 4.23, subject to
∑

µ∈C θ
µ
i = 1, at each vertex we minimise the Lagrangian,

L(θ) = Φ(θ) +
∑
i∈U

λi(
∑
µ∈C

θµi − 1) (4.26)
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where the λi’s are a set of Lagrange multipliers that are chosen to ensure the con-

straints are satisfied. The “mean-field equations” which are satisfied at the minima of

the variational free energy are given by

∂L(θ)

∂θµi
= log(θµi ) + 1 + β

∑
j∈U

wij
∑
ν∈C
ν 6=µ

θνj

+ β
∑
j∈L

wij

r
µ 6= Sj

z
+ λi = 0. (4.27)

These equations are not in general solvable in closed form. Our goal is to maximize with

respect to λi and minimize with respect to θ; while essentially looking for a saddle point

solution. We choose λi in order to satisfy the constraint
∑

µ θ
µ
i = 1 and by rearranging

the terms in 4.27, we have

∑
µ∈C

θµi =
∑
µ∈C

e
λi+1+2β

∑
j∈INi
j∈U

wij
∑

ν 6=µ
ν∈C

θνj
= 1

=⇒ eλi+1
∑
µ∈C

e
2β

∑
j∈INi
j∈U

wij
∑

ν 6=µ
ν∈C

θνj
= 1

=⇒ eλi+1 =
1∑

µ∈C e
2β

∑
j∈INi
j∈U

wij
∑

ν 6=µ
ν∈C

θνj
. (4.28)

λi thus chosen, gives the normalisation term in 4.29. θµi is always positive, with
∑

ν∈C
ν 6=µ

θνj
values propagated from neighbours of i where j ∈ INi. Instead we can attempt to solve

these equations iteratively by setting,

θµi (t+ 1) =
e−βẼ

µ
i (θ(t),S

o)∑
ν∈C

e−βẼ
ν
i (θ(t),S

o)
(4.29)

where,

Ẽµi (θ,So) =
∑
j∈U

wij
∑
ν∈C
ν 6=µ

θνj +
∑
j∈L

wij

r
µ 6= Sj

z
(4.30)

which is a self-consistent soft-max solution. For the available labels So, we set their

corresponding θi values that satisfy 4.29. The θµi values are updated iteratively. There

can be many local solutions to the mean-field equations so that the result will depend

on the initial conditions. To prevent finding very poor solutions we can anneal the

temperature (start from a low value of β and increase it to the required value) at each

iteration. 1

1We may further wish to randomly choose the order of the variables we are updating to reduce the
bias caused by the order of updating (alternatively we can update all the variables at once).
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Figure 4.1: Toy Graph with Vertices 1 and 4 labelled 1 while vertex 8 labelled
−1. The graph shows the ground truth labelling. The minimum cut size is 1,
with the edge between vertices 5 and 6 as the cut edge. The strongly connected
clusters are 9− 10− 11, 6− 7− 8 and 1− 2− 3− 4− 5.

4.5.4 Online Meanfield Game

As in any online learning algorithm, a sequential game is played between the learner

and the adversary or the environment. The learner’s goal is to minimize its mistaken

predictions (incorrect class prediction) while the adversary’s goal is the opposite. Nature

selects a data-point (vertex) at every trial, learner predicts the class, nature then returns

the true label to verify if the learner made a mistake. The adversary is regular in nature;

else with an adaptive adversarial opponent, the learner will always make a mistake. The

only restriction is the adversary cannot return a label that increases the minimum-cut.

For the prediction of the class label, we allow to slowly anneal the value of β until

stabilized. Once stabilized, we predict the label of the query point by the class label

that maximizes θ for that vertex. Once the true label is revealed, we update the partial

labelling vector So, increment the mistake count (if a mistake has been made) and

repeat the process . Since we assume the adversary cannot increase the minimum cut,

it cannot force a mistake on the learner; the cost of the feedback from the environment

is trivial. In the Figure 4.2, the online mean field approximation method is provided.

We perform experiments using our algorithm and report results in Section 4.6. The

experiments are performed in batches; each batch with a set number of labels available

with labels increasing across the batches. This is essentially the same as running an

online algorithm.
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4.5.4.1 Algorithm

Parameters: Graph G of size N , uncertainty parameter β;

Input: Available labels: So ∈ L , classes: C, unlabelled vertices: S ∈ U
Example sequence: Z = 〈(i1, Ci1), (i2, Ci2), (i3, Ci3), . . . , (i`, Ci`)〉, it ∈ U , Cit ∈ C

Initialization: θ1 is the initial distribution over G such that,

θ1 = ( 1
0.5 ,

1
0.5 , . . . ,

1
0.5)U×C , β = 0.01

for t = 1, . . . , |U| do

Receive: it ∈ {1, · · · ,U}
Stabilize: while β not stabilized for all i ∈ U do

θµi (t) = e
−βẼµ

i
(θ(t−1),So)∑

ν∈C
e
−βẼν

i
(θ(t−1),So)

for all µ, ν ∈ C using 4.29

Anneal: β slowly

end

Predict: Label ŷt(it|Zt−1) := argmaxµ∈C θ
µ
it

(Sit = µ|Si1 = µ1, . . . , Sit−1 = µt−1)

Receive: True Label yt;

Compute: Mistake M = |{t : ŷt 6= yt}|
Update: Soit = yt

end

Figure 4.2: Online meanField Approximation Algorithm.

4.6 Experiments

We perform empirical tests to evaluate our method on the standard machine learning

datasets from UCI (Lichman, 2013). We use our own implementation of the meanField

method and the competitor algorithm labelProp (Zhu et al., 2003; Zhu and Ghahra-

mani, 2002), while we adapt the code for treeOpt given to us by the authors in (Vitale

et al., 2011). In general, for our experiments we use an uniform way of sampling instances

and building the graphs from the datasets. For datasets ISOLET (UCI), webSpam (Web-

spam, 2007) and a subset 20 newsGroups (Roweis, 2006), we randomly sample instances

from the entire dataset. We also construct synthetic dataset to test our methods.

4.6.1 Datasets

The sampling of instances and labels ensure that both the classes are equally represented.

Each instance is represented as a vertex in the graph. An Euclidean distance matrix
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is constructed using the pairwise distances between the instances. In the case of 20

newsGroups, instead of using the Euclidean distance matrix, we use the cosine distance

matrix for binary valued instances. We build a 3-NN nearest neighbour graph using the

distance matrix built as the previous step. For ensuring that the graph thus constructed

is connected, we always sample a minimum spanning tree (randomly) using the Euclidean

distance or cosine distance as weights. We ensure that the MST edges are maintained.

Having MST edges also allows for sparsity in the graph. All trials receive the same

graph. We choose the connectivity of K = 3 for our experiments, as in the literature,

empirical evidences show competitive performance for 3-NN connectivity. We use quad-

core processor notebooks (@2.30 GHz each) with 8GB and 16GB RAM. We also use the

Iridis 4 HPC cluster at University of Southampton, UK.
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Figure 4.3: Toy Graph result of the marginal probability of the labelling for
class 1 over the vertices. The strongly connected clusters tend to be uniformly
labelled. The crosses represent class 1 while the circles represent class -1. The
magnified crosses represent the labelled vertices for class 1 with probability 1,
magnified circle for labelled vertex in class 1 with probability 0.

The synthetic dataset Squares is a 60x60 image from which a grid graph with 3600

vertices is constructed, where each pixel is represented as a vertex. We ensure that

the graph has toroidal boundary properties such that each vertex is surrounded by four

neighbours based on pixel locations. The results of the experiments for each dataset

are discussed in Table 4.1 through to Table 4.4. The performance of the algorithms

is measured as the generalized accuracy of the prediction, that is number of correctly

classified instances over all the instances; higher the better. For all datasets, results are

averaged over 10 trials except for 20 newsGroups which used 5 trials. The randomly

sampled labels l are balanced. For all the experiments, the choice of β is annealed
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to a value of 2.4 before prediction. Due to computational feasibility, we perform the

experiments in the batch setting rather than online.

4.6.2 Toy Dataset

In Figure 4.1, we show our toy graph. The vertices 1 and 4 are labelled 1 while vertex 8

is labelled −1. The Figure depicts the ground truth labelling. We perform experiments

using the approximation technique of our algorithm to predict the labelling, on the toy

data and report two sets of results. In Figure 4.3, we report the marginal probabilities

of the labels of the vertices after the θ values are stabilized. The blue crosses belong to

one class while the red circles belong to the other. The magnified blue crosses at vertices

1 and 4 are available labels while the magnified red circle at vertex 8 is another available

label of the opposite class. We see the approximated θ value of all other unlabelled

vertices; here the θ values for class 1 are shown. In Figure 4.4, we see the results of

the change in marginal probability of the label of a vertex with respect to the annealed

β values. Each sub-plot is for a particular vertex showing the class its label converges

to. For vertices 1, 4 and 8, the class is already available. For the rest, the class label

is approximated and the colour that the class label corresponds to, for a particular β is

shown in the plot.

Table 4.1: Results on Squares for classification of 0 intensity pixels against 1
intensity pixels. labelProp and meanField are extremely competitive, with
labelProp eventually outperforms meanField.

` = 250 ` = 450 ` = 650 ` = 850 ` = 1050
labelProp .842± .010 .908± .005 .940± .005 .956± .004 .969± .003
meanField .846± .014 .894± .006 .925± .006 .942± .005 .955± .005

Table 4.2: Results on 20 newsGroups which is a sparse dataset. Label distri-
bution is 8124:8118 on classifying (comp.* and rec.* Vs. sci.* and talk.*) news-
groups. meanField beats labelProp with enough information. treeOpt under-
performs until the labels are sufficiently large for comparable performance.

` = 800 ` = 1000 ` = 2000 ` = 4000 ` = 6000

labelProp .826± .005 .826± .006 .845± .004 .871± .002 .868± .003

treeOpt .753± .006 .772± .01 .805± .002 .858± .004 .868± .002

meanField .800± .006 .805± .009 .833± .003 .865± .002 .890± .002
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Table 4.3: Results on webSpam which is a sparse dataset of a computer hosts net-
work. Classifying spam Vs. non-spam hosts, we see that meanField eventually
surpasses labelProp, with treeOpt being competitive.

