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Abstract Methane hydrate saturation estimates from remote geophysical data and borehole logs are
needed to assess the role of hydrates in climate change, continental slope stability, and energy resource
potential. Here we present laboratory hydrate formation/dissociation experiments in which we determined
the methane hydrate content independently from pore pressure and temperature and from electrical
resistivity. Using these laboratory experiments, we demonstrate that hydrate formation does not take up all
the methane gas or water even if the system is under two phase water-hydrate stability conditions and gas is
well distributed in the sample. The experiment started with methane gas and water saturations of 16.5%
and 83.5%, respectively; during the experiment, hydrate saturation proceeded up to 26% along with 12% gas
and 62% water remaining in the system. The coexistence of hydrate and gas is one possible explanation for
discrepancies between estimates of hydrate saturation from electrical and acoustic methods. We suggest
that an important mechanism for this coexistence is the formation of a hydrate film enveloping methane gas
bubbles, trapping the remaining gas inside.

1. Introduction

Hydrate is a naturally occurring ice-like, crystalline solid comprising a hydrogen-bonded water lattice with
trapped gas molecules that forms in seafloor sediments at high pressures and low temperatures
(Kvenvolden, 1993). Nearly all the gas in natural hydrates is methane, with the remainder comprising higher
order hydrocarbons such as ethane (Kvenvolden, 1993). Remote geophysical methods are used to quantify
seafloor methane hydrates over broad areas. Typically, these methods exploit the increase in seismic velocity
(e.g., Fohrmann & Pecher, 2012; Lee & Collett, 2006a; Schnurle et al., 2004) and electrical resistivity (e.g., Hsu
etal, 2014; Schwalenberg et al., 2010; Weitemeyer et al., 2006) caused when hydrate replaces saline water in
sediment pores. However, accurate quantification of methane hydrate saturation is hampered by uncertain-
ties in the relationship between these parameters and hydrate content (e.g., Goswami et al., 2015; Hsu et al.,
2014; Lee & Collett, 2008; Schnurle et al., 2004).

Subseabed electrical resistivity can be measured using borehole logging (e.g., Miyakawa et al., 2014) or
marine controlled source electromagnetic methods (e.g., Weitemeyer et al., 2006). Some field locations show
discrepancies between hydrate saturations derived from resistivity and seismic/sonic methods (Table 1). This
difference is a potential source of uncertainty in estimates from geophysical data of the carbon inventory
stored in hydrate and in resulting assessments of well stability and methane production from
hydrate reservoirs.

Hydrate content is often estimated from the increase in electrical resistivity compared to background sedi-
ments with no hydrates (e.g., Hsu et al., 2014; Lee & Collett, 2008; Schwalenberg et al., 2010; Weitemeyer
et al., 2006). However, this method does not differentiate between gas and hydrate because both have higher
resistivity than conductive pore fluid (e.g., Lee & Collett, 2008). Hereafter, the term gas is used to describe
methane that is not stored in hydrate or dissolved in water and may be mobile or immobile. In seismic data,
gas and hydrate have been identified from a decrease and increase in P wave velocity, respectively (e.g.,
Fohrmann & Pecher, 2012; Guerin et al., 1999; Lee & Collett, 2006a; Schnurle et al., 2004). Because of their
strong effect on P wave velocity (White, 1977), the presence of even small amounts of gas can obscure any
increase in velocity caused by the presence of hydrate. In this case, estimates of hydrate content based on
P wave velocity may differ significantly from those based on resistivity.
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Table 1 The presence of coexisting hydrate and gas within the gas hydrate
Hydrate Saturations From Resistivity and Seismic/Sonic Methods stability zone (GHSZ) has been inferred in several locations away

Hydrate saturation (%) from seabed methane plumes (e.g., Guerin et al., 1999; Milkov

Location Resistivity Seismic/sonic References Comments et al.,, 2004; Lee & Collett, 2006a; Miyakawa et al., 2014). Such field
— studies have attributed this presence of gas within the GHSZ to (i)

Go};‘; VZe_ar‘;?vi;n 1216 Y U sfc')sarg';ea influx of gas into the GHSZ along fracture/faults (Gorman et al,,
Hikuragnéi Margin, NZ ~34 ~25 3,4 Maximum 2002; Lee & Collett, 2006a; Smith et al.,, 2014); (ii) local deviations
ODP Leg 204, USA 5 from two phase water-hydrate stability conditions (pressure-tem-
Site 1244 65+39 102+37 perature [PT]-salinity) resulting in local hydrate dissociation within
Site 1245 79+55 104+56 the GHSZ (Guerin et al., 1999; Milkov et al., 2004); or (iii) hydrate for-
i:in:;fBasin 4‘223'8 6‘:):—'33‘2 P T — mation kinetics (Torres et al.,, 2004). Drilling activities may also dis-

e ' sociate hydrates around a well, releasing gas within the GHSZ (Lee
Nyegga, Norway 38 14-27 7,8 In chimney & Collett, 2006a).

