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ABSTRACT

The paradigm in which magnetic fields play a crucial role in launching/collimating
outflows in many astrophysical objects continues to gain support. However, semi-
analytical models including the effect of magnetic fields on the dynamics and morphol-
ogy of jets are still missing due to the intrinsic difficulties in integrating the equations
describing a collimated, relativistic flow in the presence of gravity. Only few solutions
have been found so far, due to the highly nonlinear character of the equations together
with the need to blindly search for singularities. These numerical problems prevented a
full exploration of the parameter space. We present a new integration scheme to solve
r-self-similar, stationary, axisymmetric magnetohydrodynamics equations describing
collimated, relativistic outflows crossing smoothly all the singular points (Alfvén point
and modified slow/fast points). For the first time, we are able to integrate from the
disk mid-plane to downstream of the modified fast point. We discuss an ensemble of
jet solutions, emphasising trends and features that can be compared to observables.
We present, for the first time with a semi-analytical MHD model, solutions showing
counter-rotation of the jet for a substantial fraction of its extent. We find diverse jet
configurations with bulk Lorentz factors up to 10 and potential sites for recollimation
between 103 — 107 gravitational radii. Such extended coverage of the intervals of quan-
tities, such as magnetic-to-thermal energy ratios at the base or the heights/widths of
the recollimation region, makes our solutions suitable for application to many different
systems where jets are launched.
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1 INTRODUCTION gamma-ray bursts (GRBs). Observations suggest that jets
are an energetically important component of the system that
hosts them, because the jet power appears to be compara-
ble to the accretion power (see e.g. Rawlings & Saunders
1991; Nemmen & Tchekhovskoy 2015, for a more recent dis-
cussion). Significant evidence has been found of the effect
of jets not only on the immediate proximity of the central
object, but also on their surrounding environment, where
they deposit the energy extracted from the accretion flow
(e.g. Gallo et al. 2005; Fabian 2012). To launch, accelerate
and collimate a relativistic outflow over such large distances,
magnetic fields need to be invoked. Observational evidence,
such as polarization measurements both in the radio (Marti-

Since their discovery, relativistic collimated outflows of mat-
ter have been observed in many astrophysical objects and
they are known to be associated with accretion flows. Jets
reveal themselves at different scales and redshifts, showing
an extreme diversity in energetics, shapes and emission. Jets
are found to be characteristic features of black hole systems,
such as X-ray binaries (XRBs) and active galactic nuclei
(AGN), as well as of young stellar objects (YSOs), explo-
sive transients such as tidal disruption events (TDEs) and
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Vidal et al. 2015) and in the hard X-rays (Laurent et al.
2011), support the idea that ordered magnetic fields are a
key ingredient in the jet phenomena, and have a significant
effect on their emission as well. Understanding what causes
the jet to be launched from an accretion disk, which mech-
anisms determine its shape and extension and where the
radiation is produced in these systems is one of the most
fundamental questions in astrophysics and needs to be ad-
dressed promptly.

Multiwavelength continuum emission from jets and
disks is observed for all accreting, jet-launching sources,
XRBs in particular can provide essential pieces of informa-
tion because extensive monitoring of these sources shows
that they go through a duty cycle multiple times during their
lives (Fender et al. 2004). During an outburst, they spend
most of their time in the low-luminosity hard state where
they exhibit a mildly relativistic steady-state jet launched
from a likely recessed disk. In this state, the jet dominates
the total power and shows a characteristic power-law spec-
trum that may extend to high energies. Many outbursts
show a rapid increase in luminosity, bringing the system
close to its Eddington limit. The standard paradigm has the
disk inner radius moving closer to the black hole while the
jet becomes ballistic, emitting superluminal knots. Eventu-
ally the jet switches off and the emission is dominated by
the disk. The spectrum becomes softer and loses its non-
thermal high-energy component (high-luminosity soft state).
Finally, the system slowly decays into a hard state and the
cycle restarts (see, e.g. Belloni & Motta 2016, for a recent
review). When the emission is dominated by the compact
steady-state jet, its characteristic synchrotron emission can
span several orders of magnitude in frequency. At the wave-
length range where the synchrotron transitions from the op-
tically thin (7 < 1) to the optically thick regime (7 > 1),
the spectrum shows a break and it becomes a flat/inverted
power-law, characteristic of the self-absorbed synchrotron
(see Romero et al. 2017, for a recent review). The region
in the jet corresponding to the break frequency is believed
to be the site where particles are first accelerated (Markoff
2010), potentially by internal shocks (Malzac 2014). The jet
break can be inferred from observations to occur over a fairly
large range of distances from the black holes ~ 10—10* grav-
itational radii (hereafter r¢), and it has been seen to span
4 orders of magnitude in frequency during a state transi-
tion in a single object (Russell et al. 2014). Similar spectral
features and a duty cycle 10” — 10® times longer are seen
in AGN as well, and a power-unification scenario has been
proposed independently by Merloni et al. (2003) and Fal-
cke et al. (2004). They showed that AGN and XRBs of the
same relative luminosity, rescaled by the mass of the black
hole, can be explained with the same physics framework.
While XRBs provide unique constraints on the emission of
jets and accretion disks thanks to the multiwavelength mon-
itoring of the activity of the source during state-transition
episodes, AGN are ideal for studying the structure of jets
and the dynamical processes that shape them.

Indeed, in the case of nearby AGN, high spatial resolution
observations are now possible with very long baseline in-
terferometry (VLBI) in both cm and now mm bands. These
data provide unprecedented constraints on the geometry and
the dynamics of jets, such as the jet opening angle, the height
and the width of knots associated with standing shock fea-

tures, such as HST-1 in M87’s jet. Recently, high-resolution
VLBI observations of M87 by Hada et al. (2016) resolved
and imaged the inner core of the galaxy down to ~ 10 rg,
revealing the innermost structure of the jet. VLBI/VLBA
observations (Asada et al. 2014; Mertens et al. 2016) con-
strained the bulk Lorentz factor of the jet of M87 to be
mildly relativistic, i.e. 75 ~ 1—3. In the near future, with the
beginning of the Event Horizon Telescope (EHT) era, obser-
vations will resolve the nearest black holes (Sagittarius Ax
and M87) down to the event horizon scale (see e.g. Doele-
man et al. 2008). This unprecedented resolution will shed
new light on the immediate proximity of black holes, pos-
sibly unveiling the jet/disk connection and the mechanisms
responsible for the acceleration and collimation in the first
stages of jet formation. Finally, Meyer et al. (2013) measured
the proper motions of the knots downstream of HST-1 with
the Hubble Space Telescope, finding significant evidence of
transverse and parallel motion with respect to the jet axis.
This is evidence of a helical magnetic field beyond HST-1
and it brings important constraints on the modelling of jets
at larger distances from the BH.

Using both XRBs and AGN to obtain insight on the
apparently similar jet phenomena is extremely important
as demonstrated by the activity in this field of research.
However, an adequate modelling of jets, including a detailed
treatment of both the radiative processes and the magneto-
hydrodynamics (MHD), is still far from being achieved.

Thanks to the dramatic improvement of computational
power, accretion disks and jets can be modelled with general
relativistic magneto-hydrodynamic (GRMHD) simulations
(e.g. Koide et al. 2002; McKinney 2006; Hawley & Krolik
2006; Tchekhovskoy et al. 2011; Tchekhovskoy & Bromberg
2016). Full 3D simulations allow detailed study of the stabil-
ity of jets under different sets of initial conditions, and they
provide a unique overview of how jets are launched, how the
disk and jet interact during this phase and how they ap-
proach a stable configuration. However, the lack of crucial
ingredients such as non-ideal processes or self-consistent ra-
diative processes makes a direct test against observational
data still a challenge. It is, however, worth noting that efforts
are currently made to incorporate simplified treatments of
electron microphysics in GRMHD simulations (e.g. Ressler
et al. 2015; Moscibrodzka et al. 2016).

A complementary method to simulations is given by
semi-analytical models for multiwavelength emission from
disk/jet systems where the geometry and the dynamics are
generally fixed and simplified. Many of such models have
been proposed, for instance by Romero et al. (2003); Markoff
et al. (2005); Yuan et al. (2005); Potter & Cotter (2012);
Pepe et al. (2015); Zdziarski et al. (2012, 2014) and they
have been successful in reproducing the spectral energy dis-
tribution of accretion disks and jets. However, the treatment
of magnetic fields is also greatly simplified and its orienta-
tion is usually not considered. Finally, they all present a
certain degree of degeneracy between combinations of input
parameters that give statistically equivalent fits to the same
data set. Introducing a self-consistent treatment of MHD via
semi-analytical models can help reduce the freedom in the
parameter space, allowing for better constraining the fits to
the observations.

A number of such models have been developed since the 80s-
90s, with pioneering works by Blandford & Payne (1982);
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Lovelace & Contopoulos (1990); Li et al. (1992); Con-
topoulos (1994); Sauty & Tsinganos (1994); Bogovalov &
Tsinganos (1999). The MHD system of equations describ-
ing an accelerating flow is a highly nonlinear system which
changes nature from elliptical to hyperbolic several times
across the interval of integration. Independently of the ge-
ometry of the system, it has been shown that three criti-
cal surfaces exist in correspondence to such transitions and
they determine as well the onset of magnetosonic waves
of different type. These are called fast, slow magnetosonic
and Alfvén waves. The slow magnetosonic singular surface
(SMSS) appears close to the central object and upstream of
the Alfvén surface. The fast magnetosonic singular surface
(FMSS) is located downstream of the Alfvén point and it is
suspected to be linked with a recollimation of the stream-
lines describing the flow (see e.g. Meier 2012, for a complete
discussion and derivation). The FMSS, therefore, could ten-
tatively be identified with the jet break seen in observa-
tions of AGN and XRBs, while the properties of the flow at
SMSS could instead provide important constraints on the in-
put parameters of radiative transfer models, such as e.g. the
magnetic-to-thermal energy ratio at the base and the initial
bulk velocity. However, the MHD equations that exhibit all
the three singular surfaces must include gravity and the ef-
fect of thermal pressure in the total internal energy of the
flow to properly describe the region close to the black hole.
Moreover, to describe typical astrophysical jets, the equa-
tions need to allow the flow to become relativistic. Vlahakis
et al. (2000, herefter VI'ST00) and Vlahakis & Koénigl (2003,
hereafter VKO03) derived the MHD system of equations un-
der the assumption of radial self-similarity, first including a
simplified gravity term (kinetic term) and, later removing
it, to include relativistic effects. Only recently, Polko et al.
(2010, 2013, 2014, hereafter, respectively PMM10, PMM13
and PMM14) derived the equations for a self-similar rela-
tivistic MHD flow including enthalpy and gravity, and found
solutions crossing smoothly all three singular surfaces. Un-
der the assumption of self-similarity, the singular surfaces
are cones and intersect a streamline only in one point. They
are usually referred to as "modified” slow and fast points
(MSP, MFP) and Alfvén point (AP). We will adopt this ter-
minology from here on. For a more detailed history of the
derivation of the model, we address the interested reader to
the papers cited above and references therein.

Since only at the AP analytical formulae can be written
explicitly, locating the MFP and MSP and performing the
integration of the equations through them is not an easy nu-
merical problem to solve. These unknowns add a large de-
gree of complexity to the problem and common integration
techniques fail to retrieve solutions in most cases. Although
successful in solving such highly nonlinear set of MHD equa-
tions, PMM14 were limited in the range of jet solutions that
they could retrieve due to their numerical approach. Fol-
lowing VK03, PMM14 developed an algorithm where the
integration starts from the Alfvén point and ”shoots” to-
wards the other two singular points (MFP and MSP). The
Alfvén point can be regularised analytically by using the
De L’Hopital rule on the terms that are in indefinite form
0/0. The other two singular points are later found by ex-
trapolation (for more details about the shooting method see
e.g. Press et al. 1993 and Stoer & Bulirsch 2013). When the
equations are integrated towards a singularity, however, the
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error with respect to the exact solution can be large. As a
consequence of the limitations intrinsic to the adopted nu-
merical scheme, PMM14 were limited to a small portion of
the parameter space.