` = 200 ` = 400 ` = 600 ` = 800 ` = 900

labelProp .729± .075 .698± .015 .803± .001 .805± .0001 .806± .0001

treeOpt .728± .018 .734± .007 .71± .013 .747± .003 .749± .001

meanField .677± .036 .645± 0.002 .770± .008 .800± .003 .808± .0004

Table 4.4: Results on ISOLET-1 through 5 for all instances. meanField beats
labelProp in most of the settings. ISOLET has a 3900:3897 ratio between the
labels while classifying the first 13 letters against the next 13 letters. Files
ISOLET 1 through ISOLET 5 are used for the construction of the graph.

` = 32 ` = 64 ` = 128

labelProp .661± .039 .707± .029 .764± .024

treeOpt .658± .042 .688± .033 .731± .012

meanField .700± .022 .700± .022 .791± .014

` = 256 ` = 512 ` = 1024

labelProp .787± .015 .82± .012 .869± .006

treeOpt .786± .022 .824± .008 .859± .005

meanField .813± .017 .837± .011 .860± .006

4.6.3 Discussion and Conclusion

The main focus of our work is in minimizing the total number of mistakes and not the

computational efficiency of the method. The inverse temperature β controls the amount

of uncertainty in our model. We could choose it through cross-validation rather than

through empirical evaluation. Alternatively, we can take a Bayesian interpretation in

which we take the joint probability of the unobserved spins S and the observed spins

So to be

P (S,So) =
e−β E(S,So)

Z ′
, Z ′ =

∑
S,So

e−β E(S,So)

where Z ′ is the partition function under the assumption that no labels are observed.

The probability of the observed spins is

P (So) =
∑
S

e−β E(S,So)

Z ′
=
Z

Z ′
.

We have seen that the variational free energy Φ(θ∗) (where θ∗ is our solution to the

mean-field equation) acts as an approximation for − log(Z) (the evidence). We can

similarly introduce a variational free energy to compute − log(Z ′) (we repeat the cal-

culation except with no observed spins). Choosing the value of β which maximises the
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difference log(Z) − log(Z ′) would provide an approximation to the best value of β (i.e.

it is the value which maximises the probability of the data). However, for very large

problems this may not be feasible and we may just have to use some guess for β based

on experimentation. Alternatively, β can be considered as the free parameter, that can

be learnt as a hyperparameter from the prior. A nice feature of this framework is that

we obtain the marginal distribution for the labels. This can be used in any decisions

theoretic framework.

The quality of the mean-field approximation is hard to determine a priori. In practice,

the mean field approximation methods often converge although theoretically, they might

not. In regular graphs, the mean field approximation is exact. The separable probability

distribution Q (S|θ) will not capture the strong dependencies between many of the labels.

These are not entirely ignored in the approximation since they come in through the U(Q)

term. The approximation technique is not guaranteed to converge. However, in practice,

most often the methods converge in polynomial time. One can investigate the quality of

the approximation by considering a small system where we can compute the sum over

all labellings exactly.

This concludes our discussion on the work in this chapter about online learning meanfield

approximation technique for graph labelling in a semi-supervised setting. This leads us

to possible future work. If we incorporate the Halving algorithm and other online graph

prediction techniques (Littlestone, 1988; Herbster et al., 2005), where we predict such

that maximum number of hypotheses are eliminated in case of a mistake, we are sure to

see meanField challenging labelProp more often. Also, if we relax the adversary such

that in can increase the minimum cut, then that could easily be the beginning of another

online learning game, the idea then should be to minimize mistakes over all such online

minimum cut games.
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θ Values over Vertex 2 for Class 2 for Annealed β Values
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θ Values over Vertex 3 for Class 2 for Annealed β Values
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θ Values over Vertex 4 for Class 2 for Annealed β Values
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θ Values over Vertex 5 for Class 2 for Annealed β Values
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(e)

θ Values over Vertex 6 for Class 1 for Annealed β Values
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(f)

θ Values over Vertex 7 for Class 1 for Annealed β Values
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θ Values over Vertex 8 for Class 1 for Annealed β Values

θ Values of Vertex 8 for Class 1
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θ Values over Vertex 9 for Class 2 for Annealed β Values
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θ Values over Vertex 10 for Class 2 for Annealed β Values
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(j)

θ Values over Vertex 11 for Class 2 for Annealed β Values
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Figure 4.4: Toy Graph plots for marginal probability of the labelling of the
vertices versus the θ values. In all the figures, class 1 and class 2 denote the class
label, that the θ for a particular vertex is converging towards, with maximum
probability. In the plots, the y axis represents the annealed β values that is
the same in all cases. x axis is the varying θ values for vertices as follows: (a)
available label of vertex 1 (b) approximated label of vertex 2 (c) approximated
label of vertex 3 (d) available label of vertex 4 (e) approximate label of vertex 5
(f) approximate label of vertex 6 (g) approximate label of vertex 7 (h) available
label of vertex 8 (i) approximate label of vertex 9 (j) approximate label of vertex
10 (k) approximate label of vertex 11.



Chapter 5

Ising Bandits with Side

Information

5.1 Introduction

This chapter marks the beginning of the part of the thesis that deals with varying

feedback settings, multiple objective optimization and transition to the basic set-up of

online learning procedures. This chapter in particular, tackles a problem of sequential

action selection under limited (bandit) feedback with side information, where actions

are inter-related by structural relationships on a graph. The desired goal of optimal

action selection is achieved by exploiting the knowledge of the graphical structure of the

data in an online setting. We do so by associating a complexity with the labelling of

the graph. As we studied in the previous chapters, this complexity is called the “cut” or

“energy” of the labelling on a Markov random field with discrete states (Ising model).

The ultimate objective of the algorithm that we develop is to perform a graph labelling

procedure in order to minimize the energy while being consistent with the side infor-

mation seen so far. This helps in deciding the intrinsic state of the queried vertex at

every round before selecting the action to play. Selecting the appropriate action given

the current state of the graph, directs the overall goal towards minimizing the regret of

our sequential action selection (bandit) algorithm within the online graph labelling that

occurs over the entire sequence.

85
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5.2 Background

5.2.1 Semi-supervised Graph Classifier Complexity

We revisit the background in semi supervised online labelling over graphs that we have

already discussed in the preceding chapters. The standard approach in semi supervised

learning is to construct the graph from the unlabelled and labelled data such that each

datum is denoted as a vertex. Traditionally, the norm induced by the graph Laplacian

is used to predict the labelling. Typically, either the norm induced by the Laplacian is

directly minimized (interpolated) with respect to constraints or it is used as a regulariser.

Both methods help build classifiers on graphs in order to learn sparse labels in Rn

by incorporating a measure of complexity also called “cut” or energy. For a graph

G = (V,E), where the set of vertices V = {v1, . . . , vn} are connected by edges in E.

Let a weight of Aij be associated with every edge (i, j) ∈ E, such that A is the n × n
symmetric adjacency matrix, then the Laplacian L of the graph is given by L = D−A,

where D is the degree matrix with its diagonal values given by Dii =
∑

j Aij . We

re-state Definition 1 from (Herbster et al., 2009) that relates the quadratic form of the

Laplacian with the complexity of the “cut-size” for completeness.

Definition 5.1 (Herbster et al. (2009)). If the labelling of the graph G is given by

u ∈ Rn, the “cut size” of u is given by

ψG (u) =
1

4
uTLu =

1

4

∑
(i,j)∈E

Aij(ui − uj)2 . (5.1)

When u ∈ {0, 1}n, the “cut” is on the edge (i, j) where ui 6= uj , then ψG (u) is the

number of “cut” edges. ψG (u) is also known an the energy function E(u).

The smoothness functional of uTLu is generalized in the work of semi-norm interpola-

tion (Herbster and Lever, 2009) where the Laplacian p−seminorm is defined on u ∈ Rn

as:

||u||G,p ' ψG (u) =

 ∑
(i,j)∈E

Aij |ui − uj |p
 1

p

. (5.2)

When p = 2, this is equivalent to the harmonic energy minimization technique in (Zhu

et al., 2003). Alternatively, this technique is also called the Laplacian interpolated

regularization (Belkin et al., 2004). In Herbster et al. (2009), the online version of the

p = 2 case is studied in the context of the already available labels. If G is a partially

labelled graph as in our problem, such that |V | = N , and the partial labels l ≤ N ,

with the labels given by yl ∈ {1,−1}l on the l vertices, then the minimum semi-norm

interpolation gives the labelling:

y = argmin
u
{uTLu : u ∈ Rn, ur = yr, r = 1, . . . , l} .
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The prediction is made by using ŷi = sgn(yi) (Herbster and Lever, 2009). The rationale

behind minimizing the cut enables the neighbouring vertices to have similarly valued

labels. With p → 1, the prediction problem is reduced to predicting using the label

consistent minimum cut.

Figure 5.1: 3-armed Octopus Graph with four nodes labelled: head labelled
blue and three labelled red on the arms.

(a) (b)

Figure 5.2: Optimization results on Octopus Graph with label propagation and
maximum flow (a) Quadratic harmonic energy minimization with p→ 2 (Zhu
et al., 2003; Herbster et al., 2009)(b) Linear programming for maximum flow
with p→ 1 in algorithm 5.3.
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5.3 Motivation

Often, interesting applications are tied to problems with rich underlying structure. For

example, consider the system of online advertising; serving advertisements on web pages

in an incremental fashion. The web pages can be represented as vertices in the graph

with the links as edges. At given time t, the system receives a request to serve an

advertisement on a randomly selected web-page. Further, at the same time, the system

receives side information about the state of the web-page: for simplicity we assume the

side information to be a rating of 0 or 1. As a consequence, the advertisement pool from

which the advertisement is to be served supposedly changes with the change in the state

of the graph. However, this contextual change in the action pool is kept hidden from

the system. The goal for the system is to guess what could be the current state of the

advertisements given the side information it received along with the past information

and serve the most appropriate advertisement on the queried webpage. Once the chosen

advertisement is served, the feedback is received which the system then incorporates in

its learning algorithm in order to serve the next request.