Ve’s\ltgsAleyRudge, 20-30 ~1 210 Oc:tlic:iy At Site 1245 of ODP Leg 204, the amount of gas within the GHSZ was

inferred independently from NMR logs and sonic velocity logs, with 4
B e oL 2002, 20072 re et s s infered fom soric logs than from N logs (L &
Miyakawa et al. (2014); 7, Attias et al. (2016); 8, Plaza-Faverola et al. (2010);  Collett, 2006a). In the Kumano basin, Nankai Trough, offshore Japan,
9, Goswami et al. (2015); 10, Hustoft et al. (2009). the presence of coexisting gas within the GHSZ was inferred from
velocity and resistivity logs: In certain parts of the well, velocity
decreased with no corresponding decrease in resistivity, probably due to the presence of gas (Miyakawa
et al., 2014). In both these locations, transport of gas into the GHSZ along faults or local hydrate dissociation
during drilling has been inferred (Lee & Collett, 2006a; Miyakawa et al., 2014). Milkov et al. (2004) explained
the presence of gas within the GHSZ at Site 1249 of ODP Leg 204 by high residual pore water salinity, which
limited further hydrate formation (Hesse & Harrison, 1981; Liu & Flemings, 2006; Milkov et al., 2004). At Site
995 of ODP Leg 164, coexisting gas and hydrate in the base of the GHSZ have been explained by hydrate
dissociation in smaller pores because of capillary effects along with hydrate stability in bigger pores
(Guerin et al., 1999). Elsewhere, several locations do not show any evidence of coexisting hydrate and gas
within the GHSZ (e.g., Fujii et al., 2015).

However, gas can also be present in two phase water-hydrate stability conditions due to two mechanisms.
First, hydrate can contain inclusions of gas (Schicks et al., 2006), which could either be connected or
disconnected to the pore network. Disconnected inclusions (occlusions) could remain in the hydrate or
could also be a prehydrate phase, where hydrate formation is still in process (Schicks et al., 2006).
Occlusions of gas may be removed over time by diffusion, but in a dynamic pore fluid system with gas
production, diffusion is unlikely to dominate due to its relatively slow rate (Milkov et al., 2004; Suess
et al, 2001). Second, hydrate formation can block contacts between gas and water within sediment pores
and form pockets of gas (which could include several pores; e.g., Chaouachi et al.,, 2015; Yang et al.,, 2016).
Kinetic modeling of hydrate formation and dissociation in porous media suggests that it is highly unlikely
that hydrate can achieve true equilibrium because there are too many phases in the system (e.g., Vafaei
et al,, 2014). Therefore, the limiting phase (methane in excess water conditions and water in excess gas
conditions) is unlikely to be completely used up to form hydrates even if two phase water-hydrate stability
conditions prevail.

Here we present results from a laboratory experiment of methane hydrate formation and dissociation in
Berea sandstone. We calculated continuously the evolution of the brine, gas, and hydrate saturations during
hydrate formation and dissociation from pore pressure and temperature. Our calculation method does not
assume that hydrate formation continues until the limiting phase is exhausted, and we show that about
12% gas coexists with 26% hydrate under pressure, temperature, and salinity conditions favorable for more
hydrate formation.

2, Hydrate Formation and Dissociation Experiments

We conducted laboratory experiments involving repeated cycles of methane hydrate formation and dissocia-
tion inside a high-pressure cell under excess water conditions.
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Figure 1. Schematic diagram of the experimental setup, also showing the arrangement of electrodes around the Berea rock sample (5 cm diameter). Scales are

approximate.

2.1. Sample Properties and Experimental Setup

For the test, we selected a 2-cm height, 5-cm diameter core sample of Berea sandstone. The porosity was
0.22, and the absolute permeability was 448 mD (~4.5 x 107" m?) at atmospheric conditions. The permeabil-
ity was measured with (gas) permeameter and the porosity with a pycnometer.

The experiment was conducted in a stainless steel triaxial cell core holder, designed to host and pressurize
5-cm-diameter rock samples up to 65 MPa of confining and pore pressure (Figure 1) and instrumented to
monitor temperature (both sample and ambient; M. H. Ellis, 2008). The inner sleeve that prevents the direct
contact between the mineral oil used as confining fluid and the rock sample is perforated by 16 electrodes
coupled to a data acquisition system. Under typical operating conditions the relative error in resistivity mea-
surement is <0.1% (at frequencies 1-500 Hz) for homogenous and isotropic samples in the electrical resistiv-
ity range 1-100 Q m (North et al., 2013). Axially, perspex buffer rods electrically isolate the sample from the
cell. The inner temperature sensor was placed on the outer sidewall of the sleeve at the sample height, to
provide accurate monitoring of the sample temperature. The pore fluid pipe line is connected to (i) a
pumping-syringe containing a 35-g/L NaCl solution in deionized-deaerated water, (ii) a vacuum pump, and
(i) a CH4-bottle pressurized at 12 MPa (see Figure 1).

2.2. Method of Hydrate Formation

We followed the method of Waite et al. (2004) with an initial brine saturation of 83.5% which allowed an
excess water condition (M. H. Ellis, 2008; Priest et al., 2009). Our hydrate formation method and experimental
setup represent gas hydrate systems where localized gas reaches the base of the GHSZ.

