
UNIVERSITY OF SOUTHAMPTON

FACULTY OF SOCIAL, HUMAN AND MATHEMATICAL SCIENCES

Mathematics

Estimation and Pricing for Substitutable Products in Choice-Based

Revenue Management

by

Yalin Bi

Supervisor: Dr. Christine Currie Prof. Joerg Fliege

Thesis for the degree of Doctor of Philosophy

October 2017

mailto:yb1c11@soton.ac.uk




UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL, HUMAN AND MATHEMATICAL SCIENCES

Mathematics

Doctor of Philosophy

ESTIMATION AND PRICING FOR SUBSTITUTABLE PRODUCTS IN

CHOICE-BASED REVENUE MANAGEMENT

by Yalin Bi

mailto:yb1c11@soton.ac.uk


iv

It has been proved that choice-based Revenue Management can result in significant in-

creases in revenue in situations where a seller is pricing a set of substitutable products.

This is particularly applicable to the transport industry and we present an example of

train ticket sales.

Estimating customer choice models is difficult, particularly in situations where the data

file is incomplete. We use the Multinomial Logit (MNL) model to describe customer

preferences, and a two-step algorithm to jointly estimate the parameters of this model

and the customer arrival rate. A simple Markov Chain Monte Carlo (MCMC) method

is also applied to update our belief of arrival rate and customer choice model.

The dynamic programming model for the choice-based pricing problem suffers from the

“curse of dimensionality ”. The computational time increases dramatically and makes it

impossible to solve the problem with exact solutions. Approximate dynamic program-

ming methods can be used to solve the problem. We propose a new approximation

method that reduces the running time. The thesis will describe the complete method-

ology that we have implemented and provide some numerical results.

As these are live sales systems, it is important that the system continues to earn rev-

enues while the parameters are being estimated. A decision-making problem is needed to

maintain a balance between the learning of customer preference (exploration) and earn-

ing (exploitation) in choice-based Revenue Management. In order to maximise the total

revenue, the seller must decide whether to choose the current optimal price (exploitation)

or to set prices that help to better estimate customer choice behaviour (exploration).

We propose two pulling policies in a Multi-armed Bandit (MAB) experiment to balance

the trade-off between exploration and exploitation.
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Chapter 1

Introduction

In many applications, a seller has to make decisions regarding its pricing or quantity

control policies. The pricing policies include how to set a price at the beginning of the

selling period, when and by how much to discount a product, and so on. The quantity

control policies include how to decide the initial inventory level, whether to accept a

certain offer from a customer, whether to offer a product to the market, and so on.

Revenue management (RM) encompasses these two areas of quantity control and price

optimisation and has been an active area of research for several decades (see Talluri and

van Ryzin (2006) for an introduction to RM). Compared to the quantity control policies

that control sales by limiting supply, it is more profitable for a firm to apply a pricing

policy that controls the sales by increasing prices (Gallego and van Ryzin (1994)). In

addition, the development of Internet has given firms greater flexibility to change the

prices of their products. In this study, we apply a dynamic pricing policy with the aim

of maximising the expected revenue.

Traditionally, there is a common assumption in RM that the demand for a product will

not be affected by the availability or price of other products in the market. This is

called the independent demand model. However, this assumption is not always true.

For example, when buying rail tickets customers consider trains with the same origin-

destination pair to be substitutable. If we assume a customer’s first choice is a train on

Wednesday afternoon, he/she may choose a train on Wednesday morning if the ticket

price is much cheaper than the cost of the ticket on Wednesday afternoon, or if the

Wednesday afternoon ticket is not available. In these situations, when setting prices it

is important to model how a customer is making decisions about which ticket to buy.

The RM models that consider customer choice behaviour are called choice-based RM.

Vulcano et al. (2010) report potential revenue gains of 1%-5% if the seller converts to a

choice-based RM system.

1



2 Chapter 1 Introduction

In this thesis, we study a choice-based dynamic pricing problem with demand and sub-

stitution behaviour uncertainty. In the problem, a seller offers a set of substitutable

products to the customers. Each customer chooses a product individually from the set

of products on offer, by employing a certain customer choice behaviour. The result of

customer selection depends on the price and other characteristics of the products in the

offer set. We assume the customer choice behaviour can be modelled with a Multinomial

Logit (MNL) model and the parameters in the MNL model are fixed but unknown to

the seller. The seller can estimate the parameters by offering different price vectors for

products and observing the choices of customers (exploration). Then, the seller uses

the estimation of customer choice behaviour in a choice-based dynamic pricing problem

to find the optimal price vector and improve their profit (exploitation). The ratio and

order of exploration and exploitation can be controlled by a Multi-armed bandit (MAB)

algorithm.

The methods we propose in this work can be applied in many areas. The estimation

method can solve the customer preference estimation problem for the companies in

transportation, airlines, fashion retailing, and many other areas in which it is difficult

to replenish the inventory. The new approximation method can benefit the companies

which need to update optimal prices frequently due to large volumes of inventory and

customers. These applications can be found in a range of companies, including railway

companies, the focus of this research. The proposed policies in MAB can be applied

in the Internet retailing sector - for example, Amazon and Alibaba, and in the area of

transportation. The policies are specifically appropriate for the companies that already

have their own estimation and pricing systems.

1.1 Overview

We decompose the problem into two parts. The first part is the estimation of arrival

rate and customer choice models. The second part finds the optimal set of prices to

charge for a given set of parameters, by solving a choice-based RM problem. Then we

solve the trade-off between the estimation and optimisation with a MAB algorithm.

In order to apply a choice-based RM system, the seller needs a good estimate of the

demand and customer choice behaviour from the sales data. Given the finite set of al-

ternatives, the choice behaviour is typically described by a discrete choice model, with

the MNL model being the most widely used. The MNL model can be estimated using

maximum likelihood if complete data are available. However, when we consider the situ-

ation that some products may be sold out before the end of the selling period, we cannot
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determine whether a customer would have chosen this product if the full product set was

available. In addition, the arrivals of customers who buy products are recorded in the

data, but the data of arrivals without a purchase are unobservable in sales data. Hence,

the sales data we have are incomplete and the maximum likelihood method cannot be

used directly. In this situation, more information is needed to reduce the uncertainty in

the incomplete data. Vulcano et al. (2012) assume they have an exogenous estimate of

the aggregate market share and estimate the unknown parameters with an Expectation-

Maximisation (EM) method. Assuming the market share information is available, we

show that we can jointly estimate the arrival rate and customer choice model with max-

imum likelihood estimation directly, thus avoiding the use of the EM method.

Another approach to estimating parameters is to make use of Bayesian statistics. This

has the benefit of allowing us to take any prior beliefs about the parameter values into

account. Compared with point estimation, a Bayesian method also provides more in-

formation about the unknown parameters. Previously, Letham et al. (2015) solved this

estimation problem using a stochastic gradient Markov Chain Monte Carlo (MCMC)

algorithm, and the parameter of base utility is unidentifiable. We show that, given the

information about market share, this problem can be solved with a MCMC algorithm

with unique solution for the parameter of base utility.

After we obtain the estimates of customer choice behaviour, we can use this information

in a dynamic pricing problem to find the optimal price vector for the products. Find-

ing an exact solution to the problem is computationally intractable for practical-sized

problems; therefore, Zhang and Cooper (2009) propose an approximate dynamic pro-

gramming method to reduce the running time of the original dynamic program problem.

For examples where the price vector must be updated regularly, the computation time

for the approximation method in Zhang and Cooper (2009) can still be too long. We

provide a new approximate dynamic programming method which further reduces the

running time.

A MAB algorithm aims to achieve the right balance between exploration and exploita-

tion. We use a MAB algorithm to choose when to offer diverse price vectors that help

us learn more about the parameter values and when to offer the current set of optimal

prices. If the firms spend too much time in estimation (exploration), they may lose the

opportunity to offer the optimal price for a sufficient period of time, thus maximising the

short-term revenue. If they spend most of the time using the optimal price vector which

is based on the current estimation (exploitation), they may lose the chance to find a

better understanding of choice behaviour that affect the results of optimal price and the

long-term revenue. Besbes and Zeevi (2009) follow a learning-and-earning pattern and

Broder and Rusmevichientong (2012) propose a MLE-CYCLE policy which performs
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the learning phase and earning phase in a cycle. Schwartz et al. (2016) apply an Upper

Confidence Bound algorithm to balance the exploration and exploitation. We propose

two methods in the Multi-armed Bandit (MAB) to solve the trade-off between explo-

ration of demand and substitution behaviour uncertainty and exploitation of short-term

profit.

In Chapter 3, we jointly estimate the arrival rate and parameters where choice behaviour

is described by the MNL model. We have adapted Newman’s two-step method to con-

sider the problems with stockout effect. With information of market share, we can avoid

the EM algorithm in Vulcano et al. (2012) and solve the problem with a globally con-

cave function. We also apply a MCMC method to solve the estimation problem with

information of market share. Different from Letham et al. (2015), our MCMC method

provides a unique solution for the parameter of the base utility.

We describe a simulation study that measures estimation performance and how much

data are needed to have good estimates. The comparison with the EM method intro-

duced by Vulcano et al. (2012) is also presented. Compared with the EM methods that

need to calculate expected value and solve optimisation problems iteratively, maximum

likelihood estimation is quick and can be solved with many existing software programs.

The Bayesian method can provide the posterior distribution on the unknown parameters

and this will afford the user a better understanding of the uncertainty of the parame-

ters. Compared with the stochastic gradient MCMC method in Letham et al.(2015), a

standard MCMC method is easier to implement with existing software programs.

In Chapter 4, we propose a new approximation method to solve the choice-based dy-

namic pricing problem with substitutable products. Compared to the approximation

method in Zhang and Cooper (2009), our method can reduce the computation time sig-

nificantly, particularly for the problems with a large number of time periods or a high

inventory level. The approximation method can benefit firms that need to update their

pricing policy frequently.

In Chapter 5, we propose two new policies in MAB—RP policy and RP-a policy—to

solve the trade-off between exploration and exploitation. The policies are easy to imple-

ment with any existing estimation methods and optimising algorithms. The RP-a policy

can adjust the ratio of exploration and exploitation automatically based on the status

of estimation. We also provide numerical results to show the performance and compare

these two policies with three alternative policies. The results suggest that a firm can

improve their profit by applying a RP-a policy instead of following standard policies of
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learning-then-earning policy or passive learning policy.

Figure 1.1 presents the structure of our model.

Estimate demand and
customer choice model

(exploration)
Chapter 3

Solve a choice-based
dynamic pricing problem

(exploitation)
Chapter 4

Trade-off between
exploration and exploitation

Chapter 5

Two-step algorithm or
Markov chain Monte

Carlo method

A pulling policy in
Multi-armed Bandit

Approximate dynamic
programming

Figure 1.1: Model Structure

1.2 Research Challenges and Contributions

The overall aim of the thesis is to solve a choice-based dynamic pricing problem for

substitutable products with demand and substitution behaviour uncertainty. There are

three main research challenges in the project.

1. Estimate the parameters of a customer choice model with incomplete data.

2. Reduce the computation time associated with finding the optimal prices to charge

for a choice-based RM problem.
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3. Develop a pricing strategy that balances the trade-off between estimation and ex-

ploitation in choice-based RM.

Related to the first challenge, Vulcano et al. (2010) estimate the parameters of MNL

with an EM method. They assume the inventory level is unlimited and no information

of market share is provided. Considering the same problem, Newman et al. (2014)

decompose the estimation into two parts with a two-step algorithm. Different from the

problem solved in these papers, Vulcano et al. (2012) assume the aggregate market

share is available and estimate the preference weights of the MNL model with an EM

method. In the paper, they assume that products may be sold out before the end of the

selling period. This problem has not been solved with the two-step algorithm. Given the

aggregate market share and incomplete sales data, we identify a research gap in how to

estimate the parameters in the MNL model with direct maximisation. We fill this gap

by decomposing the estimation with a two-step algorithm and estimate the parameters

of MNL with the maximum likelihood method or the MCMC method.

Zhang and Cooper (2009) address a choice-based RM problem by approximating the

value function with separable bounds. However, the computation time of the method

prevents the user from updating the prices over a short time period with large instances.

No method has been provided to improve the computation time of their method. We

fill the gap by regarding the bounds as a value function of the single product dynamic

programming problem and providing new bounds of the value functions.

The third challenge has been considered in Schwartz et al. (2016), which applies an

Upper Confidence Bound algorithm to balance the exploration and exploitation. The

algorithm cannot be applied to the existing pricing and estimation method directly.

Apart from the learning and then earning pattern applied in Besbes and Zeevi (2009),

Broder and Rusmevichientong (2012) provide a MLE-CYCLE policy. Both of these poli-

cies can solve the trade-off between existing pricing and the estimation phase. However,

an algorithm in MAB is still needed to improve the performance of existing algorithms.

We address the gap by designing efficient pulling algorithms that satisfy our require-

ments.

Given the research challenges and research gaps summarised above, we make the follow-

ing contributions in this thesis.
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• We show that the estimation of primary demand can be solved with maximum

likelihood or the MCMC method with unique solution when the aggregate market

share is available.

• We propose an approximation method for the choice-based dynamic pricing prob-

lem which was shown in our numerical tests to reduce the computational time of

the existing approximation method.

• We propose two pricing policies, RP and RP-a, which solve the trade-off between

estimation and choice-based dynamic pricing.

1.3 Outline

The remainder of this thesis is set out as follows:

• Chapter 2 reviews the papers relating to estimation of choice model, pricing prob-

lems and MAB problems. In Section 2.1, we introduce widely used choice models

and review the papers that estimate the customer choice model in different areas.

In Section 2.2, we introduce the papers that focus on dynamic pricing problems

and dynamic pricing problems with demand uncertainty. We also give a detailed

review of the choice-based RM problem with substitutable products or network

structure. Finally, we review the papers with different pulling policies in Multi-

armed Bandit experiments.

• Chapter 3 discusses the estimation methods of the MNL model. In Section 3.1,

we describe the use of the EM methods that jointly estimate the arrival rate and

MNL model for the problems with or without stockout effect. Section 3.2 shows

that the problem with stockout effect can be solved with a two-step algorithm

if the information of market share is available. In Section 3.3, we show that

this estimation problem can be solved with a simple MCMC method. Numerical

experiments are presented in Section 3.4 and assess the quality of the different

estimation techniques.

• Chapter 4 contains the formulation of a choice-based dynamic programming prob-

lem. We propose a new approximate dynamic programming method to reduce the

running time of the existing approximation methods. The numerical results show

the computation time comparison and revenue comparison of these two approxi-

mation methods with a large instance.
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• In Chapter 5, we propose two MAB algorithms to solve the trade-off between

exploration and exploitation. We draw comparisons between these two algorithms

and three standard methods.

• Chapter 6 concludes the thesis. It states the findings and results and provides

directions for future work.



Chapter 2

Literature review

Revenue Management (RM) is an approach used by commercial businesses which aims

to maximise their revenue by making appropriate management decisions over resources

which have limited capacity. A comprehensive introduction to RM can be found in

Talluri and van Ryzin (2006). RM methods rely on good estimates of parameter values

that provide an accurate description of the system being optimised.

In Section 2.1, we review some discrete choice models and the estimation methods in

different application areas. Section 2.2 focuses on the literature that covers the dynamic

pricing problem with or without demand uncertainty, as well as papers that consider the

RM problems with a customer choice model. In Section 2.3, we introduce the pulling

strategies for the Multi-armed Bandit problem, before concluding in Section 2.4.

2.1 Estimation of the Customer Choice Model

2.1.1 Customer Choice model

Customer choice behaviour is usually modelled with two categories of discrete choice

models: reservation price model and random utility model. A reservation price model

assumes that each customer has a reservation price v for each of the products and will

not buy the product until the price of the product p is below their reservation price.

The probability that a customer chooses to buy a product is given by

F (p) = P (p < v).

9
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A random utility model assumes that the customer has a utility for each product. The

term, ’utility’ is used to measure the attractiveness of a product and is defined as a

function of its attributes, which is the factor considered by customers. For example,

for a problem in transportation, the factor under consideration can be departure time,

departure date, the cost of travel, or the indicator variable for a first-class ticket.

The random utility model assumes the probability that a customer chooses a product is

equal to the probability that this product has the highest utility among all the products

in the offer set. Let Ui denote the utility of product i in offer set S. The probability

that a customer chooses product i is given by

Pi(S) = P (Ui = max{Uj : j ∈ S}).

The multinomial logit (MNL) model (Ben-Akiva and Lerman, 1985) is the most widely

used customer choice model in operational research, marketing and travel demand fore-

casting. It describes the probability that a customer chooses a certain product from

the products set. A detailed review of the MNL model can be found in Ben-Akiva and

Lerman (1985) and Train (2009). As we will see later, it is also the most common model

for use in RM; for example, Liu and van Ryzin (2008), Zhang and Adelman (2009),

Dong et al. (2009) and Vulcano et al. (2010).

The MNL model belongs to the set of random utility models, which assumes the cus-

tomer utilities for alternatives are random variables. Specifically, let Ui denote the utility

of a customer for alternative i, which can be defined as Ui = ui + ξi, where ui is the

deterministic portion, which represents the utility of observable attributes, like travel

time, travel day, cost, and first-class ticket or not. Here, ξi is the random portion, which

describes the utility of unobservable attributes; for example reliability of the service,

ease of transfer and condition of the coach.

Random utility models differ in the assumptions that they make about the distribution

of the ξi; the interactions between decision-makers and the different alternatives and

the correlation structure between the ξi. We consider the MNL model, which assumes

the ξi is an independent and identically distributed random variable with a Gumbel

distribution and the cumulative distribution function of the random part is

F (ξi) = exp(− exp(−ξi)).

An alternative option is the multinomial probit model (considered by Grammig et al.,

2005 in the RM area), where the ξi follows a joint normal distribution. This provides



Chapter 2 Literature review 11

more flexibility with regard to condition structure but is harder to manipulate.

For the MNL, we assume that customers are homogeneous in their preferences; the

probability that a customer chooses product i from offer set S is given by

Pi(S) =
eui∑

j∈S e
uj + eu0

=
eui∑

j∈S e
uj + 1

,

and the no-purchase probability can be given by

P0(S) =
1∑

j∈S e
uj + 1

,

where the assumption that the utility associated with no purchase u0 = 0.

We assume ui has a linear-in-parameters function as

ui = βxi,

where β is an unknown vector of parameters we need to estimate, and xi is a vector

of attributes for option i. We measure utility relative to a base or reference option,

which is assumed to have a base utility of the β0. The purchase probability can then be

presented by

Pi(S) =
exp(βxi)∑

j∈S exp(βxj) + 1
. (2.1)

Note that the ratio of probabilities for two alternatives is given by

Pi
Pj

=

eui∑
k∈S e

uk+1

euj∑
k∈S e

uk+1

=
eui

euj
,

which means that the ratio will not be affected by the offer sets which contain these two

alternatives. This property is called the independence-from-irrelevant-alternatives (IIA)

property and it is often illustrated by an example called “red bus/blue bus” (Ben-Akiva

and Lerman, 1985).