At a deeper level of understanding, the side information can be interpreted as the label

of the vertex. There are few available labels at the start; the rest are only incrementally

revealed. So some of the ratings of the webpages are already known, while most of the

webpages on which the advertisement needs to be served, the rating is not known until

at the time of query. When a vertex is queried (request for an ad placement is made),

an action needs to be picked (advertisement needs to be served) from a set of actions.

The algorithm should be able to internally predict what the state of the queried vertex

is (how the state of the graph changes) and then select the appropriate action from the

action pool that (potentially) changes with the predicted label of the queried vertex.

5.4 Related Work

Broadly speaking, there are two central themes that run through this chapter unified

under the common framework of online learning, namely, action selection using bandit

feedback and semi-supervised graph labelling. The closest related work that addresses

the intersection of these two themes is the work by Claudio et al. (Gentile and Orabona,

2014). They use bandit feedback to address a multi-class ranking problem. The al-

gorithm outputs a partially ordered subset of classes and receives only bandit feedback

(partial information) among the selected classes it observes without any supervised rank-

ing feedback. In contrast, we play the bandit game of sequential action selection, using

side information as the class label of the current context. Our feedback for the action

selected is still partial (only loss for the selected action is observed). Further, our ban-

dits have a structure associated with the Ising model distribution over the vertices at

low temperature. The work of Amin et al. (2012), addresses the graphical models for
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bandit problems to demonstrate the rich interactions between the two worlds, along the

similar lines of what we are trying to achieve. Bearing a strong resemblance to our

work, they address the similar context-action space. However, in their setting, there

is a strong coupling between the context-action space; the algorithm needs to fulfil the

entire joint assignment before receiving any feedback. In contrast, our concept-action

space is decoupled, labels are revealed gradually determining the current active concept

for the learner to choose the action and receive the feedback instantaneously. In their

problem formulation under the Ising graph setting, the algorithm tries to pick the action

(the label of the concept) that is NP hard. In contrast, we focus on the low temperature

setting, where our actions lie on the edges, and are not the labels of the vertices. The

computation of the marginal at the vertices is guided by the labels seen so far and the

minimal cut. We approximate the labelling of the entire graph rather than predicting

the spin configuration of a single vertex using the “cut” as the regularizer that dominates

the action selection. The contextual bandits work on online clustering of bandits (Gen-

tile et al., 2014), deals with finding groups or clusters of bandits in the graphs. They

have a stochastic assumption of a linear function for reward generation. Similarity is

revealed by the parameter vector that is inferred over time. In contrast, we use the

similarity over edges to determine the “cut” which in-turns guides the action selection

process in adversarial settings. Their work extends to running a contextual bandit for

every node, whereas ours is a single bandit algorithm, where the context information is

captured in the “cut”. The work of Di Castro et al. (2011) on edge bandits is similar

in the sense that the bandits lie on the edges. However, instead of direct rewards of

action selection, rewards are a difference in the values of the vertices. Further, this is

the stochastic setting instead of the adversarial one. In Spectral bandits (Valko et al.,

2014), the actions are the nodes, while there is a smooth Laplacian graph function for

the rewards. We discuss later the limitations of Laplacian based methods for graph

labelling. Further, they do not consider the Ising model that we study.

As we have seen before in Chapter 2, the seminal work of semi supervised graph labelling

prediction can be found in (Blum and Chawla, 2001), where minimum label-separating

cut is used for prediction. Laplacian based methods that result in neighbouring nodes

connected by an edge to share similar values are widely studied in the semi-supervised

and manifold learning problems (Zhu and Ghahramani, 2002; Zhu et al., 2003; Herbster,

2008; Herbster and Lever, 2009; Belkin and Niyogi, 2004). Typically, this information

is captured by the semi-norm induced by the Laplacian of the graph. Essentially, the

smoothness of the labelling is ensured by the “cut”. The “cut” is the number of edges

with disagreeing labels. Then, the norm induced by the Laplacian can be considered

as the regularizer. However, there are limitations in these methods with increasing

unlabelled data (Alamgir and von Luxburg, 2011; Nadler et al., 2009). Here, once agin,

we also use “cut” as the regularization measure over an Ising model distribution of the

values over the vertices of the graph at low temperatures for sequential action selection.
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On finding the minimum cut labelling, we consequently find the active partition given

the current context and then sample the actions from the relevant partition.

5.5 Ising Model at Low Temperature

As discussed above, the labelling of the whole graph is obtained by optimizing the

objective function constrained on the given labels. From label propagation (Zhu et al.,

2003), we saw when p = 2, the harmonic energy function E(u) minimized in (5.1) is

quadratic in nature. The technique in (5.1), chooses the label as a function u : V → R
and a probability distribution on the function u given by a Gaussian field P (u) =
exp−βE(u)

Z , where Z is the partition function and β in the inverse temperature or the

uncertainty in the model as we have seen in Chapter 4. There are multiple limitations

of the quadratic energy minimization technique. This model is not applicable for p→ 1

in the limit. Not only is the computation slow, the mistake bounds obtained are not the

best. Further, in our problem, we relax the values of the labels such that u : V → [0, 1].

With p→ 1, the energy function is equivalent to the the one that finds the minimum cut.

Further, when p → 1 using (5.2) results in the minimization of a non-strongly convex

function per trial that is not differentiable. Further, it is known that the Laplacian based

methods are limited with the abundance of unlabelled data (Nadler et al., 2009). Hence,

we are interested in the Markov random field that is applicable here when p → 1, with

discrete states also known as the Ising model. At low temperatures, the Ising probability

distribution over the labellings of a graph G is defined by:

P GT (u) ∝ exp

(
− 1

T
ψG (u)

)
. (5.3)

where T is the temperature, u is the labelling over the vertices of G and ψG (u) is

the complexity of the labelling or the “cut-size”. The probabilistic Ising model en-

codes the uncertainty about the labels of the vertices and at low temperatures favours

labellings that minimise the number of edges whose vertices have different labels as

shown in (5.2) with p = 1. If the vertex labels pairs seen so far is given by Zt

of vertex label pairs (j1, y1) , . . . , (jt, yt) such that (j, y) ∈ V (G) × {0, 1}, then the

marginal probability of the label of the vertex v being y conditioned on Zt is given

by: P GT (uv = y|Zt) = P GT (uv = y|uj1 = y1, . . . , ujt = yt). At low temperatures and in

the limit of zero temperature T → 0, the marginal favours the labelling that is consis-

tent with the labelling seen so far and the minimum cut. Such label conditioning or

label consistency in the context of graph labelling has been extensively studied (Herb-

ster et al., 2005; Herbster and Lever, 2009; Herbster, 2008). In this chapter, we are

only interested in the low temperature setting of the Ising model as the environment in

which the player functions. However, at low temperatures, the minimum cut is still not

unique.
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Figure 5.1, shows an interesting graph from the literature used by Herbster et al. (2009),

that is called the d-octopus graph formed of path graphs (tentacles) of length d, where

there are d + 1 vertices on each path graph. The paths adjoin a common vertex that

is connected to a single head vertex. It is a good example of simple path graphs linked

to form an interesting pattern; it is much easier to analyse the semi supervised graph

labelling on a path graph. The goal is to run the vanilla harmonic energy minimization

or the quadratic semi-norm interpolation with p → 2 from Section 5.2.1, comparing it

to optimized linear maximum flow algorithm for the case when p → 1. The results in

Figure 5.2, is the labelling resulting from the optimization of the quadratic formulation

of p → 2 and linear p → 1 respectively in (a) and (b). With p → 2, the minimum

energy labelling obtained has a “cut” of 3 whereas with p → 1, a much lower energy

configuration is obtained giving a cut of 1 for the same setting.

5.6 Multi-Armed Bandit Problem (MAB)

In Chapter 2, we provided a detailed background on online learning. MAB is the frame-

work of online learning with minimum feedback. This is the worst case setting and

a much harder problem to solve. As with any sequential prediction game, the MAB

is played between the learner and the environment and proceeds in a series of rounds

t = 1, . . . , n. At every time instance t, the forecaster chooses an action It from the set

of actions or arms at ∈ A, where A is the action set with K actions. When sampling

an arm, the learner suffers a loss lt that the adversary chooses in a randomized way.

The forecaster receives the loss for the selected action only in the bandit setting. The

objective of the forecaster is to minimize the regret given by the difference between the

incurred cumulative loss on the sequence played and the optimal cumulative loss with

respect to the best possible action in hindsight. The decision making process depends

on the history of actions sampled and losses received up until time t− 1. The notion of

regret is expressed as expected (average) regret and pseudo regret, where pseudo regret

is the weaker notion because of the comparison with the optimal action in expectation.

For the adversarial case, it is given by:

Rn = E
n∑
t=1

lIt,t − min
i=1,...,K

E
n∑
t=1

li,t . (5.4)

The expectation is with respect to the forecaster’s internal randomization and possibly

the adversary’s randomization. In this work, we consider the adversarial bandit setting

with side information (information at queried vertex). Note that unlike in the standard

MAB problems where there is no structure defined over the actions, in our setup of the

problem, we not only have a structure over the action set but also potentially utilize the

associated structural side information that makes the problem more realistic. One more

deviation from the standard MAB framework is that at every round, the adversary
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randomly selects a vertex as the current concept; the value of the concept queried is

unknown until after the trial and action selection. Further, our adversary is restricted

in that the complexity or “cut-size” of the model of the environment in that it cannot

increase the “cut-size” across trials. The intuition being, the number of times the learner

makes a mistake (predicts the queried state wrong) or does not choose the optimal action,

is bounded by the number of times the “cut” changes for the minimum.

In practice, the problems in the context of semi-supervised learning are not hard whereas

the bandit algorithms are much harder problems. Here, the hardness of the bandit

feedback is relaxed in the form of the side information. The side information behaves as

the context and provide latent information about the state of the graph; some actions

are more relevant to the current context than others. As far as the feedback on the

action selected is concerned, the feedback is still bandit (only reward of the selection

action revealed). The intuition is the bandit algorithm functions within a contextual

graph labelling algorithm. Since, we do not make any assumptions on how the rewards

are being generated; the rewards do not come from any distribution, the adversary is

still adversarial. Although, our side labels come from an underlying Ising distribution

over the vertices; they do not directly contribute to the reward of the action selected.