In this paper, we present a new method for exploring the
parameter space and finding solutions to the MHD equa-
tions building on the work of the PMM papers. Using this
method, we are able to explore more efficiently a much larger
fraction of the parameter space. This will allow the model to
be applicable to many other difficult flow solution problems
in astrophysics, as well as potentially other fields. Moreover,
this class of models can be coupled with fairly accurate ra-
diative transfer models (see Markoff et al. 2005; Maitra et al.
2009; Connors et al. 2016; Crumley et al. 2017), which can
handle spectral fitting in a reasonable computational time.
This paper follows the following structure: in Section 2 we
describe the system of equations that we solve and discuss
modifications in the equations compared to PMM14 with re-
spect to their dependence on the gravitational potential. In
Section 3 we present our numerical scheme and in Section 4
we compare our results with PMM14. We show that the
solutions are extremely sensitive to the gravity terms and
when the corrected functions of the gravitational potential
are used, the self-similarity assumption is more easily bro-
ken. In Section 5 we present a partial study of the parameter
space, unaccessible to previous studies. We included the de-
tails of our method in a series of Appendixes: in Appendix A
we define the equations that we solve in explicit form with
the corrected gravity terms and the new Alfvén regularity
condition. In Appendix B we describe the derivation of the
functions of the pseudo-potential in the gravity terms. In
Appendix C we discuss in detail our approach in finding the
locations of the unknown singular points, MFP and MSP,
and how we perform the integration. Finally, in Appendix D
we give the conversion of the most relevant quantities into
physical units.

2 SET UP OF THE EQUATIONS

Our goal is to describe an outflow launched from an ac-
cretion disk in the presence of a magnetic field by the
Blandford-Payne mechanism (Blandford & Payne 1982). We
use cylindrical coordinates (w,¢,z) and spherical coordi-
nates (r, ¢, 0) and impose axial symmetry, i.e. 9/9¢ = 0 and
assume the flow to be stationary, /9t = 0. For the electric
field F/, we impose the freeze-in condition, £ = —v x B, for
the Ohm’s law in ideal MHD and due to the axial symmetry
E4 = 0. In what follows we adopt the notation of VK03 and
PMM14.

As in VK03, we assume that the dependence of each
variable on r and 0 is separable, and that the radial depen-
dence can be expressed as a power law of r (see VKO03).
This assumption leads to self-similar solutions that obey
a system of ordinary differential equations plus algebraic
constraints. The four unknowns are the specific relativis-
tic enthalpy &c?, the poloidal Alfvén Mach number, M =
(YVa/By)(4mpo€)? (V,, and B, are the poloidal compo-
nents of the velocity and the magnetic field, po is the baryon
rest mass density, v is the bulk Lorentz factor), the cylin-
drical radius z in units of the light cylinder, x = @wQ/c (c
is the speed of light, Q is the angular velocity of the flow),
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Figure 1. Left panel: System of coordinates we adopt to describe a solution of eq. (1)-(4), which is typically the ”reference” streamline
identified with the label o = w? /w? = 1. The four unknowns in the system (1)-(4), together with all the other quantities, are functions
of 6, which is the angle between a point in the streamline and the z-axis. The angle that the tangent to the streamline makes with the
horizontal axis is 1, while the distance from a point of the streamline to the z-axis is defined by its cylindrical radius in units of the
light cylinder z. Right panel: Discrepancy between the derivative of v, calculated directly from eq. 5, dip/df, and inferred numerically at
each step from eq. 3, Ay /A with the corrected functions of the gravitational potential (top panel) and with the one used by PMM14

(bottom panel). The MSP and the black hole are on the right.

and the angle ¥ between the streamline and the horizontal
axis. These are functions of 6 only. We further substitute
x = xaG, such that for each streamline, G is the cylindrical
radius scaled by its value at the Alfvén point.

The system of equations that we solve can be written
in the form:

dM®  ByCi— BiCa _ Ny (1)
do A1Bs — AoBy D’

dG?  2G?cos(1))

d0 " sin(f) cos(¢) + 6)’
M/Q G4(1 _ M2 _ xi)Q _ $2(G2 _ M2 _ 332)2
w1 AL M — 27 }

14 F?03 M*sin® @
&2zt cos?2(0 + )’

3
M? ZQWv (4)

(2)

®3)

where the functions A;, B;,C; with ¢ = 1,2 are defined in
Appendix A, while F is a parameter describing the scaling
of the magnetic field with respect to the radius as B o< rf 2.
om = BpQ?/(4mpoVipc?) is the magnetization parameter in-
troduced by Michel (1969). For more details, see Appendix
A, while for a complete derivation of the original equations
we refer the reader to VK03 and PMM14. Here we will pro-
vide a short description of their meaning and use.

Eq. (1) is the so-called wind equation for the poloidal
Alfvén Mach number, M, and can be derived from the Euler
equation. Eq. (2) describes the evolution of the dimension-
less cylindrical radius and can be derived from the Euler
equation. Eq. (3) is the Bernoulli equation describing the
energy conservation along the poloidal component of the
magnetic field line. From this equation we derive 1, once M?>
and G2 are know at each integration step. Finally, Eq. (4)
is the relation between the poloidal M, the enthalpy & and
the dimensionless adiabatic parameter ¢ (Tab. 1), which we
use to derive £ at each step.

Our approach differs from that of PMM14 in how the
gravity term is treated. Gravity enters through the pseudo-
potential P, (see Appendix A). PMM14, following Meier

(2012), considered P, to be small and therefore approxi-
mated terms like 1/(1 — P;) as (14 Pg) or used other similar
approximations. P, enters the C; terms in Eq. (1) and the
analogous equation for

dp  A1Cy — AxCy

N
d9  A1Bs— AsB1 _ D’ (5)

which in principle we do not use, since we can exploit the
much more tractable and accurate Bernoulli equation (Eq.
3).

However, we noticed that the rate of change of ¢ with re-
spect to 0 as derived from the system of equations (1) - (4)
was not consistent with the prediction of Eq. (5), with a
substantial discrepancy upstream of the Alfvén point (see
right panel of Fig. 1).

The reason can be understood as follows: Meier (2012)
obtained the Bernoulli and the transfield equations neglect-
ing terms o< P? (see equations F.16 and F.18 in Meier 2012).
Our Eq. (3) corresponds to Meier’s equation F.16. In order
to obtain Eq. (1), we take derivatives of the Bernoulli equa-
tion Eq. (3) and therefore of P, (see Appendix B). However,
we also keep the Bernoulli equation in its original form. If we
were to approximate the term 1/(1 — P,) in the derivatives,
the resulting equation would not be consistent with Eq. (3)
anymore, because we would obtain a different version of the
Bernoulli equation when integrating them back. Of course,
this difference would be more pronounced upstream of the
Alfvén point where P, is greater, explaining the discrepancy
we measured.

We use Eq. (3) in order to evaluate quickly ¢ and there-
fore we need to retain in C; the full term 1/(1 — P,) and cal-
culate full derivatives of P, with respect to # when needed*.
This approach brings back self-consistency between Egs. (1)-
(4) and Eq. (5).

Analogously, the gravity correction term to C2 comes
from derivatives of Py in the transfield equation written to
the same order of approximation as the Bernoulli equation

1 We use dPy/d0 = 0Py /06 + 0P, /G - dG /dS.
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Table 1. Model parameters.
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Input
parameters
F F =dlogI/dlogw + 1 with B o =2 determines the shape of the magnetic field at the base
r P = ng polytropic index of the gas
oM om = BpQ?/(4mpoVpe?) magnetization parameter
wA 1/r =sinf/(waG) Alfvén cylindrical radius,
used to define the gravitational potential
N (see Fig. 1) angular distance of the Alfvén point from the jet axis
[N (see Fig. 1) inclination of the stream line
with respect to the horizontal axis at the AP
Fitted
parameters
:t2A (see Fig. 1) square of the Alfvén cylindrical radius in units of light cylinder
q q= B2aF'=2z% /(4rc?F262)(TQ/ (A (T — 1)))Y/T=1) | dimensionless adiabatic coefficient
OMEP (see Fig. 1) angular distance of MFP from the jet axis
Onsp (see Fig. 1) angular distance of MSP from the jet axis

(equation F.18 of Meier 2012). For keeping the same con-
sistency as mentioned before, we keep the full terms of the
derivatives of P, in C3 as well (Appendix B).

It is worth noting that some of the constants of motions
along the streamlines are affected by the inclusion of gravity
within a general relativistic formalism as done by PMM14
following Meier (2012). The specific energy pu, defined in
VKO3 (eq. 13d), is not a constant of motion anymore, while
the following one is:

(I=P)ly+vE-1)+S=(1—-Pp=y". (6)

The first term on the left-hand side is the kinetic energy,
the second is the internal energy, the third is the Poynt-
ing energy (S = —wNBy/Vc?, with U = 47poyV, /B, is the
mass-to-magnetic flux ratio?), the multiplicative factor is the
contribution of gravity with P, defined as in eq. (B1). Sim-
ilarly, the constant specific angular momentum (see VK03,
Eq. 13c), becomes now

(1— Py) {é'yw‘@ - WTB‘ﬂ =(1-P)L=L" (7

All the other constants of motion remain unchanged. We can
recast Eq. (6) and (7) in the following compact notation:

1 = php + g (8)
L' = Liyp + Ly, )

where
NIHD = (1 - Pg)g’)/y L/HD = (1 - Pg)g’yqu% (10)

:u’i\/l = (1_Pg)s7 Lﬁ\/I:(l_Pg)WB¢/\I]7 (11)

are the hydrodynamical and magnetic components of the
total energy and the angular momentum which will be used
in Sec. 5.

2 Here we do not use the italic subscript ”A” for ¥ to avoid
confusion with the roman subscript meaning that a quantity has
been calculated at Alfven, but it is the equivalent to Eq. 13b in
VKO03.
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3 NUMERICAL METHOD

The system of equations (1)-(4) allows for different fam-
ilies of solutions which may or may not cross the singu-
lar point(s), similar to the case for hydrodynamic (Parker
1958) or magnetohydrodynamic (Weber & Davis 1967) solar
winds. In the case of the system of equations (1)-(4) and un-
der the assumption of self-similarity, there can be up to three
singular points: the Alfvén point AP, the modified fast mag-
netosonic point MFP and the modified slow magnetosonic
point MSP (see Fig. 2). There is only one family of solutions
that crosses all the points while it accelerates away from the
black hole (see Fig. 1 and 2 of Weber & Davis 1967, solution
uq1). Therefore, we shaped our approach in such a way that
we automatically select solutions having this topology.

Each solution is characterised by the 10 parameters de-
scribed in Table (1). In particular, F and T' describe the
magnetic field configuration and the kind of plasma in the
system, therefore they can be considered as defined for a
given class of outflows. The magnetisation parameter, owm,
gives the efficiency with which matter is pulled out of the
rotating plasma at the base of the jet. As shown in Table (1),
it is a function of the angular velocity of the streamlines, the
magnetic field distribution and mass load. Hence, for a jet
to be efficiently launched, it has to be strongly magnetised,
rapidly rotating and/or have little mass load, as pointed out
by Fendt & Ouyed (2004). The om parameter could be used
as a fitted parameter, like we did to reproduce PMM14’s
results, but in general we keep this fixed, assuming again
that this parameter will be defined by specific applications.
Following a similar logic, we usually fix the position and
the inclination of the field line, and the radial distance from
the axis of the Alfvén point with 04,1 and wa. This last
parameter is related to the strength of the gravitational po-
tential as described in Appendix A. We will discuss in detail
the role of the fixed parameters in Section 5. In principle,
the rest of the parameters should follow from the integra-
tion of the system of equations (1)-(4) once a suitable set of
initial conditions is given for M2, G* and 6 (see VKO03).

The integration is not simple, however, because the ini-
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tial location of the MSP and MFP is not known. Therefore,
some of the unknown parameters must be fixed, while the
remaining ones are being retrieved as part of the solution
process. The constraint we have on the solution, i.e. that all
three singular points must be crossed, determines how many
parameters will be found and how many need to be fixed a
priori. The procedure that we follow is then an iterative
one: 1) we fix a set of parameters (F, ', om, wa, 0a ¥a), 2)
we make an educated guess for the remaining ones (Owmsp,
Omrp, g, 23), 3) we derive initial conditions for the integra-
tion and integrate the equations, and finally 4) we evaluate
the ”goodness” x of the solution, improve the guesses and
integrate again until a high enough x is achieved. We now
justify and describe in more detail our approach for each of
these steps.

3.1 Fixed and guessed parameters

As a basic requirement we impose that all our solutions cross
smoothly all the three critical points: MSP, AP, MFP (see
Fig. 2). At the AP analytical conditions are known (see
VKO00). Given all the parameters®, these conditions allow
the determination of GX, M3, dG?/df|a, and dM?/df)|a
through the Alfvén regularity condition (ARC, see Appendix
A), thus allowing integration away from the AP.