Finite-mixture logit models and nested logit models are two kinds of model that can

avoid the IIA property by making assumptions about the correlation structure in the
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MNL models. The Nested Logit (NL) model is a relaxation of MNL model, which allows

correlation between alternatives. In the NL model, the alternatives can be divided into

exclusive nests. The alternatives in the same nest are correlated with each other and

there is no correlation between two alternatives which are in different nests. Therefore,

the IIA property holds within groups but not across groups. This model can be applied

to the problems which include choice of destination or choice of travel frequency for

different purposes (Ben-Akiva and Lerman, 1985). The papers that consider the nested

logit model can be found in Li and Huh (2011), Gallego and Wang (2014), Li et al.

(2015) and Rayfield et al. (2015). We do not use this choice of model, because the

problem we study does not include this kind of choice.

The finite-mixture logit model is another relaxation of the MNL model. Different from

the assumption in the MNL model that customers have the same preference over the

choices, finite-mixture logit models allow customers to have different preferences. This

model assumes that customers who have the same preferences belong to a segment and

that the preference in each segment can be modelled with MNL. In our work, we assume

the preferences of customers are homogeneous. We do not consider the finite-mixture

logit model and apply the MNL model to model the customer preference.

In a finite-mixture logit model, it is assumed that the customers can be divided into L

segments and the probability that a customer is in segment l is given by

ql =
ewl∑L
j=1 e

wj
, l = 1, · · · , L,

where wl is the parameter associated with segment l. Assume that the coefficient for

attributes in segment l is βl. The probability of a customer choosing alternative i is

given by

Pi(S) =

L∑
l=1

ql
exp(βlxi)∑
k∈S exp(βlxk)

, i ∈ S.

2.1.2 Estimation Methods for Choice Model

In this section, we review the estimation methods in different application areas. Then

wenfocus on the papers which consider the problem with incomplete data.

In the transportation field, choice models have been used to estimate demand of trans-

portation route, destination and different transportation facilities. Bhat (2001) estimates
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a mixed multinomial logit model with quasi-random maximum simulated likelihood es-

timation and applies the approach to an intercity travel mode choice problem. Wen and

Koppelman (2001) also solve a similar intercity choice problem. They choose to apply a

constrained maximum likelihood method to estimate a generalised nested logit model.

Hess et al. (2006) modify the Latin Hypercube Sampling method to estimate a mixed

logit model and apply the method to find customer preference between different types of

vehicle. Yang et al. (2014) estimate a MNL model by solving the first-order derivatives

of the log likelihood function with Quasi-Newton methods.

In the economics field, Berry (1994) proposes a methodology which inverts the market-

share equation to estimating the discrete choice model with aggregate data. Ackerberg

and Rysman (2002) propose a choice model, which adjusts the standard logit model

to account for the unobserved product characteristics. For individual-level data, they

estimate the model with the maximum likelihood method. For group-level data, the

Berry (1994) inversion is used to estimate the model.

The literature focusing on estimation of discrete choice models is also applicable to

the marketing field. The basic estimation method is maximum likelihood estimation.

Morrow-Jones et al. (2004) apply this method to estimate the customer preference over

neighbourhood design characteristics. The preference is modelled with a probit choice

model. Geottler and Shachar (2001) use a maximum simulated likelihood method to

estimate a discrete choice model with unobserved characteristics and apply the method

in the network television industry. Another stream of estimation method is Bayesian

estimation. Arora and Huber (2001) propose a hierarchical Bayes choice model and

estimate the model with a Gibbs sampler. Similarly, Daziano and Bolduc (2013) apply

a Markov Chain Monte Carlo Gibbs sampler to estimate a hybrid choice model. The ap-

proach is implemented to explain the environmental attribute in customer vehicle choice.

In most cases in RM, researchers only have access to sales data, which record the cus-

tomers who arrive and purchase a product. This means that they cannot distinguish a

time period in which there is an arrival but no purchase occurred from a time period

without an arrival. If we just ignore the customers who arrive into the selling system

and choose to leave without a purchase, we will have a severe bias in estimation. In

statistical terms, these are referred to as constrained data. Methods that are designed

to estimate true parameters for demand distribution or choice model from constrained

sales data are called unconstraining methods. A focus on unconstraining methods with

single produce can be found in work by Guo et al. (2012).
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The unconstraining method for the problem of multiple products is the Expectation-

Maximisation (EM) algorithm. The EM algorithm is an iterative algorithm that esti-

mates parameters with incomplete data. The algorithm was first introduced by Demp-

ster et al. (1977) and has been widely used in the revenue management area (Talluri

and van Ryzin, 2004, Vulcano et al., 2010, Vulcano et al., 2012). Ratliff et al. (2008)

propose a recapture heuristic to unconstraining data. Talluri (2009) provides a log risk-

ratio estimation method to account for the unconstraining data. Newman et al. (2014)

propose a two-step method to solve the unconstraining data problem. A detailed review

is provided below.

Talluri and van Ryzin (2004) provide an EM method to jointly estimate the choice pa-

rameters and arrival rate with incomplete data for an example in the airline industries.

The EM algorithm consist of two steps: the Expectation (E) step and the Maximisation

(M) step. The Expectation step calculates the expected value of the conditional log like-

lihood of the missing data. The Maximisation step calculates the maximum value of the

expected log-likelihood function. The parameters maximising the function are recorded

and used in the next expectation step. These two steps are performed iteratively until

the estimation stops improving or a stopping criterion is reached. They update the

belief of parameters by calculating the expectation value of the log-likelihood function

with the current estimation and maximise the expected log-likelihood function itera-

tively. Vulcano et al. (2010) provide a simulation study of a choice-based RM problem,

again from the airline industry, which uses the EM algorithm to obtain the estimation

of parameters. In these two papers, the EM method is applied with a fixed start point.

The quality of estimation is highly dependent on the setting of the start point, as we

show later in Chapter 3.

To improve the computational speed of the estimation in Talluri and van Ryzin (2004),

Newman et al. (2014) present a new algorithm which uses a marginal log-likelihood

function and split the estimation procedure into two steps. The first step is estimating

parameters in the MNL model, except the parameter for base utility. Using the estimates

from the first step, the parameters for base utility and the arrival rate are estimated

in the second step. Unfortunately, multiple maxima may still exist in the second step.

They provide methods for discrete and time processes. This method can be adopted in

the problem with more than one offer set. We extend the idea of this two-step method

to jointly estimate parameters in MNL and arrival rate in a problem with the situation

of stockout and substitution behaviour, as described in Section 3.2.

The above three papers assume that products are in stock during the whole selling

period. With a different assumption, the aim of Vulcano et al. (2012) is to estimate

substitution effects with stockout effect. They transfer the problem to the estimation of
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customer primary demand. In the paper, they jointly estimate the preference weights

and arrival rates with sale, product-availability data and market size. The MNL model

is used as the customer choice model and arrivals of customers are assumed to be non-

homogeneous Bernoulli arrivals over multiple periods. An EM method is applied to

estimate the model parameters. In the paper, the authors report that the incomplete

data likelihood function has a continuum of maxima, and they solve this problem by

adding constraints on the parameters.

Unlike the assumption in Vulcano et al. (2012) that the market size is known, Talluri

(2009) estimates market size with provided data. The author proposes a finite pop-

ulation model to discard the Poisson demand assumption and allow a wider range of

demand distributions. However, it assumes that the parameter for the no-purchase op-

tion is known before the estimation, which restricts the application of this method. The

estimation of market size can be regarded as a binomial estimation problem which is

challenging; this paper provides an estimation heuristic with log risk-ratio for the MNL

model.

Rusmevichientong and Topaloglu (2012) consider the assortment problem and propose

an adaptive policy to learn the unknown parameters of the MNL model and optimise the

assortment problem at the same time. The adaptive policy is divided into exploration

steps and exploitation steps. In exploration steps, they provide different assortments to

the customers’ observed selection probabilities and find the order of the products based

on the selection probabilities. Then they propose an algorithm to find a sequence of

assortments with given ordering. After that, exploitation steps that employ a sampling-

based golden ratio search are performed to compare different assortments. The optimal

assortment can be found after enough iterations.

Instead of the parametric approaches used in the above papers, Farias et al. (2013)

provide a non-parametric approach, which has no prior assumption on the structure of

the choice model. Close to Farias et al. (2013), van Ryzin and Vulcano (2011) consider

a general, non-parametric discrete choice model with a Bernoulli process of arrivals over

time. An EM algorithm solves the estimation. With the numerical results, they show

that the method has one order of magnitude improvement compared to the maximisa-

tion of incomplete likelihood function.

Another stream of estimation methods is Bayesian methods. Since the coefficients in the

MNL model have no closed-form posterior distribution, a Markov Chain Monte Carlo

(MCMC) method is usually applied to solve the problem. The Markov chain is a discrete

time stochastic process with a transition operator with memoryless property that means
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the future decision depends only on the current state instead of any other historic state.

This memoryless property is called the Markov property. The Monte Carlo methods

comprise a form of algorithm that simulates an independent and identically distributed

(i.i.d.) set of samples from the required distribution and estimates the target distribu-

tion.

A detailed description of MCMC methods can be found in Robert and Casella (2013).

The first MCMC method is provided in Metropolis et al. (1953) and is named the

Metropolis algorithm. This algorithm is generalised by Hasting (1970) with a simula-

tion method to avoid the curse of dimensionality in the Metropolis algorithm. Another

widely used MCMC method is Gibbs sampling, which is described by Geman and Geman

(1984). MCMC methods have been used to estimate the MNL model. Dellaportas and

Smith (1993) use the adaptive rejection Gibbs sampling method to compute Bayesian

inferences for generalised linear models and this method can be applied to estimate the

coefficient of the MNL models. Gamerman (1997) address the estimation of generalised

linear mixed models with Metropolis-Hastings (MH) method. Holmes and Held (2006)

apply auxiliary variable approaches and Metropolis-Hastings methods for the inference

of MNL model. Another paper by Scott (2011) also uses data-augmented Metropolis-

Hasting sampling to estimate the MNL model. Different from the above two papers,

Frühwirth-Schnatter and Frühwirth (2007) propose a data augmentation and Gibbs sam-

pling method for the MNL model.

Letham et al. (2015) apply the stochastic gradient MCMC algorithm to estimate arrival

rate and substitution behaviour with stockout. In the paper, sales data with incomplete-

ness are applied. With their method, the parameter of base utility is unidentifiable. With

the idea of the two-step algorithm in Newman et al. (2014), we can apply a MCMC

algorithm to estimate the arrival rate and parameters in the MNL model with unique

solution. We describe how we have incorporated the MCMC into Newman et al.’s (2014)

algorithm in Section 3.3.

2.2 Revenue Management

In Section 2.2.1, we introduce the studies that focus on dynamic pricing problems in

general. Section 2.2.2 reviews the papers that solve choice-based revenue management

problems. Both substitutable products problems and network revenue management

problems are included in this section. In Section 2.2.3, we discuss the papers that solve

the dynamic pricing problems with demand uncertainty.
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2.2.1 Dynamic Pricing

In general, RM deals with three main classes of decisions: structural-based decisions,

price-based decisions and quantity-based decisions. This research focuses on price-based

decisions which incorporate customer choice behaviour. Two overviews of dynamic pric-

ing can be obtained from Elmaghraby and Keskinocak (2003) and Bitran and Caldentey

(2003). The book written by Talluri and van Ryzin (2006) also provides a detailed de-

scription of dynamic pricing.

The 1962 paper by Kincaid and Darling is one of the first to dynamically price a single

perishable product in a continuous time model with a homogeneous Poisson demand

pattern, with the focus being on retail.

Gallego and van Ryzin (1994) introduce the ideas to RM and present a continuous-time

model that considers stochastic demand for a single product and gives an upper bound

on the revenue. For the problems with exponential demand function, they provide an

exact solution. Since continuously changing the price is impractical, problems with finite

price vectors are addressed in the paper as well. Several extensions are also included in

this paper. Zhao and Zheng (2000) extend the model of Gallego and van Ryzin (1994)

to incorporate non-homogeneous demand and time-dependent reservation price. The

model in Feng and Gallego (2000) also has a non-homogeneous Poisson demand pat-

tern. An efficient algorithm is developed in the paper to find the optimal decisions. The

models in Feng and Gallego (1995), Bitran and Mondschein (1997) and Feng and Xiao

(2000) have the constraint that the number of prices changes is finite.

The above papers solve problems with single product to sell. Gallego and van Ryzin

(1997) extend their 1994 model by considering multiple products in the network setting.

Two asymptotically optimal heuristics are provided to solve the problem. The paper

also presents an upper bound on the original problem based on the deterministic model.

Maglaras and Meissner (2006) consider a dynamic pricing problem with multiple prod-

ucts, which share a single resource. The paper shows that the dynamic pricing problem

and capacity control problem can be reduced to a common formulation. Several heuris-

tics are also provided based on its deterministic model.

Sen (2013) provides a comparison of fixed and dynamic pricing policies for the problem

of selling a fixed capacity or inventory of items over a finite selling period. The author

proposes an approximation method which is similar to the method in Zhang and Cooper

(2009) to solve a dynamic pricing problem with a single product. He approximate the
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optimal expected revenue with a combination of the lower bounds and upper bounds for

the value function. The lower bounds are approximated by dividing the whole selling

period by the number of inventory levels. Only one unit of product is sold in each small

period and any unsold product is ignored in the next small period. The upper bound

comes from a result in Gallego and van Ryzin (1994). We use the ideas of Sen (2013) in

the work presented here by treating the bounds in Zhang and Cooper (2009) as a value

function for single product problem. More details can be found in Section 4.3.

Elmaghraby and Keskinkocak (2003) classify the studies of dynamic pricing problems

with three characteristics – replenishment scheme, demand dependency over time and

customer purchase behaviour – which we discuss below

Replenishment vs. No Replenishment of inventory

Whether the inventory is allowed to replenish or not is an important policy for dynamic

pricing problems. If products can be replenished, the seller needs to make both pricing

decisions and inventory decisions. In our problem, we cannot replenish our inventory

periodically; however, we can make the initial inventory decision or have a fixed amount

of inventory at the beginning of the selling period and then make pricing decision with

initial inventory level. Gallego and van Ryzin (1994), Bitran and Mondschein (1997),

Zhao and Zheng (2000) and Maglaras and Meissner (2006) consider problems without

inventory replenishment. A dynamic pricing problem with replenishment decisions can

be found in Federguen and Heching (1999). In the problem we consider here, we assume

no replenishment of inventory.

Dependent vs. Independent Demand over Time

For a product which has a duration that is longer than the selling horizon, the cur-

rent sale will reduce sales in the future, so the demand is dependent over time. For

non-durable products, like food, clothes, tickets for airlines, and trains, among oth-

ers, demand is independent over time. We focus our study on time-independent demand

models. Problems with time-dependent demand can be found in Zhao and Zheng (2000).

Myopic vs. Strategic Customers

If customers are assumed to purchase when the offer price is below their willingness

to pay, we call them myopic customers. If customers optimise their purchase by con-

sidering the company’s pricing scheme, we call them strategic customers. We consider

myopic customers in this study. A detailed review of models that incorporate strategic

customers can be found in Shen and Su (2007).
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Another characteristic which can be used to classify the dynamic pricing problem is the

level of competition.

Monopoly vs Competitive Pricing

Many models assume that the sellers enjoy a monopoly so that the demand for prod-

ucts depends only on their own price; however, this is not always realistic. With the

development of the Internet, customers can compare the prices of similar products from

different sellers within several minutes, so the prices of similar product from other sell-

ers are incorporated in many studies. Currie et al. (2008) provide the optimal price

structure under competition and the assumptions needed to guarantee the uniqueness

of optimal price. Both unresponsive and responsive competitors are considered in the

paper. Gallego and Hu (2007) present a continuous-time stochastic game with multiple

players to solve the choice-based RM problem under competition.

In this paper, we focus on choice-based dynamic pricing models with no inventory re-

plenishment, independent demand over time, and myopic customers. We assume that

customers choose between the products on offer from just one company and ignore com-

petition with external companies. This stream of studies can be found in Gallego and

van Ryzin (1994), Bitran and Mondschein (1997) and Zhao and Zheng (2000).

2.2.2 Choice-based Revenue Management

There is a common assumption in RM that the demand for products is an indepen-

dent stochastic process. The probability that the customer chooses a product will not

be affected by the availability or prices of other products. However, in many cases,

the customer will choose a product from an offer set of products. The company needs

to find a proper choice model to incorporate customer choice behaviour. The revenue

improvement by considering customer choice behaviour in RM problems was shown by

Vulcano et al. (2010) to be, on average, between 1% and 5%.

With the estimation of the choice model, we can incorporate customer choice behaviour

in RM problems. Empirical studies of choice-based RM problems can be found in Ratliff

et al. (2008) and Vulcano et al. (2010).

Zhang and Cooper (2005) solve a quantity control choice-based RM problem with sub-

stitutable products. In their paper, they formulate the problem as a Markov decision

process (MDP) and provide the upper and lower bounds of the value function. Due
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to the complexity of the MDP, an approximation of the value function and a heuristic,

which is based on linear programming, are proposed to solve the problem. Based on

the comments in Talluri and van Ryzin (2006), Zhang and Cooper (2009) argue that

setting an optimal pricing policy may achieve a better performance than quantity con-

trol would. Therefore, Zhang and Cooper (2009) consider a pricing control problem for

substitutable products and a general choice model is used in the paper. In the paper,

they assume that there is at most one arrival in each period and the order of arrivals is

not determined. In addition, they allow the products to have different prices even in the

same period. Because of the intractability of the MDP, they propose an approximate

dynamic programming to solve the problem. We consider the method of Zhang and

Cooper in more detail in Chapter 4, where we provide a further approximation to their

algorithm to improve the computational efficiency.

Unlike the general choice model used in these two papers referred to above, Dong et al.

(2009) use the MNL model to incorporate customer choice behaviour. Dong et al. (2009)

jointly consider the starting inventories and dynamic pricing decision for the problem

with horizontally differentiated products, which are not uniformly ordered according to

customer preference. They provide the optimal dynamic pricing of substitute products

and a heuristic to decide proper starting inventory levels. The value of dynamic pricing

is also demonstrated by a numerical study in the paper. Akcay et al. (2010) study both

horizontally differentiated products and vertically differentiated products, which both

have a clear order. For horizontally differentiated products, they prove that the MNL

profit function is a uni-modal function in price. They provide a number of analytical

results on the choice-based dynamic pricing problem.

Suh and Aydin (2011) also use the MNL model to model the customer choice behaviour.

In the paper, they study a two-product dynamic pricing problem in finite time. They

show that the marginal value of a product is increasing in time periods and decreasing

in inventory levels. However, the optimal price of a product does not have a monotonic

property in time period and inventory level.

Li and Huh (2011) and Gallego and Wang (2014) consider a different choice model. They

study a multiple products pricing problem with a Nested Logit model. The customer

behaviour is modelled with a two-stage model. The customers choose a nest at the first

stage and then choose a product within the nest at the second stage. Li and Huh (2011)

impose an additional restriction on the nest coefficients and the price sensitivities are

the same for all the products. Gallego and Wang (2014) consider a more general NL

model and get rid of these restrictions.
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Different from the papers presented above, Yang et al. (2014) combine a choice-based

dynamic pricing problem with a vehicle routing model. They propose a policy that dy-

namically adjusts the delivery costs to control the customers’ choices, which affect the

routing schedules. In the paper, they also provide the estimation of a MNL model that

fits the customer choice behaviour.