Another important point to note here is that we assume that the adversary is regular.

This means that the goal of the algorithm in trying to minimize the number of mistakes

is not going to get sabotaged by the adversary trying the opposite (adaptive adversary).

This allows for the learner to have hope and potentially succeed. The only restriction

on the adversary is that, the minimum cut cannot be increased.

5.6.1 Preliminaries

We consider an undirected graph G = (V (G), E(G)) where the elements of E are called

edges that form an unordered pair between the unique elements of V that are called

vertices. We assume a unit weight on every edge. The number of vertices in the graph

are denoted by N . The vertices of the graph are associated with partially unknown

concept values or labels si that are gradually revealed, while the bandits lie on the

edges in E(G) to form the action set A with cardinality |K|. We assume a κ connected

graph, where the maximum value of κ is such that each vertex has at least κ neighbours.

Vertices i and j are neighbours if there is an edge or action connecting them. Note, the

number of rounds n ≤ |K|. In our case, n is equal to number of vertices queried by the

environment with unknown labels. A vertex is randomly selected by the environment at

every round t, where the queried vertex is given by xi where i ∈ NN . The queried vertex

could represent the request to place an advert on the product website the user currently

visits. More specifically, the connections in our graph not only capture the explicit

connections between vertices given by locality, but our bandits or edges also capture the
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implicit connections between the values of vertices that are possibly differently labelled.

The labels are relaxed such that the label for the i-th vertex is denoted by si = {−1, 1}.

At the start we are given the labels of a small subset of observed vertices, s o ∈ So ⊂
V (G). The labels of the unlabelled vertices su ∈ Su ⊂ V (G) \ L, with S = So ∪ Su
are revealed sequentially at the end of each round as side information. We assume that

there are at least two vertices labelled at the start, one in each category. The learning

algorithm plays the online bandit game where the adversary at each trial reveals the

loss of the selected action and the label of a randomly selected vertex. The goal of the

learner is to be able to predict the label of the randomly selected vertex and then sample

the appropriate action given the prediction.

5.7 Maximum Flow Computation

Given a partially labelled graph, the Ising model associates a probability with every

labelling that is a consistent completion of the partial labellings. Now, if “cut” defines

the “energy” of the labelling, then the low− temperature Ising is a simplified landscape

made up of all such minimum cut (energy) labellings. In a way, the Ising model induces

an “energy landscape” over the labellings via the “cut.” For a n-vertex graph, the energy

levels sit inside the n-dimensional hypercube. One can minimize the energy while being

consistent with the observations seen so far to achieve the desired goal.

As a first step in the learning process, the learner has to detect the underlying hidden

partition in the graph, given the available labels with respect to the currently queried

vertex. It can do so by using efficient graph partitioning methods. However, given

the partial labelling, the partition detected should respect or be consistent with the

labels seen so far. One way to address this is by using optimization methods that

satisfy the label consistency through constraints. Alternatively, there are very efficient

linear time exact methods that can solve this in practice. One such method is “Ford-

Fulkerson” algorithm (Ford and Fulkerson, 1956). If one can characterize the labelled

vertices in such a way that designates a single source, single sink network, running (Ford

and Fulkerson, 1956) in an online fashion for every round using the side information

can be used to efficiently detect the partition. Here, we choose to use a simplified

linear programming relaxation to the classic Linear Programming (LP) maximal flow

problem (5.5). Although, the LP formulation used here can be solved in polynomial

time, there is nothing restricting us in using the linear time modified “Ford-Fulkerson”

algorithm to achieve the same goal. The objective here is to enable the learner to make

better predictions and hence lower its regret quicker by detecting the partition early,

rather than to illustrate the computational efficiency of the method.

It is known by Menger’s theorem of linear programming duality, that maximum flow

and the minimum cut are related given a source and a target vertex. Let us introduce
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the maximum flow or label consistent minimum cut in the graph using the following

notation c∗ = min{S ∈ {−1, 1}N : ψG(S|H)} consistent with the trial sequence H seen

so far.

E(S) = argmin
S∈{−1,1}N

∑
(i,j)∈E(G)

|si − sj | ≤ c∗ . (5.5)

In general, linear programming relaxations are much easier to analyse. Interested readers

are referred to the article (Trevisan, 2011), where LP relaxations are discussed. We use a

linear programming relaxation of the above objective as shown in the algorithm outlined

in Figure 5.3 that has auxiliary variables introduced such that there is one variable for

every vertex v and one variable for every edge fij . Since we have an undirected graph, we

assume a directed edge in each direction, for every undirected edge. Hence we have two

flow variables per edge in the graph. Essentially, the free variables in the optimization

are the unlabelled vertices sui , s
u
j and the flows across every direction fij . The total flow

across all the edges will be our maximum flow for this low temperature Ising model. The

formulation in Figure 5.3 below is what the learner follows to find the minimum cut ψG .

The output from the computation is a directed graph with the value of flow at every

edge and the labelling of the vertices consistent with the labels seen so far; w(i,j) is the

cost variable of the LP. The sum of the flows is the maximum flow in the Ising model

at low temperatures. We fix one of the labelled vertices as a source and one as target,

each with different labels. We assume a unit capacity on every edge. The constraints

in Figure 5.3 ensure the capacity constraint f(ij) and conservation constraint si − sjare

adhered to i.e. the flow in any vertex v other than the source and target, is equal to

flow out from v. The largest amount of flow that can pass through any edge is at most

1, as we have unit capacity on every edge. We know that the cost of the maximum flow

is equal to the capacity of the minimum cut. The minimum cut obtained as a solution

to the optimization problem is an integer.

5.7.1 Playing Ising Bandits

Figure 5.4 describes the main algorithm for Ising bandits. It is important to note that

ComputeMaxFlow can only guide the player towards the active partition with respect

to the current context (queried vertex) by detecting the partition early on. P is a

subgraph of G, P ⊆ G iff V (P) ⊆ V (G) and E(P) = {(i, j) : i, j ∈ V (P), (i, j) ∈ E(G)}.
SelectPartition samples the Ising bandits from the best partition with respect to the

active concept if the minimum cut changes from previous round. E(R), E(J ) are the

partitions of the action set at trial t. Since S′ provides the labelling, it is easy to see

which bandits fall in which partition with respect to xt . The probability distribution

rt over E(R) , and jt over E(J ) sum to pt. Note that if the cut remains the same, the

player keeps playing the same partition until the cut changes. This has an important

implication. Since we assume that the adversary cannot increase the cut at any trial,
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ComputeMaxFlow ( Input parameters target vertex: st ; source vertex: su; trial
sequence: H = (xk, sk)

t
k=1; graph: G )

minimize
∑

(i,j)∈E(G)

w(i, j)f(i, j)

subject to:

f(i,j) ≥ 0 (5.6)

si − sj ≤ f(ij) (5.7)

si ≥ −1 (5.8)

si ≤ 1

Return: min-cut: c∗; flows: f ; consistent partition: S
′

Figure 5.3: Computing the Max-flow.

Parameters: Graph: G; η ∈ R+

Input: Trial Sequence: H = 〈(x1,−1), (x2, 1), (x3, s3), . . . , (xt, st)〉
Initialization: p1 is the initial distribution over A such that, p1 = ( 1

|K| ,
1
|K| , . . . ,

1
|K|),

Initial cut-size c =∞; active partition distribution r1 = p1

for t = 1, . . . , n do

Receive: xt ∈ NN
(c∗, f,S

′
) = ComputeMaxFlow(st, su,H,G)

if (c 6= c∗) then % if cut has changed

(E(R), E(J ), rt, jt) = SelectPartition(xt, pt, S
′
,A)

Assign: qt be the distribution over Ising bandits w.r.t xt, such that,∑|E(R)|
i=1 qi,t = rt. For any t, pt = rt ∪ jt

Play: It from qt

Receive: Loss zt; side information st

Compute: Estimated loss z̃i,t =
zi,t
qi,t

1It=i

Cumulative estimated loss: Z̃i,t = Z̃i,t + z̃i,t

Update: qi,t+1 =
qi,t exp(ηZ̃i,t)∑|E(R)|
j=1 exp (ηZ̃j,t)

end

Figure 5.4: Ising Bandits Algorithm.
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the cut can only decrease or stay the same. For the rounds it stays the same, the regret

that the player suffers is well bounded by the number of times the cut changes. In the

best case, the algorithm behaves as a typical Multi-armed bandit (MAB) and in the

worst case when the partition changes at every round, the algorithm plays the modified

Ising Bandits. The algorithm parameter η is the standard MAB value η =

√
log |K|
3n .

5.8 Experiments

The experimental evaluation compares three competitor algorithms with our algorithm

IsingBandits. The three algorithms are LabProp (Zhu and Ghahramani, 2002; Zhu

et al., 2003), Exp3 (Auer et al., 1995) and Exp4 (Auer et al., 1995). Exp3 and Exp4

are from the same family of algorithms for bandits in the adversarial setting. Exp4

is the contextual bandit setting, the close competitor to Ising from the contextual

perspective. The experts or contexts in Exp4 for our problem setting are a number

of possible labellings. Note that the number of experts selected for prediction have a

bearing on the performance of the algorithm. In our experiments, we fixed the number

of experts to 10. In reality, even at low temperatures for the model we consider, the set

of all possible labellings is exponential in size. LabProp (Zhu and Ghahramani, 2002;

Zhu et al., 2003) is the implementation where the state-of-the-art graph Laplacian based

labelling procedure is used to optimize the labelling consistent with the labels seen so

far. For all of the above algorithms, we use our own implementation in MATLAB. Since

online experiments are extremely time consuming while processing one data point at a

time, we have averaged each set of experiments over five trials but for ISOLET, where we

average over ten trials. The datasets that we use are the standardized UCI (Lichman,

2013) datasets as before, namely the USPS and the ISOLET datasets. All datasets are

nearly balanced in our experiments to demonstrate the fairness of the class distribution

and for avoiding any majority vote cases where the class with the majority vote wins.

5.8.1 Dataset Description

We will reiterate over the datasets for the sake of completion. The summary of datasets

used is captured in Table 5.1. The USPS handwritten digits is an optical character

recognition dataset comprising 16x16 grayscale images of “0” through “9” obtained

from scanning handwritten digits. The pre-processed dataset has each image with 256

real valued features without missing values scaled to [-1,1]. We randomly sample the

examples for the graph from the 7291 original training points. Each vertex in the graph

thus sampled is a digit. We perform experiments for several binary classification tasks.