The sample was first oven-dried at 60°C, placed in the high pressure triaxial cell (Figure 1), then a hydrostatic
confining pressure of 10 MPa was applied externally to the sample. A vacuum up to 1 Pa was applied intern-
ally to the sample to remove air from the pore space. The presence of air affects the saturation calculation,
and some gases present in the air, such as CO,, can also form hydrate. A volume of brine (comprising
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Figure 2. Changes of (a) pressure versus temperature and (b) pressure with time during methane hydrate formation and dissociation in Berea sandstone. Only the
second cycle of hydrate formation and dissociation is shown for clarity. The green and black lines are the pure methane hydrate phase boundary for 35 and 46-g/L
salinity, respectively, calculated using the approach of Tohidi et al. (1995). The blue dots represent cooling and red dots represent heating. In (a) time is shown in
hours (hr). Trajectory ABC marks cooling of the system to 5°C and hydrate formation. Trajectory CD shows hydrate dissociation. (c and d) Pressure and temperature
change with time during trajectory AB. See text for further details.

35-g/L NaCl solution in deionized and deaerated water) was injected through the pore fluid line into the
Berea rock sample using a syringe pump, calculated to fill 83.5% of the pore space. Hence, the sample was
only partially filled with brine, with the remaining pore space available for subsequent methane gas injection
(e.g., Waite et al,, 2004; Winters et al., 2004). We left the sample for 3 days so that the pore fluids could
redistribute throughout the sample by capillary forces. The remaining pore space (16.5%), which was
previously under vacuum, may have been occupied by water vapor and/or remaining air.

Methane gas was then injected to achieve a pore fluid pressure of 11.9 MPa (Figure 2), and simultaneously,
the confining pressure was increased to 21.9 MPa to maintain a constant differential pressure of 10 MPa
during the whole experiment. The pore fluid system was sealed, keeping the reservoir between the sample
and valve V, (Figure 1) filled with methane gas, which is free to move in and out of the sample as a result of
potential pore pressure variations. Finally, four cycles of hydrate formation/dissociation were triggered by
cooling/heating the setup in a controlled manner, that is, in and out from the gas hydrate stability
conditions (GHSC).

The cooling of the system into the GHSC, to a set temperature of 5°C, generated a reduction in pore pressure
(Figure 2) that can be explained mainly by hydrate formation, with some contribution from methane gas
contraction and increased gas solubility. The pressure reduction appears to take place in two stages
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Figure 3. Evolution of water, methane gas, and methane hydrate saturation

rate of hydrate formation. Once hydrate formation ceased, indicated by
the end of the pore pressure decrease (point C in Figure 2), the system
was left at that pressure and temperature for several hours to ensure max-
imum hydrate formation, evidenced by the horizontal asymptotic beha-

500 600 700

during three hydrate formation and dissociation cycles in Berea sandstone.  Vior of the pore pressure (Figure 2b) and of the saturation lines for each
The saturations were calculated from the changes in pore pressure and cycle (Figure 3).
temperature (section 3.1). We used a hydration number of 6.39 correspond-

ing to 90% cage occupancy (Sloan & Koh, 2007). Note the contracted y axis

Hydrate dissociation was initiated by increasing the temperature above

scale. The first cycle is not shown because the pressure logger malfunc- the GHSC to room temperature. We also did a separate experiment under
tioned. Relative error in saturation is less than 0.5%. identical conditions in which we left the sample under hydrate stability

conditions at 5°C (point Cin Figure 2a) for 1 month and saw that maximum
saturation of methane hydrate occurred in the first 75 hr. This experiment also resulted in 22% hydrate satura-
tion. The differential pressure was held at 10 MPa in the first and second cycles of hydrate formation and
dissociation, and then increased to 55 MPa for the third and fourth cycles. This was done to explore the
effects of microcracks on acoustic properties (included in future work) that are generally open at lower differ-
ential pressures (10 MPa) and closed at higher pressures (55 MPa), based on previous resistivity and ultra-
sound data for Berea (Han et al,, 2011). The initial pore fluid pressure for the third cycle was 11.98 MPa
(0.08 MPa above that for the first cycle).

3. Saturation Calculations

We tracked the evolution of the saturations of gas, brine, and hydrate from the changes in pore fluid pressure
and temperature using the real gas equation (the PT method), and independently from electrical resistivity
measurements (the electrical resistivity tomography [ERT] method).

3.1. PT Method

We calculated continuously the saturations of the three phases (gas, brine, and hydrate) from the changes in
pore fluid pressure and temperature using the real gas equation. These measurements were recorded at
1-min intervals during the experiment. This method does not assume that hydrate formation continues until
the limiting phase is exhausted (e.g., Sultaniya et al., 2015) nor that coexistence occurs only under three-
phase stability conditions (e.g., You et al., 2015). This allows us to deduce the physical processes that occur
throughout the cycle of hydrate formation and dissociation.