The majority of the research related to choice-based RM focuses on network revenue

management, which has many applications in the airline industries. However, we do not

consider network RM in our study. While acknowledging that train travel takes place

in a complex network, we consider the simple problem of single-leg price optimisation

where the trains with the same origin-destination pair can be treated as substitutable

products instead of the products in network RM. However, for completeness, we review

choice-based RM for networks below for completeness.

Gallego et al. (2004) is the first paper which studies choice-based RM within a network

setting. A deterministic linear programming model is proposed to solve the problem.

Liu and van Ryzin (2008) show that the model in Gallego et al. (2004) is asymptotically

optimal. They also extend the efficient sets proposed by Talluri and van Ryzin (2004)

to a network setting. A heuristic, which decomposes the DP, is provided in the paper.

This method is proved to be an efficient method when the problem has a MNL choice

model and disjointed segments. Van Ryzin and Vulcano (2008), Bront et al. (2009),

Zhang and Adelman (2009) and Kunnumkal and Topaloglu (2010) extend the study of

the linear programming model with different methods.

Bront et al. (2009) extend the model in Liu and van Ryzin (2008) to incorporate over-

lapping customer segments. A column generation algorithm is provided to address the

linear programming model, and the sub-problem of column generation is solved by a

greedy heuristic. The finite mixture MNL model is used as the customer choice model

in this paper.

Van Ryzin and Vulcano (2008) present a stochastic gradient algorithm for the network

RM problem with virtual nesting control policy. The choice modelling and optimisation

are separated in the method; therefore this method can be applied to general customer

choice models.

Zhang and Adelman (2009) solve the linear programming model first studied by Gallego

et al. (2004) through the use of an approximate dynamic programming method and

prove that the bound from this method is tighter than the one from the choice-based

linear programming method. The customer choice model they used is a MNL model. A
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column generation algorithm is generated to solve the problem.

Different from the papers above that consider quantity control problems, Zhang and

Lu (2013) consider a dynamic pricing problem in network revenue management. They

decompose the network problem into a collection of single resource problems. The perfor-

mance of the method is tested with the comparison of static pricing and the choice-based

quantity control model. They show that a firm can improve its profit by applying the

dynamic pricing policies. The upper bound in revenue that is tighter than that in the

deterministic models is also presented in the paper. Different from the work of Zhang

and Lu (2013), Du et al. (2016) incorporate a customer choice behaviour that is mod-

elled with the MNL model. They study a pricing problem with network effect and show

that the pricing policies depend on the network effect. For the problem with weak net-

work effect, the optimal pricing policy sets the same prices for all products; otherwise,

the prices of products differ. The problems with both heterogeneous and homogeneous

products are considered in the paper.

2.2.3 Dynamic Pricing with Demand Uncertainty

Most of the literature in the dynamic pricing stream assumes that the parameters of

the demand function for the products are known in advance. However, in many situa-

tions demand information is not available; in particular, if the products are new to the

market. In recent years, dynamic pricing with demand uncertainty has become an area

that has attracted considerable attention. In this section, we give an overview of the

papers that focus on the dynamic pricing problem with demand uncertainty. A detailed

review of dynamic pricing and learning can be found in den Boer (2015). The paper also

introduces the historical origins of the problem and the directions for future research in

different scientific areas. We split our discussion into three sections – Bayesian methods,

non-Bayesian methods, estimation for multiple products – with the final section being

of most relevance to this project.

Bayesian Method

Similar to the problem we considered, Aviv and Pazgal (2002) study a problem that has

a finite amount of perishable products to be sold in a finite time. Different from our

choice model, they assume the customers make their choice based on their own reserva-

tion price. The seller has the information about the distribution of the reservation price,

which is exponentially decreasing in the selling price. In the paper, the authors assume

the demand is the number of customers who arrive and purchase at least one available
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product. With this assumption, they ignore the no-purchase arrival and stockout effect.

In the problem, the authors assume that the arrival rate is fixed but unknown to the

seller. The seller has a prior belief about the arrival rate and updates the belief with a

Bayesian method as the sales data are collected. They combine this learning mechanism

with a continuous-time dynamic pricing problem and compare the results with three

other pricing policies: a fixed price policy, a certainty equivalent pricing heuristic and

naive pricing policy that ignores uncertainty over demand.

Aviv and Pazgal (2005) propose a partially observed Markov decision process (POMDP)

framework to solve a perishable dynamic pricing problem. They assume that the seller

sells a finite stock of products in a finite time with the aim to maximise expected rev-

enues. Similar to our work, they consider the uncertainty about the arrival rate, actual

number of arrivals, times of arrival and individual purchase decisions. They also have

no information about customers’ reservation prices and the state of the market. The

belief of these uncertainty values is updated with a Bayesian method. The authors also

provide a rigorous upper bound approximation for the POMDPs.

Different from the setting of perishable products in the above two papers, Araman and

Caldentey (2009) study a single non-perishable product problem with finite inventory. A

Bayesian method is applied to learn the parameter in a non-homogeneous Poisson arrival

process. They show that the optimal price is not a decreasing function of inventory level

for the problem with non-perishable product. The factor affecting the optimal price is

the market size and the optimal price is a monotonically increasing function of market

size with a given inventory level.

The above three studies focus on problems with finite inventory. Harrison et al. (2012)

consider a problem with infinite inventory. Their study aims to solve the trade-off be-

tween learning and earning. The authors consider the problem with a Bayesian method

and they show that the myopic Bayesian pricing policy may lead to incomplete learning.

To prove the theory and simulation performance, they propose a constrained myopic

Bayesian policy which avoids incomplete learning and they prove that it has a bounded

regret.

Non-Bayesian Method

Broder and Rusmevichientong (2012) study a single product problem of offering differ-

ent prices to sequential customers. The customers make their own decision on whether

to purchase this product or not based on a willingness-to-pay model. In the paper, they

propose a price policy, which uses maximum-likelihood estimation to explore the demand
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model and they use a greedy price policy in the exploitation phase. The exploration

phase and exploitation phase perform in a cycle. The length of the exploration phase is

fixed and the length of the exploitation phase is expanded as more cycles are performed.

The regret of the price policy has the order of
√
T . The authors also consider a special

problem that precludes uninformative price, which is that the price cannot provide any

information about demand model for any price policy. For the problem without unin-

formative price, the paper provides a greedy pricing policy. The regret of the policy has

the order of log T . In Chapter 5, we show the comparison between our policies and this

policy in numerical results.

Tehrani et al. (2012) consider a similar sequential pricing problem to Broder and Rus-

mevichientong (2012) with a finite set of possible demand models. The information they

needed to solve the problem is the prices under each possible demand model and the

values of demand at these prices. The authors regard the optimal price as the arms in

a Multi-armed Bandit problem. Since the observation under each arm is obtained from

the true demand model, the arms are correlated, and the original problem is solved as

a Multi-armed Bandit with dependent arms. The pulling policy in Multi-armed Bandit

they proposed is based on a likelihood ratio test and the authors prove that the policy

has a bounded regret. The difference between this paper and our study is that the au-

thors assume their problem has a finite set of possible demand models. In our problem,

we have no information of the parameters in the choice model.

Different from the above two papers that use the data that reflect true demand infor-

mation, the data in Besbes and Muharremoglu (2013) are the sales data that differ from

demand data when the demand for products exceeds the inventory level. They study

a repeated newsvendor problem with demand uncertainty. It is similar to our prob-

lem, which aims to estimate primary demand of products. In the paper, they compare

the cumulative costs of a policy without demand uncertainty and the cumulative costs

with known demand distribution and define the difference as the regret of the policy.

They also provide the upper and lower bounds to find the magnitude of the worst case

of regret. Both continuous demand and discrete demand are considered in the paper.

The authors show that active exploration is more important for problems with discrete

demand distribution. However, if the seller has information that any sales were lost,

the impact of demand censoring can be reduced in the problems with discrete demand

distribution.

Besbes and Zeevi (2015) study a single-product pricing problem in a finite time period.

The monopoly can change the prices of the product in each period with a stationary

demand environment, which is unknown to the monopoly. Unlike the assumption in

other works that assume the structure of the demand is known, the authors adopt a
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linear model for the demand distribution. Even if the true demand model does not have

a linear structure, they show that the pricing policy converges to the optimal price,

which is obtained with true demand distribution under fairly general assumption. The

expected revenue is also asymptotically close to the optimal revenues. In addition, the

authors show that estimation-optimisation cycles can improve that the expected revenue

even with a demand model, which is different from the true demand distribution.

Unlike the papers above, which assume the market conditions are unchanged, Chen

and Farias (2013) consider a single-product pricing problem with time-varying market

condition and imperfect forecasts. In the problem, finite inventory is sold over a finite

time period. They provide a sub-optimal heuristic for the problem. They show that the

expected revenue can be improved by re-optimising the fixed pricing policy.

To avoid the risks of mis-specification, over-fitting or under-fitting in the estimation of

parametric models, Farias et al. (2013) provide a non-parametric approach to find the

optimal assortment of products with a generic choice model, which is the preference list

of products. They prove the approach is efficient and provides accurate sales predictions.

The approach is applied for a major US automaker and shows that 10% improvement

in revenue can be achieved.

Multiple Products

Boer (2014) considers a dynamic pricing problem with multiple products and infinite in-

ventories. Different from our problem, they have partially knowledge about the demand

distribution. The information about the first two moments of the demand distributions

is available. Some parameters in the demand distributions are unknown and can be

estimated with maximum quasi-likelihood estimation. The author provides an adap-

tive pricing policy, which finds optimal prices with current estimation of parameter and

meets the requirement of price dispersion. The price dispersion is measured with the

smallest eigenvalue of a design matrix, which grows with a pre-determined parameter.

The shortcoming of the approach is that the exact solution of the optimisation problem

is computationally intractable for the large problem.

Keskin and Zeevi (2014) study a dynamic pricing problem with infinite inventories in

finite time periods. They assume the demand distribution is unknown but that it has

a linear structure. In the paper, a policy called greedy iterated least squares is applied

to combine the estimation and optimisation. The authors show that the policy leads to

incomplete learning; however, the minimum asymptotic loss rate can be obtained by a

modification of the policy. They also extend the policy to the case of multiple products
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with substitutable demand using an idea of orthogonal pricing which search for the price

evenly in different directions of the price vectors. Compared to the orthogonal pricing

policy, our pricing policy proposed in Chapter 5 is more straightforward and easier to

implement.

2.3 Multi-armed Bandit Problem

The Multi-armed Bandit problem (MAB) is a sequential decision-making problem to

solve the trade-off between exploration and exploitation. The term “bandit” is a slot

machine, which has one arm, which can be pulled. The MAB problem assumes that

there is an array of one-arm slot machines. At each time, the decision maker chooses

one of the arms and pulls it down. A reward can be observed from the pulled arm and

the reward is generated from some unknown distribution. The decision maker needs to

learn which arm returns better rewards by repeatedly selecting different arms and ob-

serving the rewards. The aim of the player is to maximise the expected sum of rewards

over a sequence of pulls. The decision maker may choose to do exploitation by pulling

the arm that returns the highest reward based on current belief of the distributions

of arms. Otherwise, he may choose to explore the arms by pulling the other arms to

achieve a better understanding of the distribution of the chosen arm. If the decision

maker spends too much time in exploration, he may lose the opportunity to pull the

optimal arm enough times and improve the short-term profit. If the decision maker

spends too much time in exploitation, he may lose the opportunity to find the actual

best arm and improve the long-term profit. The pulling policies in MAB will solve the

trade-off between exploration and exploitation.

Early application of MAB problems can be found in clinical trials to minimise patient

loss. With the development of the Internet, MAB problems have had an increasing im-

pact on the areas of web search and Internet advertising (Scott, 2010). It also has many

applications in queueing and scheduling and fast fashion.

The application of MAB in the RM area can be found in Rothschild (1974; this was

the first paper to formulate the dynamic pricing problem as a MAB problem. In the

paper, there are only two prices to choose from. The author treats the prices as the

arms in the bandit problem and finds the better price with the experiment in the MAB

problem. Instead of treating the prices as the arms in MAB, Tehrani et al. (2012) treat

the demand functions as the arms in MAB. They assume that the demand model is

chosen from N possible demand functions, which are known in advance, and formulate
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the dynamic pricing problem as MAB with dependent arms. They prove that the pol-

icy in MAB achieves complete learning. Our setting is more similar to that of Broder

and Rusmevichientong (2012) which uses MAB to balance the exploration of unknown

parameters and exploitation of short-term profit.

In this section, we review the existing pulling strategies for the MAB problem. A review

of pulling strategies for MAB problems can be found in Vermorel and Mohri (2005).

The strategies of MAB fall into four broad categories, as described below.

2.3.1 Semi-uniform Strategies

Semi-uniform strategies consist of exploration steps and exploitation steps. In the

exploitation step, the agent chooses the greedy action by playing the arm with the cur-

rent highest expected reward. In the exploration step, the agent chooses a random action

by playing an arm which is chosen with uniform probability.

The simplest and most popular semi-uniform strategy is the epsilon-greedy strategy

which was first introduced by Watkins (1989). With this strategy, the agent chooses the

greedy action with probability (1− ε) and chooses the random action with probability ε,

where ε is a variable which is decided by the player in the interval (0,1). The numerical

results in Vermorel and Mohri (2005) show that this strategy is hard to beat, but it

is a sub-optimal strategy. The parameter ε ensures that the arms with lower expected

reward are chosen with probability (1 − ε) ∗ (n − 1)/n, where n is the number of arms

in the experiment.

A variant of the epsilon-greedy strategy is the epsilon-decreasing strategy, which

was first studied in Cesa-Bianchi and Fischer (1998). It replaces ε by a decreasing factor

εt = min{1, ε0/t}, where t is the index of time, and ε0 is a positive number which is

chosen by the player.

Epsilon-first strategy is another variant of the epsilon-greedy strategy. The epsilon-

first strategy chooses to explore before the exploitation steps. For a problem with T

steps, the player chooses arms randomly during the εT steps and chooses the arm with

highest expected reward during the remaining (1− ε)T steps. The ε-first policy cannot

achieve the guarantee of asymptotic convergence; however, it can outperform many more

complicated pulling strategies. We use this strategy in Chapter 5.
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2.3.2 Probability Matching Strategies

Probability matching strategies choose an arm based on the probability of it being opti-

mal. The SoftMax strategy is the most popular probability matching strategy which

was first developed by Luce (1959). The player chooses arm k with probability

Pk =
eµk/τ∑n
i=1 e

µi/τ
,

where µ is the mean of the reward and τ is called the temperature parameter, which

can be tuned by the player to improve the performance of the strategy.

A variant of the SoftMax strategy is decreasing SoftMax, which was developed by

Cesa-Bianchi and Fisher (1998). The temperature parameter used in the strategy is

τt = τ0/t, where t is the time.

Exp3 or “exponential weight algorithm for exploration and exploitation” is another

variant of the SoftMax strategy. The strategy is introduced in Auer et al. (1995). The

main idea behind this strategy is dividing the actual reward by the probabilities that the

actions are chosen. This strategy keeps a list of weights w for each of the arms and uses

the weights to find the arm which is pulled in the next time period. The list of weights

is updated after a reward is observed. γ is a parameter which is given in advance. If

γ = 1, the list of weights has no effect on the choice of arm. For a MAB problem with

K arms, the probability of choosing arm k at time t is

Pk(t) = (1− γ)
wk(t)∑K
j=1wj(t)

+
γ

K
, (0 6 γ 6 1)

wj(t+ 1) =

{
wj(t) exp(γ

rj(t)
Pj(t)K

) if arm j is pulled at t

wj(t) otherwise

where rj(t) is the actual reward of arm j at time t.

Scott (2010) describes how the MAB is currently used for Google adverts. In the paper,

a heuristic called randomised probability matching is introduced. The heuristic

chooses optimal arms by using Bayesian posterior probability. The posterior can be

obtained from the Markov Chain Monte Carlo method.

Thompson Sampling was first proposed by Thompson (1933), which is a Bayesian

algorithm and chooses the arm with the probability of it being the best arm. The paper
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has been ignored until recently. Agrawal and Goyal (2012) prove that Thompson Sam-

pling achieves logarithmic expected regret for the stochastic MAB problem.

In Chapter 5, we adopt the idea of matching a probability with an arm and propose two

policies in MAB.

2.3.3 Interval Estimation

The interval estimation strategy was first developed by Kaelbling (1993). It associates

each arm with a certain confidence interval. The strategy will choose the arm with the

highest upper bound on the confidence interval. Infrequently chosen arms have a wider

interval and over-valued upper bound. Therefore, the probability of choosing this arm

is higher. The more times an arm is chosen, the tighter its corresponding confidence

interval will be.

The upper confidence bound method (UCB) was introduced by Auer et al. (2002),

which is a class of algorithm which optimise the reward with uncertainty. In the paper,

they prove that the UCB methods have finite-time regret bounds and have optimal

asymptotic convergence. UCB1 is a algorithm in the UCB method. In the algorithm,

the player plays each arm once, then in the following steps, plays arm j, which maximises

x̄j +

√
2 lnn

nj
,

where x̄j is the empirical mean reward of arm j, nj is the number of times arm j has

been pulled so far, and j is the total number of arms that have been pulled. Auer et al.

(2002) also propose the algorithms UCB-tuned and UCB2. Schwartz et al. (2016) apply

an Upper Confidence Bound policy to balance the learning and earning phase and solve

a similar problem to the problem we study.

2.3.4 Gittins Index Strategies

The index Theorem was first published by Gittins and Jones (1974). The Theorem

associates a real scalar with each arm and the scalar is the measurement of the reward

function. The bandit with the highest index is chosen to be pulled in the next iteration.

The Gittins index is an optimal solution for the problem, which allows only one arm

to be pulled in each step. For the problem that allows multiple arms to be pulled, the
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Gittins index is a sub-optimal solution. A detailed review of the Gittins index strategies

can be found in Gittins et al. (2011). Leloup and Deveaux (2001) use the Gittins index

strategies to solve the Bayesian dynamic program.

2.4 Conclusion

The literature review has focused on previous work in estimation and optimal pricing

for RM problems involving customer choice, but we have also discussed research into

Multi-armed Bandit algorithms in RM.

We pointed out that there are several research gaps in literature. First, given the in-

formation of market share, the estimation of a MNL model with stockout effect has not

been solved with a maximum likelihood estimation or a MCMC method. Second, the

choice-based dynamic pricing problem has been solved with an approximation method

from Zhang and Cooper (2009). However, the computation time of the method prevents

the user from updating the prices in a short period of time with large instances. Third,

a policy in the MAB which has a good performance and combines an existing estimation

method and optimisation method is needed.

The problem of estimating the parameters of choice models has received more interest in

recent years since choice-based RM has been more widely researched. We combine ideas

from choice-based RM and MAB algorithms drawing on work in key papers from Zhang

and Cooper (2009), Vulcano et al. (2012) and Newman et al. (2014) in choice-based

RM and incorporating ideas of learning and earning from Broder and Rusmevichientong

(2012) to balance the trade-off between learning and earning.