The graph generation process involves sampling instances of one digit vs. the other digit

to form our underlying graph with edges or connections between the two digits forming

our action set.
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Table 5.1: Datasets used in Ising Bandits.

Data set #Instances #Features #Classes

USPS 7291 256 10
Isolet 7797 617 26

We use a noisy perceptual dataset for spoken letter recognition called ISOLET, consisting

of 7797 instances with 617 real valued features. A total of 150 subjects spoke each letter

of the English alphabets twice resulting in 52 training examples from each speaker. The

150 speakers are split into 5 groups of 30 speakers each, named as Isolet 1 through to

Isolet 5. For the purpose of the experiments here, we build the graph from Isolet 1

comprising 1560 examples from 30 speakers, with each letter being spoken twice. As

before, we are interested in binary classification graphs where we sample the first 13

and the last 13 spoken letters as two separate underlying concepts in the graph, the

connections between which form the action set.

Figure 5.5: Squares image.

5.8.2 Synthetic Dataset

The synthetic data uses a 2D grid like topology. Figure 5.5 shows the image used

to construct the graph in our experiments. Our interest in using this image for our

simulation experiment, stems from the natural occurring graph structure in such 2D

grids. The image style of Squares is chosen based on our interest in smooth and wide

regions of similar labels interspersed with dissimilar labelled boundary regions. A square

image constructed using a set of pixels is used, where each pixel has an intensity of either

0 or 1. The 0 and 1 intensities are balanced across the pixels i.e. there are equal number

of pixels with 0 and 1 intensities. Each pixel in the image corresponds to a vertex

in the graph and the intensities correspond to the label or class of the vertex. Here,

our graph has 3600 vertices. The neighbourhood system in the graph comprises edges

connecting pairs of neighbouring similar pixels. The connectivity is typically guided by

whether the pixels are of comparable intensities, if the pixels are structurally close to

each other or both. Here, we are only interested in the physical pixel locations that are
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used to determine connectivity i.e. pixels closer to each other on the grid are connected.

The connections eventually form our bandits action set. In this chapter, we are only

interested in undirected and unweighted graphs. Our grid graph thus generated has a

weight of 1 on every edge and there is an edge in either direction. Further, we investigate

the type of neighbourhood system, called torus. In the torus grid, each pixel has four

neighbours; achieved by connecting the top with the bottom edge pixels and the left

with the right edge pixels. The graph used is the same across trials. We randomly

sample the available labelled vertices from the graph such that there are equal number

of labels from each concept class.

5.8.3 Graph Generation from Datasets

We design our experiments to test the action selection algorithm under a number of

different criteria of graph creation: balanced labels, varying degree of connectedness,

varying sizes of initial labels and noise. The parameters that are varied across the

experiments are graph size indicated by N , labels available as L, connectivity K, noise

levels nse.

In the set of experiments with ISOLET, we chose to build the graph from the first 30

speakers in Isolet1 that forms a graph of 1560 vertices of 52 spoken letters (each letter

spoken twice) by 30 speakers. The concept classes that are sampled are the first 13

letters of English alphabets as one concept vs. the next 13 letters as the other concept.

We build a 3 nearest neighbour graph from the Euclidean distance matrix constructed

using the pairwise distances between the examples (spoken letters). In order to ensure

that the graph is connected for such low connectivity, we sample a minimum spanning

tree (MST) for each graph and always maintain the MST edges in the graph. The MST

uses the Euclidean distances as weights. The same underlying graph is used across trials.

The edges or connections form the bandits. The available side information is sampled

randomly such that the two classes are balanced over the entire graph size.

In the USPS experiments, we randomly sample a different graph for each trial. While

sampling the vertices of the graph, we ensure to select vertices equally from each con-

cept class. We use a variety of concept classes 1 vs. 2, 2 vs. 3 and 4 vs. 7. We

use the pairwise Euclidean distance as the weights for the MST construction. All the

sampled graphs maintain the MST edges. In all the experiments on the datasets, the

unweighted minimum spanning tree (MST) and K = 3 or 3 -NN graph had their edge

sets’ “unioned” to create the resultant graph. The motivating reason being that most

empirical experiments had shown competitive performance of algorithms at K = 3,

while the MST guaranteed connectivity in the graph. Further, MST based graphs are

sparse in general, enabling computational efficient completion of the experiments. All

the experiments were carried out on a quad-core processor notebook (@2.30 GHz each)

with 8GB RAM and 16 GB RAM.
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5.8.4 Evaluation Criteria

We measure the performance of the algorithms by means of the instantaneous regret

or per-round regret of the learning algorithm as compared with the optimal algorithm

(lower the better). Instantaneous regret at trial t is the cumulative regret Rn in Equa-

tion 5.4 divided by t. The instantaneous regret should sublinearly reduce to zero and in

the evaluation of the algorithm it is measured against time. In our case, time indicates

each unlabelled vertex queried in an iterative fashion by the environment, until all unla-

belled vertices have been queried. Ideally, the more vertices that have been queried and

side information obtained, the less is the instantaneous regret of the algorithms. In all

the experiments, the concept class distribution in the underlying graph is balanced.

5.8.5 Results

In the synthetic dataset of concentric squares experiment, shown in Figure 5.6, Ising

always outperforms Exp3, Exp4 and LabProp. LabProp and Ising are very competitive

over uninformed competitors of Exp3, Exp4. Exp3, Exp4 do not use the available side

information to sample their actions. Note, the overlapping squares is a difficult dataset

where closely connected clusters of similar labels white with intensity 1 are sur-

rounded by clusters of opposite labels black with intensity 0, around its boundary.

Although LabProp is good at exploiting connectivity, here we see that Ising captures the

opposing boundary side information better than LabProp. The dataset experiments be-
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Figure 5.6: Results on torus graph generated from Squares image with equal
number of neighbours K = 4, N = 3600, L = 250.

gin with the USPS 2 Vs.3 experiment with connectivity K = 3, available labels L = 8,

and number of data points N = 1000. In Figure 5.7 below, algorithms Ising and

LabProp are very competitive when the side information obtained is about the size of

more than half of the dataset. When the side information is very limited at the beginning

of the game, LabProp outperforms Ising. In Figure 5.9 below, we test the behaviour
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Figure 5.7: USPS 2 Vs.3 with K = 3, N = 1000, L = 8.
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Figure 5.8: Experiments on ISOLET with K = 3, N = 1560, L = 128.

of the algorithms on USPS 4 Vs.7 with varying degree of connectivity. We vary the

parameter K over a range to check how well the cluster size affects the performance.

It is known from labelling over graph literature that with increasing K the behaviour

deteriorates. Here, we see Ising outperforms LabProp for lower values of K, while

LabProp wins for higher K. In our experiments over the dataset ISOLET, we sample the

graph from ISOLET 1. In Figure 5.8, we observe that with K = 3 and L = 128, Ising

outperforms LabProp throughout. The overall regret achieved in ISOLET is higher than

the regret achieved in USPS as ISOLET is a noisy dataset.

The following set of experiments in Figure 5.10 test the robustness of our methods

in presence of balanced noise. Our noise parameter nse is varied over the range s =

10, 20, 30, 40. When noise is say x percent, we randomly eliminate the actions or edges

in the graph (from existing connections) for which the noise is less than x percent, and

add a balanced equal number of new actions (connections) to the graph. We see that

the performance of Ising is the most robust across various noise levels. LabProp suffers

with noise as it is heavily dependant on connectivity, and under performs in contrast
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Figure 5.9: USPS 4 Vs.7, with varying connectivity K = 3,K = 5,K = 7 on
randomly sampled graphs with N = 1000, L = 8. The color coding is uniform
over all the graphs and as indicated in (c) above.

to Exp4 and Exp3. On the contrary, Ising uses the connectivity for side information,

with its action selection unaffected with the introduction of noise. When the noise level

increases, the performance of all the algorithms decrease uniformly.

5.9 Discussion and Conclusion

There are real life scenarios where a core minimal subset of connections in a network is

responsible for partitioning the graph. Such a core group could be a focus of targeted

advertising or content-recommendation, as that can have maximum influence on the

network with a potential to go viral. Typically, there is a lot of available information

in such settings that is potentially usable for detecting the changing partitioning set. In

this chapter, we addressed such advertising and content recommendation challenges by

casting the problem as an online Ising graph model of bandits with side information.

We used the notion of “cut-size” as a regularity measure in the model to identify the

partition and play the bandits game. The best case behaviour of the algorithm when

there is a single partition is equivalent to the standard adversarial MAB. We showed

a polynomial algorithm where the label consistent “cut-size” can guide the sampling
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Figure 5.10: USPS 1 Vs. 2 Robustness Experiments with noise levels 10%,
20%, 30% and 40%. Blue is Ising, red is Exp4, green is Exp3 and purple is
LabProp.

procedure. Further, we motivated a linear time exact algorithm for computing the max

flow that also respects the label consistency. An interesting effect of the algorithm is that

as long as the cut-size does not change, the learner keeps playing the same partition

on the active action set (size smaller than the actual action set). The regret is then

bounded by the number of times the cut changes during the entire game. This can be

proven analytically, which we would like to pursue as future work.



Chapter 6

Online Experts for Multiple

Objectives

6.1 Introduction

This chapter extends the work in the second part of the thesis in analysing online algo-

rithms with varying feedback. In this chapter, we focus on a specific real-life application

of efficient power consumption on low powered devices. Since online learning are adap-

tive techniques, that can learn from the data on the fly; they are the most likely choice

for low powered environments.

Here, we study the full feedback setting of that of the experts unlike the limited feedback

setting of the bandits in the previous chapter. Full feedback is an easier problem in online

learning where the losses suffered by all of the options in the previous round are known

before playing the option in the current round.