Our method assumes a closed system and conservation of the molar mass of methane and water in the sam-
ple pore space. Methane can be present in hydrate, dissolved in brine, or as gas. Water can be present as
liquid in the pore space (brine) or in hydrate (pure water). The pore volume in the sample and inner volume
of the input gas pipe were measured before starting the experiment and were assumed to remain constant
throughout the experiment. A change in effective pressure can change the sample’s pore volume, but for the
magnitude of the dynamic stresses applied, this change is negligible (<0.3% for Berea sandstone; Rutter &
Glover, 2012). A change in temperature can also change the sample’s pore volume. Such changes are likely
to be negligible in our experimental range (5-22°C) as the volumetric thermal expansion coefficient of
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sandstone is about 3 x 107> per °C in the temperature range 20-100°C (Skinner, 1966). So we assumed that
the volume of the input gas pipe remains constant because it is always at ambient pressure and the ambient
temperature was controlled to 20 + 2°C. The pores of the Berea sandstone can be occupied by gas, water, or
hydrate. Hydrate can only form in the pore space of the sample and no hydrate forms in the gas input pipe
because it is outside hydrate stability conditions.

The nonideal gas law is
pV=nRTZ (M

where p is gas pressure, Vis volume, n is the number of moles of methane gas, R is the universal gas constant,
and T is temperature. Z is an empirical compressibility factor calculated using the Peng-Robinson equation of
state (Peng & Robinson, 1976) and varies with temperature and pressure. Initially, there was no hydrate in the
sample. The sample pore volume Vs was independently measured with a pycnometer, and a known volume
of water V,,0, measured using a syringe pump, was injected into the sample. The initial number of moles of
water is given by

VoD,
Mo = % 2)
w

where D, is the density of brine at 35-g/L salinity and M,, is the molar mass of this brine. For the pipe, from

equation (1) we have
Po Vp = npoR TpO ZpO (3)

where p, is initial gas pressure, which is the same in both the sample and the pipe, V,, is the volume inside the
pipe, Ny is the initial number of moles of methane gas in the pipe, T, is the temperature in the pipe, and Z,o
is the compressibility factor of methane under the initial pipe P-T conditions.

For the sample, equation (1) gives
Po VmsO = nsOR TSO 2507 (4)

Vimso = Vis — Vw07 (5)

where V.5 is the initial volume of methane gas in the sample, ny is the initial number of moles of methane
gas in the sample, Ty is the initial temperature of the sample, and Z, is the compressibility factor of methane
under the initial sample P-T conditions. In our method, we accounted for the dependency of methane solu-
bility in water, denoted by b, on temperature and salinity (Tishchenko et al., 2005) and that of hydrate and
brine densities on pressure and temperature (Lu & Sultan, 2008; Millero et al., 1980) using the equation:

Nswo = Vwo Dwo bo, (6)

where ny0 is the initial number of moles of methane in solution and by, is the initial solubility. The total num-
ber of moles of methane in the system n; was therefore

Nt = Npo + Nso + Nswo- (7)

Once the temperature decreases below that for hydrate stability, hydrate starts to form from the methane
and water in the sample’s pore space. This process reduces the sample’s gas pressure, generating an inflow
of methane gas from the pipe to regain equilibrium of pore fluid pressure. The net result is an overall
decrease in the gas pressure. From this new gas pressure and the pipe and sample temperatures, T, and
T, we can calculate the number of methane moles in each phase. For a gas pressure p

Vi = (Nwo — npec) —, 9)

SAHOO ET AL. 3382
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Table 2 Vs = Vis =V — Vi, (10)
Parameters Used in the Pressure-Temperature Method

V,=n,RT, Z 11
Description Symbol® P Vo ="NpfTp <p, (an
Number of moles of methane hydrate np pVms =nsRTs Zs, (12)
Saturation of methane hydrate Sh
Pore fluid pressure p Nsw = Vw Dy b, (13)
Total pore space in the sample Vis
Volume of methane gas in the sample Vs where V}, is the volume of hydrate, n, is the number of moles of
Volume of liquid water in the sample Vv hydrate, My, is the molecular mass of hydrate, Dy, is the density of
Volume of hydrate in the sample Vh hvd d c is the hvdrati b . h b f
R v ydrate, and c is the hydration number (i.e, the number of water
Total number of moles of methane in the system n‘: molecules required to form hydrate per molecule of methane). The
Number of moles of methane gas in pipe ny total number of moles of methane in the system remains constant,
Number of moles of methane gas in sample ng so ny, can be obtained from
Number of moles of methane in solution Nsyy
Number of moles of water in liquid phase Ny, Nh = Ne — Np — Ns — Ny (14)
Temperature in the pipe Tp
Temperature in the sample Us
Compressibility of methane gas in the pipe Z, The hydrate saturation is given by
Compressibility of methane gas in the sample Zs
Density of brine Dy S Vi 1
Density of hydrate Dy h = Ve (15)
Solubility of methane b

nitial values for these parameters are denoted in the text with a subscript 0.

Sh =

R Tpo Zpo RTo Zso

( bolig 4 Dalleuo) 4 /g Dy bo — RpT:/pr i ;Y ow) o

Combining equations (8)—(15), we obtain

(16)

All the symbols defined in this section are listed in Table 2, and constants are listed in Table 3.

Table 3

3.2. ERT Method

We estimated the saturation of resistive material in the pore space from measured bulk resistivity of the sam-
ple. As both hydrate and gas are resistive compared to the conductive brine, it is not possible to obtain the
individual saturations of gas and hydrate separately by this approach.

