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Abstract

DNS solutions for a pipe/jet configuration are re-computed with the pipe alone

to investigate suppression of previously identified internal noise source(s) with

an acoustic liner, using a time domain acoustic liner model developed by Tam

and Auriault (AIAA Journal, 34, 1996, 917-913). Liner design parameters are

chosen to achieve up to 30 dB attenuation of the broadband pressure field over

the pipe length without affecting the velocity field statistics. To understand the

effect of the liner on the acoustic and turbulent components of the unsteady wall

pressure, an azimuthal/axial Fourier transform is applied and the acoustic and

turbulent wavenumber regimes clearly identified. It is found that the spectral

component occupying the turbulent wavenumber range is unaffected by the

liner whereas the acoustic wavenumber components are strongly attenuated,

with individual radial modes evident as each cuts on with increasing Strouhal

number.
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1. Introduction

The noise generated by internal flows has recently received attention in the

aeronautical field as well as in the industrial field. Noise generated by turbu-

lent pipe flows represents an significant problem for industrial applications such

1PhD Student, so2e10@soton.ac.uk
2Professor, sandberg@soton.ac.uk
3Principal Research Fellow, B.J.Tester@soton.ac.uk

Preprint submitted to Journal of Sound and Vibration July 12, 2014



as ventilation and piping systems. Furthermore, in the aeronautical field the

aircraft’s engine is an important source of noise. More specifically turbofan

engines are characterized by internal turbulent flows such as by-pass duct flow

and nozzle flow through which noise internally generated by the fan, turbine or

combustion propagates out to the external observer. Acoustic liners are a com-

mon solution to reduce the noise propagating through internal flows. Acoustic

liners are passive control devices that convert sound energy into heat through

viscous and thermal diffusion processes. They are typically designed as porous

surfaces and installed on pipe walls and internal engine ducting walls. Acoustic

liners are usually modelled as a mass-spring-damper system and are therefore

characterized by a resonance frequency. Previously, researchers had developed

mathematical models in order to simulate the performance of acoustic liners

(Lansing & Zorumski [1]). In classical acoustics, where typically no flow is

present in the acoustic domain, the liner modelling is quite simple in terms of

development and numerical implementation. In contrast, when a viscous flow

grazes the acoustic liner surfaces, the mathematical modelling and numerical

implementation becomes far more complex (Myers [2]). A grazing flow over

an acoustic liner represents a more realistic situation in applications such as

ventilation, piping and aero-engines. A number of models have been developed

to approximate the steady fluid flow as being uniform, for example, Koch and

Mohring [3]; Brazier-Smith and Scott [4]; or Crighton and Oswell [5]; Peake

[6]; Abrahams and Wickham [7]; Lucey, Sen and Carpenter [8]. The boundary

condition applied at the fluid-solid interface in this case is to match the fluid

and solid displacements. This was justified by Eversman and Beckemeyer [9]

and Tester [10] by considering the limit of a vanishingly thin inviscid boundary

layer at the fluid-solid interface. In this kind of modelling the boundary layer of

a grazing flow over an acoustic liner is treated as infinitely thin shear layer on

the impedance surface, which is now almost universally applied under the name

of the Myers boundary condition (so named because of the work of Myers [2]).

There has been considerable debate over the mathematical and numerical

stability of the Myers boundary condition when applied to acoustics over react-
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ing surfaces with slipping flow (for example, Tam and Auriault [11]; Rienstra