Chapter 3

Parameter Estimation in

Choice-based Revenue

Management

The multinomial logit (MNL) model can be estimated using a maximum likelihood esti-

mation method if complete data are provided. However, when we consider the situation

that some products may be sold out before the end of the selling period, we cannot

determine whether a customer would have chosen this product if all the products were

available. In addition, only the arrivals of customers who buy products are recorded

in the sales data. The data of arrivals without a purchase are not observable. Hence,

the sales data we have are incomplete. Therefore, the maximum likelihood estimation

method cannot be used directly. In this situation, the expectation maximisation (EM)

algorithm can be applied to estimate the MNL model.

For the problem that has the information of market share, we show that the MNL model

can be estimated by optimising a globally concave function which avoids the iteration

in the EM algorithm. In certain simulations, we may have prior information about the

MNL parameters, e.g., from survey data, which we wish to incorporate into our estima-

tion process. Hence, Bayesian methods can be used. We also investigate the use of the

Markov Chain Monte Carlo (MCMC) method and find the posterior distribution of the

parameters in the MNL model.

In this chapter, we mainly consider a problem in which a seller offers a set of substi-

tutable products to customers in a finite time. The arrival pattern of the customers

follows a non-homogeneous Poisson process. The customer choice behaviour is homoge-

neous and can be modelled with a multinomial logit (MNL) model. The data available

to the seller is a record of transactions, an indicator of the product availability in each

31
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time period and the aggregate market share. We jointly estimate the arrival rate and

the parameters in the MNL model.

In Section 3.1, we introduce the use of EM algorithms to estimate the MNL parameters

with or without stockout effect. Section 3.2 describes the two-step algorithm which

solves the problem with stockout effect. In Section 3.3, the MCMC method is applied to

do the estimation with stockout effect. The numerical results of algorithms are presented

in Section 3.4.

3.1 Estimation using the Expectation-Maximisation Algo-

rithm

3.1.1 Estimation without stockout effect (Vulcano et al., 2010)

In this section, we apply the EM algorithm provided by Vulcano et al. (2010) to solve

the estimation problem when all products are always available, i.e. ignoring the effect

of stockout. The seller has access to the sales data and has no information about the

aggregate market share. In this problem, only one type of missing data exists. Only

the arrivals of customers who buy products are recorded in the sales data. The data of

arrivals without a purchase are not observable. If we ignore this type of missing data,

we can cause a severe bias in estimation. The arrival rate of customers will be under-

estimated and the seller will lose potential customers. This problem has been solved in

Vulcano et al. (2010) with an EM algorithm. We show that the estimation quality is

highly dependent on the initial point, and that further information is needed to achieve

a good estimation.

The EM algorithm is an iterative algorithm that can be used to estimate parameters

for the problem with incomplete data. It has been widely used in the RM area (Talluri

and van Ryzin, 2004; Vulcano et al., 2010, 2012). The EM algorithm consists of two

steps: the Expectation (E) step and the Maximisation (M) step. The Expectation step

calculates the expected value of the log-likelihood function of the missing data with the

current estimate for the parameters. The Maximisation step calculates the maximum

value of the expected log-likelihood function. The parameters maximising the function

are recorded and used in the next expectation step. These two steps are performed

iteratively until the estimation stops improving or a stopping criterion is reached. The

procedure is given in Algorithm 1 and described in more detail below.

We consider a problem that a seller has a set of products which is denoted by S sold over

T time periods. The length of each time period is assumed to be small enough such that
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the probability of more than one arrival in a period is negligible. The arrival pattern

is modelled with the Poisson arrival process. In each time period, the arrival rate is

denoted with λ. The only data available to the seller are the sales data, which record

actual purchases. These have the information about whether a particular time period

has a purchase or not and, if a purchase is observed in a time period, which product is

sold. The seller cannot observe the customers who arrive into the selling system without

a purchase.

Specifically, let β denotes the unknown coefficients for the attributes in the MNL model.

The attributes can be cost, travel time or travel day, which are the characteristics that

affect the choices of customers. Let yi denote the vector of attributes for product i from

product set S. Define at = 1 if there is an arrival in period t, and at = 0, if there is

no arrival. Let j(t) denote the choice made by an arrival in period t. The complete

log-likelihood function can be written as

L =
∑
t∈P

[
log(λ) + βTyj(t) − log(

∑
i∈S

eβ
Tyi + 1)

]

+
∑
t∈P

[
at

(
log(λ)− log(

∑
i∈S

eβ
Tyi + 1)

)
+ (1− at) log(1− λ))

]
, (3.1)

where P denotes the set of time periods with purchase and P̄ denotes the set of time pe-

riods without purchase. The variable at is the unobservable information which presents

the application of this complete log-likelihood function. The expected value of at can

be obtained by Bayes’ method as shown below. Let ât denote the expected value of at.

We can write ât as

ât = E[at|t ∈ P , β, λ]

= P (at = 1|t ∈ P , β, λ)

=
P (t ∈ P |at = 1, β, λ)P (at = 1|β, λ)

P (t ∈ P |β, λ)

=
λP0(S|β)

λP0(S|β) + (1− λ)
. (3.2)

The number of arrivals is the number of time periods with purchase (|P |) plus the

number of time periods with arrivals but no purchase (
∑

t∈P ât). Therefore, the arrival

rate can be calculated by the ratio of the number of arrivals to the number of time

periods as
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λ =
|P |+

∑
t∈P ât

|P |+ |P |
. (3.3)

In the expectation step of each iteration, we calculate the expected value of at from

Equation 3.2 with the estimates of β and λ from the last maximisation step. Then we

calculate the value of λ from Equation 3.3.

In the maximisation step, we determine the value of β by maximising the expected

log-likelihood function

∑
t∈P

βTyj(t) − ln(
∑
j∈S

eβ
Tyj + 1)

−∑
t∈P

ât
(k) ln(

∑
j∈S

eβ
Tyj + 1),

where j(t) denotes the product which is chosen at time period t.

In each iteration, we test the convergence by calculating the norm of the difference be-

tween two consecutive estimates. If
∥∥(λ(k+1), β(k+1))− (λ(k), β(k))

∥∥ < δ, we stop and

use λ(k+1) and β(k+1) as the final estimation. If the stop criterion is not met, we go

to the next expectation step and perform a new iteration. The convergence of this EM

algorithm is not guaranteed. However, the EM algorithm has been proved to be a robust

method to solve incomplete data problems in practice (Vulcano et al., 2010).
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Algorithm 1 EM algorithm for the problem without stockout effect (Vulcano et al.,
2010)

Initialise: Set β(0) = 0, λ(0) = 0 and k = 0.

while
∥∥(λ(k+1), β(k+1))− (λ(k), β(k))

∥∥ > δ, do

E-step: For t ∈ P̄ , calculated â
(k)
t with equation

â
(k)
t =

λ(k)P0(S|β(k))
λ(k)P0(S|β(k)) + (1− λ(k))

.

M-step: Calculate λ(k+1) with equation

λ(k+1) =
|P |+

∑
t∈P â

(k+1)
t

|P |+ |P |

and compute β(k+1) by maximising

∑
t∈P

βTyj(t) − ln(
∑
j∈S

eβ
Tyj + 1)

−∑
t∈P

â
(k)
t ln(

∑
j∈S

eβ
Tyj + 1).

In the results section, we show that the quality of the estimation results with this method

will be affected by the initial point, and that multiple maxima exist.

3.1.2 Estimation with Limited Inventory

In this section, we estimate customer choice behaviour for the problems with limited

inventory; that is, some products may be sold out before the end of the selling period.

In this situation, two types of missing data are considered. The first type of missing

data is the same as the type in the previous section. Only the arrivals of customers

who booked the tickets have been recorded, while the data of arrivals without a book-

ing are not observable. The second type of missing data are generated by the limited

inventory level. When a product is sold out during the selling period, we cannot de-

termine whether a customer would have chosen this product if the full product set was

available. If we ignore the first type of missing data, the arrival rate of customers will

be under-estimated and the seller will lose potential customers. If we ignore the second

type of missing data, we will under-estimate the levels of preference for the products

that are out of stock and over-estimate the preference on the products that are in stock.

The estimation with bias will affect the seller’s pricing decisions and decision on initial

inventory. When we consider these two types of missing data, it will be difficult to de-

velop a method that can estimate the parameters. Therefore, we assume we have access
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to additional information to improve the estimation.

In this section, we consider a problem whereby a seller sells n substitutable products

over T time period, indexed t = 1, 2, · · · , T . In each time period, the prices offered to

customers and the availability of the products remain unchanged. The time period may

have different lengths and we do not assume that at most one arrival in each period.

This is a different assumption from the one in the unlimited case. The data available

are the sales data that record the number of purchases in each period and the indicators

of product’s availability in each time period.

Vulcano et al. (2012) solve this missing data problem with an EM algorithm which jointly

estimates arrival rate λ and the preference weights v in MNL. The preference weight

vj shows the “attractiveness” of product j and the no-purchase preference weight v0 is

normalised to have v0 = 1. For the problem with changing of price during the selling

period, preference weight of the products cannot remain unchanged. Therefore, the

preference weights need to be broken down into a function of attributes, which includes

the attribute of price. Let β0 denote the coefficient for attribute of price and β denote

a vector of the parameters for the other characteristics of the products. Meanwhile yj

denotes the characteristics of product j, except the attribute of price. The customer

preference weight vjt for product j at time t can be calculated by

vjt = exp(β0pjt + βyj).

For the problem that allows the prices of products to be changed, we jointly estimate

the arrival rate and the parameters in the MNL model directly from an EM algorithm.

We assume customers make their choice over the products with the MNL model. If

their first choice is unavailable, they will choose not to buy or choose another product

from the available product set. Given available product set St at time period t, the

probability that a customer chooses product i, which is available, is calculated by

Pit(St) =
vit∑

j∈St
vjt + 1

.

For product i which is unavailable at time period t, we have

Pit(St) = 0.

Let P0(St) denote the probability that a customer chooses not to buy or purchase from

another company. It can be calculated by
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P0(St) =
1∑

j∈St
vjt + 1

.

To solve the problem of multiple maxima which exist in the unlimited estimation method,

Vulcano et al. (2012) assume the price vector is fixed during the selling period and the

market share is fixed and estimated exogenously.

In the problem that we consider, the price vector will change during the selling period.

Therefore, we need to extend the method of Vulcano et al. (2012). We assume the

market share of the products is known to the seller under a certain price vector p∗ and

that the other sellers will not respond to the price change of this seller. Therefore, we

can calculate a new market share when a different price vector is offered to customers.

Market share s is defined as

s =
1

1 + r
=

∑n
i=1 exp(β0p

∗
i + βyi)∑n

i=1 exp(β0p∗i + βyi) + 1
,

where r shows the preference weight of purchasing products from other companies.

When the price vectors offered to customers are changed, the new market share can be

calculated by

st =
1

1 + rt
=

∑
i∈St

exp(β0pit + βyi)∑
i∈St

exp(β0pit + βyi) + 1
.

We use Xjt to denote the number of purchases for product j at time t assuming all

products are available. The log-likelihood function can be calculated by

L =

n∑
j=1

T∑
t=1

Xjt

[
log(

vjt∑n
i=1 vit + 1

)

]

+

n∑
j=1

T∑
t=1

(rtXjt)

[
log(

1∑n
i=1 vit + 1

)

]

=
n∑
j=1

T∑
t=1

Xjt

[
β0pjt + βyj − (rt + 1)log(

n∑
i=1

vit + 1)

]
, (3.4)

where rt is the preference weight of the outside alternatives which is calculated by

rt =
1∑n
i=1 vit

.



38 Chapter 3 Parameter Estimation in Choice-based Revenue Management

Let zjt denote the actual number of purchases for product j at time t.

When product j is unavailable, we have

Xjt =
vjt∑n

i=1 vit + 1
At (3.5)

and ∑
h∈St

zht =

∑
h∈St

vht∑
h∈St

vht + 1
At. (3.6)

where At is the number of arrivals in time t. Substituting Equation 3.6 into Equation

3.5, we have

Xjt =
vjt∑v

i=1 vit + 1

∑
h∈St

vht + 1∑
h∈St

vht

∑
h∈St

zht.

When product j is available for customers, we have

Xjt =
vjt∑n

i=1 vit + 1
At. (3.7)

and

zjt =
vjt∑

h∈St
vht + 1

At. (3.8)

Substituting Equation 3.8 into Equation 3.7, we have

Xjt =

∑
h∈St

vhtv
k
it + 1∑n

i=1 vit + 1
zjt

Let λt denote the number of arrivals in time period t. It can estimated with

λt = X0t +
n∑
i=1

Xit,

where X0t is the primary demand for the no-purchase option.

The steps of the EM algorithm are given in Algorithm 2.
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Algorithm 2 EM algorithm for the problem stockout effect (Vulcano et al., 2012)

Initialise:

Set β
(0)
0 = 0, β(0) = 0 and k = 0.

if j ∈ St then set X0
jt = zjt

else

set X0
jt = 0

end if

while
∥∥(λ(k+1), β(k+1))− (λ(k), β(k))

∥∥ > δ, do

E-step:

for t := 1, . . . , T do

for j := 1, . . . , n do

if j /∈ St then calculate Xk
jt with equation

Xk
jt :=

vkjt∑n
i=1 v

k
it + 1

∑
h∈St

vkht + 1∑
h∈St

vkht

∑
h∈St

zht,

else

set

Xk
jt =

∑
h∈St

vkht + 1∑n
i=1 v

k
it + 1

zjt

end if

end for

Calculate rkt with equation:

rkt =
1∑

jinSt
vkjt

end for

M-step:

Compute βk+1
0 and βk+1 by maximising

n∑
j=1

T∑
t=1

Xk
jt

[
βk0pjt + βkyj − (rkt + 1)log(

n∑
i=1

vkjt + 1)

]

The first correct convergence analysis of the EM algorithm can be found in Wu (1983)

and Vulcano et al. (2012) prove the convergence of their EM algorithm. With similar

analysis, we can prove the convergence of the EM algorithm that we show above.
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Theorem 1. The log-likelihood function L is continuous in β0 and β, and hence all

the limit points of any instance (βk0 , βk) of the EM algorithm are stationary points

of the corresponding incomplete-data log-likelihood function L1(β0, β), and L1(βk0 , βk)
converges monotonically to a value L1(β∗0 , β∗), for some stationary point (β∗0 , β

∗).

Proof. From Theorem 1 in Vulcano et al. (2012), we have that the expected log-

likelihood function L is continuous in v > 0. Since the function v = exp(β0p + βy) is,

therefore, continuous in β0 and β the expected log-likelihood function is continuous in

β0 and β.

The function v = exp(β0p+βy) is a linear system with a unique solution. Therefore, the

function L1(β0, β) is unimodal with the Proposition 2 in Vulcano et al. (2012). Hence

all the limit points of any instance (βk0 , βk) of the EM algorithm are stationary points

of the corresponding incomplete-data log-likelihood function L1(β0, β).

With Theorem 2 in Wu (1983), L1(βk0 , βk) converges monotonically to a value L1(β∗0 , β∗),
for some stationary point (β∗0 , β

∗).

3.2 Estimation using the Two-step Algorithm

In the previous section, the arrival rate and parameters in MNL model are estimated

with the EM algorithm, which is an iterative method that alternates between finding the

expected value of missing data and optimising the expected log-likelihood function. The

process takes longer than the direct maximum likelihood estimation. In this section, we

use the idea of the two-step method from Newman et al. (2014) to estimate customer

choice behaviour with stockout effect. The method only needs to solve two globally

concave functions which means the computation time is shorter than that of the EM

algorithm.

The two-step method in Newman et al.(2014) split the estimation into two steps. In

the first step, they estimate customer choice model parameters except the parameter

for base utility. In the second step, they estimate the arrival rate and the parameter

for base utility. In their paper, an estimation problem with unlimited inventory and no

information about market share is provided. With the two-step method, the problem

can transfer to solve a globally concave problem and a nonlinear optimisation problem

and multiple maxima may exist in the second step.
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In this section, we consider the same problem as the one in Vulcano et al. (2012). A

slight difference is that we use the setting in Vulcano et al. (2010) and Newman et al.

(2014) which has α as the base utility in the MNL model. The base utility is the utility

of a base or reference option. The utilities of all other options are measured relative

to the base utility. More details and an example can be found in the following results

section.

Let Pj(St, α, β0, β) denote the probability that a customer chooses product j ∈ St given

parameters α, β0 and β in the MNL model. St is the product set offered at time period

t. Then, the purchase probability can be calculated by

Pj(St, α, β0, β) =
exp(α+ β0pjt + βyj)∑

i∈St
exp(α+ β0pit + βyi) + 1

. (3.9)

For product j which is unavailable at time period t, we have

Pj(St, α, β0, β) = 0.

Let P0(St) denote the probability that a customer chooses not to buy or purchase from

another company. It can be calculated by

P0(St, α, β0, β) =
1∑

i∈St
exp(α+ β0pit + βyi) + 1

.

.

Vulcano et al. (2012) provide the incomplete likelihood function of this problem as

L(α, β0, β, λ) =
T∏
t=1

{
Prob(mt customers buy in period t|α, β0, β, λ)

mt!

z1t!z2t! · · · znt!∏
j∈St

[
1∑

i∈St
Pi(St, α, β0, β)

]zjt }
, (3.10)

where

Prob(mt customers buy in period t|α, β0, β, λ)

=

[
λt
∑

i∈St
Pi(St, α, β0, β)

]mt exp(−λt
∑

i∈St
Pi(St, α, β0, β))

mt!
. (3.11)
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Let l(t) denote length of time period t and λt denote the number of arrivals in time

period t. We have λt = l(t)λ. After we substitute Equation 3.11 into Equation 3.10, we

have

L(α, β0, β, λ) =

T∏
t=1

{[
λt
∑

i∈St
Pi(St, α, β0, β)

]mt exp(−λt
∑

i∈St
Pi(St, α, β0, β))

z1t!z2t! · · · znt!∏
j∈St

[
Pj(St, α, β0, β)∑
i∈St

Pi(St, α, β0, β)

]zjt }
. (3.12)

Then the incomplete log-likelihood function can be represented by

LL(α, β0, β, λ) =
T∑
t=1

(mt log(λt
∑
i∈St

Pi(St, α, β0, β))− λt
∑
i∈St

Pi(St, α, β0, β)− log(z1t!z2t! · · · znt!))