6.2 Background

Power is an expensive resource in embedded devices like mobile phones, that exhibit in-

creased computational capacity. There are rising user demands for being able to execute

high performing applications on those devices without decreasing the battery lifetime

of the device. This presents a challenging multiple objective trade-off problem, that

of maximum power or battery life savings with minimum performance or application

runtime delay (Dhiman and Rosing, 2009). With increasing number of cores and hyper-

threading capability in such devices, more battery usage and application performance

settings are available (Esmaeilzadeh et al., 2012, 2011). With such a wide range of

settings that the system can be configured to, it is difficult to determine the optimal

power-performance trade-off configuration that would enable the right balance between

103
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the objectives. Hyper-threading on cores complicates the power-performance challenges

by means of making it extremely difficult to analyse the power-performance situation due

to the parallel execution of applications with shared locks (Cochran et al., 2011; Meisner

et al., 2011). Further, this problem is also exhibited in large scale-data centers with in-

creased computational demands. These data centers have a hard power constraint which

allows for operation of a certain number of server units. If the power constraint is ex-

ceeded, the circuit breaks and causes interruption (Cochran et al., 2011). Typically, the

best power-runtime trade-off setting also depends on the workload (a workload indicates

the applications executing together on the device or server at any point in time) and this

setting may vary during execution of the workload (Cochran et al., 2011). Figure 6.1

below shows the optimal runtime points for various application workload settings un-

der a range of possible power budgets as discussed in (Cochran et al., 2011). The figure

shows how each representative application has its own optimal set of power-performance

settings that lies on the red line also known as Pareto frontier. For each point on this

frontier for each representative application, there is no other point that achieves lower

energy and shorter performance runtime. These points are the non-dominated set of

optimal settings that can be configured on the device when the particular application is

under execution for maximal energy savings and minimum runtime delay. Each repre-

sentative application of the workload has its own Pareto frontier shown in red. Since the

power-performance objectives are conflicting in nature, improving one objective is only

possible by compromising the other objective: Pareto nature. Thus the Pareto frontier

or the optimal Pareto front contains the optimal runtime values as a function of the

power usage values.
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Figure 6.1: Pareto frontiers for runtime minimization under power budget. Red
line is the Pareto frontier of optimal settings for different power budgets for
representative applications (Cochran et al., 2011).

Here, we consider the problem of learning and predicting the optimal Pareto front of

trade-off values for a sequence of workloads executing on the device or server. We believe

that once the optimal Pareto front is identified for a sequence of workloads, this automat-

ically finds the optimal Pareto front for each workload. Since these values depend on the
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workloads that vary at runtime and that the environment is primarily non-deterministic,

the learning happens in an on-line fashion. Also, as the the exhaustive set of power-

performance settings, that the system can be possibly configured to are pre-determined,

it makes sense to investigate the on-line learning with experts framework (Cesa-Bianchi

and Lugosi, 2006) in this context, where the learner has no control on the individual

expert’s prediction.

6.3 Related Work

Multiple objective optimization is a well known field. Here, more than one objective are

optimized while satisfying multiple constraints (Fliege and Svaiter, 2000). Methods used

to solve these problems include the normal-boundary intersection method, normal con-

straint method, multiple runs of single-objective optimization for sampling the trade-off

surfaces, or use of additional constraints (Singhee, 2011). Usually, the additional con-

straints these methods use, make the optimization problem more time consuming and

hard or difficult to solve (Singhee, 2011). This makes such methods unsuitable for the

application areas of low-powered embedded devices and power restricted data centers.

Evolutionary algorithms have been used to deal with multi-criteria optimization prob-

lems where the fitness function evaluates non-domination by other solutions. Typically,

these methods use stochastic optimization to approximate the Pareto set or the Pareto

front (Bokrantz and Forsgren, 2011; Hu et al., 2003; Zitzler et al., 2004). However,

these algorithms have very high computational costs due to lack of strong search di-

rections and maintains many candidate solutions for the purpose of convergence. In

our problem on embedded mobile devices, we cannot use these approaches again due

to the high computational costs associated with them. Adaptive light-weight machine

learning methods are good candidates for such problems. On related work in the on-line

machine learning community, the tracking of the best expert problem (Herbster and

Warmuth, 1998) deals with cases where the underlying true distribution changes with

each subsequence or partition of data seen sequentially, for a limited number of times.

Our work is different in that we track the Pareto optimal set of experts; experts that lie

on the Pareto front for a sequence of observed workloads; their best expert is from the

set of experts tracked over the whole sequence which is not necessarily Pareto optimal.

Further, we do not know in advance how many switches or jumps as mentioned in their

work are necessary to converge to the best expert for every partition seen. The recent

work on on-line multi task learning (Lugosi et al., 2009) does not address conflicting

objectives that the learner needs to address, rather it focuses on a tuple of actions that

the decision maker selects. The other related work on the subset of experts in changing

environments by Hazan et. al (Hazan and Seshadhri, 2009)- PAC subset selection of

bandits (Kalyanakrishnan et al., 2012) and learning experts by Eban et. al (Eban et al.,



Chapter 6 Online Experts for Multiple Objectives 106

2012) are different from ours in that they work under different settings and assumptions

of the environment.

6.4 Contributions

Our main contribution is in the formulation of the tasks of learning multiple objectives

and predicting Pareto optimal trade-offs as an on-line learning with experts problem.

Consequently, we show how the multiplicative weight update step of the learning algo-

rithm can be significantly improved by exploiting Pareto descent directions that is ob-

tained through a convex combination of the potential function of the regret of the learner

with respect to each objective. We devise an importance vector α that is obtained by

sampling from a convex cone pointed at the origin of the vector space by exploiting the

simultaneous linear inequality of the Blackwell condition (Blackwell, 1956, 1954). The

convex combination of α and the potential function of the regret of the learner with

respect to each objective, enables the learner to converge to the optimal Pareto front

while minimizing its regret with respect to each objective. In the following section, we

introduce the definitions that are referred throughout the chapter.

6.5 Preliminaries

From the knowledge of multi-criteria optimization problems (Fliege and Svaiter, 2000;

Harada and Kobayashi, 2006; Singhee, 2011) when a point is far from the local optimum,

search directions can be found that simultaneously optimize the multiple objectives.

However, as the point gets closer to the local optimum, the search direction cannot op-

timize both objectives together; the solutions thus obtained are Pareto optimal (Brown

and Smith, 2003) and they are said to lie on the Pareto front. The Pareto optimal ob-

jective vector dominates all other objective vectors in the feasible space of solutions (Hu

et al., 2003; Zitzler et al., 2004).

Definition 6.1. Dominance: An objective vector yi is said to dominate another ob-

jective vector yj , (yi � yj), if no component of yi is worse than the corresponding

component in yj and at least one component is better.

Definition 6.2. Non-Dominated and Pareto Optimal Sets: In the set of feasible solu-

tions Y , if the set of solutions Y ′ is said to dominate every other solution in Y , then the

set Y ′ is the non-dominated set or the Pareto-optimal set.

We reiterate the definition of descent directions and Pareto descent directions from the

literature (Harada and Kobayashi, 2006) as follows:
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Definition 6.3. Descent Directions: A descent direction is a direction that falls in the

same half-space as the negative gradient of the function to minimize.

Definition 6.4. Pareto Descent Direction: The descent directions in which no other

descent directions are superior in improving all objectives together are known as Pareto

Descent directions. No Pareto descent direction is better than another Pareto descent

direction and all Pareto descent directions are better than all descent directions.

Let T denote finite number of rounds and L denote finite number of experts designated

as ξ1, ξ2, . . . , ξL. The shorthand “expert i” is used to refer to expert ξi. Let the number

of objectives that the learner has to address in the system be denoted by M . At every

round t, the learner is given an input and is asked to predict the appropriate trade-offs for

each of the M objectives using the experts predictions that the learner has access to. The

prediction of the learner as well the true outcome at round t are both objective vectors

of the type ŷt = (y1, y2, . . . , yM ) ∈M,M∈ RM . The unknown sequence y1,y2, . . . ,yT

of elements form the true outcome space Y. The learner’s predictions p̂1, p̂2, . . . , p̂T

belong to decision space D, which is assumed to be a convex subset of a vector space.

The experts predictions at round t are given by the set {fi,t : i ∈ ξ} where, fi,t ∈ D. We

assume that the experts’ predictions belong to a feasible, objective space of vectors that

lie on an exhaustive spread of convex Pareto curves. The learner has no knowledge of

these underlying Pareto curves where the predictions of the experts (objective vectors)

lie and its goal is to converge to the best possible sequence of experts that lie on the

Pareto optimal front or true Pareto front. The learner assigns weights or beliefs in the

experts given by the vector wm
i,t = (w1, . . . , wM ) ∈ RM for the expert i; each component

of the weight vector is the belief the learner has in the expert towards addressing each

objective m. The notation of superscript “m” in any symbol is used to indicate which

objective is being addressed by the relevant operator. Conversely, the subscript “m”

indicates that the operator is involved in the summation over all objectives. The loss

function used to measure the learner’s loss is a convex loss function l. The performance

of the learner after T rounds is measured by the notion of regret given by:

Rm
T =

T∑
t=1

(lm(p̂t,yt)− lm(fi,t,yt)). (6.1)

l is used to denote loss in any particular round and the cumulative loss is denoted by

L̂T
m

=
∑T

t=1 lm(p̂t,yt), where L̂t is the learner’s cumulative loss in round t and Li,t

is the expert i’s cumulative loss in round t. The learning rate is denoted by η. All

throughout, vector inequalities are to be understood component-wise. We deal with two

objectives in our case as described in the learning algorithm below. The figure below

shows the problem formulation set-up. The objective of the learning algorithm is to

make predictions from the Pareto frontier as indicated in the figure.
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Figure 6.2: Pareto Descent Problem Formulation. The Pareto curves in Cyan
are the curves spanning the objective space from which the experts predictions
are drawn and unknown to the learner. The Pareto curve in Magenta is the
optimal Pareto frontier that has optimal trade-off values for objective 1 and
objective 2. All other symbols of +, *, o, x,

`
are the predictions of various

experts. The learner should find the optimal set of predictions coming from
experts that lie on the Pareto frontier.