[12]; Richter and Thiele [13]). Recently there has been growing interest in mod-

elling a finite thickness shear layer such that a no-slip boundary condition can

be applied (for example Aurgan, Starobinski and Pagneux [14]; Vilenski and

Rienstra [15]; Brambley [16]). The difficulty to develop a liner model including

a viscous grazing flow might be due the lack of knowledge regarding the phys-

ical interaction between the flow field and liner cavities. In order to provide

such insight, Tam et al. [17], performed a computational and experimental in-

vestigation of the acoustic properties of a three-dimensional acoustic liner with

rectangular apertures. It was observed that shed vortices appear on the aper-

tures of the cavities and tend to evolve into rings and align themselves into

two regularly spaced vortex trains moving away from the resonator opening in

opposite directions. More recently, Zhang and Bodony [18], demonstrated that

direct numerical simulation has the potential to provide validated numerical

results for acoustic liners with complex geometries. They simulated a locally-

reacting honeycomb liner with circular apertures at a variety of sound pressure

levels and frequencies. Although computational resources are available to accu-

rately simulate the flow interaction with a single resonating cavity, it is till not

possible to extend this analysis to a fully lined wall. Therefore, in order to in-

vestigate the effect of acoustic liners on turbulent flows, a CFD solver combined

with a time-dependent impedance condition is a possible alternative. Thus, in

the current work a time domain impedance model, given by Tam & Auriault

[11] is implemented into an in-house viscous flow solver. The liner model incor-

porates a frequency independent acoustic resistance and inertance and a cavity

reactance inversely proportional to frequency. Acoustic impedance conditions

have previously been applied to CFD solvers, see for example Zheng & Zhuang

[19] and Baelmans & Desmet [20]. However, they used artificial profiles for the

boundary layer generating an artificially thickened boundary layer. In conse-

quence, the modelling error due to the large boundary layer thickness leads to a

wrong prediction of the NASA flow tube experiment (Watson, Parrot & Jones

[21]). Realistic boundary layers from a CFD simulation were used by Eriksson
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& Baralon [22]. They showed that a correct prediction of the NASA grazing

flow tube experiment could be obtained by using a high-order accurate CFD

code. In the present work a DNS solver is used to simulate a fully turbulent

subsonic pipe flow. The Tam & Auriault [11] model has been implemented to

simulate the acoustic effect of an acoustic liner on the internally generated noise.

The main objective of this study is to investigate the internal noise reduction

potential of the liner model and to assess its effect on the turbulent flow. The

DNS solver already has been used by Sandberg, Sandham & Suponitsky [23]

for simulations on jet noise which motivated the present work. It is important

to state that in the present work the liner is modelled as a uniform, constant,

linear impedance surface so there is no need to incorporate a detailed model of

the unsteady flow through individual holes unlike Zhang and Bodony [18] and

Tam et al. [17] who study a grazing flow over a single and multiple meshed

holes.

In this paper the second section introduces the governing equations implemented

in the DNS solver. The third section introduces the liner model and its imple-

mentation. In the fourth section the Tam & Auriault [11] model is applied to a

fully turbulent subsonic pipe flow. In the fifth section the attenuation capability

of a particular liner design is tested and analysed, along with modifications to

the inflow perturbations. In the sixth section a wavenumber analysis (equiva-

lent to beamforming) is carried out, in order to separate out the acoustic and

hydrodynamic components of the DNS wall pressure and hence more clearly

assess the liner performance in suppressing the acoustic noise.

2. Governing Equations

The flow under consideration is governed by the full compressible Navier-

Stokes equations. The fluid is assumed to be an ideal gas with constant specific

heat coefficients. All quantities are made dimensionless using the nozzle ra-

dius and the bulk velocity within the nozzle. For simplicity, all equations in

this section are presented in tensor notation. The non-dimensional continuity,
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momentum and the energy equations are:

∂ρ

∂t
+

∂

∂xk
(ρuk) = 0 , (1)

∂

∂t
(ρui) +

∂

∂xk
[ρuiuk + pδik − τik] = 0 , (2)

∂

∂t
(ρE) +

∂

∂xk

[
ρuk

(
E +

p

ρ

)
+ qk − uiτik

]
= 0 , (3)

where the total energy is defined as E = T/
[
γ(γ − 1)M2

]
+ 0.5uiui. The stress

tensor and the heat-flux vector are computed as respectively,

τik =
µ

Re

(
∂ui
∂xk

+
∂uk
∂xi
− 2

3

∂uj
∂xj

δik

)
, qk =

−µ
(γ − 1)M2PrRe

∂T

∂xk
, (4)

where the Prandtl number is assumed to be constant at Pr = 0.72, and γ =

1.4. The molecular viscosity µ is computed using Sutherland’s law (White,

1991) setting the ratio of the Sutherland constant over freestream temperature

to 0.36867, implying a reference temperature of 300K. To close the system of

equations, the pressure is obtained from the non-dimensional equation of state

p = (ρT )/(γM2).