To determine this saturation, the first step is to calculate the saturation of brine. Several approaches can be
used to estimate the saturation of brine from measured electrical resistivity (e.g., Archie, 1942; Bussian, 1983;
de Lima & Sharma, 1990; Glover, 2010; Revil et al., 1998; Simandoux, 1963; Waxman & Smits, 1968). This inter-
pretation is complicated in the presence of clay minerals as they have charge deficiency. The “counter ions”
required to balance this charge deficiency are in the double layer. These counter ions can move along the
grain water surface under the influence of an external electric field. Hence, the macroscopic electrical con-
duction in a saturated/partially saturated porous medium with clay can be via (a) bulk conduction caused
by the movement of ions of the conducting pore fluid and (b) surface conduction in the vicinity of the
fluid/grain interface (e.g., Bussian, 1983; Revil & Glover, 1998; Waxman & Smits, 1968). A wide variety of for-
mulations have been developed to account for both surface and bulk conduction. The earlier models
described the effect of surface conduction in terms of the volume of shale, while more recent models attempt
to account for the physics of the diffuse ion double layer surrounding clay particles (e.g., Clavier et al., 1984;

Revil et al, 1998; Simandoux, 1963; Waxman & Smits, 1968). We

choose to use the Waxman-Smits formula for partial brine saturation

Constants Used in the Pressure-Temperature Method

(Waxman & Smits, 1968).

Description Symbol Values
_ 1
Ratio of water to methane in hydrate 4 6.39 s — > "py, " 17)
(Sloan & Koh, 2007) v :{(1+p,BQy/Sw/ "’
Molar mass of brine (35 g/L) M,y 0.0186 Kg
Molar mass of hydrate (structure ) Mp 0.1312 Kg R
Universal gas constant R 8314 Jmol T K" B=4.6 <1 —0.6e ”pW)v (18)
SAHOO ET AL. 3383
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Q, = CEC(1 - <1>)Do7 (19)
where S,, is brine saturation, p; is the measured sample resistivity, p,, is brine resistivity, and @ is porosity. Q, is
the concentration of clay exchange cations or counter ions per unit pore volume of the rock and should be
measured ideally in the laboratory by analyzing several samples with different brine saturations (Waxman &
Smits, 1968). B represents the average mobility of the counter ions near the grain surfaces, CEC is the cation
exchange capacity, and D,, is mineral grain density. The empirical parameters m and n are the cementation

coefficient and the saturation exponent, respectively.

Zhan et al. (2010) showed experimentally for a similar porosity Berea sandstone (22.98-23.60%) that the
Waxman-Smits model gives reliable results for our salinity (Figure 6 of Zhan et al, 2010). Glover et al.
(1994) presented laboratory data on the variation of Berea sandstone conductivity with fluid conductivity.
They showed that, for low pore fluid conductivity (<0.001 S/m), bulk conductivity is independent of pore fluid
conductivity and tends to be constant. For higher pore fluid conductivity (<1 S/m), the saturated rock con-
ductivity is controlled mainly by the movement of ions through the bulk fluid and seems to be independent
of any surface conduction effect. As we used brine of 35 g/L (measured conductivity at 25°C temperature is
5.2'S/m), we are in the higher pore fluid conductivity zone where surface conduction effects have only a small
effect on bulk rock conductivity. The experiments of Glover et al. (1994) and Zhan et al. (2010) had no hydrate,
but hydrate is resistive compared to saline pore fluid and has negligible surface conduction (e.g., Lee &
Collett, 2006b; Spangenberg, 2001). Several studies have shown that surface conduction contributes substan-
tially to the macroscopic conductivity at low salinity and/or high temperature, even in low clay content sand-
stone (Bussian, 1983; Revil & Glover, 1998; Waxman & Smits, 1968). Since our sample has a low clay content of
2.3% by weight (X-ray powder diffraction analysis; Han et al., 2015), the pore fluid has a high salinity (35-gm/L
NaCl with conductivity of 5.22 S/m at 25°C), and the temperature is low (5°C), we conclude that the Waxman-
Smits model should be applicable in our case.

As natural hydrate can be found also in clay rich sediments, appropriate clay conduction models should be
used in such studies. We used the Waxman-Smits model, but several modifications, refinements, or other
models exist. For example, Clavier et al. (1984) proposed the dual water model, a modified form of the
Waxman-Smits model with two types of pore water, of which only one is affected by surface conduction.
Kan and Sen (1987) modeled clays as periodic arrays of charged insulating cylinders or spheres, immersed
in symmetrical monovalent electrolyte. Revil and Glover (1998) discussed the theoretical framework of
surface conduction predictions. Revil et al. (1998) accounted for the difference in behavior of anions and
cations. de Lima and Sharma (1990) discussed a model based on shape and occurrence of clay, such as clay
coating the sand grains or as individual clay grains. For a more detail review on conductivity models refer to,
for example, Glover (2010), de Lima and Sharma (1990), and Mavko et al. (1998).