The regularity conditions at the modified magnetosonic
points MFP and MSP are not known analytically. They are
both of the same kind: the denominator D and the the
numerators N7 and N2 of Egs. (1) and (5) must vanish,
while dM?/df and di/df remain finite. Other authors, like
VK00, VK03, PMM13, PMM14, found their solutions by
using a shooting method to integrate from the Alfvén point
upstream towards the MSP and downstream towards the
MFP. This method has major caveats, however, since it is
very hard to numerically integrate towards singular points,
in which the numerators and the denominator approach zero
simultaneously, while keeping the accuracy of the solution.
It is however numerically stable to integrate away from a
singularity. This inspired us to explore a different approach.

We first guess the locations of the critical points, Ovrp
and Omsp and derive values for M2, G? and their deriva-
tives with respect to 6 based on the regularity conditions
N1 = N2 = D = 0 evaluated at the Oyrp,msp of choice
(see Appendix C for our numerical technique). We then
are able to integrate away from each initial guess for the
modified magnetosonic points and avoid numerical inaccu-
racies. At the same time, we integrate away from the AP
towards both magnetosonic points and consider how good
the match is for the values of M? and G? of the various
solutions at the midpoints Omia, mrp = (04 + Omrp)/2 and
Omida, msp = (0a + 6Omsp)/2 (see Fig. 3). These are in total
four conditions, which imply four free parameters. fyrp and
Omsp are two necessary ones and we are left with the free-
dom to choose two other parameters. We chose to leave 23
and ¢ free and fix the others. This choice is the most natural
and convenient one: 3 immediately determines M3 as per
Eq. A15, while knowing ¢ and the position of the AP allows
our algorithm to derive dM?/ d9| 4 very quickly.

3 94, wa and mQA determine the position of the AP, but F, T, g,
om and 1 are needed for M2 and G? and their derivatives.

3.2 Initial conditions at the singular points

As mentioned above, the AP is completely determined. As
for the two modified magnetosonic points, there is no an-
alytical condition that can be used to regularize the equa-
tions. We use a combination of root-finding techniques that
allow us to find the values of M? and G2 that give N7 =
N2 = D = 0. A similar procedure can be applied to both
the MFP and the MSP. Once the values of M? and G? at
the singular points are found, the last step before starting
the integration is finding the derivative of M?. By making
use of Eq. 2 and of M? and G? at the points of interest, we
determine dM?/df by finding the root of the function C5.
The integration from all the three singular points can now
start. This step is very important, serving as a numerical
reqularity condition, but it is somewhat laborious, so that
for a more detailed discussion, we refer the interested reader
to the Appendix C.

At this stage we have both initial values and derivatives
for M? and G?, evaluated at Onrp/vsp, and we can finally
start the integration inwards towards the AP. Since we in-
tegrate away from singular points, a standard adaptive step
Runge-Kutta scheme is sufficient to integrate Egs. (1) and
(2) (giving M? and G?), while we retrieve ¢ from Eq. (3)
and £ from Eq. (4). Thanks to this procedure it is also pos-
sible to integrate downstream from the MFP further away
from the black hole and upstream from the MSP towards
the equatorial plane of the disk: we simply repeat the same
procedure on the other side of the critical points.

3.3 Goodness of solution and solution finding

In order to find the best parameters (Onsp, Ovrp, ¢, azi) for
a given problem set (F, ', om, @a, 64 1a) which minimise
the offsets at each midpoint simultaneously (see Fig. 3), we
make use of the open-source Bayesian inference algorithm
multinest (Feroz & Hobson 2008; Feroz et al. 2009, 2013).
multinest is a very robust software package which is also
fast due to MPI parallelisation. It also has the advantage
of not requiring derivatives of the fitted function, like for
example the Newton-Raphson method. This makes it even
better suited for our case, because the derivatives can only
be calculated numerically and such an approach would in-
crease the numerical error and would prevent most attempts
at finding a good fit. We only use the fitting algorithm of
multinest. In this case, the only information that needs to
be given to the algorithm is the goodness of fit of a given
calculation. It then proceeds to maximise such a function by
exploring the given domain of the free parameters®.

To quantify the goodness of fit of a single integration,
we measure the mismatch at the offsets between the values of
G? and M? from the integration from AP and the modified
magnetosonic points, summing the relative differences of all
variables:

—1/2
X=[for+ far+ fos+ fas] (12)

4 We set a flat prior for all parameters.
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Figure 2. 3D plot of the streamlines corresponding to model (6) in Tab. 2 (see Fig.1a in Contopoulos (1995) for a comparison). Left:
Zoom at the base (MSP and AP black circles, starting from the bottom respectively). Right: MFPs.
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Figure 3. Schematic of the method to derive the form of the
functions M?2(6) or G?(6). The solid black lines are the branches
of integration with the corresponding direction shown with ar-
rows. A typical situation where the given set of input parameters
plus the guesses for the 6ypp and Oysp and xi and g at these
points do not provide a smooth solution through all the singu-
lar points and we see large offsets at the midpoints (red solid
arrowed lines), while the closest good solution looks like the red
dotted line. Note that the last integration branches towards the
disk and downstream of MFP are not used in the evaluation of
the fitness, but calculated at later times.

where
2(G1 - G%)
(G +GR) o0,

mid,

2(M} — M)

fo= O 38 |,

f}d,* -
mid, *
(13)
and the subscripts L and R stand for left and right, such
that at Omia, mrp L is the result of the integration from the
MFP and R the results of the integration from AP; while
the opposite holds at Omia, msp. In case one of the various
preparatory steps described in Appendix C fails, we are un-
able to calculate x and simply return zero, discarding the
corresponding point in the parameter space. We accept a so-
lution and stop the iterations when we reach a fitness value®

5 y is the inverse RMS of all the fitting errors. Double precision

in a computer gives up to ~ 10~1* — 10~16 machine roundoff
error, but roundoff errors can build up in any calculation. So, if
the chosen 1/x is too small, convergence could suffer. We found
10~9 to be a good compromise choice.

MNRAS 000, 000-000 (0000)

of x > 10°. During the process of finding the solutions we
noted that there is a highly non-linear relation between the
amount of change of the different parameters ¢, =%, Onrp
and Oysp and the resulting change in the fitness function
Eq. (12), such that each parameter should be known with
at least six significant digits to make a good fit.

4 COMPARISON WITH PREVIOUS
SOLUTIONS

We start our parameter study by recovering the solutions
presented in Table 1 of PMM14. We list our parameters
corresponding to PMM14’s reference and first solutions in
Tab. 2, as models I and II. We identify two factors that can
explain the discrepancies in the parameters: 1) differences
in the numerical scheme and 2) definition of the functions of
the gravitational potential in the gravity terms (Eq. A13 and
Appendix B). Comparing then the parameters published in
PMM14 (first solution) with model I1a, both listed in Tab.2,
we noticed that whilst there is not an appreciable difference
in ¢ and oM, which are the fitted parameters for PMM14,
the locations of both MFP and MSP change by a few %.
As discussed in Section 2, if we remove the approxi-
mation of a small potential in the gravity terms, we find
substantial differences in our solution parameters (see mod-
els la-Ib, Id-Ie and Ila-1Ib), that are clearly seen when
drawing the corresponding streamlines: in Fig. 4 we plot
the projected streamlines in the zw-plane for the models
Ia to If. Model Ia is our reference solution, which differs
from PMM14 only for the numerical method used to solve
the equations (1)-(4) (black solid line). Model Ib is the ref-
erence solution with the corrected potential functions (pur-
ple dashed line) and model Ic is the reference solution with
the corrected potential functions, but with Newton potential
(green dotted line). It is evident that introducing the approx-
imation of small P, in the derivatives of P, itself (see discus-
sion in Sec. 2 and Appendix B) reduces the effect of gravity
close to the BH (right panel in Fig. 4). Larger discrepan-
cies at MSP appear when we consider a relativistic gas with
adiabatic index 4/3 (see models Id (blue dot-dashed line),
Ie (orange dot-dot-dashed line) and If (yellow long-dashed
line)). Generally, the effect of a small Paczyiisky-Wiita po-
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Table 2. Parameter study of the solutions recovered from PMM14. The classes of models I and II are the ”reference” and ”first”
solutions in Tab.1 of PMM14. Sub-classes of models differ for the adiabatic index T, the gravitational potential, Py (Newtonian=N or
Paczynsky-Wiita=PW), and whether the functions f;(Pg) are approximated (A) or corrected (C) (see Appendixes A and B). The fitted

parameters are shown in italic and with 6 significant digits.

Model xi q Orvrp Orsp 04 Ya oM wA r F Style Py

Reference 0.145330  2.4184E-2 0.118635 1.26022 60 40 0.02 15 5/3 0.75 A PW
la 0.145329  2.41844FE-2 0.118608 1.26383 60 40 0.02 15 5/3 0.75 A PW
Ib 0.158777  2.74016E-2 0.116215 1.19411 60 40 0.02 15 5/3 0.75 C PW
Ic 0.143936  1.86592E-2 0.118492 1.81034 60 40 0.02 15 5/3 0.75 C N

1d 0.228007  1.19385E-3 0.104885 1.16340 60 40 0.02 15 4/3 0.75 A PW
Ie 0.264180  7.43368E-4 0.104566  1.15714 60 40 0.02 15 4/3 0.75 C PW
If 0.225918  8.34464E-4 0.105647  1.19239 60 40 0.02 15 4/3 0.75 C N

First solution 0.01 1.4359E-2 0.120427  1.18682 60 45 7.85798E-4 18.2088 5/3 0.75 A PW
Ila 0.01 1.43588E-2 0.114838 1.19846 60 45 7.85794E-4 18.2088 5/3 0.75 A PW
1Ib 0.01 1.66386E-2 0.115231 1.12314 60 45  5.94572E-4 18.2088 5/3 0.75 C PW
Ilc 0.01 1.25403E-2 0.119471 1.20881 60 45 7.86151E-4 18.2088 5/3 0.75 C N

Others

(1) 0.643674 6.13069E-3 8.06108E-2 1.32117 60 45 0.50 15 4/3 0.75 C PW
(2) 0.324834 6.91188E-3 8.37261E-2 1.28111 60 46 0.10 15 4/3 0.75 C PW
3) 0.258726  4.90328E-3  9.73984FE-2 1.22659 60 44 0.05 15 4/3 0.75 C PW
(4) 0.475936  7.87961E-3  9.30176E-2 1.27947 60 44 0.20 15 4/3 0.75 C PW
(5) 0.816325  1.70893E-5 7.02122E-2 1.27569 60 44 0.75 15 4/3 0.75 C PW
(6) 0.864334  6.86982E-6 6.27254FE-2 1.33771 60 47 1.45 15 4/3 0.75 C PW
(7) 0.503771 2.85668 2.58T65E-2 1.38088 57.5 47 1.45 15 4/3 0.85 C PW
(8) 0.470045  2.53731E-5 0.10165 1.15858 60 39 0.05 15 4/3 0.75 C PW

tential is very similar to a Newtonian potential. We define
the last recollimation point (LRP) as the last point of the
streamline where the integration downstream of MFP stops.
In the left panel of Fig. 4, we note that the positions of the
MFP and the LRP lie far apart from each other when com-
paring solutions with corrected or approximated functions
of the gravitational potential.

4.1 The self-similarity assumption

As pointed out by PMM14, the self-similarity assumption is
a serious limitation intrinsic in the derivation of the equa-
tions. The inclusion of gravity further complicates the mat-
ter. Radial self-similarity, even without the inclusion of grav-
ity, introduces a few geometrical constraints. Ultimately, to
properly quantify these issues, our solutions will be bench-
marked against GRMHD simulations in future works. In this
section, we focus on determining the effect of gravity on the
self-similarity assumption. In Fig. 5 we show two families
of solutions obtained varying wa from the reference mod-
els Ia using eq. A14 and Ib (Tab. 2) using eq. A13. All the
solutions found with the the corrected functions of the grav-
itational potential (eq. A13) can be integrated down to the
disk midplane (z = 0). Each field line will have a character-
istic angular velocity, Q(w, z), which is a constant of motion
along the field line, but it will vary from one field line to an-

other (see Appendix D). As expected from relativistic self-
similar models, e.g. Li et al. (1992) and VKO3, Q(w, z = 0)
follows a profile which is o R™!. However the gravity terms
add some perturbation in the proximity of the black hole.
The maximum deviation between the angular velocity of a
single field line at z = 0 compared to Qx = (R/Rg)™%/?
(G=c=M =1) is a factor of 2, with our field lines rotat-
ing at lower speed than the keplerian one. All streamlines
should look as scaled copies of the same shape; however,
where gravity is strong enough, for example upstream of the
MSP, the field lines bend and cross each others until w4
is larger than ~ 19 ry (panel (d) in Fig. 5). The MFP is
heavily affected as well for smaller values of wa (< 19). It
is worth noting that for the family of solutions with model
Ib as reference, we could not obtain solutions for ws < 9
due to the stronger gravitational potential, while for solu-
tions found around model Ia, we were able to go down to
wa = 5.