It is important to note that the DNS solver is made non-dimensional defin-

ing the speed of sound as c = U/M , where U is the bulk velocity at the

pipe outlet and M the Mach number. Furthermore, length and time is made

non-dimensional using Rpipe and Rpipe/U , respectively. This ensures the non-

dimensional consistency of the DNS solver with the acoustic equations shown in

the section 3. At the pipe inflow velocity perturbations are calculated using a

compressible version of the digital filter technique according to Touber & Sand-

ham [24], with parameters specified from precursor periodic pipe simulations,

and superposed onto mean flow values obtained from the same precursor DNS.

At the pipe outlet a zonal non-reflecting characteristic boundary condition is

applied in order to avoid spurious reflections ( Sandberg & Sandham [25]). De-

tails on the length of the pipe needed to achieve fully developed flow and on the
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variation of pressure, density and temperature within the pipe can be found in

Sandberg, Suponitsky & Sandham [23], where it was shown that this approach

produces a fully developed turbulent pipe flow from approximately 25-30 radii

downstream of the inflow boundary.

3. Acoustic impedance in the time domain; Tam and Auriault model

In general, a time-domain representation for a wall-impedance model in the

frequency domain is obtained by an inverse Fourier transform of the complex

impedance function Za(t) which leads to the convolution

p(t) = Za(t) ∗ v(t), (5)

where p(t) is the wall pressure perturbation and v(t) is the wall-normal ve-

locity perturbation component. To obtain the current pressure perturbation

at the wall, an integration over the time history of the normal velocity is re-

quired. However, the application of this method is limited due to the storage

demands and the computational time. In order to overcome this, a time-domain

impedance boundary condition based on a mass-spring-damper analogy was first

proposed by Tam & Auriault (1996). It can be written in the form

∂p

∂t
= R

∂v

∂t
−X2v +X1

∂2v

∂t2
. (6)

In order to obtain Eq. 6 in terms of the wall-normal velocity component, v,

the linearized energy equation at the wall reduces to ∂p/∂t = −∂v/∂r, because

of the no-slip condition for the other velocity components. Therefore Eq. 6

becomes
∂2v

∂t2
=

1

X1

[
−∂v
∂r
−R∂v

∂t
−X2v

]
, (7)

where R is the resistance parameter of a uniform dissipative facing sheet and the

two reactance parameters are identified as mass-reactance X1 and spring-rate

−X2, and r is defined as the radial coordinate. In the present formulation, Eq.

(7), the reactance is defined as

X = X1ω −X2/ω. (8)
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It should be noted that the parameters R and X are made non-dimensional

by ρc, where ρ and c are the mean density and speed of sound, respectively.

From Eq. 8 it is possible to define the resonance condition, X = 0, from which

we can define Stresonance = 1
2π

√
X2/X1. X1 and X2 have arbitrary values

where X1 > 0 and X2 < 0. Since the DNS solver uses a Runge-Kutta scheme

for the time marching as explained in Sandberg et al. [26], Eq. (7) is rewritten

as a first-order system in time. Let us define

φ =
∂v

∂t
,

thus

∂

∂t

v
φ

 =

 φ

1

X1

[
−
(
∂v

∂r

)
Wall

−Rφ−X2v

] . (9)

It is worth noting that Eq. (7) was originally defined for inviscid 1D models

in Tam & Auriault [11] while in this paper Eq. (7) is being applied to a fully

viscous 3D simulation. In the original formulation by Tam & Auriault [11] the

pressure time derivative was replaced by the normal gradient of the normal ve-

locity using the linearized energy equation. This is also possible in the current

case because in the DNS a no-slip condition on the wall is applied. Therefore,

only the wall-normal component, v, is allowed to vary, unlike the other compo-

nents u and w, which are set to zero. As a consequence Eq. (7) is still suitable

in the current simulation. It is worth saying that the Tam-Auriault model does

not include the hydrodynamic interaction between the boundary layer and the

acoustic liner, it is only capable of simulating the acoustic interaction between

the liner and the flow field.