+

T∑
t=1

∑
j∈St

zjt log(
Pj(St, α, β0, β)∑
i∈St

Pi(St, α, β0, β)
). (3.13)

With Equation 3.9, the last term in the incomplete log-likelihood function can be cal-

culated by

T∑
t=1

∑
j∈St

zjt log(
Pj(St, α, β0, β)∑
i∈St

Pi(St, α, β0, β)
) =

T∑
t=1

∑
j∈St

zjt log(

exp(α+β0pjt+βyj)∑
h∈St

exp(α+β0pht+βyh)+1∑
i∈St

exp(α+β0pit+βyi)∑
h∈St

exp(α+β0pht+βyh)+1

)

=
T∑
t=1

∑
j∈St

zjt log(
exp(α+ β0pjt + βyj)∑
i∈St

exp(α+ β0pit + βyi)
)

=

T∑
t=1

∑
j∈St

zjt log(
exp(β0pjt + βyj)∑
i∈St

exp(β0pit + βyi)
). (3.14)

The approach in Newman et al. (2014) decomposes the log-likelihood function into two

parts. The first part is the arrival part which models the arrival pattern and the customer

choice of purchase or not purchase. The second part is the choice part, which models

the product choices of the customers who have decided to purchase. The incomplete

log-likelihood function is split with following equations:

LL(α, β0, β, λ) = LLarrivals(α, β0, β, λ) + LLchoice(β0, β),
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LLarrivals(α, β0, β, λ) =
T∑
t=1

(mt log(λt
∑
i∈St

Pi(St, α, β0, β))− λt
∑
i∈St

Pi(St, α, β0, β)

− log(z1t!z2t! · · · znt!)) (3.15)

and

LLchoice(β0, β) =
T∑
t=1

∑
j∈St

zjt log(
exp(β0pjt + βyj)∑
i∈St

exp(β0pit + βyi)
).

Theorem 1 in Newman et al. (2014). If D is a fixed subset of alternatives from the

complete set of alternatives S, and the choice model is MNL, then maximising the log

likelihood function

LLN =
1

N

N∑
t=1

log

[
exp(β0pjt + βyj)∑
i∈D exp(β0pit + βyi)

]
,

which yields consistent estimates of β∗0 , β
∗ under normal regularity conditions.

Step 1: Find the estimates of (β0, β)=argmax(β0,β){LLchoice(β0, β)} LLchoice(β0, β)

can be regarded as a complete log likelihood function for a MNL model without the

no-purchase option. Therefore, the function is globally concave with respect to β0 and

β (Ben-Akiva and Lerman, 1985) and we can estimate β0 and β by maximising the log

likelihood function directly. With the Theorem 1 in Newman et al. (2014), the values

of β0 and β are consistent estimates for the original choice model.

Our approach differs from that of Newman et al. (2014) in this step because we assume

the market share is estimated exogenously with fixed price vector p∗ and is known to

the seller. The preference weight of purchasing products from other companies, which

is denoted by r, is then also known. From the equation

s =
1

1 + r
=

∑n
i=1 exp(α+ β0p

∗
i + βyi)∑n

i=1 exp(α+ β0p∗i + βyi) + 1
,

we can find the relation between the value of α and the value of (β0, β). Therefore, the

estimate of α can be calculated by

α = − log(r

n∑
i=1

exp(β0p
∗
i + βyi)). (3.16)

Following the method in Newman et al. (2014), with the estimates of α, β0 and β, we

can find the estimates of λ by maximising LLarrivals.
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LLarrivals(α, β0, β, λ) =
T∑
t=1

(mt log(λt
∑
i∈St

Pi(St, α, β0, β))− λt
∑
i∈St

Pi(St, α, β0, β)

− log(z1t!z2t! · · · znt!))

=

T∑
t=1

(mt log(l(t)λ
∑
i∈St

Pi(St, α, β0, β))− l(t)λ
∑
i∈St

Pi(St, α, β0, β)

− log(z1t!z2t! · · · znt!)). (3.17)

The first derivative of 3.17 is

∂LLarrivals(λ|α, β0, β)

∂λ
=

T∑
t=1

(
mt

λ
− l(t)

∑
i∈St

Pi(St, α, β0, β))

and the second derivative is

∂2LLarrivals(λ|α, β0, β)

∂λ2
= −

∑T
t=1mt

λ2
.

∑T
t=1mt is the total purchase during the whole selling period and it should be positive.

Therefore, the second derivative is negative and LLarrivals(λ|α, β0, β) is globally concave.

Also, the estimates of λ can be calculated by setting the first derivative equal to zero.

We then have

λ(α, β0, β) =

∑T
t=1mt∑T

t=1 l(t)
∑

i∈St
Pi(St, α, β0, β)

. (3.18)

Algorithm 3 Two-step algorithm

Step 1: Find β0 and β with

argmax(β0,β){LLchoice(β0, β)}.

Step 2: Find α and λ with equations

α(β0, β) = − log(r

n∑
i=1

exp(β0p
∗
i + βyi))

and

λ(α, β0, β) =

∑T
t=1mt∑T

t=1 l(t)
∑

i∈St
Pi(St, α, β0, β)

.
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3.3 Estimation with the Markov Chain Monte Carlo Method

To solve a dynamic pricing problem with unknown choice behaviour, we need to re-

estimate the choice model regularly. All the information, which has been used in es-

timation, needs to be stored and used in the next estimation. This situation can be

avoided with a Bayesian method and by storing the information as prior distributions.

In this section, we apply a Markov Chain Monte Carlo (MCMC) algorithm to estimate

the MNL model. A related paper is Letham et al. (2015) that jointly estimates arrival

rate and substitution behaviour with stockout effect. The authors employ a stochastic

gradient MCMC algorithm. They show that with their methods, the parameter of base

utility is unidentifiable without the information of market share. With the idea of a

two-step algorithm in the previous section, we can solve the problem with a standard

MCMC method and provide a unique solution, if the information of market share is pro-

vided. This provides a simpler method of solving the Bayesian version of the problem

than that provided by Letham et al. (2015).

With the idea from the two-step algorithm, we can decompose the estimates of β0, β, α

and λ into two steps. The first is to estimate β0 and β with a MNL model which ignores

the no-purchase option. We can use all of the available sales data to calculate these

estimates and the latter problem can be solved with a standard MCMC method. Given

the estimates of β0 and β, the estimates of α and λ can be calculated with Equation

3.16 and Equation 3.18.

The basic idea behind Bayesian parameter estimation is treating the parameters as

random variables. Given prior parameter distributions, which represent the current in-

formation we have, the new information is stored in the likelihood function and used to

update our confidence in the parameters to give a posterior distribution.

The prior distribution

We assume that the prior of parameters (β0, β) follows a multivariate normal distribu-

tion. Let π0 denote the prior distribution. We can write the prior as

π0(β0, β) ∝ |A|1/2 exp{−1

2

[
(β0, β)− (β̄0, β̄)

]′
A
[
(β0, β)− (β̄0, β̄)

]
},

where (β̄0, β̄) is the mean of the prior distribution and A is the covariance matrix.

If we have no information about the parameters of (β0, β), we can start our Bayesian

inference with a vague prior distribution, e.g., multivariate normal distributions with

mean zero and a covariance matrix with no correlation and a high variance. If we have

information about parameters before the Bayesian inference, e.g., some survey data, the
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information can be incorporated into the prior distribution.

The Likelihood Model

Let zjt denote the number of product j which is purchased in time period t; pjt represents

the price for product j in time period t; and yj is the attribute of product j, except the

price. Given that the offered product set in time period t is St, the likelihood function

of the problem without the no-purchase option can be presented by

L(β0, β|z, p, y) =
T∏
t=1

∏
j∈St

zjt
exp(β0pjt + βyj)∑
i∈St

exp(β0pit + βyi)
. (3.19)

Let π(β0, β|z, p, y) represent the posterior distributions of β0 and β, and from Bayes’

Theorem, we have

Posterior ∝ Likelihood× Prior

π(β0, β|z, p, y) ∝ L(β0, β|z, p, y)π0(β0, β)

π(β0, β|z, p, y) =
L(β0, β|z, p, y)π0(β0, β)∫

L(β0, β|z, p, y)π0(β′0, β
′)d(β′0, β

′)
. (3.20)

Substituting Equation 3.19, we have

π(β0, β|z, p, y) =

∏T
t=1

∏
j∈St

zjt
exp(β0pjt+βyj)∑

i∈St
exp(β0pit+βyi)

π0(β0, β)∫ ∏T
t=1

∏
j∈St

zjt
exp(β′

0pjt+β
′yj)∑

i∈St
exp(β′

0pit+β
′yi)

π0(β′0, β
′)d(β′0, β

′)
.

For the MNL model, there is no closed-form solution for the multi-dimensional integral.

Therefore, a MCMC algorithm is used to calculate the Bayesian inference.

Markov Chain Monte Carlo Algorithm

For our problem, we cannot obtain a closed-form solution for the posterior distribu-

tion of parameters. We use the MCMC algorithm to generate a sample of parameters

whose target distribution is the posterior we need. For the MNL model, Metropolis-

Hastings sampling (Gamerman, 1997), data augmented Metropolis-Hastings sampling

(Scott, 2011), Gibbs sampling (Dellaportas and Smith, 1993) and data-augmentation

and Gibbs sampling (Frühwirth-Schnatter and Frühwirth, 2007) have been applied to

do the estimation with Bayesian method. We use the Metropolis-Hastings algorithm
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which was first introduced by Metropolis et al. (1953).

Let xk, k = 1, · · · ,K denote the points sampled by the Markov Chain where K is the

number of iterations. The proposal distribution is given by q(y|xk) which denotes the

conditional probability of proposing a point y given point xk. Let a(xk, y) denote the

acceptance probability to decide whether to accept the sampled value or not. With these

notations, the Metropolis-Hastings algorithm can be shown in Algorithm 4.

Algorithm 4 Metropolis-Hastings

Set k = 0, initialise x0

for each iteration t do

Sample a point z from proposal distribution q(z|xk)

Sample a uniform(0,1) random variable U

if U is less than the accept probability a(xk, z) = min{1, π(z)q(xk|z)π(xk)q(z|xk)}, then

Set x(k+1) = z

else Set x(k+1) = xk

end if

Set k = k + 1

end for

The initial point of x0 can be an arbitrary point, since we will set a burn-in period. Any

points in the burn-in period will be discarded.

For the initial update, we have vague information about the variables, so an uninforma-

tive prior is used as described above. When new information is available, we can update

our belief of the choice model by running the MCMC method again with a new prior

distribution. Our prior knowledge in each update is the knowledge we had at the end of

the last update, which can be represented by the last posterior distribution. So we use

the last posterior distribution as the new prior distribution in our Bayesian inference.

Information before the last Bayesian update is stored in the prior distribution and in-

formation after the last update is included in the likelihood function.

There is no guiding rule on the construction of proposal distribution. However, a pro-

posal distribution with more structure of the problem can converge faster than the one

with less structure. We use the multivariate normal distribution as the proposal dis-

tribution with the mean at the mode of π(x). The covariance matrix of the proposal

distribution is a scalar multiplied by the inverse Hessian matrix at the mode that can

be written as
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[
−d

2logπ(x)

dx′dx

]−1
.

The scalar is determined by trial and error to ensure that the acceptance rate is about

23.4%, which is the optimal acceptance rate for the random-walk Metropolis.

3.4 Results

In this section, we introduce two examples we used in the tests. Then we test the per-

formance of the EM algorithm without stockout effect, the EM algorithm with stockout

effect, the two-step algorithm, and the MCMC method.

3.4.1 Examples with Train data and Simulated data

Example with Train data

In this section, we introduce the sales data from a railway company. We try to esti-

mate the customer preference between trains which have different departure times and

departure days. The sales data include information about the train number, origin and

destination pair, departure time, arrival time, departure date and the numbers of booked

tickets at given snapshot dates. For dates less than one week from the departure date,

numbers of bookings are recorded every day. For snapshot dates that are more than one

week from the departure date, information is recorded every two to seven days. Accord-

ing to the data, the whole booking period is set to start 84 days before the departure

date and we use a time period of 30 seconds. Comparing to the 84 booking days for

the trains, this time period is small enough and we can assume that there is at most

one arrival in each time period. With this assumption, we can fit the arrival pattern

with a Poisson arrival process. We propose a simulation model which mimics the selling

system. A Bernoulli process is used to allocate the bookings in weeks or daily snapshots

to 30-second time periods.

In the sales data, we only have a snapshot of prices being charged on 21st July 2011.

We do not have the number of bookings at each price. In addition, for the trains with

different departure dates, the snapshot of prices could be the price offered one day be-

fore the departure date, or it could be one week before the departure date. We could

not simply compare these prices for the trains. Therefore, we ignore the price as an at-

tribute in the MNL model. This will affect the quality of estimation. A better estimation
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could be obtained, if we have access to the price information in the whole booking period.

In the estimation, we use data for trains travelling from London to Newcastle and we

assume customers only consider the trains departing on 28 consecutive departure days

(23rd May 2011 to 19th June 2011). Then, we use the estimated choice model to predict

the booking numbers and compare these with the actual numbers of bookings in seven

consecutive departure days (20th June 2011 to 26th June 2011). The choice set Cn for

customer n includes all trains departing on given days and all trains travelling from Lon-

don to Newcastle. In this study, departure time consists of four non-overlapping time

slots: morning (4am-10am), midday (10am-3pm), teatime (3pm-7pm) and late (7pm-

10pm). This setting is based on the categories defined in the data file from the railway

company. These non-overlapping time slots could be easily extended into overlapping

time slots by adding convex weights to different time slots (See Vulcano et al., 2010).

The data we used to estimate represent four weeks. The trains that depart on Monday

mornings in different weeks have the same attributes and are treated together. The

other trains are handled in the same way. The attributes of the customer choice model

are defined in Table 3.1.

Attribute Description

β1 Indicator for trains departing on Monday

β2 Indicator for trains departing on Tuesday

β3 Indicator for trains departing on Wednesday

β4 Indicator for trains departing on Thursday

β5 Indicator for trains departing on Friday

β6 Indicator for trains departing on Saturday

β7 Indicator for trains departing on Sunday

β8 Indicator for Morning train

β9 Indicator for Midday train

β10 Indicator for Teatime train

β11 Indicator for Late train

Table 3.1: Definition of attributes for train case

The utility of product j can be presented by

uj = β1xj1 + β2xj2 + β3xj3 + β4xj4 + β5xj5 + β6xj6

+β7xj7 + β8xj8 + β9xj9 + β10xj10 + β11xj11, (3.21)
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where βi is the coefficient for xi which shows the value of attribute. For example,

considering a train departing in Friday morning, we have xj5 = 1, xj8 = 1 and all the

other attributes have a value of 0. Therefore, we have

xj7 = 1− (xj1 + xj2 + xj3 + xj4 + xj5 + xj6)

and

xj11 = 1− (xj8 + xj9 + xj10).

Therefore, we reformulate Equation 3.21 and re-label the parameters. Equation 3.21

can be presented by

uj = β0 + β1xj1 + β2xj2 + β3xj3 + β4xj4 + β5xj5 + β6xj6

+β7xj7 + β8xj8 + β9xj9, (3.22)

and the definition of the parameters can be found in Table 3.1. β0 denotes the base

utility for any purchase option. We use this notation in the two-step algorithm and

decompose the estimation of the MNL model. In the first step, we estimate parameters

in MNL except β0, and then we estimate β0 in the second step.

The parameters for Sunday trains departing in the “Late” time period are omitted in

Equation 3.22. We use the Sunday trains which depart in the “Late” time period as

reference trains.

Example with simulated data

To test the performance of the estimation algorithms, we apply the algorithms with

simulated data and compare the estimation values with the true values which we used

to generate the simulated data.

In this example, we generate a simulated data, which has the same setting with the

one in Vulcano et al. (2010). The simulated data considers 14 flights which depart on

3 consecutive departure days and departure time is split into 4 overlapping time slots:

morning (between 5 a.m. and 11 a.m.), noon (between 9 a.m. and 3 p.m.), afternoon

(between 1 p.m. and 7 p.m.), and evening (between 5 p.m. and midnight). Prices of

tickets are included as an attribute in this example. A fixed price vector are applied in
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the simulation. The value of the price vector can be found in Appendix A.1.

Based on discussion with the author, a Bernoulli random variable is used in simulation

to determine if there is an arrival in a time period or not. This arrival pattern assumes

that there is at most one arrival in each time period. This is valid for a sufficiently small

time period and if we ignore group bookings. We follow the setting in Vulcano et al.

(2010) and use a time period of 10 minutes with the total booking period is 10 days.

The fares used by Vulcano et al. (2010) are not explicit. We take the average of min

open fare and max open fare provided in their paper and use the value as the fare in

the test. For the test with unlimited inventory level, we assume the products have large

initial inventory that cannot be reached, like 10000. For the tests with limited inventory

level, we select 4000 as the initial inventory level.

3.4.2 Estimation without stockout effect

In this section, we apply the EM algorithm without stockout effect (Vulcano et al., 2010)

over the sale data from a railway company and the simulated data.

1.Example of train data

In this test, we estimate the customer choice behaviour over sale data from a railway

company. We apply the EM algorithm from the initial point: β0 = 0, β = 0 and λ = 0.

The result from the EM algorithm is shown in Table 3.2.

Parameter Description Est. value

β0 Base utility for any purchase option 8.17

β1 Indicator for trains on Monday -0.06

β2 Indicator for trains on Tuesday -0.08

β3 Indicator for trains on Wednesday -0.06

β4 Indicator for trains on Thursday 0.25

β5 Indicator for trains on Friday 0.33

β6 Indicator for trains on Saturday -0.29

β7 Indicator for Morning train 0.08

β8 Indicator for Midday train 0.81

β9 Indicator for Teatime train 0.77

λ Arrival rate 0.19

Table 3.2: Estimation for the choice model with railway data

Figure 3.1 presents the goodness of fit of the estimation by providing the true observed

bookings and predicted bookings.
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Figure 3.1: Goodness of fit for bookings

We notice that the true bookings on Sunday morning are significantly lower than the

prediction. We check the data and find that only three trains depart on Sunday morn-

ing, while eight trains depart on Monday morning. We believe that this is the reason

for the poor prediction.

Figure 3.2 presents the true bookings over seven consecutive departure days (20th June

2011 to 26th June 2011) and the predicted bookings based on the estimation with the

data from 28 consecutive departure days (23rd May 2011 to 19th June 2011). We can

find the prediction is not good enough for the trains departing on Sunday. The customer

may have a different preference of departure time on Sunday. The structure of the MNL

model needed to be reconsidered.
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Figure 3.2: True bookings vs. Predicted bookings

2. Example with simulated data

In this section, we test the performance of EM algorithm with simulated data. Table 3.3

gives the estimation of the MNL model from the EM algorithm. The percentage bias

between the true values and the estimated values shows that the EM algorithm performs

pretty well.

Parameter Description True value Est. value Percent bias

β0 Base utility 1.4 1.4981 7.0038

β1 Base fare -1 -1.0496 4.9618

β2 Morning flight 0 -0.0079

β3 Noon flight 0.2 0.2139 6.9349

β4 Afternoon flight -0.2 -0.2157 7.8338

β5 Day 1 -0.3 -0.2692 -10.2756

β6 Day 2 -0.6 -0.6070 1.1656

λ Arrival rate 0.3 0.2987 -0.4444

Table 3.3: Estimation result for the problem with a simulated data file

Figure 3.3 presents the goodness of fit of the estimation by providing the true expected

bookings and predicted bookings from estimation. The difference between the true ex-

pected bookings and predicted bookings is negligible.
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Figure 3.3: Goodness of fit for bookings

Figure 3.4 shows the goodness of fit of the estimation by providing the true expected

utilities and predicted utilities.
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Figure 3.4: Goodness of fit for utilities
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The result above is obtained with a fixed initial point β0 = 1, β = 0 and λ = 0.3, which

is the same one in Vulcano et al. (2010). In Vulcano et al. (2010), they also test with

a starting point which has a different value of λ = 0.6 and state that the estimation is

“noticeably good”. We test more starting points and show the percentage bias between

the true values and estimated values. The data used in the test is the simulated data.