6.6 Online Experts

The goal of the learner in this set-up is to be able to predict trade-off values for the

multiple objectives in the system such that the predictions are optimal. In our example

problem discussed in previous sections, by optimal solutions, it is meant that the learner

should be able to provide power-performance trade-off solutions such that no alternative

solution achieves lower power and shorter runtime than this. The role of the learner then

is to make predictions that lie on the Pareto front of solutions. The learner has no idea

about the optimum Pareto front and has access only to the predictions of the experts,

and the confidence or belief, the learner has in each of the experts. We have seen in

the formulation of the problem, the performance of the learner in the on-line learning

set-up is evaluated by the notion of regret which is the difference in cumulative loss of

the learner and that of the best expert in hindsight as in (6.1), which should sublinearly

reach zero as shown in (6.2) (Cesa-Bianchi and Lugosi, 2006), also known as Hannan

Consistency.

1

T
(L̂T

m − min
i,...,L

Lmi,T )
T→∞→ 0. (6.2)
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For keeping the learner’s regret as low as possible, the instantaneous regret vector is used

which is given by rmt = (rm1,t, . . . , r
m
L,t) ∈ RL,m ∈ RM , M is the number of objectives.

The instantaneous regret vector is the vector of regret values of each individual expert

in that round, which shows how each expert performs with respect to the best expert

in hindsight. The corresponding regret vector of the learner is then given by Rm
T =∑T

t=1 rmt . Additionally, a monotonically increasing convex potential function is used as

a function of the learner’s regret φm(R) given by φ : RL → R,Φ(um) =
∑L

i=1 φ(umi ),

where u = (u1, . . . , uL) ∈ RL (Cesa-Bianchi and Lugosi, 2003) to measure the distance

from origin of the learner’s regret in a generalized way. With the help of the potential

function it is obvious that the learner regret Rt at round t, will be kept close to the

minimum of φ by the Blackwell condition.

sup
yt∈Y

rmt .
h

Φ(Rm
t−1) ≤ 0. (6.3)

where u.v stands for the inner product of two vectors defined by u.v = u1v1+· · ·+uNvN .

In other words (6.3) implies that at round t, by keeping the regret vector to point

away from the gradient of the potential function, the point Rt can be kept close to the

minimum of Φ. The potential function is used to keep the drift or instantaneous regret

vector in the same half-space as the negative gradient of the potential of learner’s regret.

Since the learner has no control on the predictions of the experts; it can only control the

belief it has in each of the experts in every round and the strategy it uses for making its

prediction. This suggests that the way to achieve (6.3), the belief or weights the learner

assigns to each expert is crucial in keeping the regret of the learner low. Intuitively, in

every round t, the weight of each of the expert up to previous round, wm
i,t−1, is related

to the regret of the expert Rm
i,t−1 as wm

i,t−1 = φ′(Rm
i,t−1) for the ith expert. A larger

weight wi,t−1 is assigned to expert i, if Rm
i,t−1 is large and vice versa (Cesa-Bianchi and

Lugosi, 2006). The multiplicative weight update at every round t allows the selection of

an instantaneous regret vector rmt for prediction that will keep its regret of the learner

low in the next round. The prediction given by:

p̂t
m =

∑L
i=1

`
Φ(Rm

t−1)ifi,t∑L
j=1

`
Φ(Rm

t−1)j
. (6.4)

6.6.1 Independent Weight Update (IWU)

This is the baseline method where the on-line learning framework is used without any

modification to the weight update step of the experts (Cesa-Bianchi and Lugosi, 2006).

The weights of the experts for each objective in the next round are independently up-

dated based on the expert’s performance in the previous round,
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Figure 6.3: Results of IWU with Pareto problem formulation. (a) Predictions
shown in

`
made by IWU learner averaged over 1000 runs (b) Instantaneous

regret over 100 runs (c) Regret surface over both objectives at the start.

wm
i,t =

wm
i,t−1e

−ηlm(fi,t,yt)∑L
j=1 wm

j,t−1e
−ηlm(fj,t−1,yt)

. (6.5)

In our problem formulation however, as the objectives are conflicting in nature, updating

the weight components of the weight vector wm
t respective to each objective does not

simultaneously decrease the regret of the learner for all objectives. This is because the

learner has no information available in terms of how to relatively weigh each objective

with respect to the other; the components of the weight vector wm
i,t of expert i has

information on how the expert fairs individually on the objectives, but does not relate

the regret component for one objective with the regret component for the other objective.

Without the guidance on relative performance on both objectives as we discuss later,

the learning algorithm is not as good as it can be in addressing the objectives together.
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Figure 6.4: Further results of IWU with Pareto problem formulation. (a) Regret
surface over both objectives over 100 runs (b) Weights for Objective 2 over 100
runs (c) Weights for Objective 1 over 100 runs.

The figure above adds to the results in previous figure to illustrate the behaviour of IWU

learner.

6.6.2 Relative Weight Update (RWU)

To avoid the problems of independent weight updates, and to relate the performance of

the learner with respect to each objective, we modify the multiplicative weight update

step for the experts. Initially, the weight of an expert in a weighted average forecaster

is allowed to vary as a convex combination of its regret on individual objectives such

that the relative performance of the learner towards both objectives can be influenced

by the expert’s weight updates as follows:

wm
i,t =

wm
i,t−1

∑M
k=1 e

−ηlk(fi,t,yt)∑L
j=1 wm

j,t−1e
−ηlm(fj,t−1,yt)

. (6.6)
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The update step as in (6.6), relates performance of the expert i in terms of each of

the m objectives at every step. This modification serves the basic intuition of relating

the performance of the experts and hence the learner with respect to both objectives

together. However, the limitation of this step is in not being able to relate the overall

performance of an expert in both objectives with the desired overall performance in both

objectives. The motivation being, that at the Pareto front, both objectives cannot be

simultaneously improved - improving one inevitably degrades the other. An additional

desirability or importance factor if associated with the process, when it converges to-

wards the Pareto front, would enable the algorithm to meet the desired performance of

minimizing regret with time while predicting Pareto optimal solutions.

6.6.3 Pareto Descent Weight update (PDWU)

In this method, we show how to ensure that at every round t, the instantaneous vector

is chosen such that, the direction of drift does not increase the regret much on individual

objective and also the drift is in the direction where both the objectives are improved

optimally. From our knowledge on descent directions in multi-criteria optimization, we

know that if a descent direction is sought that produces Pareto optimal solutions, the

best direction to choose is a Pareto descent direction (Harada and Kobayashi, 2006)

which gives non-dominated solutions (optimal solutions) in the best case, and in the

worst case the descent directions are automatically obtained which gives dominated

(sub-optimal) solutions. The way to ensure this is to have an importance vector α =

(α1, . . . , αm) ∈ RM with constraints for convexity αk ≥ 0 and
∑M

k=1 αk = 1 that places

relative importance on the objectives. We use this notion of choosing Pareto descent

directions whilst choosing the instantaneous regret vector rmt . The instantaneous regret

vector and hence the weight of the experts at every round, control the learner’s regret by

using the gradient of the potential information in keeping the regret close to minimum

and the convex combination of the objective vectors control the direction of movement

of the learning algorithm towards the optimal Pareto front. The convex combination is

given by:

rmt =

M∑
k=1

αk
h

Φk(Rt−1). (6.7)

The weight wm
i,t of expert i at round t for objective m is then a convex combination of the

importance vector and the potential of the expert’s regret in the direction of individual

objectives, and is given by: wm
i,t−1 =

∑M
k=1 αkφ

′(Rm
i,t−1)

which simplifies to:

wm
i,t =

wm
i,t−1

∑M
k=1 αke

−ηlk(fi,t,yt)∑L
j=1 wm

j,t−1e
−ηlm(fj,t−1,yt)

. (6.8)
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Figure 6.5: Instantaneous regret of learner for IWU, RDU and PDWU for (a)
objective performance, (b) objective power. IWU is shown in solid GREEN,
RWU in BLUE dots and PDWU in dashed RED. Each line in the graph corre-
sponds to an average over 1000 runs of the experiment.

6.6.4 Sampling Importance Vector

Another crucial part of our algorithm is the selection of the importance vector αt at every

round t. Typically, the complete set of Pareto descent directions (which includes the

descent directions) give a convex combination of objective vectors; that forms a convex

cone pointed at the origin (Harada and Kobayashi, 2006), exploiting the simultaneous

linear inequality as in (6.3) (Harada and Kobayashi, 2006). For simplicity, we can

consider the convex cone to be a simplex as well, that is a triangle in this case that

can be generalized to a tetrahedron or higher dimensions. We enforce the condition

that this simplex or the convex cone is pointed at the origin by adding the following

constraint to (6.7): −1 ≥ rmi,t ≤ 1 for expert i. Any point sampled from the convex cone

then should give an importance vector αt and the convex combination of αt and the

objective vectors in terms of gradient of the potential functions with respect to to each

objective φ(Rm
t ) gives the descent (drift) direction or instantaneous regret vector rmt in

(6.7) for the learning algorithm to proceed. We sample αt from the convex hull at every

round t of the learning algorithm.

6.7 Simulation Results

We perform preliminary simulation experiments, to model the example power and per-

formance problem we explained in previous sections. These experiments on synthetic

data illustrates our results. Typically on a multi-core based embedded device (4 cores

or more), the different power-performance settings can be as many as 40. The number
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of experts in our experiments is configured to 50. In reality, the power-performance

policy experts are functions of the workloads currently executing on the device that

predicts the objective vectors of trade-off values for each objective. Here, we use the

objective vectors of power-performance trade-off predictions as our experts, rather than

the actual functions themselves as in the context of on-line learning with experts, what

matters are the predictions of the experts which can be imagined to be functions of the

workloads. As the power performance trade-off values for any workload lie on a Pareto

curve (Cochran et al., 2011), our experts are randomly chosen from a large set of convex

Pareto curves; we assume that this space constitute the feasible space of objective solu-

tions. We designate the optimal Pareto front as the true sequence of experts in hindsight

(not available to the learner), that the algorithm should converge to. The number of

inputs (workloads) seen by our algorithm is preset to 20 but this is not a restriction. As

mentioned before, we have two objectives, that of power savings and performance delay

represented as m = 2 in our experiments. For most of our experiments, we vary the

learning rate between 0.3 to 0.5. We also run experiments on learning rate of 0.01 and

0.8 for verifying bounds. All the on-line learning games comprise 100 rounds and the

results are averaged over 1000 runs. We measure the normalized regret of the learning

algorithm using (6.2) as the main performance evaluation metric in these experiments.