4. Turbulent pipe flow; Lined wall

In this section a fully turbulent pipe flow is computed using the DNS solver

described in Sandberg et al. [26] at Re = 6700, based on bulk velocity and pipe

diameter and M = 0.46. The pipe with length Lpipe = 50Rpipe is discretized

using 624 and 68 points in the axial and radial directions, respectively. The grid
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spacing in the streamwise direction is equidistant with ∆z = 0.084Rpipe. In the

radial direction a polynomial stretching is used with maximum and minimum

grid spacings ∆r = 0.026Rpipe and ∆r = 0.0026Rpipe at the axis (r = 0) and

wall (r = Rpipe), respectively. 64 Fourier modes are used in the azimuthal direc-

tion with 100% de-aliasing, resulting in 130 collocation points in physical space.

Figure 1a shows a snapshot of the axial velocity component of the turbulent

pipe flow under consideration. Figure 1b shows the evolution of the mean axial

velocity profile for three different axial positions.

(a)
(b)

Figure 1: Turbulent pipe flow, M = 0.46, Re = 6700. a) snapshot of the total

axial velocity component; b) axial mean velocity profile for three different axial

positions.

Hard wall case vs Lined wall case. The lined-wall case is compared to the hard-

wall case in order to assess the acoustic attenuation. A validation of the liner

model implemented is conducted by injecting into the turbulent flow field sinu-

soidal signals at the inflow, which propagate through the pipe. The attenuation

rates are then compared with eigenvalue solutions from a different code that

assumes a uniform mean axial velocity profile. For the liner attenuation stud-

ies, the reactance parameters are set so that Stresonance = 1 and a sinusoidal

input is superposed onto the axial perturbations at the inflow with a frequency

of St = 1. Figure 2 shows the power spectral density PSD of the pressure at

two different locations along the pipe wall. As expected the peak at St = 1 is

significantly attenuated. Another tone appears at St = 2, which is a higher har-

monic of the forcing frequency. The amplitude of this tone is also considerably
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Figure 2: PSD of pressure at z = 2 (left) and z = 12 (right) from DNS, hard-

wall case (solid line), lined wall case (symbols), R = 1. PSD obtained with

Welch method, frequency resolution ∆St = 0.1.

decreased. A reduction of the broad band pressure spectrum is also observed

over a wide range of St, and the bandwidth attenuation increases with distance

downstream.

Figure 3a shows the reactance and resistance used for the current pipe case.

In order to validate the liner model implementation the wall attenuation at

St = 1 is computed for different resistance values with the classical eigenvalue

solution. Figure 3b shows a good agreement between the DNS results and

the eigenvalue solution predictions. In order to ensure that the liner model

implemented attenuates the acoustic field only, the flow statistics of the lined

case is studied and compared to a hard-wall case. In Figure 4 the Reynolds

stress components are plotted over the wall distance, Y +, calculated at the

axial position z = 40. The normal Reynolds stress components are denoted as

uu, vv, ww and uv while the shear stress component is denoted as uv. The

lined-wall case (squares) is compared to the hard-wall case (solid lines) from the

DNS solver and the hard-wall case from a reference DNS in Wu & Moin [27]

(dashed lines). Three zones along the wall distance Y + are highlighted. Zone 1,

Y + = 0.7− 1 represents a region in the viscous sublayer, Zone 2, Y + = 10− 19,

is located in the buffer-layer and Zone 3, Y + = 40 − 70, is located in the
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(a) (b)

Figure 3: a) Resistance and reacatance used for acoustic liner, Stresonance =

1. b) Liner model validation: DNS wall attenuation (symbols), and eigenvalue

solutions (lines). Three different values of resistance tested R = 0.25, R = 1

and R = 4.

logarithmic layer. These zones are investigated in more detail in the following

paragraphs.