The resistivity of brine is temperature-dependent, and we calibrated it using the following expression (e.g.,

McCleskey et al., 2012):

Pas
20
Pw 14 (T —25)° (20)

where T (°C) is temperature, a is the temperature compensation factor, and p,s (Qm) is the resistivity of brine
at 25°C. Values of p,5 were measured using a conductivity meter with a = 1.9%, similar to other studies (e.g.,
McCleskey et al., 2012). For a mixture of sand and clay, the CEC can be calculated from

CEC =mc Y x,CEC;, (21)

where m. is the mass fraction of clay minerals in the whole rock, y; is the relative volume fraction of each clay
mineral, and CEC; is the cation exchange capacity of each clay mineral. The cation exchange capacity of
quartz can be neglected due to its large size (hence small amount of surface change per unit mass) in com-
parison to clay minerals (D. V. Ellis & Singer, 2007).

This method of calculating CEC assumes a mixture of sand and clay and does not account for the various clay
morphologies (e.g., clay as cement or grains) in Berea sandstone. We used 0.09-meq/g CEC for authigenic
illite (Thomas, 1976). A value of 2 was used for n (Waxman & Smits, 1968). The value of m was determined
by fitting the initial resistivity for the known initial brine saturation, found to be 2.825, which is within the
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range of 1.3 to 4 reported by Jackson et al. (1978). As hydrate forms, the value of m increases (Chen et al,,
2008; Spangenberg, 2001), but the exact form of this increase is not known. To account for this change,
we arbitrarily assumed a slightly higher value of m = 3.1 for hydrate saturations above 5% (Chen et al.,
2008; Spangenberg, 2001). Spangenberg (2001) modeled the variation of n with water saturation, during
hydrate formation. He showed that n increases significantly only for water saturation below 40% and n is
almost constant for water saturation above 40%. In our experiment water saturation started from 83.5%
and decreased up to 62% with hydrate formation; hence, we did not vary the value of n.

4, Results and Discussion

4.1. Three Phase Coexistence

The results of the PT method provide evidence for the coexistence of methane gas, methane hydrate, and
brine in our experiments. When the pressure and temperature reached stability conditions, methane hydrate
nucleation and growth started, followed by an increase in hydrate saturation and a decrease in gas and brine
saturation (Figure 3). Even though we allowed enough time (80-180 hr) for hydrate formation to continue
(see section 2 for further details), and there was always stoichiometrically sufficient methane gas and brine
available for more methane hydrate formation, the reaction stabilized at a maximum methane hydrate
saturation between 23 and 26% and methane gas saturation between 12 and 13% of the pore space
(Figure 3). The maximum relative error in saturation calculated using the PT method is less than 0.5%. This
phenomenon was observed also in two additional cycles of methane hydrate formation and dissociation,
indicating the coexistence of three phases (gas, brine, and hydrate) with similar maximum methane hydrate
and methane gas saturations and an asymptotic behavior of the saturation curves during hydrate formation
in each cycle (Figure 3). At the maximum hydrate saturation, application of small perturbations in the confin-
ing pressure could have ruptured hydrate shells, trapping gas, and allowed further hydrate formation (Fu
et al., 2017). Such perturbations were not applied, so our estimate of coexisting gas may represent an upper
bound for our experimental setup.

Methane hydrate is a nonstoichiometric solid with variable cage occupancy (Sloan & Koh, 2007). We used a
hydration number of 6.39, corresponding to 90% cage occupancy (Sloan & Koh, 2007) for the calculation
shown in Figure 3. If the cage occupancy is 100%, c is 5.75 (Sloan & Koh, 2007) and the resulting maximum
hydrate saturation decreases by 2%.

In section 1, we listed several mechanisms allowing three phase coexistence of methane gas with hydrate.
Here we discuss some of the mechanisms that are relevant to our experimental study. Methane hydrate
may form when methane gas and water are in contact and have conditions favorable for hydrate formation.
Our experimental pressure and temperature conditions of 8.8 MPa and 5°C were well within the hydrate
stability field for 35-g/L brine, but the salinity of the remaining pore water increases due to hydrate formation.
Our experiments started with 35-g/L salinity, and a 26% hydrate saturation would have increased the mean
salinity to about 46 g/L. At this salinity, our experimental pressure and temperature conditions are still within
the GHSC (Figure 2a), as calculated using the approach of Tohidi et al. (1995). This calculation does not
consider the effect of porous medium properties such as pore size, surface structure, and mineral composi-
tion that can all affect the GHSC (e.g., Clennell et al., 1999; Handa & Stupin, 1992; Henry et al., 1999). Some
experimental results suggest that surface structure and mineral composition may have little effect on
GHSC (Riestenberg et al., 2003), while capillary effects due to pore size can be important (Clennell et al.,
1999; Uchida et al., 2004). Therefore, we consider only capillary effects.