The degree in which self-similarity is affected by grav-
ity depends on the other parameters, such as om and ¥a:
we show this in Fig. 6. The four panels in the figure show
the values of the fitted parameters of various families of
solutions, as a function of wa. In the absence of gravity,
self-similarity would ensure that % , ¢, Omrp and Oysp be
constant within the same family of solutions, independent
of any variation in the value of the cylindrical radius wa. In
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Figure 4. Comparison of stream lines of models Ia to If from Tab. 2. Colours correspond to same model in both panels: black solid line
is model Ia, purple short-dashed line is model Ib, dotted-green line is model Ic, dot-dashed blue line is model Id, orange dot-dot-dashed
line is model Ie, and yellow long-dashed line is model If. The models Ia, Ib, and Ic have adiabatic index of 5/3 and differ for the potential,
Py, used (N or PW) and whether the functions f;(Pg) are approximated (A) or corrected (C). The models Id, Ie, and If are the same
but with I' = 4/3. Left: MFP region, where the black dots mark the height of the MFP for the corresponding streamline. Right: Zoom
on the AP and MSP. The AP (red dot) is fixed in all the solutions, therefore the streamlines converge to the same point with the same
derivative. The black dots define the location of the MSP of each streamlines.
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Figure 5. Family of solutions obtained by varying the cylindrical radius of the Alfvén point, @ 4. The reference solution (w4 = 15) for
the upper panels is model Ia and for the bottom panels is Ib in Tab. 2. Upper panels: We vary w 4 in the interval 5 — 25, as the lines go
from blue to red. On the left, the black dots on the curves mark the position of the MFP, while on the right they are showing the MSP.
The bigger black dot at the origin of the axis is the BH. Lower panels: Same but the interval is restricted to 9 — 25.
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Fig. 6 we show families that correspond to four models of
Tab.2: Ia (purple), Ib (green), 1 (light blue), 2 (orange).

Solutions corresponding to model Ia and Ib have lower
a (= 40°) and lower oy (= 0.02) with respect to model
(1) and (2) which have o = 45°, om = 0.5 and YA =
46°, om = 0.1, respectively. When we introduce gravity,
we are introducing a disturbance in the radial scaling of
the streamlines, that becomes more pronounced as we move
closer to the BH, i.e. wa < 15. Gravity breaks self-similarity
for all the parameters at play, but its effect is more dramatic
on Ouvsp. Nonetheless, the median of the absolute deviations
from the results’ median (mad=median|X; — median(X)|)
for the parameters 23, ¢, Omrp, Ousp over the full interval
of w4 is at most ~ 10%. This gives us the confidence in the
use of this method.

5 PARAMETER SPACE STUDY

We present here a more detailed analysis of an ensemble of
solutions found in a (¢a,owm) slice of the parameter space,
for a specific choice of a subset of fixed parameters, namely
F = 0.75, 0o = 60°, T' = 4/3 and wa = 15. Although
we fixed it for all runs, wa has been changed when test-
ing self-similarity for models Ia, Ib, (1) and (2) of Tab. 2.
Changing wa changes the radius of the stream line, allowing
one to check self-similarity of a given outflow with the pa-
rameters I, 0a, om and I'. We populate a two-dimensional
grid of solutions by varying ¥a and owm, while fitting for
xi, q, mrp and Ovsp and keeping all the other parameters
fixed. In Tab. 2, models (3)-(6) belong to this grid. We use
them to present features also found in other solutions in the
grid. Models (7) and (8) are solutions found in other areas
of the parameter space and we include them into the dis-
cussion to show their peculiar characteristics. Our primary
goal in such exploration is to expand the pool of solutions
found by PMM14 and search for a wider range of relativis-
tically boosted jet solutions, i.e. with bulk Lorentz factors
in the range of 2 — 10, in order to find suitable solutions
for future applications to astrophysical objects. Considering
the difficulties of starting from a random initial position, we
started by changing the polytropic index to 4/3 and keep-
ing the other fixed parameters as in the reference solution
in PMM14 (first row in Tab. 2), then slowly increasing om
and 1A until it was possible to find solutions. As we can see
from Fig. 7, the parameter space is not a continuous volume
and has patches where no solution exists. Due to the high
dimensionality of this space, it is often difficult to know a
priori where solutions can be found. We will focus on the
nature of these boundaries later on in this section.

The solutions found in the (A, om) slice presented here,
lie on a three-dimensional curve which extends on a limited
range of the interested parameters. Although solutions with
om < 0.05 could be recovered, we dedicated little time to
the exploration of this class of solutions since they appear
to have very slow bulk velocities, ymrp 2 1.

Just from the solutions in this sparse 2-dimensional
grid, we see already a variety of flow shapes and dynam-
ics. For instance, we show in Fig. 8 six examples of the dy-
namical evolution of the energy terms (Eq. 6) along the jet
streamlines corresponding to the solutions (3) to (8) in Table
2. The panels (a)-(c) differ in the value of oy, and indeed

the Poynting energy at the base increases going from (a)
to (¢), while the enthalpy and kinetic energy remain un-
changed. At the launching site, the jet can be powered by a
different source of energy depending on the parameters, be-
ing first thermally-dominated (0.05 > om < 0.2, panel (a)),
crossing equipartition between magnetic and thermal energy
at om = 0.2 (panel (b)) and later becoming magnetically-
dominated (0.2 < om < 0.75, panel (c)). However, we note
that all these solutions have very little thermal energy over-
all, so they are still relatively ”cold” jets. When o increases
even further (panel (d)), the Poynting energy completely
overtakes all the other energy contributions until it converts
entirely into kinetic energy at ~ 1000 rz. A common fea-
ture of all our jet solutions is the conversion of the primary
source of energy (enthalpy or Poynting energy) at the base
into kinetic energy at some distance from the BH between
the Alfvén point and the MFP, as it is to be expected for
relativistic flows (Komissarov et al. 2010). The jet is always
kinetically-dominated by the time it approaches the MFP.
There is another channel for the energy exchange, however,
which we discuss below.

5.1 Counter-rotation in hot jets

Panel (e) of Fig. 8 shows the energy components of model
(7). This jet is roughly at equipartition at its foot point,
with both enthalpy and Poynting energy being large. This
is a hot, magnetized jet. We see that, starting from the MSP,
the Poynting energy increases as a consequence of the trans-
fer of a fraction of the thermal energy into the magnetic
field, while the kinetic energy increases at lower pace. The
fraction of energy transferred between the different compo-
nents is regulated by the conservation of the total energy
1/, This third channel of energy transfer from the kinetic
and thermal components to the magnetic component has
never been seen before in a semi-analytical model, although
present in simulations (see model B2H and Section 5.5 in
Komissarov et al. 2009) and discussed analytically by Sauty
et al. (2012) and Cayatte et al. (2014). This result is thus
important because it demonstrates that our semi-analytical
framework produces the full range of flows seen also in MHD
simulations, and is not limited to the simplest scenarios. The
increase of the Poynting energy also results in an increase
in the magnetic component of the angular momentum L},
in Eq. (7) that corresponds to Lip becoming negative (see
right panel Fig. 9 and figure 2 in Cayatte et al. 2014). The
change in sign of Ly is due to V,, becoming negative (see
left panel Fig. 9). In the cold regime, we normally see both
components of the velocity, V;, and Vg, always above zero.
The jet starts off with a larger toroidal velocity that then
decreases in correspondence to the poloidal component tak-
ing the lead. In the case of hot magnetized solutions, the
toroidal velocity can become negative before the canonical
behaviour of a cold jet is restored at larger distances from
the black hole. This inversion of sign of the toroidal compo-
nent of the velocity is interpreted as a counter-rotation of the
jet with respect to the disk. Sauty et al. (2012) and Cayatte
et al. (2014) claim that the counter-rotation in jets is the
signature of the magnetization of the jet and it can be due
to several effects: deceleration of the flow, steep gradients of
the magnetic field and/or energy transfer from enthalpy to
the magnetic field. Model (7) belongs to the latter case. In
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magnetic and thermal energy at the base. On the left of these all solutions are thermally powered jets at the base, while on the right

there are solutions that are Poynting dominated at the base..
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Fig. 9 we start from model (7) and progressively decrease
F. In the left panel, we see how for higher F' the solutions
become hotter and their toroidal velocity minima decrease
and they exhibit counter-rotation.

Similar interplay between energy terms can also result
in almost oscillatory behaviours in the evolution of the en-
ergy components, seen for instance when the initial amount
of enthalpy in the system is close to its minimum (= 1, i.e.
q~107°—=1077) and om < 1 (panel (f) of Fig. 8, depicting
solution (8) of Tab. 2). Here we see two episodes where the
energy is transferred to the magnetic field from the thermal
energy and the flow is decelerating. However, the toroidal
component of the velocity does not reverse sign, therefore
no counter-rotation is established. This behaviour is usually
associated to a highly wound-up streamline below MSP. The
radial distance of the streamline during this phase is not con-
stant, inducing a small change in the gravitational potential.
Usually, after an initial acceleration powered by the leading
force, either thermal or magnetic, the flow starts decelerat-
ing while approaching the jet axis, then the gravitational
potential becomes relevant again, leading to an acceleration
of the flow. Such interplay of forces can happen a few times
and it results in complete winding up of the field line be-
fore the jet gains enough poloidal velocity to be launched
outwards after crossing MSP. If both ¢ and onm are small,
upstream of the MSP the jet has little poloidal component
in its velocity, therefore it keeps slowly spiralling upwards,
until it gains enough poloidal velocity to be slung out of the
disk. Solutions with lower 1o could not be found because the
jet will not have enough initial energy to acquire sufficient
poloidal velocity to then be launched out.

5.2 On the effect of o and Ya

We show two examples of the evolution of the toroidal and
poloidal components of the velocity for two sets of solutions
in Fig. 10, obtained by varying om and ¢a. We note that at
small z (upstream of the MSP) as o increases (left panel
of Fig. 10) the toroidal component of the velocity increases,
while the poloidal component first becomes larger and then
it starts decreasing. For increasing z the toroidal compo-
nent decreases towards the MFP, but, as onm increases, a
maximum appears around the MSP. The poloidal veloc-
ity increases with distance from the black hole and accel-
erates, rapidly approaching the speed of light close to the
MFP/LRP. Indeed, we cannot find solutions with a larger
magnetisation parameter for the given set of input parame-
ters (pa = 46°, 04 = 60°, F = 0.75, T = 4/3 and wa = 15).
In the right panel of Fig. 10, we show a similar plot of the
velocity components for a series of solutions obtained by in-
creasing 1 and fixing oy = 0.55, 04 = 60°, F' = 0.75, ' =
4/3 and wa = 15. We see that varying either 1 or 6a
individually restricts the search to a small range in such pa-
rameters. From the ARC (See Appendix A, Eq. A20), we
can put a constraint on the sum of these two angles in or-
der to select solutions that have a negative derivative of the
poloidal Mach number, dM?/df (Eq. 1), at the Alfvén point
(90° < Oa + 1a < 180°). This interval for the sum of 64
and ¥a ensures that the flow is accelerating while moving
away from the black hole. From the evolution of the veloc-
ity components with respect to this sum we see that the
range where we can find solutions, for a given set of fixed

parameters, is much smaller than the one inferred from the
sign of dM?/df at Alfvén and that the solution can be rad-
ically different between the lower end and the upper end of
the range. We also note that the larger ©¥)a becomes, the
closer the MFP moves towards the black hole. We cannot
find solutions for s > 47° probably because the LRP hap-
pens before the MFP, while our method is focused on find-
ing solutions that pass through all the three singular points.
When A decreases, we see that suddenly the jet has a much
larger toroidal velocity, while the poloidal component is al-
most zero. The last solution is therefore the one for which
the jet can still be launched from beyond MSP, while it keeps
circulating upstream of this point.