Figure 4: Reynolds stress components; solid lines: DNS hard-wall case; squared

symbols: DNS lined-wall case; dashed lines: reference data of Wu & Moin [27].
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(a) (b)

Figure 5: a) Mean velocity profile U+
mean and turbulent kinetic energy TKE+;

solid lines: DNS hard-wall case; Dots: DNS Lined-wall case. b) Root mean

square of pressure over wall distance Y +; hard-wall case (HW) vs. lined case

(LW).

Figure 4 shows good agreement between the Reynolds stress components

from the lined-case and the hard-wall cases, which means that statistically the

turbulent flow remains unchanged and only the acoustic field is attenuated.

Furthermore, since the DNS results are consistent with the results from Wu &

Moin [27] we can be confident that the turbulent flow has been solved correctly.

Figure 5a shows the average axial component U+
mean and the turbulent kinetic

energy TKE+. The lined case is again compared to the hard-wall case showing

that the mean velocity profile and the TKE+ are hardly affected by the liner.

The slight reduction of the TKE+ peaks is due to a small increase in uτ at the

wall. Figure 5b shows the comparison of the root mean square pressure, Prms,

between the lined and the hard wall case over the radial direction, Y +. The

overall trend shows a reduction across the boundary layer. Since the turbulent

flow remains statistically unchanged the pressure reduction is interpreted as

acoustic attenuation only. Figure 5b also shows a higher attenuation in the

viscous sublayer compared to the other zones. This is due to the presence of

the liner which is more effective in the region close to the wall.

The probability density function, Pdf , of characteristic turbulent quantities

such as density, enstrophy, vorticity magnitude and turbulent dissipation rate
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are also studied. This study is carried out in order to confirm the previous results

that the liner attenuates the acoustic energy only. These flow parameters are

extracted from the three zones highlighted in Figure 4. The time series used

to calculate the Pdf consist of 500, 000 time-steps. Figure 6 shows the Pdf of

density in the three zones for the lined and hard wall cases. It is clear that in

the lined case the Pdf peaks at lower values, especially in zones one and two,

while in zone three the lined case tends to coincide with the hard wall case. This

is due to the influence of the liner which is more effective in the region close

to the wall. Figures 7, 8 and 9 show the pdf of enstrophy, vorticity magnitude

and turbulent dissipation rate respectively. As expected these quantities are the

same for the lined and wall case in all three zones, providing evidence that the

liner boundary condition does not affect the turbulent flow.

Figure 6: Pdf of density in three different zones along the wall distance Y +.

Figure 7: Pdf of enstrophy in three different zones along the wall distance Y +.
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Figure 8: Pdf of vorticity magnitude in three different zones along the wall

distance Y +.

Figure 9: Pdf of turbulent kinetic energy dissipation in three different zones

along the wall distance Y +.

5. Liner attenuation; Inlet flow manipulation

Figure 10 shows the pressure PSD attenuation at the wall for the axisym-

metric and the first azimuthal Fourier mode in the frequency domain over the

axial positions Z. Figure 10a shows clearly that the peak of the attenuation oc-

curs at the resonance frequency at which the liner has been set, Stresonance = 1.

The attenuation tends to increase in the downstream direction up to 13dB.

Figure 10b shows the pressure PSD attenuation for the first azimuthal mode.