In Figure 3.5, we start with β0 = 1 and β = 0 and change the starting value of λ from

0.1 to 0.9. Figure 3.6 shows the percentage bias for the test with starting point β = 0

and λ = 0.3 and the initial point of the β0 changes from -5 to 5. In Figure 3.7, we keep

β0 = 1 and λ = 0.3 and the starting value of β is changed from -5 to 5. We do not

present the percentage bias of β2 because it has a true value of 0. The estimation value

of β2 has a performance that is similar to the other value in β.
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Figure 3.5: Percentage bias with different starting point of arrival rate
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Figure 3.6: Percentage bias with different starting point of β0
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Figure 3.7: Percentage bias with different starting point of β

From these three figures, we can see that the estimates of β are stable with different

starting points, and the estimates of λ and β0 are highly dependent on the starting point.

If we regard β as the parameter of a new MNL model without a no-purchase option, then

the estimate of β will be an estimate of the MNL model with full information. From

Theorem 1 in Newman et al. (2014), the estimate of β is consistent with the estimate of

the original problem. Therefore, the estimate of β is stable. The idea in Newman et al.

(2014) is to decompose the estimation into two steps. The first step is to estimate β and

return a good estimate. The second step is to estimate λ and β0 and multiple maxima

may exist. This problem is generated from the unobservable no-purchase arrivals. Let

M denote the number of customers who arrive in the selling system and m denote the

number of customers who buy a product from a company. Let q represent the proba-

bility that a customer chooses to purchase from this company. We have m = Mq. For

the problem with incomplete booking data, we can only access the value of m. Both M

and q are unknown to us. So any two value pairs which have a fixed ratio M/q can be a

solution for the problem. This makes it impossible to exclude some solutions with any

estimation method. This problem can be solved by providing M or q. Vulcano et al.

(2012) solve this problem by adding information related to market share, and we do the

same.

3.4.3 Estimation with stockout effect

In this test, we use the simulated data to test the performance of the EM algorithm

which considers two types of missing data. To consider stockout in the problem, we

propose a simulation model which mimics the booking system. The customers arrive in

a Poisson process and decide which product they will buy or leave the booking system
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without a purchase based on a choice model. After some product is sold out before

the end of the booking period, we exclude the product and recalculate the purchase

probability. Figure 3.8 presents the goodness of fit of the estimation by providing the

true expected bookings and predicted bookings.

Flight1 Flight2 Flight3 Flight4 Flight5 Flight6 Flight7 Flight8 Flight9 Flight10 Flight11 Flight12 Flight13 Flight14 
True booking 136 106 128 120 134 101 71 87 89 270 203 172 197 209 
Predicted booking 151 115 138 148 127 117 74 105 104 263 234 169 201 212 

0 

50 

100 

150 

200 

250 

300 

B
oo

ki
ng

s 

Goodness of Fit for bookings under fix price for the case with a 
known market share  

Figure 3.8: Goodness of fit for bookings under fixed price for the case with a
known market share

Slightly different from the simulated data in the previous section, we allow the price vec-

tor to vary during the booking period. We test how the price policy affects the quality

of estimation. Two types of price vector are offered to the customers. The first is the

fixed price vector which is generated with uniform distributions and remains the same

throughout the selling period. We use the minimum open fares and maximum fares

provided in Vulcano et al. (2010) as the bounds of uniform distribution. The values of

the bound can be found in Appendix A.1. The second price vector is a random price

vector, which is generated from uniform distributions with the bounds of minimum open

fare and maximum open fare that are provided in the Appendix A.1. The price vector is

updated each day. Only data for the first 50 days are used in the test to have a obvious

results. Table 3.4 shows the estimation under the random price vector and fixed price

vector. The parameter estimates for the problem with random price vector are better

than the estimates with fixed price vector.
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Random Price Fixed price

Description True value Est.value %Bias Est.value %Bias

base utility 1.40 1.41 0.90 1.47 4.88

price -1.00 -1.06 5.94 -1.25 24.86

morning 0.00 0.04 -0.13

noon 0.20 0.22 10.77 0.27 36.78

afternoon -0.20 -0.16 -21.30 -0.27 35.79

day 1 -0.30 -0.33 9.01 -0.27 -9.42

day 2 -0.60 -0.58 -3.24 -0.64 6.48

arrival rate 0.30 0.30 -1.17 0.29 -4.97

Table 3.4: Estimation and percentage biases

3.4.4 Estimation with the two-step algorithm

In this section, we test the performance of the two-step algorithm described in Section

3.2. First, we compare it with the estimates from the EM algorithm in Vulcano et al.

(2012). Then, we show how the data volumes affect the estimation result. Last, we

apply the two-step algorithm with random price vectors and a fixed price vector and

compare the results to find how the provided price vectors affect the estimation quality.

The example we used to test the two-step algorithm is the simulated data in the previous

section.

Compare with EM algorithm with stockout effect

First, we compare the results from the two-step algorithm and the EM algorithm in

Vulcano et al. (2012). The test is performance with 1000 days which is the same setting

used in Vulcano et al. (2010). Table 3.5 shows the estimation and percentage biases from

the two-step algorithm and the EM algorithm. We can find that both of the algorithms

provide results with good quality. All the estimates have a percentage bias which is less

than 10%. Therefore, both of the algorithms can have good estimates of the customer

choice behaviour, if enough sales data are provided.
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Two-step algorithm EM algorithm

True value Est.value %Bias Est.value %Bias

base utility 1.40 1.42 1.12 1.42 1.28

price -1.00 -1.09 9.35 -1.11 9.57

morning 0.00 0.01 -0.01

noon 0.20 0.21 6.88 0.19 3.26

afternoon -0.20 -0.20 -0.93 -0.21 7.42

day 1 -0.30 -0.30 1.39 -0.31 -2.99

day 2 -0.60 -0.61 1.20 -0.59 1.05

arrival rate 0.30 0.30 0.23 0.30 0.19

Table 3.5: Estimates and percentage biases from the two-step algorithm and
the EM algorithm

Effect of data volume

Next, we test the quality of estimation with different data volumes. We use 10 minutes

as the length of the time period, and the arrival rate is set to 0.3. We test with data

generated for 1 day, 10 days, 100 days and 1000 days. For each length of booking period,

we run the simulation 10 times and report the percentage bias of the average of estimates.

Table 3.6 presents the bias of the average estimates from the two-step algorithm with

different data volumes.

1 day 10 days 100 days 1000 days

base utility -10.69 2.73 -1.64 1.01

price -37.92 34.97 -16.08 7.22

noon 57.50 18.83 5.87 -0.35

afternoon 32.86 -6.03 1.94 1.48

day 1 -4.26 -7.97 5.13 -1.27

day 2 26.42 5.55 4.04 -0.30

arrival rate -4.62 -2.27 -0.08 0.01

Table 3.6: Biases of average estimates from the two-step algorithm with different
data volumes

Comparison of estimation with random price vector and fixed price vector

In this part, we test how the price vector offered affects the quality of estimation. The

fixed price vector is generated randomly with uniform distributions and remains un-

changed during the test. For the random price vectors, we update the price vector every

day with uniform distributions and the price vector keeps unchanged during the day. We

use the minimum open fares and maximum fares provided in Vulcano et al. (2010) as

the bounds of uniform distribution. In this test, we use 10 days as the length of selling
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period. Table 3.7 shows the comparison of estimations with random price vectors and

fixed price vector. We note that the estimation with random price vectors outperform

the estimation with fixed price vector. The results convince us that the price diversity

can improve the quality of estimation. Therefore, we need to find a good price strategy

than that can estimate the choice model more accurately and efficiently.

Random Price Fixed price

Description True value Est.value %Bias Est.value %Bias

base utility 1.40 1.21 13.39 1.26 9.87

price 1.00 -0.88 188.17 -0.02 102.06

noon 0.20 0.30 -48.47 0.11 47.29

afternoon -0.20 -0.02 92.24 -0.31 -53.79

day 1 -0.30 -0.04 87.50 -0.11 64.52

day 2 -0.60 -0.50 17.02 -0.55 8.47

arrival rate 0.30 0.30 1.52 0.31 -2.48

Table 3.7: Comparison of estimations with random price vectors and fixed price
vector

3.4.5 Estimation with the MCMC method

In this section, we use the simulated data with the size of 1000 days to test the per-

formance of the MCMC method. Figure 3.9 shows 3000 iterations from the MCMC

method. The burn-in is taken to be the first 2000 iterations. We can observe con-

vergence of the samples from the figure. The running time of the MCMC method is

530.611s (implemented in MATLAB on a OSX 10.9, 2.4 GHz). Table 3.8 shows the

means and variances for the normal distributions fitting with the data after the burn-in

periods and the percentage bias between the mean value and the true values.
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Figure 3.9: 3000 iterations from MCMC sampling

mean variance true value percentage bias

price -0.88 0.017901 -1 -12.47

morning -0.05 0.000654 0

noon 0.21 0.000330 0.2 6.93

afternoon -0.20 0.000242 -0.2 0.31

day 1 -0.32 0.000290 -0.3 6.78

day 2 -0.61 0.000233 -0.6 2.05

Table 3.8: Distribution fitting and percentage bias between the mean value and
the true value

3.5 Conclusion

In this chapter, we solve the estimation problem with stockout effect with a two-step

algorithm and show that the estimation problem can be transformed to a problem that

maximises a globally concave function. It is therefore possible to apply maximum like-

lihood estimation or the MCMC method without worrying about missing data.
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The main contribution in Chapter 3 is applying the idea presented in Newman et al.

(2014) to decompose the estimation method and solve the problem with a globally con-

cave function. Therefore, we can apply maximum likelihood estimation directly to esti-

mate the unknown parameters with market share information. In addition, a standard

Metropolis-Hastings algorithm in the MCMC can be applied to solve the estimation

problem with a unique solution. Letham et al. (2015) also use MCMC to solve this

problem, but without the market share information, the parameter for base utility is

unidentifiable.

The estimation methods are assessed using a simulation study and real data from a train

company. Results provide us with a sense of estimation performance and how much data

are needed to obtain good estimates. The comparison with estimation methods is also

presented. This suggests that, under a fixed price vector and a random price vector,

offering a diversity of price vectors can improve the quality of estimation.

The two-step algorithm solves the estimation problem by maximising a globally concave

function that can be solved with existing software, and only a unique solution exists.

Firms can estimate the demand and choice behaviour more easily with the two-step al-

gorithm than they can with the existing EM algorithms and the unique estimation result

helps the firms make smart decisions. We also apply a MCMC method to provide poste-

rior distributions of unknown parameters. With the Bayesian method, prior information,

like survey data, can be incorporated in the prior distribution. When new information

is available, firms do not need to re-estimate the parameters with all the data available

because the sales information before the estimation is stored in the prior distribution.

The posterior distribution also provides uncertainty of the unknown parameters to firms.

The estimation of customer choice model affords the company a better understanding

of product attributes such as day of week, time of day, and price. Another benefit of

the estimation is the ability to find the most attractive new products for the company.

We do not need to collect sale information for new products or re-estimate the customer

choice model.The estimation of customer choice model also helps the company to im-

prove its revenue with a choice-based RM. In the booking period, some products may

be sold out before the end of the booking period. The demand for the products which

are available can be calculated easily with the known customer choice model.

The limitation in this chapter is the assumption that we have an exogenous estimate

of the aggregate market share. However, the estimation of market share is difficult to

obtain in practice. In addition, we assume that the changes in our firm’s prices have a

limited impact on competitors’ prices. Therefore, the new market share can be calcu-

lated based on our firm’s prices only.



Chapter 4

Choice-based Dynamic Pricing

With the development of the Internet, sellers have more flexibility to change the prices

of their products. Compared to the traditional RM models with quantity controls, Gal-

lego and van Ryzin (1994) argue that it is more profitable to use pricing methods to

control the sales, since the pricing methods control the sales by increasing the price.

It is important to solve the pricing problems for practical implementation. The devel-

opment of the Internet also gives the customers easier access to information about the

products. Customers can compare the characteristics of products, which include price

information, with little cost. When the customers make their choices from the prod-

ucts that are substitutable, the choice behaviour can be modelled, estimated and used

to improve the performance of RM models. In this chapter, we solve a dynamic pric-

ing problem with substitutable products. The products are assumed to be perishable,

which means that the value of the product can be neglected after a certain time point.

The choice behaviours of the customers are assumed to be homogeneous and modelled

with a Multinomial Logit (MNL) model, which could be estimated using methods pre-

sented in Chapter 3. Incorporating a choice model into the optimal pricing algorithm,

we can improve the expected revenue by solving a choice-based dynamic pricing problem.

In this chapter, we focus on a choice-based dynamic pricing problem of selling fixed

inventories of substitutable products. The aim of the problem is to maximise total

revenue in a finite time given estimates of the customer choice preferences. The exact

solution of the choice-based dynamic pricing problem is impossible to obtain within re-

alistic computational time for a practical problem. To solve the this problem, Zhang

and Cooper (2009) propose an approximation algorithm as discussed in Section 4.2.

The algorithm decomposes the dynamic pricing problem for multiple products into sev-

eral one-product dynamic pricing problems. Separable lower bounds and upper bounds

for the one-product problem are provided to construct the approximation of the value

function. We develop this method further to improve the computational speed of the

63
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algorithm.

Sen (2013) proposes an approximation method that is similar to the method in Zhang

and Cooper (2009) to solve a dynamic pricing problem with a single product. He approx-

imates the optimal expected revenue with a combination of the lower bounds and upper

bounds for the value function, where the lower bounds are approximated by dividing

the whole selling period by the number of inventory levels. In contrast to Zhang and

Cooper (2009), the upper bound in Sen (2013) is provided by Gallego and van Ryzin

(1994). We make use of work in Sen (2013) in developing our method. In this chapter,

we do not use the data from the railway company because the information of inventory

level is unavailable in the data.

The remainder of this chapter is organised as follows. In Section 4.1, we describe the

problem we studied and introduce some notations. Section 4.2 presents an existing ap-

proximation algorithm for this pricing problem introduced by Zhang and Cooper (2009).

In Section 4.3, we propose a new approximation method which can reduce the compu-

tation time significantly. In Section 4.4, we test our method with two examples and

compare revenue and computation time with the approximation in Zhang and Cooper

(2009).

4.1 Problem Formulation

We study a problem in which a seller offers n perishable products to customers with

the aim of maximising the expected revenue. The products are sold in a finite selling

period and the product salvage value is set to zero at the end of the selling period.

The capacity of the products is determined at the beginning of the selling period and

the seller is unable to reorder more products during the selling period. We assume the

products offered by the seller are substitutable. That is, customers can shift to other

products when their first choice is unavailable or provided at too high a price.

We assume the customers arrive into the selling system following a Poisson process with

constant rate λ. It is relatively straightforward to generalise to a non-homogeneous

arrival rate by using time periods of varying lengths (Leemis, 1991). Each customer

purchases a unit of product based on a certain customer choice preference that is mod-

elled using the MNL model. We divide the whole selling period into T small time periods

which are small enough that we can assume that there is at most one arrival in each

time period. The first time period is period T , and the last period is period 1.
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We denote the allowable price range for product i ∈ {1, · · · , n} by Pi = (rmini , rmaxi ).

The price vector offered to the customers is r = {r1, · · · , rn}. If a product sells out we

set its price to a null price and keep the prices of other products unchanged. The null

price is a price which is large enough to ensure that the purchase probability is 0. We

assume customers are homogeneous in their preferences. At time t, the probability that

a customer chooses product i is denoted by P it (r), and the probability that there is no

selling in time period t is denoted by P 0
t (r). Then P it (r) can be calculated by

P it (r) =
exp(α+ β0ri + βyi)∑n

j=1 exp(α+ β0rj + βyj) + 1
,

where β, β0 and α are the parameters in MNL model and yi is a vector of the attributes

of product i. The probability that there is no purchase time period t is calculated by

P 0
t (r) =

1∑n
j=1 exp(α+ β0rj + βyj) + 1

.

To formulate a Markov decision process (MDP) for the problem we consider, the com-

ponents in MDP are shown as follow:

• The state s = (s1, · · · , sn) is the number of unsold units for each product.

• The action space is given by the allowable prices range Pi = (rmini , rmaxi ). Each

action is the price vector r offered to the customers.

• The transition function is the probability that the customer chooses the product

which leads the inventory from state s to state s′.

• The reward function is the price of the product which is sold in this time period t.

• In our problem, we set the discount factor to 1.

Let εi denote one unit of product i. For a given remaining time period t and inventory

s, the maximum expected revenue vt(s) can be calculated by

vt(s) = max
r

{
λ

n∑
i=1

P it (r)
[
ri + vt−1(s− εi)

]
+
[
1− λ+ λP 0

t (r)
]
vt−1(s)

}
∀t,∀s, (4.1)

v0(s) = 0.

The first term in the equation denotes the revenue for the sale in period t and the second

term is the revenue when there is a no-purchase arrival or there is no arrival in period

t. This is defined as ∆iv(s) = v(s)− v(s− εi). We can then rewrite Equation 4.1 as
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vt(s) = max
r

{
λ

n∑
i=1

P it (r) [ri −∆ivt−1(s)]
}

+ vt−1(s)∀t,∀s. (4.2)

Dong et al. (2009) introduce a backward induction algorithm which solves Equation

4.1 with an exact optimal solution. The computational complexity of the algorithm is

O(‖s‖nt), where ‖s‖ = max{si : i = 1, · · · , n}. The computational complexity shows

a limitation of MDP called the curse of dimensionality. The computation time can

increase dramatically and make it impossible to solve in a practical time. Therefore, an

approximation method should be applied to solve the problem. A detailed discussion

about approximate dynamic pricing can be found in Busoniu et al. (2010).

4.2 Approximation Method in Zhang and Cooper (2009)

To solve the value function given in Equation 4.2, Zhang and Cooper (2009) provide an

approximation method. They decompose the original problem with n products into n

one-product problems and provide upper bounds and lower bounds of the value functions

for the one-product problem; they then combine the upper bounds and lower bounds

with a weight parameter to give an approximation of the original value function. The

details of the upper bounds and lower bounds are presented in this section. We build

on their approximations in the method we have developed in Section 4.3.

Given t remaining time periods, we denote the lower bound of the value function for

product i with s unsold units by vit(s) and the upper bound of the value function by

vit(s). Zhang and Cooper (2009) calculate the lower bounds and upper bounds of the

value function by

vit(s) = max
ri

{
λP it(ri)

[
ri −∆vit−1(s)

] }
+ vit−1(s)∀t,∀s, (4.3)

vi0(s) = 0

and

vit(s) = max
ri

{
λP

i
t(ri)

[
ri −∆vit−1(s)

] }
+ vit−1(s)∀t,∀s, (4.4)

vi0(s) = 0,

where P it(r) and P
i
t(r) denote the lower and upper bounds of purchase probability for

product i respectively. For our problem, we model the choice preference with the MNL

model, whereas Zhang and Cooper (2009) describe their algorithm for a general choice

model.
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We here write down the bounds of the purchase probability for an MNL model using the

equations (13) and (14) in Zhang and Cooper (2009), which give bounds for a general

choice model.