5.3 Exploring other regions of the parameter
space

We already presented here a few solutions that were found
outside the initial 2-dimensional grid found by varying ¥a
and on. Driven by the need to better understand which pa-
rameters lead to a shift in the observable values, such as the
Lorentz factor of the jet at the MFP /collimation region, the
height of the MFP, the energy balance at the launching site,
we chose to try to explore different regions of the param-
eter space, i.e. varying previously fixed parameters. In the
left panel of Fig. 11 we show some of the alternative direc-
tions that we pursued. We note that each of the parameters
used has a substantial effect in determining the height of
the MFP compared to the relatively small steps we adopted
in this search. Also, the variation of some of them (particu-
larly o) result in large changes in the bulk Lorentz factor
of the jet at MFP, e.g. a Aom ~ 1.2 around oy = 0.70
corresponds to A ymrp ~ 4.

We find that increasing F, thereby changing the scaling
of the magnetic field (B o r7~?), is the most efficient way
of moving into a different area of the parameter space, let-
ting us touch terminal Lorentz factors of about 11. However,
as discussed e.g. in Blandford & Payne (1982), Contopoulos
(1995) and VKO3 , the higher F' the more the MFP is mov-
ing to larger distances from the BH, eventually to infinity.
Although in principle there is no constraint in our algorithm,
with the exception of loss of numerical accuracy, on how high
the MFP can lie with respect to the BH, we indeed have not
yet found solutions with F' 2 0.9 for the parameters explored
so far due to the aforementioned numerical accuracy issues,
therefore all our solutions are in the so-called return-current
regime, i.e. the current decreases with radius.

As a further general feature shared by all solutions, we
point out that they are suddenly terminated soon after the
MFP, while rapidly recollimating towards the jet axis (see
also Fig. 2). From a numerical point of view that happens
because the denominator of the wind equation (Eq. 1) and
the equation for ¢ (Eq. 5) goes to zero, D — 0. We see that
the streamlines are rapidly becoming vertical (¢p — 7/2).
At the moment it is difficult to say whether this is due to
physical effects such as compression of the gas or just due
to the “polar axis singularity” imposed by the self-similarity
assumption, which makes the equations degenerate for § —
0.

MNRAS 000, 000-000 (0000)



3 T T T T T
v —_ - - -
= - -
251 oy =~ DL o
z L
s 2
>
g
F 151
©
=
5 1L
(9] ot
{ = - -
5 _../_ - -
051 - - -
1 1 - -I 1 1 S
102 107 100 10! 102 10°
Log(z/rg)
(a)
35 T T T T T T
3 = - -
0 §(1-py : :
£ 25r gy - - -
=] (1-Pg)l — - - -
S T T
s = - -
8 15} - - - A
> - - -
<)
g 4 N p———— =
u - -
05 = - - -
Il Il - -l Il Il Il .
107! 100 10! 102 108 10*
Log(z/rg)
(c)
©
€
=]
>
[
E
©
=
>
[
{=4
w

. - . ‘ ‘ ‘ ‘ ‘ ‘
107 100 10" 102 10 10* 10° 108 107
Log(z/rg)

(e)

Self-similar relativistic MHD outflows 13

3 T T T
25 = =
2 K1py — oL
S5 2r  ste— Dol
> (1-Pg) = -
g o= oL
F 151 - -
© -
[ _— e ———
o) g
| =4 - -
w - - -
05F - - -
102 107 100 10! 102 108 10*
Log(z/rg)
(b)
T T T T T T
6 = —
5 | - i

IS
T

Energy(arbitrary units)
n w
T T

1077 100 10! 102 108 10*

Log(z/rg)
(d)
2 T T T T T T
3 150 ; - -
€ E(1-Pg) - - -
S S(1-Pg) - - -
> (1-Pg) == = - - -
I b — - - -
5 Tk :
\(u/ jr— —— — — - - -
> - - -
>
3 S— -
G 05 oL iy
0 . Lo . . . =
10! 100 10! 102 108 10*
Log(z/rg)
()

Figure 8. Evolution of the energy components along the jet streamlines. The black dotted lines indicate the position of the three singular
points (from left to right, MSP, AP and MFP). The black solid line is the total energy, u’, the green line is the specific enthalpy, £v,
the light blue line is the energy carried by the magnetic field —wQB /¥, the purple line is the kinetic energy v and the dashed red line
is the function (1 — Pg) of the gravitational potential. As described in Section 2 (Eq. 6), each component is multiplied by this function
to account for gravity in the energy balance. Panel (a) shows the energy balance for model (3) with oy = 0.05, F = 0.75, panel (b) is
model (4) with oy = 0.20, F' = 0.75, panel (c¢) is model (5) with oy = 0.75, F = 0.75, panel (d) is model (6) with oy = 1.45, F' = 0.75,
panel (e) is model (7) with oy = 1.45, F = 0.85 and panel (f) is model (8) with oy = 0.05, F = 0.75.

6 COMPARISON WITH OBSERVATIONS

The goal of the parameter search presented here has been
primarily to populate an initial portion of the parameter
space where solutions that are good candidates for the appli-
cation to real sources reside. As shown in Fig. 11, we retrieve
solutions that have bulk Lorentz factors at the MFP ranging

MNRAS 000, 000-000 (0000)

from 1 —11 and MFP’s height that spans 4 orders of magni-
tude (~ 10® — 107r). Moreover, we find jets with different
initial conditions exhibiting a large range of magnetic-to-
thermal energy ratios and different degrees of winding at
the base. The set of initial conditions, the positions of the
singular points, velocity, density and magnetic field profiles
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Figure 10. Left panel: Toroidal and poloidal velocities in units of ¢ for a series of solutions obtained increasing o\ at fixed ¥4 = 46°.
Right panel: Same figure as the left panel, but for increasing 1 at fixed opy = 0.55. The other fixed parameters for both plots are

Op =60°, F =0.75, ' =4/3 and wp = 15.

can be either directly compared to observations or can be
used to provide constraints for the calculation of the emis-
sion and the polarisation degree expected from a particular
jet configuration.

For instance, the MFP is the location where the jet
streamlines start to recollimate and the flow downstream
of this region loses causal contact with the upstream flow.
These are favourable conditions for the onset of a shock,
while maintaining the structure upstream intact (Polko et al.
2010). If, furthermore, we assume that there is a correspon-
dence between the MFP and the frequency of the jet break,
the self-absorption turnover in the synchrotron spectrum
from the region where particle acceleration initiates in the
jet (Markoff et al. 2001, 2005; Markoff 2010), we can use
observational constraints on the position of the jet break to
determine the best jet solution within the set that we have.

In AGN, the equivalent jet break can be at large off-
sets from the BH (> 10%rg) and there could be substan-
tial contamination in the determination of the jet break
by the interaction of the jet with the environment (Russell
et al. 2015) or the scenario could be further complicated by
a multiple-flow dynamics (see Meier 2003 for a theoretical
motivation of structured jets and e.g. Giroletti et al. 2004;
Harris & Krawczynski 2006; Meyer et al. 2013 for observa-

tional evidence on the radial structure of the jets of M8&T7).
High-resolution observations can now resolve the details of
the jet structure in AGN down to a few gravitational radii.
Radio interferometry and high-resolution optical and X-ray
observations unveiled bright subfeatures, usually referred to
as knots, which are identified with shocks and particle accel-
eration. Knots can occur everywhere along the jet. Some of
them are attributed to internal shocks caused for example by
the interactions of the jet with a dense external cloud (Men-
doza & Longair 2001), variations in the injected mass and
velocity (Rees & Meszaros 1994; Malzac 2014) or magnetic
recollimation (Markoff 2010). However, knots that occur at
larger distances from the black holes can also be produced
by self-collimation of the streamlines (Polko et al. 2014) or
a change in the ISM pressure profile (Nakamura & Asada
2013).

The jet of M8&7, for example, is one of the main targets
for this type of study. It exhibits a complex pattern of
knots with different values and orientations of the proper
motion. In particular, the HST-1 knot has received signifi-
cant interest over time. HST-1 is located approximately at
2—-5x% 105rg, which also corresponds to the region where
the Bondi radius resides (rg ~ 3.5 x 10°rg for My =
6 x 10°Mg). The Bondi radius marks the volume where
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Figure 11. Left panel: Distribution of the Lorentz factors at MFP of all solutions, as a function of the height of the MFP. The blue
crosses are solutions belonging to the 2-dimensional search varying 1, for given values of o);. The other symbols are for solutions found
by varying 6 (orange hollow circles), on (black hollow downward triangles), F' (red hollow triangles) and PMM14 with correct gravity
terms (yellow hollow diamonds). The arrows mark the direction of increasing values of the given parameter. Right panel: Distribution of
the same collection of solutions shown in the the left panel with respect to cylindrical radius versus height of the MFP (black crosses)
and of the last recollimation point (LRP, red crosses). The shaded light grey areas corresponds to the radial coordinates of the jet at the
jet break with error bars reported by Russell et al. (2014) for the XRB MAXI J1836-194. Solutions are present within each region where
the jet break has been seen (grey areas). The areas with the oblique-line pattern denotes the predicted heights for the jet break. The
dark grey rectangle is the area where the knot HST-1 in the jet of M87 is estimated to be by Asada & Nakamura (2012). The authors
pointed out that the jet cross section at HST-1 is smaller than the one predicted by conical and parabolic jet models. We note that
HST-1 could be tracing an intermediate location between the MFP and LRP, where the jet is rapidly collimating towards the axis.

the gravitational potential of the black hole dominates over
the thermal energy of the gas contained within this volume.
The density profile within and outside the Bondi radius can
be substantially different, hence the jet could experience a
steep gradient in the external pressure which could induce
a recollimation shock (for observational evidence see Rus-
sell et al. 2015 and for recent simulations see Barniol Duran
et al. 2016).

Asada & Nakamura (2012) and Asada et al. (2014) show
that the M87 jet maintains a parabolic profile up to HST-1.
The authors show that this is evidence of the extension of
the acceleration and collimation region of the jet of M87 up
to the end of the sphere of influence of the black hole.

If we assume then that the HST-1 knot in the jet of
MS8T7 coincides with a recollimation shock and acceleration
region in the jet produced by self-collimation, we can iden-
tify it with the MFP or LRP. In all the solutions presented in
this paper we see that the jet continues recollimating down-
stream of the MFP and we possibly see conditions that
could lead to a shock due to the compression of the gas
in correspondence of the last recollimation point. The flow
could become causally disconnected but still remain smooth
through the MFP, then undergoing a shock only when it is
over-compressed. The distance between the MFP and LRP
is relatively large in AGN so that it can be resolved by cur-
rent high-resolution observations.

Using the interval given by Asada & Nakamura (2012) for
the width of the jet at HST-1 (dark grey area in Fig. 11,
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right panel), we see that the estimated position of HST-1
falls in between the MFP and the last recollimation point
of the same jet solutions. HST-1 has a smaller cross-section
with respect to a canonical paraboloidal jet, probably indi-
cating that the streamlines are converging towards the jet
axis and a shock could take place soon after the MFP.
Although the identification of HST-1 with a self-collimation
shock is tempting, also the change in the external pressure
could influence the collimation of the jet and the shock for-
mation due to the proximity of the Bondi radius. There
is also increasing evidence that a first recollimation occurs
within the first few tens of r; (Prieto et al. 2016; Hada et al.
2016), suggesting a more complex scenario.

In XRBs, the position of the jet break has been iden-
tified in a few cases in the range of of 10 — 1000 rgz. The
turnover has been directly observed only in three cases
(GX339-4 by Corbel & Fender 2002, MAXI J1836-194 by
Russell et al. 2014 and 4U 0614+091 by Migliari et al. 2006).
Russell et al. (2014) show that the jet break shifts by ~ 3
orders of magnitude in frequency during state transition in
the source MAXI J1836-194. The estimated width of the
acceleration region also presents large variations during the
transition of the source, decreasing as the jet break moves
closer to the BH. With the solutions that we have collected
so far, we cover the full range of the jet widths seen in MAXI
J1836-194 (see right panel of Fig. 11). Solutions found within
the grey areas in Fig. 11 not only can reproduce the inferred
widths of the jet at the location of the shock, but they give
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a full set of predicted physical properties of the correspond-
ing jet, such as the height of the shock (identified with the
MFP), the bulk velocity of the flow and the magnetic field
morphology at any point of the jet.