The peak of the attenuation still occurs at Stresonance = 1 above the cut on

frequency, defined as Stcuton = αmn
√

1−M2/2πM , where αmn are the zeros

of the Bessel function (Williams, Crighton & Dowling [28]). The attenuation

is quite low below the Stcuton and should actually be zero if the wall pressure
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is purely acoustic. In order to reduce the magnitude of the sound generated

by the digital filter technique used at the pipe inlet a manipulation of the inlet

condition is attempted. The fluctuating part of the velocity components, u′, v′

and w′, are set to zero for the axisymmetric mode while u′, v′ and w′ are left

untouched for higher azimuthal modes. Therefore, a new turbulent pipe case is

computed keeping the original numerical set up, as described in section 4.

(a) (b)

Figure 10: Wall attenuation (dB) for two azimuthal modes; white line denotes

cut on frequency. a) axisymmetric mode. b) Azimuthal mode 1.

Figure 11 shows the pressure PSD attenuation at the wall over the axial

coordinate Z of the new turbulent pipe case. The axisymmetric mode shows

a modest attenuation in the high frequencies, St > 2.5, while the first mode

shows a broader attenuation above the cut on frequency. For the first azimuthal

mode, an attenuation up to 30dB can be observed, which is the main goal

for this application. The liner attenuation is increasingly more effective with

distance downstream, although for mode m = 1 at a fixed St the attenuation

reaches a maximum and then reduces. This may be due to additional noise

being generated by the turbulent pipe flow. In the actual simulation the liner

is set to resonate at Stresonance = 1.

Figure 11a shows no attenuation around St = 1, from which we deduce

that here the acoustic field is dominated by the turbulent pressure field. This

is due to the absence of noise in the low frequency range for mode zero. In

contrast, mode 1 shows a modest attenuation around Stresonance = 1 where the
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(a) (b)

Figure 11: Wall attenuation (dB) for two azimuthal modes for the new turbu-

lent pipe case; white line denotes cut on frequency. a) Azimuthal mode 0. b)

Azimuthal mode 1.

cut-on broad band noise is more significant. Towards the outlet, z > 45, the

attenuation seems to disappear altogether, which is due to the effect of the zonal

non-reflecting characteristic boundary condition applied in this region, that is,

this region is characterized by non-physical flow and should be ignored.

6. Wavenumber spectrum analysis

In order to have a better understanding of how the Tam and Auriault model

interacts with the flow field it is useful to discriminate the turbulent field from

the acoustic one. In order to do so a Beamformer post-processing method

has been applied. This method consists of computing the cross power spectral

density (CPSD) of DNS variables such as pressure and velocity in the stream-

wise direction and calculating its axial wavenumber transform to obtain a PSD

wavenumber spectrum, using the following expression

PSD(Kz, St) =
1

N2

N−1∑
l=0

N−1∑
i=0

wl(Kz)
′CPSD[q(zl, St), q(zi, St)]wm(Kz), (10)

where Kz is the axial wavenumber, N is the number of grid points in the

streamwise direction, q(zi, St) is a DNS variable at the axial position zi, and

wl(Kz) = exp[i2πStMzl(−M +Kz)/(1−M2)]. For this particular calculation

N = 300 and the time series of the pressure and velocity field consists of 30,000

time-steps.
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(a) (b)

(c) (d)

Figure 12: PSD (dB) of pressure field over wavenumber-frequency domain;

horizontal lines cut on frequencies. a) Hard wall case. b) Lined wall case. c)

Attenuation (dB). d) Components breakdown of the pressure field. Solid lines

with symbols: hard wall case. Dashed lines with symbols: lined wall case.