P it(ri) =
exp(α+ β0ri + βyi)

exp(α+ β0ri + βyi) +
∑

j 6=i exp(α+ β0rminj + βyj) + 1
. (4.5)

P
i
t(ri) =

exp(α+ β0ri + βyi)

exp(α+ β0ri + βyi) +
∑

j 6=i exp(α+ β0rmaxj + βyj) + 1
. (4.6)

To approximate the value function of the original problem, a parameter θ ∈ [0, 1] is used

to combine the upper and lower bounds. The approximation of the value function given

in Equation 4.2 and the approximation of the purchase probability are then presented

as

ṽit(s) =
T∑
t=1

[
θvit(s) + (1− θ)vit(s)

]
, (4.7)

P̃ it (ri) = θP
i
t(ri) + (1− θ)P it(ri). (4.8)

The optimal price vector is calculated by solving

n∑
i=1

max
ri

{
λP̃ it (ri)

[
ri −∆ṽit−1(s)

] }
. (4.9)

Different values of θ will result in different price vectors. Zhang and Cooper (2009) deal

with this by changing the value of θ and finding corresponding price vectors. They then

use simulation to determine the quality of each price vector and use this to determine

the best θ. The corresponding price vector is recorded as the optimal price strategy.

This approach provided in Zhang and Cooper (2009) is summarised below as Algorithm

5.
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Algorithm 5 Approximation method from Zhang and Cooper (2009)

Set π∗ = 0 and v∗ = 0.

for θ move from θ to θ with step size δ do

Calculate ṽt and P̃ it with Equation 4.7 and Equation 4.8 and use the values in Equa-

tion 4.9. The price vector which maximises Equation 4.9 is recorded as πθ.

Offer the price vector πθ in a simulation model for l replications. Record the expected

total revenue v̂

if v̂ > v∗ then

v∗ = v̂ and π∗ = πθ

end if

end for

The approximation method in Zhang and Cooper (2009) avoids the “curse of dimension-

ality” problem. However, the computation time of the approximation method can be

impractical with a large number of time periods and a high inventory level. For example,

if we need to solve a problem with t time periods and inventory level s for product i, the

lower bound vit(s) needs to be calculated. We need to find the lower bound vit(s) using

Equation 4.3 and ∆vit−1(s) = vit−1(s)−vit−1(s−1); therefore the values of of vit−1(s) and

vit−1(s − 1) are needed. This procedure is the same when we try to find the values of

vit−1(s) and vit−1(s−1). Figure 4.1 shows the values of bounds that need to be calculated

for time period t and inventory level s.

Figure 4.1: The values of bounds need to be calculated for time period t and
inventory level s

The numerical study in Zhang and Cooper (2009) tests an example with 1000 time pe-

riods, but they do not mention the inventory level. For a problem with high demand,

this increases the computation time significantly. In the results section, we measure the

computation time for Zhang and Cooper’s approximation with different numbers of time
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periods and inventory levels. This shows that the computation time can be prohibitively

long in practical examples.

4.3 New approximation method

To reduce the running time of the approximation method, we propose a new approxima-

tion method and term it the ‘DVA’ method. We term the approximation method, which

is proposed in Zhang and Cooper (2009), ‘VA’ method. The idea of the DVA method is

to regard the bounds in the VA method as value functions of a single-product dynamic

pricing problem. Therefore, we can propose bounds of the value functions. The lower

bound and upper bound in the DVA method can avoid the calculation shown in Figure

4.1 and reduce the running time significantly. The new bounds can be combined in the

same way as in the VA method, and thus approximate the original value function. The

basic idea of the DVA method is illustrated in Figure 4.2. We describe how to construct

the bounds below.

Value
function

Upper bound

Lower bound

Lower bound of
the lower bound

Upper bound of
the upper bound

Figure 4.2: The structure of our approximation method



70 Chapter 4 Choice-based Dynamic Pricing

4.3.1 Lower Bounds of the Value function

Let viL(s, t) denote the lower bound of the lower bound in the VA method with inventory

s at time t. We treat the lower bound in the VA method as a value function of a single-

product problem with arrival rate λP it. Sen (2013) proves that

svi(1, t/s) 6 vi(s, t). (4.10)

Sen divides the whole selling period t into s periods. The length of each period is t/s.

The vi(1, t/s) is the expected revenue for selling one product in a small period with

length t/s. Therefore, svi(1, t/s) is the expected revenue for the problem of selling one

item during each small period and ignoring any unsold items from previous periods. We

use vi(s, t) to denote the expected revenue for selling s products. There is a positive

probability that some items may be unsold in small periods; therefore, the inequality in

Equation 4.10 holds.

In Sen (2013), the author assumes a continuous time period, while we use discrete

time periods. In the discrete time case, we would use bt/sc to denote the time period

corresponding to the continuous time t/s, and it is possible to show that

vi(1, bt/sc) 6 vi(1, t/s), (4.11)

where vi(1, bt/sc) is the lower bound of the revenue for selling one unit of product in a

time period with length bt/sc and vi(1, t/s) is the lower bound of the revenue for selling

one unit of product in a time period with length t/s. There is a non-negative probability

that the product may be unsold in time period bt/sc and sold in time period t/s−bt/sc;
therefore, the inequality 4.11 holds.

Using this result, we can construct the lower bounds in DVA method as

viL(s, t) = svi(1, bt/sc). (4.12)

With these equations, we do not need to calculate the value of the lower bound shown in

Figure 4.1 in the VA method for each inventory level. Only the bounds with inventory

level equal to 1 need to be computed. These values can then be used to find the lower

bounds in the DVA method fast and easily.
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4.3.2 Upper Bound of the Value Function

Let viU (s, t) denotes the upper bound of the upper bound in the VA method with inven-

tory s at time t. We treat the upper bound in the VA method as a value function of a

single-product problem with arrival rate λP
i
t.

We define s/t as the run-out rate and the corresponding price is defined as the run-out

price. The run-out price can be find with the reverse function of Equation 4.6, which

can be shown as

rrunout =
log

(s/tλ)(
∑

j 6=i exp(α+β0r
max
j +βyj)+1)

1−s/tλ − α− βyi
β0

.

Theorem 2 in Gallego and van Ryzin (1994) provides an upper bound for a single-product

problem. For the problem we solved, viU (s, t) can be obtained with following steps.

First, we record the price r̂i, which maximises the equation λP
i
t(ri)ri.

If s/t < λP
i
t(r̂i), we have

viU (s, t) = s ∗ rrunout. (4.13)

If s/t > λP
i
t(r̂i), we have

viU (s, t) = λP
i
t(r̂i)r̂it. (4.14)

Theorem 2 in Gallego and van Ryzin (1994) has a constraint that λP
∗i

(ri) is a regular

demand function satisfying three assumptions:

1. λP
∗i

(ri) has inverse functions.

2. The revenue function rev = λP
∗i

(ri)ri is continuous, bounded and concave.

3. There exists a null price which leads the demand to zero.

We use Equation 4.13 and 4.14 as the upper bound in the DVA method, which can be

calculated directly for any value of t and s. Unlike the bounds in the VA method, the

computation time of the upper bound in the DVA method will not be affected by the

value of t and s.
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4.3.3 Approximation of the Bounds

Given

viL(s, t) 6 vi(s, t),

vi(s, t) 6 vi(s, t) 6 vi(s, t),

and

vi(s, t) 6 viU (s, t),

we have

viL(s, t) 6 vi(s, t) 6 viU (s, t).

We can approximate vi(s, t) by finding a proper value of parameter θ in the following

equation

viapp(s, t) := θviU (s, t) + (1− θ)viL(s, t). (4.15)

Following a similar approximation method in Zhang and Cooper (2009), we calculate

P̃ it (ri) with

P̃ it (ri) = θP
i
t(ri) + (1− θ)P it(ri)

and find the optimal price vector by solving

n∑
i=1

max
ri

{
λP̃ it (ri)

[
ri −∆viapp(s, t− 1)

] }
(4.16)

The price which maximises the function in Equation 4.16 is recorded as the price policy

πθ. Then, we construct a simulation of a selling system. We run the simulation l times

and record the average revenue. The θ which returns the highest average revenue is

chosen as the parameter to combine the lower and upper bounds. The DVA method is

described in Algorithm 6.
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Algorithm 6 DVA method

Set π∗ = 0 and v∗ = 0.

for θ move from θ to θ with step size δ do

Calculate viapp(s, t) and P
i
t with

viapp(s, t) := θviU (s, t) + (1− θ)viL(s, t).

P̃ it (ri) = θP
i
t(ri) + (1− θ)P it(ri)

Find price vector πθ by solving

n∑
i=1

max
ri

{
λP̃ it (ri)

[
ri −∆viapp(s, t− 1)

] }
Offer the price vector πθ in a simulation model for l replications. Record the expected

total revenue v̂

if v̂ > v∗ then

v∗ = v̂ and π∗ = πθ

end if

end for

4.4 Results

Here, we consider two examples to test the performances of VA and DVA. The first is

a small example from Dong et al. (2009). With this small example, we can obtain the

exact solution of optimal price and total revenue in practical time and compare the per-

formance of the approximation methods with the exact solution. The second example

has the same setting as the simulated data in Chapter 3 have. The initial inventory

level is set to 4000. With this example, we compare the computation time and revenue

between the VA and DVA methods.

4.4.1 Three-product example in Dong et al. (2009)

The example in Dong et al. (2009) considers a three-product problem. The customers

arrive in the selling system following a Poisson process with an arrival rate of λ = 0.1.

The utilities of products are given by

U1 = 11.75− r1,
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U2 = 9− r2,

and

U3 = 6.25− r3,

where ri is the price of product i.

Figures 4.3, 4.4 and 4.5 show the optimal prices for products with inventory level (2,2,2).

We note that the optimal prices from approximation methods and optimal prices from

exact methods have a different pattern when the number of remaining time periods is

small. Because both of the approximation methods decompose the n-product problem

into several one-product problems. We consider an extreme case whereby only one time

period is left. For a n-substitutable-products problem, the seller should charge them

with same price, because the products are substitutable. The price should be charged

depending on the quality of the product.
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Figure 4.3: Optimal price for product 1
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Figure 4.4: Optimal price for product 2
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Figure 4.5: Optimal price for product 3

Figure 4.6 shows the optimal revenue under different methods. Both the approximation

methods provide near-optimal solutions.
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Figure 4.6: Revenues from DVA, VA and exact solution

4.4.2 Example with Simulated Data

In this section, we test the performance of the DVA method and the VA method with

the simulated data presented in Chapter 3. We have 14 products and the initial capacity

is set to be 10 for each product. The parameters in customer choice model and arrival

rate are known in advance. The number of time periods in the selling horizon is range

from 100 to 1000. We run the test for 100 times and take the average of the revenue. In

addition, we run 100 times of simulations to find the appropriate value of θ. Table ??

shows the revenue from the DVA and the VA methods and the percentage bias between

these two methods. Fig 4.7 plots the percentage bias between the DVA and VA methods.

The percentage bias is calculated with

Percentage bias =
Revenue from the DVA method− Revenue from the VA method

Revenue from the VA method
∗100%.

From the Fig ?? and Table ??, we can find that the revenue from the DVA and VA

methods are pretty close. Most of the time the VA method outperform the DVA method

but there is exist the situation that the DVA method returns a better average revenue

than the VA method. In the test, the percentage bias falls in 0.7% range when the

number of time periods is larger or equal to 300. Fig 4.7 shows the percentage bias
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between the DVA and VA methods

DVA VA Percentage Bias

100 29.06 30.00 -3.14

200 64.29 67.00 -4.05

300 106.00 106.69 -0.65

400 143.68 143.89 -0.14

500 179.19 179.29 -0.05

600 213.24 213.21 0.02

700 244.78 244.94 -0.06

800 273.46 273.58 -0.04

900 298.30 298.90 -0.20

1000 320.20 321.16 -0.30

Table 4.1: Revenue from the DVA and the VA methods and the percentage bias
between these two methods
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Figure 4.7: Percentage Bias between the DVA and VA methods

4.4.3 Running Time

The following table compares the running time (implemented in MATLAB on a OSX

10.9, 2.4 GHz) of the DVA method and the VA method. In the first test, we consider a
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14-product problem with inventory level 100. Different time periods are used in the test.

We can find that the DVA method reduces the running time by 89% for an example

with 1000 time period and an inventory level 100.

Figure 4.8: Running time comparison with inventory level 100

Figure 4.9 shows the running time for the problem with different inventory levels. In

the test, we assume the problem has 100 time periods.
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Figure 4.9: Running time under different inventory levels with time period t=10

4.5 Conclusion

Our contribution in this chapter is proposing an approximation method for the choice-

based dynamic pricing problem which was shown in our numerical tests to reduce the

computational time of the existing approximation method put forward by Zhang and

Cooper (2009) by 89% (with 1000 time periods and 100 inventory level). The proposed

approximation method can benefit firms that have to solve large-scale choice-based RM

problems or those that need to update their pricing policy in a short time.

The existing approximation method decomposes the original n-product dynamic pric-

ing problem into several one-product dynamic pricing problems and provides the upper

bounds and lower bounds for the value function of the one-product problem to solve

the “curse of dimensionality”. For every remaining time period T , the method needs to

calculate the value function from T -1 to 1. The computational time can be very large

with a large number of time periods. We reduce the computational time by further ap-

proximating the upper bounds and lower bounds. Only two values of bounds are needed

for any value of time period T .
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Firms solving large revenue optimisation problems with high levels of inventory and

demand need to be able to optimise prices quickly. These optimisation methods need

to be run every night in many cases. Speed of computation is important. Our method

speeds it up but still performs well. The approximation method can be applied in trans-

portation area like railway companies.

A limitation of the study is the assumption that each customer purchases at most one

product. However, in practice, some customers may choose to purchase more than one

product at a time. Incorporating this situation may be another direction of future work.

In this study, we construct the lower bound of the value function for a discrete time

model from a lower bound for a continuous time model. If we could find a tighter lower

bound in the same computation time, we could improve the performance of the approx-

imation method.



Chapter 5

Multi-armed Bandit and Pricing

In this chapter, we consider a dynamic pricing problem with demand and substitution

behaviour uncertainty. In the problem, a seller offers a set of substitutable products to

a sequence of customers who choose products based on their characteristics. The choice

behaviour is homogeneous and can be modelled with a MNL model. The parameters

in the MNL model and the customer arrival rate are unknown to the seller. He or she

needs to learn the information with a price experiment and find a good pricing policy to

maximise the long-term profit. There is a trade-off between learning the information and

earning revenue. If the seller spends too much time finding out the information about

demand and substitutable behaviour (exploration), he or she will lose the opportunity

to earn short-term profit. If the seller spends too little time exploring and offers prices

based on poor estimates of demand and substitution behaviour, he or she will lose the

opportunity to improve the long-term profit. This is the dilemma of exploration and

exploitation.

The trade-off between exploration and exploitation can be solved with pulling policies

in a Multi-armed Bandit (MAB) problem. (We describe the underlying ideas of MAB

policies in more detail in Chapter 2). In essence, we are solving the same problem that

a player faces when playing an array of one-arm bandit machines (or slot machines in a

casino); that of deciding which arm to pull in each step. A reward is obtained from an

unknown distribution of the arm that is pulled and the aim of the player is to maximise

the sum of rewards. This type of problem can be found in many situations, such as

clinical trials or online advertising.

For the problem we considered here, the arms are the price vectors we offer to the

customers. The MAB algorithm will choose whether to exploit the current estimated

the best price vector, or to explore. When exploiting, we use the optimal price vector

obtained from solving a dynamic pricing problem (as described in Chapter 4) using the

81
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current best estimates of the arrival rate and MNL parameters. When exploring, we

use a random price vector that has been generated from a given uniform distribution,

as described in Section 5.2. We split the whole selling period into a set of constant-price

periods, which may contain multiple time periods. The price vector on offer is only

changed when we move to the next constant-price period. After each constant-price

period, we collect the sales data and update our belief of demand and substitution in-

formation.

In contrast, many studies that consider the dynamic pricing problem with demand un-

certainty follow a learning and then earning pattern (Besbes and Zeevi, 2009). Broder

and Rusmevichientong (2012) propose a MLE-CYCLE policy that performs the learning

and then earning phase in a cycle. Schwartz et al. (2016) apply an Upper Confidence

Bound policy to balance the learning and earning phase.

In this chapter, we propose policies in MAB similar to the class of randomised prob-

ability matching policies, which choose arms based on a probability that the arms are

optimal. A detailed discussion of randomised probability matching policies can be found

in Scott (2010). The author also provides numerical comparisons with other policies in

MAB. Agrawal and Goyal (2012) provide an analysis of Thompson sampling that is also

in the class of randomised probability matching policies.

In each constant-price period, we generate a random price vector from uniform distri-

bution and use this random price vector with a probability, which is a function of the

distance between this price vector and the current optimal price vector. Otherwise, the

optimal price vector based on the current estimates is offered, which means we perform

a exploitation in this constant-price period.

We measure the performance of a policy in terms of regret, which is defined as the ex-

pected difference between the revenue obtained using the policy and the revenue of a

clairvoyant seller who knows full information and offers the optimal price vector all the

time. We also use the percentage of revenue loss to measure the performance of pricing

policy, which is defined as the regret divided by the revenue of a clairvoyant seller.

Contributions In this chapter, we propose two pricing policies—RP policy and RP-a

policy—which solve the trade-off between estimation and choice-based dynamic pricing.

The RP-policy is straightforward and easy to implement with any existing estimation

methods and choice-based dynamic pricing policy. RP-a adjusts the RP-policy to in-

corporate the uncertainty of the estimation. It enables the user to adjust the ratio of

exploration and exploitation automatically. Furthermore, we provide numerical results
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to show the performance of RP and RP-a policies and a comparison with three alterna-

tive policies.

In Section 5.1, we describe the problem we solved. The proposed pricing policies are

shown in Section 5.2. The numerical results are provided in Section 5.3 and a conclusion

is presented in Section 5.4.

5.1 Problem description

In this chapter, we consider a problem of a seller offering n substitutable products to

customers over T time periods with a pricing policy. The price vector is fixed during a

constant-price period, e.g., one day. The customers arrive following a Poisson process

that has an arrival rate of λ. Each of the customers chooses one product based on a

certain choice behaviour and we assume the customers have the same choice behaviour

that can be modelled with a MNL model. Customers who arrive and purchase a product

are recorded in the sales data and the arrivals without a purchase are assumed to be

unobservable. In addition, when a customer’s first choice is sold out, he/she may choose

to leave or purchase another substitutable product. We assume we have an exogenous

estimate of the aggregate market share under a certain price vector. When a new price

vector is offered to the customer, we assume the other companies will not respond to the

price changes and a new market share can be calculated based on the new offered price

vector. With this information, the estimation of demand and substitution behaviour

can be estimated with methods provided in Chapter 3. In this chapter, we apply the

estimation method that we have developed and described in Section 3.2 to estimate the

parameters.