Empirically constraining some of the jet properties,
such as the Lorentz factor of the flow, indirectly from ob-
servations is very difficult. For instance, XRBs are thought
to have mildly relativistic jets with 2 < «; < 5, while the
Lorentz factor of AGN could span a larger range. However,
recent works have shown that the range of indirectly inferred
Lorentz factors for XRBs could be biased towards the lower
end (Fender 2003; Miller-Jones et al. 2006) and in fact be
the same of AGN (v; ~ 1 — 50). With the solutions that
we present here, the velocity profile is determined as part of
a jet solution, and can be constrained together with other
observables.

With the increasing attention on polarisation studies
and the growing number of current and upcoming devoted
facilities, particularly the first X-ray polarimeter IXPE
(Imaging X-ray Polarimetry Explorer, Weisskopf et al.
2016), it is crucial to properly model the jet magnetic field
and the emission produced by such configuration of fields
and particles. Indeed, as shown by various works, e.g. Perl-
man et al. (1999); Avachat et al. (2016); Russell & Shahbaz
(2014), multiwavelength polarisation studies can help con-
strain the magnetic field morphology over large scales. The
parameter degeneracy in the evaluation of the spectral en-
ergy distribution of the given source is also greatly reduced
by polarisation measurements. The need of a more detailed
MHD treatment of the modelling of jets, which could be
used to infer their emission is therefore compelling.

7 SUMMARY AND CONCLUSION

We presented here a new numerical scheme to solve
the equations for stationary, axisymmetric, radially self-
similar, relativistic MHD jets. Such class of jet models have
been studied extensively over the last three decades and
adopted in numerical studies and simulations of the accel-
eration/collimation region of jets with various applications,
from gamma-ray bursts to young stellar objects. In the case
of semi-analytical models of PMM10,PMM13,PMM14, the
numerical approach adopted for the integration of the equa-
tions describing the outflow was heavily affecting the effi-
ciency of the parameter space search. Moreover, in the most
recent development, the gravity terms in PMM14 were cal-
culated with excessive approximations, which led to extra
inaccuracies in the results. We avoid inconsistent approxi-
mations and also use the correct derivatives of the gravita-
tional potential with respect to 6: in this way we use fully
self-consistent gravity terms. With this new setup, we are
able to recover and compare the solutions found in PMM14
as a test for our algorithm. The consistency between the
equations affects the parameters of the solutions and, con-
sequently, the observables that we derive from them. Once
the extra approximations are removed, the contribution of
gravity is stronger and this leads to a more restricted range
of radii within which self-similarity holds for a given set of
outflow parameters.

We were able to find solutions corresponding to sin-
gle streamlines in large parts of the parameter space. The

multiple jet configurations retrieved from the initial search
presented in this paper are shown to be diverse in geometri-
cal and dynamical properties, such as magnetic-to-thermal
energy ratio at the jet foot point, bulk velocity, morphology
of the streamlines and the position of the MFP. However,
the parameter space is not continuous and the exploration
along a specific direction, i.e. varying the value of a given
parameter, can be interrupted due to the approach of phys-
ical limits or the break-down of our assumptions. Solutions
can cease to exist because of the jet velocity approaching
the speed of light around the MFP or due to the impos-
sibility of launching the jet because of a too small energy
reservoir at the base. In the latter case, the flow keeps circu-
lating around the jet axis and never gains enough poloidal
velocity to be slung out. Alternatively, solutions cannot be
found when the LRP takes place before the MFP, while our
method is constructed so to cross all three singular points.
By studying the evolution of the energy and the velocity
components for all solutions, we encounter both cold and hot
relativistic jets, the latter configurations exhibiting counter-
rotation at distances ~ 0.1 — 10° ry. With the exploration
of the parameter space that we have conducted, we are able
to cover a large area of the parameter space and to move
towards a desired direction, e.g. higher bulk Lorentz factors,
by making use of the trends that we observed so far.
Taking into account the large variety of jet configura-
tions and dynamics that we can obtain with our numerical
scheme, the extension to other accreting objects, e.g. young
stellar objects, is within the capabilities of this model. Fu-
ture steps will be taken to increase the density of the solu-
tion grid and cover larger volumes of the parameter space.
This mapping of the parameter space is ultimately aimed
at providing a dynamic and flexible base for future coupling
with a radiative code. That, in turn, will eventually allow
data-fitting of both XRBs and AGN, which will be the sub-
ject of forthcoming papers. We are also aware of the need
to benchmark the results of our method to fully numerical
simulations to properly quantify the limits of our approach.
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APPENDIX A: DEFINITIONS OF THE EQUATIONS

We present here the system of equations (1)-(4) in its full form as given in PMM14 and we report the changes in the function
of the gravitational pseudo-potential.

The Bernoulli equation and the transfield equation assume the same form when we write them down in terms of the functions
A-;, B;,C; with i = 1,2

am? dyp

AIW + B a0 =C (A1)
am? dip
Az 20 +32@ Co (A2)
where
_ o’ (0+9) pad \2AM? (1-GH? (@i C-1(E-1) 1 | M2 cos(0+) (A3)
"~ sin?@sin(f + ) | \ Foum G? (1 — M?—z2)3 Fom) 2-T)¢+T —1 M2 G* sin(0 + )
M4
B :@ (A4)
_COS(TZ’) C052(9+w) M332A : (1- M? _1’3\)2 o 51’?& ,UxA Ao oag2 232 4
¢ = sin® @ sin(8 + 1) Fom ) (1— M2 —g2)2 Foum Fou ) G4(1— M2 — 2)3 (61— M — )" +C5
—2*(G* = M? —2°) — (1 - M? = 2°)G*(1 — 23)(G* — az2)]}
2\ 2 2 212 2 4
. A ?(1-G*)? (&} T-nE-1 &
Az =sin(f + ) cos(0 + ) (FO'M) (= MZ—22) Fon) @-Te4T—1000 (A5)
w2 (1—a?)
Bs =sin” 60 {6032(9—&-1&) M } (A6)
_cos(¥)sin(0+v) G* | (pad \*(1-M>—23)? (&R ), (pad )’ 22 21 vy a2 2
Ce = sin 6 M?2 Fowum (1 — M2 —22)2 Fowum + Fowum G2(1—M2—x2)3M 1-6Ha-M )
2 (2 \P(D—1)(F-2)¢E-1) 2 2 2y cos(y)sinOsin(0 + )
+W<F0M) r + 207+ (1= M7 =27 cos?(0 + 1)
sin® 6 2o (A ) M- GPE-) - (- M -],
+cos2(0+w)(F_2_Fm +m)+(FUM) ME(1 = M2 = 32)2 +C5. (A7)
where p = g/ /(1 — P;). The last terms in the C; are the gravity terms and they can be written schematically as
Cf = fi(P) CI™F, CF = faPg) G777 (A8)
where
Cohnor _ 1R cost(0+v) [GP(1L— M? —oR)? — o (G2 — M? —a?)? (a9)
T P20} sin?0 G?(1 — M? — z2)?
4 2 2 242 2,2 242 .2
bor _ [ \[#2(I=M?—a})’ @ (1-G? T-1&€-1)], 1, 5 sin’f )
¢ _{(F%gd) {MQ AP =227 2@ —ir =2 T e | Tt ey pes @Y
(A10)

The functions f;(Py) (¢ = 1,2) of the potential can be evaluated in a Newtonian or a Paczyiisky-Wiita scenario. The choice of
using the Paczyrisky-Wiita pseudo-potential is easily motivated. The Paczynisky-Wiita potential diverges at the Schwarzschild
radius, s = 27, so it mimics general relativity with the advantage of maintaining a newtonian formalism. If we define the
potential as

P, if Newton

P, = ) All
& m, if Paczynsky-Wiita ( )

where ® = sin(0)/(waG) = rg/r, wa is in units of 7, = GM/c?. Defining the following function

F(P,) = 1, if Newton (A12)
87 ) 14 2P,, if Paczynisky-Wiita,

the gravity terms appear in the convenient form (A8) with

f(Pg)

f2(Pg):Pg -F(Pg)- (Al?’)
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It is worth noting that the equations (A13) differ from PMM14 which in our notation are
fi(Pe) = =Ps,  [2(Ps) = P (A14)

Rearranging the terms in Eq. (A1)-(A2), we obtain two differential equations, (1) and (5), for M? and .
At the Alfvén point, all the equations in the system of equations (1)-(4) can be regularized with De L’Hoépital rule,
starting from the quantities 0 = 0a,% = ¥a,x = za and £ = €4, as follows:

Ga =1, MR =1—z3 (A15)
2 2 2
Th — T 224 COS YA
=_"A 7 = Al
o I—M?—42 A pa sinfa cos(0a + ¥a)’ o)
1—M2—xi . 1 1-G? 70'A/5U?\ G? — M? — 2? 7Ii—(1—$‘i)0A (A17)
1-M2—z ), oa+l’ 1-M2—z), oa+l’ 1-M2—z ),  23(oa+1)
dM? dG? 2 cos A
= pa, = — A18
do |, pa df |, sinfacos(6a +a) ( )

where pa is given by the Alfvén regularity condition (ARC) as described in Polko et al. (2010) and Polko et al. (2014). The
ARC is obtained by calculating the wind equation at the Alfvén point using the De L’Hépital rule (Eq. A15-A18). Therefore
we have

M? -
d _ B2aCia = B1,aCoa ’ (A19)
do |, Ai1aB2a— A2aBia
that, after recasting terms, becomes
r—1F-2 2y 4 . sin?(6a)(1 — z3)? 2
0=-9 2———— —1)(1— —_— (1 — F—-1)-1
A+ 2 F2U}2\{€A(§A )1 — 2a)zA + cos (i + ) [(1—z2)( ) — 1]
2,2 242 2,2 2
W TA 2 (1 —z3) pra l—xx 2 2112
F-1 - —oa(l—
T oy, T VoA G e T R (oa 1 1) [#a = oa(t = a3)]
n 2cos.(wA) sin(fa) sin(ya + HA):ci(l _2)? oa+1 (A20)

cos?(Ya + 0a) oA

where the gravity term is given by

2\ 2 2
[%
Gn = CfaBan — CiaBia = fia(Po)(1—3)sin(0x) tan(n +05)7 § (S22 ) S WaL0a) 4 ) o2
Fom sin?(604)

212 + (1- xi)ai
223 (1 — 23) (oA + 1)2
gh T—1&a(6a—1)

_ n 1423 sin®(0a)
(Fom)? T 1—2% 2 cos?(¢(6a +Ya))
with f1,A(Ps) and f2,a(FPg) are calculated with ® = sin(6a)/wa.

— faa(FPe)(1— fﬂi)2 0082(9A +9a) { (/‘Axi)

Foy

(A21)

APPENDIX B: DERIVATION OF THE PSEUDO-POTENTIAL FUNCTIONS IN THE GRAVITY
TERMS

Here we give the details of the derivation of the functions A13. First and foremost, we need to carry out the derivative of
the gravitational potential to include them into the system (A1)-(A2). We take the derivative with respect to r (since the
gravitational potential depends solely on r), and then, applying the assumptions of axisymmetry and self-similarity, we obtain
the corresponding forms in 6. Since we want to keep the flexibility of changing between the Newtonian potential and the
Paczynsky-Wiita pseudo-potential, we differentiate both P,s as follows

P

g .
%_ - if Newton (B1)
or P,

- Tg(l +2P,), if Paczynisky-Wiita

or, in a more compact way

0Py _ I
o = . 7 () (B2)

where F(P;) is defined as in A12. Now, we need to calculate again the gravity terms in both (A1)-(A2). Let’s start from the
gravity term in the transfield equation in the general form equivalent to Eq. 8 of PMM14

—(vpo + E/*)*V Py - (B3)
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where € = y(y — 1)poc® + P(y°T/(T' — 1) — 1) + (B? + E?)/(87) is the energy density. Since we are calculating the derivative
with respect to r and 7t = cos(f + )7 — sin(6 + ¥)6 (7 is the unit vector perpendicular to the field line, towards the jet axis,
as defined in Section 2.1 and 3.1 of VK03), then VP, - i = cos(f + 1), Ps. The derivative of Py with respect to r is given by
Eq. (B1).