In Figure 12a the PSD wavenumber spectrum of the wall pressure pertur-

bation is shown. The axial wavenumber range −1 < Kz < 1 represents the

acoustic field while in the vicinity of Kz = 1/M the turbulent field is domi-

nant. In the range −1 < Kz < 1, contours of the first, second and third radial

modes are visible above their respective cut-on St (horizontal line). Figure 12b

shows the PSD wavenumber spectrum when the liner is applied. As expected

the acoustic field in the range −1 < Kz < 1 is significantly attenuated while

the turbulent part remains practically unchanged, as seen more clearly in the

attenuation wavenumber spectrum of Figure 12c. It is now possible to integrate

the PSD of the pressure field in order to discriminate the acoustic field from

the turbulent one for a certain frequency. Therefore, performing the integration

of the PSD axial wavenumber spectrum over −1 < Kz < 1 and Kz > 1/M it
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is possible to plot the trend of the acoustic and turbulent pressure spectra over

the wall distance Y +, as shown in Figure 12d. We omit turbulent wavenum-

bers in the range 1 < Kz < 1/M to minimize contamination by the acoustic

component. In this case the integration is computed for St = 1 since this is the

resonance frequency of the liner implemented, see paragraph 4. As expected

the turbulent part (circled symbols with solid line) remains unchanged when

the liner is present (circled symbols with dashed line). In contrast, the acoustic

part (squared symbols with solid line) is attenuated when the liner is applied

(squared symbols with dashed line).

It is possible to carry out a similar analysis for the wall-normal velocity

component. This gives us a better understanding of how the Tam and Auri-

ault model interacts with the turbulent field. Figure 13a shows the PSD axial

wavenumber spectrum of the v velocity component computed at the wall loca-

tion Y + = 2 using Eq. 10. In the acoustic range −1 < Kz < 1, contours related

to the first, second and third radial modes are visible. Figure 13b shows the

PSD of the v velocity component over the wavenumber-frequency domain when

the liner is present. The acoustic field is attenuated as shown in Figure 13c. In-

tegrating the PSD axial wavenumber spectrum of the wall-normal velocity field

over −1 < Kz < 1 and Kz > 1/M , it is possible to plot the trend of acoustic

and turbulent velocity spectrum over the wall distance Y + as shown in Figure

13d. In this case the integration is computed choosing St = 3, since the highest

attenuation occurs at this particular frequency, see Figure 13c. It is interesting

to see how the acoustic part prevails over the hydrodynamic part in the vicinity

of the wall for the hard wall case (solid lines with symbols). As expected both

the acoustic and turbulent parts, in (dB), tend to minus infinity as the wall is

approached, since the hard wall is an impermeable surface. In the lined case

(dashed lines with symbols) the turbulent part remains unchanged while the

acoustic part has a lower magnitude. In the vicinity of the wall, Y + = 0.5, the

acoustic part clearly prevails over the turbulent part. This result leads us to the

conclusion that the acoustic content dominates over the turbulent part when

the flow approaches the wall. For this reason the Tam and Auriault model is es-
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sentially coupled to the acoustic component of the DNS field and the turbulent

component remains unchanged by the liner model.

(a) (b)

(c) (d)

Figure 13: PSD (dB) axial wavenumber spectrum of the velocity v-component

field over wave-frequency domain; magenta lines cut on frequencies. a) Hard

wall case. b) Lined wall case. c) Attenuation (dB). d) Components breakdown

of the v velocity component field. Solid lines with symbols: hard wall case.

Dashed lines with symbols: lined wall case.

7. Conclusion

Internally generated pipe noise, previously identified in DNS solutions for a

pipe/jet configuration, can be effectively suppressed by replacing the hard-wall

boundary condition on the internal pipe wall with a locally reacting impedance

boundary condition in the time domain. This has been demonstrated using the

Tam & Auriault [11] model, with suitably chosen liner resistance and reactance

parameters. The unsteady pressure field has been attenuated by up to 30 dB

without affecting the velocity field statistics. Application of an azimuthal/axial
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Fourier transform to the wall pressure has shown that the turbulent pressure

component is unchanged in the presence of the liner but the acoustic pressure

field is strongly attenuated. This is due to the fact that in the viscous sub-layer

fluctuations due to the acoustic field dominate over those of the turbulent field

and hence the normal velocity of the liner model only couples to the acoustic

velocity component of the DNS field. Future work will include an implementa-

tion of this liner into a fully turbulent pipe/jet flow to study the effect of the

liner on the acoustic far-field.
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