Clennell et al. (1999) argued that methane hydrate behavior can be analogous to that of ice, as also sug-
gested by other authors (e.g., Handa & Stupin, 1992). The freezing point of ice is lower in a fine-grained por-
ous medium, such as soil, than in bigger pores, such as in sand. This is due to curved water-ice interfaces that
increase the free energy of pore water (Everett, 1961). In small pores, the curvature is high and the excess free
energy is also high. In big pores, the curvature is low, and so is the excess free energy. Clennell et al. (1999)
calculated the decrease in the freezing point of ice inside a pore relative to the bulk freezing point (in a pore
of infinite pore radius) and extrapolated that to methane hydrate. We rearranged equation (8) of Clennell
et al. (1999) to calculate the minimum pore radius for which hydrate can form under our experimental
conditions of 8.8 MPa and 5°C.
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where r, is the radius of the pores, y;, is the specific surface energy
between ice and water, T; pyi is the absolute melting temperature of ice
(without considering pore radius effects), 6;, is the wetting angle, p,, is
the density of water, AHy ; is the specific enthalpy of formation of ice,
and AT; pore is the change in melting temperature due to pore size effects.
For our experimental pressure of 8.8 MPa, the hydrate-water phase bound-
ary temperature (T; by is 9.8 °C (calculated using the approach of Tohidi
et al, 1995), and therefore, AT ,ore is —4.8°C, giving a minimum pore
radius of 9.5 nm for y;, = 26.7 mJ m™2, 0;, = 180° p,, = 1,000 kg m~>,
and AH; ;=333 kJ Kg~ ' (Clennell et al., 1999).

We also measured the pore size distribution using X-ray computed tomo-
graphy at the Swiss Light Source at the Paul Scherrer Institute. The optical
objective used for imaging was 20%, which provided 325-nm voxel resolu-
tion. The pore size varied from 11.39 to 73.11 pum, so capillary effects in our
sample should not have limited the formation of hydrate. Note that only a
small part (7.27 mm diameter and 8 mm high) of the sample was studied in
the CT scan, and we assumed that the observed pore size distribution is

Figure 4. Conceptual model showing various mechanisms (marked A to F) ~ representative of the whole sample. Clennell et al.s (1999) equation is
for coexistence of methane gas and hydrate even when methane hydrate for pure water, while our pore fluid had an average salinity of up to

stability conditions prevail in the system. The red color is methane gas, white  4¢ g/L at maximum hydrate saturation. Sun and Duan (2007) developed

is hydrate, brown is sand, and blue is saline water (brine). (a and b) Pore
blocked by hydrate formation. (c) Capillary pressure of pore not allowing the

a thermodynamic model for the effect of pore size and salinity on hydrate

gas to move through it. (d) Capillary pressure of the pore increased by stability. We used their open online calculator (models.kl-edi.ac.cn/models.
hydrate formation, not allowing further passage of gas. (e) Occlusions htm) and found a minimum pore radius of less than 3.2 nm, confirming the
(unconnected inclusions) of gas within hydrate. (f) Hydrate film enveloping  minor effect of pore size for our experimental conditions. We note also that

the gas bubble.

it is very unlikely that hydrate formation can reduce the effective pore size
to values close to the minimum pore radius because that could only hap-

pen when the pore is almost completely occupied by hydrate.

When hydrate forms, it can create a physical barrier between methane gas and water that prevents further
hydrate formation. This physical barrier can be of various types:

1.

Hydrate may form and dissociate only near the inlet pipe if the methane gas/brine is not distributed in the
sample. This scenario is highly unlikely because the sample was vacuumed and then 83% of the pore
space was filled with brine. These conditions were kept for 3 days, allowing the brine to spread within
the sample. The gas would also be distributed within the sample before hydrate forms because (i) the inlet
pipe is on the lower surface of the sample, and methane gas would likely move upward due to buoyancy,
and (ii) methane gas was injected into the sample at room temperature and left for 3 days to complete its
upward migration before cooling the system into the hydrate stability field.

. Isolated pockets of gas or brine could exist in some pores. This can be due to gas reaching a pore that is

not connected in the flow direction and/or capillary trapping. If such a pore is blocked in the flow direc-
tion, hydrate formation can trap the gas (Figure 4a). Similarly, hydrate formation in connected pores could
also disconnect them, trapping brine/gas (Figure 4b). Capillary trapping can occur when the gas pressure
is less than the capillary entry pressure of a given pore, which depends on its radius, resulting in the fluid
being unable to move through that pore (Figure 4c). The formation of hydrate can enhance this trapping
mechanism by decreasing the effective pore radius, resulting in higher threshold capillary pressures
needed for gas invasion (Figure 4d).

Unconnected pores (occlusions) of gas/water can occur within hydrates (Figure 4e). In our experiment, the
maximum hydrate and gas saturations are around 26% and 12% of the pore space, respectively. Near sea-
floor sediments on the southern summit of Hydrate Ridge (offshore Oregon, USA) contain porous
hydrates that likely formed when methane gas bubbles became coated with a hydrate film as they moved
upward within the sediments and coalesced together (Suess et al., 2001). A sufficiently thick hydrate film
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enveloping the methane bubbles disconnects the gas remaining inside
the hydrate film from the pore water outside (Figure 4f). Hence, gas
remains trapped within the hydrate film, even though hydrate stability
(] . conditions prevail. Such porous hydrates have 55 + 5% of their bulk
volume filled with gas (Suess et al., 2001). Similar porous hydrate has
also been recovered offshore Nigeria, with pore diameter of 2-3 mm
® (Sultan et al.,, 2014). We propose that this is the dominant mechanism
for coexisting gas in our experimental setup. This mechanism does
Y not involve three phase thermodynamic equilibrium, as the trapped
methane gas inside the hydrate shell is not in physical contact with
1 water outside the shell.