Recasting the term in parenthesis in Eq. (B3) in dimensionless units (see Appendix D and VKO03), applying self-similarity
(0/0¢ = 0) and using w = rsinf and G = w/wa, we have

sin 0

VP, - f = cos(0 + 1) —— Py F(Pe). (B4)

w
therefore the gravity term in the transfield equation is

C;—,noP
cos2(0 + 1)

3 {BS@F_Q sin 6 (B5)

Ao Gh COS(9+1/J)} [coSQ(G + ) Py F(Py)]

Similarly, we take the derivative of the Bernoulli equation (Eq. 4 in PMM14) with respect to r and, using Eq. 6, we find

u _pd |1
ar — M @ |- P2

1

| =2 L rra (B6)

which once being included in the derivative of the Bernoulli equation under the self-similar assumption becomes

Py

Wf(Pg) ciomer (B7)

{—2tan(6 + V)G F? o3 (1 — M? — z*)? sin® 6} [—2u2
It is worth noting that the scaling of both equations B5 and B7 (terms in curly brackets) can be simplified from all functions
A, B,C, as done by PMM14.

APPENDIX C: INITIAL CONDITIONS

Once we find the initial conditions for M? and G? and their derivatives at the three critical points, we perform the integration
from each point with an adaptive stepsize Runge-Kutta scheme as described in Press et al. (1993, hereafter NR93), until we
reach the midpoints @mia, mrp and Omiqa, msp. However, setting up the initial conditions is both the real challenge and the base
for the robustness of our scheme.

As we mentioned in the Sect.3, given the full set of parameters, the initial conditions at the AP are readily calculated.
The only numerical step is finding dM?/df. The derivative of M? at Alfvén is commonly referred to as pa and can be found
from the Alfvén regularity condition as described in Polko et al. (2010, 2014) and in eq. A20. Now the integral of motion p’
can also be calculated (see Eq. 6) and all the other quantities can be analytically calculated at the Alfvén point.

The situation is more complicated at the modified magnetosonic points, since no analytical condition is known. Our
solution is a sequence of root finding routines to find the zeroes of specific functions. The method is almost the same at both
MSP and MFP, therefore we will describe only the case of the MFP, highlighting the few differences when they exist.

Given the value of Oyrp, we need to find the values of M? and G? that gives N1 = Mo = D = 0. In order to do this, we
minimize the critical function

Cr = N3 + D% (C1)

Even if it can be shown that if any two of N1, N2, D are zero, the third one must be zero as well, we found that for numerical
reasons using N2 and D is more robust. We also found that at MSP it is better to use all the three numbers

Cs = N7 + N3 + D% (€2)

That has to do with the topology of the zeroes of the three numbers, which in the regimes we explored turn out to have deep
narrow valleys running almost parallel to each other, so that it is difficult to find their intersection with enough precision.

In order to find the minimum of the critical function, we create a grid in the M? and G? space with boundaries dictated
by the location of the Alfvén point. We then use the three points which have the lowest values of the critical function C
as the starting nodes of a global simplectic minimising algorithm such as amebsa (see NR93, for a description). When the
minimum has been found, we try to polish the solution with a further local powell minimising routine (NR93). At the end,
we further verify that the absolute values of all the three numbers N1, N2 and D are close enough to zero (j 10 '°). While
this procedure of polishing the first solution and then cross checking again seems redundant and CPU consuming, it is our
experience that this process avoids having spurious starting points which would contaminate the results of the next steps in
our solution finding scheme.

Although we now know the initial values of M? and G?, we cannot yet start the integration, since the derivative dM?/d6
is still unknown: i.e. Eq. (1) would still be zero over zero. In order to recover the value of the derivative, we search the roots
of another function.
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For a point 6, very close to the critical point at Onrp, we can Taylor expand G? and M? to first order:

G*(Oumrp) =G*(0) + % (Onrp — 0) (C3)
M?(Onrp) =M (0) + d% , (Onirp — 0) (C4)

Combining the two equations to eliminate fyirp — 0, we define the following function

aMm?
do

Y (M?(0)) = [M?(0) — M*(6umrp)] — [G*(0) — G* (Orirp)] o2
a0

‘ ‘ (C5)

The final step is finding the zeroes of this function through an iterative method. Note that only M?(6) is a free variable. We
approximate G?(0) — G*(Omrp) = dGQ/dH‘g (6 — Onrp). Once a guess of M?(0) is tried, we can calculate dM?/df and

dGz/dQ at 6 where the first one is not smgular. At MFP we take 6 = Onvrp(1+9) and at MSP we take 6 = Ovsp(1 —d), where
§=10"".

In most cases we find two roots for M?(0): one smaller and one larger than M?(fyrp). Based on the physical picture of
the accelerating jet and that sz/d9|A < 0, we assume that the derivative is negative also at the critical points. Therefore at
MFP we choose M?(0) < M?(6mrp) and at MSP we take M?(0) > M?(0msp). We cannot justify this assumption based on
general principles, and cannot provide a definitive proof, but we performed various tests allowing for the alternative choices,
and never managed to find a solution. Now that we have the initial conditions we can integrate.

APPENDIX D: CONVERSION TO PHYSICAL QUANTITIES

When a solution is found, we convert and calculate all the relevant quantities in physical units to be comparable with
observables. The conversions are taken from VKO03. A few additional input quantities need to be provided in order to transform
back a solution to physically measurable quantities. These are the magnetic field strength at the base, By, the ratio between
radiation and matter pressure, Py/Pr (section 4, Eq. 29 in VK03) and the streamline label a = w? /w3 (Section 2.1, Eq. 17
in VKO03). The quantities « and By provide the scaling for the given solution.

©rG W 1M )
- B € D1
w = waG, z tan(0)’ Y= = € (1= M2 —22) (D1)
1/4
By ((6-1)MT Va2 3(r 0, 0 <1 . 2
Te = 2 P P = s h 1 — Te o D2
wAFUM( q(1+ Pu/Pr) 47TaF M/ R 1.85, 0 > 1 wit 0 k /mC ( )
cFoyM? sin(6) cxa W M2 g2
T T2 ol - 0) = o = 4/ V2 2 D
o R e e N ] (D3)
By sin(f)aF—2/2 ' . 1-G2 B2/
Be = = rcoso 10 By = — Bioi = /B2 + B2 D4
P G2cos(yp +0) ® - Pg)JUA 1_M2— 22 Fouz tot 2+ B; (D4)
po = @AEBGa " BjaTP T -1 a) g(6-1) o)
0 ArM?2(cFom)?’ A T (Fouw)? M?
zF1AB,
h:f% S:—% //L —Etot—(h"’S)(l— )—[,L(l—P) (D6)
A
_1 Vo
0= 2 (vo-Bogg) (D7)

where a is the Stefan-Boltzmann constant.

REFERENCES

Asada K., Nakamura M., 2012, ApJ, 745, 128

Asada K., Nakamura M., Doi A., Nagai H., Inoue M., 2014, ApJ, 781, L2

Avachat S. S., Perlman E. S.; Adams S. C., Cara M., Owen F., Sparks W. B., Georganopoulos M., 2016, ApJ, 832, 3
Barniol Duran R., Tchekhovskoy A., Giannios D., 2016, preprint, (arXiv:1612.06929)

Belloni T. M., Motta S. E., 2016, Astrophysics of Black Holes: From Fundamental Aspects to Latest Developments, 440, 61
Blandford R. D., Payne D. G., 1982, MNRAS, 199, 883

Bogovalov S., Tsinganos K., 1999, MNRAS, 305, 211

Cayatte V., Vlahakis N., Matsakos T., Lima J. J. G., Tsinganos K., Sauty C., 2014, ApJ, 788, L19

Connors R. M. T., et al., 2016, preprint, (arXiv:1612.00953)

Contopoulos J., 1994, ApJ, 432, 508

MNRAS 000, 000-000 (0000)


http://dx.doi.org/10.1088/2041-8205/745/2/L28
http://adsabs.harvard.edu/abs/2012ApJ...745L..28A
http://dx.doi.org/10.1088/2041-8205/781/1/L2
http://adsabs.harvard.edu/abs/2014ApJ...781L...2A
http://dx.doi.org/10.3847/0004-637X/832/1/3
http://adsabs.harvard.edu/abs/2016ApJ...832....3A
http://arxiv.org/abs/1612.06929
http://dx.doi.org/10.1007/978-3-662-52859-4_2
http://adsabs.harvard.edu/abs/2016ASSL..440...61B
http://dx.doi.org/10.1093/mnras/199.4.883
http://adsabs.harvard.edu/abs/1982MNRAS.199..883B
http://dx.doi.org/10.1046/j.1365-8711.1999.02413.x
http://adsabs.harvard.edu/abs/1999MNRAS.305..211B
http://dx.doi.org/10.1088/2041-8205/788/1/L19
http://adsabs.harvard.edu/abs/2014ApJ...788L..19C
http://arxiv.org/abs/1612.00953
http://dx.doi.org/10.1086/174590
http://adsabs.harvard.edu/abs/1994ApJ...432..508C

Self-similar relativistic MHD outflows 21

Contopoulos J., 1995, ApJ, 450, 616

Corbel S., Fender R. P., 2002, ApJ, 573, L35

Crumley P., Ceccobello C., Connors R. M. T., Cavecchi Y., 2017, preprint, (arXiv:1703.02842)

Doeleman S. S.; et al., 2008, Nature, 455, 78

Fabian A. C., 2012, ARA&A, 50, 455

Falcke H., Kording E., Markoff S., 2004, A&A, 414, 895

Fender R. P., 2003, MNRAS, 340, 1353

Fender R. P., Belloni T. M., Gallo E., 2004, MNRAS, 355, 1105

Fendt C., Ouyed R., 2004, The Astrophysical Journal, 608, 378

Feroz F., Hobson M. P., 2008, MNRAS, 384, 449

Feroz F., Hobson M. P., Bridges M., 2009, MNRAS, 398, 1601

Feroz F., Hobson M. P., Cameron E., Pettitt A. N., 2013, preprint, (arXiv:1306.2144)

Gallo E., Fender R., Kaiser C., Russell D., Morganti R., Oosterloo T., Heinz S., 2005, Nature, 436, 819

Giroletti M., et al., 2004, ApJ, 600, 127

Hada K., et al., 2016, ApJ, 817, 131

Harris D. E., Krawczynski H., 2006, ARA&A, 44, 463

Hawley J. F., Krolik J. H., 2006, ApJ, 641, 103

Koide S., Shibata K., Kudoh T., Meier D. L., 2002, Science, 295, 1688

Komissarov S. S., Vlahakis N., Koénigl A., Barkov M. V., 2009, MNRAS, 394, 1182

Komissarov S. S., Vlahakis N., Konigl A., 2010, MNRAS, 407, 17

Laurent P., Rodriguez J., Wilms J., Cadolle Bel M., Pottschmidt K., Grinberg V., 2011, Science, 332, 438

Li Z.-Y., Chiueh T., Begelman M. C., 1992, ApJ, 394, 459

Lovelace R. V. E., Contopoulos J., 1990, in Beck R., Wielebinski R., Kronberg P. P., eds, IAU Symposium Vol. 140, Galactic and
Intergalactic Magnetic Fields. p. 337

Maitra D., Markoff S., Brocksopp C., Noble M., Nowak M., Wilms J., 2009, MNRAS, 398, 1638

Malzac J., 2014, Mon. Not. Roy. Astron. Soc., 443, 299

Markoff S., 2010, in Belloni T, ed., Lecture Notes in Physics, Berlin Springer Verlag Vol. 794, Lecture Notes in Physics, Berlin Springer
Verlag. p. 143 (arXiv:0909.2574), doi:10.1007/978-3-540-76937-8'6

Markoff S., Falcke H., Fender R., 2001, A&A, 372, 1.25

Markoff S., Nowak M. A., Wilms J., 2005, ApJ, 635, 1203

Marti-Vidal 1., Muller S., Vlemmings W., Horellou C., Aalto S., 2015, Science, 348, 311

McKinney J. C., 2006, MNRAS, 368, 1561

Meier D. L., 2003, New Astron. Rev., 47, 667

Meier D. L., 2012, Black Hole Astrophysics: The Engine Paradigm

Mendoza S., Longair M. S., 2001, MNRAS, 324, 149

Merloni A., Heinz S., di Matteo T., 2003, MNRAS, 345, 1057

Mertens F., Lobanov A. P., Walker R. C., Hardee P. E., 2016, A&A, 595, A54

Meyer E. T., Sparks W. B., Biretta J. A., Anderson J., Sohn S. T., van der Marel R. P., Norman C., Nakamura M., 2013, ApJ, 774, L.21

Michel F. C., 1969, ApJ, 158, 727

Migliari S., Tomsick J. A., Maccarone T. J., Gallo E., Fender R. P., Nelemans G., Russell D. M., 2006, ApJ, 643, L41