Given the estimation of demand and substitution behaviour, we can use the choice-based

dynamic pricing algorithm, as described in Chapter 4, to calculate the current optimal

price vector. The problem we consider in this chapter can be solved with the structure

which is shown in Figure 5.1.
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Selling systemInitial
price set

Multi-armed bandit
(Chapter 5)

Choice-based
Dynamic pricing

(Chapter 4)

Estimation of choice
model and arrival rate

(Chapter 3)

Revenue

Sales data

Current
estimation

Optimal price set based
on current estimation

Random
price set

price set offered to
customers

Figure 5.1: The structure of the problem

A straightforward pricing policy would be to apply the optimal price vector based on

current estimates of arrival rate and MNL parameters using the sales data from this

pricing policy to update the estimates of parameters. The current optimal price vector

may not be the actual optimal price vector when the current parameter estimates are

of a poor quality. This pricing policy is described as passive learning, myopic pricing or

certainty equivalent pricing. In Chapter 3, we apply the two-step algorithm with different

price vectors and show that the random price vector provides a better estimation than

the fixed price vector does. The test provides evidence that price diversity benefits the

quality of estimation that could improve the long-term revenue. Therefore, we need a

price policy that can explore the feasible price area.

Keskin and Zeevi (2014) propose an orthogonal pricing policy. For problems with n

multiple products, the policy constructs n price vectors based on an orthogonal basis for

any given block of n time periods. The prices for each of the products on offer are changed

one at a time from the current optimal price vector. As more information is collected, the

length of the search distance shrinks and the price vectors in the exploration phase will

approach the true optimal price vector. den Boer and Zwart (2013) propose a controlled

variance pricing policy that is a certainty equivalent pricing policy with a taboo interval
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around the price vector that has been offered. We propose a random pricing policy

which is more straightforward, easy to implement, and learns about the feasible price

area more quickly.

5.2 Pricing policies

5.2.1 RP policy

We propose a pricing policy that samples a random price vector from uniform distri-

butions in each constant-price period. We calculate a probability of selection for the

random price vector, which is a function of the distance between this price vector and

the current optimal price vector. Our pricing policy is to offer the random price vec-

tor with a probability equal to this probability of the selection and hence perform an

exploration. Otherwise, the current optimal price vector will be applied and we run

an exploitation phase. The uniform distributions ensure that the price vectors sampled

are spread evenly in the available price range. If the random price vector is far from

the current optimal price vector, the chance of offering it is small. If the distance is

small, it is more likely that we will select the random price vector. This probability is

effectively used to decide whether to perform an exploration phase or an exploitation

phase and maintains the balance between exploration and exploitation. The name of

the RP policy comes from the random price vector used and matching probability.

A detailed description of the pricing policy is provided below.

The price vector offered to the customers is r = {r1, · · · , rn}. We denote the feasible

price interval for product i ∈ {1, · · · , n} by Pi = (rmini , rmaxi ). After that a pricing policy

is applied and generate a new price vector to the customer. In this chapter, we propose

a pulling strategy in MAB to decide which price vector is offered to the customers. Let

rtopt denote the optimal price vector based on the estimation in constant-price period t

and rtran denote the random price vector sampled in constant-price period t. We measure

the distance between two price vectors r and r∗ with d(r, r∗), which is calculated by

d(r, r∗) = ||r− r∗||,

where || · || is the Euclidean norm. We denote the “maximum distance” of the feasible

price area as ϕ, which is calculated by

ϕ = ||(rmax − rmin)||.
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The probability of choosing an exploration phase and offering the sampled random price

vector rran to customers is set to be

ω = max{0, 1− d(rran, ropt)τ

ϕ
},

where τ is a positive parameter that can be tuned by the user. With this parameter,

the user can adjust the probability of choosing a random price vector. For users who are

happy to spend more time in exploration, they can set τ to a little number. Otherwise,

they can set τ to a larger number. We term this pricing policy, which samples a random

price vector and matches it with a probability, the RP policy, and describe it in Algorithm

7.
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Algorithm 7 Pricing policy RP

In constant-price period t = 1, generate a random price vector r1ran

Go to Exploration Phase:

Offer the products with random price vector r1ran and record the sales data.

Given the sales data, find the current estimates of parameters with the estimation

method.

Find the current optimal price vector r2opt with a choice-base dynamic pricing model

based on the current estimate.

for t = 2, 3, · · · do

Generate a random price vector rtran

Calculate the probability corresponding to the random price vector with

ωt = max{0, 1−
d(rtran, r

t
opt)τ

ϕ
}. (5.1)

Generate a uniformly distributed random number ρ in the interval (0,1).

if ρ < ωt then,

Go to Exploration phase:

Offer the products with random price vector rtran and record the sales data.

Given the sales data, find the current estimates of parameters with the estimation

method.

Find the current optimal price vector rt+1
opt with a choice-base dynamic pricing

model based on the current estimate.

else

Go to Exploitation Phase:

Offer the products with current optimal price vector rtopt and record the sales

data.

Given the sales data, find the current estimates of parameters with the estimation

method.

Find the current optimal price vector rt+1
opt with a choice-base dynamic pricing

model based on the current estimate.

end if

end for
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5.2.2 RP-a policy

As more sales data are collected, we will have more confidence about the estimation of

demand and substitution behaviour. We should spend more time in exploitation than

in exploration. Therefore, we adjust the probability with a function which measures the

difference between two consecutive estimates. When the estimation becomes more sta-

ble, the chance of choosing an exploitation phase will be greater. We name the adjusted

RP policy as RP-a policy.

Let δk = (αk, βk0 , β
k, λk) denote the kth estimates, and the difference between two con-

secutive estimates can be calculated as

||δk − δk−1|| = ||(αk, βk0 , βk, λk)− (αk−1, βk−10 , βk−1, λk−1)||.

The probability of choosing an exploration phase and offering the sampled random price

vector rran to customers is set to

ω = max{0, 1− d(rran, ropt)τ

ϕ||δk − δk−1||
}. (5.2)

We call this pricing policy RP-a, which has a structure similar to the RP policy. The

only difference is replace Equation 5.1 with Equation 5.2.

5.3 Numerical Experiments

In this section, we test the performance of the RP policy by presenting the rate of regret.

Then we compare our RP policy, RP-a policy and three alternative policies and measure

the performance with percentage revenue loss.

The example we use here is similar to the simulated data used in Chapter 3 to test

the performance of the two-step algorithm. The only difference is that we keep the

price vector unchanged over the course of one day. If a product sells out we set its

price to a null price and keep the prices of other products unchanged. We assume that

the estimation and dynamic pricing algorithms are run overnight and generate the new

optimal price vector based on the current estimation. The seller sells 14 substitutable

products to customers. The maximum prices for the products are set to three and the

minimum prices for the products are set to zero.

In Figure 5.2, we present the logarithm of the average regret of the RP policy versus

log(t) over five independent runs, where t denotes the time period. We can find from
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the figure that the results have a linear form and the slope of the line, which fits the

logarithm of regret, is 0.41. This empirical result shows that the RP policy achieved

Θ(T 0.41) order of regret.

Figure 5.2: Average regret of RP policy based on five iterations

Then, we compare our policies with three other policies. We describe the policies below.

1. ε-first Policy

ε-first is a simple pulling policy which does the pure exploration first and then moves

to the exploitation phase. It is applied in the studies that have a learning and then

an earning structure. For a problem with T time periods, ε-first spends εT periods in

the exploration phase and uses the remaining time periods to do the exploitation. The

value of ε is determined by the user. For example, if the user decides to spend half of

the whole period to explore the unknown parameters, he can set the ε = 0.5.

For a T periods problem, the ε-first strategy for our problem can be described below.
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Algorithm 8 ε-first policy

for t = 1, 2, · · · , bεT c do

Generate a random price vector rtran.

Offer the products with random price vector rtran and record the sales data.

end for

Given the sales data, find the current estimates of parameters with the estimation

method.

Find the current optimal price vector ropt with a Choice-base dynamic pricing model

based on the current estimates.

for t = bεT c+ 1, · · · , T do

Offer the products with current optimal price vector ropt and record the sales data.

end for

2. CYCLE Policy

The ε-first policy has a major shortcoming in that the sales data collected from the

exploitation phase cannot be used in the exploration phase. Broder and Rusmevichien-

tong (2012) propose a MLE-CYCLE policy to improve the total revenue by operating

the exploration phase and exploitation phase in a cycle. The exploration price vectors

are generated randomly from uniform distributions. To compare with other policies, we

stop the CYCLE policy when the total time period reaches T .
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Algorithm 9 CYCLE policy

Set t = 0.

Given K exploration price vectors r1, · · · , rK ,

while t < T do

for c = 1, 2, · · · do

for k = 1, 2, · · · ,K do

Offer the products with random price vector rk and record the sales data.

t = t+ 1.

end for

Given the sales data, find the current estimates of parameters with the estimation

method.

Find the current optimal price vector rcopt with a Choice-base dynamic pricing

model based on the current estimates.

for l = 1, · · · ,c do

Offer the products with current optimal price vector rcopt and record the sales

data.

t = t+ 1.

end for

end for

end while

3. Passive learning policy

Passive learning policy is a policy without an exploration phase. It always offers the

current optimal price vector to customers. The sales data from the exploitation phase

are used to estimate the unknown parameters. The initial price vector is generated

randomly from uniform distribution. To draw comparisons with other policies, we stop

the passive learning policy when the total time period reach T . We describe the policy

below.
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Algorithm 10 Passive learning

In time period t = 1,

Offer the products with given price vector r and record the sales data.

Given the sales data, find the current estimates of parameters with the estimation

method.

Find the current optimal price vector r2opt with a choice-base dynamic pricing model

based on the current estimate.

for t = 2, 3, · · · , T do

Offer the products with current optimal price vector rtopt and record the sales data.

Given the sales data, find the current estimates of parameters with the estimation

method.

Find the current optimal price vector ri+1
opt with a choice-base dynamic pricing model

based on the current estimate.

end for

The performance of the pricing policies are measured with Percentage Revenue Loss,

which is calculated as the difference between the revenue we obtained under the pol-

icy and the optimal revenue we could have achieved if the parameters were known in

advance, divided by the optimal revenue. Let Revopt denote the total optimal revenue

obtained with full information about the demand and substitution behaviour and Rev

denote the total revenue obtained with a pricing policy. The percentage revenue loss

can be calculated by

Percentage Revenue Loss =
Revopt − Rev

Revopt
. (5.3)

Table 5.1 shows the comparison of the percentage revenue loss of different pricing poli-

cies. The first line is the number of price changes. In our experiment, we keep the

price vector unchanged during a day. In the test, the value of ε is set to 0.5. For our

policies, we set τ = 2. From the table, we note that all the percentage revenue losses are

decreasing with the number of price changes. Our RP-a policy provides the best results

compared to the others. All the policies return a better revenue than the ε-first policy;

that is the learning and the earning model. At least, the results show that ε-first can be

costly, if the user does not set the parameter ε properly. For the problem we consider,

the passive learning policy provides relatively good results.
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100 200 300 400 500

ε-first 47.6 43.7 42.3 41.8 40.9

CYCLE 35.8 35.2 34.5 22.9 21.3

PASSIVE 9.0 7.4 6.9 6.1 6.0

RP 36.0 31.8 29.4 28.8 27.6

RP-a 8.7 7.1 5.9 5.7 5.5

Table 5.1: Comparison of percentage revenue loss of different pricing policies

From previous test, the passive learning policy provides relative good results. The per-

formance of RP and RP-a policy depends on the choice of adjustable parameter τ . To

find the effect of adjustable parameter in RP policy, we apply the policy with different

values of adjustable parameter and compare the results with the passive learning policy.

Due to the runtime of policies, we scale down the problem and use 10 days as the length

of sale period. The other setting is the same to the previous test. We run the policies for

30 times and take the average of percentage revenue loss. Since we have scaled down the

problem and only 10 days are considered. The estimation results are not good enough

to become stable. We do not apply the RP-a policy for this test.

The following table shows the average of percentage revenue loss with different values of

adjustable parameter τ and the percentage revenue loss with the passive learning policy,

which has the best performance among the benchmark policies in previous test.

policy percentage revenue loss

τ = 0.5 23.99

τ = 1 19.74

τ = 1.5 18.84

τ = 2 18.67

passive learning 22.21

Table 5.2: Comparison of percentage revenue loss of the passive learning policy
and RP policy under different values of adjustable parameter

From the table, we can find that the performance of RP policy depends on the choice of

adjustable parameter. Even most of the choices return better results than the passive

learning policy, there still exist the value of parameter which return a worse result than

the passive learning policy. Therefore, we should choose the value of parameter with
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caution.

5.4 Conclusion

In this chapter, we propose two pricing policies, RP and RP-a, that balance the explo-

ration of demand and substitution behaviour and exploitation of short-term revenue.

The pricing policies are straightforward and easy to implement in practice. They facil-

itate the user to combine any existing estimation methods and choice-based dynamic

pricing methods which have been applied in the users’ selling system. The RP-a policy

automatically adjusts the ratio of exploration and exploitation by the state of estimates.

We perform the numerical studies to show that the logarithm of the average regret of

RP policy versus log(t) has a linear form. This empirical result shows that the RP

policy achieved ?(T 0.41) order of regret. We also compare the RP and RP-a policies

with three alternative policies; ε-first, CYCLE and Passive learning. The RP-a policy

performs better than the other policies. These two new policies that we describe here

will benefit businesses that are introducing a new set of substitutable products into the

market.

Online learning has been widely used in the Internet retailing sector and many of these

ideas can be useful to traditional RM users, e.g., transportation. These methods are

particularly appropriate when new products are being launched. Our pricing policy in

MAB is easy to implement and can combine any existing estimation methods and pric-

ing methods that are already applied in firms.
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Conclusion and Future Work

In this chapter, we conclude the contributions in this thesis on the study of the choice-

based dynamic pricing problem with demand and substitution uncertainty. In Section

6.1, we summarise the findings of each chapter. In Section 6.2, we set out some future

directions that emerge from this thesis.

Revenue management is an important application that helps the seller to make price

or quantity decisions and improve their revenue. We focus here on price control, one

category of the decisions that have been applied in many industries. While the tradi-

tional revenue management model does not consider customer choice behaviour, there

is an increasing demand to incorporate more complicated demand models and further

improve the revenue. Most of the studies which take customer choice behaviour into

account assume that the choice model is known before the optimisation phase. Where

choice behaviour is estimated, the trade-off between estimation and optimisation is rarely

discussed; the exception being recent papers by Broder and Rusmevichientong (2012),

Harrison et al. (2012) and Schwartz et al. (2016). However, in many applications,

the parameters in the choice model are hard to estimate and the total revenue can be

improved by adjusting the estimation phase and optimisation phase.

The aim of the project is finding a method for optimising the prices when arrival and

choice behaviour are uncertain. There are three main research challenges in the project.

The first is estimating the parameters of a customer choice model with incomplete data.

Our contribution to this challenge is solving the problem with stockout effect with a

two-step algorithm or a simple MCMC method. The second challenge is reducing the

computational time associated with finding the optimal prices to charge for a choice-

based RM problem. We propose a new approximation method that can be used for

large instances. The third challenge is developing a pricing strategy that balances the

95
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trade-off between estimation and exploitation in choice-based RM. We propose two al-

gorithms in MAB to improve the revenue by balancing the exploration phase and the

exploitation phase automatically.

6.1 Findings

In this thesis, we solve the estimation problem with stockout effect which has previously

been solved with the EM method. We show that the problem can be transferred to a

problem that maximises a globally concave function. Therefore, we can apply maxi-

mum likelihood estimation directly to estimate the unknown parameters. In addition,

a standard Metro-Hasting algorithm in MCMC can be applied to solve the estimation

problem with a unique solution. The estimation methods are assessed using a simula-

tion study and real data from a train company. Results provide us a sense of estimation

performance and how much data are needed to have good estimates. The compari-

son with the EM method is also presented. The comparison of estimation under a fix

price vector and a random price vector gives us the idea that offering price vectors with

diversity can improve the quality of estimation. Compared to the EM methods that

are needed to perform the optimisation process iteratively, the two-step algorithm only

needs to maximise a globally concave function and can be applied with existing software.

After we get the estimation of choice model, we propose an approximation method for

the choice-based dynamic pricing problem which was shown in our numerical tests to

reduce the computational time of the existing approximation method put forward by

Zhang and Cooper (2009). With the numerical results, we show that the new approxi-

mation method results in revenues that are close to the existing method and can reduce

the computation time by 89% (with 1000 time periods and 100 inventory level). The

approximation method can benefit firms that solving large-scale choice-based RM prob-

lems or those that need to update their pricing policy in a short time.

Last, we propose RP policy and RP-a policy in MAB to balance the estimation phase

and the optimisation phase. A numerical study shows that the performance of the RP

policy achieves a regret of order T 0.41. The RP-a policy outperforms three existing poli-

cies ε-first Policy, CYCLE Policy and Passive learning Policy. From a practical point of

view, our policies can combine any existing estimation methods and optimisation meth-

ods that are already being applied in a firm. The firm that has adopted a learning and

then earning pattern or passive learning pattern can improve their profit by adopting a

RP-a policy.
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6.2 Limitations and Future work

In Chapter 3, we estimate the demand and substitution behaviour with stockout ef-

fect. We assume that we have an exogenous estimate of the aggregate market share.

However, the estimation of market share is difficult to obtain in practice. Future work

could consider using click-through data and getting rid of the need of market share. In

addition, we assume the changes in our firm’s prices having a limited impact on other

competitors’ prices, therefore, the new market share can be calculated based on our

firm’s prices only. Considering the situation that other competitors will respond to the

changes in our firm’s prices can be another direction of future work.

In Chapter 4, we treat the trains with same origin-destination pair as substitutable prod-

ucts and ignore the network effect. Zhang and Lu (2013) consider a dynamic pricing

problem in network revenue management. Du et al. (2016) study a pricing problem

with network effect. In the paper, they apply a MNL model to consider customer choice

behaviour. Another research direction can be incorporating dynamic pricing for net-

work revenue management with other choice models. Another limitation in the study

is the assumption that each customer purchases at most one product. However, some

customers may choose to purchase more than one product at a time in practice. In-

corporating this situation may be another direction of future work. In this study, we

construct the lower bound of the value function for a discrete time model from a lower

bound for a continuous time model. We should find a tighter lower bound in the same

computation time and improve the performance of the approximation method.

In Chapter 5, the regret of the pricing policies is only shown with numerical study. A

theoretical analysis of the policies should be one direction of future work. In our study,

we apply random price vectors to provide the diversity of price vector. We control the use

of random price vectors with a probability function. It is worth to investigate the differ-

ent ways of generating price vectors. In addition, a more thorough computational study

of the effectiveness of the random price vector should be another direction of future work.

In addition, we only use the MNL model to estimate customer choice behaviour. We

assume that all the customers have the same choice behaviour and that the choice be-

haviour is time-invariant. These assumptions can be reconsidered and lead to a future

direction. Li and Huh (2011) and Gallego and Wang (2014) study a multiple-products

pricing problem with a Nested Logit model. There is a research gap to incorporate the

heterogeneity of the customer choice model in dynamic pricing problems.
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