B A

During drilling in a pockmark offshore Nigeria, Sultan et al. (2014)
observed a vigorous flow of gas in the GHSZ, just after penetrating a thin
_ hydrate layer at around 18 m below seafloor. These authors attributed this

© Hvdrate flow to rapid influx of gas along fractures in the GHSZ, which leads to rapid
° G);s + Hydrate hydrate formation, primarily along the inner surface of fractures, leading to

isolation of free gas from the surrounding pore fluid. This mechanism is

0

Saturation of pore phases from PT method (%)

10

20

similar to the one that we propose, but at much larger scale.
30 40 50

Gas trapped within hydrate films would diffuse out over geological time
scales, so our experimental results might not reproduce well hydrate

Figure 5. Total methane gas and methane hydrate saturations (volume per- ~ formation in nature. However, in a dynamic natural system with ongoing
centage of pore space) from the pressure-temperature (PT) method plotted  gas flow into the GHSZ, methane bubbles with a hydrate film envelop-

against saturation of all resistive material deduced from the resistivity
(ERT) method. Relative errors in the saturations calculated from the ERT and
PT methods are less than 2% and 0.5%, respectively.

ing them can also be present. Samples collected from the shallower
sediments at Hydrate Ridge show that the residence time of such
hydrate enveloped-methane bubbles may be less than the time needed
for diffusion (Suess et al., 2001).

Further evidence for such gas trapping comes from a laboratory study of methane production by hydrate dis-
sociation by heating that showed an abrupt peak in methane production rate, while the rate of water produc-
tion remained almost constant (Tang et al., 2005), perhaps due to release of coexisting methane gas. A similar
abrupt peak in methane production has been observed also using depressurization (Xiong et al., 2012).

4.2, Effect of Coexisting Gas Within the GHSZ on Hydrate Saturation Estimates

Resistivity-based methods for determining hydrate saturation do not differentiate between gas and hydrate;
all resistive material in the pore space within the GHSZ is generally interpreted as hydrate (e.g., Hsu et al.,
2014; Schwalenberg et al.,, 2010; Weitemeyer et al., 2006). Similarly, in our experiment, if we interpret all resis-
tive material in the pore space as hydrate, the ERT method overestimates the hydrate saturation because
both gas and hydrate are resistive compared to brine (Figure 5). Small apparent fluctuations in the total
amount of resistive material inferred from ERT results come from uncertainty when selecting the empirical
parameters in equation (17) (section 3.2). The PT method can differentiate between methane gas and hydrate
because gas and hydrate have different volumetric densities (section 3.1). In our laboratory experiment, up to
36% of the resistive material remained as gas. In a borehole offshore Japan, the difference between hydrate
saturation from resistivity methods and from sonic methods was ~50%, likely due to coexisting gas
(Miyakawa et al.,, 2014). Table 1 lists other field studies with differences in hydrate saturation inferred from
resistivity methods and seismic/sonic methods.

Further uncertainties in methane quantification based on resistivity data can occur due to such coexisting gas.
The methane content per unit volume of the gas phase is different to that of the hydrate phase. The difference
depends on the molar volumes of hydrate and gas, which in turn depend on pressure and temperature, with
greater variations in the gas phase than in the hydrate phase. Hence, the uncertainty in the methane inventory
is larger in shallower water depths where gas molar volumes are higher. The methane content of the GHSZ is
overestimated in shallower waters (e.g., less than ~1,250 m depth for the Arctic Ocean) and underestimated in
deeper waters, where the molar volume of methane gas is less than that of hydrate. If the amount of coexist-
ing gas within the GHSZ is significant, then it can affect the estimate of carbon content, and the geophysical
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and mechanical properties of the hydrate bearing sediments. Current numerical models that simulate the
behavior of natural and laboratory hydrate systems do not account for this type of coexisting gas.
Additional work is needed to support further our results, such as performing a similar study on different types
of samples, and/or synchrotron X-ray computed tomography of hydrate- and gas-bearing samples.

5. Conclusions

In repeated cycles of hydrate formation and dissociation, our experimental results demonstrate the coexis-
tence of up to 26% hydrate with about 12% gas. We infer that not all of the methane gas and water formed
hydrate even when the two phase water-hydrate stability conditions were satisfied. We suggest that such
coexistence occurs when methane gas bubbles become enveloped in hydrate films. A sufficiently thick
hydrate film would isolate the gas trapped inside from the brine outside, even when hydrate stability condi-
tions prevail. Such methane bubbles enveloped in hydrate films have also been observed in samples from
Hydrate Ridge, offshore Oregon USA, with up to 55% of the bulk hydrate volume made up of coexisting
gas. Our experimental results show that hydrate formation from methane in the gas phase results in up to
36% coexisting gas (as a percentage of the bulk hydrate volume).

Our results support the idea that coexisting gas may be present within the GHSZ in natural gas hydrate
systems, with gas influx through fractures in fine-grained sediments. We suggest that this coexistence of
gas and hydrate is one possible explanation for the differences in hydrate saturation estimates between resis-
tivity and seismic/sonic observations of natural hydrate systems.
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