Miller-Jones J. C. A., Fender R. P., Nakar E., 2006, MNRAS, 367, 1432

Moscibrodzka M., Falcke H., Shiokawa H., 2016, A&A, 586, A38

Nakamura M., Asada K., 2013, ApJ, 775, 118

Nemmen R. S., Tchekhovskoy A., 2015, MNRAS, 449, 316

Parker E. N., 1958, ApJ, 128, 664

Pepe C., Vila G. S., Romero G. E., 2015, A&A, 584, A95

Perlman E. S.; Biretta J. A., Zhou F., Sparks W. B., Macchetto F. D., 1999, AJ, 117, 2185

Polko P., Meier D. L., Markoff S., 2010, ApJ, 723, 1343

Polko P., Meier D. L., Markoff S., 2013, MNRAS, 428, 587

Polko P., Meier D. L., Markoff S., 2014, MNRAS, 438, 959

Potter W. J., Cotter G., 2012, MNRAS, 423, 756

Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1993, Numerical Recipes in FORTRAN; The Art of Scientific Computing,
2nd edn. Cambridge University Press, New York, NY, USA

Prieto M. A., Fernandez-Ontiveros J. A., Markoff S., Espada D., Gonzédlez-Martin O., 2016, MNRAS, 457, 3801

Rawlings S., Saunders R., 1991, Nature, 349, 138

Rees M. J., Meszaros P., 1994, ApJ, 430, 1.93

Ressler S. M., Tchekhovskoy A., Quataert E., Chandra M., Gammie C. F., 2015, MNRAS, 454, 1848

Romero G. E., Torres D. F., Kaufman Bernadé M. M., Mirabel I. F., 2003, A&A, 410, L1

Romero G. E., Boettcher M., Markoff S., Tavecchio F., 2017, Space Sci. Rev.,

Russell D. M., Shahbaz T'., 2014, MNRAS, 438, 2083

Russell T. D., Soria R., Miller-Jones J. C. A., Curran P. A., Markoff S., Russell D. M., Sivakoff G. R., 2014, MNRAS, 439, 1390

Russell H. R., Fabian A. C., McNamara B. R., Broderick A. E., 2015, MNRAS, 451, 588

Sauty C., Tsinganos K., 1994, A&A, 287, 893

Sauty C., Cayatte V., Lima J. J. G., Matsakos T., Tsinganos K., 2012, ApJ, 759, L1

Stoer J., Bulirsch R., 2013, Introduction to numerical analysis. Vol. 12, Springer Science & Business Media

Tchekhovskoy A., Bromberg O., 2016, MNRAS, 461, L46

Tchekhovskoy A., Narayan R., McKinney J. C.,; 2011, MNRAS, 418, L.79

Vlahakis N., Koénigl A., 2003, ApJ, 596, 1080

MNRAS 000, 000-000 (0000)


http://dx.doi.org/10.1086/176170
http://adsabs.harvard.edu/abs/1995ApJ...450..616C
http://dx.doi.org/10.1086/341870
http://adsabs.harvard.edu/abs/2002ApJ...573L..35C
http://arxiv.org/abs/1703.02842
http://dx.doi.org/10.1038/nature07245
http://adsabs.harvard.edu/abs/2008Natur.455...78D
http://dx.doi.org/10.1146/annurev-astro-081811-125521
http://adsabs.harvard.edu/abs/2012ARA%26A..50..455F
http://dx.doi.org/10.1051/0004-6361:20031683
http://adsabs.harvard.edu/abs/2004A%26A...414..895F
http://dx.doi.org/10.1046/j.1365-8711.2003.06386.x
http://adsabs.harvard.edu/abs/2003MNRAS.340.1353F
http://dx.doi.org/10.1111/j.1365-2966.2004.08384.x
http://adsabs.harvard.edu/abs/2004MNRAS.355.1105F
http://dx.doi.org/10.1111/j.1365-2966.2007.12353.x
http://adsabs.harvard.edu/abs/2008MNRAS.384..449F
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://adsabs.harvard.edu/abs/2009MNRAS.398.1601F
http://arxiv.org/abs/1306.2144
http://dx.doi.org/10.1038/nature03879
http://adsabs.harvard.edu/abs/2005Natur.436..819G
http://dx.doi.org/10.1086/379663
http://adsabs.harvard.edu/abs/2004ApJ...600..127G
http://dx.doi.org/10.3847/0004-637X/817/2/131
http://adsabs.harvard.edu/abs/2016ApJ...817..131H
http://dx.doi.org/10.1146/annurev.astro.44.051905.092446
http://adsabs.harvard.edu/abs/2006ARA%26A..44..463H
http://dx.doi.org/10.1086/500385
http://adsabs.harvard.edu/abs/2006ApJ...641..103H
http://dx.doi.org/10.1126/science.1068240
http://adsabs.harvard.edu/abs/2002Sci...295.1688K
http://dx.doi.org/10.1111/j.1365-2966.2009.14410.x
http://adsabs.harvard.edu/abs/2009MNRAS.394.1182K
http://dx.doi.org/10.1111/j.1365-2966.2010.16779.x
http://adsabs.harvard.edu/abs/2010MNRAS.407...17K
http://dx.doi.org/10.1126/science.1200848
http://adsabs.harvard.edu/abs/2011Sci...332..438L
http://dx.doi.org/10.1086/171597
http://adsabs.harvard.edu/abs/1992ApJ...394..459L
http://dx.doi.org/10.1111/j.1365-2966.2009.14896.x
http://adsabs.harvard.edu/abs/2009MNRAS.398.1638M
http://dx.doi.org/10.1093/mnras/stu1144
http://arxiv.org/abs/0909.2574
http://dx.doi.org/10.1007/978-3-540-76937-8_6
http://dx.doi.org/10.1051/0004-6361:20010420
http://adsabs.harvard.edu/abs/2001A%26A...372L..25M
http://dx.doi.org/10.1086/497628
http://adsabs.harvard.edu/abs/2005ApJ...635.1203M
http://dx.doi.org/10.1126/science.aaa1784
http://adsabs.harvard.edu/abs/2015Sci...348..311M
http://dx.doi.org/10.1111/j.1365-2966.2006.10256.x
http://adsabs.harvard.edu/abs/2006MNRAS.368.1561M
http://dx.doi.org/10.1016/S1387-6473(03)00120-9
http://adsabs.harvard.edu/abs/2003NewAR..47..667M
http://dx.doi.org/10.1046/j.1365-8711.2001.04271.x
http://adsabs.harvard.edu/abs/2001MNRAS.324..149M
http://dx.doi.org/10.1046/j.1365-2966.2003.07017.x
http://adsabs.harvard.edu/abs/2003MNRAS.345.1057M
http://dx.doi.org/10.1051/0004-6361/201628829
http://adsabs.harvard.edu/abs/2016A%26A...595A..54M
http://dx.doi.org/10.1088/2041-8205/774/2/L21
http://adsabs.harvard.edu/abs/2013ApJ...774L..21M
http://dx.doi.org/10.1086/150233
http://adsabs.harvard.edu/abs/1969ApJ...158..727M
http://dx.doi.org/10.1086/505028
http://adsabs.harvard.edu/abs/2006ApJ...643L..41M
http://dx.doi.org/10.1111/j.1365-2966.2006.10092.x
http://adsabs.harvard.edu/abs/2006MNRAS.367.1432M
http://dx.doi.org/10.1051/0004-6361/201526630
http://adsabs.harvard.edu/abs/2016A%26A...586A..38M
http://dx.doi.org/10.1088/0004-637X/775/2/118
http://adsabs.harvard.edu/abs/2013ApJ...775..118N
http://dx.doi.org/10.1093/mnras/stv260
http://adsabs.harvard.edu/abs/2015MNRAS.449..316N
http://dx.doi.org/10.1086/146579
http://adsabs.harvard.edu/abs/1958ApJ...128..664P
http://dx.doi.org/10.1051/0004-6361/201527156
http://adsabs.harvard.edu/abs/2015A%26A...584A..95P
http://dx.doi.org/10.1086/300844
http://adsabs.harvard.edu/abs/1999AJ....117.2185P
http://dx.doi.org/10.1088/0004-637X/723/2/1343
http://adsabs.harvard.edu/abs/2010ApJ...723.1343P
http://dx.doi.org/10.1093/mnras/sts052
http://adsabs.harvard.edu/abs/2013MNRAS.428..587P
http://dx.doi.org/10.1093/mnras/stt2155
http://adsabs.harvard.edu/abs/2014MNRAS.438..959P
http://dx.doi.org/10.1111/j.1365-2966.2012.20918.x
http://adsabs.harvard.edu/abs/2012MNRAS.423..756P
http://dx.doi.org/10.1093/mnras/stw166
http://adsabs.harvard.edu/abs/2016MNRAS.457.3801P
http://dx.doi.org/10.1038/349138a0
http://adsabs.harvard.edu/abs/1991Natur.349..138R
http://dx.doi.org/10.1086/187446
http://adsabs.harvard.edu/abs/1994ApJ...430L..93R
http://dx.doi.org/10.1093/mnras/stv2084
http://adsabs.harvard.edu/abs/2015MNRAS.454.1848R
http://dx.doi.org/10.1051/0004-6361:20031314-1
http://adsabs.harvard.edu/abs/2003A%26A...410L...1R
http://dx.doi.org/10.1007/s11214-016-0328-2
http://dx.doi.org/10.1093/mnras/stt2330
http://adsabs.harvard.edu/abs/2014MNRAS.438.2083R
http://dx.doi.org/10.1093/mnras/stt2498
http://adsabs.harvard.edu/abs/2014MNRAS.439.1390R
http://dx.doi.org/10.1093/mnras/stv954
http://adsabs.harvard.edu/abs/2015MNRAS.451..588R
http://adsabs.harvard.edu/abs/1994A%26A...287..893S
http://dx.doi.org/10.1088/2041-8205/759/1/L1
http://adsabs.harvard.edu/abs/2012ApJ...759L...1S
http://dx.doi.org/10.1093/mnrasl/slw064
http://adsabs.harvard.edu/abs/2016MNRAS.461L..46T
http://dx.doi.org/10.1111/j.1745-3933.2011.01147.x
http://adsabs.harvard.edu/abs/2011MNRAS.418L..79T
http://dx.doi.org/10.1086/378226
http://adsabs.harvard.edu/abs/2003ApJ...596.1080V

22 Ceccobello et al.

Vlahakis N., Tsinganos K., Sauty C., Trussoni E., 2000, MNRAS, 318, 417

Weber E. J., Davis Jr. L., 1967, ApJ, 148, 217

Weisskopf M. C., et al., 2016, in Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray. p. 990517,
doi:10.1117/12.2235240

Yuan F., Cui W., Narayan R., 2005, ApJ, 620, 905

Zdziarski A. A., Lubinski P., Sikora M., 2012, MNRAS, 423, 663

Zdziarski A. A., Stawarz L., Pjanka P., Sikora M., 2014, MNRAS, 440, 2238

MNRAS 000, 000-000 (0000)


http://dx.doi.org/10.1046/j.1365-8711.2000.03703.x
http://adsabs.harvard.edu/abs/2000MNRAS.318..417V
http://dx.doi.org/10.1086/149138
http://adsabs.harvard.edu/abs/1967ApJ...148..217W
http://dx.doi.org/10.1117/12.2235240
http://dx.doi.org/10.1086/427206
http://adsabs.harvard.edu/abs/2005ApJ...620..905Y
http://dx.doi.org/10.1111/j.1365-2966.2012.20903.x
http://adsabs.harvard.edu/abs/2012MNRAS.423..663Z
http://dx.doi.org/10.1093/mnras/stu420
http://adsabs.harvard.edu/abs/2014MNRAS.440.2238Z

	1 Introduction
	2 Set up of the equations
	3 Numerical method
	3.1 Fixed and guessed parameters
	3.2 Initial conditions at the singular points
	3.3 Goodness of solution and solution finding

	4 Comparison with previous solutions
	4.1 The self-similarity assumption

	5 Parameter space study
	5.1 Counter-rotation in hot jets
	5.2 On the effect of M and A
	5.3 Exploring other regions of the parameter space

	6 Comparison with observations
	7 Summary and conclusion
	8 Acknowledgement
	A Definitions of the equations
	B Derivation of the pseudo-potential functions in the gravity terms
	C Initial conditions
	D Conversion to physical quantities