Our importance vector αt is sampled uniformly from the convex cone pointed at the

origin. We perform experiments using both exponentially weighted average forecaster

and weighted average forecasters. Our convex loss function is an absolute loss function.

The figure below illustrates the results of our novel algorithm in the current problem

formulation.

Figure 6.5 shows the results of the normalized regret as explained in (6.2), as a perfor-

mance measure for all the three methods used in our learning algorithm. This perfor-

mance measure implies that the learner should have a vanishing per-round regret or the

instantaneous regret. The difference in cumulative loss of the learner and the cumulative

loss of the best expert in hindsight should grow sub linearly (almost surely) irrespec-

tive of the outcome the learner sees. We use the independent weight update method

as discussed in (6.5) as our baseline method that has the on-line learning with experts

framework without modification to the weight update step for the experts. The methods

of relative weight update and Pareto descent weight update that use the weight updates

in (6.6) and (6.8), are compared against the baseline method. Figure 6.5(a) shows re-

sults for objective performance while Figure 6.5(b) shows results for objective power.

As seen from the results, RWU in Figure 6.5(a) performs better than the IWU. In this

example, PDWU performs almost as good as the baseline method. Figure 6.5(b) shows

that in the case of objective power, both methods RWU and PDWU perform better

than baseline method. We see sub linear growth in the difference of cumulative loss of

the learner and that of the true expert for all our methods. The graphs in Figure 6.5

show the instantaneous regret of the learner as it converges to zero. In our example

problem of power-performance, this result implies that an optimal set of trade-off values



Chapter 6 Online Experts for Multiple Objectives 115

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

objective 1

o
b

je
c
ti
ve

 2

(a)

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

objective 1

o
b

je
c
tiv

e
 2

(b)

1

1.5

2

0

5

10
1

1.5

2

2.5

3

3.5

4

 

objectivestime
 

re
g

re
t 

va
lu

e
s

1.5

2

2.5

3

3.5

(c)

Figure 6.6: Results of PDWU with Pareto problem formulation. (a) Predictions
shown in

`
made by PDWU learner averaged over 50 runs (b) Predictions made

by IWU in contrast over 100 runs (c) Regret surface over both objectives over
10 runs.

are predicted that lie on the Pareto frontier (this is because the learner’s regret goes

sublinearly to zero), that gives the maximum power savings with minimum performance

delay.

6.8 Discussion and Conclusion

In this chapter we have seen how an on-line learning framework can be adapted to

the continuous learning of multiple tasks problem. The independent weight update ap-

proach evaluates the learner in how well it addresses each of the objectives separately.

The relative weight update and Pareto descent weight update methods perform a con-

vex combination of the performance of the algorithm in addressing multiple objectives

simultaneously, while making predictions from the optimal Pareto front. An importance
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Figure 6.7: Further results of PDWU with Pareto problem formulation (a)
Regret surface over both objectives over 50 runs (b) Weights for Objective 1
over 100 runs (c) Weights for Objective 2 over 100 runs.

vector is used to relatively weigh the objectives in each round. The convex combination

of the importance vector and the function of learner’s regret provides a Pareto descent

direction for faster convergence on the Pareto optimal front.

A future direction of this work is to provide a theoretical analysis of the learning ap-

proaches proposed and to achieve generalization bounds. We would also like to perform

extensive experiments on empirical data obtained from the real embedded device and the

data servers to determine how the lifetime of the battery or power source is maintained

while balancing the power-performance trade-off. We need to analyse if restricting the

expert weights to a convex subset has any other implication other than fast convergence.



Chapter 7

Conclusions

The research presented in this thesis investigates the online learning approaches to data

with combinatorial structure. We study the large datasets with graphical structure,

multiple objectives and combinatorial sets of actions in the context of sequential deci-

sion making. We are interested in such prediction problems where the data undergoes

dynamic changes, and the number of solutions are typically exponentially big in the size

of the input. This motivates the requirement for adaptive learning methods that can

learn from dynamic data, with a polynomial complexity for large datasets.

The goal of this thesis was to develop techniques that enhance the robustness capa-

bilities of sequential online learning algorithms in the context of input data with rich

combinatorial structure. We addressed this main objective through the development of

three novel online learning methods working with sequential graph labelling in a semi

supervised environment and one multiple objective prediction within supervised learn-

ing with experts. The first piece of work addressed the open question of minimizing

the p-semi norm interpolation for consistent graph labelling when p → 1, in the limit

of zero temperature on an Ising model. The main accomplishment from this body of

work was a deterministic approximation algorithm that used a neat characterization to

reduce multiplicity of a combinatorial set called PQ graphs, to predict the label of the

vertex over any sequence of queries. We also provided promising mistake bounds with

one bound that matched the optimal bound on trees. In the second major work, we

presented a probabilistic approach to the same problem. The work developed a mean

field variational approximation technique for predicting the marginal probability of the

label of the vertex queries, in the similar semi supervised setting. In both bodies of

work, extensive empirical evaluation was carried out and several experimental results

were provided for validating the results.

The third novel contribution in this thesis is the work on Ising bandits, which took

a direction to enhance the robustness of online feedback algorithms within the similar

semi supervised graph labelling, that served as the contextual setting. A novel linear
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programming relaxation to the p→ 1 setting was provided within this context. The last

body of work studied the full feedback setting of experts within the multiple objective

optimization structure. A novel convex combination of the prediction of the experts was

constructed to predict from the Pareto front. Through these four main lines of work

in this thesis, novel techniques were presented to handle combinatorial data through a

series of robustness structural settings, within the the sequential prediction online games

between the learning algorithm and the environment.

This thesis advanced the state of the art in online prediction on combinatorial data with

applications to Big Data, sequential data and data with different feedback assumptions.

As more data gets generated, we believe that developing sequential algorithms would be

key to cope with the size, source, management and storage of data. Although modern

computational and processing power advancement in the terms of GPUs and clusters

can get around the the problem of data size as of now, developing robust theoretically

sound algorithms that can learn from data on the fly, is definitely the way forward.

7.1 Future Work

The techniques developed in this thesis present new possibilities of addressing the se-

quential decision making with combinatorial data. There are potentially a multitude of

ways in extending the work in future.

The key body of work on online graph labelling within the Ising model assumption at

the limit of zero temperature works on uniformly labelled clusters in large sparse graphs.

The prediction algorithm of longest path in its current state, does not incorporate the

connectivity while making the prediction. For example, when a vertex is queried, the

algorithm finds the longest path the vertex is present on, within the PQ direct acyclic

graph and predicts with the nearest neighbour on that path. The intuition being that

in case of a mistake, the labels on the longest segment of the path are deduced thereby

reducing the number of the mistakes in the long run. However, the algorithm does not

take into affect the connectivity while making the prediction, posing as a limitation.

In Herbster et al. (2015), this point is mentioned as part of the discussion. We have

indeed implemented and performed experimentation with two such connectivity based

prediction approaches. First one of them called edge-majority by Mark Herbster,

where the algorithm predicts with the label of the super vertex in question, present in

the PQ graph such that in case of a mistake, that allows maximum number of edges to

be collapsed to that supervertex. The other method is the vertex-majority by Mark

Herbster, that predicts such that in case of a mistake, the maximum number of vertices

collapse to the super-vertex or in other words, the labels of maximum number of vertices

are deduced. The experiments showed promising results with minor improvement on

longest-path. In principle, we believe that similar connectivity exploiting prediction
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mechanism will benefit the algorithm in a holistic way. One possibility is to encode

the connectivity information in the meta-graph called second order chain that can be

approximated from the PQ hyper-graph and use a monotone, permutation invariant

dynamic program to recursively predict the labels (Çeliktutan et al., 2015).

A possible continuation of the work on variational mean field approximation can be an

extended empirical evaluation on multi-class labelling problems in computer vision as

the algorithm is capable of multi-class classification. One could compare this method

with the deterministic approach in Chapter 3. A natural extension of this work is also in

online multi-instance labelling where the input is a set of labelled bags; the mean field

approximation naturally fits into this problem. One could also consider parallelizing

the online mean field approximation of semi supervised learning across GPU clusters

for relative speed up of the computation process. All the non-neighbours that do not

depend on each other could be updated in parallel. The interesting challenge will be in

discovering sets of vertices whose labelling are independent of each other. One possibility

is to execute the algorithm beforehand to detect non-interacting sets as the prior. The

assumption excludes fully connected graphs, where every state depend on everything

else. The other challenge is to prevent simultaneous updating to avoid cycling. In

practice, a simple strategy of randomly selecting two different sections of the graph to

update, works relatively well.

Further, as mentioned in Chapter 3, we would like to investigate in what sense are the

predictions of longest-path deterministic approximate predictions of 0-Ising. Let the

vectors y, ŷ0I, ŷLP ∈ {0, 1}n denote the true labelling of the graph, the vectors of the

sequential predictions of 0-Ising and longest-path and let B(S) denote a mistake

bound of 0-Ising and longest-path on an example sequence S. Then we have:

‖ŷ0I − ŷLP‖1 ≤ ‖y − ŷ0I‖1 + ‖y − ŷLP‖1 ≤ 2B(S)

Thus the sequence of predictions ŷLP from the deterministic approximation longestPath

are guaranteed to never differ from the sequence of predictions ŷ0I of 0-Ising except

in at most 2B(S) trials. Analysing the quality of approximations carried out in both

Chapters 3 and 4, would contribute immensely in the increased effectiveness of the online

methods developed in this thesis.

As a continuation of Chapter 5 on Ising bandits, we would like to evaluate the method on

the real life advertisement and recommendation data available on the internet through

product recommendation datasets. Further, we would like to study the effects of re-

moving the relaxation that the adversary cannot increase the “cut-size”. It would be

interesting to allow the adversary to be flexible for worst-case guarantees. With the

current relaxation, one step ahead could be to bound the number of mistakes or mis-

taken predictions per game; every time the cut changes, a different game begins. A

possible extension of the work in Chapter 6 could be in casting the multiple objective
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Pareto online optimization problem in the framework of the recent work in Pareto regret

frontier (Koolen, 2013).
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